1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
69 * Nodemask of nodes allowed by the caller. If NULL, all nodes
75 * The memory cgroup that hit its limit and as a result is the
76 * primary target of this reclaim invocation.
78 struct mem_cgroup *target_mem_cgroup;
81 * Scan pressure balancing between anon and file LRUs
83 unsigned long anon_cost;
84 unsigned long file_cost;
86 /* Can active pages be deactivated as part of reclaim? */
87 #define DEACTIVATE_ANON 1
88 #define DEACTIVATE_FILE 2
89 unsigned int may_deactivate:2;
90 unsigned int force_deactivate:1;
91 unsigned int skipped_deactivate:1;
93 /* Writepage batching in laptop mode; RECLAIM_WRITE */
94 unsigned int may_writepage:1;
96 /* Can mapped pages be reclaimed? */
97 unsigned int may_unmap:1;
99 /* Can pages be swapped as part of reclaim? */
100 unsigned int may_swap:1;
103 * Cgroups are not reclaimed below their configured memory.low,
104 * unless we threaten to OOM. If any cgroups are skipped due to
105 * memory.low and nothing was reclaimed, go back for memory.low.
107 unsigned int memcg_low_reclaim:1;
108 unsigned int memcg_low_skipped:1;
110 unsigned int hibernation_mode:1;
112 /* One of the zones is ready for compaction */
113 unsigned int compaction_ready:1;
115 /* There is easily reclaimable cold cache in the current node */
116 unsigned int cache_trim_mode:1;
118 /* The file pages on the current node are dangerously low */
119 unsigned int file_is_tiny:1;
121 /* Allocation order */
124 /* Scan (total_size >> priority) pages at once */
127 /* The highest zone to isolate pages for reclaim from */
130 /* This context's GFP mask */
133 /* Incremented by the number of inactive pages that were scanned */
134 unsigned long nr_scanned;
136 /* Number of pages freed so far during a call to shrink_zones() */
137 unsigned long nr_reclaimed;
141 unsigned int unqueued_dirty;
142 unsigned int congested;
143 unsigned int writeback;
144 unsigned int immediate;
145 unsigned int file_taken;
149 /* for recording the reclaimed slab by now */
150 struct reclaim_state reclaim_state;
153 #ifdef ARCH_HAS_PREFETCHW
154 #define prefetchw_prev_lru_page(_page, _base, _field) \
156 if ((_page)->lru.prev != _base) { \
159 prev = lru_to_page(&(_page->lru)); \
160 prefetchw(&prev->_field); \
164 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
168 * From 0 .. 200. Higher means more swappy.
170 int vm_swappiness = 60;
172 static void set_task_reclaim_state(struct task_struct *task,
173 struct reclaim_state *rs)
175 /* Check for an overwrite */
176 WARN_ON_ONCE(rs && task->reclaim_state);
178 /* Check for the nulling of an already-nulled member */
179 WARN_ON_ONCE(!rs && !task->reclaim_state);
181 task->reclaim_state = rs;
184 static LIST_HEAD(shrinker_list);
185 static DECLARE_RWSEM(shrinker_rwsem);
189 * We allow subsystems to populate their shrinker-related
190 * LRU lists before register_shrinker_prepared() is called
191 * for the shrinker, since we don't want to impose
192 * restrictions on their internal registration order.
193 * In this case shrink_slab_memcg() may find corresponding
194 * bit is set in the shrinkers map.
196 * This value is used by the function to detect registering
197 * shrinkers and to skip do_shrink_slab() calls for them.
199 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
201 static DEFINE_IDR(shrinker_idr);
202 static int shrinker_nr_max;
204 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
206 int id, ret = -ENOMEM;
208 down_write(&shrinker_rwsem);
209 /* This may call shrinker, so it must use down_read_trylock() */
210 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
214 if (id >= shrinker_nr_max) {
215 if (memcg_expand_shrinker_maps(id)) {
216 idr_remove(&shrinker_idr, id);
220 shrinker_nr_max = id + 1;
225 up_write(&shrinker_rwsem);
229 static void unregister_memcg_shrinker(struct shrinker *shrinker)
231 int id = shrinker->id;
235 down_write(&shrinker_rwsem);
236 idr_remove(&shrinker_idr, id);
237 up_write(&shrinker_rwsem);
240 static bool cgroup_reclaim(struct scan_control *sc)
242 return sc->target_mem_cgroup;
246 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
247 * @sc: scan_control in question
249 * The normal page dirty throttling mechanism in balance_dirty_pages() is
250 * completely broken with the legacy memcg and direct stalling in
251 * shrink_page_list() is used for throttling instead, which lacks all the
252 * niceties such as fairness, adaptive pausing, bandwidth proportional
253 * allocation and configurability.
255 * This function tests whether the vmscan currently in progress can assume
256 * that the normal dirty throttling mechanism is operational.
258 static bool writeback_throttling_sane(struct scan_control *sc)
260 if (!cgroup_reclaim(sc))
262 #ifdef CONFIG_CGROUP_WRITEBACK
263 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
269 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
274 static void unregister_memcg_shrinker(struct shrinker *shrinker)
278 static bool cgroup_reclaim(struct scan_control *sc)
283 static bool writeback_throttling_sane(struct scan_control *sc)
290 * This misses isolated pages which are not accounted for to save counters.
291 * As the data only determines if reclaim or compaction continues, it is
292 * not expected that isolated pages will be a dominating factor.
294 unsigned long zone_reclaimable_pages(struct zone *zone)
298 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
299 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
300 if (get_nr_swap_pages() > 0)
301 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
302 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
308 * lruvec_lru_size - Returns the number of pages on the given LRU list.
309 * @lruvec: lru vector
311 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
313 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
316 unsigned long size = 0;
319 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
320 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
322 if (!managed_zone(zone))
325 if (!mem_cgroup_disabled())
326 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
328 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
334 * Add a shrinker callback to be called from the vm.
336 int prealloc_shrinker(struct shrinker *shrinker)
338 unsigned int size = sizeof(*shrinker->nr_deferred);
340 if (shrinker->flags & SHRINKER_NUMA_AWARE)
343 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
344 if (!shrinker->nr_deferred)
347 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
348 if (prealloc_memcg_shrinker(shrinker))
355 kfree(shrinker->nr_deferred);
356 shrinker->nr_deferred = NULL;
360 void free_prealloced_shrinker(struct shrinker *shrinker)
362 if (!shrinker->nr_deferred)
365 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
366 unregister_memcg_shrinker(shrinker);
368 kfree(shrinker->nr_deferred);
369 shrinker->nr_deferred = NULL;
372 void register_shrinker_prepared(struct shrinker *shrinker)
374 down_write(&shrinker_rwsem);
375 list_add_tail(&shrinker->list, &shrinker_list);
377 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
378 idr_replace(&shrinker_idr, shrinker, shrinker->id);
380 up_write(&shrinker_rwsem);
383 int register_shrinker(struct shrinker *shrinker)
385 int err = prealloc_shrinker(shrinker);
389 register_shrinker_prepared(shrinker);
392 EXPORT_SYMBOL(register_shrinker);
397 void unregister_shrinker(struct shrinker *shrinker)
399 if (!shrinker->nr_deferred)
401 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
402 unregister_memcg_shrinker(shrinker);
403 down_write(&shrinker_rwsem);
404 list_del(&shrinker->list);
405 up_write(&shrinker_rwsem);
406 kfree(shrinker->nr_deferred);
407 shrinker->nr_deferred = NULL;
409 EXPORT_SYMBOL(unregister_shrinker);
411 #define SHRINK_BATCH 128
413 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
414 struct shrinker *shrinker, int priority)
416 unsigned long freed = 0;
417 unsigned long long delta;
422 int nid = shrinkctl->nid;
423 long batch_size = shrinker->batch ? shrinker->batch
425 long scanned = 0, next_deferred;
427 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
430 freeable = shrinker->count_objects(shrinker, shrinkctl);
431 if (freeable == 0 || freeable == SHRINK_EMPTY)
435 * copy the current shrinker scan count into a local variable
436 * and zero it so that other concurrent shrinker invocations
437 * don't also do this scanning work.
439 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
442 if (shrinker->seeks) {
443 delta = freeable >> priority;
445 do_div(delta, shrinker->seeks);
448 * These objects don't require any IO to create. Trim
449 * them aggressively under memory pressure to keep
450 * them from causing refetches in the IO caches.
452 delta = freeable / 2;
456 if (total_scan < 0) {
457 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
458 shrinker->scan_objects, total_scan);
459 total_scan = freeable;
462 next_deferred = total_scan;
465 * We need to avoid excessive windup on filesystem shrinkers
466 * due to large numbers of GFP_NOFS allocations causing the
467 * shrinkers to return -1 all the time. This results in a large
468 * nr being built up so when a shrink that can do some work
469 * comes along it empties the entire cache due to nr >>>
470 * freeable. This is bad for sustaining a working set in
473 * Hence only allow the shrinker to scan the entire cache when
474 * a large delta change is calculated directly.
476 if (delta < freeable / 4)
477 total_scan = min(total_scan, freeable / 2);
480 * Avoid risking looping forever due to too large nr value:
481 * never try to free more than twice the estimate number of
484 if (total_scan > freeable * 2)
485 total_scan = freeable * 2;
487 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
488 freeable, delta, total_scan, priority);
491 * Normally, we should not scan less than batch_size objects in one
492 * pass to avoid too frequent shrinker calls, but if the slab has less
493 * than batch_size objects in total and we are really tight on memory,
494 * we will try to reclaim all available objects, otherwise we can end
495 * up failing allocations although there are plenty of reclaimable
496 * objects spread over several slabs with usage less than the
499 * We detect the "tight on memory" situations by looking at the total
500 * number of objects we want to scan (total_scan). If it is greater
501 * than the total number of objects on slab (freeable), we must be
502 * scanning at high prio and therefore should try to reclaim as much as
505 while (total_scan >= batch_size ||
506 total_scan >= freeable) {
508 unsigned long nr_to_scan = min(batch_size, total_scan);
510 shrinkctl->nr_to_scan = nr_to_scan;
511 shrinkctl->nr_scanned = nr_to_scan;
512 ret = shrinker->scan_objects(shrinker, shrinkctl);
513 if (ret == SHRINK_STOP)
517 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
518 total_scan -= shrinkctl->nr_scanned;
519 scanned += shrinkctl->nr_scanned;
524 if (next_deferred >= scanned)
525 next_deferred -= scanned;
529 * move the unused scan count back into the shrinker in a
530 * manner that handles concurrent updates. If we exhausted the
531 * scan, there is no need to do an update.
533 if (next_deferred > 0)
534 new_nr = atomic_long_add_return(next_deferred,
535 &shrinker->nr_deferred[nid]);
537 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
539 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
544 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
545 struct mem_cgroup *memcg, int priority)
547 struct memcg_shrinker_map *map;
548 unsigned long ret, freed = 0;
551 if (!mem_cgroup_online(memcg))
554 if (!down_read_trylock(&shrinker_rwsem))
557 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
562 for_each_set_bit(i, map->map, shrinker_nr_max) {
563 struct shrink_control sc = {
564 .gfp_mask = gfp_mask,
568 struct shrinker *shrinker;
570 shrinker = idr_find(&shrinker_idr, i);
571 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
573 clear_bit(i, map->map);
577 /* Call non-slab shrinkers even though kmem is disabled */
578 if (!memcg_kmem_enabled() &&
579 !(shrinker->flags & SHRINKER_NONSLAB))
582 ret = do_shrink_slab(&sc, shrinker, priority);
583 if (ret == SHRINK_EMPTY) {
584 clear_bit(i, map->map);
586 * After the shrinker reported that it had no objects to
587 * free, but before we cleared the corresponding bit in
588 * the memcg shrinker map, a new object might have been
589 * added. To make sure, we have the bit set in this
590 * case, we invoke the shrinker one more time and reset
591 * the bit if it reports that it is not empty anymore.
592 * The memory barrier here pairs with the barrier in
593 * memcg_set_shrinker_bit():
595 * list_lru_add() shrink_slab_memcg()
596 * list_add_tail() clear_bit()
598 * set_bit() do_shrink_slab()
600 smp_mb__after_atomic();
601 ret = do_shrink_slab(&sc, shrinker, priority);
602 if (ret == SHRINK_EMPTY)
605 memcg_set_shrinker_bit(memcg, nid, i);
609 if (rwsem_is_contended(&shrinker_rwsem)) {
615 up_read(&shrinker_rwsem);
618 #else /* CONFIG_MEMCG */
619 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
620 struct mem_cgroup *memcg, int priority)
624 #endif /* CONFIG_MEMCG */
627 * shrink_slab - shrink slab caches
628 * @gfp_mask: allocation context
629 * @nid: node whose slab caches to target
630 * @memcg: memory cgroup whose slab caches to target
631 * @priority: the reclaim priority
633 * Call the shrink functions to age shrinkable caches.
635 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
636 * unaware shrinkers will receive a node id of 0 instead.
638 * @memcg specifies the memory cgroup to target. Unaware shrinkers
639 * are called only if it is the root cgroup.
641 * @priority is sc->priority, we take the number of objects and >> by priority
642 * in order to get the scan target.
644 * Returns the number of reclaimed slab objects.
