zsmalloc: introduce obj_allocated
[linux-2.6-microblaze.git] / mm / vmstat.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/vmstat.c
4  *
5  *  Manages VM statistics
6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  zoned VM statistics
9  *  Copyright (C) 2006 Silicon Graphics, Inc.,
10  *              Christoph Lameter <christoph@lameter.com>
11  *  Copyright (C) 2008-2014 Christoph Lameter
12  */
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_ext.h>
30 #include <linux/page_owner.h>
31
32 #include "internal.h"
33
34 #ifdef CONFIG_NUMA
35 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
36
37 /* zero numa counters within a zone */
38 static void zero_zone_numa_counters(struct zone *zone)
39 {
40         int item, cpu;
41
42         for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
43                 atomic_long_set(&zone->vm_numa_event[item], 0);
44                 for_each_online_cpu(cpu) {
45                         per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
46                                                 = 0;
47                 }
48         }
49 }
50
51 /* zero numa counters of all the populated zones */
52 static void zero_zones_numa_counters(void)
53 {
54         struct zone *zone;
55
56         for_each_populated_zone(zone)
57                 zero_zone_numa_counters(zone);
58 }
59
60 /* zero global numa counters */
61 static void zero_global_numa_counters(void)
62 {
63         int item;
64
65         for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
66                 atomic_long_set(&vm_numa_event[item], 0);
67 }
68
69 static void invalid_numa_statistics(void)
70 {
71         zero_zones_numa_counters();
72         zero_global_numa_counters();
73 }
74
75 static DEFINE_MUTEX(vm_numa_stat_lock);
76
77 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
78                 void *buffer, size_t *length, loff_t *ppos)
79 {
80         int ret, oldval;
81
82         mutex_lock(&vm_numa_stat_lock);
83         if (write)
84                 oldval = sysctl_vm_numa_stat;
85         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
86         if (ret || !write)
87                 goto out;
88
89         if (oldval == sysctl_vm_numa_stat)
90                 goto out;
91         else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
92                 static_branch_enable(&vm_numa_stat_key);
93                 pr_info("enable numa statistics\n");
94         } else {
95                 static_branch_disable(&vm_numa_stat_key);
96                 invalid_numa_statistics();
97                 pr_info("disable numa statistics, and clear numa counters\n");
98         }
99
100 out:
101         mutex_unlock(&vm_numa_stat_lock);
102         return ret;
103 }
104 #endif
105
106 #ifdef CONFIG_VM_EVENT_COUNTERS
107 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108 EXPORT_PER_CPU_SYMBOL(vm_event_states);
109
110 static void sum_vm_events(unsigned long *ret)
111 {
112         int cpu;
113         int i;
114
115         memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
116
117         for_each_online_cpu(cpu) {
118                 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
119
120                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121                         ret[i] += this->event[i];
122         }
123 }
124
125 /*
126  * Accumulate the vm event counters across all CPUs.
127  * The result is unavoidably approximate - it can change
128  * during and after execution of this function.
129 */
130 void all_vm_events(unsigned long *ret)
131 {
132         cpus_read_lock();
133         sum_vm_events(ret);
134         cpus_read_unlock();
135 }
136 EXPORT_SYMBOL_GPL(all_vm_events);
137
138 /*
139  * Fold the foreign cpu events into our own.
140  *
141  * This is adding to the events on one processor
142  * but keeps the global counts constant.
143  */
144 void vm_events_fold_cpu(int cpu)
145 {
146         struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
147         int i;
148
149         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150                 count_vm_events(i, fold_state->event[i]);
151                 fold_state->event[i] = 0;
152         }
153 }
154
155 #endif /* CONFIG_VM_EVENT_COUNTERS */
156
157 /*
158  * Manage combined zone based / global counters
159  *
160  * vm_stat contains the global counters
161  */
162 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
165 EXPORT_SYMBOL(vm_zone_stat);
166 EXPORT_SYMBOL(vm_node_stat);
167
168 #ifdef CONFIG_NUMA
169 static void fold_vm_zone_numa_events(struct zone *zone)
170 {
171         unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
172         int cpu;
173         enum numa_stat_item item;
174
175         for_each_online_cpu(cpu) {
176                 struct per_cpu_zonestat *pzstats;
177
178                 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
179                 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
180                         zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
181         }
182
183         for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
184                 zone_numa_event_add(zone_numa_events[item], zone, item);
185 }
186
187 void fold_vm_numa_events(void)
188 {
189         struct zone *zone;
190
191         for_each_populated_zone(zone)
192                 fold_vm_zone_numa_events(zone);
193 }
194 #endif
195
196 #ifdef CONFIG_SMP
197
198 int calculate_pressure_threshold(struct zone *zone)
199 {
200         int threshold;
201         int watermark_distance;
202
203         /*
204          * As vmstats are not up to date, there is drift between the estimated
205          * and real values. For high thresholds and a high number of CPUs, it
206          * is possible for the min watermark to be breached while the estimated
207          * value looks fine. The pressure threshold is a reduced value such
208          * that even the maximum amount of drift will not accidentally breach
209          * the min watermark
210          */
211         watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
212         threshold = max(1, (int)(watermark_distance / num_online_cpus()));
213
214         /*
215          * Maximum threshold is 125
216          */
217         threshold = min(125, threshold);
218
219         return threshold;
220 }
221
222 int calculate_normal_threshold(struct zone *zone)
223 {
224         int threshold;
225         int mem;        /* memory in 128 MB units */
226
227         /*
228          * The threshold scales with the number of processors and the amount
229          * of memory per zone. More memory means that we can defer updates for
230          * longer, more processors could lead to more contention.
231          * fls() is used to have a cheap way of logarithmic scaling.
232          *
233          * Some sample thresholds:
234          *
235          * Threshold    Processors      (fls)   Zonesize        fls(mem)+1
236          * ------------------------------------------------------------------
237          * 8            1               1       0.9-1 GB        4
238          * 16           2               2       0.9-1 GB        4
239          * 20           2               2       1-2 GB          5
240          * 24           2               2       2-4 GB          6
241          * 28           2               2       4-8 GB          7
242          * 32           2               2       8-16 GB         8
243          * 4            2               2       <128M           1
244          * 30           4               3       2-4 GB          5
245          * 48           4               3       8-16 GB         8
246          * 32           8               4       1-2 GB          4
247          * 32           8               4       0.9-1GB         4
248          * 10           16              5       <128M           1
249          * 40           16              5       900M            4
250          * 70           64              7       2-4 GB          5
251          * 84           64              7       4-8 GB          6
252          * 108          512             9       4-8 GB          6
253          * 125          1024            10      8-16 GB         8
254          * 125          1024            10      16-32 GB        9
255          */
256
257         mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
258
259         threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
260
261         /*
262          * Maximum threshold is 125
263          */
264         threshold = min(125, threshold);
265
266         return threshold;
267 }
268
269 /*
270  * Refresh the thresholds for each zone.
271  */
272 void refresh_zone_stat_thresholds(void)
273 {
274         struct pglist_data *pgdat;
275         struct zone *zone;
276         int cpu;
277         int threshold;
278
279         /* Zero current pgdat thresholds */
280         for_each_online_pgdat(pgdat) {
281                 for_each_online_cpu(cpu) {
282                         per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
283                 }
284         }
285
286         for_each_populated_zone(zone) {
287                 struct pglist_data *pgdat = zone->zone_pgdat;
288                 unsigned long max_drift, tolerate_drift;
289
290                 threshold = calculate_normal_threshold(zone);
291
292                 for_each_online_cpu(cpu) {
293                         int pgdat_threshold;
294
295                         per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
296                                                         = threshold;
297
298                         /* Base nodestat threshold on the largest populated zone. */
299                         pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
300                         per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
301                                 = max(threshold, pgdat_threshold);
302                 }
303
304                 /*
305                  * Only set percpu_drift_mark if there is a danger that
306                  * NR_FREE_PAGES reports the low watermark is ok when in fact
307                  * the min watermark could be breached by an allocation
308                  */
309                 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
310                 max_drift = num_online_cpus() * threshold;
311                 if (max_drift > tolerate_drift)
312                         zone->percpu_drift_mark = high_wmark_pages(zone) +
313                                         max_drift;
314         }
315 }
316
317 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
318                                 int (*calculate_pressure)(struct zone *))
319 {
320         struct zone *zone;
321         int cpu;
322         int threshold;
323         int i;
324
325         for (i = 0; i < pgdat->nr_zones; i++) {
326                 zone = &pgdat->node_zones[i];
327                 if (!zone->percpu_drift_mark)
328                         continue;
329
330                 threshold = (*calculate_pressure)(zone);
331                 for_each_online_cpu(cpu)
332                         per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
333                                                         = threshold;
334         }
335 }
336
337 /*
338  * For use when we know that interrupts are disabled,
339  * or when we know that preemption is disabled and that
340  * particular counter cannot be updated from interrupt context.
