zsmalloc: decouple class actions from zspage works
[linux-2.6-microblaze.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->index: links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *      page->page_type: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *      PG_private: identifies the first component page
27  *      PG_owner_priv_1: identifies the huge component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <linux/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/pseudo_fs.h>
56 #include <linux/migrate.h>
57 #include <linux/wait.h>
58 #include <linux/pagemap.h>
59 #include <linux/fs.h>
60
61 #define ZSPAGE_MAGIC    0x58
62
63 /*
64  * This must be power of 2 and greater than or equal to sizeof(link_free).
65  * These two conditions ensure that any 'struct link_free' itself doesn't
66  * span more than 1 page which avoids complex case of mapping 2 pages simply
67  * to restore link_free pointer values.
68  */
69 #define ZS_ALIGN                8
70
71 /*
72  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
73  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
74  */
75 #define ZS_MAX_ZSPAGE_ORDER 2
76 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
77
78 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
79
80 /*
81  * Object location (<PFN>, <obj_idx>) is encoded as
82  * a single (unsigned long) handle value.
83  *
84  * Note that object index <obj_idx> starts from 0.
85  *
86  * This is made more complicated by various memory models and PAE.
87  */
88
89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
90 #ifdef MAX_PHYSMEM_BITS
91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92 #else
93 /*
94  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95  * be PAGE_SHIFT
96  */
97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
98 #endif
99 #endif
100
101 #define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
102
103 /*
104  * Memory for allocating for handle keeps object position by
105  * encoding <page, obj_idx> and the encoded value has a room
106  * in least bit(ie, look at obj_to_location).
107  * We use the bit to synchronize between object access by
108  * user and migration.
109  */
110 #define HANDLE_PIN_BIT  0
111
112 /*
113  * Head in allocated object should have OBJ_ALLOCATED_TAG
114  * to identify the object was allocated or not.
115  * It's okay to add the status bit in the least bit because
116  * header keeps handle which is 4byte-aligned address so we
117  * have room for two bit at least.
118  */
119 #define OBJ_ALLOCATED_TAG 1
120 #define OBJ_TAG_BITS 1
121 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
122 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123
124 #define FULLNESS_BITS   2
125 #define CLASS_BITS      8
126 #define ISOLATED_BITS   3
127 #define MAGIC_VAL_BITS  8
128
129 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
130 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
131 #define ZS_MIN_ALLOC_SIZE \
132         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
133 /* each chunk includes extra space to keep handle */
134 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
135
136 /*
137  * On systems with 4K page size, this gives 255 size classes! There is a
138  * trader-off here:
139  *  - Large number of size classes is potentially wasteful as free page are
140  *    spread across these classes
141  *  - Small number of size classes causes large internal fragmentation
142  *  - Probably its better to use specific size classes (empirically
143  *    determined). NOTE: all those class sizes must be set as multiple of
144  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
145  *
146  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
147  *  (reason above)
148  */
149 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
150 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
151                                       ZS_SIZE_CLASS_DELTA) + 1)
152
153 enum fullness_group {
154         ZS_EMPTY,
155         ZS_ALMOST_EMPTY,
156         ZS_ALMOST_FULL,
157         ZS_FULL,
158         NR_ZS_FULLNESS,
159 };
160
161 enum class_stat_type {
162         CLASS_EMPTY,
163         CLASS_ALMOST_EMPTY,
164         CLASS_ALMOST_FULL,
165         CLASS_FULL,
166         OBJ_ALLOCATED,
167         OBJ_USED,
168         NR_ZS_STAT_TYPE,
169 };
170
171 struct zs_size_stat {
172         unsigned long objs[NR_ZS_STAT_TYPE];
173 };
174
175 #ifdef CONFIG_ZSMALLOC_STAT
176 static struct dentry *zs_stat_root;
177 #endif
178
179 #ifdef CONFIG_COMPACTION
180 static struct vfsmount *zsmalloc_mnt;
181 #endif
182
183 /*
184  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
185  *      n <= N / f, where
186  * n = number of allocated objects
187  * N = total number of objects zspage can store
188  * f = fullness_threshold_frac
189  *
190  * Similarly, we assign zspage to:
191  *      ZS_ALMOST_FULL  when n > N / f
192  *      ZS_EMPTY        when n == 0
193  *      ZS_FULL         when n == N
194  *
195  * (see: fix_fullness_group())
196  */
197 static const int fullness_threshold_frac = 4;
198 static size_t huge_class_size;
199
200 struct size_class {
201         spinlock_t lock;
202         struct list_head fullness_list[NR_ZS_FULLNESS];
203         /*
204          * Size of objects stored in this class. Must be multiple
205          * of ZS_ALIGN.
206          */
207         int size;
208         int objs_per_zspage;
209         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
210         int pages_per_zspage;
211
212         unsigned int index;
213         struct zs_size_stat stats;
214 };
215
216 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
217 static void SetPageHugeObject(struct page *page)
218 {
219         SetPageOwnerPriv1(page);
220 }
221
222 static void ClearPageHugeObject(struct page *page)
223 {
224         ClearPageOwnerPriv1(page);
225 }
226
227 static int PageHugeObject(struct page *page)
228 {
229         return PageOwnerPriv1(page);
230 }
231
232 /*
233  * Placed within free objects to form a singly linked list.
234  * For every zspage, zspage->freeobj gives head of this list.
235  *
236  * This must be power of 2 and less than or equal to ZS_ALIGN
237  */
238 struct link_free {
239         union {
240                 /*
241                  * Free object index;
242                  * It's valid for non-allocated object
243                  */
244                 unsigned long next;
245                 /*
246                  * Handle of allocated object.
247                  */
248                 unsigned long handle;
249         };
250 };
251
252 struct zs_pool {
253         const char *name;
254
255         struct size_class *size_class[ZS_SIZE_CLASSES];
256         struct kmem_cache *handle_cachep;
257         struct kmem_cache *zspage_cachep;
258
259         atomic_long_t pages_allocated;
260
261         struct zs_pool_stats stats;
262
263         /* Compact classes */
264         struct shrinker shrinker;
265
266 #ifdef CONFIG_ZSMALLOC_STAT
267         struct dentry *stat_dentry;
268 #endif
269 #ifdef CONFIG_COMPACTION
270         struct inode *inode;
271         struct work_struct free_work;
272         /* A wait queue for when migration races with async_free_zspage() */
273         struct wait_queue_head migration_wait;
274         atomic_long_t isolated_pages;
275         bool destroying;
276 #endif
277 };
278
279 struct zspage {
280         struct {
281                 unsigned int fullness:FULLNESS_BITS;
282                 unsigned int class:CLASS_BITS + 1;
283                 unsigned int isolated:ISOLATED_BITS;
284                 unsigned int magic:MAGIC_VAL_BITS;
285         };
286         unsigned int inuse;
287         unsigned int freeobj;
288         struct page *first_page;
289         struct list_head list; /* fullness list */
290 #ifdef CONFIG_COMPACTION
291         rwlock_t lock;
292 #endif
293 };
294
295 struct mapping_area {
296         char *vm_buf; /* copy buffer for objects that span pages */
297         char *vm_addr; /* address of kmap_atomic()'ed pages */
298         enum zs_mapmode vm_mm; /* mapping mode */
299 };
300
301 #ifdef CONFIG_COMPACTION
302 static int zs_register_migration(struct zs_pool *pool);
303 static void zs_unregister_migration(struct zs_pool *pool);
304 static void migrate_lock_init(struct zspage *zspage);
305 static void migrate_read_lock(struct zspage *zspage);
306 static void migrate_read_unlock(struct zspage *zspage);
307 static void kick_deferred_free(struct zs_pool *pool);
308 static void init_deferred_free(struct zs_pool *pool);
309 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
310 #else
311 static int zsmalloc_mount(void) { return 0; }
312 static void zsmalloc_unmount(void) {}
313 static int zs_register_migration(struct zs_pool *pool) { return 0; }
314 static void zs_unregister_migration(struct zs_pool *pool) {}
315 static void migrate_lock_init(struct zspage *zspage) {}
316 static void migrate_read_lock(struct zspage *zspage) {}
317 static void migrate_read_unlock(struct zspage *zspage) {}
318 static void kick_deferred_free(struct zs_pool *pool) {}
319 static void init_deferred_free(struct zs_pool *pool) {}
320 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
321 #endif
322
323 static int create_cache(struct zs_pool *pool)
324 {
325         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
326                                         0, 0, NULL);
327         if (!pool->handle_cachep)
328                 return 1;
329
330         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
331                                         0, 0, NULL);
332         if (!pool->zspage_cachep) {
333                 kmem_cache_destroy(pool->handle_cachep);
334                 pool->handle_cachep = NULL;
335                 return 1;
336         }
337
338         return 0;
339 }
340
341 static void destroy_cache(struct zs_pool *pool)
342 {
343         kmem_cache_destroy(pool->handle_cachep);
344         kmem_cache_destroy(pool->zspage_cachep);
345 }
346
347 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
348 {
349         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
350                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
351 }
352
353 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
354 {
355         kmem_cache_free(pool->handle_cachep, (void *)handle);
356 }
357
358 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
359 {
360         return kmem_cache_zalloc(pool->zspage_cachep,
361                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
362 }
363
364 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
365 {
366         kmem_cache_free(pool->zspage_cachep, zspage);
367 }
368
369 static void record_obj(unsigned long handle, unsigned long obj)
370 {
371         /*
372          * lsb of @obj represents handle lock while other bits
373          * represent object value the handle is pointing so
374          * updating shouldn't do store tearing.
