mtd: rawnand: omap_elm: Use platform_get_irq() to get the interrupt
[linux-2.6-microblaze.git] / mm / vmstat.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/vmstat.c
4  *
5  *  Manages VM statistics
6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  zoned VM statistics
9  *  Copyright (C) 2006 Silicon Graphics, Inc.,
10  *              Christoph Lameter <christoph@lameter.com>
11  *  Copyright (C) 2008-2014 Christoph Lameter
12  */
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_ext.h>
30 #include <linux/page_owner.h>
31
32 #include "internal.h"
33
34 #ifdef CONFIG_NUMA
35 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
36
37 /* zero numa counters within a zone */
38 static void zero_zone_numa_counters(struct zone *zone)
39 {
40         int item, cpu;
41
42         for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
43                 atomic_long_set(&zone->vm_numa_event[item], 0);
44                 for_each_online_cpu(cpu) {
45                         per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
46                                                 = 0;
47                 }
48         }
49 }
50
51 /* zero numa counters of all the populated zones */
52 static void zero_zones_numa_counters(void)
53 {
54         struct zone *zone;
55
56         for_each_populated_zone(zone)
57                 zero_zone_numa_counters(zone);
58 }
59
60 /* zero global numa counters */
61 static void zero_global_numa_counters(void)
62 {
63         int item;
64
65         for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
66                 atomic_long_set(&vm_numa_event[item], 0);
67 }
68
69 static void invalid_numa_statistics(void)
70 {
71         zero_zones_numa_counters();
72         zero_global_numa_counters();
73 }
74
75 static DEFINE_MUTEX(vm_numa_stat_lock);
76
77 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
78                 void *buffer, size_t *length, loff_t *ppos)
79 {
80         int ret, oldval;
81
82         mutex_lock(&vm_numa_stat_lock);
83         if (write)
84                 oldval = sysctl_vm_numa_stat;
85         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
86         if (ret || !write)
87                 goto out;
88
89         if (oldval == sysctl_vm_numa_stat)
90                 goto out;
91         else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
92                 static_branch_enable(&vm_numa_stat_key);
93                 pr_info("enable numa statistics\n");
94         } else {
95                 static_branch_disable(&vm_numa_stat_key);
96                 invalid_numa_statistics();
97                 pr_info("disable numa statistics, and clear numa counters\n");
98         }
99
100 out:
101         mutex_unlock(&vm_numa_stat_lock);
102         return ret;
103 }
104 #endif
105
106 #ifdef CONFIG_VM_EVENT_COUNTERS
107 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108 EXPORT_PER_CPU_SYMBOL(vm_event_states);
109
110 static void sum_vm_events(unsigned long *ret)
111 {
112         int cpu;
113         int i;
114
115         memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
116
117         for_each_online_cpu(cpu) {
118                 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
119
120                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121                         ret[i] += this->event[i];
122         }
123 }
124
125 /*
126  * Accumulate the vm event counters across all CPUs.
127  * The result is unavoidably approximate - it can change
128  * during and after execution of this function.
129 */
130 void all_vm_events(unsigned long *ret)
131 {
132         cpus_read_lock();
133         sum_vm_events(ret);
134         cpus_read_unlock();
135 }
136 EXPORT_SYMBOL_GPL(all_vm_events);
137
138 /*
139  * Fold the foreign cpu events into our own.
140  *
141  * This is adding to the events on one processor
142  * but keeps the global counts constant.
143  */
144 void vm_events_fold_cpu(int cpu)
145 {
146         struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
147         int i;
148
149         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150                 count_vm_events(i, fold_state->event[i]);
151                 fold_state->event[i] = 0;
152         }
153 }
154
155 #endif /* CONFIG_VM_EVENT_COUNTERS */
156
157 /*
158  * Manage combined zone based / global counters
159  *
160  * vm_stat contains the global counters
161  */
162 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
165 EXPORT_SYMBOL(vm_zone_stat);
166 EXPORT_SYMBOL(vm_node_stat);
167
168 #ifdef CONFIG_NUMA
169 static void fold_vm_zone_numa_events(struct zone *zone)
170 {
171         unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
172         int cpu;
173         enum numa_stat_item item;
174
175         for_each_online_cpu(cpu) {
176                 struct per_cpu_zonestat *pzstats;
177
178                 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
179                 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
180                         zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
181         }
182
183         for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
184                 zone_numa_event_add(zone_numa_events[item], zone, item);
185 }
186
187 void fold_vm_numa_events(void)
188 {
189         struct zone *zone;
190
191         for_each_populated_zone(zone)
192                 fold_vm_zone_numa_events(zone);
193 }
194 #endif
195
196 #ifdef CONFIG_SMP
197
198 int calculate_pressure_threshold(struct zone *zone)
199 {
200         int threshold;
201         int watermark_distance;
202
203         /*
204          * As vmstats are not up to date, there is drift between the estimated
205          * and real values. For high thresholds and a high number of CPUs, it
206          * is possible for the min watermark to be breached while the estimated
207          * value looks fine. The pressure threshold is a reduced value such
208          * that even the maximum amount of drift will not accidentally breach
209          * the min watermark
210          */
211         watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
212         threshold = max(1, (int)(watermark_distance / num_online_cpus()));
213
214         /*
215          * Maximum threshold is 125
216          */
217         threshold = min(125, threshold);
218
219         return threshold;
220 }
221
222 int calculate_normal_threshold(struct zone *zone)
223 {
224         int threshold;
225         int mem;        /* memory in 128 MB units */
226
227         /*
228          * The threshold scales with the number of processors and the amount
229          * of memory per zone. More memory means that we can defer updates for
230          * longer, more processors could lead to more contention.
231          * fls() is used to have a cheap way of logarithmic scaling.
232          *
233          * Some sample thresholds:
234          *
235          * Threshold    Processors      (fls)   Zonesize        fls(mem)+1
236          * ------------------------------------------------------------------
237          * 8            1               1       0.9-1 GB        4
238          * 16           2               2       0.9-1 GB        4
239          * 20           2               2       1-2 GB          5
240          * 24           2               2       2-4 GB          6
241          * 28           2               2       4-8 GB          7
242          * 32           2               2       8-16 GB         8
243          * 4            2               2       <128M           1
244          * 30           4               3       2-4 GB          5
245          * 48           4               3       8-16 GB         8
246          * 32           8               4       1-2 GB          4
247          * 32           8               4       0.9-1GB         4
248          * 10           16              5       <128M           1
249          * 40           16              5       900M            4
250          * 70           64              7       2-4 GB          5
251          * 84           64              7       4-8 GB          6
252          * 108          512             9       4-8 GB          6
253          * 125          1024            10      8-16 GB         8
254          * 125          1024            10      16-32 GB        9
255          */
256
257         mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
258
259         threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
260
261         /*
262          * Maximum threshold is 125
263          */
264         threshold = min(125, threshold);
265
266         return threshold;
267 }
268
269 /*
270  * Refresh the thresholds for each zone.
271  */
272 void refresh_zone_stat_thresholds(void)
273 {
274         struct pglist_data *pgdat;
275         struct zone *zone;
276         int cpu;
277         int threshold;
278
279         /* Zero current pgdat thresholds */
280         for_each_online_pgdat(pgdat) {
281                 for_each_online_cpu(cpu) {
282                         per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
283                 }
284         }
285
286         for_each_populated_zone(zone) {
287                 struct pglist_data *pgdat = zone->zone_pgdat;
288                 unsigned long max_drift, tolerate_drift;
289
290                 threshold = calculate_normal_threshold(zone);
291
292                 for_each_online_cpu(cpu) {
293                         int pgdat_threshold;
294
295                         per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
296                                                         = threshold;
297
298                         /* Base nodestat threshold on the largest populated zone. */
299                         pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
300                         per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
301                                 = max(threshold, pgdat_threshold);
302                 }
303
304                 /*
305                  * Only set percpu_drift_mark if there is a danger that
306                  * NR_FREE_PAGES reports the low watermark is ok when in fact
307                  * the min watermark could be breached by an allocation
308                  */
309                 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
310                 max_drift = num_online_cpus() * threshold;
311                 if (max_drift > tolerate_drift)
312                         zone->percpu_drift_mark = high_wmark_pages(zone) +
313                                         max_drift;
314         }
315 }
316
317 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
318                                 int (*calculate_pressure)(struct zone *))
319 {
320         struct zone *zone;
321         int cpu;
322         int threshold;
323         int i;
324
325         for (i = 0; i < pgdat->nr_zones; i++) {
326                 zone = &pgdat->node_zones[i];
327                 if (!zone->percpu_drift_mark)
328                         continue;
329
330                 threshold = (*calculate_pressure)(zone);
331                 for_each_online_cpu(cpu)
332                         per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
333                                                         = threshold;
334         }
335 }
336
337 /*
338  * For use when we know that interrupts are disabled,
339  * or when we know that preemption is disabled and that
340  * particular counter cannot be updated from interrupt context.