341  */
342 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
343                            long delta)
344 {
345         struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
346         s8 __percpu *p = pcp->vm_stat_diff + item;
347         long x;
348         long t;
349
350         /*
351          * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
352          * atomicity is provided by IRQs being disabled -- either explicitly
353          * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
354          * CPU migrations and preemption potentially corrupts a counter so
355          * disable preemption.
356          */
357         if (IS_ENABLED(CONFIG_PREEMPT_RT))
358                 preempt_disable();
359
360         x = delta + __this_cpu_read(*p);
361
362         t = __this_cpu_read(pcp->stat_threshold);
363
364         if (unlikely(abs(x) > t)) {
365                 zone_page_state_add(x, zone, item);
366                 x = 0;
367         }
368         __this_cpu_write(*p, x);
369
370         if (IS_ENABLED(CONFIG_PREEMPT_RT))
371                 preempt_enable();
372 }
373 EXPORT_SYMBOL(__mod_zone_page_state);
374
375 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
376                                 long delta)
377 {
378         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
379         s8 __percpu *p = pcp->vm_node_stat_diff + item;
380         long x;
381         long t;
382
383         if (vmstat_item_in_bytes(item)) {
384                 /*
385                  * Only cgroups use subpage accounting right now; at
386                  * the global level, these items still change in
387                  * multiples of whole pages. Store them as pages
388                  * internally to keep the per-cpu counters compact.
389                  */
390                 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
391                 delta >>= PAGE_SHIFT;
392         }
393
394         /* See __mod_node_page_state */
395         if (IS_ENABLED(CONFIG_PREEMPT_RT))
396                 preempt_disable();
397
398         x = delta + __this_cpu_read(*p);
399
400         t = __this_cpu_read(pcp->stat_threshold);
401
402         if (unlikely(abs(x) > t)) {
403                 node_page_state_add(x, pgdat, item);
404                 x = 0;
405         }
406         __this_cpu_write(*p, x);
407
408         if (IS_ENABLED(CONFIG_PREEMPT_RT))
409                 preempt_enable();
410 }
411 EXPORT_SYMBOL(__mod_node_page_state);
412
413 /*
414  * Optimized increment and decrement functions.
415  *
416  * These are only for a single page and therefore can take a struct page *
417  * argument instead of struct zone *. This allows the inclusion of the code
418  * generated for page_zone(page) into the optimized functions.
419  *
420  * No overflow check is necessary and therefore the differential can be
421  * incremented or decremented in place which may allow the compilers to
422  * generate better code.
423  * The increment or decrement is known and therefore one boundary check can
424  * be omitted.
425  *
426  * NOTE: These functions are very performance sensitive. Change only
427  * with care.
428  *
429  * Some processors have inc/dec instructions that are atomic vs an interrupt.
430  * However, the code must first determine the differential location in a zone
431  * based on the processor number and then inc/dec the counter. There is no
432  * guarantee without disabling preemption that the processor will not change
433  * in between and therefore the atomicity vs. interrupt cannot be exploited
434  * in a useful way here.
435  */
436 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
437 {
438         struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
439         s8 __percpu *p = pcp->vm_stat_diff + item;
440         s8 v, t;
441
442         /* See __mod_node_page_state */
443         if (IS_ENABLED(CONFIG_PREEMPT_RT))
444                 preempt_disable();
445
446         v = __this_cpu_inc_return(*p);
447         t = __this_cpu_read(pcp->stat_threshold);
448         if (unlikely(v > t)) {
449                 s8 overstep = t >> 1;
450
451                 zone_page_state_add(v + overstep, zone, item);
452                 __this_cpu_write(*p, -overstep);
453         }
454
455         if (IS_ENABLED(CONFIG_PREEMPT_RT))
456                 preempt_enable();
457 }
458
459 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
460 {
461         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
462         s8 __percpu *p = pcp->vm_node_stat_diff + item;
463         s8 v, t;
464
465         VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
466
467         /* See __mod_node_page_state */
468         if (IS_ENABLED(CONFIG_PREEMPT_RT))
469                 preempt_disable();
470
471         v = __this_cpu_inc_return(*p);
472         t = __this_cpu_read(pcp->stat_threshold);
473         if (unlikely(v > t)) {
474                 s8 overstep = t >> 1;
475
476                 node_page_state_add(v + overstep, pgdat, item);
477                 __this_cpu_write(*p, -overstep);
478         }
479
480         if (IS_ENABLED(CONFIG_PREEMPT_RT))
481                 preempt_enable();
482 }
483
484 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
485 {
486         __inc_zone_state(page_zone(page), item);
487 }
488 EXPORT_SYMBOL(__inc_zone_page_state);
489
490 void __inc_node_page_state(struct page *page, enum node_stat_item item)
491 {
492         __inc_node_state(page_pgdat(page), item);
493 }
494 EXPORT_SYMBOL(__inc_node_page_state);
495
496 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
497 {
498         struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
499         s8 __percpu *p = pcp->vm_stat_diff + item;
500         s8 v, t;
501
502         /* See __mod_node_page_state */
503         if (IS_ENABLED(CONFIG_PREEMPT_RT))
504                 preempt_disable();
505
506         v = __this_cpu_dec_return(*p);
507         t = __this_cpu_read(pcp->stat_threshold);
508         if (unlikely(v < - t)) {
509                 s8 overstep = t >> 1;
510
511                 zone_page_state_add(v - overstep, zone, item);
512                 __this_cpu_write(*p, overstep);
513         }
514
515         if (IS_ENABLED(CONFIG_PREEMPT_RT))
516                 preempt_enable();
517 }
518
519 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
520 {
521         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
522         s8 __percpu *p = pcp->vm_node_stat_diff + item;
523         s8 v, t;
524
525         VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
526
527         /* See __mod_node_page_state */
528         if (IS_ENABLED(CONFIG_PREEMPT_RT))
529                 preempt_disable();
530
531         v = __this_cpu_dec_return(*p);
532         t = __this_cpu_read(pcp->stat_threshold);
533         if (unlikely(v < - t)) {
534                 s8 overstep = t >> 1;
535
536                 node_page_state_add(v - overstep, pgdat, item);
537                 __this_cpu_write(*p, overstep);
538         }
539
540         if (IS_ENABLED(CONFIG_PREEMPT_RT))
541                 preempt_enable();
542 }
543
544 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
545 {
546         __dec_zone_state(page_zone(page), item);
547 }
548 EXPORT_SYMBOL(__dec_zone_page_state);
549
550 void __dec_node_page_state(struct page *page, enum node_stat_item item)
551 {
552         __dec_node_state(page_pgdat(page), item);
553 }
554 EXPORT_SYMBOL(__dec_node_page_state);
555
556 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
557 /*
558  * If we have cmpxchg_local support then we do not need to incur the overhead
559  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
560  *
561  * mod_state() modifies the zone counter state through atomic per cpu
562  * operations.
563  *
564  * Overstep mode specifies how overstep should handled:
565  *     0       No overstepping
566  *     1       Overstepping half of threshold
567  *     -1      Overstepping minus half of threshold
568 */
569 static inline void mod_zone_state(struct zone *zone,
570        enum zone_stat_item item, long delta, int overstep_mode)
571 {
572         struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
573         s8 __percpu *p = pcp->vm_stat_diff + item;
574         long o, n, t, z;
575
576         do {
577                 z = 0;  /* overflow to zone counters */
578
579                 /*
580                  * The fetching of the stat_threshold is racy. We may apply
581                  * a counter threshold to the wrong the cpu if we get
582                  * rescheduled while executing here. However, the next
583                  * counter update will apply the threshold again and
584                  * therefore bring the counter under the threshold again.
585                  *
586                  * Most of the time the thresholds are the same anyways
587                  * for all cpus in a zone.