646 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
647 struct mem_cgroup *memcg,
650 unsigned long ret, freed = 0;
651 struct shrinker *shrinker;
654 * The root memcg might be allocated even though memcg is disabled
655 * via "cgroup_disable=memory" boot parameter. This could make
656 * mem_cgroup_is_root() return false, then just run memcg slab
657 * shrink, but skip global shrink. This may result in premature
660 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
661 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
663 if (!down_read_trylock(&shrinker_rwsem))
666 list_for_each_entry(shrinker, &shrinker_list, list) {
667 struct shrink_control sc = {
668 .gfp_mask = gfp_mask,
673 ret = do_shrink_slab(&sc, shrinker, priority);
674 if (ret == SHRINK_EMPTY)
678 * Bail out if someone want to register a new shrinker to
679 * prevent the registration from being stalled for long periods
680 * by parallel ongoing shrinking.
682 if (rwsem_is_contended(&shrinker_rwsem)) {
688 up_read(&shrinker_rwsem);
694 void drop_slab_node(int nid)
699 struct mem_cgroup *memcg = NULL;
701 if (fatal_signal_pending(current))
705 memcg = mem_cgroup_iter(NULL, NULL, NULL);
707 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
708 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
709 } while (freed > 10);
716 for_each_online_node(nid)
720 static inline int is_page_cache_freeable(struct page *page)
723 * A freeable page cache page is referenced only by the caller
724 * that isolated the page, the page cache and optional buffer
725 * heads at page->private.
727 int page_cache_pins = thp_nr_pages(page);
728 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
731 static int may_write_to_inode(struct inode *inode)
733 if (current->flags & PF_SWAPWRITE)
735 if (!inode_write_congested(inode))
737 if (inode_to_bdi(inode) == current->backing_dev_info)
743 * We detected a synchronous write error writing a page out. Probably
744 * -ENOSPC. We need to propagate that into the address_space for a subsequent
745 * fsync(), msync() or close().
747 * The tricky part is that after writepage we cannot touch the mapping: nothing
748 * prevents it from being freed up. But we have a ref on the page and once
749 * that page is locked, the mapping is pinned.
751 * We're allowed to run sleeping lock_page() here because we know the caller has
754 static void handle_write_error(struct address_space *mapping,
755 struct page *page, int error)
758 if (page_mapping(page) == mapping)
759 mapping_set_error(mapping, error);
763 /* possible outcome of pageout() */
765 /* failed to write page out, page is locked */
767 /* move page to the active list, page is locked */
769 /* page has been sent to the disk successfully, page is unlocked */
771 /* page is clean and locked */
776 * pageout is called by shrink_page_list() for each dirty page.
777 * Calls ->writepage().
779 static pageout_t pageout(struct page *page, struct address_space *mapping)
782 * If the page is dirty, only perform writeback if that write
783 * will be non-blocking. To prevent this allocation from being
784 * stalled by pagecache activity. But note that there may be
785 * stalls if we need to run get_block(). We could test
786 * PagePrivate for that.
788 * If this process is currently in __generic_file_write_iter() against
789 * this page's queue, we can perform writeback even if that
792 * If the page is swapcache, write it back even if that would
793 * block, for some throttling. This happens by accident, because
794 * swap_backing_dev_info is bust: it doesn't reflect the
795 * congestion state of the swapdevs. Easy to fix, if needed.
797 if (!is_page_cache_freeable(page))
801 * Some data journaling orphaned pages can have
802 * page->mapping == NULL while being dirty with clean buffers.
804 if (page_has_private(page)) {
805 if (try_to_free_buffers(page)) {
806 ClearPageDirty(page);
807 pr_info("%s: orphaned page\n", __func__);
813 if (mapping->a_ops->writepage == NULL)
814 return PAGE_ACTIVATE;
815 if (!may_write_to_inode(mapping->host))
818 if (clear_page_dirty_for_io(page)) {
820 struct writeback_control wbc = {
821 .sync_mode = WB_SYNC_NONE,
822 .nr_to_write = SWAP_CLUSTER_MAX,
824 .range_end = LLONG_MAX,
828 SetPageReclaim(page);
829 res = mapping->a_ops->writepage(page, &wbc);
831 handle_write_error(mapping, page, res);
832 if (res == AOP_WRITEPAGE_ACTIVATE) {
833 ClearPageReclaim(page);
834 return PAGE_ACTIVATE;
837 if (!PageWriteback(page)) {
838 /* synchronous write or broken a_ops? */
839 ClearPageReclaim(page);
841 trace_mm_vmscan_writepage(page);
842 inc_node_page_state(page, NR_VMSCAN_WRITE);
850 * Same as remove_mapping, but if the page is removed from the mapping, it
851 * gets returned with a refcount of 0.
853 static int __remove_mapping(struct address_space *mapping, struct page *page,
854 bool reclaimed, struct mem_cgroup *target_memcg)
860 BUG_ON(!PageLocked(page));
861 BUG_ON(mapping != page_mapping(page));
863 xa_lock_irqsave(&mapping->i_pages, flags);
865 * The non racy check for a busy page.
867 * Must be careful with the order of the tests. When someone has
868 * a ref to the page, it may be possible that they dirty it then
869 * drop the reference. So if PageDirty is tested before page_count
870 * here, then the following race may occur:
872 * get_user_pages(&page);
873 * [user mapping goes away]
875 * !PageDirty(page) [good]
876 * SetPageDirty(page);
878 * !page_count(page) [good, discard it]
880 * [oops, our write_to data is lost]
882 * Reversing the order of the tests ensures such a situation cannot
883 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
884 * load is not satisfied before that of page->_refcount.
886 * Note that if SetPageDirty is always performed via set_page_dirty,
887 * and thus under the i_pages lock, then this ordering is not required.
889 refcount = 1 + compound_nr(page);
890 if (!page_ref_freeze(page, refcount))
892 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
893 if (unlikely(PageDirty(page))) {
894 page_ref_unfreeze(page, refcount);
898 if (PageSwapCache(page)) {
899 swp_entry_t swap = { .val = page_private(page) };
900 mem_cgroup_swapout(page, swap);
901 if (reclaimed && !mapping_exiting(mapping))
902 shadow = workingset_eviction(page, target_memcg);
903 __delete_from_swap_cache(page, swap, shadow);
904 xa_unlock_irqrestore(&mapping->i_pages, flags);
905 put_swap_page(page, swap);
907 void (*freepage)(struct page *);
909 freepage = mapping->a_ops->freepage;
911 * Remember a shadow entry for reclaimed file cache in
912 * order to detect refaults, thus thrashing, later on.
914 * But don't store shadows in an address space that is
915 * already exiting. This is not just an optimization,
916 * inode reclaim needs to empty out the radix tree or
917 * the nodes are lost. Don't plant shadows behind its
920 * We also don't store shadows for DAX mappings because the
921 * only page cache pages found in these are zero pages
922 * covering holes, and because we don't want to mix DAX
923 * exceptional entries and shadow exceptional entries in the
924 * same address_space.
926 if (reclaimed && page_is_file_lru(page) &&
927 !mapping_exiting(mapping) && !dax_mapping(mapping))
928 shadow = workingset_eviction(page, target_memcg);
929 __delete_from_page_cache(page, shadow);
930 xa_unlock_irqrestore(&mapping->i_pages, flags);
932 if (freepage != NULL)
939 xa_unlock_irqrestore(&mapping->i_pages, flags);
944 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
945 * someone else has a ref on the page, abort and return 0. If it was
946 * successfully detached, return 1. Assumes the caller has a single ref on
949 int remove_mapping(struct address_space *mapping, struct page *page)
951 if (__remove_mapping(mapping, page, false, NULL)) {
953 * Unfreezing the refcount with 1 rather than 2 effectively
954 * drops the pagecache ref for us without requiring another
957 page_ref_unfreeze(page, 1);
964 * putback_lru_page - put previously isolated page onto appropriate LRU list
965 * @page: page to be put back to appropriate lru list
967 * Add previously isolated @page to appropriate LRU list.
968 * Page may still be unevictable for other reasons.
970 * lru_lock must not be held, interrupts must be enabled.
972 void putback_lru_page(struct page *page)
975 put_page(page); /* drop ref from isolate */
978 enum page_references {
980 PAGEREF_RECLAIM_CLEAN,
985 static enum page_references page_check_references(struct page *page,
986 struct scan_control *sc)
988 int referenced_ptes, referenced_page;
989 unsigned long vm_flags;
991 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
993 referenced_page = TestClearPageReferenced(page);
996 * Mlock lost the isolation race with us. Let try_to_unmap()
997 * move the page to the unevictable list.
999 if (vm_flags & VM_LOCKED)
1000 return PAGEREF_RECLAIM;
1002 if (referenced_ptes) {
1004 * All mapped pages start out with page table
1005 * references from the instantiating fault, so we need
1006 * to look twice if a mapped file page is used more
1009 * Mark it and spare it for another trip around the
1010 * inactive list. Another page table reference will
1011 * lead to its activation.
1013 * Note: the mark is set for activated pages as well
1014 * so that recently deactivated but used pages are
1015 * quickly recovered.
1017 SetPageReferenced(page);
1019 if (referenced_page || referenced_ptes > 1)
1020 return PAGEREF_ACTIVATE;
1023 * Activate file-backed executable pages after first usage.
1025 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1026 return PAGEREF_ACTIVATE;
1028 return PAGEREF_KEEP;
1031 /* Reclaim if clean, defer dirty pages to writeback */
1032 if (referenced_page && !PageSwapBacked(page))
1033 return PAGEREF_RECLAIM_CLEAN;
1035 return PAGEREF_RECLAIM;
1038 /* Check if a page is dirty or under writeback */
1039 static void page_check_dirty_writeback(struct page *page,
1040 bool *dirty, bool *writeback)
1042 struct address_space *mapping;
1045 * Anonymous pages are not handled by flushers and must be written
1046 * from reclaim context. Do not stall reclaim based on them
1048 if (!page_is_file_lru(page) ||
1049 (PageAnon(page) && !PageSwapBacked(page))) {
1055 /* By default assume that the page flags are accurate */
1056 *dirty = PageDirty(page);
1057 *writeback = PageWriteback(page);
1059 /* Verify dirty/writeback state if the filesystem supports it */
1060 if (!page_has_private(page))
1063 mapping = page_mapping(page);
1064 if (mapping && mapping->a_ops->is_dirty_writeback)
1065 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1069 * shrink_page_list() returns the number of reclaimed pages
1071 static unsigned int shrink_page_list(struct list_head *page_list,
1072 struct pglist_data *pgdat,
1073 struct scan_control *sc,
1074 struct reclaim_stat *stat,
1075 bool ignore_references)
1077 LIST_HEAD(ret_pages);
1078 LIST_HEAD(free_pages);
1079 unsigned int nr_reclaimed = 0;
1080 unsigned int pgactivate = 0;
1082 memset(stat, 0, sizeof(*stat));
1085 while (!list_empty(page_list)) {
1086 struct address_space *mapping;
1088 enum page_references references = PAGEREF_RECLAIM;
1089 bool dirty, writeback, may_enter_fs;
1090 unsigned int nr_pages;
1094 page = lru_to_page(page_list);
1095 list_del(&page->lru);
1097 if (!trylock_page(page))
1100 VM_BUG_ON_PAGE(PageActive(page), page);
1102 nr_pages = compound_nr(page);
1104 /* Account the number of base pages even though THP */
1105 sc->nr_scanned += nr_pages;
1107 if (unlikely(!page_evictable(page)))
1108 goto activate_locked;
1110 if (!sc->may_unmap && page_mapped(page))
1113 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1114 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1117 * The number of dirty pages determines if a node is marked
1118 * reclaim_congested which affects wait_iff_congested. kswapd
1119 * will stall and start writing pages if the tail of the LRU
1120 * is all dirty unqueued pages.
1122 page_check_dirty_writeback(page, &dirty, &writeback);
1123 if (dirty || writeback)
1126 if (dirty && !writeback)
1127 stat->nr_unqueued_dirty++;
1130 * Treat this page as congested if the underlying BDI is or if
1131 * pages are cycling through the LRU so quickly that the
1132 * pages marked for immediate reclaim are making it to the
1133 * end of the LRU a second time.
1135 mapping = page_mapping(page);
1136 if (((dirty || writeback) && mapping &&
1137 inode_write_congested(mapping->host)) ||
1138 (writeback && PageReclaim(page)))
1139 stat->nr_congested++;
1142 * If a page at the tail of the LRU is under writeback, there
1143 * are three cases to consider.
1145 * 1) If reclaim is encountering an excessive number of pages
1146 * under writeback and this page is both under writeback and
1147 * PageReclaim then it indicates that pages are being queued
1148 * for IO but are being recycled through the LRU before the
1149 * IO can complete. Waiting on the page itself risks an
1150 * indefinite stall if it is impossible to writeback the
1151 * page due to IO error or disconnected storage so instead
1152 * note that the LRU is being scanned too quickly and the
1153 * caller can stall after page list has been processed.
1155 * 2) Global or new memcg reclaim encounters a page that is
1156 * not marked for immediate reclaim, or the caller does not
1157 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1158 * not to fs). In this case mark the page for immediate
1159 * reclaim and continue scanning.
