Merge tag 'x86-urgent-2022-04-03' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / mm / vmalloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/bitops.h>
37 #include <linux/rbtree_augmented.h>
38 #include <linux/overflow.h>
39 #include <linux/pgtable.h>
40 #include <linux/uaccess.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45
46 #include "internal.h"
47 #include "pgalloc-track.h"
48
49 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
50 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
51
52 static int __init set_nohugeiomap(char *str)
53 {
54         ioremap_max_page_shift = PAGE_SHIFT;
55         return 0;
56 }
57 early_param("nohugeiomap", set_nohugeiomap);
58 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
59 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
60 #endif  /* CONFIG_HAVE_ARCH_HUGE_VMAP */
61
62 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
63 static bool __ro_after_init vmap_allow_huge = true;
64
65 static int __init set_nohugevmalloc(char *str)
66 {
67         vmap_allow_huge = false;
68         return 0;
69 }
70 early_param("nohugevmalloc", set_nohugevmalloc);
71 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
72 static const bool vmap_allow_huge = false;
73 #endif  /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
74
75 bool is_vmalloc_addr(const void *x)
76 {
77         unsigned long addr = (unsigned long)kasan_reset_tag(x);
78
79         return addr >= VMALLOC_START && addr < VMALLOC_END;
80 }
81 EXPORT_SYMBOL(is_vmalloc_addr);
82
83 struct vfree_deferred {
84         struct llist_head list;
85         struct work_struct wq;
86 };
87 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
88
89 static void __vunmap(const void *, int);
90
91 static void free_work(struct work_struct *w)
92 {
93         struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
94         struct llist_node *t, *llnode;
95
96         llist_for_each_safe(llnode, t, llist_del_all(&p->list))
97                 __vunmap((void *)llnode, 1);
98 }
99
100 /*** Page table manipulation functions ***/
101 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
102                         phys_addr_t phys_addr, pgprot_t prot,
103                         unsigned int max_page_shift, pgtbl_mod_mask *mask)
104 {
105         pte_t *pte;
106         u64 pfn;
107         unsigned long size = PAGE_SIZE;
108
109         pfn = phys_addr >> PAGE_SHIFT;
110         pte = pte_alloc_kernel_track(pmd, addr, mask);
111         if (!pte)
112                 return -ENOMEM;
113         do {
114                 BUG_ON(!pte_none(*pte));
115
116 #ifdef CONFIG_HUGETLB_PAGE
117                 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
118                 if (size != PAGE_SIZE) {
119                         pte_t entry = pfn_pte(pfn, prot);
120
121                         entry = arch_make_huge_pte(entry, ilog2(size), 0);
122                         set_huge_pte_at(&init_mm, addr, pte, entry);
123                         pfn += PFN_DOWN(size);
124                         continue;
125                 }
126 #endif
127                 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
128                 pfn++;
129         } while (pte += PFN_DOWN(size), addr += size, addr != end);
130         *mask |= PGTBL_PTE_MODIFIED;
131         return 0;
132 }
133
134 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
135                         phys_addr_t phys_addr, pgprot_t prot,
136                         unsigned int max_page_shift)
137 {
138         if (max_page_shift < PMD_SHIFT)
139                 return 0;
140
141         if (!arch_vmap_pmd_supported(prot))
142                 return 0;
143
144         if ((end - addr) != PMD_SIZE)
145                 return 0;
146
147         if (!IS_ALIGNED(addr, PMD_SIZE))
148                 return 0;
149
150         if (!IS_ALIGNED(phys_addr, PMD_SIZE))
151                 return 0;
152
153         if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
154                 return 0;
155
156         return pmd_set_huge(pmd, phys_addr, prot);
157 }
158
159 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
160                         phys_addr_t phys_addr, pgprot_t prot,
161                         unsigned int max_page_shift, pgtbl_mod_mask *mask)
162 {
163         pmd_t *pmd;
164         unsigned long next;
165
166         pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
167         if (!pmd)
168                 return -ENOMEM;
169         do {
170                 next = pmd_addr_end(addr, end);
171
172                 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
173                                         max_page_shift)) {
174                         *mask |= PGTBL_PMD_MODIFIED;
175                         continue;
176                 }
177
178                 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
179                         return -ENOMEM;
180         } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
181         return 0;
182 }
183
184 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
185                         phys_addr_t phys_addr, pgprot_t prot,
186                         unsigned int max_page_shift)
187 {
188         if (max_page_shift < PUD_SHIFT)
189                 return 0;
190
191         if (!arch_vmap_pud_supported(prot))
192                 return 0;
193
194         if ((end - addr) != PUD_SIZE)
195                 return 0;
196
197         if (!IS_ALIGNED(addr, PUD_SIZE))
198                 return 0;
199
200         if (!IS_ALIGNED(phys_addr, PUD_SIZE))
201                 return 0;
202
203         if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
204                 return 0;
205
206         return pud_set_huge(pud, phys_addr, prot);
207 }
208
209 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
210                         phys_addr_t phys_addr, pgprot_t prot,
211                         unsigned int max_page_shift, pgtbl_mod_mask *mask)
212 {
213         pud_t *pud;
214         unsigned long next;
215
216         pud = pud_alloc_track(&init_mm, p4d, addr, mask);
217         if (!pud)
218                 return -ENOMEM;
219         do {
220                 next = pud_addr_end(addr, end);
221
222                 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
223                                         max_page_shift)) {
224                         *mask |= PGTBL_PUD_MODIFIED;
225                         continue;
226                 }
227
228                 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
229                                         max_page_shift, mask))
230                         return -ENOMEM;
231         } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
232         return 0;
233 }
234
235 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
236                         phys_addr_t phys_addr, pgprot_t prot,
237                         unsigned int max_page_shift)
238 {
239         if (max_page_shift < P4D_SHIFT)
240                 return 0;
241
242         if (!arch_vmap_p4d_supported(prot))
243                 return 0;
244
245         if ((end - addr) != P4D_SIZE)
246                 return 0;
247
248         if (!IS_ALIGNED(addr, P4D_SIZE))
249                 return 0;
250
251         if (!IS_ALIGNED(phys_addr, P4D_SIZE))
252                 return 0;
253
254         if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
255                 return 0;
256
257         return p4d_set_huge(p4d, phys_addr, prot);
258 }
259
260 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
261                         phys_addr_t phys_addr, pgprot_t prot,
262                         unsigned int max_page_shift, pgtbl_mod_mask *mask)
263 {
264         p4d_t *p4d;
265         unsigned long next;
266
267         p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
268         if (!p4d)
269                 return -ENOMEM;
270         do {
271                 next = p4d_addr_end(addr, end);
272
273                 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
274                                         max_page_shift)) {
275                         *mask |= PGTBL_P4D_MODIFIED;
276                         continue;
277                 }
278
279                 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
280                                         max_page_shift, mask))
281                         return -ENOMEM;
282         } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
283         return 0;
284 }
285
286 static int vmap_range_noflush(unsigned long addr, unsigned long end,
287                         phys_addr_t phys_addr, pgprot_t prot,
288                         unsigned int max_page_shift)
289 {
290         pgd_t *pgd;
291         unsigned long start;
292         unsigned long next;
293         int err;
294         pgtbl_mod_mask mask = 0;
295
296         might_sleep();
297         BUG_ON(addr >= end);
298
299         start = addr;
300         pgd = pgd_offset_k(addr);
301         do {
302                 next = pgd_addr_end(addr, end);
303                 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
304                                         max_page_shift, &mask);
305                 if (err)
306                         break;
307         } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
308
309         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
310                 arch_sync_kernel_mappings(start, end);
311
312         return err;
313 }
314
315 int ioremap_page_range(unsigned long addr, unsigned long end,
316                 phys_addr_t phys_addr, pgprot_t prot)
317 {
318         int err;
319
320         err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
321                                  ioremap_max_page_shift);
322         flush_cache_vmap(addr, end);
323         return err;
324 }
325
326 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
327                              pgtbl_mod_mask *mask)
328 {
329         pte_t *pte;
330
331         pte = pte_offset_kernel(pmd, addr);
332         do {
333                 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
334                 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
335         } while (pte++, addr += PAGE_SIZE, addr != end);
336         *mask |= PGTBL_PTE_MODIFIED;
337 }
338
339 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
340                              pgtbl_mod_mask *mask)
341 {
342         pmd_t *pmd;
343         unsigned long next;
344         int cleared;
345
346         pmd = pmd_offset(pud, addr);
347         do {
348                 next = pmd_addr_end(addr, end);
349
350                 cleared = pmd_clear_huge(pmd);
351                 if (cleared || pmd_bad(*pmd))
352                         *mask |= PGTBL_PMD_MODIFIED;
353
354                 if (cleared)
355                         continue;
356                 if (pmd_none_or_clear_bad(pmd))
357                         continue;
358                 vunmap_pte_range(pmd, addr, next, mask);
359
360                 cond_resched();
361         } while (pmd++, addr = next, addr != end);
362 }
363
364 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
365                              pgtbl_mod_mask *mask)
366 {
367         pud_t *pud;
368         unsigned long next;
369         int cleared;
370
371         pud = pud_offset(p4d, addr);
372         do {
373                 next = pud_addr_end(addr, end);
374
375                 cleared = pud_clear_huge(pud);
376                 if (cleared || pud_bad(*pud))
377                         *mask |= PGTBL_PUD_MODIFIED;
378
379                 if (cleared)
380                         continue;
381                 if (pud_none_or_clear_bad(pud))
382                         continue;
383                 vunmap_pmd_range(pud, addr, next, mask);
384         } while (pud++, addr = next, addr != end);
385 }
386
387 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
388                              pgtbl_mod_mask *mask)
389 {
390         p4d_t *p4d;
391         unsigned long next;
392         int cleared;
393
394         p4d = p4d_offset(pgd, addr);
395         do {
396                 next = p4d_addr_end(addr, end);
397
398                 cleared = p4d_clear_huge(p4d);
399                 if (cleared || p4d_bad(*p4d))
400                         *mask |= PGTBL_P4D_MODIFIED;
401
402                 if (cleared)
403                         continue;
404                 if (p4d_none_or_clear_bad(p4d))
405                         continue;
406                 vunmap_pud_range(p4d, addr, next, mask);
407         } while (p4d++, addr = next, addr != end);
408 }
409
410 /*
411  * vunmap_range_noflush is similar to vunmap_range, but does not
412  * flush caches or TLBs.