588                  */
589                 t = this_cpu_read(pcp->stat_threshold);
590
591                 o = this_cpu_read(*p);
592                 n = delta + o;
593
594                 if (abs(n) > t) {
595                         int os = overstep_mode * (t >> 1) ;
596
597                         /* Overflow must be added to zone counters */
598                         z = n + os;
599                         n = -os;
600                 }
601         } while (this_cpu_cmpxchg(*p, o, n) != o);
602
603         if (z)
604                 zone_page_state_add(z, zone, item);
605 }
606
607 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
608                          long delta)
609 {
610         mod_zone_state(zone, item, delta, 0);
611 }
612 EXPORT_SYMBOL(mod_zone_page_state);
613
614 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
615 {
616         mod_zone_state(page_zone(page), item, 1, 1);
617 }
618 EXPORT_SYMBOL(inc_zone_page_state);
619
620 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
621 {
622         mod_zone_state(page_zone(page), item, -1, -1);
623 }
624 EXPORT_SYMBOL(dec_zone_page_state);
625
626 static inline void mod_node_state(struct pglist_data *pgdat,
627        enum node_stat_item item, int delta, int overstep_mode)
628 {
629         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
630         s8 __percpu *p = pcp->vm_node_stat_diff + item;
631         long o, n, t, z;
632
633         if (vmstat_item_in_bytes(item)) {
634                 /*
635                  * Only cgroups use subpage accounting right now; at
636                  * the global level, these items still change in
637                  * multiples of whole pages. Store them as pages
638                  * internally to keep the per-cpu counters compact.
639                  */
640                 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
641                 delta >>= PAGE_SHIFT;
642         }
643
644         do {
645                 z = 0;  /* overflow to node counters */
646
647                 /*
648                  * The fetching of the stat_threshold is racy. We may apply
649                  * a counter threshold to the wrong the cpu if we get
650                  * rescheduled while executing here. However, the next
651                  * counter update will apply the threshold again and
652                  * therefore bring the counter under the threshold again.
653                  *
654                  * Most of the time the thresholds are the same anyways
655                  * for all cpus in a node.
656                  */
657                 t = this_cpu_read(pcp->stat_threshold);
658
659                 o = this_cpu_read(*p);
660                 n = delta + o;
661
662                 if (abs(n) > t) {
663                         int os = overstep_mode * (t >> 1) ;
664
665                         /* Overflow must be added to node counters */
666                         z = n + os;
667                         n = -os;
668                 }
669         } while (this_cpu_cmpxchg(*p, o, n) != o);
670
671         if (z)
672                 node_page_state_add(z, pgdat, item);
673 }
674
675 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
676                                         long delta)
677 {
678         mod_node_state(pgdat, item, delta, 0);
679 }
680 EXPORT_SYMBOL(mod_node_page_state);
681
682 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
683 {
684         mod_node_state(pgdat, item, 1, 1);
685 }
686
687 void inc_node_page_state(struct page *page, enum node_stat_item item)
688 {
689         mod_node_state(page_pgdat(page), item, 1, 1);
690 }
691 EXPORT_SYMBOL(inc_node_page_state);
692
693 void dec_node_page_state(struct page *page, enum node_stat_item item)
694 {
695         mod_node_state(page_pgdat(page), item, -1, -1);
696 }
697 EXPORT_SYMBOL(dec_node_page_state);
698 #else
699 /*
700  * Use interrupt disable to serialize counter updates
701  */
702 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
703                          long delta)
704 {
705         unsigned long flags;
706
707         local_irq_save(flags);
708         __mod_zone_page_state(zone, item, delta);
709         local_irq_restore(flags);
710 }
711 EXPORT_SYMBOL(mod_zone_page_state);
712
713 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
714 {
715         unsigned long flags;
716         struct zone *zone;
717
718         zone = page_zone(page);
719         local_irq_save(flags);
720         __inc_zone_state(zone, item);
721         local_irq_restore(flags);
722 }
723 EXPORT_SYMBOL(inc_zone_page_state);
724
725 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
726 {
727         unsigned long flags;
728
729         local_irq_save(flags);
730         __dec_zone_page_state(page, item);
731         local_irq_restore(flags);
732 }
733 EXPORT_SYMBOL(dec_zone_page_state);
734
735 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
736 {
737         unsigned long flags;
738
739         local_irq_save(flags);
740         __inc_node_state(pgdat, item);
741         local_irq_restore(flags);
742 }
743 EXPORT_SYMBOL(inc_node_state);
744
745 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
746                                         long delta)
747 {
748         unsigned long flags;
749
750         local_irq_save(flags);
751         __mod_node_page_state(pgdat, item, delta);
752         local_irq_restore(flags);
753 }
754 EXPORT_SYMBOL(mod_node_page_state);
755
756 void inc_node_page_state(struct page *page, enum node_stat_item item)
757 {
758         unsigned long flags;
759         struct pglist_data *pgdat;
760
761         pgdat = page_pgdat(page);
762         local_irq_save(flags);
763         __inc_node_state(pgdat, item);
764         local_irq_restore(flags);
765 }
766 EXPORT_SYMBOL(inc_node_page_state);
767
768 void dec_node_page_state(struct page *page, enum node_stat_item item)
769 {
770         unsigned long flags;
771
772         local_irq_save(flags);
773         __dec_node_page_state(page, item);
774         local_irq_restore(flags);
775 }
776 EXPORT_SYMBOL(dec_node_page_state);
777 #endif
778
779 /*
780  * Fold a differential into the global counters.
781  * Returns the number of counters updated.
782  */
783 static int fold_diff(int *zone_diff, int *node_diff)
784 {
785         int i;
786         int changes = 0;
787
788         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
789                 if (zone_diff[i]) {
790                         atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
791                         changes++;
792         }
793
794         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
795                 if (node_diff[i]) {
796                         atomic_long_add(node_diff[i], &vm_node_stat[i]);
797                         changes++;
798         }
799         return changes;
800 }
801
802 /*
803  * Update the zone counters for the current cpu.
804  *
805  * Note that refresh_cpu_vm_stats strives to only access
806  * node local memory. The per cpu pagesets on remote zones are placed
807  * in the memory local to the processor using that pageset. So the
808  * loop over all zones will access a series of cachelines local to
809  * the processor.
810  *
811  * The call to zone_page_state_add updates the cachelines with the
812  * statistics in the remote zone struct as well as the global cachelines
813  * with the global counters. These could cause remote node cache line
814  * bouncing and will have to be only done when necessary.
815  *
816  * The function returns the number of global counters updated.
817  */
818 static int refresh_cpu_vm_stats(bool do_pagesets)
819 {
820         struct pglist_data *pgdat;
821         struct zone *zone;
822         int i;
823         int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
824         int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
825         int changes = 0;
826
827         for_each_populated_zone(zone) {
828                 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
829 #ifdef CONFIG_NUMA
830                 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
831 #endif
832
833                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
834                         int v;
835
836                         v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
837                         if (v) {
838
839                                 atomic_long_add(v, &zone->vm_stat[i]);
840                                 global_zone_diff[i] += v;
841 #ifdef CONFIG_NUMA
842                                 /* 3 seconds idle till flush */
843                                 __this_cpu_write(pcp->expire, 3);
844 #endif
845                         }
846                 }
847 #ifdef CONFIG_NUMA
848
849                 if (do_pagesets) {
850                         cond_resched();
851                         /*
852                          * Deal with draining the remote pageset of this
853                          * processor
854                          *
855                          * Check if there are pages remaining in this pageset
856                          * if not then there is nothing to expire.
857                          */
858                         if (!__this_cpu_read(pcp->expire) ||
859                                !__this_cpu_read(pcp->count))
860                                 continue;
861
862                         /*
863                          * We never drain zones local to this processor.
864                          */
865                         if (zone_to_nid(zone) == numa_node_id()) {
866                                 __this_cpu_write(pcp->expire, 0);
867                                 continue;
868                         }
869
870                         if (__this_cpu_dec_return(pcp->expire))
871                                 continue;
872
873                         if (__this_cpu_read(pcp->count)) {
874                                 drain_zone_pages(zone, this_cpu_ptr(pcp));
875                                 changes++;
876                         }
877                 }
878 #endif
879         }
880
881         for_each_online_pgdat(pgdat) {
882                 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
883
884                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
885                         int v;
886
887                         v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
888                         if (v) {
889                                 atomic_long_add(v, &pgdat->vm_stat[i]);
890                                 global_node_diff[i] += v;
891                         }
892                 }
893         }
894
895         changes += fold_diff(global_zone_diff, global_node_diff);
896         return changes;
897 }
898
899 /*
900  * Fold the data for an offline cpu into the global array.