1161 * Require may_enter_fs because we would wait on fs, which
1162 * may not have submitted IO yet. And the loop driver might
1163 * enter reclaim, and deadlock if it waits on a page for
1164 * which it is needed to do the write (loop masks off
1165 * __GFP_IO|__GFP_FS for this reason); but more thought
1166 * would probably show more reasons.
1168 * 3) Legacy memcg encounters a page that is already marked
1169 * PageReclaim. memcg does not have any dirty pages
1170 * throttling so we could easily OOM just because too many
1171 * pages are in writeback and there is nothing else to
1172 * reclaim. Wait for the writeback to complete.
1174 * In cases 1) and 2) we activate the pages to get them out of
1175 * the way while we continue scanning for clean pages on the
1176 * inactive list and refilling from the active list. The
1177 * observation here is that waiting for disk writes is more
1178 * expensive than potentially causing reloads down the line.
1179 * Since they're marked for immediate reclaim, they won't put
1180 * memory pressure on the cache working set any longer than it
1181 * takes to write them to disk.
1183 if (PageWriteback(page)) {
1185 if (current_is_kswapd() &&
1186 PageReclaim(page) &&
1187 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1188 stat->nr_immediate++;
1189 goto activate_locked;
1192 } else if (writeback_throttling_sane(sc) ||
1193 !PageReclaim(page) || !may_enter_fs) {
1195 * This is slightly racy - end_page_writeback()
1196 * might have just cleared PageReclaim, then
1197 * setting PageReclaim here end up interpreted
1198 * as PageReadahead - but that does not matter
1199 * enough to care. What we do want is for this
1200 * page to have PageReclaim set next time memcg
1201 * reclaim reaches the tests above, so it will
1202 * then wait_on_page_writeback() to avoid OOM;
1203 * and it's also appropriate in global reclaim.
1205 SetPageReclaim(page);
1206 stat->nr_writeback++;
1207 goto activate_locked;
1212 wait_on_page_writeback(page);
1213 /* then go back and try same page again */
1214 list_add_tail(&page->lru, page_list);
1219 if (!ignore_references)
1220 references = page_check_references(page, sc);
1222 switch (references) {
1223 case PAGEREF_ACTIVATE:
1224 goto activate_locked;
1226 stat->nr_ref_keep += nr_pages;
1228 case PAGEREF_RECLAIM:
1229 case PAGEREF_RECLAIM_CLEAN:
1230 ; /* try to reclaim the page below */
1234 * Anonymous process memory has backing store?
1235 * Try to allocate it some swap space here.
1236 * Lazyfree page could be freed directly
1238 if (PageAnon(page) && PageSwapBacked(page)) {
1239 if (!PageSwapCache(page)) {
1240 if (!(sc->gfp_mask & __GFP_IO))
1242 if (page_maybe_dma_pinned(page))
1244 if (PageTransHuge(page)) {
1245 /* cannot split THP, skip it */
1246 if (!can_split_huge_page(page, NULL))
1247 goto activate_locked;
1249 * Split pages without a PMD map right
1250 * away. Chances are some or all of the
1251 * tail pages can be freed without IO.
1253 if (!compound_mapcount(page) &&
1254 split_huge_page_to_list(page,
1256 goto activate_locked;
1258 if (!add_to_swap(page)) {
1259 if (!PageTransHuge(page))
1260 goto activate_locked_split;
1261 /* Fallback to swap normal pages */
1262 if (split_huge_page_to_list(page,
1264 goto activate_locked;
1265 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1266 count_vm_event(THP_SWPOUT_FALLBACK);
1268 if (!add_to_swap(page))
1269 goto activate_locked_split;
1272 may_enter_fs = true;
1274 /* Adding to swap updated mapping */
1275 mapping = page_mapping(page);
1277 } else if (unlikely(PageTransHuge(page))) {
1278 /* Split file THP */
1279 if (split_huge_page_to_list(page, page_list))
1284 * THP may get split above, need minus tail pages and update
1285 * nr_pages to avoid accounting tail pages twice.
1287 * The tail pages that are added into swap cache successfully
1290 if ((nr_pages > 1) && !PageTransHuge(page)) {
1291 sc->nr_scanned -= (nr_pages - 1);
1296 * The page is mapped into the page tables of one or more
1297 * processes. Try to unmap it here.
1299 if (page_mapped(page)) {
1300 enum ttu_flags flags = TTU_BATCH_FLUSH;
1301 bool was_swapbacked = PageSwapBacked(page);
1303 if (unlikely(PageTransHuge(page)))
1304 flags |= TTU_SPLIT_HUGE_PMD;
1306 if (!try_to_unmap(page, flags)) {
1307 stat->nr_unmap_fail += nr_pages;
1308 if (!was_swapbacked && PageSwapBacked(page))
1309 stat->nr_lazyfree_fail += nr_pages;
1310 goto activate_locked;
1314 if (PageDirty(page)) {
1316 * Only kswapd can writeback filesystem pages
1317 * to avoid risk of stack overflow. But avoid
1318 * injecting inefficient single-page IO into
1319 * flusher writeback as much as possible: only
1320 * write pages when we've encountered many
1321 * dirty pages, and when we've already scanned
1322 * the rest of the LRU for clean pages and see
1323 * the same dirty pages again (PageReclaim).
1325 if (page_is_file_lru(page) &&
1326 (!current_is_kswapd() || !PageReclaim(page) ||
1327 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1329 * Immediately reclaim when written back.
1330 * Similar in principal to deactivate_page()
1331 * except we already have the page isolated
1332 * and know it's dirty
1334 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1335 SetPageReclaim(page);
1337 goto activate_locked;
1340 if (references == PAGEREF_RECLAIM_CLEAN)
1344 if (!sc->may_writepage)
1348 * Page is dirty. Flush the TLB if a writable entry
1349 * potentially exists to avoid CPU writes after IO
1350 * starts and then write it out here.
1352 try_to_unmap_flush_dirty();
1353 switch (pageout(page, mapping)) {
1357 goto activate_locked;
1359 stat->nr_pageout += thp_nr_pages(page);
1361 if (PageWriteback(page))
1363 if (PageDirty(page))
1367 * A synchronous write - probably a ramdisk. Go
1368 * ahead and try to reclaim the page.
1370 if (!trylock_page(page))
1372 if (PageDirty(page) || PageWriteback(page))
1374 mapping = page_mapping(page);
1377 ; /* try to free the page below */
1382 * If the page has buffers, try to free the buffer mappings
1383 * associated with this page. If we succeed we try to free
1386 * We do this even if the page is PageDirty().
1387 * try_to_release_page() does not perform I/O, but it is
1388 * possible for a page to have PageDirty set, but it is actually
1389 * clean (all its buffers are clean). This happens if the
1390 * buffers were written out directly, with submit_bh(). ext3
1391 * will do this, as well as the blockdev mapping.
1392 * try_to_release_page() will discover that cleanness and will
1393 * drop the buffers and mark the page clean - it can be freed.
1395 * Rarely, pages can have buffers and no ->mapping. These are
1396 * the pages which were not successfully invalidated in
1397 * truncate_cleanup_page(). We try to drop those buffers here
1398 * and if that worked, and the page is no longer mapped into
1399 * process address space (page_count == 1) it can be freed.
1400 * Otherwise, leave the page on the LRU so it is swappable.
1402 if (page_has_private(page)) {
1403 if (!try_to_release_page(page, sc->gfp_mask))
1404 goto activate_locked;
1405 if (!mapping && page_count(page) == 1) {
1407 if (put_page_testzero(page))
1411 * rare race with speculative reference.
1412 * the speculative reference will free
1413 * this page shortly, so we may
1414 * increment nr_reclaimed here (and
1415 * leave it off the LRU).
1423 if (PageAnon(page) && !PageSwapBacked(page)) {
1424 /* follow __remove_mapping for reference */
1425 if (!page_ref_freeze(page, 1))
1427 if (PageDirty(page)) {
1428 page_ref_unfreeze(page, 1);
1432 count_vm_event(PGLAZYFREED);
1433 count_memcg_page_event(page, PGLAZYFREED);
1434 } else if (!mapping || !__remove_mapping(mapping, page, true,
1435 sc->target_mem_cgroup))
1441 * THP may get swapped out in a whole, need account
1444 nr_reclaimed += nr_pages;
1447 * Is there need to periodically free_page_list? It would
1448 * appear not as the counts should be low
1450 if (unlikely(PageTransHuge(page)))
1451 destroy_compound_page(page);
1453 list_add(&page->lru, &free_pages);
1456 activate_locked_split:
1458 * The tail pages that are failed to add into swap cache
1459 * reach here. Fixup nr_scanned and nr_pages.
1462 sc->nr_scanned -= (nr_pages - 1);
1466 /* Not a candidate for swapping, so reclaim swap space. */
1467 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1469 try_to_free_swap(page);
1470 VM_BUG_ON_PAGE(PageActive(page), page);
1471 if (!PageMlocked(page)) {
1472 int type = page_is_file_lru(page);
1473 SetPageActive(page);
1474 stat->nr_activate[type] += nr_pages;
1475 count_memcg_page_event(page, PGACTIVATE);
1480 list_add(&page->lru, &ret_pages);
1481 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1484 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1486 mem_cgroup_uncharge_list(&free_pages);
1487 try_to_unmap_flush();
1488 free_unref_page_list(&free_pages);
1490 list_splice(&ret_pages, page_list);
1491 count_vm_events(PGACTIVATE, pgactivate);
1493 return nr_reclaimed;
1496 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1497 struct list_head *page_list)
1499 struct scan_control sc = {
1500 .gfp_mask = GFP_KERNEL,
1501 .priority = DEF_PRIORITY,
1504 struct reclaim_stat stat;
1505 unsigned int nr_reclaimed;
1506 struct page *page, *next;
1507 LIST_HEAD(clean_pages);
1509 list_for_each_entry_safe(page, next, page_list, lru) {
1510 if (page_is_file_lru(page) && !PageDirty(page) &&
1511 !__PageMovable(page) && !PageUnevictable(page)) {
1512 ClearPageActive(page);
1513 list_move(&page->lru, &clean_pages);
1517 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1519 list_splice(&clean_pages, page_list);
1520 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1521 -(long)nr_reclaimed);
1523 * Since lazyfree pages are isolated from file LRU from the beginning,
1524 * they will rotate back to anonymous LRU in the end if it failed to
1525 * discard so isolated count will be mismatched.
1526 * Compensate the isolated count for both LRU lists.
1528 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1529 stat.nr_lazyfree_fail);
1530 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1531 -(long)stat.nr_lazyfree_fail);
1532 return nr_reclaimed;
1536 * Attempt to remove the specified page from its LRU. Only take this page
1537 * if it is of the appropriate PageActive status. Pages which are being
1538 * freed elsewhere are also ignored.
1540 * page: page to consider
1541 * mode: one of the LRU isolation modes defined above
1543 * returns true on success, false on failure.
1545 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
1547 /* Only take pages on the LRU. */
1551 /* Compaction should not handle unevictable pages but CMA can do so */
1552 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1556 * To minimise LRU disruption, the caller can indicate that it only
1557 * wants to isolate pages it will be able to operate on without
1558 * blocking - clean pages for the most part.
1560 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1561 * that it is possible to migrate without blocking
1563 if (mode & ISOLATE_ASYNC_MIGRATE) {
1564 /* All the caller can do on PageWriteback is block */
1565 if (PageWriteback(page))
1568 if (PageDirty(page)) {
1569 struct address_space *mapping;
1573 * Only pages without mappings or that have a
1574 * ->migratepage callback are possible to migrate
1575 * without blocking. However, we can be racing with
1576 * truncation so it's necessary to lock the page
1577 * to stabilise the mapping as truncation holds
1578 * the page lock until after the page is removed
1579 * from the page cache.
1581 if (!trylock_page(page))
1584 mapping = page_mapping(page);
1585 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1592 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1599 * Update LRU sizes after isolating pages. The LRU size updates must
1600 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1602 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1603 enum lru_list lru, unsigned long *nr_zone_taken)
1607 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1608 if (!nr_zone_taken[zid])
1611 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1617 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1619 * lruvec->lru_lock is heavily contended. Some of the functions that
1620 * shrink the lists perform better by taking out a batch of pages
1621 * and working on them outside the LRU lock.
1623 * For pagecache intensive workloads, this function is the hottest
1624 * spot in the kernel (apart from copy_*_user functions).
1626 * Lru_lock must be held before calling this function.
1628 * @nr_to_scan: The number of eligible pages to look through on the list.
1629 * @lruvec: The LRU vector to pull pages from.
1630 * @dst: The temp list to put pages on to.
1631 * @nr_scanned: The number of pages that were scanned.
1632 * @sc: The scan_control struct for this reclaim session
1633 * @lru: LRU list id for isolating
1635 * returns how many pages were moved onto *@dst.
1637 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1638 struct lruvec *lruvec, struct list_head *dst,
1639 unsigned long *nr_scanned, struct scan_control *sc,
1642 struct list_head *src = &lruvec->lists[lru];
1643 unsigned long nr_taken = 0;
1644 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1645 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1646 unsigned long skipped = 0;
1647 unsigned long scan, total_scan, nr_pages;
1648 LIST_HEAD(pages_skipped);
1649 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1653 while (scan < nr_to_scan && !list_empty(src)) {
1656 page = lru_to_page(src);
1657 prefetchw_prev_lru_page(page, src, flags);
1659 nr_pages = compound_nr(page);
1660 total_scan += nr_pages;
1662 if (page_zonenum(page) > sc->reclaim_idx) {
1663 list_move(&page->lru, &pages_skipped);
1664 nr_skipped[page_zonenum(page)] += nr_pages;
1669 * Do not count skipped pages because that makes the function
1670 * return with no isolated pages if the LRU mostly contains
1671 * ineligible pages. This causes the VM to not reclaim any
1672 * pages, triggering a premature OOM.