413  *
414  * The caller is responsible for calling flush_cache_vmap() before calling
415  * this function, and flush_tlb_kernel_range after it has returned
416  * successfully (and before the addresses are expected to cause a page fault
417  * or be re-mapped for something else, if TLB flushes are being delayed or
418  * coalesced).
419  *
420  * This is an internal function only. Do not use outside mm/.
421  */
422 void vunmap_range_noflush(unsigned long start, unsigned long end)
423 {
424         unsigned long next;
425         pgd_t *pgd;
426         unsigned long addr = start;
427         pgtbl_mod_mask mask = 0;
428
429         BUG_ON(addr >= end);
430         pgd = pgd_offset_k(addr);
431         do {
432                 next = pgd_addr_end(addr, end);
433                 if (pgd_bad(*pgd))
434                         mask |= PGTBL_PGD_MODIFIED;
435                 if (pgd_none_or_clear_bad(pgd))
436                         continue;
437                 vunmap_p4d_range(pgd, addr, next, &mask);
438         } while (pgd++, addr = next, addr != end);
439
440         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
441                 arch_sync_kernel_mappings(start, end);
442 }
443
444 /**
445  * vunmap_range - unmap kernel virtual addresses
446  * @addr: start of the VM area to unmap
447  * @end: end of the VM area to unmap (non-inclusive)
448  *
449  * Clears any present PTEs in the virtual address range, flushes TLBs and
450  * caches. Any subsequent access to the address before it has been re-mapped
451  * is a kernel bug.
452  */
453 void vunmap_range(unsigned long addr, unsigned long end)
454 {
455         flush_cache_vunmap(addr, end);
456         vunmap_range_noflush(addr, end);
457         flush_tlb_kernel_range(addr, end);
458 }
459
460 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
461                 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
462                 pgtbl_mod_mask *mask)
463 {
464         pte_t *pte;
465
466         /*
467          * nr is a running index into the array which helps higher level
468          * callers keep track of where we're up to.
469          */
470
471         pte = pte_alloc_kernel_track(pmd, addr, mask);
472         if (!pte)
473                 return -ENOMEM;
474         do {
475                 struct page *page = pages[*nr];
476
477                 if (WARN_ON(!pte_none(*pte)))
478                         return -EBUSY;
479                 if (WARN_ON(!page))
480                         return -ENOMEM;
481                 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
482                 (*nr)++;
483         } while (pte++, addr += PAGE_SIZE, addr != end);
484         *mask |= PGTBL_PTE_MODIFIED;
485         return 0;
486 }
487
488 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
489                 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
490                 pgtbl_mod_mask *mask)
491 {
492         pmd_t *pmd;
493         unsigned long next;
494
495         pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
496         if (!pmd)
497                 return -ENOMEM;
498         do {
499                 next = pmd_addr_end(addr, end);
500                 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
501                         return -ENOMEM;
502         } while (pmd++, addr = next, addr != end);
503         return 0;
504 }
505
506 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
507                 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
508                 pgtbl_mod_mask *mask)
509 {
510         pud_t *pud;
511         unsigned long next;
512
513         pud = pud_alloc_track(&init_mm, p4d, addr, mask);
514         if (!pud)
515                 return -ENOMEM;
516         do {
517                 next = pud_addr_end(addr, end);
518                 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
519                         return -ENOMEM;
520         } while (pud++, addr = next, addr != end);
521         return 0;
522 }
523
524 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
525                 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
526                 pgtbl_mod_mask *mask)
527 {
528         p4d_t *p4d;
529         unsigned long next;
530
531         p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
532         if (!p4d)
533                 return -ENOMEM;
534         do {
535                 next = p4d_addr_end(addr, end);
536                 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
537                         return -ENOMEM;
538         } while (p4d++, addr = next, addr != end);
539         return 0;
540 }
541
542 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
543                 pgprot_t prot, struct page **pages)
544 {
545         unsigned long start = addr;
546         pgd_t *pgd;
547         unsigned long next;
548         int err = 0;
549         int nr = 0;
550         pgtbl_mod_mask mask = 0;
551
552         BUG_ON(addr >= end);
553         pgd = pgd_offset_k(addr);
554         do {
555                 next = pgd_addr_end(addr, end);
556                 if (pgd_bad(*pgd))
557                         mask |= PGTBL_PGD_MODIFIED;
558                 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
559                 if (err)
560                         return err;
561         } while (pgd++, addr = next, addr != end);
562
563         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
564                 arch_sync_kernel_mappings(start, end);
565
566         return 0;
567 }
568
569 /*
570  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
571  * flush caches.
572  *
573  * The caller is responsible for calling flush_cache_vmap() after this
574  * function returns successfully and before the addresses are accessed.
575  *
576  * This is an internal function only. Do not use outside mm/.
577  */
578 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
579                 pgprot_t prot, struct page **pages, unsigned int page_shift)
580 {
581         unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
582
583         WARN_ON(page_shift < PAGE_SHIFT);
584
585         if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
586                         page_shift == PAGE_SHIFT)
587                 return vmap_small_pages_range_noflush(addr, end, prot, pages);
588
589         for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
590                 int err;
591
592                 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
593                                         __pa(page_address(pages[i])), prot,
594                                         page_shift);
595                 if (err)
596                         return err;
597
598                 addr += 1UL << page_shift;
599         }
600
601         return 0;
602 }
603
604 /**
605  * vmap_pages_range - map pages to a kernel virtual address
606  * @addr: start of the VM area to map
607  * @end: end of the VM area to map (non-inclusive)
608  * @prot: page protection flags to use
609  * @pages: pages to map (always PAGE_SIZE pages)
610  * @page_shift: maximum shift that the pages may be mapped with, @pages must
611  * be aligned and contiguous up to at least this shift.
612  *
613  * RETURNS:
614  * 0 on success, -errno on failure.
615  */
616 static int vmap_pages_range(unsigned long addr, unsigned long end,
617                 pgprot_t prot, struct page **pages, unsigned int page_shift)
618 {
619         int err;
620
621         err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
622         flush_cache_vmap(addr, end);
623         return err;
624 }
625
626 int is_vmalloc_or_module_addr(const void *x)
627 {
628         /*
629          * ARM, x86-64 and sparc64 put modules in a special place,
630          * and fall back on vmalloc() if that fails. Others
631          * just put it in the vmalloc space.
632          */
633 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
634         unsigned long addr = (unsigned long)kasan_reset_tag(x);
635         if (addr >= MODULES_VADDR && addr < MODULES_END)
636                 return 1;
637 #endif
638         return is_vmalloc_addr(x);
639 }
640
641 /*
642  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
643  * return the tail page that corresponds to the base page address, which
644  * matches small vmap mappings.
645  */
646 struct page *vmalloc_to_page(const void *vmalloc_addr)
647 {
648         unsigned long addr = (unsigned long) vmalloc_addr;
649         struct page *page = NULL;
650         pgd_t *pgd = pgd_offset_k(addr);
651         p4d_t *p4d;
652         pud_t *pud;
653         pmd_t *pmd;
654         pte_t *ptep, pte;
655
656         /*
657          * XXX we might need to change this if we add VIRTUAL_BUG_ON for
658          * architectures that do not vmalloc module space
659          */
660         VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
661
662         if (pgd_none(*pgd))
663                 return NULL;
664         if (WARN_ON_ONCE(pgd_leaf(*pgd)))
665                 return NULL; /* XXX: no allowance for huge pgd */
666         if (WARN_ON_ONCE(pgd_bad(*pgd)))
667                 return NULL;
668
669         p4d = p4d_offset(pgd, addr);
670         if (p4d_none(*p4d))
671                 return NULL;
672         if (p4d_leaf(*p4d))
673                 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
674         if (WARN_ON_ONCE(p4d_bad(*p4d)))
675                 return NULL;
676
677         pud = pud_offset(p4d, addr);
678         if (pud_none(*pud))
679                 return NULL;
680         if (pud_leaf(*pud))
681                 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
682         if (WARN_ON_ONCE(pud_bad(*pud)))
683                 return NULL;
684
685         pmd = pmd_offset(pud, addr);
686         if (pmd_none(*pmd))
687                 return NULL;
688         if (pmd_leaf(*pmd))
689                 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
690         if (WARN_ON_ONCE(pmd_bad(*pmd)))
691                 return NULL;
692
693         ptep = pte_offset_map(pmd, addr);
694         pte = *ptep;
695         if (pte_present(pte))
696                 page = pte_page(pte);
697         pte_unmap(ptep);
698
699         return page;
700 }
701 EXPORT_SYMBOL(vmalloc_to_page);
702
703 /*
704  * Map a vmalloc()-space virtual address to the physical page frame number.
705  */
706 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
707 {
708         return page_to_pfn(vmalloc_to_page(vmalloc_addr));
709 }
710 EXPORT_SYMBOL(vmalloc_to_pfn);
711
712
713 /*** Global kva allocator ***/
714
715 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
716 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
717
718
719 static DEFINE_SPINLOCK(vmap_area_lock);
720 static DEFINE_SPINLOCK(free_vmap_area_lock);
721 /* Export for kexec only */
722 LIST_HEAD(vmap_area_list);
723 static struct rb_root vmap_area_root = RB_ROOT;
724 static bool vmap_initialized __read_mostly;
725
726 static struct rb_root purge_vmap_area_root = RB_ROOT;
727 static LIST_HEAD(purge_vmap_area_list);
728 static DEFINE_SPINLOCK(purge_vmap_area_lock);
729
730 /*
731  * This kmem_cache is used for vmap_area objects. Instead of
732  * allocating from slab we reuse an object from this cache to
733  * make things faster. Especially in "no edge" splitting of
734  * free block.
735  */
736 static struct kmem_cache *vmap_area_cachep;
737
738 /*
739  * This linked list is used in pair with free_vmap_area_root.
740  * It gives O(1) access to prev/next to perform fast coalescing.