901  * There cannot be any access by the offline cpu and therefore
902  * synchronization is simplified.
903  */
904 void cpu_vm_stats_fold(int cpu)
905 {
906         struct pglist_data *pgdat;
907         struct zone *zone;
908         int i;
909         int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
910         int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
911
912         for_each_populated_zone(zone) {
913                 struct per_cpu_zonestat *pzstats;
914
915                 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
916
917                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
918                         if (pzstats->vm_stat_diff[i]) {
919                                 int v;
920
921                                 v = pzstats->vm_stat_diff[i];
922                                 pzstats->vm_stat_diff[i] = 0;
923                                 atomic_long_add(v, &zone->vm_stat[i]);
924                                 global_zone_diff[i] += v;
925                         }
926                 }
927 #ifdef CONFIG_NUMA
928                 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
929                         if (pzstats->vm_numa_event[i]) {
930                                 unsigned long v;
931
932                                 v = pzstats->vm_numa_event[i];
933                                 pzstats->vm_numa_event[i] = 0;
934                                 zone_numa_event_add(v, zone, i);
935                         }
936                 }
937 #endif
938         }
939
940         for_each_online_pgdat(pgdat) {
941                 struct per_cpu_nodestat *p;
942
943                 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
944
945                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
946                         if (p->vm_node_stat_diff[i]) {
947                                 int v;
948
949                                 v = p->vm_node_stat_diff[i];
950                                 p->vm_node_stat_diff[i] = 0;
951                                 atomic_long_add(v, &pgdat->vm_stat[i]);
952                                 global_node_diff[i] += v;
953                         }
954         }
955
956         fold_diff(global_zone_diff, global_node_diff);
957 }
958
959 /*
960  * this is only called if !populated_zone(zone), which implies no other users of
961  * pset->vm_stat_diff[] exist.
962  */
963 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
964 {
965         unsigned long v;
966         int i;
967
968         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
969                 if (pzstats->vm_stat_diff[i]) {
970                         v = pzstats->vm_stat_diff[i];
971                         pzstats->vm_stat_diff[i] = 0;
972                         zone_page_state_add(v, zone, i);
973                 }
974         }
975
976 #ifdef CONFIG_NUMA
977         for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
978                 if (pzstats->vm_numa_event[i]) {
979                         v = pzstats->vm_numa_event[i];
980                         pzstats->vm_numa_event[i] = 0;
981                         zone_numa_event_add(v, zone, i);
982                 }
983         }
984 #endif
985 }
986 #endif
987
988 #ifdef CONFIG_NUMA
989 /*
990  * Determine the per node value of a stat item. This function
991  * is called frequently in a NUMA machine, so try to be as
992  * frugal as possible.
993  */
994 unsigned long sum_zone_node_page_state(int node,
995                                  enum zone_stat_item item)
996 {
997         struct zone *zones = NODE_DATA(node)->node_zones;
998         int i;
999         unsigned long count = 0;
1000
1001         for (i = 0; i < MAX_NR_ZONES; i++)
1002                 count += zone_page_state(zones + i, item);
1003
1004         return count;
1005 }
1006
1007 /* Determine the per node value of a numa stat item. */
1008 unsigned long sum_zone_numa_event_state(int node,
1009                                  enum numa_stat_item item)
1010 {
1011         struct zone *zones = NODE_DATA(node)->node_zones;
1012         unsigned long count = 0;
1013         int i;
1014
1015         for (i = 0; i < MAX_NR_ZONES; i++)
1016                 count += zone_numa_event_state(zones + i, item);
1017
1018         return count;
1019 }
1020
1021 /*
1022  * Determine the per node value of a stat item.
1023  */
1024 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1025                                     enum node_stat_item item)
1026 {
1027         long x = atomic_long_read(&pgdat->vm_stat[item]);
1028 #ifdef CONFIG_SMP
1029         if (x < 0)
1030                 x = 0;
1031 #endif
1032         return x;
1033 }
1034
1035 unsigned long node_page_state(struct pglist_data *pgdat,
1036                               enum node_stat_item item)
1037 {
1038         VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1039
1040         return node_page_state_pages(pgdat, item);
1041 }
1042 #endif
1043
1044 #ifdef CONFIG_COMPACTION
1045
1046 struct contig_page_info {
1047         unsigned long free_pages;
1048         unsigned long free_blocks_total;
1049         unsigned long free_blocks_suitable;
1050 };
1051
1052 /*
1053  * Calculate the number of free pages in a zone, how many contiguous
1054  * pages are free and how many are large enough to satisfy an allocation of
1055  * the target size. Note that this function makes no attempt to estimate
1056  * how many suitable free blocks there *might* be if MOVABLE pages were
1057  * migrated. Calculating that is possible, but expensive and can be
1058  * figured out from userspace
1059  */
1060 static void fill_contig_page_info(struct zone *zone,
1061                                 unsigned int suitable_order,
1062                                 struct contig_page_info *info)
1063 {
1064         unsigned int order;
1065
1066         info->free_pages = 0;
1067         info->free_blocks_total = 0;
1068         info->free_blocks_suitable = 0;
1069
1070         for (order = 0; order < MAX_ORDER; order++) {
1071                 unsigned long blocks;
1072
1073                 /*
1074                  * Count number of free blocks.
1075                  *
1076                  * Access to nr_free is lockless as nr_free is used only for
1077                  * diagnostic purposes. Use data_race to avoid KCSAN warning.
1078                  */
1079                 blocks = data_race(zone->free_area[order].nr_free);
1080                 info->free_blocks_total += blocks;
1081
1082                 /* Count free base pages */
1083                 info->free_pages += blocks << order;
1084
1085                 /* Count the suitable free blocks */
1086                 if (order >= suitable_order)
1087                         info->free_blocks_suitable += blocks <<
1088                                                 (order - suitable_order);
1089         }
1090 }
1091
1092 /*
1093  * A fragmentation index only makes sense if an allocation of a requested
1094  * size would fail. If that is true, the fragmentation index indicates
1095  * whether external fragmentation or a lack of memory was the problem.
1096  * The value can be used to determine if page reclaim or compaction
1097  * should be used
1098  */
1099 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1100 {
1101         unsigned long requested = 1UL << order;
1102
1103         if (WARN_ON_ONCE(order >= MAX_ORDER))
1104                 return 0;
1105
1106         if (!info->free_blocks_total)
1107                 return 0;
1108
1109         /* Fragmentation index only makes sense when a request would fail */
1110         if (info->free_blocks_suitable)
1111                 return -1000;
1112
1113         /*
1114          * Index is between 0 and 1 so return within 3 decimal places
1115          *
1116          * 0 => allocation would fail due to lack of memory
1117          * 1 => allocation would fail due to fragmentation
1118          */
1119         return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1120 }
1121
1122 /*
1123  * Calculates external fragmentation within a zone wrt the given order.
1124  * It is defined as the percentage of pages found in blocks of size
1125  * less than 1 << order. It returns values in range [0, 100].