341  */
342 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
343                            long delta)
344 {
345         struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
346         s8 __percpu *p = pcp->vm_stat_diff + item;
347         long x;
348         long t;
349
350         /*
351          * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
352          * atomicity is provided by IRQs being disabled -- either explicitly
353          * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
354          * CPU migrations and preemption potentially corrupts a counter so
355          * disable preemption.
356          */
357         if (IS_ENABLED(CONFIG_PREEMPT_RT))
358                 preempt_disable();
359
360         x = delta + __this_cpu_read(*p);
361
362         t = __this_cpu_read(pcp->stat_threshold);
363
364         if (unlikely(abs(x) > t)) {
365                 zone_page_state_add(x, zone, item);
366                 x = 0;
367         }
368         __this_cpu_write(*p, x);
369
370         if (IS_ENABLED(CONFIG_PREEMPT_RT))
371                 preempt_enable();
372 }
373 EXPORT_SYMBOL(__mod_zone_page_state);
374
375 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
376                                 long delta)
377 {
378         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
379         s8 __percpu *p = pcp->vm_node_stat_diff + item;
380         long x;
381         long t;
382
383         if (vmstat_item_in_bytes(item)) {
384                 /*
385                  * Only cgroups use subpage accounting right now; at
386                  * the global level, these items still change in
387                  * multiples of whole pages. Store them as pages
388                  * internally to keep the per-cpu counters compact.
389                  */
390                 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
391                 delta >>= PAGE_SHIFT;
392         }
393
394         /* See __mod_node_page_state */
395         if (IS_ENABLED(CONFIG_PREEMPT_RT))
396                 preempt_disable();
397
398         x = delta + __this_cpu_read(*p);
399
400         t = __this_cpu_read(pcp->stat_threshold);
401
402         if (unlikely(abs(x) > t)) {
403                 node_page_state_add(x, pgdat, item);
404                 x = 0;
405         }
406         __this_cpu_write(*p, x);
407
408         if (IS_ENABLED(CONFIG_PREEMPT_RT))
409                 preempt_enable();
410 }
411 EXPORT_SYMBOL(__mod_node_page_state);
412
413 /*
414  * Optimized increment and decrement functions.
415  *
416  * These are only for a single page and therefore can take a struct page *
417  * argument instead of struct zone *. This allows the inclusion of the code
418  * generated for page_zone(page) into the optimized functions.
419  *
420  * No overflow check is necessary and therefore the differential can be
421  * incremented or decremented in place which may allow the compilers to
422  * generate better code.
423  * The increment or decrement is known and therefore one boundary check can
424  * be omitted.
425  *
426  * NOTE: These functions are very performance sensitive. Change only
427  * with care.
428  *
429  * Some processors have inc/dec instructions that are atomic vs an interrupt.
430  * However, the code must first determine the differential location in a zone
431  * based on the processor number and then inc/dec the counter. There is no
432  * guarantee without disabling preemption that the processor will not change
433  * in between and therefore the atomicity vs. interrupt cannot be exploited
434  * in a useful way here.
435  */
436 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
437 {
438         struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
439         s8 __percpu *p = pcp->vm_stat_diff + item;
440         s8 v, t;
441
442         /* See __mod_node_page_state */
443         if (IS_ENABLED(CONFIG_PREEMPT_RT))
444                 preempt_disable();
445
446         v = __this_cpu_inc_return(*p);
447         t = __this_cpu_read(pcp->stat_threshold);
448         if (unlikely(v > t)) {
449                 s8 overstep = t >> 1;
450
451                 zone_page_state_add(v + overstep, zone, item);
452                 __this_cpu_write(*p, -overstep);
453         }
454
455         if (IS_ENABLED(CONFIG_PREEMPT_RT))
456                 preempt_enable();
457 }
458
459 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
460 {
461         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
462         s8 __percpu *p = pcp->vm_node_stat_diff + item;
463         s8 v, t;
464
465         VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
466
467         /* See __mod_node_page_state */
468         if (IS_ENABLED(CONFIG_PREEMPT_RT))
469                 preempt_disable();
470
471         v = __this_cpu_inc_return(*p);
472         t = __this_cpu_read(pcp->stat_threshold);
473         if (unlikely(v > t)) {
474                 s8 overstep = t >> 1;
475
476                 node_page_state_add(v + overstep, pgdat, item);
477                 __this_cpu_write(*p, -overstep);
478         }
479
480         if (IS_ENABLED(CONFIG_PREEMPT_RT))
481                 preempt_enable();
482 }
483
484 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
485 {
486         __inc_zone_state(page_zone(page), item);
487 }
488 EXPORT_SYMBOL(__inc_zone_page_state);
489
490 void __inc_node_page_state(struct page *page, enum node_stat_item item)
491 {
492         __inc_node_state(page_pgdat(page), item);
493 }
494 EXPORT_SYMBOL(__inc_node_page_state);
495
496 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
497 {
498         struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
499         s8 __percpu *p = pcp->vm_stat_diff + item;
500         s8 v, t;
501
502         /* See __mod_node_page_state */
503         if (IS_ENABLED(CONFIG_PREEMPT_RT))
504                 preempt_disable();
505
506         v = __this_cpu_dec_return(*p);
507         t = __this_cpu_read(pcp->stat_threshold);
508         if (unlikely(v < - t)) {
509                 s8 overstep = t >> 1;
510
511                 zone_page_state_add(v - overstep, zone, item);
512                 __this_cpu_write(*p, overstep);
513         }
514
515         if (IS_ENABLED(CONFIG_PREEMPT_RT))
516                 preempt_enable();
517 }
518
519 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
520 {
521         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
522         s8 __percpu *p = pcp->vm_node_stat_diff + item;
523         s8 v, t;
524
525         VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
526
527         /* See __mod_node_page_state */
528         if (IS_ENABLED(CONFIG_PREEMPT_RT))
529                 preempt_disable();
530
531         v = __this_cpu_dec_return(*p);
532         t = __this_cpu_read(pcp->stat_threshold);
533         if (unlikely(v < - t)) {
534                 s8 overstep = t >> 1;
535
536                 node_page_state_add(v - overstep, pgdat, item);
537                 __this_cpu_write(*p, overstep);
538         }
539
540         if (IS_ENABLED(CONFIG_PREEMPT_RT))
541                 preempt_enable();
542 }
543
544 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
545 {
546         __dec_zone_state(page_zone(page), item);
547 }
548 EXPORT_SYMBOL(__dec_zone_page_state);
549
550 void __dec_node_page_state(struct page *page, enum node_stat_item item)
551 {
552         __dec_node_state(page_pgdat(page), item);
553 }
554 EXPORT_SYMBOL(__dec_node_page_state);
555
556 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
557 /*
558  * If we have cmpxchg_local support then we do not need to incur the overhead
559  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
560  *
561  * mod_state() modifies the zone counter state through atomic per cpu
562  * operations.
563  *
564  * Overstep mode specifies how overstep should handled:
565  *     0       No overstepping
566  *     1       Overstepping half of threshold
567  *     -1      Overstepping minus half of threshold
568 */
569 static inline void mod_zone_state(struct zone *zone,
570        enum zone_stat_item item, long delta, int overstep_mode)
571 {
572         struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
573         s8 __percpu *p = pcp->vm_stat_diff + item;
574         long o, n, t, z;
575
576         do {
577                 z = 0;  /* overflow to zone counters */
578
579                 /*
580                  * The fetching of the stat_threshold is racy. We may apply
581                  * a counter threshold to the wrong the cpu if we get
582                  * rescheduled while executing here. However, the next
583                  * counter update will apply the threshold again and
584                  * therefore bring the counter under the threshold again.
585                  *
586                  * Most of the time the thresholds are the same anyways
587                  * for all cpus in a zone.