741  */
742 static LIST_HEAD(free_vmap_area_list);
743
744 /*
745  * This augment red-black tree represents the free vmap space.
746  * All vmap_area objects in this tree are sorted by va->va_start
747  * address. It is used for allocation and merging when a vmap
748  * object is released.
749  *
750  * Each vmap_area node contains a maximum available free block
751  * of its sub-tree, right or left. Therefore it is possible to
752  * find a lowest match of free area.
753  */
754 static struct rb_root free_vmap_area_root = RB_ROOT;
755
756 /*
757  * Preload a CPU with one object for "no edge" split case. The
758  * aim is to get rid of allocations from the atomic context, thus
759  * to use more permissive allocation masks.
760  */
761 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
762
763 static __always_inline unsigned long
764 va_size(struct vmap_area *va)
765 {
766         return (va->va_end - va->va_start);
767 }
768
769 static __always_inline unsigned long
770 get_subtree_max_size(struct rb_node *node)
771 {
772         struct vmap_area *va;
773
774         va = rb_entry_safe(node, struct vmap_area, rb_node);
775         return va ? va->subtree_max_size : 0;
776 }
777
778 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
779         struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
780
781 static void purge_vmap_area_lazy(void);
782 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
783 static void drain_vmap_area_work(struct work_struct *work);
784 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
785
786 static atomic_long_t nr_vmalloc_pages;
787
788 unsigned long vmalloc_nr_pages(void)
789 {
790         return atomic_long_read(&nr_vmalloc_pages);
791 }
792
793 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
794 {
795         struct vmap_area *va = NULL;
796         struct rb_node *n = vmap_area_root.rb_node;
797
798         addr = (unsigned long)kasan_reset_tag((void *)addr);
799
800         while (n) {
801                 struct vmap_area *tmp;
802
803                 tmp = rb_entry(n, struct vmap_area, rb_node);
804                 if (tmp->va_end > addr) {
805                         va = tmp;
806                         if (tmp->va_start <= addr)
807                                 break;
808
809                         n = n->rb_left;
810                 } else
811                         n = n->rb_right;
812         }
813
814         return va;
815 }
816
817 static struct vmap_area *__find_vmap_area(unsigned long addr)
818 {
819         struct rb_node *n = vmap_area_root.rb_node;
820
821         addr = (unsigned long)kasan_reset_tag((void *)addr);
822
823         while (n) {
824                 struct vmap_area *va;
825
826                 va = rb_entry(n, struct vmap_area, rb_node);
827                 if (addr < va->va_start)
828                         n = n->rb_left;
829                 else if (addr >= va->va_end)
830                         n = n->rb_right;
831                 else
832                         return va;
833         }
834
835         return NULL;
836 }
837
838 /*
839  * This function returns back addresses of parent node
840  * and its left or right link for further processing.
841  *
842  * Otherwise NULL is returned. In that case all further
843  * steps regarding inserting of conflicting overlap range
844  * have to be declined and actually considered as a bug.
845  */
846 static __always_inline struct rb_node **
847 find_va_links(struct vmap_area *va,
848         struct rb_root *root, struct rb_node *from,
849         struct rb_node **parent)
850 {
851         struct vmap_area *tmp_va;
852         struct rb_node **link;
853
854         if (root) {
855                 link = &root->rb_node;
856                 if (unlikely(!*link)) {
857                         *parent = NULL;
858                         return link;
859                 }
860         } else {
861                 link = &from;
862         }
863
864         /*
865          * Go to the bottom of the tree. When we hit the last point
866          * we end up with parent rb_node and correct direction, i name
867          * it link, where the new va->rb_node will be attached to.
868          */
869         do {
870                 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
871
872                 /*
873                  * During the traversal we also do some sanity check.
874                  * Trigger the BUG() if there are sides(left/right)
875                  * or full overlaps.
876                  */
877                 if (va->va_start < tmp_va->va_end &&
878                                 va->va_end <= tmp_va->va_start)
879                         link = &(*link)->rb_left;
880                 else if (va->va_end > tmp_va->va_start &&
881                                 va->va_start >= tmp_va->va_end)
882                         link = &(*link)->rb_right;
883                 else {
884                         WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
885                                 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
886
887                         return NULL;
888                 }
889         } while (*link);
890
891         *parent = &tmp_va->rb_node;
892         return link;
893 }
894
895 static __always_inline struct list_head *
896 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
897 {
898         struct list_head *list;
899
900         if (unlikely(!parent))
901                 /*
902                  * The red-black tree where we try to find VA neighbors
903                  * before merging or inserting is empty, i.e. it means
904                  * there is no free vmap space. Normally it does not
905                  * happen but we handle this case anyway.
906                  */
907                 return NULL;
908
909         list = &rb_entry(parent, struct vmap_area, rb_node)->list;
910         return (&parent->rb_right == link ? list->next : list);
911 }
912
913 static __always_inline void
914 link_va(struct vmap_area *va, struct rb_root *root,
915         struct rb_node *parent, struct rb_node **link, struct list_head *head)
916 {
917         /*
918          * VA is still not in the list, but we can
919          * identify its future previous list_head node.
920          */
921         if (likely(parent)) {
922                 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
923                 if (&parent->rb_right != link)
924                         head = head->prev;
925         }
926
927         /* Insert to the rb-tree */
928         rb_link_node(&va->rb_node, parent, link);
929         if (root == &free_vmap_area_root) {
930                 /*
931                  * Some explanation here. Just perform simple insertion
932                  * to the tree. We do not set va->subtree_max_size to
933                  * its current size before calling rb_insert_augmented().
934                  * It is because of we populate the tree from the bottom
935                  * to parent levels when the node _is_ in the tree.
936                  *
937                  * Therefore we set subtree_max_size to zero after insertion,
938                  * to let __augment_tree_propagate_from() puts everything to
939                  * the correct order later on.
940                  */
941                 rb_insert_augmented(&va->rb_node,
942                         root, &free_vmap_area_rb_augment_cb);
943                 va->subtree_max_size = 0;
944         } else {
945                 rb_insert_color(&va->rb_node, root);
946         }
947
948         /* Address-sort this list */
949         list_add(&va->list, head);
950 }
951
952 static __always_inline void
953 unlink_va(struct vmap_area *va, struct rb_root *root)
954 {
955         if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
956                 return;
957
958         if (root == &free_vmap_area_root)
959                 rb_erase_augmented(&va->rb_node,
960                         root, &free_vmap_area_rb_augment_cb);
961         else
962                 rb_erase(&va->rb_node, root);
963
964         list_del(&va->list);
965         RB_CLEAR_NODE(&va->rb_node);
966 }
967
968 #if DEBUG_AUGMENT_PROPAGATE_CHECK
969 /*
970  * Gets called when remove the node and rotate.
971  */
972 static __always_inline unsigned long
973 compute_subtree_max_size(struct vmap_area *va)
974 {
975         return max3(va_size(va),
976                 get_subtree_max_size(va->rb_node.rb_left),
977                 get_subtree_max_size(va->rb_node.rb_right));
978 }
979
980 static void
981 augment_tree_propagate_check(void)
982 {
983         struct vmap_area *va;
984         unsigned long computed_size;
985
986         list_for_each_entry(va, &free_vmap_area_list, list) {
987                 computed_size = compute_subtree_max_size(va);
988                 if (computed_size != va->subtree_max_size)
989                         pr_emerg("tree is corrupted: %lu, %lu\n",
990                                 va_size(va), va->subtree_max_size);
991         }
992 }
993 #endif
994
995 /*
996  * This function populates subtree_max_size from bottom to upper
997  * levels starting from VA point. The propagation must be done
998  * when VA size is modified by changing its va_start/va_end. Or
999  * in case of newly inserting of VA to the tree.
1000  *
1001  * It means that __augment_tree_propagate_from() must be called:
1002  * - After VA has been inserted to the tree(free path);
1003  * - After VA has been shrunk(allocation path);
1004  * - After VA has been increased(merging path).
1005  *
1006  * Please note that, it does not mean that upper parent nodes
1007  * and their subtree_max_size are recalculated all the time up
1008  * to the root node.
1009  *
1010  *       4--8
1011  *        /\
1012  *       /  \
1013  *      /    \
1014  *    2--2  8--8
1015  *
1016  * For example if we modify the node 4, shrinking it to 2, then
1017  * no any modification is required. If we shrink the node 2 to 1
1018  * its subtree_max_size is updated only, and set to 1. If we shrink
1019  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1020  * node becomes 4--6.
1021  */
1022 static __always_inline void
1023 augment_tree_propagate_from(struct vmap_area *va)
1024 {
1025         /*
1026          * Populate the tree from bottom towards the root until
1027          * the calculated maximum available size of checked node
1028          * is equal to its current one.
1029          */
1030         free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1031
1032 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1033         augment_tree_propagate_check();
1034 #endif
1035 }
1036
1037 static void
1038 insert_vmap_area(struct vmap_area *va,
1039         struct rb_root *root, struct list_head *head)
1040 {
1041         struct rb_node **link;
1042         struct rb_node *parent;
1043
1044         link = find_va_links(va, root, NULL, &parent);
1045         if (link)
1046                 link_va(va, root, parent, link, head);
1047 }
1048
1049 static void
1050 insert_vmap_area_augment(struct vmap_area *va,
1051         struct rb_node *from, struct rb_root *root,
1052         struct list_head *head)
1053 {
1054         struct rb_node **link;
1055         struct rb_node *parent;
1056
1057         if (from)
1058                 link = find_va_links(va, NULL, from, &parent);
1059         else
1060                 link = find_va_links(va, root, NULL, &parent);
1061
1062         if (link) {
1063                 link_va(va, root, parent, link, head);
1064                 augment_tree_propagate_from(va);
1065         }
1066 }
1067
1068 /*
1069  * Merge de-allocated chunk of VA memory with previous
1070  * and next free blocks. If coalesce is not done a new
1071  * free area is inserted. If VA has been merged, it is
1072  * freed.
1073  *
1074  * Please note, it can return NULL in case of overlap
1075  * ranges, followed by WARN() report. Despite it is a
1076  * buggy behaviour, a system can be alive and keep
1077  * ongoing.