1126  */
1127 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1128 {
1129         struct contig_page_info info;
1130
1131         fill_contig_page_info(zone, order, &info);
1132         if (info.free_pages == 0)
1133                 return 0;
1134
1135         return div_u64((info.free_pages -
1136                         (info.free_blocks_suitable << order)) * 100,
1137                         info.free_pages);
1138 }
1139
1140 /* Same as __fragmentation index but allocs contig_page_info on stack */
1141 int fragmentation_index(struct zone *zone, unsigned int order)
1142 {
1143         struct contig_page_info info;
1144
1145         fill_contig_page_info(zone, order, &info);
1146         return __fragmentation_index(order, &info);
1147 }
1148 #endif
1149
1150 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1151     defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1152 #ifdef CONFIG_ZONE_DMA
1153 #define TEXT_FOR_DMA(xx) xx "_dma",
1154 #else
1155 #define TEXT_FOR_DMA(xx)
1156 #endif
1157
1158 #ifdef CONFIG_ZONE_DMA32
1159 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1160 #else
1161 #define TEXT_FOR_DMA32(xx)
1162 #endif
1163
1164 #ifdef CONFIG_HIGHMEM
1165 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1166 #else
1167 #define TEXT_FOR_HIGHMEM(xx)
1168 #endif
1169
1170 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1171                                         TEXT_FOR_HIGHMEM(xx) xx "_movable",
1172
1173 const char * const vmstat_text[] = {
1174         /* enum zone_stat_item counters */
1175         "nr_free_pages",
1176         "nr_zone_inactive_anon",
1177         "nr_zone_active_anon",
1178         "nr_zone_inactive_file",
1179         "nr_zone_active_file",
1180         "nr_zone_unevictable",
1181         "nr_zone_write_pending",
1182         "nr_mlock",
1183         "nr_bounce",
1184 #if IS_ENABLED(CONFIG_ZSMALLOC)
1185         "nr_zspages",
1186 #endif
1187         "nr_free_cma",
1188
1189         /* enum numa_stat_item counters */
1190 #ifdef CONFIG_NUMA
1191         "numa_hit",
1192         "numa_miss",
1193         "numa_foreign",
1194         "numa_interleave",
1195         "numa_local",
1196         "numa_other",
1197 #endif
1198
1199         /* enum node_stat_item counters */
1200         "nr_inactive_anon",
1201         "nr_active_anon",
1202         "nr_inactive_file",
1203         "nr_active_file",
1204         "nr_unevictable",
1205         "nr_slab_reclaimable",
1206         "nr_slab_unreclaimable",
1207         "nr_isolated_anon",
1208         "nr_isolated_file",
1209         "workingset_nodes",
1210         "workingset_refault_anon",
1211         "workingset_refault_file",
1212         "workingset_activate_anon",
1213         "workingset_activate_file",
1214         "workingset_restore_anon",
1215         "workingset_restore_file",
1216         "workingset_nodereclaim",
1217         "nr_anon_pages",
1218         "nr_mapped",
1219         "nr_file_pages",
1220         "nr_dirty",
1221         "nr_writeback",
1222         "nr_writeback_temp",
1223         "nr_shmem",
1224         "nr_shmem_hugepages",
1225         "nr_shmem_pmdmapped",
1226         "nr_file_hugepages",
1227         "nr_file_pmdmapped",
1228         "nr_anon_transparent_hugepages",
1229         "nr_vmscan_write",
1230         "nr_vmscan_immediate_reclaim",
1231         "nr_dirtied",
1232         "nr_written",
1233         "nr_throttled_written",
1234         "nr_kernel_misc_reclaimable",
1235         "nr_foll_pin_acquired",
1236         "nr_foll_pin_released",
1237         "nr_kernel_stack",
1238 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1239         "nr_shadow_call_stack",
1240 #endif
1241         "nr_page_table_pages",
1242 #ifdef CONFIG_SWAP
1243         "nr_swapcached",
1244 #endif
1245
1246         /* enum writeback_stat_item counters */
1247         "nr_dirty_threshold",
1248         "nr_dirty_background_threshold",
1249
1250 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1251         /* enum vm_event_item counters */
1252         "pgpgin",
1253         "pgpgout",
1254         "pswpin",
1255         "pswpout",
1256
1257         TEXTS_FOR_ZONES("pgalloc")
1258         TEXTS_FOR_ZONES("allocstall")
1259         TEXTS_FOR_ZONES("pgskip")
1260
1261         "pgfree",
1262         "pgactivate",
1263         "pgdeactivate",
1264         "pglazyfree",
1265
1266         "pgfault",
1267         "pgmajfault",
1268         "pglazyfreed",
1269
1270         "pgrefill",
1271         "pgreuse",
1272         "pgsteal_kswapd",
1273         "pgsteal_direct",
1274         "pgdemote_kswapd",
1275         "pgdemote_direct",
1276         "pgscan_kswapd",
1277         "pgscan_direct",
1278         "pgscan_direct_throttle",
1279         "pgscan_anon",
1280         "pgscan_file",
1281         "pgsteal_anon",
1282         "pgsteal_file",
1283
1284 #ifdef CONFIG_NUMA
1285         "zone_reclaim_failed",
1286 #endif
1287         "pginodesteal",
1288         "slabs_scanned",
1289         "kswapd_inodesteal",
1290         "kswapd_low_wmark_hit_quickly",
1291         "kswapd_high_wmark_hit_quickly",
1292         "pageoutrun",
1293
1294         "pgrotated",
1295
1296         "drop_pagecache",
1297         "drop_slab",
1298         "oom_kill",
1299
1300 #ifdef CONFIG_NUMA_BALANCING
1301         "numa_pte_updates",
1302         "numa_huge_pte_updates",
1303         "numa_hint_faults",
1304         "numa_hint_faults_local",
1305         "numa_pages_migrated",
1306 #endif
1307 #ifdef CONFIG_MIGRATION
1308         "pgmigrate_success",
1309         "pgmigrate_fail",
1310         "thp_migration_success",
1311         "thp_migration_fail",
1312         "thp_migration_split",
1313 #endif
1314 #ifdef CONFIG_COMPACTION
1315         "compact_migrate_scanned",
1316         "compact_free_scanned",
1317         "compact_isolated",
1318         "compact_stall",
1319         "compact_fail",
1320         "compact_success",
1321         "compact_daemon_wake",
1322         "compact_daemon_migrate_scanned",
1323         "compact_daemon_free_scanned",
1324 #endif
1325
1326 #ifdef CONFIG_HUGETLB_PAGE
1327         "htlb_buddy_alloc_success",
1328         "htlb_buddy_alloc_fail",
1329 #endif
1330 #ifdef CONFIG_CMA
1331         "cma_alloc_success",
1332         "cma_alloc_fail",
1333 #endif
1334         "unevictable_pgs_culled",
1335         "unevictable_pgs_scanned",
1336         "unevictable_pgs_rescued",
1337         "unevictable_pgs_mlocked",
1338         "unevictable_pgs_munlocked",
1339         "unevictable_pgs_cleared",
1340         "unevictable_pgs_stranded",
1341
1342 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1343         "thp_fault_alloc",
1344         "thp_fault_fallback",
1345         "thp_fault_fallback_charge",
1346         "thp_collapse_alloc",
1347         "thp_collapse_alloc_failed",
1348         "thp_file_alloc",
1349         "thp_file_fallback",
1350         "thp_file_fallback_charge",
1351         "thp_file_mapped",
1352         "thp_split_page",
1353         "thp_split_page_failed",
1354         "thp_deferred_split_page",
1355         "thp_split_pmd",
1356         "thp_scan_exceed_none_pte",
1357         "thp_scan_exceed_swap_pte",
1358         "thp_scan_exceed_share_pte",
1359 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1360         "thp_split_pud",
1361 #endif
1362         "thp_zero_page_alloc",
1363         "thp_zero_page_alloc_failed",
1364         "thp_swpout",
1365         "thp_swpout_fallback",
1366 #endif
1367 #ifdef CONFIG_MEMORY_BALLOON
1368         "balloon_inflate",
1369         "balloon_deflate",
1370 #ifdef CONFIG_BALLOON_COMPACTION
1371         "balloon_migrate",
1372 #endif
1373 #endif /* CONFIG_MEMORY_BALLOON */
1374 #ifdef CONFIG_DEBUG_TLBFLUSH
1375         "nr_tlb_remote_flush",
1376         "nr_tlb_remote_flush_received",
1377         "nr_tlb_local_flush_all",
1378         "nr_tlb_local_flush_one",
1379 #endif /* CONFIG_DEBUG_TLBFLUSH */
1380
1381 #ifdef CONFIG_DEBUG_VM_VMACACHE
1382         "vmacache_find_calls",
1383         "vmacache_find_hits",
1384 #endif
1385 #ifdef CONFIG_SWAP
1386         "swap_ra",
1387         "swap_ra_hit",
1388 #endif
1389 #ifdef CONFIG_X86
1390         "direct_map_level2_splits",
1391         "direct_map_level3_splits",
1392 #endif
1393 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1394 };
1395 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1396
1397 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1398      defined(CONFIG_PROC_FS)
1399 static void *frag_start(struct seq_file *m, loff_t *pos)
1400 {
1401         pg_data_t *pgdat;
1402         loff_t node = *pos;
1403
1404         for (pgdat = first_online_pgdat();
1405              pgdat && node;
1406              pgdat = next_online_pgdat(pgdat))
1407                 --node;
1408
1409         return pgdat;
1410 }
1411
1412 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1413 {
1414         pg_data_t *pgdat = (pg_data_t *)arg;
1415
1416         (*pos)++;
1417         return next_online_pgdat(pgdat);
1418 }
1419
1420 static void frag_stop(struct seq_file *m, void *arg)
1421 {
1422 }
1423
1424 /*
1425  * Walk zones in a node and print using a callback.