588                  */
589                 t = this_cpu_read(pcp->stat_threshold);
590
591                 o = this_cpu_read(*p);
592                 n = delta + o;
593
594                 if (abs(n) > t) {
595                         int os = overstep_mode * (t >> 1) ;
596
597                         /* Overflow must be added to zone counters */
598                         z = n + os;
599                         n = -os;
600                 }
601         } while (this_cpu_cmpxchg(*p, o, n) != o);
602
603         if (z)
604                 zone_page_state_add(z, zone, item);
605 }
606
607 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
608                          long delta)
609 {
610         mod_zone_state(zone, item, delta, 0);
611 }
612 EXPORT_SYMBOL(mod_zone_page_state);
613
614 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
615 {
616         mod_zone_state(page_zone(page), item, 1, 1);
617 }
618 EXPORT_SYMBOL(inc_zone_page_state);
619
620 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
621 {
622         mod_zone_state(page_zone(page), item, -1, -1);
623 }
624 EXPORT_SYMBOL(dec_zone_page_state);
625
626 static inline void mod_node_state(struct pglist_data *pgdat,
627        enum node_stat_item item, int delta, int overstep_mode)
628 {
629         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
630         s8 __percpu *p = pcp->vm_node_stat_diff + item;
631         long o, n, t, z;
632
633         if (vmstat_item_in_bytes(item)) {
634                 /*
635                  * Only cgroups use subpage accounting right now; at
636                  * the global level, these items still change in
637                  * multiples of whole pages. Store them as pages
638                  * internally to keep the per-cpu counters compact.
639                  */
640                 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
641                 delta >>= PAGE_SHIFT;
642         }
643
644         do {
645                 z = 0;  /* overflow to node counters */
646
647                 /*
648                  * The fetching of the stat_threshold is racy. We may apply
649                  * a counter threshold to the wrong the cpu if we get
650                  * rescheduled while executing here. However, the next
651                  * counter update will apply the threshold again and
652                  * therefore bring the counter under the threshold again.
653                  *
654                  * Most of the time the thresholds are the same anyways
655                  * for all cpus in a node.
656                  */
657                 t = this_cpu_read(pcp->stat_threshold);
658
659                 o = this_cpu_read(*p);
660                 n = delta + o;
661
662                 if (abs(n) > t) {
663                         int os = overstep_mode * (t >> 1) ;
664
665                         /* Overflow must be added to node counters */
666                         z = n + os;
667                         n = -os;
668                 }
669         } while (this_cpu_cmpxchg(*p, o, n) != o);
670
671         if (z)
672                 node_page_state_add(z, pgdat, item);
673 }
674
675 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
676                                         long delta)
677 {
678         mod_node_state(pgdat, item, delta, 0);
679 }
680 EXPORT_SYMBOL(mod_node_page_state);
681
682 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
683 {
684         mod_node_state(pgdat, item, 1, 1);
685 }
686
687 void inc_node_page_state(struct page *page, enum node_stat_item item)
688 {
689         mod_node_state(page_pgdat(page), item, 1, 1);
690 }
691 EXPORT_SYMBOL(inc_node_page_state);
692
693 void dec_node_page_state(struct page *page, enum node_stat_item item)
694 {
695         mod_node_state(page_pgdat(page), item, -1, -1);
696 }
697 EXPORT_SYMBOL(dec_node_page_state);
698 #else
699 /*
700  * Use interrupt disable to serialize counter updates
701  */
702 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
703                          long delta)
704 {
705         unsigned long flags;
706
707         local_irq_save(flags);
708         __mod_zone_page_state(zone, item, delta);
709         local_irq_restore(flags);
710 }
711 EXPORT_SYMBOL(mod_zone_page_state);
712
713 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
714 {
715         unsigned long flags;
716         struct zone *zone;
717
718         zone = page_zone(page);
719         local_irq_save(flags);
720         __inc_zone_state(zone, item);
721         local_irq_restore(flags);
722 }
723 EXPORT_SYMBOL(inc_zone_page_state);
724
725 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
726 {
727         unsigned long flags;
728
729         local_irq_save(flags);
730         __dec_zone_page_state(page, item);
731         local_irq_restore(flags);
732 }
733 EXPORT_SYMBOL(dec_zone_page_state);
734
735 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
736 {
737         unsigned long flags;
738
739         local_irq_save(flags);
740         __inc_node_state(pgdat, item);
741         local_irq_restore(flags);
742 }
743 EXPORT_SYMBOL(inc_node_state);
744
745 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
746                                         long delta)
747 {
748         unsigned long flags;
749
750         local_irq_save(flags);
751         __mod_node_page_state(pgdat, item, delta);
752         local_irq_restore(flags);
753 }
754 EXPORT_SYMBOL(mod_node_page_state);
755
756 void inc_node_page_state(struct page *page, enum node_stat_item item)
757 {
758         unsigned long flags;
759         struct pglist_data *pgdat;
760
761         pgdat = page_pgdat(page);
762         local_irq_save(flags);
763         __inc_node_state(pgdat, item);
764         local_irq_restore(flags);
765 }
766 EXPORT_SYMBOL(inc_node_page_state);
767
768 void dec_node_page_state(struct page *page, enum node_stat_item item)
769 {
770         unsigned long flags;
771
772         local_irq_save(flags);
773         __dec_node_page_state(page, item);
774         local_irq_restore(flags);
775 }
776 EXPORT_SYMBOL(dec_node_page_state);
777 #endif
778
779 /*
780  * Fold a differential into the global counters.
781  * Returns the number of counters updated.
782  */
783 static int fold_diff(int *zone_diff, int *node_diff)
784 {
785         int i;
786         int changes = 0;
787
788         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
789                 if (zone_diff[i]) {
790                         atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
791                         changes++;
792         }
793
794         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
795                 if (node_diff[i]) {
796                         atomic_long_add(node_diff[i], &vm_node_stat[i]);
797                         changes++;
798         }
799         return changes;
800 }
801
802 /*
803  * Update the zone counters for the current cpu.
804  *
805  * Note that refresh_cpu_vm_stats strives to only access
806  * node local memory. The per cpu pagesets on remote zones are placed
807  * in the memory local to the processor using that pageset. So the
808  * loop over all zones will access a series of cachelines local to
809  * the processor.
810  *
811  * The call to zone_page_state_add updates the cachelines with the
812  * statistics in the remote zone struct as well as the global cachelines
813  * with the global counters. These could cause remote node cache line
814  * bouncing and will have to be only done when necessary.
815  *
816  * The function returns the number of global counters updated.
817  */
818 static int refresh_cpu_vm_stats(bool do_pagesets)
819 {
820         struct pglist_data *pgdat;
821         struct zone *zone;
822         int i;
823         int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
824         int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
825         int changes = 0;
826
827         for_each_populated_zone(zone) {
828                 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
829 #ifdef CONFIG_NUMA
830                 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
831 #endif
832
833                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
834                         int v;
835
836                         v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
837                         if (v) {
838
839                                 atomic_long_add(v, &zone->vm_stat[i]);
840                                 global_zone_diff[i] += v;
841 #ifdef CONFIG_NUMA
842                                 /* 3 seconds idle till flush */
843                                 __this_cpu_write(pcp->expire, 3);
844 #endif
845                         }
846                 }
847 #ifdef CONFIG_NUMA
848
849                 if (do_pagesets) {
850                         cond_resched();
851                         /*
852                          * Deal with draining the remote pageset of this
853                          * processor
854                          *
855                          * Check if there are pages remaining in this pageset
856                          * if not then there is nothing to expire.
857                          */
858                         if (!__this_cpu_read(pcp->expire) ||
859                                !__this_cpu_read(pcp->count))
860                                 continue;
861
862                         /*
863                          * We never drain zones local to this processor.
864                          */
865                         if (zone_to_nid(zone) == numa_node_id()) {
866                                 __this_cpu_write(pcp->expire, 0);
867                                 continue;
868                         }
869
870                         if (__this_cpu_dec_return(pcp->expire))
871                                 continue;
872
873                         if (__this_cpu_read(pcp->count)) {
874                                 drain_zone_pages(zone, this_cpu_ptr(pcp));
875                                 changes++;
876                         }
877                 }
878 #endif
879         }
880
881         for_each_online_pgdat(pgdat) {
882                 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
883
884                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
885                         int v;
886
887                         v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
888                         if (v) {
889                                 atomic_long_add(v, &pgdat->vm_stat[i]);
890                                 global_node_diff[i] += v;
891                         }
892                 }
893         }
894
895         changes += fold_diff(global_zone_diff, global_node_diff);
896         return changes;
897 }
898
899 /*
900  * Fold the data for an offline cpu into the global array.