1674 * Account all tail pages of THP. This would not cause
1675 * premature OOM since __isolate_lru_page() returns -EBUSY
1676 * only when the page is being freed somewhere else.
1679 if (!__isolate_lru_page_prepare(page, mode)) {
1680 /* It is being freed elsewhere */
1681 list_move(&page->lru, src);
1685 * Be careful not to clear PageLRU until after we're
1686 * sure the page is not being freed elsewhere -- the
1687 * page release code relies on it.
1689 if (unlikely(!get_page_unless_zero(page))) {
1690 list_move(&page->lru, src);
1694 if (!TestClearPageLRU(page)) {
1695 /* Another thread is already isolating this page */
1697 list_move(&page->lru, src);
1701 nr_taken += nr_pages;
1702 nr_zone_taken[page_zonenum(page)] += nr_pages;
1703 list_move(&page->lru, dst);
1707 * Splice any skipped pages to the start of the LRU list. Note that
1708 * this disrupts the LRU order when reclaiming for lower zones but
1709 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1710 * scanning would soon rescan the same pages to skip and put the
1711 * system at risk of premature OOM.
1713 if (!list_empty(&pages_skipped)) {
1716 list_splice(&pages_skipped, src);
1717 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1718 if (!nr_skipped[zid])
1721 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1722 skipped += nr_skipped[zid];
1725 *nr_scanned = total_scan;
1726 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1727 total_scan, skipped, nr_taken, mode, lru);
1728 update_lru_sizes(lruvec, lru, nr_zone_taken);
1733 * isolate_lru_page - tries to isolate a page from its LRU list
1734 * @page: page to isolate from its LRU list
1736 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1737 * vmstat statistic corresponding to whatever LRU list the page was on.
1739 * Returns 0 if the page was removed from an LRU list.
1740 * Returns -EBUSY if the page was not on an LRU list.
1742 * The returned page will have PageLRU() cleared. If it was found on
1743 * the active list, it will have PageActive set. If it was found on
1744 * the unevictable list, it will have the PageUnevictable bit set. That flag
1745 * may need to be cleared by the caller before letting the page go.
1747 * The vmstat statistic corresponding to the list on which the page was
1748 * found will be decremented.
1752 * (1) Must be called with an elevated refcount on the page. This is a
1753 * fundamental difference from isolate_lru_pages (which is called
1754 * without a stable reference).
1755 * (2) the lru_lock must not be held.
1756 * (3) interrupts must be enabled.
1758 int isolate_lru_page(struct page *page)
1762 VM_BUG_ON_PAGE(!page_count(page), page);
1763 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1765 if (TestClearPageLRU(page)) {
1766 struct lruvec *lruvec;
1769 lruvec = lock_page_lruvec_irq(page);
1770 del_page_from_lru_list(page, lruvec);
1771 unlock_page_lruvec_irq(lruvec);
1779 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1780 * then get rescheduled. When there are massive number of tasks doing page
1781 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1782 * the LRU list will go small and be scanned faster than necessary, leading to
1783 * unnecessary swapping, thrashing and OOM.
1785 static int too_many_isolated(struct pglist_data *pgdat, int file,
1786 struct scan_control *sc)
1788 unsigned long inactive, isolated;
1790 if (current_is_kswapd())
1793 if (!writeback_throttling_sane(sc))
1797 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1798 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1800 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1801 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1805 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1806 * won't get blocked by normal direct-reclaimers, forming a circular
1809 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1812 return isolated > inactive;
1816 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
1817 * On return, @list is reused as a list of pages to be freed by the caller.
1819 * Returns the number of pages moved to the given lruvec.
1821 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1822 struct list_head *list)
1824 int nr_pages, nr_moved = 0;
1825 LIST_HEAD(pages_to_free);
1828 while (!list_empty(list)) {
1829 page = lru_to_page(list);
1830 VM_BUG_ON_PAGE(PageLRU(page), page);
1831 list_del(&page->lru);
1832 if (unlikely(!page_evictable(page))) {
1833 spin_unlock_irq(&lruvec->lru_lock);
1834 putback_lru_page(page);
1835 spin_lock_irq(&lruvec->lru_lock);
1840 * The SetPageLRU needs to be kept here for list integrity.
1842 * #0 move_pages_to_lru #1 release_pages
1843 * if !put_page_testzero
1844 * if (put_page_testzero())
1845 * !PageLRU //skip lru_lock
1847 * list_add(&page->lru,)
1848 * list_add(&page->lru,)
1852 if (unlikely(put_page_testzero(page))) {
1853 __clear_page_lru_flags(page);
1855 if (unlikely(PageCompound(page))) {
1856 spin_unlock_irq(&lruvec->lru_lock);
1857 destroy_compound_page(page);
1858 spin_lock_irq(&lruvec->lru_lock);
1860 list_add(&page->lru, &pages_to_free);
1866 * All pages were isolated from the same lruvec (and isolation
1867 * inhibits memcg migration).
1869 VM_BUG_ON_PAGE(!lruvec_holds_page_lru_lock(page, lruvec), page);
1870 add_page_to_lru_list(page, lruvec);
1871 nr_pages = thp_nr_pages(page);
1872 nr_moved += nr_pages;
1873 if (PageActive(page))
1874 workingset_age_nonresident(lruvec, nr_pages);
1878 * To save our caller's stack, now use input list for pages to free.
1880 list_splice(&pages_to_free, list);
1886 * If a kernel thread (such as nfsd for loop-back mounts) services
1887 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1888 * In that case we should only throttle if the backing device it is
1889 * writing to is congested. In other cases it is safe to throttle.
1891 static int current_may_throttle(void)
1893 return !(current->flags & PF_LOCAL_THROTTLE) ||
1894 current->backing_dev_info == NULL ||
1895 bdi_write_congested(current->backing_dev_info);
1899 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1900 * of reclaimed pages
1902 static noinline_for_stack unsigned long
1903 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1904 struct scan_control *sc, enum lru_list lru)
1906 LIST_HEAD(page_list);
1907 unsigned long nr_scanned;
1908 unsigned int nr_reclaimed = 0;
1909 unsigned long nr_taken;
1910 struct reclaim_stat stat;
1911 bool file = is_file_lru(lru);
1912 enum vm_event_item item;
1913 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1914 bool stalled = false;
1916 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1920 /* wait a bit for the reclaimer. */
1924 /* We are about to die and free our memory. Return now. */
1925 if (fatal_signal_pending(current))
1926 return SWAP_CLUSTER_MAX;
1931 spin_lock_irq(&lruvec->lru_lock);
1933 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1934 &nr_scanned, sc, lru);
1936 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1937 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1938 if (!cgroup_reclaim(sc))
1939 __count_vm_events(item, nr_scanned);
1940 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1941 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
1943 spin_unlock_irq(&lruvec->lru_lock);
1948 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
1950 spin_lock_irq(&lruvec->lru_lock);
1951 move_pages_to_lru(lruvec, &page_list);
1953 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1954 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1955 if (!cgroup_reclaim(sc))
1956 __count_vm_events(item, nr_reclaimed);
1957 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1958 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1959 spin_unlock_irq(&lruvec->lru_lock);
1961 lru_note_cost(lruvec, file, stat.nr_pageout);
1962 mem_cgroup_uncharge_list(&page_list);
1963 free_unref_page_list(&page_list);
1966 * If dirty pages are scanned that are not queued for IO, it
1967 * implies that flushers are not doing their job. This can
1968 * happen when memory pressure pushes dirty pages to the end of
1969 * the LRU before the dirty limits are breached and the dirty
1970 * data has expired. It can also happen when the proportion of
1971 * dirty pages grows not through writes but through memory
1972 * pressure reclaiming all the clean cache. And in some cases,
1973 * the flushers simply cannot keep up with the allocation
1974 * rate. Nudge the flusher threads in case they are asleep.
1976 if (stat.nr_unqueued_dirty == nr_taken)
1977 wakeup_flusher_threads(WB_REASON_VMSCAN);
1979 sc->nr.dirty += stat.nr_dirty;
1980 sc->nr.congested += stat.nr_congested;
1981 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1982 sc->nr.writeback += stat.nr_writeback;
1983 sc->nr.immediate += stat.nr_immediate;
1984 sc->nr.taken += nr_taken;
1986 sc->nr.file_taken += nr_taken;
1988 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1989 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1990 return nr_reclaimed;
1994 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
1996 * We move them the other way if the page is referenced by one or more
1999 * If the pages are mostly unmapped, the processing is fast and it is
2000 * appropriate to hold lru_lock across the whole operation. But if
2001 * the pages are mapped, the processing is slow (page_referenced()), so
2002 * we should drop lru_lock around each page. It's impossible to balance
2003 * this, so instead we remove the pages from the LRU while processing them.
2004 * It is safe to rely on PG_active against the non-LRU pages in here because
2005 * nobody will play with that bit on a non-LRU page.
2007 * The downside is that we have to touch page->_refcount against each page.
2008 * But we had to alter page->flags anyway.
2010 static void shrink_active_list(unsigned long nr_to_scan,
2011 struct lruvec *lruvec,
2012 struct scan_control *sc,
2015 unsigned long nr_taken;
2016 unsigned long nr_scanned;
2017 unsigned long vm_flags;
2018 LIST_HEAD(l_hold); /* The pages which were snipped off */
2019 LIST_HEAD(l_active);
2020 LIST_HEAD(l_inactive);
2022 unsigned nr_deactivate, nr_activate;
2023 unsigned nr_rotated = 0;
2024 int file = is_file_lru(lru);
2025 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2029 spin_lock_irq(&lruvec->lru_lock);
2031 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2032 &nr_scanned, sc, lru);
2034 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2036 if (!cgroup_reclaim(sc))
2037 __count_vm_events(PGREFILL, nr_scanned);
2038 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2040 spin_unlock_irq(&lruvec->lru_lock);
2042 while (!list_empty(&l_hold)) {
2044 page = lru_to_page(&l_hold);
2045 list_del(&page->lru);
2047 if (unlikely(!page_evictable(page))) {
2048 putback_lru_page(page);
2052 if (unlikely(buffer_heads_over_limit)) {
2053 if (page_has_private(page) && trylock_page(page)) {
2054 if (page_has_private(page))
2055 try_to_release_page(page, 0);
2060 if (page_referenced(page, 0, sc->target_mem_cgroup,
2063 * Identify referenced, file-backed active pages and
2064 * give them one more trip around the active list. So
2065 * that executable code get better chances to stay in
2066 * memory under moderate memory pressure. Anon pages
2067 * are not likely to be evicted by use-once streaming
2068 * IO, plus JVM can create lots of anon VM_EXEC pages,
2069 * so we ignore them here.
2071 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2072 nr_rotated += thp_nr_pages(page);
2073 list_add(&page->lru, &l_active);
2078 ClearPageActive(page); /* we are de-activating */
2079 SetPageWorkingset(page);
2080 list_add(&page->lru, &l_inactive);
2084 * Move pages back to the lru list.
2086 spin_lock_irq(&lruvec->lru_lock);
2088 nr_activate = move_pages_to_lru(lruvec, &l_active);
2089 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2090 /* Keep all free pages in l_active list */
2091 list_splice(&l_inactive, &l_active);
2093 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2094 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2096 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2097 spin_unlock_irq(&lruvec->lru_lock);
2099 mem_cgroup_uncharge_list(&l_active);
2100 free_unref_page_list(&l_active);
2101 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2102 nr_deactivate, nr_rotated, sc->priority, file);
2105 unsigned long reclaim_pages(struct list_head *page_list)
2107 int nid = NUMA_NO_NODE;
2108 unsigned int nr_reclaimed = 0;
2109 LIST_HEAD(node_page_list);
2110 struct reclaim_stat dummy_stat;
2112 struct scan_control sc = {
2113 .gfp_mask = GFP_KERNEL,
2114 .priority = DEF_PRIORITY,
2120 while (!list_empty(page_list)) {
2121 page = lru_to_page(page_list);
2122 if (nid == NUMA_NO_NODE) {
2123 nid = page_to_nid(page);
2124 INIT_LIST_HEAD(&node_page_list);
2127 if (nid == page_to_nid(page)) {
2128 ClearPageActive(page);
2129 list_move(&page->lru, &node_page_list);
2133 nr_reclaimed += shrink_page_list(&node_page_list,
2135 &sc, &dummy_stat, false);
2136 while (!list_empty(&node_page_list)) {
2137 page = lru_to_page(&node_page_list);
2138 list_del(&page->lru);
2139 putback_lru_page(page);
2145 if (!list_empty(&node_page_list)) {
2146 nr_reclaimed += shrink_page_list(&node_page_list,
2148 &sc, &dummy_stat, false);
2149 while (!list_empty(&node_page_list)) {
2150 page = lru_to_page(&node_page_list);
2151 list_del(&page->lru);
2152 putback_lru_page(page);
2156 return nr_reclaimed;
2159 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2160 struct lruvec *lruvec, struct scan_control *sc)
2162 if (is_active_lru(lru)) {
2163 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2164 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2166 sc->skipped_deactivate = 1;
2170 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2174 * The inactive anon list should be small enough that the VM never has
2175 * to do too much work.