1426  * If @assert_populated is true, only use callback for zones that are populated.
1427  */
1428 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1429                 bool assert_populated, bool nolock,
1430                 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1431 {
1432         struct zone *zone;
1433         struct zone *node_zones = pgdat->node_zones;
1434         unsigned long flags;
1435
1436         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1437                 if (assert_populated && !populated_zone(zone))
1438                         continue;
1439
1440                 if (!nolock)
1441                         spin_lock_irqsave(&zone->lock, flags);
1442                 print(m, pgdat, zone);
1443                 if (!nolock)
1444                         spin_unlock_irqrestore(&zone->lock, flags);
1445         }
1446 }
1447 #endif
1448
1449 #ifdef CONFIG_PROC_FS
1450 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1451                                                 struct zone *zone)
1452 {
1453         int order;
1454
1455         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1456         for (order = 0; order < MAX_ORDER; ++order)
1457                 /*
1458                  * Access to nr_free is lockless as nr_free is used only for
1459                  * printing purposes. Use data_race to avoid KCSAN warning.
1460                  */
1461                 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1462         seq_putc(m, '\n');
1463 }
1464
1465 /*
1466  * This walks the free areas for each zone.
1467  */
1468 static int frag_show(struct seq_file *m, void *arg)
1469 {
1470         pg_data_t *pgdat = (pg_data_t *)arg;
1471         walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1472         return 0;
1473 }
1474
1475 static void pagetypeinfo_showfree_print(struct seq_file *m,
1476                                         pg_data_t *pgdat, struct zone *zone)
1477 {
1478         int order, mtype;
1479
1480         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1481                 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1482                                         pgdat->node_id,
1483                                         zone->name,
1484                                         migratetype_names[mtype]);
1485                 for (order = 0; order < MAX_ORDER; ++order) {
1486                         unsigned long freecount = 0;
1487                         struct free_area *area;
1488                         struct list_head *curr;
1489                         bool overflow = false;
1490
1491                         area = &(zone->free_area[order]);
1492
1493                         list_for_each(curr, &area->free_list[mtype]) {
1494                                 /*
1495                                  * Cap the free_list iteration because it might
1496                                  * be really large and we are under a spinlock
1497                                  * so a long time spent here could trigger a
1498                                  * hard lockup detector. Anyway this is a
1499                                  * debugging tool so knowing there is a handful
1500                                  * of pages of this order should be more than
1501                                  * sufficient.
1502                                  */
1503                                 if (++freecount >= 100000) {
1504                                         overflow = true;
1505                                         break;
1506                                 }
1507                         }
1508                         seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1509                         spin_unlock_irq(&zone->lock);
1510                         cond_resched();
1511                         spin_lock_irq(&zone->lock);
1512                 }
1513                 seq_putc(m, '\n');
1514         }
1515 }
1516
1517 /* Print out the free pages at each order for each migatetype */
1518 static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1519 {
1520         int order;
1521         pg_data_t *pgdat = (pg_data_t *)arg;
1522
1523         /* Print header */
1524         seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1525         for (order = 0; order < MAX_ORDER; ++order)
1526                 seq_printf(m, "%6d ", order);
1527         seq_putc(m, '\n');
1528
1529         walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1530 }
1531
1532 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1533                                         pg_data_t *pgdat, struct zone *zone)
1534 {
1535         int mtype;
1536         unsigned long pfn;
1537         unsigned long start_pfn = zone->zone_start_pfn;
1538         unsigned long end_pfn = zone_end_pfn(zone);
1539         unsigned long count[MIGRATE_TYPES] = { 0, };
1540
1541         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1542                 struct page *page;
1543
1544                 page = pfn_to_online_page(pfn);
1545                 if (!page)
1546                         continue;
1547
1548                 if (page_zone(page) != zone)
1549                         continue;
1550
1551                 mtype = get_pageblock_migratetype(page);
1552
1553                 if (mtype < MIGRATE_TYPES)
1554                         count[mtype]++;
1555         }
1556
1557         /* Print counts */
1558         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1559         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1560                 seq_printf(m, "%12lu ", count[mtype]);
1561         seq_putc(m, '\n');
1562 }
1563
1564 /* Print out the number of pageblocks for each migratetype */
1565 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1566 {
1567         int mtype;
1568         pg_data_t *pgdat = (pg_data_t *)arg;
1569
1570         seq_printf(m, "\n%-23s", "Number of blocks type ");
1571         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1572                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1573         seq_putc(m, '\n');
1574         walk_zones_in_node(m, pgdat, true, false,
1575                 pagetypeinfo_showblockcount_print);
1576 }
1577
1578 /*
1579  * Print out the number of pageblocks for each migratetype that contain pages
1580  * of other types. This gives an indication of how well fallbacks are being
1581  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1582  * to determine what is going on
1583  */
1584 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1585 {
1586 #ifdef CONFIG_PAGE_OWNER
1587         int mtype;
1588
1589         if (!static_branch_unlikely(&page_owner_inited))
1590                 return;
1591
1592         drain_all_pages(NULL);
1593
1594         seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1595         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1596                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1597         seq_putc(m, '\n');
1598
1599         walk_zones_in_node(m, pgdat, true, true,
1600                 pagetypeinfo_showmixedcount_print);
1601 #endif /* CONFIG_PAGE_OWNER */
1602 }
1603
1604 /*
1605  * This prints out statistics in relation to grouping pages by mobility.
1606  * It is expensive to collect so do not constantly read the file.
1607  */
1608 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1609 {
1610         pg_data_t *pgdat = (pg_data_t *)arg;
1611
1612         /* check memoryless node */
1613         if (!node_state(pgdat->node_id, N_MEMORY))
1614                 return 0;
1615
1616         seq_printf(m, "Page block order: %d\n", pageblock_order);
1617         seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1618         seq_putc(m, '\n');
1619         pagetypeinfo_showfree(m, pgdat);
1620         pagetypeinfo_showblockcount(m, pgdat);
1621         pagetypeinfo_showmixedcount(m, pgdat);
1622
1623         return 0;
1624 }
1625
1626 static const struct seq_operations fragmentation_op = {
1627         .start  = frag_start,
1628         .next   = frag_next,
1629         .stop   = frag_stop,
1630         .show   = frag_show,
1631 };
1632
1633 static const struct seq_operations pagetypeinfo_op = {
1634         .start  = frag_start,
1635         .next   = frag_next,
1636         .stop   = frag_stop,
1637         .show   = pagetypeinfo_show,
1638 };
1639
1640 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1641 {
1642         int zid;
1643
1644         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1645                 struct zone *compare = &pgdat->node_zones[zid];
1646
1647                 if (populated_zone(compare))
1648                         return zone == compare;
1649         }
1650
1651         return false;
1652 }
1653
1654 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1655                                                         struct zone *zone)
1656 {
1657         int i;
1658         seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1659         if (is_zone_first_populated(pgdat, zone)) {
1660                 seq_printf(m, "\n  per-node stats");
1661                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1662                         unsigned long pages = node_page_state_pages(pgdat, i);
1663
1664                         if (vmstat_item_print_in_thp(i))
1665                                 pages /= HPAGE_PMD_NR;
1666                         seq_printf(m, "\n      %-12s %lu", node_stat_name(i),
1667                                    pages);
1668                 }
1669         }
1670         seq_printf(m,
1671                    "\n  pages free     %lu"
1672                    "\n        boost    %lu"
1673                    "\n        min      %lu"
1674                    "\n        low      %lu"
1675                    "\n        high     %lu"
1676                    "\n        spanned  %lu"
1677                    "\n        present  %lu"
1678                    "\n        managed  %lu"
1679                    "\n        cma      %lu",
1680                    zone_page_state(zone, NR_FREE_PAGES),