901  * There cannot be any access by the offline cpu and therefore
902  * synchronization is simplified.
903  */
904 void cpu_vm_stats_fold(int cpu)
905 {
906         struct pglist_data *pgdat;
907         struct zone *zone;
908         int i;
909         int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
910         int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
911
912         for_each_populated_zone(zone) {
913                 struct per_cpu_zonestat *pzstats;
914
915                 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
916
917                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
918                         if (pzstats->vm_stat_diff[i]) {
919                                 int v;
920
921                                 v = pzstats->vm_stat_diff[i];
922                                 pzstats->vm_stat_diff[i] = 0;
923                                 atomic_long_add(v, &zone->vm_stat[i]);
924                                 global_zone_diff[i] += v;
925                         }
926                 }
927 #ifdef CONFIG_NUMA
928                 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
929                         if (pzstats->vm_numa_event[i]) {
930                                 unsigned long v;
931
932                                 v = pzstats->vm_numa_event[i];
933                                 pzstats->vm_numa_event[i] = 0;
934                                 zone_numa_event_add(v, zone, i);
935                         }
936                 }
937 #endif
938         }
939
940         for_each_online_pgdat(pgdat) {
941                 struct per_cpu_nodestat *p;
942
943                 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
944
945                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
946                         if (p->vm_node_stat_diff[i]) {
947                                 int v;
948
949                                 v = p->vm_node_stat_diff[i];
950                                 p->vm_node_stat_diff[i] = 0;
951                                 atomic_long_add(v, &pgdat->vm_stat[i]);
952                                 global_node_diff[i] += v;
953                         }
954         }
955
956         fold_diff(global_zone_diff, global_node_diff);
957 }
958
959 /*
960  * this is only called if !populated_zone(zone), which implies no other users of
961  * pset->vm_stat_diff[] exist.
962  */
963 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
964 {
965         unsigned long v;
966         int i;
967
968         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
969                 if (pzstats->vm_stat_diff[i]) {
970                         v = pzstats->vm_stat_diff[i];
971                         pzstats->vm_stat_diff[i] = 0;
972                         zone_page_state_add(v, zone, i);
973                 }
974         }
975
976 #ifdef CONFIG_NUMA
977         for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
978                 if (pzstats->vm_numa_event[i]) {
979                         v = pzstats->vm_numa_event[i];
980                         pzstats->vm_numa_event[i] = 0;
981                         zone_numa_event_add(v, zone, i);
982                 }
983         }
984 #endif
985 }
986 #endif
987
988 #ifdef CONFIG_NUMA
989 /*
990  * Determine the per node value of a stat item. This function
991  * is called frequently in a NUMA machine, so try to be as
992  * frugal as possible.
993  */
994 unsigned long sum_zone_node_page_state(int node,
995                                  enum zone_stat_item item)
996 {
997         struct zone *zones = NODE_DATA(node)->node_zones;
998         int i;
999         unsigned long count = 0;
1000
1001         for (i = 0; i < MAX_NR_ZONES; i++)
1002                 count += zone_page_state(zones + i, item);
1003
1004         return count;
1005 }
1006
1007 /* Determine the per node value of a numa stat item. */
1008 unsigned long sum_zone_numa_event_state(int node,
1009                                  enum numa_stat_item item)
1010 {
1011         struct zone *zones = NODE_DATA(node)->node_zones;
1012         unsigned long count = 0;
1013         int i;
1014
1015         for (i = 0; i < MAX_NR_ZONES; i++)
1016                 count += zone_numa_event_state(zones + i, item);
1017
1018         return count;
1019 }
1020
1021 /*
1022  * Determine the per node value of a stat item.
1023  */
1024 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1025                                     enum node_stat_item item)
1026 {
1027         long x = atomic_long_read(&pgdat->vm_stat[item]);
1028 #ifdef CONFIG_SMP
1029         if (x < 0)
1030                 x = 0;
1031 #endif
1032         return x;
1033 }
1034
1035 unsigned long node_page_state(struct pglist_data *pgdat,
1036                               enum node_stat_item item)
1037 {
1038         VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1039
1040         return node_page_state_pages(pgdat, item);
1041 }
1042 #endif
1043
1044 #ifdef CONFIG_COMPACTION
1045
1046 struct contig_page_info {
1047         unsigned long free_pages;
1048         unsigned long free_blocks_total;
1049         unsigned long free_blocks_suitable;
1050 };
1051
1052 /*
1053  * Calculate the number of free pages in a zone, how many contiguous
1054  * pages are free and how many are large enough to satisfy an allocation of
1055  * the target size. Note that this function makes no attempt to estimate
1056  * how many suitable free blocks there *might* be if MOVABLE pages were
1057  * migrated. Calculating that is possible, but expensive and can be
1058  * figured out from userspace
1059  */
1060 static void fill_contig_page_info(struct zone *zone,
1061                                 unsigned int suitable_order,
1062                                 struct contig_page_info *info)
1063 {
1064         unsigned int order;
1065
1066         info->free_pages = 0;
1067         info->free_blocks_total = 0;
1068         info->free_blocks_suitable = 0;
1069
1070         for (order = 0; order < MAX_ORDER; order++) {
1071                 unsigned long blocks;
1072
1073                 /*
1074                  * Count number of free blocks.
1075                  *
1076                  * Access to nr_free is lockless as nr_free is used only for
1077                  * diagnostic purposes. Use data_race to avoid KCSAN warning.
1078                  */
1079                 blocks = data_race(zone->free_area[order].nr_free);
1080                 info->free_blocks_total += blocks;
1081
1082                 /* Count free base pages */
1083                 info->free_pages += blocks << order;
1084
1085                 /* Count the suitable free blocks */
1086                 if (order >= suitable_order)
1087                         info->free_blocks_suitable += blocks <<
1088                                                 (order - suitable_order);
1089         }
1090 }
1091
1092 /*
1093  * A fragmentation index only makes sense if an allocation of a requested
1094  * size would fail. If that is true, the fragmentation index indicates
1095  * whether external fragmentation or a lack of memory was the problem.
1096  * The value can be used to determine if page reclaim or compaction
1097  * should be used
1098  */
1099 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1100 {
1101         unsigned long requested = 1UL << order;
1102
1103         if (WARN_ON_ONCE(order >= MAX_ORDER))
1104                 return 0;
1105
1106         if (!info->free_blocks_total)
1107                 return 0;
1108
1109         /* Fragmentation index only makes sense when a request would fail */
1110         if (info->free_blocks_suitable)
1111                 return -1000;
1112
1113         /*
1114          * Index is between 0 and 1 so return within 3 decimal places
1115          *
1116          * 0 => allocation would fail due to lack of memory
1117          * 1 => allocation would fail due to fragmentation
1118          */
1119         return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1120 }
1121
1122 /*
1123  * Calculates external fragmentation within a zone wrt the given order.
1124  * It is defined as the percentage of pages found in blocks of size
1125  * less than 1 << order. It returns values in range [0, 100].