1078  */
1079 static __always_inline struct vmap_area *
1080 merge_or_add_vmap_area(struct vmap_area *va,
1081         struct rb_root *root, struct list_head *head)
1082 {
1083         struct vmap_area *sibling;
1084         struct list_head *next;
1085         struct rb_node **link;
1086         struct rb_node *parent;
1087         bool merged = false;
1088
1089         /*
1090          * Find a place in the tree where VA potentially will be
1091          * inserted, unless it is merged with its sibling/siblings.
1092          */
1093         link = find_va_links(va, root, NULL, &parent);
1094         if (!link)
1095                 return NULL;
1096
1097         /*
1098          * Get next node of VA to check if merging can be done.
1099          */
1100         next = get_va_next_sibling(parent, link);
1101         if (unlikely(next == NULL))
1102                 goto insert;
1103
1104         /*
1105          * start            end
1106          * |                |
1107          * |<------VA------>|<-----Next----->|
1108          *                  |                |
1109          *                  start            end
1110          */
1111         if (next != head) {
1112                 sibling = list_entry(next, struct vmap_area, list);
1113                 if (sibling->va_start == va->va_end) {
1114                         sibling->va_start = va->va_start;
1115
1116                         /* Free vmap_area object. */
1117                         kmem_cache_free(vmap_area_cachep, va);
1118
1119                         /* Point to the new merged area. */
1120                         va = sibling;
1121                         merged = true;
1122                 }
1123         }
1124
1125         /*
1126          * start            end
1127          * |                |
1128          * |<-----Prev----->|<------VA------>|
1129          *                  |                |
1130          *                  start            end
1131          */
1132         if (next->prev != head) {
1133                 sibling = list_entry(next->prev, struct vmap_area, list);
1134                 if (sibling->va_end == va->va_start) {
1135                         /*
1136                          * If both neighbors are coalesced, it is important
1137                          * to unlink the "next" node first, followed by merging
1138                          * with "previous" one. Otherwise the tree might not be
1139                          * fully populated if a sibling's augmented value is
1140                          * "normalized" because of rotation operations.
1141                          */
1142                         if (merged)
1143                                 unlink_va(va, root);
1144
1145                         sibling->va_end = va->va_end;
1146
1147                         /* Free vmap_area object. */
1148                         kmem_cache_free(vmap_area_cachep, va);
1149
1150                         /* Point to the new merged area. */
1151                         va = sibling;
1152                         merged = true;
1153                 }
1154         }
1155
1156 insert:
1157         if (!merged)
1158                 link_va(va, root, parent, link, head);
1159
1160         return va;
1161 }
1162
1163 static __always_inline struct vmap_area *
1164 merge_or_add_vmap_area_augment(struct vmap_area *va,
1165         struct rb_root *root, struct list_head *head)
1166 {
1167         va = merge_or_add_vmap_area(va, root, head);
1168         if (va)
1169                 augment_tree_propagate_from(va);
1170
1171         return va;
1172 }
1173
1174 static __always_inline bool
1175 is_within_this_va(struct vmap_area *va, unsigned long size,
1176         unsigned long align, unsigned long vstart)
1177 {
1178         unsigned long nva_start_addr;
1179
1180         if (va->va_start > vstart)
1181                 nva_start_addr = ALIGN(va->va_start, align);
1182         else
1183                 nva_start_addr = ALIGN(vstart, align);
1184
1185         /* Can be overflowed due to big size or alignment. */
1186         if (nva_start_addr + size < nva_start_addr ||
1187                         nva_start_addr < vstart)
1188                 return false;
1189
1190         return (nva_start_addr + size <= va->va_end);
1191 }
1192
1193 /*
1194  * Find the first free block(lowest start address) in the tree,
1195  * that will accomplish the request corresponding to passing
1196  * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1197  * a search length is adjusted to account for worst case alignment
1198  * overhead.
1199  */
1200 static __always_inline struct vmap_area *
1201 find_vmap_lowest_match(unsigned long size, unsigned long align,
1202         unsigned long vstart, bool adjust_search_size)
1203 {
1204         struct vmap_area *va;
1205         struct rb_node *node;
1206         unsigned long length;
1207
1208         /* Start from the root. */
1209         node = free_vmap_area_root.rb_node;
1210
1211         /* Adjust the search size for alignment overhead. */
1212         length = adjust_search_size ? size + align - 1 : size;
1213
1214         while (node) {
1215                 va = rb_entry(node, struct vmap_area, rb_node);
1216
1217                 if (get_subtree_max_size(node->rb_left) >= length &&
1218                                 vstart < va->va_start) {
1219                         node = node->rb_left;
1220                 } else {
1221                         if (is_within_this_va(va, size, align, vstart))
1222                                 return va;
1223
1224                         /*
1225                          * Does not make sense to go deeper towards the right
1226                          * sub-tree if it does not have a free block that is
1227                          * equal or bigger to the requested search length.
1228                          */
1229                         if (get_subtree_max_size(node->rb_right) >= length) {
1230                                 node = node->rb_right;
1231                                 continue;
1232                         }
1233
1234                         /*
1235                          * OK. We roll back and find the first right sub-tree,
1236                          * that will satisfy the search criteria. It can happen
1237                          * due to "vstart" restriction or an alignment overhead
1238                          * that is bigger then PAGE_SIZE.
1239                          */
1240                         while ((node = rb_parent(node))) {
1241                                 va = rb_entry(node, struct vmap_area, rb_node);
1242                                 if (is_within_this_va(va, size, align, vstart))
1243                                         return va;
1244
1245                                 if (get_subtree_max_size(node->rb_right) >= length &&
1246                                                 vstart <= va->va_start) {
1247                                         /*
1248                                          * Shift the vstart forward. Please note, we update it with
1249                                          * parent's start address adding "1" because we do not want
1250                                          * to enter same sub-tree after it has already been checked
1251                                          * and no suitable free block found there.
1252                                          */
1253                                         vstart = va->va_start + 1;
1254                                         node = node->rb_right;
1255                                         break;
1256                                 }
1257                         }
1258                 }
1259         }
1260
1261         return NULL;
1262 }
1263
1264 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1265 #include <linux/random.h>
1266
1267 static struct vmap_area *
1268 find_vmap_lowest_linear_match(unsigned long size,
1269         unsigned long align, unsigned long vstart)
1270 {
1271         struct vmap_area *va;
1272
1273         list_for_each_entry(va, &free_vmap_area_list, list) {
1274                 if (!is_within_this_va(va, size, align, vstart))
1275                         continue;
1276
1277                 return va;
1278         }
1279
1280         return NULL;
1281 }
1282
1283 static void
1284 find_vmap_lowest_match_check(unsigned long size, unsigned long align)
1285 {
1286         struct vmap_area *va_1, *va_2;
1287         unsigned long vstart;
1288         unsigned int rnd;
1289
1290         get_random_bytes(&rnd, sizeof(rnd));
1291         vstart = VMALLOC_START + rnd;
1292
1293         va_1 = find_vmap_lowest_match(size, align, vstart, false);
1294         va_2 = find_vmap_lowest_linear_match(size, align, vstart);
1295
1296         if (va_1 != va_2)
1297                 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1298                         va_1, va_2, vstart);
1299 }
1300 #endif
1301
1302 enum fit_type {
1303         NOTHING_FIT = 0,
1304         FL_FIT_TYPE = 1,        /* full fit */
1305         LE_FIT_TYPE = 2,        /* left edge fit */
1306         RE_FIT_TYPE = 3,        /* right edge fit */
1307         NE_FIT_TYPE = 4         /* no edge fit */
1308 };
1309
1310 static __always_inline enum fit_type
1311 classify_va_fit_type(struct vmap_area *va,
1312         unsigned long nva_start_addr, unsigned long size)
1313 {
1314         enum fit_type type;
1315
1316         /* Check if it is within VA. */
1317         if (nva_start_addr < va->va_start ||
1318                         nva_start_addr + size > va->va_end)
1319                 return NOTHING_FIT;
1320
1321         /* Now classify. */
1322         if (va->va_start == nva_start_addr) {
1323                 if (va->va_end == nva_start_addr + size)
1324                         type = FL_FIT_TYPE;
1325                 else
1326                         type = LE_FIT_TYPE;
1327         } else if (va->va_end == nva_start_addr + size) {
1328                 type = RE_FIT_TYPE;
1329         } else {
1330                 type = NE_FIT_TYPE;
1331         }
1332
1333         return type;
1334 }
1335
1336 static __always_inline int
1337 adjust_va_to_fit_type(struct vmap_area *va,
1338         unsigned long nva_start_addr, unsigned long size,
1339         enum fit_type type)
1340 {
1341         struct vmap_area *lva = NULL;
1342
1343         if (type == FL_FIT_TYPE) {
1344                 /*
1345                  * No need to split VA, it fully fits.
1346                  *
1347                  * |               |
1348                  * V      NVA      V
1349                  * |---------------|
1350                  */
1351                 unlink_va(va, &free_vmap_area_root);
1352                 kmem_cache_free(vmap_area_cachep, va);
1353         } else if (type == LE_FIT_TYPE) {
1354                 /*
1355                  * Split left edge of fit VA.
1356                  *
1357                  * |       |
1358                  * V  NVA  V   R
1359                  * |-------|-------|
1360                  */
1361                 va->va_start += size;
1362         } else if (type == RE_FIT_TYPE) {
1363                 /*
1364                  * Split right edge of fit VA.
1365                  *
1366                  *         |       |
1367                  *     L   V  NVA  V
1368                  * |-------|-------|
1369                  */
1370                 va->va_end = nva_start_addr;
1371         } else if (type == NE_FIT_TYPE) {
1372                 /*
1373                  * Split no edge of fit VA.
1374                  *
1375                  *     |       |
1376                  *   L V  NVA  V R
1377                  * |---|-------|---|
1378                  */
1379                 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1380                 if (unlikely(!lva)) {
1381                         /*
1382                          * For percpu allocator we do not do any pre-allocation
1383                          * and leave it as it is. The reason is it most likely
1384                          * never ends up with NE_FIT_TYPE splitting. In case of
1385                          * percpu allocations offsets and sizes are aligned to
1386                          * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1387                          * are its main fitting cases.