1681                    zone->watermark_boost,
1682                    min_wmark_pages(zone),
1683                    low_wmark_pages(zone),
1684                    high_wmark_pages(zone),
1685                    zone->spanned_pages,
1686                    zone->present_pages,
1687                    zone_managed_pages(zone),
1688                    zone_cma_pages(zone));
1689
1690         seq_printf(m,
1691                    "\n        protection: (%ld",
1692                    zone->lowmem_reserve[0]);
1693         for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1694                 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1695         seq_putc(m, ')');
1696
1697         /* If unpopulated, no other information is useful */
1698         if (!populated_zone(zone)) {
1699                 seq_putc(m, '\n');
1700                 return;
1701         }
1702
1703         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1704                 seq_printf(m, "\n      %-12s %lu", zone_stat_name(i),
1705                            zone_page_state(zone, i));
1706
1707 #ifdef CONFIG_NUMA
1708         for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1709                 seq_printf(m, "\n      %-12s %lu", numa_stat_name(i),
1710                            zone_numa_event_state(zone, i));
1711 #endif
1712
1713         seq_printf(m, "\n  pagesets");
1714         for_each_online_cpu(i) {
1715                 struct per_cpu_pages *pcp;
1716                 struct per_cpu_zonestat __maybe_unused *pzstats;
1717
1718                 pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1719                 seq_printf(m,
1720                            "\n    cpu: %i"
1721                            "\n              count: %i"
1722                            "\n              high:  %i"
1723                            "\n              batch: %i",
1724                            i,
1725                            pcp->count,
1726                            pcp->high,
1727                            pcp->batch);
1728 #ifdef CONFIG_SMP
1729                 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1730                 seq_printf(m, "\n  vm stats threshold: %d",
1731                                 pzstats->stat_threshold);
1732 #endif
1733         }
1734         seq_printf(m,
1735                    "\n  node_unreclaimable:  %u"
1736                    "\n  start_pfn:           %lu",
1737                    pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1738                    zone->zone_start_pfn);
1739         seq_putc(m, '\n');
1740 }
1741
1742 /*
1743  * Output information about zones in @pgdat.  All zones are printed regardless
1744  * of whether they are populated or not: lowmem_reserve_ratio operates on the
1745  * set of all zones and userspace would not be aware of such zones if they are
1746  * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1747  */
1748 static int zoneinfo_show(struct seq_file *m, void *arg)
1749 {
1750         pg_data_t *pgdat = (pg_data_t *)arg;
1751         walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1752         return 0;
1753 }
1754
1755 static const struct seq_operations zoneinfo_op = {
1756         .start  = frag_start, /* iterate over all zones. The same as in
1757                                * fragmentation. */
1758         .next   = frag_next,
1759         .stop   = frag_stop,
1760         .show   = zoneinfo_show,
1761 };
1762
1763 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1764                          NR_VM_NUMA_EVENT_ITEMS + \
1765                          NR_VM_NODE_STAT_ITEMS + \
1766                          NR_VM_WRITEBACK_STAT_ITEMS + \
1767                          (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1768                           NR_VM_EVENT_ITEMS : 0))
1769
1770 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1771 {
1772         unsigned long *v;
1773         int i;
1774
1775         if (*pos >= NR_VMSTAT_ITEMS)
1776                 return NULL;
1777
1778         BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1779         fold_vm_numa_events();
1780         v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1781         m->private = v;
1782         if (!v)
1783                 return ERR_PTR(-ENOMEM);
1784         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1785                 v[i] = global_zone_page_state(i);
1786         v += NR_VM_ZONE_STAT_ITEMS;
1787
1788 #ifdef CONFIG_NUMA
1789         for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1790                 v[i] = global_numa_event_state(i);
1791         v += NR_VM_NUMA_EVENT_ITEMS;
1792 #endif
1793
1794         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1795                 v[i] = global_node_page_state_pages(i);
1796                 if (vmstat_item_print_in_thp(i))
1797                         v[i] /= HPAGE_PMD_NR;
1798         }
1799         v += NR_VM_NODE_STAT_ITEMS;
1800
1801         global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1802                             v + NR_DIRTY_THRESHOLD);
1803         v += NR_VM_WRITEBACK_STAT_ITEMS;
1804
1805 #ifdef CONFIG_VM_EVENT_COUNTERS
1806         all_vm_events(v);
1807         v[PGPGIN] /= 2;         /* sectors -> kbytes */
1808         v[PGPGOUT] /= 2;
1809 #endif
1810         return (unsigned long *)m->private + *pos;
1811 }
1812
1813 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1814 {
1815         (*pos)++;
1816         if (*pos >= NR_VMSTAT_ITEMS)
1817                 return NULL;
1818         return (unsigned long *)m->private + *pos;
1819 }
1820
1821 static int vmstat_show(struct seq_file *m, void *arg)
1822 {
1823         unsigned long *l = arg;
1824         unsigned long off = l - (unsigned long *)m->private;
1825
1826         seq_puts(m, vmstat_text[off]);
1827         seq_put_decimal_ull(m, " ", *l);
1828         seq_putc(m, '\n');
1829
1830         if (off == NR_VMSTAT_ITEMS - 1) {
1831                 /*
1832                  * We've come to the end - add any deprecated counters to avoid
1833                  * breaking userspace which might depend on them being present.
1834                  */
1835                 seq_puts(m, "nr_unstable 0\n");
1836         }
1837         return 0;
1838 }
1839
1840 static void vmstat_stop(struct seq_file *m, void *arg)
1841 {
1842         kfree(m->private);
1843         m->private = NULL;
1844 }
1845
1846 static const struct seq_operations vmstat_op = {
1847         .start  = vmstat_start,
1848         .next   = vmstat_next,
1849         .stop   = vmstat_stop,
1850         .show   = vmstat_show,
1851 };
1852 #endif /* CONFIG_PROC_FS */
1853
1854 #ifdef CONFIG_SMP
1855 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1856 int sysctl_stat_interval __read_mostly = HZ;
1857
1858 #ifdef CONFIG_PROC_FS
1859 static void refresh_vm_stats(struct work_struct *work)
1860 {
1861         refresh_cpu_vm_stats(true);
1862 }
1863
1864 int vmstat_refresh(struct ctl_table *table, int write,
1865                    void *buffer, size_t *lenp, loff_t *ppos)
1866 {
1867         long val;
1868         int err;
1869         int i;
1870
1871         /*
1872          * The regular update, every sysctl_stat_interval, may come later
1873          * than expected: leaving a significant amount in per_cpu buckets.
1874          * This is particularly misleading when checking a quantity of HUGE
1875          * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1876          * which can equally be echo'ed to or cat'ted from (by root),
1877          * can be used to update the stats just before reading them.
1878          *
1879          * Oh, and since global_zone_page_state() etc. are so careful to hide
1880          * transiently negative values, report an error here if any of
1881          * the stats is negative, so we know to go looking for imbalance.
1882          */
1883         err = schedule_on_each_cpu(refresh_vm_stats);
1884         if (err)
1885                 return err;
1886         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1887                 /*
1888                  * Skip checking stats known to go negative occasionally.
1889                  */
1890                 switch (i) {
1891                 case NR_ZONE_WRITE_PENDING:
1892                 case NR_FREE_CMA_PAGES:
1893                         continue;
1894                 }
1895                 val = atomic_long_read(&vm_zone_stat[i]);
1896                 if (val < 0) {
1897                         pr_warn("%s: %s %ld\n",
1898                                 __func__, zone_stat_name(i), val);
1899                 }
1900         }
1901         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1902                 /*
1903                  * Skip checking stats known to go negative occasionally.
1904                  */
1905                 switch (i) {
1906                 case NR_WRITEBACK:
1907                         continue;
1908                 }
1909                 val = atomic_long_read(&vm_node_stat[i]);
1910                 if (val < 0) {
1911                         pr_warn("%s: %s %ld\n",
1912                                 __func__, node_stat_name(i), val);
1913                 }
1914         }
1915         if (write)
1916                 *ppos += *lenp;
1917         else
1918                 *lenp = 0;
1919         return 0;
1920 }
1921 #endif /* CONFIG_PROC_FS */
1922
1923 static void vmstat_update(struct work_struct *w)
1924 {
1925         if (refresh_cpu_vm_stats(true)) {
1926                 /*
1927                  * Counters were updated so we expect more updates
1928                  * to occur in the future. Keep on running the
1929                  * update worker thread.
1930                  */
1931                 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1932                                 this_cpu_ptr(&vmstat_work),
1933                                 round_jiffies_relative(sysctl_stat_interval));
1934         }
1935 }
1936
1937 /*
1938  * Check if the diffs for a certain cpu indicate that
1939  * an update is needed.