375          */
376         WRITE_ONCE(*(unsigned long *)handle, obj);
377 }
378
379 /* zpool driver */
380
381 #ifdef CONFIG_ZPOOL
382
383 static void *zs_zpool_create(const char *name, gfp_t gfp,
384                              const struct zpool_ops *zpool_ops,
385                              struct zpool *zpool)
386 {
387         /*
388          * Ignore global gfp flags: zs_malloc() may be invoked from
389          * different contexts and its caller must provide a valid
390          * gfp mask.
391          */
392         return zs_create_pool(name);
393 }
394
395 static void zs_zpool_destroy(void *pool)
396 {
397         zs_destroy_pool(pool);
398 }
399
400 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
401                         unsigned long *handle)
402 {
403         *handle = zs_malloc(pool, size, gfp);
404         return *handle ? 0 : -1;
405 }
406 static void zs_zpool_free(void *pool, unsigned long handle)
407 {
408         zs_free(pool, handle);
409 }
410
411 static void *zs_zpool_map(void *pool, unsigned long handle,
412                         enum zpool_mapmode mm)
413 {
414         enum zs_mapmode zs_mm;
415
416         switch (mm) {
417         case ZPOOL_MM_RO:
418                 zs_mm = ZS_MM_RO;
419                 break;
420         case ZPOOL_MM_WO:
421                 zs_mm = ZS_MM_WO;
422                 break;
423         case ZPOOL_MM_RW:
424         default:
425                 zs_mm = ZS_MM_RW;
426                 break;
427         }
428
429         return zs_map_object(pool, handle, zs_mm);
430 }
431 static void zs_zpool_unmap(void *pool, unsigned long handle)
432 {
433         zs_unmap_object(pool, handle);
434 }
435
436 static u64 zs_zpool_total_size(void *pool)
437 {
438         return zs_get_total_pages(pool) << PAGE_SHIFT;
439 }
440
441 static struct zpool_driver zs_zpool_driver = {
442         .type =                   "zsmalloc",
443         .owner =                  THIS_MODULE,
444         .create =                 zs_zpool_create,
445         .destroy =                zs_zpool_destroy,
446         .malloc_support_movable = true,
447         .malloc =                 zs_zpool_malloc,
448         .free =                   zs_zpool_free,
449         .map =                    zs_zpool_map,
450         .unmap =                  zs_zpool_unmap,
451         .total_size =             zs_zpool_total_size,
452 };
453
454 MODULE_ALIAS("zpool-zsmalloc");
455 #endif /* CONFIG_ZPOOL */
456
457 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
458 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
459
460 static bool is_zspage_isolated(struct zspage *zspage)
461 {
462         return zspage->isolated;
463 }
464
465 static __maybe_unused int is_first_page(struct page *page)
466 {
467         return PagePrivate(page);
468 }
469
470 /* Protected by class->lock */
471 static inline int get_zspage_inuse(struct zspage *zspage)
472 {
473         return zspage->inuse;
474 }
475
476
477 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
478 {
479         zspage->inuse += val;
480 }
481
482 static inline struct page *get_first_page(struct zspage *zspage)
483 {
484         struct page *first_page = zspage->first_page;
485
486         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
487         return first_page;
488 }
489
490 static inline int get_first_obj_offset(struct page *page)
491 {
492         return page->page_type;
493 }
494
495 static inline void set_first_obj_offset(struct page *page, int offset)
496 {
497         page->page_type = offset;
498 }
499
500 static inline unsigned int get_freeobj(struct zspage *zspage)
501 {
502         return zspage->freeobj;
503 }
504
505 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
506 {
507         zspage->freeobj = obj;
508 }
509
510 static void get_zspage_mapping(struct zspage *zspage,
511                                 unsigned int *class_idx,
512                                 enum fullness_group *fullness)
513 {
514         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
515
516         *fullness = zspage->fullness;
517         *class_idx = zspage->class;
518 }
519
520 static struct size_class *zspage_class(struct zs_pool *pool,
521                                              struct zspage *zspage)
522 {
523         return pool->size_class[zspage->class];
524 }
525
526 static void set_zspage_mapping(struct zspage *zspage,
527                                 unsigned int class_idx,
528                                 enum fullness_group fullness)
529 {
530         zspage->class = class_idx;
531         zspage->fullness = fullness;
532 }
533
534 /*
535  * zsmalloc divides the pool into various size classes where each
536  * class maintains a list of zspages where each zspage is divided
537  * into equal sized chunks. Each allocation falls into one of these
538  * classes depending on its size. This function returns index of the
539  * size class which has chunk size big enough to hold the given size.
540  */
541 static int get_size_class_index(int size)
542 {
543         int idx = 0;
544
545         if (likely(size > ZS_MIN_ALLOC_SIZE))
546                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
547                                 ZS_SIZE_CLASS_DELTA);
548
549         return min_t(int, ZS_SIZE_CLASSES - 1, idx);
550 }
551
552 /* type can be of enum type class_stat_type or fullness_group */
553 static inline void class_stat_inc(struct size_class *class,
554                                 int type, unsigned long cnt)
555 {
556         class->stats.objs[type] += cnt;
557 }
558
559 /* type can be of enum type class_stat_type or fullness_group */
560 static inline void class_stat_dec(struct size_class *class,
561                                 int type, unsigned long cnt)
562 {
563         class->stats.objs[type] -= cnt;
564 }
565
566 /* type can be of enum type class_stat_type or fullness_group */
567 static inline unsigned long zs_stat_get(struct size_class *class,
568                                 int type)
569 {
570         return class->stats.objs[type];
571 }
572
573 #ifdef CONFIG_ZSMALLOC_STAT
574
575 static void __init zs_stat_init(void)
576 {
577         if (!debugfs_initialized()) {
578                 pr_warn("debugfs not available, stat dir not created\n");
579                 return;
580         }
581
582         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
583 }
584
585 static void __exit zs_stat_exit(void)
586 {
587         debugfs_remove_recursive(zs_stat_root);
588 }
589
590 static unsigned long zs_can_compact(struct size_class *class);
591
592 static int zs_stats_size_show(struct seq_file *s, void *v)
593 {
594         int i;
595         struct zs_pool *pool = s->private;
596         struct size_class *class;
597         int objs_per_zspage;
598         unsigned long class_almost_full, class_almost_empty;
599         unsigned long obj_allocated, obj_used, pages_used, freeable;
600         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
601         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
602         unsigned long total_freeable = 0;
603
604         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
605                         "class", "size", "almost_full", "almost_empty",
606                         "obj_allocated", "obj_used", "pages_used",
607                         "pages_per_zspage", "freeable");
608
609         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
610                 class = pool->size_class[i];
611
612                 if (class->index != i)
613                         continue;
614
615                 spin_lock(&class->lock);
616                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
617                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
618                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
619                 obj_used = zs_stat_get(class, OBJ_USED);
620                 freeable = zs_can_compact(class);
621                 spin_unlock(&class->lock);
622
623                 objs_per_zspage = class->objs_per_zspage;
624                 pages_used = obj_allocated / objs_per_zspage *
625                                 class->pages_per_zspage;
626
627                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
628                                 " %10lu %10lu %16d %8lu\n",
629                         i, class->size, class_almost_full, class_almost_empty,
630                         obj_allocated, obj_used, pages_used,
631                         class->pages_per_zspage, freeable);
632
633                 total_class_almost_full += class_almost_full;
634                 total_class_almost_empty += class_almost_empty;
635                 total_objs += obj_allocated;
636                 total_used_objs += obj_used;
637                 total_pages += pages_used;
638                 total_freeable += freeable;
639         }
640
641         seq_puts(s, "\n");
642         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
643                         "Total", "", total_class_almost_full,
644                         total_class_almost_empty, total_objs,
645                         total_used_objs, total_pages, "", total_freeable);
646
647         return 0;
648 }
649 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
650
651 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
652 {
653         if (!zs_stat_root) {
654                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
655                 return;
656         }
657
658         pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
659
660         debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
661                             &zs_stats_size_fops);
662 }
663
664 static void zs_pool_stat_destroy(struct zs_pool *pool)
665 {
666         debugfs_remove_recursive(pool->stat_dentry);
667 }
668
669 #else /* CONFIG_ZSMALLOC_STAT */
670 static void __init zs_stat_init(void)
671 {
672 }
673
674 static void __exit zs_stat_exit(void)
675 {
676 }
677
678 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
679 {
680 }
681
682 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
683 {
684 }
685 #endif
686
687
688 /*
689  * For each size class, zspages are divided into different groups
690  * depending on how "full" they are. This was done so that we could
691  * easily find empty or nearly empty zspages when we try to shrink
692  * the pool (not yet implemented). This function returns fullness
693  * status of the given page.
694  */
695 static enum fullness_group get_fullness_group(struct size_class *class,
696                                                 struct zspage *zspage)
697 {
698         int inuse, objs_per_zspage;
699         enum fullness_group fg;
700
701         inuse = get_zspage_inuse(zspage);
702         objs_per_zspage = class->objs_per_zspage;
703
704         if (inuse == 0)
705                 fg = ZS_EMPTY;
706         else if (inuse == objs_per_zspage)
707                 fg = ZS_FULL;
708         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
709                 fg = ZS_ALMOST_EMPTY;
710         else
711                 fg = ZS_ALMOST_FULL;
712
713         return fg;
714 }
715
716 /*
717  * Each size class maintains various freelists and zspages are assigned
718  * to one of these freelists based on the number of live objects they
719  * have. This functions inserts the given zspage into the freelist
720  * identified by <class, fullness_group>.