1388                          *
1389                          * There are a few exceptions though, as an example it is
1390                          * a first allocation (early boot up) when we have "one"
1391                          * big free space that has to be split.
1392                          *
1393                          * Also we can hit this path in case of regular "vmap"
1394                          * allocations, if "this" current CPU was not preloaded.
1395                          * See the comment in alloc_vmap_area() why. If so, then
1396                          * GFP_NOWAIT is used instead to get an extra object for
1397                          * split purpose. That is rare and most time does not
1398                          * occur.
1399                          *
1400                          * What happens if an allocation gets failed. Basically,
1401                          * an "overflow" path is triggered to purge lazily freed
1402                          * areas to free some memory, then, the "retry" path is
1403                          * triggered to repeat one more time. See more details
1404                          * in alloc_vmap_area() function.
1405                          */
1406                         lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1407                         if (!lva)
1408                                 return -1;
1409                 }
1410
1411                 /*
1412                  * Build the remainder.
1413                  */
1414                 lva->va_start = va->va_start;
1415                 lva->va_end = nva_start_addr;
1416
1417                 /*
1418                  * Shrink this VA to remaining size.
1419                  */
1420                 va->va_start = nva_start_addr + size;
1421         } else {
1422                 return -1;
1423         }
1424
1425         if (type != FL_FIT_TYPE) {
1426                 augment_tree_propagate_from(va);
1427
1428                 if (lva)        /* type == NE_FIT_TYPE */
1429                         insert_vmap_area_augment(lva, &va->rb_node,
1430                                 &free_vmap_area_root, &free_vmap_area_list);
1431         }
1432
1433         return 0;
1434 }
1435
1436 /*
1437  * Returns a start address of the newly allocated area, if success.
1438  * Otherwise a vend is returned that indicates failure.
1439  */
1440 static __always_inline unsigned long
1441 __alloc_vmap_area(unsigned long size, unsigned long align,
1442         unsigned long vstart, unsigned long vend)
1443 {
1444         bool adjust_search_size = true;
1445         unsigned long nva_start_addr;
1446         struct vmap_area *va;
1447         enum fit_type type;
1448         int ret;
1449
1450         /*
1451          * Do not adjust when:
1452          *   a) align <= PAGE_SIZE, because it does not make any sense.
1453          *      All blocks(their start addresses) are at least PAGE_SIZE
1454          *      aligned anyway;
1455          *   b) a short range where a requested size corresponds to exactly
1456          *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1457          *      With adjusted search length an allocation would not succeed.
1458          */
1459         if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1460                 adjust_search_size = false;
1461
1462         va = find_vmap_lowest_match(size, align, vstart, adjust_search_size);
1463         if (unlikely(!va))
1464                 return vend;
1465
1466         if (va->va_start > vstart)
1467                 nva_start_addr = ALIGN(va->va_start, align);
1468         else
1469                 nva_start_addr = ALIGN(vstart, align);
1470
1471         /* Check the "vend" restriction. */
1472         if (nva_start_addr + size > vend)
1473                 return vend;
1474
1475         /* Classify what we have found. */
1476         type = classify_va_fit_type(va, nva_start_addr, size);
1477         if (WARN_ON_ONCE(type == NOTHING_FIT))
1478                 return vend;
1479
1480         /* Update the free vmap_area. */
1481         ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1482         if (ret)
1483                 return vend;
1484
1485 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1486         find_vmap_lowest_match_check(size, align);
1487 #endif
1488
1489         return nva_start_addr;
1490 }
1491
1492 /*
1493  * Free a region of KVA allocated by alloc_vmap_area
1494  */
1495 static void free_vmap_area(struct vmap_area *va)
1496 {
1497         /*
1498          * Remove from the busy tree/list.
1499          */
1500         spin_lock(&vmap_area_lock);
1501         unlink_va(va, &vmap_area_root);
1502         spin_unlock(&vmap_area_lock);
1503
1504         /*
1505          * Insert/Merge it back to the free tree/list.
1506          */
1507         spin_lock(&free_vmap_area_lock);
1508         merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1509         spin_unlock(&free_vmap_area_lock);
1510 }
1511
1512 static inline void
1513 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1514 {
1515         struct vmap_area *va = NULL;
1516
1517         /*
1518          * Preload this CPU with one extra vmap_area object. It is used
1519          * when fit type of free area is NE_FIT_TYPE. It guarantees that
1520          * a CPU that does an allocation is preloaded.
1521          *
1522          * We do it in non-atomic context, thus it allows us to use more
1523          * permissive allocation masks to be more stable under low memory
1524          * condition and high memory pressure.
1525          */
1526         if (!this_cpu_read(ne_fit_preload_node))
1527                 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1528
1529         spin_lock(lock);
1530
1531         if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1532                 kmem_cache_free(vmap_area_cachep, va);
1533 }
1534
1535 /*
1536  * Allocate a region of KVA of the specified size and alignment, within the
1537  * vstart and vend.
1538  */
1539 static struct vmap_area *alloc_vmap_area(unsigned long size,
1540                                 unsigned long align,
1541                                 unsigned long vstart, unsigned long vend,
1542                                 int node, gfp_t gfp_mask)
1543 {
1544         struct vmap_area *va;
1545         unsigned long freed;
1546         unsigned long addr;
1547         int purged = 0;
1548         int ret;
1549
1550         BUG_ON(!size);
1551         BUG_ON(offset_in_page(size));
1552         BUG_ON(!is_power_of_2(align));
1553
1554         if (unlikely(!vmap_initialized))
1555                 return ERR_PTR(-EBUSY);
1556
1557         might_sleep();
1558         gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1559
1560         va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1561         if (unlikely(!va))
1562                 return ERR_PTR(-ENOMEM);
1563
1564         /*
1565          * Only scan the relevant parts containing pointers to other objects
1566          * to avoid false negatives.
1567          */
1568         kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1569
1570 retry:
1571         preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1572         addr = __alloc_vmap_area(size, align, vstart, vend);
1573         spin_unlock(&free_vmap_area_lock);
1574
1575         /*
1576          * If an allocation fails, the "vend" address is
1577          * returned. Therefore trigger the overflow path.
1578          */
1579         if (unlikely(addr == vend))
1580                 goto overflow;
1581
1582         va->va_start = addr;
1583         va->va_end = addr + size;
1584         va->vm = NULL;
1585
1586         spin_lock(&vmap_area_lock);
1587         insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1588         spin_unlock(&vmap_area_lock);
1589
1590         BUG_ON(!IS_ALIGNED(va->va_start, align));
1591         BUG_ON(va->va_start < vstart);
1592         BUG_ON(va->va_end > vend);
1593
1594         ret = kasan_populate_vmalloc(addr, size);
1595         if (ret) {
1596                 free_vmap_area(va);
1597                 return ERR_PTR(ret);
1598         }
1599
1600         return va;
1601
1602 overflow:
1603         if (!purged) {
1604                 purge_vmap_area_lazy();
1605                 purged = 1;
1606                 goto retry;
1607         }
1608
1609         freed = 0;
1610         blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1611
1612         if (freed > 0) {
1613                 purged = 0;
1614                 goto retry;
1615         }
1616
1617         if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1618                 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1619                         size);
1620
1621         kmem_cache_free(vmap_area_cachep, va);
1622         return ERR_PTR(-EBUSY);
1623 }
1624
1625 int register_vmap_purge_notifier(struct notifier_block *nb)
1626 {
1627         return blocking_notifier_chain_register(&vmap_notify_list, nb);
1628 }
1629 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1630
1631 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1632 {
1633         return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1634 }
1635 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1636
1637 /*
1638  * lazy_max_pages is the maximum amount of virtual address space we gather up
1639  * before attempting to purge with a TLB flush.
1640  *
1641  * There is a tradeoff here: a larger number will cover more kernel page tables
1642  * and take slightly longer to purge, but it will linearly reduce the number of
1643  * global TLB flushes that must be performed. It would seem natural to scale
1644  * this number up linearly with the number of CPUs (because vmapping activity
1645  * could also scale linearly with the number of CPUs), however it is likely
1646  * that in practice, workloads might be constrained in other ways that mean
1647  * vmap activity will not scale linearly with CPUs. Also, I want to be
1648  * conservative and not introduce a big latency on huge systems, so go with
1649  * a less aggressive log scale. It will still be an improvement over the old
1650  * code, and it will be simple to change the scale factor if we find that it
1651  * becomes a problem on bigger systems.
1652  */
1653 static unsigned long lazy_max_pages(void)
1654 {
1655         unsigned int log;
1656
1657         log = fls(num_online_cpus());
1658
1659         return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1660 }
1661
1662 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1663
1664 /*
1665  * Serialize vmap purging.  There is no actual critical section protected
1666  * by this look, but we want to avoid concurrent calls for performance
1667  * reasons and to make the pcpu_get_vm_areas more deterministic.
1668  */
1669 static DEFINE_MUTEX(vmap_purge_lock);
1670
1671 /* for per-CPU blocks */
1672 static void purge_fragmented_blocks_allcpus(void);
1673
1674 #ifdef CONFIG_X86_64
1675 /*
1676  * called before a call to iounmap() if the caller wants vm_area_struct's
1677  * immediately freed.
1678  */
1679 void set_iounmap_nonlazy(void)
1680 {
1681         atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1682 }
1683 #endif /* CONFIG_X86_64 */
1684
1685 /*
1686  * Purges all lazily-freed vmap areas.
1687  */
1688 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1689 {
1690         unsigned long resched_threshold;
1691         struct list_head local_pure_list;
1692         struct vmap_area *va, *n_va;
1693
1694         lockdep_assert_held(&vmap_purge_lock);
1695
1696         spin_lock(&purge_vmap_area_lock);
1697         purge_vmap_area_root = RB_ROOT;
1698         list_replace_init(&purge_vmap_area_list, &local_pure_list);
1699         spin_unlock(&purge_vmap_area_lock);
1700
1701         if (unlikely(list_empty(&local_pure_list)))
1702                 return false;
1703
1704         start = min(start,
1705                 list_first_entry(&local_pure_list,
1706                         struct vmap_area, list)->va_start);
1707
1708         end = max(end,
1709                 list_last_entry(&local_pure_list,
1710                         struct vmap_area, list)->va_end);
1711
1712         flush_tlb_kernel_range(start, end);
1713         resched_threshold = lazy_max_pages() << 1;
1714
1715         spin_lock(&free_vmap_area_lock);
1716         list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
1717                 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1718                 unsigned long orig_start = va->va_start;
1719                 unsigned long orig_end = va->va_end;
1720
1721                 /*
1722                  * Finally insert or merge lazily-freed area. It is
1723                  * detached and there is no need to "unlink" it from
1724                  * anything.