1126  */
1127 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1128 {
1129         struct contig_page_info info;
1130
1131         fill_contig_page_info(zone, order, &info);
1132         if (info.free_pages == 0)
1133                 return 0;
1134
1135         return div_u64((info.free_pages -
1136                         (info.free_blocks_suitable << order)) * 100,
1137                         info.free_pages);
1138 }
1139
1140 /* Same as __fragmentation index but allocs contig_page_info on stack */
1141 int fragmentation_index(struct zone *zone, unsigned int order)
1142 {
1143         struct contig_page_info info;
1144
1145         fill_contig_page_info(zone, order, &info);
1146         return __fragmentation_index(order, &info);
1147 }
1148 #endif
1149
1150 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1151     defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1152 #ifdef CONFIG_ZONE_DMA
1153 #define TEXT_FOR_DMA(xx) xx "_dma",
1154 #else
1155 #define TEXT_FOR_DMA(xx)
1156 #endif
1157
1158 #ifdef CONFIG_ZONE_DMA32
1159 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1160 #else
1161 #define TEXT_FOR_DMA32(xx)
1162 #endif
1163
1164 #ifdef CONFIG_HIGHMEM
1165 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1166 #else
1167 #define TEXT_FOR_HIGHMEM(xx)
1168 #endif
1169
1170 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1171                                         TEXT_FOR_HIGHMEM(xx) xx "_movable",
1172
1173 const char * const vmstat_text[] = {
1174         /* enum zone_stat_item counters */
1175         "nr_free_pages",
1176         "nr_zone_inactive_anon",
1177         "nr_zone_active_anon",
1178         "nr_zone_inactive_file",
1179         "nr_zone_active_file",
1180         "nr_zone_unevictable",
1181         "nr_zone_write_pending",
1182         "nr_mlock",
1183         "nr_bounce",
1184 #if IS_ENABLED(CONFIG_ZSMALLOC)
1185         "nr_zspages",
1186 #endif
1187         "nr_free_cma",
1188
1189         /* enum numa_stat_item counters */
1190 #ifdef CONFIG_NUMA
1191         "numa_hit",
1192         "numa_miss",
1193         "numa_foreign",
1194         "numa_interleave",
1195         "numa_local",
1196         "numa_other",
1197 #endif
1198
1199         /* enum node_stat_item counters */
1200         "nr_inactive_anon",
1201         "nr_active_anon",
1202         "nr_inactive_file",
1203         "nr_active_file",
1204         "nr_unevictable",
1205         "nr_slab_reclaimable",
1206         "nr_slab_unreclaimable",
1207         "nr_isolated_anon",
1208         "nr_isolated_file",
1209         "workingset_nodes",
1210         "workingset_refault_anon",
1211         "workingset_refault_file",
1212         "workingset_activate_anon",
1213         "workingset_activate_file",
1214         "workingset_restore_anon",
1215         "workingset_restore_file",
1216         "workingset_nodereclaim",
1217         "nr_anon_pages",
1218         "nr_mapped",
1219         "nr_file_pages",
1220         "nr_dirty",
1221         "nr_writeback",
1222         "nr_writeback_temp",
1223         "nr_shmem",
1224         "nr_shmem_hugepages",
1225         "nr_shmem_pmdmapped",
1226         "nr_file_hugepages",
1227         "nr_file_pmdmapped",
1228         "nr_anon_transparent_hugepages",
1229         "nr_vmscan_write",
1230         "nr_vmscan_immediate_reclaim",
1231         "nr_dirtied",
1232         "nr_written",
1233         "nr_throttled_written",
1234         "nr_kernel_misc_reclaimable",
1235         "nr_foll_pin_acquired",
1236         "nr_foll_pin_released",
1237         "nr_kernel_stack",
1238 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1239         "nr_shadow_call_stack",
1240 #endif
1241         "nr_page_table_pages",
1242 #ifdef CONFIG_SWAP
1243         "nr_swapcached",
1244 #endif
1245
1246         /* enum writeback_stat_item counters */
1247         "nr_dirty_threshold",
1248         "nr_dirty_background_threshold",
1249
1250 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1251         /* enum vm_event_item counters */
1252         "pgpgin",
1253         "pgpgout",
1254         "pswpin",
1255         "pswpout",
1256
1257         TEXTS_FOR_ZONES("pgalloc")
1258         TEXTS_FOR_ZONES("allocstall")
1259         TEXTS_FOR_ZONES("pgskip")
1260
1261         "pgfree",
1262         "pgactivate",
1263         "pgdeactivate",
1264         "pglazyfree",
1265
1266         "pgfault",
1267         "pgmajfault",
1268         "pglazyfreed",
1269
1270         "pgrefill",
1271         "pgreuse",
1272         "pgsteal_kswapd",
1273         "pgsteal_direct",
1274         "pgdemote_kswapd",
1275         "pgdemote_direct",
1276         "pgscan_kswapd",
1277         "pgscan_direct",
1278         "pgscan_direct_throttle",
1279         "pgscan_anon",
1280         "pgscan_file",
1281         "pgsteal_anon",
1282         "pgsteal_file",
1283
1284 #ifdef CONFIG_NUMA
1285         "zone_reclaim_failed",
1286 #endif
1287         "pginodesteal",
1288         "slabs_scanned",
1289         "kswapd_inodesteal",
1290         "kswapd_low_wmark_hit_quickly",
1291         "kswapd_high_wmark_hit_quickly",
1292         "pageoutrun",
1293
1294         "pgrotated",
1295
1296         "drop_pagecache",
1297         "drop_slab",
1298         "oom_kill",
1299
1300 #ifdef CONFIG_NUMA_BALANCING
1301         "numa_pte_updates",
1302         "numa_huge_pte_updates",
1303         "numa_hint_faults",
1304         "numa_hint_faults_local",
1305         "numa_pages_migrated",
1306 #endif
1307 #ifdef CONFIG_MIGRATION
1308         "pgmigrate_success",
1309         "pgmigrate_fail",
1310         "thp_migration_success",
1311         "thp_migration_fail",
1312         "thp_migration_split",
1313 #endif
1314 #ifdef CONFIG_COMPACTION
1315         "compact_migrate_scanned",
1316         "compact_free_scanned",
1317         "compact_isolated",
1318         "compact_stall",
1319         "compact_fail",
1320         "compact_success",
1321         "compact_daemon_wake",
1322         "compact_daemon_migrate_scanned",
1323         "compact_daemon_free_scanned",
1324 #endif
1325
1326 #ifdef CONFIG_HUGETLB_PAGE
1327         "htlb_buddy_alloc_success",
1328         "htlb_buddy_alloc_fail",
1329 #endif
1330 #ifdef CONFIG_CMA
1331         "cma_alloc_success",
1332         "cma_alloc_fail",
1333 #endif
1334         "unevictable_pgs_culled",
1335         "unevictable_pgs_scanned",
1336         "unevictable_pgs_rescued",
1337         "unevictable_pgs_mlocked",
1338         "unevictable_pgs_munlocked",
1339         "unevictable_pgs_cleared",
1340         "unevictable_pgs_stranded",
1341
1342 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1343         "thp_fault_alloc",
1344         "thp_fault_fallback",
1345         "thp_fault_fallback_charge",
1346         "thp_collapse_alloc",
1347         "thp_collapse_alloc_failed",
1348         "thp_file_alloc",
1349         "thp_file_fallback",
1350         "thp_file_fallback_charge",
1351         "thp_file_mapped",
1352         "thp_split_page",
1353         "thp_split_page_failed",
1354         "thp_deferred_split_page",
1355         "thp_split_pmd",
1356 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1357         "thp_split_pud",
1358 #endif
1359         "thp_zero_page_alloc",
1360         "thp_zero_page_alloc_failed",
1361         "thp_swpout",
1362         "thp_swpout_fallback",
1363 #endif
1364 #ifdef CONFIG_MEMORY_BALLOON
1365         "balloon_inflate",
1366         "balloon_deflate",
1367 #ifdef CONFIG_BALLOON_COMPACTION
1368         "balloon_migrate",
1369 #endif
1370 #endif /* CONFIG_MEMORY_BALLOON */
1371 #ifdef CONFIG_DEBUG_TLBFLUSH
1372         "nr_tlb_remote_flush",
1373         "nr_tlb_remote_flush_received",
1374         "nr_tlb_local_flush_all",
1375         "nr_tlb_local_flush_one",
1376 #endif /* CONFIG_DEBUG_TLBFLUSH */
1377
1378 #ifdef CONFIG_DEBUG_VM_VMACACHE
1379         "vmacache_find_calls",
1380         "vmacache_find_hits",
1381 #endif
1382 #ifdef CONFIG_SWAP
1383         "swap_ra",
1384         "swap_ra_hit",
1385 #endif
1386 #ifdef CONFIG_X86
1387         "direct_map_level2_splits",
1388         "direct_map_level3_splits",
1389 #endif
1390 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1391 };
1392 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1393
1394 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1395      defined(CONFIG_PROC_FS)
1396 static void *frag_start(struct seq_file *m, loff_t *pos)
1397 {
1398         pg_data_t *pgdat;
1399         loff_t node = *pos;
1400
1401         for (pgdat = first_online_pgdat();
1402              pgdat && node;
1403              pgdat = next_online_pgdat(pgdat))
1404                 --node;
1405
1406         return pgdat;
1407 }
1408
1409 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1410 {
1411         pg_data_t *pgdat = (pg_data_t *)arg;
1412
1413         (*pos)++;
1414         return next_online_pgdat(pgdat);
1415 }
1416
1417 static void frag_stop(struct seq_file *m, void *arg)
1418 {
1419 }
1420
1421 /*
1422  * Walk zones in a node and print using a callback.