721  */
722 static void insert_zspage(struct size_class *class,
723                                 struct zspage *zspage,
724                                 enum fullness_group fullness)
725 {
726         struct zspage *head;
727
728         class_stat_inc(class, fullness, 1);
729         head = list_first_entry_or_null(&class->fullness_list[fullness],
730                                         struct zspage, list);
731         /*
732          * We want to see more ZS_FULL pages and less almost empty/full.
733          * Put pages with higher ->inuse first.
734          */
735         if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
736                 list_add(&zspage->list, &head->list);
737         else
738                 list_add(&zspage->list, &class->fullness_list[fullness]);
739 }
740
741 /*
742  * This function removes the given zspage from the freelist identified
743  * by <class, fullness_group>.
744  */
745 static void remove_zspage(struct size_class *class,
746                                 struct zspage *zspage,
747                                 enum fullness_group fullness)
748 {
749         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
750         VM_BUG_ON(is_zspage_isolated(zspage));
751
752         list_del_init(&zspage->list);
753         class_stat_dec(class, fullness, 1);
754 }
755
756 /*
757  * Each size class maintains zspages in different fullness groups depending
758  * on the number of live objects they contain. When allocating or freeing
759  * objects, the fullness status of the page can change, say, from ALMOST_FULL
760  * to ALMOST_EMPTY when freeing an object. This function checks if such
761  * a status change has occurred for the given page and accordingly moves the
762  * page from the freelist of the old fullness group to that of the new
763  * fullness group.
764  */
765 static enum fullness_group fix_fullness_group(struct size_class *class,
766                                                 struct zspage *zspage)
767 {
768         int class_idx;
769         enum fullness_group currfg, newfg;
770
771         get_zspage_mapping(zspage, &class_idx, &currfg);
772         newfg = get_fullness_group(class, zspage);
773         if (newfg == currfg)
774                 goto out;
775
776         if (!is_zspage_isolated(zspage)) {
777                 remove_zspage(class, zspage, currfg);
778                 insert_zspage(class, zspage, newfg);
779         }
780
781         set_zspage_mapping(zspage, class_idx, newfg);
782
783 out:
784         return newfg;
785 }
786
787 /*
788  * We have to decide on how many pages to link together
789  * to form a zspage for each size class. This is important
790  * to reduce wastage due to unusable space left at end of
791  * each zspage which is given as:
792  *     wastage = Zp % class_size
793  *     usage = Zp - wastage
794  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
795  *
796  * For example, for size class of 3/8 * PAGE_SIZE, we should
797  * link together 3 PAGE_SIZE sized pages to form a zspage
798  * since then we can perfectly fit in 8 such objects.
799  */
800 static int get_pages_per_zspage(int class_size)
801 {
802         int i, max_usedpc = 0;
803         /* zspage order which gives maximum used size per KB */
804         int max_usedpc_order = 1;
805
806         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
807                 int zspage_size;
808                 int waste, usedpc;
809
810                 zspage_size = i * PAGE_SIZE;
811                 waste = zspage_size % class_size;
812                 usedpc = (zspage_size - waste) * 100 / zspage_size;
813
814                 if (usedpc > max_usedpc) {
815                         max_usedpc = usedpc;
816                         max_usedpc_order = i;
817                 }
818         }
819
820         return max_usedpc_order;
821 }
822
823 static struct zspage *get_zspage(struct page *page)
824 {
825         struct zspage *zspage = (struct zspage *)page_private(page);
826
827         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
828         return zspage;
829 }
830
831 static struct page *get_next_page(struct page *page)
832 {
833         if (unlikely(PageHugeObject(page)))
834                 return NULL;
835
836         return (struct page *)page->index;
837 }
838
839 /**
840  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
841  * @obj: the encoded object value
842  * @page: page object resides in zspage
843  * @obj_idx: object index
844  */
845 static void obj_to_location(unsigned long obj, struct page **page,
846                                 unsigned int *obj_idx)
847 {
848         obj >>= OBJ_TAG_BITS;
849         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
850         *obj_idx = (obj & OBJ_INDEX_MASK);
851 }
852
853 static void obj_to_page(unsigned long obj, struct page **page)
854 {
855         obj >>= OBJ_TAG_BITS;
856         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
857 }
858
859 /**
860  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
861  * @page: page object resides in zspage
862  * @obj_idx: object index
863  */
864 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
865 {
866         unsigned long obj;
867
868         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
869         obj |= obj_idx & OBJ_INDEX_MASK;
870         obj <<= OBJ_TAG_BITS;
871
872         return obj;
873 }
874
875 static unsigned long handle_to_obj(unsigned long handle)
876 {
877         return *(unsigned long *)handle;
878 }
879
880 static unsigned long obj_to_head(struct page *page, void *obj)
881 {
882         if (unlikely(PageHugeObject(page))) {
883                 VM_BUG_ON_PAGE(!is_first_page(page), page);
884                 return page->index;
885         } else
886                 return *(unsigned long *)obj;
887 }
888
889 static inline int testpin_tag(unsigned long handle)
890 {
891         return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
892 }
893
894 static inline int trypin_tag(unsigned long handle)
895 {
896         return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
897 }
898
899 static void pin_tag(unsigned long handle) __acquires(bitlock)
900 {
901         bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
902 }
903
904 static void unpin_tag(unsigned long handle) __releases(bitlock)
905 {
906         bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
907 }
908
909 static void reset_page(struct page *page)
910 {
911         __ClearPageMovable(page);
912         ClearPagePrivate(page);
913         set_page_private(page, 0);
914         page_mapcount_reset(page);
915         ClearPageHugeObject(page);
916         page->index = 0;
917 }
918
919 static int trylock_zspage(struct zspage *zspage)
920 {
921         struct page *cursor, *fail;
922
923         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
924                                         get_next_page(cursor)) {
925                 if (!trylock_page(cursor)) {
926                         fail = cursor;
927                         goto unlock;
928                 }
929         }
930
931         return 1;
932 unlock:
933         for (cursor = get_first_page(zspage); cursor != fail; cursor =
934                                         get_next_page(cursor))
935                 unlock_page(cursor);
936
937         return 0;
938 }
939
940 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
941                                 struct zspage *zspage)
942 {
943         struct page *page, *next;
944         enum fullness_group fg;
945         unsigned int class_idx;
946
947         get_zspage_mapping(zspage, &class_idx, &fg);
948
949         assert_spin_locked(&class->lock);
950
951         VM_BUG_ON(get_zspage_inuse(zspage));
952         VM_BUG_ON(fg != ZS_EMPTY);
953
954         next = page = get_first_page(zspage);
955         do {
956                 VM_BUG_ON_PAGE(!PageLocked(page), page);
957                 next = get_next_page(page);
958                 reset_page(page);
959                 unlock_page(page);
960                 dec_zone_page_state(page, NR_ZSPAGES);
961                 put_page(page);
962                 page = next;
963         } while (page != NULL);
964
965         cache_free_zspage(pool, zspage);
966
967         class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
968         atomic_long_sub(class->pages_per_zspage,
969                                         &pool->pages_allocated);
970 }
971
972 static void free_zspage(struct zs_pool *pool, struct size_class *class,
973                                 struct zspage *zspage)
974 {
975         VM_BUG_ON(get_zspage_inuse(zspage));
976         VM_BUG_ON(list_empty(&zspage->list));
977
978         if (!trylock_zspage(zspage)) {
979                 kick_deferred_free(pool);
980                 return;
981         }
982
983         remove_zspage(class, zspage, ZS_EMPTY);
984         __free_zspage(pool, class, zspage);
985 }
986
987 /* Initialize a newly allocated zspage */
988 static void init_zspage(struct size_class *class, struct zspage *zspage)
989 {
990         unsigned int freeobj = 1;
991         unsigned long off = 0;
992         struct page *page = get_first_page(zspage);
993
994         while (page) {
995                 struct page *next_page;
996                 struct link_free *link;
997                 void *vaddr;
998
999                 set_first_obj_offset(page, off);
1000
1001                 vaddr = kmap_atomic(page);
1002                 link = (struct link_free *)vaddr + off / sizeof(*link);
1003
1004                 while ((off += class->size) < PAGE_SIZE) {
1005                         link->next = freeobj++ << OBJ_TAG_BITS;
1006                         link += class->size / sizeof(*link);
1007                 }
1008
1009                 /*
1010                  * We now come to the last (full or partial) object on this
1011                  * page, which must point to the first object on the next
1012                  * page (if present)
1013                  */
1014                 next_page = get_next_page(page);
1015                 if (next_page) {
1016                         link->next = freeobj++ << OBJ_TAG_BITS;
1017                 } else {
1018                         /*
1019                          * Reset OBJ_TAG_BITS bit to last link to tell
1020                          * whether it's allocated object or not.