2177 * The inactive file list should be small enough to leave most memory
2178 * to the established workingset on the scan-resistant active list,
2179 * but large enough to avoid thrashing the aggregate readahead window.
2181 * Both inactive lists should also be large enough that each inactive
2182 * page has a chance to be referenced again before it is reclaimed.
2184 * If that fails and refaulting is observed, the inactive list grows.
2186 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2187 * on this LRU, maintained by the pageout code. An inactive_ratio
2188 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2191 * memory ratio inactive
2192 * -------------------------------------
2201 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2203 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2204 unsigned long inactive, active;
2205 unsigned long inactive_ratio;
2208 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2209 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2211 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2213 inactive_ratio = int_sqrt(10 * gb);
2217 return inactive * inactive_ratio < active;
2228 * Determine how aggressively the anon and file LRU lists should be
2229 * scanned. The relative value of each set of LRU lists is determined
2230 * by looking at the fraction of the pages scanned we did rotate back
2231 * onto the active list instead of evict.
2233 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2234 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2236 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2239 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2240 unsigned long anon_cost, file_cost, total_cost;
2241 int swappiness = mem_cgroup_swappiness(memcg);
2242 u64 fraction[ANON_AND_FILE];
2243 u64 denominator = 0; /* gcc */
2244 enum scan_balance scan_balance;
2245 unsigned long ap, fp;
2248 /* If we have no swap space, do not bother scanning anon pages. */
2249 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2250 scan_balance = SCAN_FILE;
2255 * Global reclaim will swap to prevent OOM even with no
2256 * swappiness, but memcg users want to use this knob to
2257 * disable swapping for individual groups completely when
2258 * using the memory controller's swap limit feature would be
2261 if (cgroup_reclaim(sc) && !swappiness) {
2262 scan_balance = SCAN_FILE;
2267 * Do not apply any pressure balancing cleverness when the
2268 * system is close to OOM, scan both anon and file equally
2269 * (unless the swappiness setting disagrees with swapping).
2271 if (!sc->priority && swappiness) {
2272 scan_balance = SCAN_EQUAL;
2277 * If the system is almost out of file pages, force-scan anon.
2279 if (sc->file_is_tiny) {
2280 scan_balance = SCAN_ANON;
2285 * If there is enough inactive page cache, we do not reclaim
2286 * anything from the anonymous working right now.
2288 if (sc->cache_trim_mode) {
2289 scan_balance = SCAN_FILE;
2293 scan_balance = SCAN_FRACT;
2295 * Calculate the pressure balance between anon and file pages.
2297 * The amount of pressure we put on each LRU is inversely
2298 * proportional to the cost of reclaiming each list, as
2299 * determined by the share of pages that are refaulting, times
2300 * the relative IO cost of bringing back a swapped out
2301 * anonymous page vs reloading a filesystem page (swappiness).
2303 * Although we limit that influence to ensure no list gets
2304 * left behind completely: at least a third of the pressure is
2305 * applied, before swappiness.
2307 * With swappiness at 100, anon and file have equal IO cost.
2309 total_cost = sc->anon_cost + sc->file_cost;
2310 anon_cost = total_cost + sc->anon_cost;
2311 file_cost = total_cost + sc->file_cost;
2312 total_cost = anon_cost + file_cost;
2314 ap = swappiness * (total_cost + 1);
2315 ap /= anon_cost + 1;
2317 fp = (200 - swappiness) * (total_cost + 1);
2318 fp /= file_cost + 1;
2322 denominator = ap + fp;
2324 for_each_evictable_lru(lru) {
2325 int file = is_file_lru(lru);
2326 unsigned long lruvec_size;
2328 unsigned long protection;
2330 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2331 protection = mem_cgroup_protection(sc->target_mem_cgroup,
2333 sc->memcg_low_reclaim);
2337 * Scale a cgroup's reclaim pressure by proportioning
2338 * its current usage to its memory.low or memory.min
2341 * This is important, as otherwise scanning aggression
2342 * becomes extremely binary -- from nothing as we
2343 * approach the memory protection threshold, to totally
2344 * nominal as we exceed it. This results in requiring
2345 * setting extremely liberal protection thresholds. It
2346 * also means we simply get no protection at all if we
2347 * set it too low, which is not ideal.
2349 * If there is any protection in place, we reduce scan
2350 * pressure by how much of the total memory used is
2351 * within protection thresholds.
2353 * There is one special case: in the first reclaim pass,
2354 * we skip over all groups that are within their low
2355 * protection. If that fails to reclaim enough pages to
2356 * satisfy the reclaim goal, we come back and override
2357 * the best-effort low protection. However, we still
2358 * ideally want to honor how well-behaved groups are in
2359 * that case instead of simply punishing them all
2360 * equally. As such, we reclaim them based on how much
2361 * memory they are using, reducing the scan pressure
2362 * again by how much of the total memory used is under
2365 unsigned long cgroup_size = mem_cgroup_size(memcg);
2367 /* Avoid TOCTOU with earlier protection check */
2368 cgroup_size = max(cgroup_size, protection);
2370 scan = lruvec_size - lruvec_size * protection /
2374 * Minimally target SWAP_CLUSTER_MAX pages to keep
2375 * reclaim moving forwards, avoiding decrementing
2376 * sc->priority further than desirable.
2378 scan = max(scan, SWAP_CLUSTER_MAX);
2383 scan >>= sc->priority;
2386 * If the cgroup's already been deleted, make sure to
2387 * scrape out the remaining cache.
2389 if (!scan && !mem_cgroup_online(memcg))
2390 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2392 switch (scan_balance) {
2394 /* Scan lists relative to size */
2398 * Scan types proportional to swappiness and
2399 * their relative recent reclaim efficiency.
2400 * Make sure we don't miss the last page on
2401 * the offlined memory cgroups because of a
2404 scan = mem_cgroup_online(memcg) ?
2405 div64_u64(scan * fraction[file], denominator) :
2406 DIV64_U64_ROUND_UP(scan * fraction[file],
2411 /* Scan one type exclusively */
2412 if ((scan_balance == SCAN_FILE) != file)
2416 /* Look ma, no brain */
2424 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2426 unsigned long nr[NR_LRU_LISTS];
2427 unsigned long targets[NR_LRU_LISTS];
2428 unsigned long nr_to_scan;
2430 unsigned long nr_reclaimed = 0;
2431 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2432 struct blk_plug plug;
2435 get_scan_count(lruvec, sc, nr);
2437 /* Record the original scan target for proportional adjustments later */
2438 memcpy(targets, nr, sizeof(nr));
2441 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2442 * event that can occur when there is little memory pressure e.g.
2443 * multiple streaming readers/writers. Hence, we do not abort scanning
2444 * when the requested number of pages are reclaimed when scanning at
2445 * DEF_PRIORITY on the assumption that the fact we are direct
2446 * reclaiming implies that kswapd is not keeping up and it is best to
2447 * do a batch of work at once. For memcg reclaim one check is made to
2448 * abort proportional reclaim if either the file or anon lru has already
2449 * dropped to zero at the first pass.
2451 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2452 sc->priority == DEF_PRIORITY);
2454 blk_start_plug(&plug);
2455 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2456 nr[LRU_INACTIVE_FILE]) {
2457 unsigned long nr_anon, nr_file, percentage;
2458 unsigned long nr_scanned;
2460 for_each_evictable_lru(lru) {
2462 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2463 nr[lru] -= nr_to_scan;
2465 nr_reclaimed += shrink_list(lru, nr_to_scan,
2472 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2476 * For kswapd and memcg, reclaim at least the number of pages
2477 * requested. Ensure that the anon and file LRUs are scanned
2478 * proportionally what was requested by get_scan_count(). We
2479 * stop reclaiming one LRU and reduce the amount scanning
2480 * proportional to the original scan target.
2482 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2483 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2486 * It's just vindictive to attack the larger once the smaller
2487 * has gone to zero. And given the way we stop scanning the
2488 * smaller below, this makes sure that we only make one nudge
2489 * towards proportionality once we've got nr_to_reclaim.
2491 if (!nr_file || !nr_anon)
2494 if (nr_file > nr_anon) {
2495 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2496 targets[LRU_ACTIVE_ANON] + 1;
2498 percentage = nr_anon * 100 / scan_target;
2500 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2501 targets[LRU_ACTIVE_FILE] + 1;
2503 percentage = nr_file * 100 / scan_target;
2506 /* Stop scanning the smaller of the LRU */
2508 nr[lru + LRU_ACTIVE] = 0;
2511 * Recalculate the other LRU scan count based on its original
2512 * scan target and the percentage scanning already complete
2514 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2515 nr_scanned = targets[lru] - nr[lru];
2516 nr[lru] = targets[lru] * (100 - percentage) / 100;
2517 nr[lru] -= min(nr[lru], nr_scanned);
2520 nr_scanned = targets[lru] - nr[lru];
2521 nr[lru] = targets[lru] * (100 - percentage) / 100;
2522 nr[lru] -= min(nr[lru], nr_scanned);
2524 scan_adjusted = true;
2526 blk_finish_plug(&plug);
2527 sc->nr_reclaimed += nr_reclaimed;
2530 * Even if we did not try to evict anon pages at all, we want to
2531 * rebalance the anon lru active/inactive ratio.
2533 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2534 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2535 sc, LRU_ACTIVE_ANON);
2538 /* Use reclaim/compaction for costly allocs or under memory pressure */
2539 static bool in_reclaim_compaction(struct scan_control *sc)
2541 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2542 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2543 sc->priority < DEF_PRIORITY - 2))
2550 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2551 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2552 * true if more pages should be reclaimed such that when the page allocator
2553 * calls try_to_compact_pages() that it will have enough free pages to succeed.
2554 * It will give up earlier than that if there is difficulty reclaiming pages.
2556 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2557 unsigned long nr_reclaimed,
2558 struct scan_control *sc)
2560 unsigned long pages_for_compaction;
2561 unsigned long inactive_lru_pages;
2564 /* If not in reclaim/compaction mode, stop */
2565 if (!in_reclaim_compaction(sc))
2569 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2570 * number of pages that were scanned. This will return to the caller
2571 * with the risk reclaim/compaction and the resulting allocation attempt
2572 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2573 * allocations through requiring that the full LRU list has been scanned
2574 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2575 * scan, but that approximation was wrong, and there were corner cases
2576 * where always a non-zero amount of pages were scanned.
2581 /* If compaction would go ahead or the allocation would succeed, stop */
2582 for (z = 0; z <= sc->reclaim_idx; z++) {
2583 struct zone *zone = &pgdat->node_zones[z];
2584 if (!managed_zone(zone))
2587 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2588 case COMPACT_SUCCESS:
2589 case COMPACT_CONTINUE:
2592 /* check next zone */
2598 * If we have not reclaimed enough pages for compaction and the
2599 * inactive lists are large enough, continue reclaiming
2601 pages_for_compaction = compact_gap(sc->order);
2602 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2603 if (get_nr_swap_pages() > 0)
2604 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2606 return inactive_lru_pages > pages_for_compaction;
2609 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2611 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2612 struct mem_cgroup *memcg;
2614 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2616 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2617 unsigned long reclaimed;
2618 unsigned long scanned;
2621 * This loop can become CPU-bound when target memcgs
2622 * aren't eligible for reclaim - either because they
2623 * don't have any reclaimable pages, or because their
2624 * memory is explicitly protected. Avoid soft lockups.
2628 mem_cgroup_calculate_protection(target_memcg, memcg);
2630 if (mem_cgroup_below_min(memcg)) {
2633 * If there is no reclaimable memory, OOM.
2636 } else if (mem_cgroup_below_low(memcg)) {
2639 * Respect the protection only as long as
2640 * there is an unprotected supply
2641 * of reclaimable memory from other cgroups.
2643 if (!sc->memcg_low_reclaim) {
2644 sc->memcg_low_skipped = 1;
2647 memcg_memory_event(memcg, MEMCG_LOW);
2650 reclaimed = sc->nr_reclaimed;
2651 scanned = sc->nr_scanned;
2653 shrink_lruvec(lruvec, sc);
2655 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2658 /* Record the group's reclaim efficiency */
2659 vmpressure(sc->gfp_mask, memcg, false,
2660 sc->nr_scanned - scanned,
2661 sc->nr_reclaimed - reclaimed);
2663 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2666 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2668 struct reclaim_state *reclaim_state = current->reclaim_state;
2669 unsigned long nr_reclaimed, nr_scanned;
2670 struct lruvec *target_lruvec;
2671 bool reclaimable = false;
2674 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2677 memset(&sc->nr, 0, sizeof(sc->nr));
2679 nr_reclaimed = sc->nr_reclaimed;
2680 nr_scanned = sc->nr_scanned;
2683 * Determine the scan balance between anon and file LRUs.