1423  * If @assert_populated is true, only use callback for zones that are populated.
1424  */
1425 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1426                 bool assert_populated, bool nolock,
1427                 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1428 {
1429         struct zone *zone;
1430         struct zone *node_zones = pgdat->node_zones;
1431         unsigned long flags;
1432
1433         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1434                 if (assert_populated && !populated_zone(zone))
1435                         continue;
1436
1437                 if (!nolock)
1438                         spin_lock_irqsave(&zone->lock, flags);
1439                 print(m, pgdat, zone);
1440                 if (!nolock)
1441                         spin_unlock_irqrestore(&zone->lock, flags);
1442         }
1443 }
1444 #endif
1445
1446 #ifdef CONFIG_PROC_FS
1447 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1448                                                 struct zone *zone)
1449 {
1450         int order;
1451
1452         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1453         for (order = 0; order < MAX_ORDER; ++order)
1454                 /*
1455                  * Access to nr_free is lockless as nr_free is used only for
1456                  * printing purposes. Use data_race to avoid KCSAN warning.
1457                  */
1458                 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1459         seq_putc(m, '\n');
1460 }
1461
1462 /*
1463  * This walks the free areas for each zone.
1464  */
1465 static int frag_show(struct seq_file *m, void *arg)
1466 {
1467         pg_data_t *pgdat = (pg_data_t *)arg;
1468         walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1469         return 0;
1470 }
1471
1472 static void pagetypeinfo_showfree_print(struct seq_file *m,
1473                                         pg_data_t *pgdat, struct zone *zone)
1474 {
1475         int order, mtype;
1476
1477         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1478                 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1479                                         pgdat->node_id,
1480                                         zone->name,
1481                                         migratetype_names[mtype]);
1482                 for (order = 0; order < MAX_ORDER; ++order) {
1483                         unsigned long freecount = 0;
1484                         struct free_area *area;
1485                         struct list_head *curr;
1486                         bool overflow = false;
1487
1488                         area = &(zone->free_area[order]);
1489
1490                         list_for_each(curr, &area->free_list[mtype]) {
1491                                 /*
1492                                  * Cap the free_list iteration because it might
1493                                  * be really large and we are under a spinlock
1494                                  * so a long time spent here could trigger a
1495                                  * hard lockup detector. Anyway this is a
1496                                  * debugging tool so knowing there is a handful
1497                                  * of pages of this order should be more than
1498                                  * sufficient.
1499                                  */
1500                                 if (++freecount >= 100000) {
1501                                         overflow = true;
1502                                         break;
1503                                 }
1504                         }
1505                         seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1506                         spin_unlock_irq(&zone->lock);
1507                         cond_resched();
1508                         spin_lock_irq(&zone->lock);
1509                 }
1510                 seq_putc(m, '\n');
1511         }
1512 }
1513
1514 /* Print out the free pages at each order for each migatetype */
1515 static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1516 {
1517         int order;
1518         pg_data_t *pgdat = (pg_data_t *)arg;
1519
1520         /* Print header */
1521         seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1522         for (order = 0; order < MAX_ORDER; ++order)
1523                 seq_printf(m, "%6d ", order);
1524         seq_putc(m, '\n');
1525
1526         walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1527 }
1528
1529 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1530                                         pg_data_t *pgdat, struct zone *zone)
1531 {
1532         int mtype;
1533         unsigned long pfn;
1534         unsigned long start_pfn = zone->zone_start_pfn;
1535         unsigned long end_pfn = zone_end_pfn(zone);
1536         unsigned long count[MIGRATE_TYPES] = { 0, };
1537
1538         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1539                 struct page *page;
1540
1541                 page = pfn_to_online_page(pfn);
1542                 if (!page)
1543                         continue;
1544
1545                 if (page_zone(page) != zone)
1546                         continue;
1547
1548                 mtype = get_pageblock_migratetype(page);
1549
1550                 if (mtype < MIGRATE_TYPES)
1551                         count[mtype]++;
1552         }
1553
1554         /* Print counts */
1555         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1556         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1557                 seq_printf(m, "%12lu ", count[mtype]);
1558         seq_putc(m, '\n');
1559 }
1560
1561 /* Print out the number of pageblocks for each migratetype */
1562 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1563 {
1564         int mtype;
1565         pg_data_t *pgdat = (pg_data_t *)arg;
1566
1567         seq_printf(m, "\n%-23s", "Number of blocks type ");
1568         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1569                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1570         seq_putc(m, '\n');
1571         walk_zones_in_node(m, pgdat, true, false,
1572                 pagetypeinfo_showblockcount_print);
1573 }
1574
1575 /*
1576  * Print out the number of pageblocks for each migratetype that contain pages
1577  * of other types. This gives an indication of how well fallbacks are being
1578  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1579  * to determine what is going on
1580  */
1581 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1582 {
1583 #ifdef CONFIG_PAGE_OWNER
1584         int mtype;
1585
1586         if (!static_branch_unlikely(&page_owner_inited))
1587                 return;
1588
1589         drain_all_pages(NULL);
1590
1591         seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1592         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1593                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1594         seq_putc(m, '\n');
1595
1596         walk_zones_in_node(m, pgdat, true, true,
1597                 pagetypeinfo_showmixedcount_print);
1598 #endif /* CONFIG_PAGE_OWNER */
1599 }
1600
1601 /*
1602  * This prints out statistics in relation to grouping pages by mobility.
1603  * It is expensive to collect so do not constantly read the file.
1604  */
1605 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1606 {
1607         pg_data_t *pgdat = (pg_data_t *)arg;
1608
1609         /* check memoryless node */
1610         if (!node_state(pgdat->node_id, N_MEMORY))
1611                 return 0;
1612
1613         seq_printf(m, "Page block order: %d\n", pageblock_order);
1614         seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1615         seq_putc(m, '\n');
1616         pagetypeinfo_showfree(m, pgdat);
1617         pagetypeinfo_showblockcount(m, pgdat);
1618         pagetypeinfo_showmixedcount(m, pgdat);
1619
1620         return 0;
1621 }
1622
1623 static const struct seq_operations fragmentation_op = {
1624         .start  = frag_start,
1625         .next   = frag_next,
1626         .stop   = frag_stop,
1627         .show   = frag_show,
1628 };
1629
1630 static const struct seq_operations pagetypeinfo_op = {
1631         .start  = frag_start,
1632         .next   = frag_next,
1633         .stop   = frag_stop,
1634         .show   = pagetypeinfo_show,
1635 };
1636
1637 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1638 {
1639         int zid;
1640
1641         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1642                 struct zone *compare = &pgdat->node_zones[zid];
1643
1644                 if (populated_zone(compare))
1645                         return zone == compare;
1646         }
1647
1648         return false;
1649 }
1650
1651 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1652                                                         struct zone *zone)
1653 {
1654         int i;
1655         seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1656         if (is_zone_first_populated(pgdat, zone)) {
1657                 seq_printf(m, "\n  per-node stats");
1658                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1659                         unsigned long pages = node_page_state_pages(pgdat, i);
1660
1661                         if (vmstat_item_print_in_thp(i))
1662                                 pages /= HPAGE_PMD_NR;
1663                         seq_printf(m, "\n      %-12s %lu", node_stat_name(i),
1664                                    pages);
1665                 }
1666         }
1667         seq_printf(m,
1668                    "\n  pages free     %lu"
1669                    "\n        boost    %lu"
1670                    "\n        min      %lu"
1671                    "\n        low      %lu"
1672                    "\n        high     %lu"
1673                    "\n        spanned  %lu"
1674                    "\n        present  %lu"
1675                    "\n        managed  %lu"
1676                    "\n        cma      %lu",
1677                    zone_page_state(zone, NR_FREE_PAGES),