1021                          */
1022                         link->next = -1UL << OBJ_TAG_BITS;
1023                 }
1024                 kunmap_atomic(vaddr);
1025                 page = next_page;
1026                 off %= PAGE_SIZE;
1027         }
1028
1029         set_freeobj(zspage, 0);
1030 }
1031
1032 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1033                                 struct page *pages[])
1034 {
1035         int i;
1036         struct page *page;
1037         struct page *prev_page = NULL;
1038         int nr_pages = class->pages_per_zspage;
1039
1040         /*
1041          * Allocate individual pages and link them together as:
1042          * 1. all pages are linked together using page->index
1043          * 2. each sub-page point to zspage using page->private
1044          *
1045          * we set PG_private to identify the first page (i.e. no other sub-page
1046          * has this flag set).
1047          */
1048         for (i = 0; i < nr_pages; i++) {
1049                 page = pages[i];
1050                 set_page_private(page, (unsigned long)zspage);
1051                 page->index = 0;
1052                 if (i == 0) {
1053                         zspage->first_page = page;
1054                         SetPagePrivate(page);
1055                         if (unlikely(class->objs_per_zspage == 1 &&
1056                                         class->pages_per_zspage == 1))
1057                                 SetPageHugeObject(page);
1058                 } else {
1059                         prev_page->index = (unsigned long)page;
1060                 }
1061                 prev_page = page;
1062         }
1063 }
1064
1065 /*
1066  * Allocate a zspage for the given size class
1067  */
1068 static struct zspage *alloc_zspage(struct zs_pool *pool,
1069                                         struct size_class *class,
1070                                         gfp_t gfp)
1071 {
1072         int i;
1073         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1074         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1075
1076         if (!zspage)
1077                 return NULL;
1078
1079         zspage->magic = ZSPAGE_MAGIC;
1080         migrate_lock_init(zspage);
1081
1082         for (i = 0; i < class->pages_per_zspage; i++) {
1083                 struct page *page;
1084
1085                 page = alloc_page(gfp);
1086                 if (!page) {
1087                         while (--i >= 0) {
1088                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1089                                 __free_page(pages[i]);
1090                         }
1091                         cache_free_zspage(pool, zspage);
1092                         return NULL;
1093                 }
1094
1095                 inc_zone_page_state(page, NR_ZSPAGES);
1096                 pages[i] = page;
1097         }
1098
1099         create_page_chain(class, zspage, pages);
1100         init_zspage(class, zspage);
1101
1102         return zspage;
1103 }
1104
1105 static struct zspage *find_get_zspage(struct size_class *class)
1106 {
1107         int i;
1108         struct zspage *zspage;
1109
1110         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1111                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1112                                 struct zspage, list);
1113                 if (zspage)
1114                         break;
1115         }
1116
1117         return zspage;
1118 }
1119
1120 static inline int __zs_cpu_up(struct mapping_area *area)
1121 {
1122         /*
1123          * Make sure we don't leak memory if a cpu UP notification
1124          * and zs_init() race and both call zs_cpu_up() on the same cpu
1125          */
1126         if (area->vm_buf)
1127                 return 0;
1128         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1129         if (!area->vm_buf)
1130                 return -ENOMEM;
1131         return 0;
1132 }
1133
1134 static inline void __zs_cpu_down(struct mapping_area *area)
1135 {
1136         kfree(area->vm_buf);
1137         area->vm_buf = NULL;
1138 }
1139
1140 static void *__zs_map_object(struct mapping_area *area,
1141                         struct page *pages[2], int off, int size)
1142 {
1143         int sizes[2];
1144         void *addr;
1145         char *buf = area->vm_buf;
1146
1147         /* disable page faults to match kmap_atomic() return conditions */
1148         pagefault_disable();
1149
1150         /* no read fastpath */
1151         if (area->vm_mm == ZS_MM_WO)
1152                 goto out;
1153
1154         sizes[0] = PAGE_SIZE - off;
1155         sizes[1] = size - sizes[0];
1156
1157         /* copy object to per-cpu buffer */
1158         addr = kmap_atomic(pages[0]);
1159         memcpy(buf, addr + off, sizes[0]);
1160         kunmap_atomic(addr);
1161         addr = kmap_atomic(pages[1]);
1162         memcpy(buf + sizes[0], addr, sizes[1]);
1163         kunmap_atomic(addr);
1164 out:
1165         return area->vm_buf;
1166 }
1167
1168 static void __zs_unmap_object(struct mapping_area *area,
1169                         struct page *pages[2], int off, int size)
1170 {
1171         int sizes[2];
1172         void *addr;
1173         char *buf;
1174
1175         /* no write fastpath */
1176         if (area->vm_mm == ZS_MM_RO)
1177                 goto out;
1178
1179         buf = area->vm_buf;
1180         buf = buf + ZS_HANDLE_SIZE;
1181         size -= ZS_HANDLE_SIZE;
1182         off += ZS_HANDLE_SIZE;
1183
1184         sizes[0] = PAGE_SIZE - off;
1185         sizes[1] = size - sizes[0];
1186
1187         /* copy per-cpu buffer to object */
1188         addr = kmap_atomic(pages[0]);
1189         memcpy(addr + off, buf, sizes[0]);
1190         kunmap_atomic(addr);
1191         addr = kmap_atomic(pages[1]);
1192         memcpy(addr, buf + sizes[0], sizes[1]);
1193         kunmap_atomic(addr);
1194
1195 out:
1196         /* enable page faults to match kunmap_atomic() return conditions */
1197         pagefault_enable();
1198 }
1199
1200 static int zs_cpu_prepare(unsigned int cpu)
1201 {
1202         struct mapping_area *area;
1203
1204         area = &per_cpu(zs_map_area, cpu);
1205         return __zs_cpu_up(area);
1206 }
1207
1208 static int zs_cpu_dead(unsigned int cpu)
1209 {
1210         struct mapping_area *area;
1211
1212         area = &per_cpu(zs_map_area, cpu);
1213         __zs_cpu_down(area);
1214         return 0;
1215 }
1216
1217 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1218                                         int objs_per_zspage)
1219 {
1220         if (prev->pages_per_zspage == pages_per_zspage &&
1221                 prev->objs_per_zspage == objs_per_zspage)
1222                 return true;
1223
1224         return false;
1225 }
1226
1227 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1228 {
1229         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1230 }
1231
1232 unsigned long zs_get_total_pages(struct zs_pool *pool)
1233 {
1234         return atomic_long_read(&pool->pages_allocated);
1235 }
1236 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1237
1238 /**
1239  * zs_map_object - get address of allocated object from handle.
1240  * @pool: pool from which the object was allocated
1241  * @handle: handle returned from zs_malloc
1242  * @mm: mapping mode to use
1243  *
1244  * Before using an object allocated from zs_malloc, it must be mapped using
1245  * this function. When done with the object, it must be unmapped using
1246  * zs_unmap_object.
1247  *
1248  * Only one object can be mapped per cpu at a time. There is no protection
1249  * against nested mappings.
1250  *
1251  * This function returns with preemption and page faults disabled.
1252  */
1253 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1254                         enum zs_mapmode mm)
1255 {
1256         struct zspage *zspage;
1257         struct page *page;
1258         unsigned long obj, off;
1259         unsigned int obj_idx;
1260
1261         struct size_class *class;
1262         struct mapping_area *area;
1263         struct page *pages[2];
1264         void *ret;
1265
1266         /*
1267          * Because we use per-cpu mapping areas shared among the
1268          * pools/users, we can't allow mapping in interrupt context
1269          * because it can corrupt another users mappings.
1270          */
1271         BUG_ON(in_interrupt());
1272
1273         /* From now on, migration cannot move the object */
1274         pin_tag(handle);
1275
1276         obj = handle_to_obj(handle);
1277         obj_to_location(obj, &page, &obj_idx);
1278         zspage = get_zspage(page);
1279
1280         /* migration cannot move any subpage in this zspage */
1281         migrate_read_lock(zspage);
1282
1283         class = zspage_class(pool, zspage);
1284         off = (class->size * obj_idx) & ~PAGE_MASK;
1285
1286         area = &get_cpu_var(zs_map_area);
1287         area->vm_mm = mm;
1288         if (off + class->size <= PAGE_SIZE) {
1289                 /* this object is contained entirely within a page */
1290                 area->vm_addr = kmap_atomic(page);
1291                 ret = area->vm_addr + off;
1292                 goto out;
1293         }
1294
1295         /* this object spans two pages */
1296         pages[0] = page;
1297         pages[1] = get_next_page(page);
1298         BUG_ON(!pages[1]);
1299
1300         ret = __zs_map_object(area, pages, off, class->size);
1301 out:
1302         if (likely(!PageHugeObject(page)))
1303                 ret += ZS_HANDLE_SIZE;
1304
1305         return ret;
1306 }
1307 EXPORT_SYMBOL_GPL(zs_map_object);
1308
1309 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1310 {
1311         struct zspage *zspage;
1312         struct page *page;
1313         unsigned long obj, off;
1314         unsigned int obj_idx;
1315
1316         struct size_class *class;
1317         struct mapping_area *area;
1318
1319         obj = handle_to_obj(handle);
1320         obj_to_location(obj, &page, &obj_idx);
1321         zspage = get_zspage(page);
1322         class = zspage_class(pool, zspage);
1323         off = (class->size * obj_idx) & ~PAGE_MASK;
1324
1325         area = this_cpu_ptr(&zs_map_area);
1326         if (off + class->size <= PAGE_SIZE)
1327                 kunmap_atomic(area->vm_addr);
1328         else {
1329                 struct page *pages[2];
1330
1331                 pages[0] = page;
1332                 pages[1] = get_next_page(page);
1333                 BUG_ON(!pages[1]);
1334
1335                 __zs_unmap_object(area, pages, off, class->size);
1336         }
1337         put_cpu_var(zs_map_area);
1338
1339         migrate_read_unlock(zspage);
1340         unpin_tag(handle);
1341 }
1342 EXPORT_SYMBOL_GPL(zs_unmap_object);
1343
1344 /**
1345  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1346  *                        zsmalloc &size_class.