1940  */
1941 static bool need_update(int cpu)
1942 {
1943         pg_data_t *last_pgdat = NULL;
1944         struct zone *zone;
1945
1946         for_each_populated_zone(zone) {
1947                 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1948                 struct per_cpu_nodestat *n;
1949
1950                 /*
1951                  * The fast way of checking if there are any vmstat diffs.
1952                  */
1953                 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1954                         return true;
1955
1956                 if (last_pgdat == zone->zone_pgdat)
1957                         continue;
1958                 last_pgdat = zone->zone_pgdat;
1959                 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1960                 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1961                         return true;
1962         }
1963         return false;
1964 }
1965
1966 /*
1967  * Switch off vmstat processing and then fold all the remaining differentials
1968  * until the diffs stay at zero. The function is used by NOHZ and can only be
1969  * invoked when tick processing is not active.
1970  */
1971 void quiet_vmstat(void)
1972 {
1973         if (system_state != SYSTEM_RUNNING)
1974                 return;
1975
1976         if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1977                 return;
1978
1979         if (!need_update(smp_processor_id()))
1980                 return;
1981
1982         /*
1983          * Just refresh counters and do not care about the pending delayed
1984          * vmstat_update. It doesn't fire that often to matter and canceling
1985          * it would be too expensive from this path.
1986          * vmstat_shepherd will take care about that for us.
1987          */
1988         refresh_cpu_vm_stats(false);
1989 }
1990
1991 /*
1992  * Shepherd worker thread that checks the
1993  * differentials of processors that have their worker
1994  * threads for vm statistics updates disabled because of
1995  * inactivity.
1996  */
1997 static void vmstat_shepherd(struct work_struct *w);
1998
1999 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2000
2001 static void vmstat_shepherd(struct work_struct *w)
2002 {
2003         int cpu;
2004
2005         cpus_read_lock();
2006         /* Check processors whose vmstat worker threads have been disabled */
2007         for_each_online_cpu(cpu) {
2008                 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2009
2010                 if (!delayed_work_pending(dw) && need_update(cpu))
2011                         queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2012
2013                 cond_resched();
2014         }
2015         cpus_read_unlock();
2016
2017         schedule_delayed_work(&shepherd,
2018                 round_jiffies_relative(sysctl_stat_interval));
2019 }
2020
2021 static void __init start_shepherd_timer(void)
2022 {
2023         int cpu;
2024
2025         for_each_possible_cpu(cpu)
2026                 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2027                         vmstat_update);
2028
2029         schedule_delayed_work(&shepherd,
2030                 round_jiffies_relative(sysctl_stat_interval));
2031 }
2032
2033 static void __init init_cpu_node_state(void)
2034 {
2035         int node;
2036
2037         for_each_online_node(node) {
2038                 if (cpumask_weight(cpumask_of_node(node)) > 0)
2039                         node_set_state(node, N_CPU);
2040         }
2041 }
2042
2043 static int vmstat_cpu_online(unsigned int cpu)
2044 {
2045         refresh_zone_stat_thresholds();
2046         node_set_state(cpu_to_node(cpu), N_CPU);
2047         return 0;
2048 }
2049
2050 static int vmstat_cpu_down_prep(unsigned int cpu)
2051 {
2052         cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2053         return 0;
2054 }
2055
2056 static int vmstat_cpu_dead(unsigned int cpu)
2057 {
2058         const struct cpumask *node_cpus;
2059         int node;
2060
2061         node = cpu_to_node(cpu);
2062
2063         refresh_zone_stat_thresholds();
2064         node_cpus = cpumask_of_node(node);
2065         if (cpumask_weight(node_cpus) > 0)
2066                 return 0;
2067
2068         node_clear_state(node, N_CPU);
2069         return 0;
2070 }
2071
2072 #endif
2073
2074 struct workqueue_struct *mm_percpu_wq;
2075
2076 void __init init_mm_internals(void)
2077 {
2078         int ret __maybe_unused;
2079
2080         mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2081
2082 #ifdef CONFIG_SMP
2083         ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2084                                         NULL, vmstat_cpu_dead);
2085         if (ret < 0)
2086                 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2087
2088         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2089                                         vmstat_cpu_online,
2090                                         vmstat_cpu_down_prep);
2091         if (ret < 0)
2092                 pr_err("vmstat: failed to register 'online' hotplug state\n");
2093
2094         cpus_read_lock();
2095         init_cpu_node_state();
2096         cpus_read_unlock();
2097
2098         start_shepherd_timer();
2099 #endif
2100 #ifdef CONFIG_PROC_FS
2101         proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2102         proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2103         proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2104         proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2105 #endif
2106 }
2107
2108 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2109
2110 /*
2111  * Return an index indicating how much of the available free memory is
2112  * unusable for an allocation of the requested size.
2113  */
2114 static int unusable_free_index(unsigned int order,
2115                                 struct contig_page_info *info)
2116 {
2117         /* No free memory is interpreted as all free memory is unusable */
2118         if (info->free_pages == 0)
2119                 return 1000;
2120
2121         /*
2122          * Index should be a value between 0 and 1. Return a value to 3
2123          * decimal places.
2124          *
2125          * 0 => no fragmentation
2126          * 1 => high fragmentation
2127          */
2128         return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2129
2130 }
2131
2132 static void unusable_show_print(struct seq_file *m,
2133                                         pg_data_t *pgdat, struct zone *zone)
2134 {
2135         unsigned int order;
2136         int index;
2137         struct contig_page_info info;
2138
2139         seq_printf(m, "Node %d, zone %8s ",
2140                                 pgdat->node_id,
2141                                 zone->name);
2142         for (order = 0; order < MAX_ORDER; ++order) {
2143                 fill_contig_page_info(zone, order, &info);
2144                 index = unusable_free_index(order, &info);
2145                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2146         }
2147
2148         seq_putc(m, '\n');
2149 }
2150
2151 /*
2152  * Display unusable free space index
2153  *
2154  * The unusable free space index measures how much of the available free
2155  * memory cannot be used to satisfy an allocation of a given size and is a
2156  * value between 0 and 1. The higher the value, the more of free memory is
2157  * unusable and by implication, the worse the external fragmentation is. This
2158  * can be expressed as a percentage by multiplying by 100.
2159  */
2160 static int unusable_show(struct seq_file *m, void *arg)
2161 {
2162         pg_data_t *pgdat = (pg_data_t *)arg;
2163
2164         /* check memoryless node */
2165         if (!node_state(pgdat->node_id, N_MEMORY))
2166                 return 0;
2167
2168         walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2169
2170         return 0;
2171 }
2172
2173 static const struct seq_operations unusable_sops = {
2174         .start  = frag_start,
2175         .next   = frag_next,
2176         .stop   = frag_stop,
2177         .show   = unusable_show,
2178 };
2179
2180 DEFINE_SEQ_ATTRIBUTE(unusable);
2181
2182 static void extfrag_show_print(struct seq_file *m,
2183                                         pg_data_t *pgdat, struct zone *zone)
2184 {
2185         unsigned int order;
2186         int index;
2187
2188         /* Alloc on stack as interrupts are disabled for zone walk */
2189         struct contig_page_info info;
2190
2191         seq_printf(m, "Node %d, zone %8s ",
2192                                 pgdat->node_id,
2193                                 zone->name);
2194         for (order = 0; order < MAX_ORDER; ++order) {
2195                 fill_contig_page_info(zone, order, &info);
2196                 index = __fragmentation_index(order, &info);
2197                 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2198         }
2199
2200         seq_putc(m, '\n');
2201 }
2202
2203 /*
2204  * Display fragmentation index for orders that allocations would fail for
2205  */
2206 static int extfrag_show(struct seq_file *m, void *arg)
2207 {
2208         pg_data_t *pgdat = (pg_data_t *)arg;
2209
2210         walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2211
2212         return 0;
2213 }
2214
2215 static const struct seq_operations extfrag_sops = {
2216         .start  = frag_start,
2217         .next   = frag_next,
2218         .stop   = frag_stop,
2219         .show   = extfrag_show,
2220 };
2221
2222 DEFINE_SEQ_ATTRIBUTE(extfrag);
2223
2224 static int __init extfrag_debug_init(void)
2225 {
2226         struct dentry *extfrag_debug_root;
2227
2228         extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2229
2230         debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2231                             &unusable_fops);
2232
2233         debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2234                             &extfrag_fops);
2235
2236         return 0;
2237 }
2238
2239 module_init(extfrag_debug_init);
2240 #endif