2685 spin_lock_irq(&target_lruvec->lru_lock);
2686 sc->anon_cost = target_lruvec->anon_cost;
2687 sc->file_cost = target_lruvec->file_cost;
2688 spin_unlock_irq(&target_lruvec->lru_lock);
2691 * Target desirable inactive:active list ratios for the anon
2692 * and file LRU lists.
2694 if (!sc->force_deactivate) {
2695 unsigned long refaults;
2697 refaults = lruvec_page_state(target_lruvec,
2698 WORKINGSET_ACTIVATE_ANON);
2699 if (refaults != target_lruvec->refaults[0] ||
2700 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2701 sc->may_deactivate |= DEACTIVATE_ANON;
2703 sc->may_deactivate &= ~DEACTIVATE_ANON;
2706 * When refaults are being observed, it means a new
2707 * workingset is being established. Deactivate to get
2708 * rid of any stale active pages quickly.
2710 refaults = lruvec_page_state(target_lruvec,
2711 WORKINGSET_ACTIVATE_FILE);
2712 if (refaults != target_lruvec->refaults[1] ||
2713 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2714 sc->may_deactivate |= DEACTIVATE_FILE;
2716 sc->may_deactivate &= ~DEACTIVATE_FILE;
2718 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2721 * If we have plenty of inactive file pages that aren't
2722 * thrashing, try to reclaim those first before touching
2725 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2726 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2727 sc->cache_trim_mode = 1;
2729 sc->cache_trim_mode = 0;
2732 * Prevent the reclaimer from falling into the cache trap: as
2733 * cache pages start out inactive, every cache fault will tip
2734 * the scan balance towards the file LRU. And as the file LRU
2735 * shrinks, so does the window for rotation from references.
2736 * This means we have a runaway feedback loop where a tiny
2737 * thrashing file LRU becomes infinitely more attractive than
2738 * anon pages. Try to detect this based on file LRU size.
2740 if (!cgroup_reclaim(sc)) {
2741 unsigned long total_high_wmark = 0;
2742 unsigned long free, anon;
2745 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2746 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2747 node_page_state(pgdat, NR_INACTIVE_FILE);
2749 for (z = 0; z < MAX_NR_ZONES; z++) {
2750 struct zone *zone = &pgdat->node_zones[z];
2751 if (!managed_zone(zone))
2754 total_high_wmark += high_wmark_pages(zone);
2758 * Consider anon: if that's low too, this isn't a
2759 * runaway file reclaim problem, but rather just
2760 * extreme pressure. Reclaim as per usual then.
2762 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2765 file + free <= total_high_wmark &&
2766 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2767 anon >> sc->priority;
2770 shrink_node_memcgs(pgdat, sc);
2772 if (reclaim_state) {
2773 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2774 reclaim_state->reclaimed_slab = 0;
2777 /* Record the subtree's reclaim efficiency */
2778 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2779 sc->nr_scanned - nr_scanned,
2780 sc->nr_reclaimed - nr_reclaimed);
2782 if (sc->nr_reclaimed - nr_reclaimed)
2785 if (current_is_kswapd()) {
2787 * If reclaim is isolating dirty pages under writeback,
2788 * it implies that the long-lived page allocation rate
2789 * is exceeding the page laundering rate. Either the
2790 * global limits are not being effective at throttling
2791 * processes due to the page distribution throughout
2792 * zones or there is heavy usage of a slow backing
2793 * device. The only option is to throttle from reclaim
2794 * context which is not ideal as there is no guarantee
2795 * the dirtying process is throttled in the same way
2796 * balance_dirty_pages() manages.
2798 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2799 * count the number of pages under pages flagged for
2800 * immediate reclaim and stall if any are encountered
2801 * in the nr_immediate check below.
2803 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2804 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2806 /* Allow kswapd to start writing pages during reclaim.*/
2807 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2808 set_bit(PGDAT_DIRTY, &pgdat->flags);
2811 * If kswapd scans pages marked for immediate
2812 * reclaim and under writeback (nr_immediate), it
2813 * implies that pages are cycling through the LRU
2814 * faster than they are written so also forcibly stall.
2816 if (sc->nr.immediate)
2817 congestion_wait(BLK_RW_ASYNC, HZ/10);
2821 * Tag a node/memcg as congested if all the dirty pages
2822 * scanned were backed by a congested BDI and
2823 * wait_iff_congested will stall.
2825 * Legacy memcg will stall in page writeback so avoid forcibly
2826 * stalling in wait_iff_congested().
2828 if ((current_is_kswapd() ||
2829 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2830 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2831 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2834 * Stall direct reclaim for IO completions if underlying BDIs
2835 * and node is congested. Allow kswapd to continue until it
2836 * starts encountering unqueued dirty pages or cycling through
2837 * the LRU too quickly.
2839 if (!current_is_kswapd() && current_may_throttle() &&
2840 !sc->hibernation_mode &&
2841 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2842 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2844 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2849 * Kswapd gives up on balancing particular nodes after too
2850 * many failures to reclaim anything from them and goes to
2851 * sleep. On reclaim progress, reset the failure counter. A
2852 * successful direct reclaim run will revive a dormant kswapd.
2855 pgdat->kswapd_failures = 0;
2859 * Returns true if compaction should go ahead for a costly-order request, or
2860 * the allocation would already succeed without compaction. Return false if we
2861 * should reclaim first.
2863 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2865 unsigned long watermark;
2866 enum compact_result suitable;
2868 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2869 if (suitable == COMPACT_SUCCESS)
2870 /* Allocation should succeed already. Don't reclaim. */
2872 if (suitable == COMPACT_SKIPPED)
2873 /* Compaction cannot yet proceed. Do reclaim. */
2877 * Compaction is already possible, but it takes time to run and there
2878 * are potentially other callers using the pages just freed. So proceed
2879 * with reclaim to make a buffer of free pages available to give
2880 * compaction a reasonable chance of completing and allocating the page.
2881 * Note that we won't actually reclaim the whole buffer in one attempt
2882 * as the target watermark in should_continue_reclaim() is lower. But if
2883 * we are already above the high+gap watermark, don't reclaim at all.
2885 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2887 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2891 * This is the direct reclaim path, for page-allocating processes. We only
2892 * try to reclaim pages from zones which will satisfy the caller's allocation
2895 * If a zone is deemed to be full of pinned pages then just give it a light
2896 * scan then give up on it.
2898 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2902 unsigned long nr_soft_reclaimed;
2903 unsigned long nr_soft_scanned;
2905 pg_data_t *last_pgdat = NULL;
2908 * If the number of buffer_heads in the machine exceeds the maximum
2909 * allowed level, force direct reclaim to scan the highmem zone as
2910 * highmem pages could be pinning lowmem pages storing buffer_heads
2912 orig_mask = sc->gfp_mask;
2913 if (buffer_heads_over_limit) {
2914 sc->gfp_mask |= __GFP_HIGHMEM;
2915 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2918 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2919 sc->reclaim_idx, sc->nodemask) {
2921 * Take care memory controller reclaiming has small influence
2924 if (!cgroup_reclaim(sc)) {
2925 if (!cpuset_zone_allowed(zone,
2926 GFP_KERNEL | __GFP_HARDWALL))
2930 * If we already have plenty of memory free for
2931 * compaction in this zone, don't free any more.
2932 * Even though compaction is invoked for any
2933 * non-zero order, only frequent costly order
2934 * reclamation is disruptive enough to become a
2935 * noticeable problem, like transparent huge
2938 if (IS_ENABLED(CONFIG_COMPACTION) &&
2939 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2940 compaction_ready(zone, sc)) {
2941 sc->compaction_ready = true;
2946 * Shrink each node in the zonelist once. If the
2947 * zonelist is ordered by zone (not the default) then a
2948 * node may be shrunk multiple times but in that case
2949 * the user prefers lower zones being preserved.
2951 if (zone->zone_pgdat == last_pgdat)
2955 * This steals pages from memory cgroups over softlimit
2956 * and returns the number of reclaimed pages and
2957 * scanned pages. This works for global memory pressure
2958 * and balancing, not for a memcg's limit.
2960 nr_soft_scanned = 0;
2961 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2962 sc->order, sc->gfp_mask,
2964 sc->nr_reclaimed += nr_soft_reclaimed;
2965 sc->nr_scanned += nr_soft_scanned;
2966 /* need some check for avoid more shrink_zone() */
2969 /* See comment about same check for global reclaim above */
2970 if (zone->zone_pgdat == last_pgdat)
2972 last_pgdat = zone->zone_pgdat;
2973 shrink_node(zone->zone_pgdat, sc);
2977 * Restore to original mask to avoid the impact on the caller if we
2978 * promoted it to __GFP_HIGHMEM.
2980 sc->gfp_mask = orig_mask;
2983 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2985 struct lruvec *target_lruvec;
2986 unsigned long refaults;
2988 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
2989 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
2990 target_lruvec->refaults[0] = refaults;
2991 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
2992 target_lruvec->refaults[1] = refaults;
2996 * This is the main entry point to direct page reclaim.
2998 * If a full scan of the inactive list fails to free enough memory then we
2999 * are "out of memory" and something needs to be killed.
3001 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3002 * high - the zone may be full of dirty or under-writeback pages, which this
3003 * caller can't do much about. We kick the writeback threads and take explicit
3004 * naps in the hope that some of these pages can be written. But if the
3005 * allocating task holds filesystem locks which prevent writeout this might not
3006 * work, and the allocation attempt will fail.
3008 * returns: 0, if no pages reclaimed
3009 * else, the number of pages reclaimed
3011 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3012 struct scan_control *sc)
3014 int initial_priority = sc->priority;
3015 pg_data_t *last_pgdat;
3019 delayacct_freepages_start();
3021 if (!cgroup_reclaim(sc))
3022 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3025 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3028 shrink_zones(zonelist, sc);
3030 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3033 if (sc->compaction_ready)
3037 * If we're getting trouble reclaiming, start doing
3038 * writepage even in laptop mode.
3040 if (sc->priority < DEF_PRIORITY - 2)
3041 sc->may_writepage = 1;
3042 } while (--sc->priority >= 0);
3045 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3047 if (zone->zone_pgdat == last_pgdat)
3049 last_pgdat = zone->zone_pgdat;
3051 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3053 if (cgroup_reclaim(sc)) {
3054 struct lruvec *lruvec;
3056 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3058 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3062 delayacct_freepages_end();
3064 if (sc->nr_reclaimed)
3065 return sc->nr_reclaimed;
3067 /* Aborted reclaim to try compaction? don't OOM, then */
3068 if (sc->compaction_ready)
3072 * We make inactive:active ratio decisions based on the node's
3073 * composition of memory, but a restrictive reclaim_idx or a
3074 * memory.low cgroup setting can exempt large amounts of
3075 * memory from reclaim. Neither of which are very common, so
3076 * instead of doing costly eligibility calculations of the
3077 * entire cgroup subtree up front, we assume the estimates are
3078 * good, and retry with forcible deactivation if that fails.
3080 if (sc->skipped_deactivate) {
3081 sc->priority = initial_priority;
3082 sc->force_deactivate = 1;
3083 sc->skipped_deactivate = 0;
3087 /* Untapped cgroup reserves? Don't OOM, retry. */
3088 if (sc->memcg_low_skipped) {
3089 sc->priority = initial_priority;
3090 sc->force_deactivate = 0;
3091 sc->memcg_low_reclaim = 1;
3092 sc->memcg_low_skipped = 0;
3099 static bool allow_direct_reclaim(pg_data_t *pgdat)
3102 unsigned long pfmemalloc_reserve = 0;
3103 unsigned long free_pages = 0;
3107 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3110 for (i = 0; i <= ZONE_NORMAL; i++) {
3111 zone = &pgdat->node_zones[i];
3112 if (!managed_zone(zone))
3115 if (!zone_reclaimable_pages(zone))
3118 pfmemalloc_reserve += min_wmark_pages(zone);
3119 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3122 /* If there are no reserves (unexpected config) then do not throttle */
3123 if (!pfmemalloc_reserve)
3126 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3128 /* kswapd must be awake if processes are being throttled */
3129 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3130 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3131 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3133 wake_up_interruptible(&pgdat->kswapd_wait);
3140 * Throttle direct reclaimers if backing storage is backed by the network
3141 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3142 * depleted. kswapd will continue to make progress and wake the processes
3143 * when the low watermark is reached.
3145 * Returns true if a fatal signal was delivered during throttling. If this
3146 * happens, the page allocator should not consider triggering the OOM killer.
3148 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3149 nodemask_t *nodemask)
3153 pg_data_t *pgdat = NULL;
3156 * Kernel threads should not be throttled as they may be indirectly
3157 * responsible for cleaning pages necessary for reclaim to make forward
3158 * progress. kjournald for example may enter direct reclaim while
3159 * committing a transaction where throttling it could forcing other
3160 * processes to block on log_wait_commit().
3162 if (current->flags & PF_KTHREAD)
3166 * If a fatal signal is pending, this process should not throttle.
3167 * It should return quickly so it can exit and free its memory
3169 if (fatal_signal_pending(current))
3173 * Check if the pfmemalloc reserves are ok by finding the first node
3174 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3175 * GFP_KERNEL will be required for allocating network buffers when
3176 * swapping over the network so ZONE_HIGHMEM is unusable.
3178 * Throttling is based on the first usable node and throttled processes
3179 * wait on a queue until kswapd makes progress and wakes them. There
3180 * is an affinity then between processes waking up and where reclaim
3181 * progress has been made assuming the process wakes on the same node.