1347  * @pool: zsmalloc pool to use
1348  *
1349  * The function returns the size of the first huge class - any object of equal
1350  * or bigger size will be stored in zspage consisting of a single physical
1351  * page.
1352  *
1353  * Context: Any context.
1354  *
1355  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1356  */
1357 size_t zs_huge_class_size(struct zs_pool *pool)
1358 {
1359         return huge_class_size;
1360 }
1361 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1362
1363 static unsigned long obj_malloc(struct zs_pool *pool,
1364                                 struct zspage *zspage, unsigned long handle)
1365 {
1366         int i, nr_page, offset;
1367         unsigned long obj;
1368         struct link_free *link;
1369         struct size_class *class;
1370
1371         struct page *m_page;
1372         unsigned long m_offset;
1373         void *vaddr;
1374
1375         class = pool->size_class[zspage->class];
1376         handle |= OBJ_ALLOCATED_TAG;
1377         obj = get_freeobj(zspage);
1378
1379         offset = obj * class->size;
1380         nr_page = offset >> PAGE_SHIFT;
1381         m_offset = offset & ~PAGE_MASK;
1382         m_page = get_first_page(zspage);
1383
1384         for (i = 0; i < nr_page; i++)
1385                 m_page = get_next_page(m_page);
1386
1387         vaddr = kmap_atomic(m_page);
1388         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1389         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1390         if (likely(!PageHugeObject(m_page)))
1391                 /* record handle in the header of allocated chunk */
1392                 link->handle = handle;
1393         else
1394                 /* record handle to page->index */
1395                 zspage->first_page->index = handle;
1396
1397         kunmap_atomic(vaddr);
1398         mod_zspage_inuse(zspage, 1);
1399
1400         obj = location_to_obj(m_page, obj);
1401
1402         return obj;
1403 }
1404
1405
1406 /**
1407  * zs_malloc - Allocate block of given size from pool.
1408  * @pool: pool to allocate from
1409  * @size: size of block to allocate
1410  * @gfp: gfp flags when allocating object
1411  *
1412  * On success, handle to the allocated object is returned,
1413  * otherwise 0.
1414  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1415  */
1416 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1417 {
1418         unsigned long handle, obj;
1419         struct size_class *class;
1420         enum fullness_group newfg;
1421         struct zspage *zspage;
1422
1423         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1424                 return 0;
1425
1426         handle = cache_alloc_handle(pool, gfp);
1427         if (!handle)
1428                 return 0;
1429
1430         /* extra space in chunk to keep the handle */
1431         size += ZS_HANDLE_SIZE;
1432         class = pool->size_class[get_size_class_index(size)];
1433
1434         spin_lock(&class->lock);
1435         zspage = find_get_zspage(class);
1436         if (likely(zspage)) {
1437                 obj = obj_malloc(pool, zspage, handle);
1438                 /* Now move the zspage to another fullness group, if required */
1439                 fix_fullness_group(class, zspage);
1440                 record_obj(handle, obj);
1441                 class_stat_inc(class, OBJ_USED, 1);
1442                 spin_unlock(&class->lock);
1443
1444                 return handle;
1445         }
1446
1447         spin_unlock(&class->lock);
1448
1449         zspage = alloc_zspage(pool, class, gfp);
1450         if (!zspage) {
1451                 cache_free_handle(pool, handle);
1452                 return 0;
1453         }
1454
1455         spin_lock(&class->lock);
1456         obj = obj_malloc(pool, zspage, handle);
1457         newfg = get_fullness_group(class, zspage);
1458         insert_zspage(class, zspage, newfg);
1459         set_zspage_mapping(zspage, class->index, newfg);
1460         record_obj(handle, obj);
1461         atomic_long_add(class->pages_per_zspage,
1462                                 &pool->pages_allocated);
1463         class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1464         class_stat_inc(class, OBJ_USED, 1);
1465
1466         /* We completely set up zspage so mark them as movable */
1467         SetZsPageMovable(pool, zspage);
1468         spin_unlock(&class->lock);
1469
1470         return handle;
1471 }
1472 EXPORT_SYMBOL_GPL(zs_malloc);
1473
1474 static void obj_free(int class_size, unsigned long obj)
1475 {
1476         struct link_free *link;
1477         struct zspage *zspage;
1478         struct page *f_page;
1479         unsigned long f_offset;
1480         unsigned int f_objidx;
1481         void *vaddr;
1482
1483         obj_to_location(obj, &f_page, &f_objidx);
1484         f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1485         zspage = get_zspage(f_page);
1486
1487         vaddr = kmap_atomic(f_page);
1488
1489         /* Insert this object in containing zspage's freelist */
1490         link = (struct link_free *)(vaddr + f_offset);
1491         link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1492         kunmap_atomic(vaddr);
1493         set_freeobj(zspage, f_objidx);
1494         mod_zspage_inuse(zspage, -1);
1495 }
1496
1497 void zs_free(struct zs_pool *pool, unsigned long handle)
1498 {
1499         struct zspage *zspage;
1500         struct page *f_page;
1501         unsigned long obj;
1502         struct size_class *class;
1503         enum fullness_group fullness;
1504         bool isolated;
1505
1506         if (unlikely(!handle))
1507                 return;
1508
1509         pin_tag(handle);
1510         obj = handle_to_obj(handle);
1511         obj_to_page(obj, &f_page);
1512         zspage = get_zspage(f_page);
1513
1514         migrate_read_lock(zspage);
1515         class = zspage_class(pool, zspage);
1516
1517         spin_lock(&class->lock);
1518         obj_free(class->size, obj);
1519         class_stat_dec(class, OBJ_USED, 1);
1520         fullness = fix_fullness_group(class, zspage);
1521         if (fullness != ZS_EMPTY) {
1522                 migrate_read_unlock(zspage);
1523                 goto out;
1524         }
1525
1526         isolated = is_zspage_isolated(zspage);
1527         migrate_read_unlock(zspage);
1528         /* If zspage is isolated, zs_page_putback will free the zspage */
1529         if (likely(!isolated))
1530                 free_zspage(pool, class, zspage);
1531 out:
1532
1533         spin_unlock(&class->lock);
1534         unpin_tag(handle);
1535         cache_free_handle(pool, handle);
1536 }
1537 EXPORT_SYMBOL_GPL(zs_free);
1538
1539 static void zs_object_copy(struct size_class *class, unsigned long dst,
1540                                 unsigned long src)
1541 {
1542         struct page *s_page, *d_page;
1543         unsigned int s_objidx, d_objidx;
1544         unsigned long s_off, d_off;
1545         void *s_addr, *d_addr;
1546         int s_size, d_size, size;
1547         int written = 0;
1548
1549         s_size = d_size = class->size;
1550
1551         obj_to_location(src, &s_page, &s_objidx);
1552         obj_to_location(dst, &d_page, &d_objidx);
1553
1554         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1555         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1556
1557         if (s_off + class->size > PAGE_SIZE)
1558                 s_size = PAGE_SIZE - s_off;
1559
1560         if (d_off + class->size > PAGE_SIZE)
1561                 d_size = PAGE_SIZE - d_off;
1562
1563         s_addr = kmap_atomic(s_page);
1564         d_addr = kmap_atomic(d_page);
1565
1566         while (1) {
1567                 size = min(s_size, d_size);
1568                 memcpy(d_addr + d_off, s_addr + s_off, size);
1569                 written += size;
1570
1571                 if (written == class->size)
1572                         break;
1573
1574                 s_off += size;
1575                 s_size -= size;
1576                 d_off += size;
1577                 d_size -= size;
1578
1579                 if (s_off >= PAGE_SIZE) {
1580                         kunmap_atomic(d_addr);
1581                         kunmap_atomic(s_addr);
1582                         s_page = get_next_page(s_page);
1583                         s_addr = kmap_atomic(s_page);
1584                         d_addr = kmap_atomic(d_page);
1585                         s_size = class->size - written;
1586                         s_off = 0;
1587                 }
1588
1589                 if (d_off >= PAGE_SIZE) {
1590                         kunmap_atomic(d_addr);
1591                         d_page = get_next_page(d_page);
1592                         d_addr = kmap_atomic(d_page);
1593                         d_size = class->size - written;
1594                         d_off = 0;
1595                 }
1596         }
1597
1598         kunmap_atomic(d_addr);
1599         kunmap_atomic(s_addr);
1600 }
1601
1602 /*
1603  * Find alloced object in zspage from index object and
1604  * return handle.