1678                    zone->watermark_boost,
1679                    min_wmark_pages(zone),
1680                    low_wmark_pages(zone),
1681                    high_wmark_pages(zone),
1682                    zone->spanned_pages,
1683                    zone->present_pages,
1684                    zone_managed_pages(zone),
1685                    zone_cma_pages(zone));
1686
1687         seq_printf(m,
1688                    "\n        protection: (%ld",
1689                    zone->lowmem_reserve[0]);
1690         for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1691                 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1692         seq_putc(m, ')');
1693
1694         /* If unpopulated, no other information is useful */
1695         if (!populated_zone(zone)) {
1696                 seq_putc(m, '\n');
1697                 return;
1698         }
1699
1700         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1701                 seq_printf(m, "\n      %-12s %lu", zone_stat_name(i),
1702                            zone_page_state(zone, i));
1703
1704 #ifdef CONFIG_NUMA
1705         for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1706                 seq_printf(m, "\n      %-12s %lu", numa_stat_name(i),
1707                            zone_numa_event_state(zone, i));
1708 #endif
1709
1710         seq_printf(m, "\n  pagesets");
1711         for_each_online_cpu(i) {
1712                 struct per_cpu_pages *pcp;
1713                 struct per_cpu_zonestat __maybe_unused *pzstats;
1714
1715                 pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1716                 seq_printf(m,
1717                            "\n    cpu: %i"
1718                            "\n              count: %i"
1719                            "\n              high:  %i"
1720                            "\n              batch: %i",
1721                            i,
1722                            pcp->count,
1723                            pcp->high,
1724                            pcp->batch);
1725 #ifdef CONFIG_SMP
1726                 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1727                 seq_printf(m, "\n  vm stats threshold: %d",
1728                                 pzstats->stat_threshold);
1729 #endif
1730         }
1731         seq_printf(m,
1732                    "\n  node_unreclaimable:  %u"
1733                    "\n  start_pfn:           %lu",
1734                    pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1735                    zone->zone_start_pfn);
1736         seq_putc(m, '\n');
1737 }
1738
1739 /*
1740  * Output information about zones in @pgdat.  All zones are printed regardless
1741  * of whether they are populated or not: lowmem_reserve_ratio operates on the
1742  * set of all zones and userspace would not be aware of such zones if they are
1743  * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1744  */
1745 static int zoneinfo_show(struct seq_file *m, void *arg)
1746 {
1747         pg_data_t *pgdat = (pg_data_t *)arg;
1748         walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1749         return 0;
1750 }
1751
1752 static const struct seq_operations zoneinfo_op = {
1753         .start  = frag_start, /* iterate over all zones. The same as in
1754                                * fragmentation. */
1755         .next   = frag_next,
1756         .stop   = frag_stop,
1757         .show   = zoneinfo_show,
1758 };
1759
1760 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1761                          NR_VM_NUMA_EVENT_ITEMS + \
1762                          NR_VM_NODE_STAT_ITEMS + \
1763                          NR_VM_WRITEBACK_STAT_ITEMS + \
1764                          (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1765                           NR_VM_EVENT_ITEMS : 0))
1766
1767 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1768 {
1769         unsigned long *v;
1770         int i;
1771
1772         if (*pos >= NR_VMSTAT_ITEMS)
1773                 return NULL;
1774
1775         BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1776         fold_vm_numa_events();
1777         v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1778         m->private = v;
1779         if (!v)
1780                 return ERR_PTR(-ENOMEM);
1781         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1782                 v[i] = global_zone_page_state(i);
1783         v += NR_VM_ZONE_STAT_ITEMS;
1784
1785 #ifdef CONFIG_NUMA
1786         for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1787                 v[i] = global_numa_event_state(i);
1788         v += NR_VM_NUMA_EVENT_ITEMS;
1789 #endif
1790
1791         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1792                 v[i] = global_node_page_state_pages(i);
1793                 if (vmstat_item_print_in_thp(i))
1794                         v[i] /= HPAGE_PMD_NR;
1795         }
1796         v += NR_VM_NODE_STAT_ITEMS;
1797
1798         global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1799                             v + NR_DIRTY_THRESHOLD);
1800         v += NR_VM_WRITEBACK_STAT_ITEMS;
1801
1802 #ifdef CONFIG_VM_EVENT_COUNTERS
1803         all_vm_events(v);
1804         v[PGPGIN] /= 2;         /* sectors -> kbytes */
1805         v[PGPGOUT] /= 2;
1806 #endif
1807         return (unsigned long *)m->private + *pos;
1808 }
1809
1810 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1811 {
1812         (*pos)++;
1813         if (*pos >= NR_VMSTAT_ITEMS)
1814                 return NULL;
1815         return (unsigned long *)m->private + *pos;
1816 }
1817
1818 static int vmstat_show(struct seq_file *m, void *arg)
1819 {
1820         unsigned long *l = arg;
1821         unsigned long off = l - (unsigned long *)m->private;
1822
1823         seq_puts(m, vmstat_text[off]);
1824         seq_put_decimal_ull(m, " ", *l);
1825         seq_putc(m, '\n');
1826
1827         if (off == NR_VMSTAT_ITEMS - 1) {
1828                 /*
1829                  * We've come to the end - add any deprecated counters to avoid
1830                  * breaking userspace which might depend on them being present.
1831                  */
1832                 seq_puts(m, "nr_unstable 0\n");
1833         }
1834         return 0;
1835 }
1836
1837 static void vmstat_stop(struct seq_file *m, void *arg)
1838 {
1839         kfree(m->private);
1840         m->private = NULL;
1841 }
1842
1843 static const struct seq_operations vmstat_op = {
1844         .start  = vmstat_start,
1845         .next   = vmstat_next,
1846         .stop   = vmstat_stop,
1847         .show   = vmstat_show,
1848 };
1849 #endif /* CONFIG_PROC_FS */
1850
1851 #ifdef CONFIG_SMP
1852 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1853 int sysctl_stat_interval __read_mostly = HZ;
1854
1855 #ifdef CONFIG_PROC_FS
1856 static void refresh_vm_stats(struct work_struct *work)
1857 {
1858         refresh_cpu_vm_stats(true);
1859 }
1860
1861 int vmstat_refresh(struct ctl_table *table, int write,
1862                    void *buffer, size_t *lenp, loff_t *ppos)
1863 {
1864         long val;
1865         int err;
1866         int i;
1867
1868         /*
1869          * The regular update, every sysctl_stat_interval, may come later
1870          * than expected: leaving a significant amount in per_cpu buckets.
1871          * This is particularly misleading when checking a quantity of HUGE
1872          * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1873          * which can equally be echo'ed to or cat'ted from (by root),
1874          * can be used to update the stats just before reading them.
1875          *
1876          * Oh, and since global_zone_page_state() etc. are so careful to hide
1877          * transiently negative values, report an error here if any of
1878          * the stats is negative, so we know to go looking for imbalance.
1879          */
1880         err = schedule_on_each_cpu(refresh_vm_stats);
1881         if (err)
1882                 return err;
1883         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1884                 /*
1885                  * Skip checking stats known to go negative occasionally.
1886                  */
1887                 switch (i) {
1888                 case NR_ZONE_WRITE_PENDING:
1889                 case NR_FREE_CMA_PAGES:
1890                         continue;
1891                 }
1892                 val = atomic_long_read(&vm_zone_stat[i]);
1893                 if (val < 0) {
1894                         pr_warn("%s: %s %ld\n",
1895                                 __func__, zone_stat_name(i), val);
1896                 }
1897         }
1898         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1899                 /*
1900                  * Skip checking stats known to go negative occasionally.
1901                  */
1902                 switch (i) {
1903                 case NR_WRITEBACK:
1904                         continue;
1905                 }
1906                 val = atomic_long_read(&vm_node_stat[i]);
1907                 if (val < 0) {
1908                         pr_warn("%s: %s %ld\n",
1909                                 __func__, node_stat_name(i), val);
1910                 }
1911         }
1912         if (write)
1913                 *ppos += *lenp;
1914         else
1915                 *lenp = 0;
1916         return 0;
1917 }
1918 #endif /* CONFIG_PROC_FS */
1919
1920 static void vmstat_update(struct work_struct *w)
1921 {
1922         if (refresh_cpu_vm_stats(true)) {
1923                 /*
1924                  * Counters were updated so we expect more updates
1925                  * to occur in the future. Keep on running the
1926                  * update worker thread.
1927                  */
1928                 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1929                                 this_cpu_ptr(&vmstat_work),
1930                                 round_jiffies_relative(sysctl_stat_interval));
1931         }
1932 }
1933
1934 /*
1935  * Check if the diffs for a certain cpu indicate that
1936  * an update is needed.