1725                  */
1726                 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1727                                 &free_vmap_area_list);
1728
1729                 if (!va)
1730                         continue;
1731
1732                 if (is_vmalloc_or_module_addr((void *)orig_start))
1733                         kasan_release_vmalloc(orig_start, orig_end,
1734                                               va->va_start, va->va_end);
1735
1736                 atomic_long_sub(nr, &vmap_lazy_nr);
1737
1738                 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1739                         cond_resched_lock(&free_vmap_area_lock);
1740         }
1741         spin_unlock(&free_vmap_area_lock);
1742         return true;
1743 }
1744
1745 /*
1746  * Kick off a purge of the outstanding lazy areas.
1747  */
1748 static void purge_vmap_area_lazy(void)
1749 {
1750         mutex_lock(&vmap_purge_lock);
1751         purge_fragmented_blocks_allcpus();
1752         __purge_vmap_area_lazy(ULONG_MAX, 0);
1753         mutex_unlock(&vmap_purge_lock);
1754 }
1755
1756 static void drain_vmap_area_work(struct work_struct *work)
1757 {
1758         unsigned long nr_lazy;
1759
1760         do {
1761                 mutex_lock(&vmap_purge_lock);
1762                 __purge_vmap_area_lazy(ULONG_MAX, 0);
1763                 mutex_unlock(&vmap_purge_lock);
1764
1765                 /* Recheck if further work is required. */
1766                 nr_lazy = atomic_long_read(&vmap_lazy_nr);
1767         } while (nr_lazy > lazy_max_pages());
1768 }
1769
1770 /*
1771  * Free a vmap area, caller ensuring that the area has been unmapped
1772  * and flush_cache_vunmap had been called for the correct range
1773  * previously.
1774  */
1775 static void free_vmap_area_noflush(struct vmap_area *va)
1776 {
1777         unsigned long nr_lazy;
1778
1779         spin_lock(&vmap_area_lock);
1780         unlink_va(va, &vmap_area_root);
1781         spin_unlock(&vmap_area_lock);
1782
1783         nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1784                                 PAGE_SHIFT, &vmap_lazy_nr);
1785
1786         /*
1787          * Merge or place it to the purge tree/list.
1788          */
1789         spin_lock(&purge_vmap_area_lock);
1790         merge_or_add_vmap_area(va,
1791                 &purge_vmap_area_root, &purge_vmap_area_list);
1792         spin_unlock(&purge_vmap_area_lock);
1793
1794         /* After this point, we may free va at any time */
1795         if (unlikely(nr_lazy > lazy_max_pages()))
1796                 schedule_work(&drain_vmap_work);
1797 }
1798
1799 /*
1800  * Free and unmap a vmap area
1801  */
1802 static void free_unmap_vmap_area(struct vmap_area *va)
1803 {
1804         flush_cache_vunmap(va->va_start, va->va_end);
1805         vunmap_range_noflush(va->va_start, va->va_end);
1806         if (debug_pagealloc_enabled_static())
1807                 flush_tlb_kernel_range(va->va_start, va->va_end);
1808
1809         free_vmap_area_noflush(va);
1810 }
1811
1812 static struct vmap_area *find_vmap_area(unsigned long addr)
1813 {
1814         struct vmap_area *va;
1815
1816         spin_lock(&vmap_area_lock);
1817         va = __find_vmap_area(addr);
1818         spin_unlock(&vmap_area_lock);
1819
1820         return va;
1821 }
1822
1823 /*** Per cpu kva allocator ***/
1824
1825 /*
1826  * vmap space is limited especially on 32 bit architectures. Ensure there is
1827  * room for at least 16 percpu vmap blocks per CPU.
1828  */
1829 /*
1830  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1831  * to #define VMALLOC_SPACE             (VMALLOC_END-VMALLOC_START). Guess
1832  * instead (we just need a rough idea)
1833  */
1834 #if BITS_PER_LONG == 32
1835 #define VMALLOC_SPACE           (128UL*1024*1024)
1836 #else
1837 #define VMALLOC_SPACE           (128UL*1024*1024*1024)
1838 #endif
1839
1840 #define VMALLOC_PAGES           (VMALLOC_SPACE / PAGE_SIZE)
1841 #define VMAP_MAX_ALLOC          BITS_PER_LONG   /* 256K with 4K pages */
1842 #define VMAP_BBMAP_BITS_MAX     1024    /* 4MB with 4K pages */
1843 #define VMAP_BBMAP_BITS_MIN     (VMAP_MAX_ALLOC*2)
1844 #define VMAP_MIN(x, y)          ((x) < (y) ? (x) : (y)) /* can't use min() */
1845 #define VMAP_MAX(x, y)          ((x) > (y) ? (x) : (y)) /* can't use max() */
1846 #define VMAP_BBMAP_BITS         \
1847                 VMAP_MIN(VMAP_BBMAP_BITS_MAX,   \
1848                 VMAP_MAX(VMAP_BBMAP_BITS_MIN,   \
1849                         VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1850
1851 #define VMAP_BLOCK_SIZE         (VMAP_BBMAP_BITS * PAGE_SIZE)
1852
1853 struct vmap_block_queue {
1854         spinlock_t lock;
1855         struct list_head free;
1856 };
1857
1858 struct vmap_block {
1859         spinlock_t lock;
1860         struct vmap_area *va;
1861         unsigned long free, dirty;
1862         unsigned long dirty_min, dirty_max; /*< dirty range */
1863         struct list_head free_list;
1864         struct rcu_head rcu_head;
1865         struct list_head purge;
1866 };
1867
1868 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1869 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1870
1871 /*
1872  * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1873  * in the free path. Could get rid of this if we change the API to return a
1874  * "cookie" from alloc, to be passed to free. But no big deal yet.
1875  */
1876 static DEFINE_XARRAY(vmap_blocks);
1877
1878 /*
1879  * We should probably have a fallback mechanism to allocate virtual memory
1880  * out of partially filled vmap blocks. However vmap block sizing should be
1881  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1882  * big problem.
1883  */
1884
1885 static unsigned long addr_to_vb_idx(unsigned long addr)
1886 {
1887         addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1888         addr /= VMAP_BLOCK_SIZE;
1889         return addr;
1890 }
1891
1892 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1893 {
1894         unsigned long addr;
1895
1896         addr = va_start + (pages_off << PAGE_SHIFT);
1897         BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1898         return (void *)addr;
1899 }
1900
1901 /**
1902  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1903  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1904  * @order:    how many 2^order pages should be occupied in newly allocated block
1905  * @gfp_mask: flags for the page level allocator
1906  *
1907  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1908  */
1909 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1910 {
1911         struct vmap_block_queue *vbq;
1912         struct vmap_block *vb;
1913         struct vmap_area *va;
1914         unsigned long vb_idx;
1915         int node, err;
1916         void *vaddr;
1917
1918         node = numa_node_id();
1919
1920         vb = kmalloc_node(sizeof(struct vmap_block),
1921                         gfp_mask & GFP_RECLAIM_MASK, node);
1922         if (unlikely(!vb))
1923                 return ERR_PTR(-ENOMEM);
1924
1925         va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1926                                         VMALLOC_START, VMALLOC_END,
1927                                         node, gfp_mask);
1928         if (IS_ERR(va)) {
1929                 kfree(vb);
1930                 return ERR_CAST(va);
1931         }
1932
1933         vaddr = vmap_block_vaddr(va->va_start, 0);
1934         spin_lock_init(&vb->lock);
1935         vb->va = va;
1936         /* At least something should be left free */
1937         BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1938         vb->free = VMAP_BBMAP_BITS - (1UL << order);
1939         vb->dirty = 0;
1940         vb->dirty_min = VMAP_BBMAP_BITS;
1941         vb->dirty_max = 0;
1942         INIT_LIST_HEAD(&vb->free_list);
1943
1944         vb_idx = addr_to_vb_idx(va->va_start);
1945         err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1946         if (err) {
1947                 kfree(vb);
1948                 free_vmap_area(va);
1949                 return ERR_PTR(err);
1950         }
1951
1952         vbq = &get_cpu_var(vmap_block_queue);
1953         spin_lock(&vbq->lock);
1954         list_add_tail_rcu(&vb->free_list, &vbq->free);
1955         spin_unlock(&vbq->lock);
1956         put_cpu_var(vmap_block_queue);
1957
1958         return vaddr;
1959 }
1960
1961 static void free_vmap_block(struct vmap_block *vb)
1962 {
1963         struct vmap_block *tmp;
1964
1965         tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1966         BUG_ON(tmp != vb);
1967
1968         free_vmap_area_noflush(vb->va);
1969         kfree_rcu(vb, rcu_head);
1970 }
1971
1972 static void purge_fragmented_blocks(int cpu)
1973 {
1974         LIST_HEAD(purge);
1975         struct vmap_block *vb;
1976         struct vmap_block *n_vb;
1977         struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1978
1979         rcu_read_lock();
1980         list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1981
1982                 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1983                         continue;
1984
1985                 spin_lock(&vb->lock);
1986                 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1987                         vb->free = 0; /* prevent further allocs after releasing lock */
1988                         vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1989                         vb->dirty_min = 0;
1990                         vb->dirty_max = VMAP_BBMAP_BITS;
1991                         spin_lock(&vbq->lock);
1992                         list_del_rcu(&vb->free_list);
1993                         spin_unlock(&vbq->lock);
1994                         spin_unlock(&vb->lock);
1995                         list_add_tail(&vb->purge, &purge);
1996                 } else
1997                         spin_unlock(&vb->lock);
1998         }
1999         rcu_read_unlock();
2000
2001         list_for_each_entry_safe(vb, n_vb, &purge, purge) {
2002                 list_del(&vb->purge);
2003                 free_vmap_block(vb);
2004         }
2005 }
2006
2007 static void purge_fragmented_blocks_allcpus(void)
2008 {
2009         int cpu;
2010
2011         for_each_possible_cpu(cpu)
2012                 purge_fragmented_blocks(cpu);
2013 }
2014
2015 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2016 {
2017         struct vmap_block_queue *vbq;
2018         struct vmap_block *vb;
2019         void *vaddr = NULL;
2020         unsigned int order;
2021
2022         BUG_ON(offset_in_page(size));
2023         BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2024         if (WARN_ON(size == 0)) {
2025                 /*
2026                  * Allocating 0 bytes isn't what caller wants since
2027                  * get_order(0) returns funny result. Just warn and terminate
2028                  * early.