1605  */
1606 static unsigned long find_alloced_obj(struct size_class *class,
1607                                         struct page *page, int *obj_idx)
1608 {
1609         unsigned long head;
1610         int offset = 0;
1611         int index = *obj_idx;
1612         unsigned long handle = 0;
1613         void *addr = kmap_atomic(page);
1614
1615         offset = get_first_obj_offset(page);
1616         offset += class->size * index;
1617
1618         while (offset < PAGE_SIZE) {
1619                 head = obj_to_head(page, addr + offset);
1620                 if (head & OBJ_ALLOCATED_TAG) {
1621                         handle = head & ~OBJ_ALLOCATED_TAG;
1622                         if (trypin_tag(handle))
1623                                 break;
1624                         handle = 0;
1625                 }
1626
1627                 offset += class->size;
1628                 index++;
1629         }
1630
1631         kunmap_atomic(addr);
1632
1633         *obj_idx = index;
1634
1635         return handle;
1636 }
1637
1638 struct zs_compact_control {
1639         /* Source spage for migration which could be a subpage of zspage */
1640         struct page *s_page;
1641         /* Destination page for migration which should be a first page
1642          * of zspage. */
1643         struct page *d_page;
1644          /* Starting object index within @s_page which used for live object
1645           * in the subpage. */
1646         int obj_idx;
1647 };
1648
1649 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1650                                 struct zs_compact_control *cc)
1651 {
1652         unsigned long used_obj, free_obj;
1653         unsigned long handle;
1654         struct page *s_page = cc->s_page;
1655         struct page *d_page = cc->d_page;
1656         int obj_idx = cc->obj_idx;
1657         int ret = 0;
1658
1659         while (1) {
1660                 handle = find_alloced_obj(class, s_page, &obj_idx);
1661                 if (!handle) {
1662                         s_page = get_next_page(s_page);
1663                         if (!s_page)
1664                                 break;
1665                         obj_idx = 0;
1666                         continue;
1667                 }
1668
1669                 /* Stop if there is no more space */
1670                 if (zspage_full(class, get_zspage(d_page))) {
1671                         unpin_tag(handle);
1672                         ret = -ENOMEM;
1673                         break;
1674                 }
1675
1676                 used_obj = handle_to_obj(handle);
1677                 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1678                 zs_object_copy(class, free_obj, used_obj);
1679                 obj_idx++;
1680                 /*
1681                  * record_obj updates handle's value to free_obj and it will
1682                  * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1683                  * breaks synchronization using pin_tag(e,g, zs_free) so
1684                  * let's keep the lock bit.
1685                  */
1686                 free_obj |= BIT(HANDLE_PIN_BIT);
1687                 record_obj(handle, free_obj);
1688                 unpin_tag(handle);
1689                 obj_free(class->size, used_obj);
1690         }
1691
1692         /* Remember last position in this iteration */
1693         cc->s_page = s_page;
1694         cc->obj_idx = obj_idx;
1695
1696         return ret;
1697 }
1698
1699 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1700 {
1701         int i;
1702         struct zspage *zspage;
1703         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1704
1705         if (!source) {
1706                 fg[0] = ZS_ALMOST_FULL;
1707                 fg[1] = ZS_ALMOST_EMPTY;
1708         }
1709
1710         for (i = 0; i < 2; i++) {
1711                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1712                                                         struct zspage, list);
1713                 if (zspage) {
1714                         VM_BUG_ON(is_zspage_isolated(zspage));
1715                         remove_zspage(class, zspage, fg[i]);
1716                         return zspage;
1717                 }
1718         }
1719
1720         return zspage;
1721 }
1722
1723 /*
1724  * putback_zspage - add @zspage into right class's fullness list
1725  * @class: destination class
1726  * @zspage: target page
1727  *
1728  * Return @zspage's fullness_group
1729  */
1730 static enum fullness_group putback_zspage(struct size_class *class,
1731                         struct zspage *zspage)
1732 {
1733         enum fullness_group fullness;
1734
1735         VM_BUG_ON(is_zspage_isolated(zspage));
1736
1737         fullness = get_fullness_group(class, zspage);
1738         insert_zspage(class, zspage, fullness);
1739         set_zspage_mapping(zspage, class->index, fullness);
1740
1741         return fullness;
1742 }
1743
1744 #ifdef CONFIG_COMPACTION
1745 /*
1746  * To prevent zspage destroy during migration, zspage freeing should
1747  * hold locks of all pages in the zspage.
1748  */
1749 static void lock_zspage(struct zspage *zspage)
1750 {
1751         struct page *page = get_first_page(zspage);
1752
1753         do {
1754                 lock_page(page);
1755         } while ((page = get_next_page(page)) != NULL);
1756 }
1757
1758 static int zs_init_fs_context(struct fs_context *fc)
1759 {
1760         return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1761 }
1762
1763 static struct file_system_type zsmalloc_fs = {
1764         .name           = "zsmalloc",
1765         .init_fs_context = zs_init_fs_context,
1766         .kill_sb        = kill_anon_super,
1767 };
1768
1769 static int zsmalloc_mount(void)
1770 {
1771         int ret = 0;
1772
1773         zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1774         if (IS_ERR(zsmalloc_mnt))
1775                 ret = PTR_ERR(zsmalloc_mnt);
1776
1777         return ret;
1778 }
1779
1780 static void zsmalloc_unmount(void)
1781 {
1782         kern_unmount(zsmalloc_mnt);
1783 }
1784
1785 static void migrate_lock_init(struct zspage *zspage)
1786 {
1787         rwlock_init(&zspage->lock);
1788 }
1789
1790 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1791 {
1792         read_lock(&zspage->lock);
1793 }
1794
1795 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1796 {
1797         read_unlock(&zspage->lock);
1798 }
1799
1800 static void migrate_write_lock(struct zspage *zspage)
1801 {
1802         write_lock(&zspage->lock);
1803 }
1804
1805 static void migrate_write_unlock(struct zspage *zspage)
1806 {
1807         write_unlock(&zspage->lock);
1808 }
1809
1810 /* Number of isolated subpage for *page migration* in this zspage */
1811 static void inc_zspage_isolation(struct zspage *zspage)
1812 {
1813         zspage->isolated++;
1814 }
1815
1816 static void dec_zspage_isolation(struct zspage *zspage)
1817 {
1818         zspage->isolated--;
1819 }
1820
1821 static void putback_zspage_deferred(struct zs_pool *pool,
1822                                     struct size_class *class,
1823                                     struct zspage *zspage)
1824 {
1825         enum fullness_group fg;
1826
1827         fg = putback_zspage(class, zspage);
1828         if (fg == ZS_EMPTY)
1829                 schedule_work(&pool->free_work);
1830
1831 }
1832
1833 static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1834 {
1835         VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1836         atomic_long_dec(&pool->isolated_pages);
1837         /*
1838          * Checking pool->destroying must happen after atomic_long_dec()
1839          * for pool->isolated_pages above. Paired with the smp_mb() in
1840          * zs_unregister_migration().
1841          */
1842         smp_mb__after_atomic();
1843         if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1844                 wake_up_all(&pool->migration_wait);
1845 }
1846
1847 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1848                                 struct page *newpage, struct page *oldpage)
1849 {
1850         struct page *page;
1851         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1852         int idx = 0;
1853
1854         page = get_first_page(zspage);
1855         do {
1856                 if (page == oldpage)
1857                         pages[idx] = newpage;
1858                 else
1859                         pages[idx] = page;
1860                 idx++;
1861         } while ((page = get_next_page(page)) != NULL);
1862
1863         create_page_chain(class, zspage, pages);
1864         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1865         if (unlikely(PageHugeObject(oldpage)))
1866                 newpage->index = oldpage->index;
1867         __SetPageMovable(newpage, page_mapping(oldpage));
1868 }
1869
1870 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1871 {
1872         struct zs_pool *pool;
1873         struct size_class *class;
1874         struct zspage *zspage;
1875         struct address_space *mapping;
1876
1877         /*
1878          * Page is locked so zspage couldn't be destroyed. For detail, look at
1879          * lock_zspage in free_zspage.
1880          */
1881         VM_BUG_ON_PAGE(!PageMovable(page), page);
1882         VM_BUG_ON_PAGE(PageIsolated(page), page);
1883
1884         zspage = get_zspage(page);
1885
1886         mapping = page_mapping(page);
1887         pool = mapping->private_data;
1888
1889         class = zspage_class(pool, zspage);
1890
1891         spin_lock(&class->lock);
1892         if (get_zspage_inuse(zspage) == 0) {
1893                 spin_unlock(&class->lock);
1894                 return false;
1895         }
1896
1897         /* zspage is isolated for object migration */
1898         if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1899                 spin_unlock(&class->lock);
1900                 return false;
1901         }
1902
1903         /*
1904          * If this is first time isolation for the zspage, isolate zspage from
1905          * size_class to prevent further object allocation from the zspage.
1906          */
1907         if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1908                 enum fullness_group fullness;
1909                 unsigned int class_idx;
1910
1911                 get_zspage_mapping(zspage, &class_idx, &fullness);
1912                 atomic_long_inc(&pool->isolated_pages);
1913                 remove_zspage(class, zspage, fullness);
1914         }
1915
1916         inc_zspage_isolation(zspage);
1917         spin_unlock(&class->lock);
1918
1919         return true;
1920 }
1921
1922 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1923                 struct page *page, enum migrate_mode mode)
1924 {
1925         struct zs_pool *pool;
1926         struct size_class *class;
1927         struct zspage *zspage;
1928         struct page *dummy;
1929         void *s_addr, *d_addr, *addr;
1930         int offset, pos;
1931         unsigned long handle, head;
1932         unsigned long old_obj, new_obj;
1933         unsigned int obj_idx;
1934         int ret = -EAGAIN;
1935
1936         /*
1937          * We cannot support the _NO_COPY case here, because copy needs to
1938          * happen under the zs lock, which does not work with
1939          * MIGRATE_SYNC_NO_COPY workflow.