3182 * More importantly, processes running on remote nodes will not compete
3183 * for remote pfmemalloc reserves and processes on different nodes
3184 * should make reasonable progress.
3186 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3187 gfp_zone(gfp_mask), nodemask) {
3188 if (zone_idx(zone) > ZONE_NORMAL)
3191 /* Throttle based on the first usable node */
3192 pgdat = zone->zone_pgdat;
3193 if (allow_direct_reclaim(pgdat))
3198 /* If no zone was usable by the allocation flags then do not throttle */
3202 /* Account for the throttling */
3203 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3206 * If the caller cannot enter the filesystem, it's possible that it
3207 * is due to the caller holding an FS lock or performing a journal
3208 * transaction in the case of a filesystem like ext[3|4]. In this case,
3209 * it is not safe to block on pfmemalloc_wait as kswapd could be
3210 * blocked waiting on the same lock. Instead, throttle for up to a
3211 * second before continuing.
3213 if (!(gfp_mask & __GFP_FS)) {
3214 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3215 allow_direct_reclaim(pgdat), HZ);
3220 /* Throttle until kswapd wakes the process */
3221 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3222 allow_direct_reclaim(pgdat));
3225 if (fatal_signal_pending(current))
3232 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3233 gfp_t gfp_mask, nodemask_t *nodemask)
3235 unsigned long nr_reclaimed;
3236 struct scan_control sc = {
3237 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3238 .gfp_mask = current_gfp_context(gfp_mask),
3239 .reclaim_idx = gfp_zone(gfp_mask),
3241 .nodemask = nodemask,
3242 .priority = DEF_PRIORITY,
3243 .may_writepage = !laptop_mode,
3249 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3250 * Confirm they are large enough for max values.
3252 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3253 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3254 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3257 * Do not enter reclaim if fatal signal was delivered while throttled.
3258 * 1 is returned so that the page allocator does not OOM kill at this
3261 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3264 set_task_reclaim_state(current, &sc.reclaim_state);
3265 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3267 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3269 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3270 set_task_reclaim_state(current, NULL);
3272 return nr_reclaimed;
3277 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3278 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3279 gfp_t gfp_mask, bool noswap,
3281 unsigned long *nr_scanned)
3283 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3284 struct scan_control sc = {
3285 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3286 .target_mem_cgroup = memcg,
3287 .may_writepage = !laptop_mode,
3289 .reclaim_idx = MAX_NR_ZONES - 1,
3290 .may_swap = !noswap,
3293 WARN_ON_ONCE(!current->reclaim_state);
3295 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3296 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3298 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3302 * NOTE: Although we can get the priority field, using it
3303 * here is not a good idea, since it limits the pages we can scan.
3304 * if we don't reclaim here, the shrink_node from balance_pgdat
3305 * will pick up pages from other mem cgroup's as well. We hack
3306 * the priority and make it zero.
3308 shrink_lruvec(lruvec, &sc);
3310 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3312 *nr_scanned = sc.nr_scanned;
3314 return sc.nr_reclaimed;
3317 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3318 unsigned long nr_pages,
3322 unsigned long nr_reclaimed;
3323 unsigned int noreclaim_flag;
3324 struct scan_control sc = {
3325 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3326 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3327 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3328 .reclaim_idx = MAX_NR_ZONES - 1,
3329 .target_mem_cgroup = memcg,
3330 .priority = DEF_PRIORITY,
3331 .may_writepage = !laptop_mode,
3333 .may_swap = may_swap,
3336 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3337 * equal pressure on all the nodes. This is based on the assumption that
3338 * the reclaim does not bail out early.
3340 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3342 set_task_reclaim_state(current, &sc.reclaim_state);
3343 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3344 noreclaim_flag = memalloc_noreclaim_save();
3346 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3348 memalloc_noreclaim_restore(noreclaim_flag);
3349 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3350 set_task_reclaim_state(current, NULL);
3352 return nr_reclaimed;
3356 static void age_active_anon(struct pglist_data *pgdat,
3357 struct scan_control *sc)
3359 struct mem_cgroup *memcg;
3360 struct lruvec *lruvec;
3362 if (!total_swap_pages)
3365 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3366 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3369 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3371 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3372 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3373 sc, LRU_ACTIVE_ANON);
3374 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3378 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3384 * Check for watermark boosts top-down as the higher zones
3385 * are more likely to be boosted. Both watermarks and boosts
3386 * should not be checked at the same time as reclaim would
3387 * start prematurely when there is no boosting and a lower
3390 for (i = highest_zoneidx; i >= 0; i--) {
3391 zone = pgdat->node_zones + i;
3392 if (!managed_zone(zone))
3395 if (zone->watermark_boost)
3403 * Returns true if there is an eligible zone balanced for the request order
3404 * and highest_zoneidx
3406 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3409 unsigned long mark = -1;
3413 * Check watermarks bottom-up as lower zones are more likely to
3416 for (i = 0; i <= highest_zoneidx; i++) {
3417 zone = pgdat->node_zones + i;
3419 if (!managed_zone(zone))
3422 mark = high_wmark_pages(zone);
3423 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3428 * If a node has no populated zone within highest_zoneidx, it does not
3429 * need balancing by definition. This can happen if a zone-restricted
3430 * allocation tries to wake a remote kswapd.
3438 /* Clear pgdat state for congested, dirty or under writeback. */
3439 static void clear_pgdat_congested(pg_data_t *pgdat)
3441 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3443 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3444 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3445 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3449 * Prepare kswapd for sleeping. This verifies that there are no processes
3450 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3452 * Returns true if kswapd is ready to sleep
3454 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3455 int highest_zoneidx)
3458 * The throttled processes are normally woken up in balance_pgdat() as
3459 * soon as allow_direct_reclaim() is true. But there is a potential
3460 * race between when kswapd checks the watermarks and a process gets
3461 * throttled. There is also a potential race if processes get
3462 * throttled, kswapd wakes, a large process exits thereby balancing the
3463 * zones, which causes kswapd to exit balance_pgdat() before reaching
3464 * the wake up checks. If kswapd is going to sleep, no process should
3465 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3466 * the wake up is premature, processes will wake kswapd and get
3467 * throttled again. The difference from wake ups in balance_pgdat() is
3468 * that here we are under prepare_to_wait().
3470 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3471 wake_up_all(&pgdat->pfmemalloc_wait);
3473 /* Hopeless node, leave it to direct reclaim */
3474 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3477 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3478 clear_pgdat_congested(pgdat);
3486 * kswapd shrinks a node of pages that are at or below the highest usable
3487 * zone that is currently unbalanced.
3489 * Returns true if kswapd scanned at least the requested number of pages to
3490 * reclaim or if the lack of progress was due to pages under writeback.
3491 * This is used to determine if the scanning priority needs to be raised.
3493 static bool kswapd_shrink_node(pg_data_t *pgdat,
3494 struct scan_control *sc)
3499 /* Reclaim a number of pages proportional to the number of zones */
3500 sc->nr_to_reclaim = 0;
3501 for (z = 0; z <= sc->reclaim_idx; z++) {
3502 zone = pgdat->node_zones + z;
3503 if (!managed_zone(zone))
3506 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3510 * Historically care was taken to put equal pressure on all zones but
3511 * now pressure is applied based on node LRU order.
3513 shrink_node(pgdat, sc);
3516 * Fragmentation may mean that the system cannot be rebalanced for
3517 * high-order allocations. If twice the allocation size has been
3518 * reclaimed then recheck watermarks only at order-0 to prevent
3519 * excessive reclaim. Assume that a process requested a high-order
3520 * can direct reclaim/compact.
3522 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3525 return sc->nr_scanned >= sc->nr_to_reclaim;
3529 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3530 * that are eligible for use by the caller until at least one zone is
3533 * Returns the order kswapd finished reclaiming at.
3535 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3536 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3537 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3538 * or lower is eligible for reclaim until at least one usable zone is
3541 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3544 unsigned long nr_soft_reclaimed;
3545 unsigned long nr_soft_scanned;
3546 unsigned long pflags;
3547 unsigned long nr_boost_reclaim;
3548 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3551 struct scan_control sc = {
3552 .gfp_mask = GFP_KERNEL,
3557 set_task_reclaim_state(current, &sc.reclaim_state);
3558 psi_memstall_enter(&pflags);
3559 __fs_reclaim_acquire();
3561 count_vm_event(PAGEOUTRUN);
3564 * Account for the reclaim boost. Note that the zone boost is left in
3565 * place so that parallel allocations that are near the watermark will
3566 * stall or direct reclaim until kswapd is finished.
3568 nr_boost_reclaim = 0;
3569 for (i = 0; i <= highest_zoneidx; i++) {
3570 zone = pgdat->node_zones + i;
3571 if (!managed_zone(zone))
3574 nr_boost_reclaim += zone->watermark_boost;
3575 zone_boosts[i] = zone->watermark_boost;
3577 boosted = nr_boost_reclaim;
3580 sc.priority = DEF_PRIORITY;
3582 unsigned long nr_reclaimed = sc.nr_reclaimed;
3583 bool raise_priority = true;
3587 sc.reclaim_idx = highest_zoneidx;
3590 * If the number of buffer_heads exceeds the maximum allowed
3591 * then consider reclaiming from all zones. This has a dual
3592 * purpose -- on 64-bit systems it is expected that
3593 * buffer_heads are stripped during active rotation. On 32-bit
3594 * systems, highmem pages can pin lowmem memory and shrinking
3595 * buffers can relieve lowmem pressure. Reclaim may still not
3596 * go ahead if all eligible zones for the original allocation
3597 * request are balanced to avoid excessive reclaim from kswapd.
3599 if (buffer_heads_over_limit) {
3600 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3601 zone = pgdat->node_zones + i;
3602 if (!managed_zone(zone))
3611 * If the pgdat is imbalanced then ignore boosting and preserve
3612 * the watermarks for a later time and restart. Note that the
3613 * zone watermarks will be still reset at the end of balancing
3614 * on the grounds that the normal reclaim should be enough to
3615 * re-evaluate if boosting is required when kswapd next wakes.
3617 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3618 if (!balanced && nr_boost_reclaim) {
3619 nr_boost_reclaim = 0;
3624 * If boosting is not active then only reclaim if there are no
3625 * eligible zones. Note that sc.reclaim_idx is not used as
3626 * buffer_heads_over_limit may have adjusted it.
3628 if (!nr_boost_reclaim && balanced)
3631 /* Limit the priority of boosting to avoid reclaim writeback */
3632 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3633 raise_priority = false;
3636 * Do not writeback or swap pages for boosted reclaim. The
3637 * intent is to relieve pressure not issue sub-optimal IO
3638 * from reclaim context. If no pages are reclaimed, the
3639 * reclaim will be aborted.
3641 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3642 sc.may_swap = !nr_boost_reclaim;
3645 * Do some background aging of the anon list, to give
3646 * pages a chance to be referenced before reclaiming. All
3647 * pages are rotated regardless of classzone as this is
3648 * about consistent aging.
3650 age_active_anon(pgdat, &sc);
3653 * If we're getting trouble reclaiming, start doing writepage
3654 * even in laptop mode.
3656 if (sc.priority < DEF_PRIORITY - 2)
3657 sc.may_writepage = 1;
3659 /* Call soft limit reclaim before calling shrink_node. */
3661 nr_soft_scanned = 0;
3662 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3663 sc.gfp_mask, &nr_soft_scanned);
3664 sc.nr_reclaimed += nr_soft_reclaimed;
3667 * There should be no need to raise the scanning priority if
3668 * enough pages are already being scanned that that high
3669 * watermark would be met at 100% efficiency.
3671 if (kswapd_shrink_node(pgdat, &sc))
3672 raise_priority = false;
3675 * If the low watermark is met there is no need for processes
3676 * to be throttled on pfmemalloc_wait as they should not be
3677 * able to safely make forward progress. Wake them
3679 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3680 allow_direct_reclaim(pgdat))
3681 wake_up_all(&pgdat->pfmemalloc_wait);
3683 /* Check if kswapd should be suspending */
3684 __fs_reclaim_release();
3685 ret = try_to_freeze();
3686 __fs_reclaim_acquire();
3687 if (ret || kthread_should_stop())
3691 * Raise priority if scanning rate is too low or there was no
3692 * progress in reclaiming pages
3694 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3695 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3698 * If reclaim made no progress for a boost, stop reclaim as
3699 * IO cannot be queued and it could be an infinite loop in
3700 * extreme circumstances.
3702 if (nr_boost_reclaim && !nr_reclaimed)
3705 if (raise_priority || !nr_reclaimed)
3707 } while (sc.priority >= 1);
3709 if (!sc.nr_reclaimed)
3710 pgdat->kswapd_failures++;
3713 /* If reclaim was boosted, account for the reclaim done in this pass */
3715 unsigned long flags;
3717 for (i = 0; i <= highest_zoneidx; i++) {
3718 if (!zone_boosts[i])
3721 /* Increments are under the zone lock */
3722 zone = pgdat->node_zones + i;
3723 spin_lock_irqsave(&zone->lock, flags);
3724 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3725 spin_unlock_irqrestore(&zone->lock, flags);
3729 * As there is now likely space, wakeup kcompact to defragment
3732 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3735 snapshot_refaults(NULL, pgdat);
3736 __fs_reclaim_release();
3737 psi_memstall_leave(&pflags);
3738 set_task_reclaim_state(current, NULL);
3741 * Return the order kswapd stopped reclaiming at as
3742 * prepare_kswapd_sleep() takes it into account. If another caller
3743 * entered the allocator slow path while kswapd was awake, order will
3744 * remain at the higher level.