2029                  */
2030                 return NULL;
2031         }
2032         order = get_order(size);
2033
2034         rcu_read_lock();
2035         vbq = &get_cpu_var(vmap_block_queue);
2036         list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2037                 unsigned long pages_off;
2038
2039                 spin_lock(&vb->lock);
2040                 if (vb->free < (1UL << order)) {
2041                         spin_unlock(&vb->lock);
2042                         continue;
2043                 }
2044
2045                 pages_off = VMAP_BBMAP_BITS - vb->free;
2046                 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2047                 vb->free -= 1UL << order;
2048                 if (vb->free == 0) {
2049                         spin_lock(&vbq->lock);
2050                         list_del_rcu(&vb->free_list);
2051                         spin_unlock(&vbq->lock);
2052                 }
2053
2054                 spin_unlock(&vb->lock);
2055                 break;
2056         }
2057
2058         put_cpu_var(vmap_block_queue);
2059         rcu_read_unlock();
2060
2061         /* Allocate new block if nothing was found */
2062         if (!vaddr)
2063                 vaddr = new_vmap_block(order, gfp_mask);
2064
2065         return vaddr;
2066 }
2067
2068 static void vb_free(unsigned long addr, unsigned long size)
2069 {
2070         unsigned long offset;
2071         unsigned int order;
2072         struct vmap_block *vb;
2073
2074         BUG_ON(offset_in_page(size));
2075         BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2076
2077         flush_cache_vunmap(addr, addr + size);
2078
2079         order = get_order(size);
2080         offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2081         vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
2082
2083         vunmap_range_noflush(addr, addr + size);
2084
2085         if (debug_pagealloc_enabled_static())
2086                 flush_tlb_kernel_range(addr, addr + size);
2087
2088         spin_lock(&vb->lock);
2089
2090         /* Expand dirty range */
2091         vb->dirty_min = min(vb->dirty_min, offset);
2092         vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2093
2094         vb->dirty += 1UL << order;
2095         if (vb->dirty == VMAP_BBMAP_BITS) {
2096                 BUG_ON(vb->free);
2097                 spin_unlock(&vb->lock);
2098                 free_vmap_block(vb);
2099         } else
2100                 spin_unlock(&vb->lock);
2101 }
2102
2103 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2104 {
2105         int cpu;
2106
2107         if (unlikely(!vmap_initialized))
2108                 return;
2109
2110         might_sleep();
2111
2112         for_each_possible_cpu(cpu) {
2113                 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2114                 struct vmap_block *vb;
2115
2116                 rcu_read_lock();
2117                 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2118                         spin_lock(&vb->lock);
2119                         if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2120                                 unsigned long va_start = vb->va->va_start;
2121                                 unsigned long s, e;
2122
2123                                 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2124                                 e = va_start + (vb->dirty_max << PAGE_SHIFT);
2125
2126                                 start = min(s, start);
2127                                 end   = max(e, end);
2128
2129                                 flush = 1;
2130                         }
2131                         spin_unlock(&vb->lock);
2132                 }
2133                 rcu_read_unlock();
2134         }
2135
2136         mutex_lock(&vmap_purge_lock);
2137         purge_fragmented_blocks_allcpus();
2138         if (!__purge_vmap_area_lazy(start, end) && flush)
2139                 flush_tlb_kernel_range(start, end);
2140         mutex_unlock(&vmap_purge_lock);
2141 }
2142
2143 /**
2144  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2145  *
2146  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2147  * to amortize TLB flushing overheads. What this means is that any page you
2148  * have now, may, in a former life, have been mapped into kernel virtual
2149  * address by the vmap layer and so there might be some CPUs with TLB entries
2150  * still referencing that page (additional to the regular 1:1 kernel mapping).
2151  *
2152  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2153  * be sure that none of the pages we have control over will have any aliases
2154  * from the vmap layer.
2155  */
2156 void vm_unmap_aliases(void)
2157 {
2158         unsigned long start = ULONG_MAX, end = 0;
2159         int flush = 0;
2160
2161         _vm_unmap_aliases(start, end, flush);
2162 }
2163 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2164
2165 /**
2166  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2167  * @mem: the pointer returned by vm_map_ram
2168  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2169  */
2170 void vm_unmap_ram(const void *mem, unsigned int count)
2171 {
2172         unsigned long size = (unsigned long)count << PAGE_SHIFT;
2173         unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2174         struct vmap_area *va;
2175
2176         might_sleep();
2177         BUG_ON(!addr);
2178         BUG_ON(addr < VMALLOC_START);
2179         BUG_ON(addr > VMALLOC_END);
2180         BUG_ON(!PAGE_ALIGNED(addr));
2181
2182         kasan_poison_vmalloc(mem, size);
2183
2184         if (likely(count <= VMAP_MAX_ALLOC)) {
2185                 debug_check_no_locks_freed(mem, size);
2186                 vb_free(addr, size);
2187                 return;
2188         }
2189
2190         va = find_vmap_area(addr);
2191         BUG_ON(!va);
2192         debug_check_no_locks_freed((void *)va->va_start,
2193                                     (va->va_end - va->va_start));
2194         free_unmap_vmap_area(va);
2195 }
2196 EXPORT_SYMBOL(vm_unmap_ram);
2197
2198 /**
2199  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2200  * @pages: an array of pointers to the pages to be mapped
2201  * @count: number of pages
2202  * @node: prefer to allocate data structures on this node
2203  *
2204  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2205  * faster than vmap so it's good.  But if you mix long-life and short-life
2206  * objects with vm_map_ram(), it could consume lots of address space through
2207  * fragmentation (especially on a 32bit machine).  You could see failures in
2208  * the end.  Please use this function for short-lived objects.
2209  *
2210  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2211  */
2212 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2213 {
2214         unsigned long size = (unsigned long)count << PAGE_SHIFT;
2215         unsigned long addr;
2216         void *mem;
2217
2218         if (likely(count <= VMAP_MAX_ALLOC)) {
2219                 mem = vb_alloc(size, GFP_KERNEL);
2220                 if (IS_ERR(mem))
2221                         return NULL;
2222                 addr = (unsigned long)mem;
2223         } else {
2224                 struct vmap_area *va;
2225                 va = alloc_vmap_area(size, PAGE_SIZE,
2226                                 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2227                 if (IS_ERR(va))
2228                         return NULL;
2229
2230                 addr = va->va_start;
2231                 mem = (void *)addr;
2232         }
2233
2234         if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2235                                 pages, PAGE_SHIFT) < 0) {
2236                 vm_unmap_ram(mem, count);
2237                 return NULL;
2238         }
2239
2240         /*
2241          * Mark the pages as accessible, now that they are mapped.
2242          * With hardware tag-based KASAN, marking is skipped for
2243          * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2244          */
2245         mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2246
2247         return mem;
2248 }
2249 EXPORT_SYMBOL(vm_map_ram);
2250
2251 static struct vm_struct *vmlist __initdata;
2252
2253 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2254 {
2255 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2256         return vm->page_order;
2257 #else
2258         return 0;
2259 #endif
2260 }
2261
2262 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2263 {
2264 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2265         vm->page_order = order;
2266 #else
2267         BUG_ON(order != 0);
2268 #endif
2269 }
2270
2271 /**
2272  * vm_area_add_early - add vmap area early during boot
2273  * @vm: vm_struct to add
2274  *
2275  * This function is used to add fixed kernel vm area to vmlist before
2276  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2277  * should contain proper values and the other fields should be zero.
2278  *
2279  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2280  */
2281 void __init vm_area_add_early(struct vm_struct *vm)
2282 {
2283         struct vm_struct *tmp, **p;
2284
2285         BUG_ON(vmap_initialized);
2286         for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2287                 if (tmp->addr >= vm->addr) {
2288                         BUG_ON(tmp->addr < vm->addr + vm->size);
2289                         break;
2290                 } else
2291                         BUG_ON(tmp->addr + tmp->size > vm->addr);
2292         }
2293         vm->next = *p;
2294         *p = vm;
2295 }
2296
2297 /**
2298  * vm_area_register_early - register vmap area early during boot
2299  * @vm: vm_struct to register
2300  * @align: requested alignment
2301  *
2302  * This function is used to register kernel vm area before
2303  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
2304  * proper values on entry and other fields should be zero.  On return,
2305  * vm->addr contains the allocated address.