1940          */
1941         if (mode == MIGRATE_SYNC_NO_COPY)
1942                 return -EINVAL;
1943
1944         VM_BUG_ON_PAGE(!PageMovable(page), page);
1945         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1946
1947         zspage = get_zspage(page);
1948
1949         /* Concurrent compactor cannot migrate any subpage in zspage */
1950         migrate_write_lock(zspage);
1951         pool = mapping->private_data;
1952         class = zspage_class(pool, zspage);
1953         offset = get_first_obj_offset(page);
1954
1955         spin_lock(&class->lock);
1956         if (!get_zspage_inuse(zspage)) {
1957                 /*
1958                  * Set "offset" to end of the page so that every loops
1959                  * skips unnecessary object scanning.
1960                  */
1961                 offset = PAGE_SIZE;
1962         }
1963
1964         pos = offset;
1965         s_addr = kmap_atomic(page);
1966         while (pos < PAGE_SIZE) {
1967                 head = obj_to_head(page, s_addr + pos);
1968                 if (head & OBJ_ALLOCATED_TAG) {
1969                         handle = head & ~OBJ_ALLOCATED_TAG;
1970                         if (!trypin_tag(handle))
1971                                 goto unpin_objects;
1972                 }
1973                 pos += class->size;
1974         }
1975
1976         /*
1977          * Here, any user cannot access all objects in the zspage so let's move.
1978          */
1979         d_addr = kmap_atomic(newpage);
1980         memcpy(d_addr, s_addr, PAGE_SIZE);
1981         kunmap_atomic(d_addr);
1982
1983         for (addr = s_addr + offset; addr < s_addr + pos;
1984                                         addr += class->size) {
1985                 head = obj_to_head(page, addr);
1986                 if (head & OBJ_ALLOCATED_TAG) {
1987                         handle = head & ~OBJ_ALLOCATED_TAG;
1988                         BUG_ON(!testpin_tag(handle));
1989
1990                         old_obj = handle_to_obj(handle);
1991                         obj_to_location(old_obj, &dummy, &obj_idx);
1992                         new_obj = (unsigned long)location_to_obj(newpage,
1993                                                                 obj_idx);
1994                         new_obj |= BIT(HANDLE_PIN_BIT);
1995                         record_obj(handle, new_obj);
1996                 }
1997         }
1998
1999         replace_sub_page(class, zspage, newpage, page);
2000         get_page(newpage);
2001
2002         dec_zspage_isolation(zspage);
2003
2004         /*
2005          * Page migration is done so let's putback isolated zspage to
2006          * the list if @page is final isolated subpage in the zspage.
2007          */
2008         if (!is_zspage_isolated(zspage)) {
2009                 /*
2010                  * We cannot race with zs_destroy_pool() here because we wait
2011                  * for isolation to hit zero before we start destroying.
2012                  * Also, we ensure that everyone can see pool->destroying before
2013                  * we start waiting.
2014                  */
2015                 putback_zspage_deferred(pool, class, zspage);
2016                 zs_pool_dec_isolated(pool);
2017         }
2018
2019         if (page_zone(newpage) != page_zone(page)) {
2020                 dec_zone_page_state(page, NR_ZSPAGES);
2021                 inc_zone_page_state(newpage, NR_ZSPAGES);
2022         }
2023
2024         reset_page(page);
2025         put_page(page);
2026         page = newpage;
2027
2028         ret = MIGRATEPAGE_SUCCESS;
2029 unpin_objects:
2030         for (addr = s_addr + offset; addr < s_addr + pos;
2031                                                 addr += class->size) {
2032                 head = obj_to_head(page, addr);
2033                 if (head & OBJ_ALLOCATED_TAG) {
2034                         handle = head & ~OBJ_ALLOCATED_TAG;
2035                         BUG_ON(!testpin_tag(handle));
2036                         unpin_tag(handle);
2037                 }
2038         }
2039         kunmap_atomic(s_addr);
2040         spin_unlock(&class->lock);
2041         migrate_write_unlock(zspage);
2042
2043         return ret;
2044 }
2045
2046 static void zs_page_putback(struct page *page)
2047 {
2048         struct zs_pool *pool;
2049         struct size_class *class;
2050         struct address_space *mapping;
2051         struct zspage *zspage;
2052
2053         VM_BUG_ON_PAGE(!PageMovable(page), page);
2054         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2055
2056         zspage = get_zspage(page);
2057         mapping = page_mapping(page);
2058         pool = mapping->private_data;
2059         class = zspage_class(pool, zspage);
2060
2061         spin_lock(&class->lock);
2062         dec_zspage_isolation(zspage);
2063         if (!is_zspage_isolated(zspage)) {
2064                 /*
2065                  * Due to page_lock, we cannot free zspage immediately
2066                  * so let's defer.
2067                  */
2068                 putback_zspage_deferred(pool, class, zspage);
2069                 zs_pool_dec_isolated(pool);
2070         }
2071         spin_unlock(&class->lock);
2072 }
2073
2074 static const struct address_space_operations zsmalloc_aops = {
2075         .isolate_page = zs_page_isolate,
2076         .migratepage = zs_page_migrate,
2077         .putback_page = zs_page_putback,
2078 };
2079
2080 static int zs_register_migration(struct zs_pool *pool)
2081 {
2082         pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2083         if (IS_ERR(pool->inode)) {
2084                 pool->inode = NULL;
2085                 return 1;
2086         }
2087
2088         pool->inode->i_mapping->private_data = pool;
2089         pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2090         return 0;
2091 }
2092
2093 static bool pool_isolated_are_drained(struct zs_pool *pool)
2094 {
2095         return atomic_long_read(&pool->isolated_pages) == 0;
2096 }
2097
2098 /* Function for resolving migration */
2099 static void wait_for_isolated_drain(struct zs_pool *pool)
2100 {
2101
2102         /*
2103          * We're in the process of destroying the pool, so there are no
2104          * active allocations. zs_page_isolate() fails for completely free
2105          * zspages, so we need only wait for the zs_pool's isolated
2106          * count to hit zero.
2107          */
2108         wait_event(pool->migration_wait,
2109                    pool_isolated_are_drained(pool));
2110 }
2111
2112 static void zs_unregister_migration(struct zs_pool *pool)
2113 {
2114         pool->destroying = true;
2115         /*
2116          * We need a memory barrier here to ensure global visibility of
2117          * pool->destroying. Thus pool->isolated pages will either be 0 in which
2118          * case we don't care, or it will be > 0 and pool->destroying will
2119          * ensure that we wake up once isolation hits 0.
2120          */
2121         smp_mb();
2122         wait_for_isolated_drain(pool); /* This can block */
2123         flush_work(&pool->free_work);
2124         iput(pool->inode);
2125 }
2126
2127 /*
2128  * Caller should hold page_lock of all pages in the zspage
2129  * In here, we cannot use zspage meta data.
2130  */
2131 static void async_free_zspage(struct work_struct *work)
2132 {
2133         int i;
2134         struct size_class *class;
2135         unsigned int class_idx;
2136         enum fullness_group fullness;
2137         struct zspage *zspage, *tmp;
2138         LIST_HEAD(free_pages);
2139         struct zs_pool *pool = container_of(work, struct zs_pool,
2140                                         free_work);
2141
2142         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2143                 class = pool->size_class[i];
2144                 if (class->index != i)
2145                         continue;
2146
2147                 spin_lock(&class->lock);
2148                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2149                 spin_unlock(&class->lock);
2150         }
2151
2152
2153         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2154                 list_del(&zspage->list);
2155                 lock_zspage(zspage);
2156
2157                 get_zspage_mapping(zspage, &class_idx, &fullness);
2158                 VM_BUG_ON(fullness != ZS_EMPTY);
2159                 class = pool->size_class[class_idx];
2160                 spin_lock(&class->lock);
2161                 __free_zspage(pool, class, zspage);
2162                 spin_unlock(&class->lock);
2163         }
2164 };
2165
2166 static void kick_deferred_free(struct zs_pool *pool)
2167 {
2168         schedule_work(&pool->free_work);
2169 }
2170
2171 static void init_deferred_free(struct zs_pool *pool)
2172 {
2173         INIT_WORK(&pool->free_work, async_free_zspage);
2174 }
2175
2176 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2177 {
2178         struct page *page = get_first_page(zspage);
2179
2180         do {
2181                 WARN_ON(!trylock_page(page));
2182                 __SetPageMovable(page, pool->inode->i_mapping);
2183                 unlock_page(page);
2184         } while ((page = get_next_page(page)) != NULL);
2185 }
2186 #endif
2187
2188 /*
2189  *
2190  * Based on the number of unused allocated objects calculate
2191  * and return the number of pages that we can free.
2192  */
2193 static unsigned long zs_can_compact(struct size_class *class)
2194 {
2195         unsigned long obj_wasted;
2196         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2197         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2198
2199         if (obj_allocated <= obj_used)
2200                 return 0;
2201
2202         obj_wasted = obj_allocated - obj_used;
2203         obj_wasted /= class->objs_per_zspage;
2204
2205         return obj_wasted * class->pages_per_zspage;
2206 }
2207
2208 static unsigned long __zs_compact(struct zs_pool *pool,
2209                                   struct size_class *class)
2210 {
2211         struct zs_compact_control cc;
2212         struct zspage *src_zspage;
2213         struct zspage *dst_zspage = NULL;
2214         unsigned long pages_freed = 0;
2215
2216         spin_lock(&class->lock);
2217         while ((src_zspage = isolate_zspage(class, true))) {
2218
2219                 if (!zs_can_compact(class))
2220                         break;
2221
2222                 cc.obj_idx = 0;
2223                 cc.s_page = get_first_page(src_zspage);
2224
2225                 while ((dst_zspage = isolate_zspage(class, false))) {
2226                         cc.d_page = get_first_page(dst_zspage);
2227                         /*
2228                          * If there is no more space in dst_page, resched
2229                          * and see if anyone had allocated another zspage.