3750 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3751 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3752 * not a valid index then either kswapd runs for first time or kswapd couldn't
3753 * sleep after previous reclaim attempt (node is still unbalanced). In that
3754 * case return the zone index of the previous kswapd reclaim cycle.
3756 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3757 enum zone_type prev_highest_zoneidx)
3759 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3761 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3764 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3765 unsigned int highest_zoneidx)
3770 if (freezing(current) || kthread_should_stop())
3773 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3776 * Try to sleep for a short interval. Note that kcompactd will only be
3777 * woken if it is possible to sleep for a short interval. This is
3778 * deliberate on the assumption that if reclaim cannot keep an
3779 * eligible zone balanced that it's also unlikely that compaction will
3782 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3784 * Compaction records what page blocks it recently failed to
3785 * isolate pages from and skips them in the future scanning.
3786 * When kswapd is going to sleep, it is reasonable to assume
3787 * that pages and compaction may succeed so reset the cache.
3789 reset_isolation_suitable(pgdat);
3792 * We have freed the memory, now we should compact it to make
3793 * allocation of the requested order possible.
3795 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3797 remaining = schedule_timeout(HZ/10);
3800 * If woken prematurely then reset kswapd_highest_zoneidx and
3801 * order. The values will either be from a wakeup request or
3802 * the previous request that slept prematurely.
3805 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3806 kswapd_highest_zoneidx(pgdat,
3809 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3810 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3813 finish_wait(&pgdat->kswapd_wait, &wait);
3814 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3818 * After a short sleep, check if it was a premature sleep. If not, then
3819 * go fully to sleep until explicitly woken up.
3822 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3823 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3826 * vmstat counters are not perfectly accurate and the estimated
3827 * value for counters such as NR_FREE_PAGES can deviate from the
3828 * true value by nr_online_cpus * threshold. To avoid the zone
3829 * watermarks being breached while under pressure, we reduce the
3830 * per-cpu vmstat threshold while kswapd is awake and restore
3831 * them before going back to sleep.
3833 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3835 if (!kthread_should_stop())
3838 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3841 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3843 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3845 finish_wait(&pgdat->kswapd_wait, &wait);
3849 * The background pageout daemon, started as a kernel thread
3850 * from the init process.
3852 * This basically trickles out pages so that we have _some_
3853 * free memory available even if there is no other activity
3854 * that frees anything up. This is needed for things like routing
3855 * etc, where we otherwise might have all activity going on in
3856 * asynchronous contexts that cannot page things out.
3858 * If there are applications that are active memory-allocators
3859 * (most normal use), this basically shouldn't matter.
3861 static int kswapd(void *p)
3863 unsigned int alloc_order, reclaim_order;
3864 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
3865 pg_data_t *pgdat = (pg_data_t*)p;
3866 struct task_struct *tsk = current;
3867 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3869 if (!cpumask_empty(cpumask))
3870 set_cpus_allowed_ptr(tsk, cpumask);
3873 * Tell the memory management that we're a "memory allocator",
3874 * and that if we need more memory we should get access to it
3875 * regardless (see "__alloc_pages()"). "kswapd" should
3876 * never get caught in the normal page freeing logic.
3878 * (Kswapd normally doesn't need memory anyway, but sometimes
3879 * you need a small amount of memory in order to be able to
3880 * page out something else, and this flag essentially protects
3881 * us from recursively trying to free more memory as we're
3882 * trying to free the first piece of memory in the first place).
3884 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3887 WRITE_ONCE(pgdat->kswapd_order, 0);
3888 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3892 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3893 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3897 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3900 /* Read the new order and highest_zoneidx */
3901 alloc_order = READ_ONCE(pgdat->kswapd_order);
3902 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3904 WRITE_ONCE(pgdat->kswapd_order, 0);
3905 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3907 ret = try_to_freeze();
3908 if (kthread_should_stop())
3912 * We can speed up thawing tasks if we don't call balance_pgdat
3913 * after returning from the refrigerator
3919 * Reclaim begins at the requested order but if a high-order
3920 * reclaim fails then kswapd falls back to reclaiming for
3921 * order-0. If that happens, kswapd will consider sleeping
3922 * for the order it finished reclaiming at (reclaim_order)
3923 * but kcompactd is woken to compact for the original
3924 * request (alloc_order).
3926 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
3928 reclaim_order = balance_pgdat(pgdat, alloc_order,
3930 if (reclaim_order < alloc_order)
3931 goto kswapd_try_sleep;
3934 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3940 * A zone is low on free memory or too fragmented for high-order memory. If
3941 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3942 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3943 * has failed or is not needed, still wake up kcompactd if only compaction is
3946 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3947 enum zone_type highest_zoneidx)
3950 enum zone_type curr_idx;
3952 if (!managed_zone(zone))
3955 if (!cpuset_zone_allowed(zone, gfp_flags))
3958 pgdat = zone->zone_pgdat;
3959 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3961 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
3962 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
3964 if (READ_ONCE(pgdat->kswapd_order) < order)
3965 WRITE_ONCE(pgdat->kswapd_order, order);
3967 if (!waitqueue_active(&pgdat->kswapd_wait))
3970 /* Hopeless node, leave it to direct reclaim if possible */
3971 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3972 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
3973 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
3975 * There may be plenty of free memory available, but it's too
3976 * fragmented for high-order allocations. Wake up kcompactd
3977 * and rely on compaction_suitable() to determine if it's
3978 * needed. If it fails, it will defer subsequent attempts to
3979 * ratelimit its work.
3981 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3982 wakeup_kcompactd(pgdat, order, highest_zoneidx);
3986 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
3988 wake_up_interruptible(&pgdat->kswapd_wait);
3991 #ifdef CONFIG_HIBERNATION
3993 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3996 * Rather than trying to age LRUs the aim is to preserve the overall
3997 * LRU order by reclaiming preferentially
3998 * inactive > active > active referenced > active mapped
4000 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4002 struct scan_control sc = {
4003 .nr_to_reclaim = nr_to_reclaim,
4004 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4005 .reclaim_idx = MAX_NR_ZONES - 1,
4006 .priority = DEF_PRIORITY,
4010 .hibernation_mode = 1,
4012 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4013 unsigned long nr_reclaimed;
4014 unsigned int noreclaim_flag;
4016 fs_reclaim_acquire(sc.gfp_mask);
4017 noreclaim_flag = memalloc_noreclaim_save();
4018 set_task_reclaim_state(current, &sc.reclaim_state);
4020 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4022 set_task_reclaim_state(current, NULL);
4023 memalloc_noreclaim_restore(noreclaim_flag);
4024 fs_reclaim_release(sc.gfp_mask);
4026 return nr_reclaimed;
4028 #endif /* CONFIG_HIBERNATION */
4031 * This kswapd start function will be called by init and node-hot-add.
4032 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4034 int kswapd_run(int nid)
4036 pg_data_t *pgdat = NODE_DATA(nid);
4042 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4043 if (IS_ERR(pgdat->kswapd)) {
4044 /* failure at boot is fatal */
4045 BUG_ON(system_state < SYSTEM_RUNNING);
4046 pr_err("Failed to start kswapd on node %d\n", nid);
4047 ret = PTR_ERR(pgdat->kswapd);
4048 pgdat->kswapd = NULL;
4054 * Called by memory hotplug when all memory in a node is offlined. Caller must
4055 * hold mem_hotplug_begin/end().
4057 void kswapd_stop(int nid)
4059 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4062 kthread_stop(kswapd);
4063 NODE_DATA(nid)->kswapd = NULL;
4067 static int __init kswapd_init(void)
4072 for_each_node_state(nid, N_MEMORY)
4077 module_init(kswapd_init)
4083 * If non-zero call node_reclaim when the number of free pages falls below
4086 int node_reclaim_mode __read_mostly;
4089 * These bit locations are exposed in the vm.zone_reclaim_mode sysctl
4090 * ABI. New bits are OK, but existing bits can never change.
4092 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
4093 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
4094 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
4097 * Priority for NODE_RECLAIM. This determines the fraction of pages
4098 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4101 #define NODE_RECLAIM_PRIORITY 4
4104 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4107 int sysctl_min_unmapped_ratio = 1;
4110 * If the number of slab pages in a zone grows beyond this percentage then
4111 * slab reclaim needs to occur.
4113 int sysctl_min_slab_ratio = 5;
4115 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4117 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4118 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4119 node_page_state(pgdat, NR_ACTIVE_FILE);
4122 * It's possible for there to be more file mapped pages than
4123 * accounted for by the pages on the file LRU lists because
4124 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4126 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4129 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4130 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4132 unsigned long nr_pagecache_reclaimable;
4133 unsigned long delta = 0;
4136 * If RECLAIM_UNMAP is set, then all file pages are considered
4137 * potentially reclaimable. Otherwise, we have to worry about
4138 * pages like swapcache and node_unmapped_file_pages() provides
4141 if (node_reclaim_mode & RECLAIM_UNMAP)
4142 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4144 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4146 /* If we can't clean pages, remove dirty pages from consideration */
4147 if (!(node_reclaim_mode & RECLAIM_WRITE))
4148 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4150 /* Watch for any possible underflows due to delta */
4151 if (unlikely(delta > nr_pagecache_reclaimable))
4152 delta = nr_pagecache_reclaimable;
4154 return nr_pagecache_reclaimable - delta;
4158 * Try to free up some pages from this node through reclaim.
4160 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4162 /* Minimum pages needed in order to stay on node */
4163 const unsigned long nr_pages = 1 << order;
4164 struct task_struct *p = current;
4165 unsigned int noreclaim_flag;
4166 struct scan_control sc = {
4167 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4168 .gfp_mask = current_gfp_context(gfp_mask),
4170 .priority = NODE_RECLAIM_PRIORITY,
4171 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4172 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4174 .reclaim_idx = gfp_zone(gfp_mask),
4177 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4181 fs_reclaim_acquire(sc.gfp_mask);
4183 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4184 * and we also need to be able to write out pages for RECLAIM_WRITE
4185 * and RECLAIM_UNMAP.
4187 noreclaim_flag = memalloc_noreclaim_save();
4188 p->flags |= PF_SWAPWRITE;
4189 set_task_reclaim_state(p, &sc.reclaim_state);
4191 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4193 * Free memory by calling shrink node with increasing
4194 * priorities until we have enough memory freed.
4197 shrink_node(pgdat, &sc);
4198 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4201 set_task_reclaim_state(p, NULL);
4202 current->flags &= ~PF_SWAPWRITE;
4203 memalloc_noreclaim_restore(noreclaim_flag);
4204 fs_reclaim_release(sc.gfp_mask);
4206 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4208 return sc.nr_reclaimed >= nr_pages;
4211 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4216 * Node reclaim reclaims unmapped file backed pages and
4217 * slab pages if we are over the defined limits.
4219 * A small portion of unmapped file backed pages is needed for
4220 * file I/O otherwise pages read by file I/O will be immediately
4221 * thrown out if the node is overallocated. So we do not reclaim
4222 * if less than a specified percentage of the node is used by
4223 * unmapped file backed pages.
4225 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4226 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4227 pgdat->min_slab_pages)
4228 return NODE_RECLAIM_FULL;
4231 * Do not scan if the allocation should not be delayed.
4233 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4234 return NODE_RECLAIM_NOSCAN;
4237 * Only run node reclaim on the local node or on nodes that do not
4238 * have associated processors. This will favor the local processor
4239 * over remote processors and spread off node memory allocations
4240 * as wide as possible.
4242 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4243 return NODE_RECLAIM_NOSCAN;
4245 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4246 return NODE_RECLAIM_NOSCAN;
4248 ret = __node_reclaim(pgdat, gfp_mask, order);
4249 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4252 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4259 * check_move_unevictable_pages - check pages for evictability and move to
4260 * appropriate zone lru list
4261 * @pvec: pagevec with lru pages to check
4263 * Checks pages for evictability, if an evictable page is in the unevictable
4264 * lru list, moves it to the appropriate evictable lru list. This function
4265 * should be only used for lru pages.
4267 void check_move_unevictable_pages(struct pagevec *pvec)
4269 struct lruvec *lruvec = NULL;
4274 for (i = 0; i < pvec->nr; i++) {
4275 struct page *page = pvec->pages[i];
4278 if (PageTransTail(page))
4281 nr_pages = thp_nr_pages(page);
4282 pgscanned += nr_pages;
4284 /* block memcg migration during page moving between lru */
4285 if (!TestClearPageLRU(page))
4288 lruvec = relock_page_lruvec_irq(page, lruvec);
4289 if (page_evictable(page) && PageUnevictable(page)) {
4290 del_page_from_lru_list(page, lruvec);
4291 ClearPageUnevictable(page);
4292 add_page_to_lru_list(page, lruvec);
4293 pgrescued += nr_pages;
4299 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4300 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4301 unlock_page_lruvec_irq(lruvec);
4302 } else if (pgscanned) {
4303 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4306 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);