1937  */
1938 static bool need_update(int cpu)
1939 {
1940         pg_data_t *last_pgdat = NULL;
1941         struct zone *zone;
1942
1943         for_each_populated_zone(zone) {
1944                 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1945                 struct per_cpu_nodestat *n;
1946
1947                 /*
1948                  * The fast way of checking if there are any vmstat diffs.
1949                  */
1950                 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1951                         return true;
1952
1953                 if (last_pgdat == zone->zone_pgdat)
1954                         continue;
1955                 last_pgdat = zone->zone_pgdat;
1956                 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1957                 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1958                         return true;
1959         }
1960         return false;
1961 }
1962
1963 /*
1964  * Switch off vmstat processing and then fold all the remaining differentials
1965  * until the diffs stay at zero. The function is used by NOHZ and can only be
1966  * invoked when tick processing is not active.
1967  */
1968 void quiet_vmstat(void)
1969 {
1970         if (system_state != SYSTEM_RUNNING)
1971                 return;
1972
1973         if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1974                 return;
1975
1976         if (!need_update(smp_processor_id()))
1977                 return;
1978
1979         /*
1980          * Just refresh counters and do not care about the pending delayed
1981          * vmstat_update. It doesn't fire that often to matter and canceling
1982          * it would be too expensive from this path.
1983          * vmstat_shepherd will take care about that for us.
1984          */
1985         refresh_cpu_vm_stats(false);
1986 }
1987
1988 /*
1989  * Shepherd worker thread that checks the
1990  * differentials of processors that have their worker
1991  * threads for vm statistics updates disabled because of
1992  * inactivity.
1993  */
1994 static void vmstat_shepherd(struct work_struct *w);
1995
1996 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1997
1998 static void vmstat_shepherd(struct work_struct *w)
1999 {
2000         int cpu;
2001
2002         cpus_read_lock();
2003         /* Check processors whose vmstat worker threads have been disabled */
2004         for_each_online_cpu(cpu) {
2005                 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2006
2007                 if (!delayed_work_pending(dw) && need_update(cpu))
2008                         queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2009
2010                 cond_resched();
2011         }
2012         cpus_read_unlock();
2013
2014         schedule_delayed_work(&shepherd,
2015                 round_jiffies_relative(sysctl_stat_interval));
2016 }
2017
2018 static void __init start_shepherd_timer(void)
2019 {
2020         int cpu;
2021
2022         for_each_possible_cpu(cpu)
2023                 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2024                         vmstat_update);
2025
2026         schedule_delayed_work(&shepherd,
2027                 round_jiffies_relative(sysctl_stat_interval));
2028 }
2029
2030 static void __init init_cpu_node_state(void)
2031 {
2032         int node;
2033
2034         for_each_online_node(node) {
2035                 if (cpumask_weight(cpumask_of_node(node)) > 0)
2036                         node_set_state(node, N_CPU);
2037         }
2038 }
2039
2040 static int vmstat_cpu_online(unsigned int cpu)
2041 {
2042         refresh_zone_stat_thresholds();
2043         node_set_state(cpu_to_node(cpu), N_CPU);
2044         return 0;
2045 }
2046
2047 static int vmstat_cpu_down_prep(unsigned int cpu)
2048 {
2049         cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2050         return 0;
2051 }
2052
2053 static int vmstat_cpu_dead(unsigned int cpu)
2054 {
2055         const struct cpumask *node_cpus;
2056         int node;
2057
2058         node = cpu_to_node(cpu);
2059
2060         refresh_zone_stat_thresholds();
2061         node_cpus = cpumask_of_node(node);
2062         if (cpumask_weight(node_cpus) > 0)
2063                 return 0;
2064
2065         node_clear_state(node, N_CPU);
2066         return 0;
2067 }
2068
2069 #endif
2070
2071 struct workqueue_struct *mm_percpu_wq;
2072
2073 void __init init_mm_internals(void)
2074 {
2075         int ret __maybe_unused;
2076
2077         mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2078
2079 #ifdef CONFIG_SMP
2080         ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2081                                         NULL, vmstat_cpu_dead);
2082         if (ret < 0)
2083                 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2084
2085         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2086                                         vmstat_cpu_online,
2087                                         vmstat_cpu_down_prep);
2088         if (ret < 0)
2089                 pr_err("vmstat: failed to register 'online' hotplug state\n");
2090
2091         cpus_read_lock();
2092         init_cpu_node_state();
2093         cpus_read_unlock();
2094
2095         start_shepherd_timer();
2096 #endif
2097 #ifdef CONFIG_PROC_FS
2098         proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2099         proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2100         proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2101         proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2102 #endif
2103 }
2104
2105 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2106
2107 /*
2108  * Return an index indicating how much of the available free memory is
2109  * unusable for an allocation of the requested size.
2110  */
2111 static int unusable_free_index(unsigned int order,
2112                                 struct contig_page_info *info)
2113 {
2114         /* No free memory is interpreted as all free memory is unusable */
2115         if (info->free_pages == 0)
2116                 return 1000;
2117
2118         /*
2119          * Index should be a value between 0 and 1. Return a value to 3
2120          * decimal places.
2121          *
2122          * 0 => no fragmentation
2123          * 1 => high fragmentation
2124          */
2125         return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2126
2127 }
2128
2129 static void unusable_show_print(struct seq_file *m,
2130                                         pg_data_t *pgdat, struct zone *zone)
2131 {
2132         unsigned int order;
2133         int index;
2134         struct contig_page_info info;
2135
2136         seq_printf(m, "Node %d, zone %8s ",
2137                                 pgdat->node_id,
2138                                 zone->name);
2139         for (order = 0; order < MAX_ORDER; ++order) {
2140                 fill_contig_page_info(zone, order, &info);
2141                 index = unusable_free_index(order, &info);
2142                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2143         }
2144
2145         seq_putc(m, '\n');
2146 }
2147
2148 /*
2149  * Display unusable free space index
2150  *
2151  * The unusable free space index measures how much of the available free
2152  * memory cannot be used to satisfy an allocation of a given size and is a
2153  * value between 0 and 1. The higher the value, the more of free memory is
2154  * unusable and by implication, the worse the external fragmentation is. This
2155  * can be expressed as a percentage by multiplying by 100.
2156  */
2157 static int unusable_show(struct seq_file *m, void *arg)
2158 {
2159         pg_data_t *pgdat = (pg_data_t *)arg;
2160
2161         /* check memoryless node */
2162         if (!node_state(pgdat->node_id, N_MEMORY))
2163                 return 0;
2164
2165         walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2166
2167         return 0;
2168 }
2169
2170 static const struct seq_operations unusable_sops = {
2171         .start  = frag_start,
2172         .next   = frag_next,
2173         .stop   = frag_stop,
2174         .show   = unusable_show,
2175 };
2176
2177 DEFINE_SEQ_ATTRIBUTE(unusable);
2178
2179 static void extfrag_show_print(struct seq_file *m,
2180                                         pg_data_t *pgdat, struct zone *zone)
2181 {
2182         unsigned int order;
2183         int index;
2184
2185         /* Alloc on stack as interrupts are disabled for zone walk */
2186         struct contig_page_info info;
2187
2188         seq_printf(m, "Node %d, zone %8s ",
2189                                 pgdat->node_id,
2190                                 zone->name);
2191         for (order = 0; order < MAX_ORDER; ++order) {
2192                 fill_contig_page_info(zone, order, &info);
2193                 index = __fragmentation_index(order, &info);
2194                 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2195         }
2196
2197         seq_putc(m, '\n');
2198 }
2199
2200 /*
2201  * Display fragmentation index for orders that allocations would fail for
2202  */
2203 static int extfrag_show(struct seq_file *m, void *arg)
2204 {
2205         pg_data_t *pgdat = (pg_data_t *)arg;
2206
2207         walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2208
2209         return 0;
2210 }
2211
2212 static const struct seq_operations extfrag_sops = {
2213         .start  = frag_start,
2214         .next   = frag_next,
2215         .stop   = frag_stop,
2216         .show   = extfrag_show,
2217 };
2218
2219 DEFINE_SEQ_ATTRIBUTE(extfrag);
2220
2221 static int __init extfrag_debug_init(void)
2222 {
2223         struct dentry *extfrag_debug_root;
2224
2225         extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2226
2227         debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2228                             &unusable_fops);
2229
2230         debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2231                             &extfrag_fops);
2232
2233         return 0;
2234 }
2235
2236 module_init(extfrag_debug_init);
2237 #endif