2230                          */
2231                         if (!migrate_zspage(pool, class, &cc))
2232                                 break;
2233
2234                         putback_zspage(class, dst_zspage);
2235                 }
2236
2237                 /* Stop if we couldn't find slot */
2238                 if (dst_zspage == NULL)
2239                         break;
2240
2241                 putback_zspage(class, dst_zspage);
2242                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2243                         free_zspage(pool, class, src_zspage);
2244                         pages_freed += class->pages_per_zspage;
2245                 }
2246                 spin_unlock(&class->lock);
2247                 cond_resched();
2248                 spin_lock(&class->lock);
2249         }
2250
2251         if (src_zspage)
2252                 putback_zspage(class, src_zspage);
2253
2254         spin_unlock(&class->lock);
2255
2256         return pages_freed;
2257 }
2258
2259 unsigned long zs_compact(struct zs_pool *pool)
2260 {
2261         int i;
2262         struct size_class *class;
2263         unsigned long pages_freed = 0;
2264
2265         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2266                 class = pool->size_class[i];
2267                 if (!class)
2268                         continue;
2269                 if (class->index != i)
2270                         continue;
2271                 pages_freed += __zs_compact(pool, class);
2272         }
2273         atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2274
2275         return pages_freed;
2276 }
2277 EXPORT_SYMBOL_GPL(zs_compact);
2278
2279 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2280 {
2281         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2282 }
2283 EXPORT_SYMBOL_GPL(zs_pool_stats);
2284
2285 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2286                 struct shrink_control *sc)
2287 {
2288         unsigned long pages_freed;
2289         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2290                         shrinker);
2291
2292         /*
2293          * Compact classes and calculate compaction delta.
2294          * Can run concurrently with a manually triggered
2295          * (by user) compaction.
2296          */
2297         pages_freed = zs_compact(pool);
2298
2299         return pages_freed ? pages_freed : SHRINK_STOP;
2300 }
2301
2302 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2303                 struct shrink_control *sc)
2304 {
2305         int i;
2306         struct size_class *class;
2307         unsigned long pages_to_free = 0;
2308         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2309                         shrinker);
2310
2311         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2312                 class = pool->size_class[i];
2313                 if (!class)
2314                         continue;
2315                 if (class->index != i)
2316                         continue;
2317
2318                 pages_to_free += zs_can_compact(class);
2319         }
2320
2321         return pages_to_free;
2322 }
2323
2324 static void zs_unregister_shrinker(struct zs_pool *pool)
2325 {
2326         unregister_shrinker(&pool->shrinker);
2327 }
2328
2329 static int zs_register_shrinker(struct zs_pool *pool)
2330 {
2331         pool->shrinker.scan_objects = zs_shrinker_scan;
2332         pool->shrinker.count_objects = zs_shrinker_count;
2333         pool->shrinker.batch = 0;
2334         pool->shrinker.seeks = DEFAULT_SEEKS;
2335
2336         return register_shrinker(&pool->shrinker);
2337 }
2338
2339 /**
2340  * zs_create_pool - Creates an allocation pool to work from.
2341  * @name: pool name to be created
2342  *
2343  * This function must be called before anything when using
2344  * the zsmalloc allocator.
2345  *
2346  * On success, a pointer to the newly created pool is returned,
2347  * otherwise NULL.
2348  */
2349 struct zs_pool *zs_create_pool(const char *name)
2350 {
2351         int i;
2352         struct zs_pool *pool;
2353         struct size_class *prev_class = NULL;
2354
2355         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2356         if (!pool)
2357                 return NULL;
2358
2359         init_deferred_free(pool);
2360
2361         pool->name = kstrdup(name, GFP_KERNEL);
2362         if (!pool->name)
2363                 goto err;
2364
2365 #ifdef CONFIG_COMPACTION
2366         init_waitqueue_head(&pool->migration_wait);
2367 #endif
2368
2369         if (create_cache(pool))
2370                 goto err;
2371
2372         /*
2373          * Iterate reversely, because, size of size_class that we want to use
2374          * for merging should be larger or equal to current size.
2375          */
2376         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2377                 int size;
2378                 int pages_per_zspage;
2379                 int objs_per_zspage;
2380                 struct size_class *class;
2381                 int fullness = 0;
2382
2383                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2384                 if (size > ZS_MAX_ALLOC_SIZE)
2385                         size = ZS_MAX_ALLOC_SIZE;
2386                 pages_per_zspage = get_pages_per_zspage(size);
2387                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2388
2389                 /*
2390                  * We iterate from biggest down to smallest classes,
2391                  * so huge_class_size holds the size of the first huge
2392                  * class. Any object bigger than or equal to that will
2393                  * endup in the huge class.
2394                  */
2395                 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2396                                 !huge_class_size) {
2397                         huge_class_size = size;
2398                         /*
2399                          * The object uses ZS_HANDLE_SIZE bytes to store the
2400                          * handle. We need to subtract it, because zs_malloc()
2401                          * unconditionally adds handle size before it performs
2402                          * size class search - so object may be smaller than
2403                          * huge class size, yet it still can end up in the huge
2404                          * class because it grows by ZS_HANDLE_SIZE extra bytes
2405                          * right before class lookup.
2406                          */
2407                         huge_class_size -= (ZS_HANDLE_SIZE - 1);
2408                 }
2409
2410                 /*
2411                  * size_class is used for normal zsmalloc operation such
2412                  * as alloc/free for that size. Although it is natural that we
2413                  * have one size_class for each size, there is a chance that we
2414                  * can get more memory utilization if we use one size_class for
2415                  * many different sizes whose size_class have same
2416                  * characteristics. So, we makes size_class point to
2417                  * previous size_class if possible.
2418                  */
2419                 if (prev_class) {
2420                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2421                                 pool->size_class[i] = prev_class;
2422                                 continue;
2423                         }
2424                 }
2425
2426                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2427                 if (!class)
2428                         goto err;
2429
2430                 class->size = size;
2431                 class->index = i;
2432                 class->pages_per_zspage = pages_per_zspage;
2433                 class->objs_per_zspage = objs_per_zspage;
2434                 spin_lock_init(&class->lock);
2435                 pool->size_class[i] = class;
2436                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2437                                                         fullness++)
2438                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2439
2440                 prev_class = class;
2441         }
2442
2443         /* debug only, don't abort if it fails */
2444         zs_pool_stat_create(pool, name);
2445
2446         if (zs_register_migration(pool))
2447                 goto err;
2448
2449         /*
2450          * Not critical since shrinker is only used to trigger internal
2451          * defragmentation of the pool which is pretty optional thing.  If
2452          * registration fails we still can use the pool normally and user can
2453          * trigger compaction manually. Thus, ignore return code.
2454          */
2455         zs_register_shrinker(pool);
2456
2457         return pool;
2458
2459 err:
2460         zs_destroy_pool(pool);
2461         return NULL;
2462 }
2463 EXPORT_SYMBOL_GPL(zs_create_pool);
2464
2465 void zs_destroy_pool(struct zs_pool *pool)
2466 {
2467         int i;
2468
2469         zs_unregister_shrinker(pool);
2470         zs_unregister_migration(pool);
2471         zs_pool_stat_destroy(pool);
2472
2473         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2474                 int fg;
2475                 struct size_class *class = pool->size_class[i];
2476
2477                 if (!class)
2478                         continue;
2479
2480                 if (class->index != i)
2481                         continue;
2482
2483                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2484                         if (!list_empty(&class->fullness_list[fg])) {
2485                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2486                                         class->size, fg);
2487                         }
2488                 }
2489                 kfree(class);
2490         }
2491
2492         destroy_cache(pool);
2493         kfree(pool->name);
2494         kfree(pool);
2495 }
2496 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2497
2498 static int __init zs_init(void)
2499 {
2500         int ret;
2501
2502         ret = zsmalloc_mount();
2503         if (ret)
2504                 goto out;
2505
2506         ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2507                                 zs_cpu_prepare, zs_cpu_dead);
2508         if (ret)
2509                 goto hp_setup_fail;
2510
2511 #ifdef CONFIG_ZPOOL
2512         zpool_register_driver(&zs_zpool_driver);
2513 #endif
2514
2515         zs_stat_init();
2516
2517         return 0;
2518
2519 hp_setup_fail:
2520         zsmalloc_unmount();
2521 out:
2522         return ret;
2523 }
2524
2525 static void __exit zs_exit(void)
2526 {
2527 #ifdef CONFIG_ZPOOL
2528         zpool_unregister_driver(&zs_zpool_driver);
2529 #endif
2530         zsmalloc_unmount();
2531         cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2532
2533         zs_stat_exit();
2534 }
2535
2536 module_init(zs_init);
2537 module_exit(zs_exit);
2538
2539 MODULE_LICENSE("Dual BSD/GPL");
2540 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");