2306  *
2307  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2308  */
2309 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2310 {
2311         unsigned long addr = ALIGN(VMALLOC_START, align);
2312         struct vm_struct *cur, **p;
2313
2314         BUG_ON(vmap_initialized);
2315
2316         for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2317                 if ((unsigned long)cur->addr - addr >= vm->size)
2318                         break;
2319                 addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2320         }
2321
2322         BUG_ON(addr > VMALLOC_END - vm->size);
2323         vm->addr = (void *)addr;
2324         vm->next = *p;
2325         *p = vm;
2326         kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2327 }
2328
2329 static void vmap_init_free_space(void)
2330 {
2331         unsigned long vmap_start = 1;
2332         const unsigned long vmap_end = ULONG_MAX;
2333         struct vmap_area *busy, *free;
2334
2335         /*
2336          *     B     F     B     B     B     F
2337          * -|-----|.....|-----|-----|-----|.....|-
2338          *  |           The KVA space           |
2339          *  |<--------------------------------->|
2340          */
2341         list_for_each_entry(busy, &vmap_area_list, list) {
2342                 if (busy->va_start - vmap_start > 0) {
2343                         free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2344                         if (!WARN_ON_ONCE(!free)) {
2345                                 free->va_start = vmap_start;
2346                                 free->va_end = busy->va_start;
2347
2348                                 insert_vmap_area_augment(free, NULL,
2349                                         &free_vmap_area_root,
2350                                                 &free_vmap_area_list);
2351                         }
2352                 }
2353
2354                 vmap_start = busy->va_end;
2355         }
2356
2357         if (vmap_end - vmap_start > 0) {
2358                 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2359                 if (!WARN_ON_ONCE(!free)) {
2360                         free->va_start = vmap_start;
2361                         free->va_end = vmap_end;
2362
2363                         insert_vmap_area_augment(free, NULL,
2364                                 &free_vmap_area_root,
2365                                         &free_vmap_area_list);
2366                 }
2367         }
2368 }
2369
2370 void __init vmalloc_init(void)
2371 {
2372         struct vmap_area *va;
2373         struct vm_struct *tmp;
2374         int i;
2375
2376         /*
2377          * Create the cache for vmap_area objects.
2378          */
2379         vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2380
2381         for_each_possible_cpu(i) {
2382                 struct vmap_block_queue *vbq;
2383                 struct vfree_deferred *p;
2384
2385                 vbq = &per_cpu(vmap_block_queue, i);
2386                 spin_lock_init(&vbq->lock);
2387                 INIT_LIST_HEAD(&vbq->free);
2388                 p = &per_cpu(vfree_deferred, i);
2389                 init_llist_head(&p->list);
2390                 INIT_WORK(&p->wq, free_work);
2391         }
2392
2393         /* Import existing vmlist entries. */
2394         for (tmp = vmlist; tmp; tmp = tmp->next) {
2395                 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2396                 if (WARN_ON_ONCE(!va))
2397                         continue;
2398
2399                 va->va_start = (unsigned long)tmp->addr;
2400                 va->va_end = va->va_start + tmp->size;
2401                 va->vm = tmp;
2402                 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2403         }
2404
2405         /*
2406          * Now we can initialize a free vmap space.
2407          */
2408         vmap_init_free_space();
2409         vmap_initialized = true;
2410 }
2411
2412 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2413         struct vmap_area *va, unsigned long flags, const void *caller)
2414 {
2415         vm->flags = flags;
2416         vm->addr = (void *)va->va_start;
2417         vm->size = va->va_end - va->va_start;
2418         vm->caller = caller;
2419         va->vm = vm;
2420 }
2421
2422 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2423                               unsigned long flags, const void *caller)
2424 {
2425         spin_lock(&vmap_area_lock);
2426         setup_vmalloc_vm_locked(vm, va, flags, caller);
2427         spin_unlock(&vmap_area_lock);
2428 }
2429
2430 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2431 {
2432         /*
2433          * Before removing VM_UNINITIALIZED,
2434          * we should make sure that vm has proper values.
2435          * Pair with smp_rmb() in show_numa_info().
2436          */
2437         smp_wmb();
2438         vm->flags &= ~VM_UNINITIALIZED;
2439 }
2440
2441 static struct vm_struct *__get_vm_area_node(unsigned long size,
2442                 unsigned long align, unsigned long shift, unsigned long flags,
2443                 unsigned long start, unsigned long end, int node,
2444                 gfp_t gfp_mask, const void *caller)
2445 {
2446         struct vmap_area *va;
2447         struct vm_struct *area;
2448         unsigned long requested_size = size;
2449
2450         BUG_ON(in_interrupt());
2451         size = ALIGN(size, 1ul << shift);
2452         if (unlikely(!size))
2453                 return NULL;
2454
2455         if (flags & VM_IOREMAP)
2456                 align = 1ul << clamp_t(int, get_count_order_long(size),
2457                                        PAGE_SHIFT, IOREMAP_MAX_ORDER);
2458
2459         area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2460         if (unlikely(!area))
2461                 return NULL;
2462
2463         if (!(flags & VM_NO_GUARD))
2464                 size += PAGE_SIZE;
2465
2466         va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2467         if (IS_ERR(va)) {
2468                 kfree(area);
2469                 return NULL;
2470         }
2471
2472         setup_vmalloc_vm(area, va, flags, caller);
2473
2474         /*
2475          * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2476          * best-effort approach, as they can be mapped outside of vmalloc code.
2477          * For VM_ALLOC mappings, the pages are marked as accessible after
2478          * getting mapped in __vmalloc_node_range().
2479          * With hardware tag-based KASAN, marking is skipped for
2480          * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2481          */
2482         if (!(flags & VM_ALLOC))
2483                 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2484                                                     KASAN_VMALLOC_PROT_NORMAL);
2485
2486         return area;
2487 }
2488
2489 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2490                                        unsigned long start, unsigned long end,
2491                                        const void *caller)
2492 {
2493         return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2494                                   NUMA_NO_NODE, GFP_KERNEL, caller);
2495 }
2496
2497 /**
2498  * get_vm_area - reserve a contiguous kernel virtual area
2499  * @size:        size of the area
2500  * @flags:       %VM_IOREMAP for I/O mappings or VM_ALLOC
2501  *
2502  * Search an area of @size in the kernel virtual mapping area,
2503  * and reserved it for out purposes.  Returns the area descriptor
2504  * on success or %NULL on failure.
2505  *
2506  * Return: the area descriptor on success or %NULL on failure.
2507  */
2508 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2509 {
2510         return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2511                                   VMALLOC_START, VMALLOC_END,
2512                                   NUMA_NO_NODE, GFP_KERNEL,
2513                                   __builtin_return_address(0));
2514 }
2515
2516 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2517                                 const void *caller)
2518 {
2519         return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2520                                   VMALLOC_START, VMALLOC_END,
2521                                   NUMA_NO_NODE, GFP_KERNEL, caller);
2522 }
2523
2524 /**
2525  * find_vm_area - find a continuous kernel virtual area
2526  * @addr:         base address
2527  *
2528  * Search for the kernel VM area starting at @addr, and return it.
2529  * It is up to the caller to do all required locking to keep the returned
2530  * pointer valid.
2531  *
2532  * Return: the area descriptor on success or %NULL on failure.
2533  */
2534 struct vm_struct *find_vm_area(const void *addr)
2535 {
2536         struct vmap_area *va;
2537
2538         va = find_vmap_area((unsigned long)addr);
2539         if (!va)
2540                 return NULL;
2541
2542         return va->vm;
2543 }
2544
2545 /**
2546  * remove_vm_area - find and remove a continuous kernel virtual area
2547  * @addr:           base address
2548  *
2549  * Search for the kernel VM area starting at @addr, and remove it.
2550  * This function returns the found VM area, but using it is NOT safe
2551  * on SMP machines, except for its size or flags.
2552  *
2553  * Return: the area descriptor on success or %NULL on failure.
2554  */
2555 struct vm_struct *remove_vm_area(const void *addr)
2556 {
2557         struct vmap_area *va;
2558
2559         might_sleep();
2560
2561         spin_lock(&vmap_area_lock);
2562         va = __find_vmap_area((unsigned long)addr);
2563         if (va && va->vm) {
2564                 struct vm_struct *vm = va->vm;
2565
2566                 va->vm = NULL;
2567                 spin_unlock(&vmap_area_lock);
2568
2569                 kasan_free_module_shadow(vm);
2570                 free_unmap_vmap_area(va);
2571
2572                 return vm;
2573         }
2574
2575         spin_unlock(&vmap_area_lock);
2576         return NULL;
2577 }
2578
2579 static inline void set_area_direct_map(const struct vm_struct *area,
2580                                        int (*set_direct_map)(struct page *page))
2581 {
2582         int i;
2583
2584         /* HUGE_VMALLOC passes small pages to set_direct_map */
2585         for (i = 0; i < area->nr_pages; i++)
2586                 if (page_address(area->pages[i]))
2587                         set_direct_map(area->pages[i]);
2588 }
2589
2590 /* Handle removing and resetting vm mappings related to the vm_struct. */
2591 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2592 {
2593         unsigned long start = ULONG_MAX, end = 0;
2594         unsigned int page_order = vm_area_page_order(area);
2595         int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2596         int flush_dmap = 0;
2597         int i;
2598
2599         remove_vm_area(area->addr);
2600
2601         /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2602         if (!flush_reset)
2603                 return;
2604
2605         /*
2606          * If not deallocating pages, just do the flush of the VM area and
2607          * return.
2608          */
2609         if (!deallocate_pages) {
2610                 vm_unmap_aliases();
2611                 return;
2612         }
2613
2614         /*
2615          * If execution gets here, flush the vm mapping and reset the direct
2616          * map. Find the start and end range of the direct mappings to make sure
2617          * the vm_unmap_aliases() flush includes the direct map.
2618          */
2619         for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2620                 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2621                 if (addr) {
2622                         unsigned long page_size;
2623
2624                         page_size = PAGE_SIZE << page_order;
2625                         start = min(addr, start);
2626                         end = max(addr + page_size, end);
2627                         flush_dmap = 1;
2628                 }
2629         }
2630
2631         /*
2632          * Set direct map to something invalid so that it won't be cached if
2633          * there are any accesses after the TLB flush, then flush the TLB and
2634          * reset the direct map permissions to the default.
2635          */
2636         set_area_direct_map(area, set_direct_map_invalid_noflush);
2637         _vm_unmap_aliases(start, end, flush_dmap);
2638         set_area_direct_map(area, set_direct_map_default_noflush);
2639 }
2640
2641 static void __vunmap(const void *addr, int deallocate_pages)
2642 {
2643         struct vm_struct *area;
2644
2645         if (!addr)
2646                 return;
2647
2648         if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2649                         addr))
2650                 return;
2651
2652         area = find_vm_area(addr);
2653         if (unlikely(!area)) {
2654                 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2655                                 addr);
2656                 return;
2657         }
2658
2659         debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2660         debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2661
2662         kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2663
2664         vm_remove_mappings(area, deallocate_pages);
2665
2666         if (deallocate_pages) {
2667                 unsigned int page_order = vm_area_page_order(area);
2668                 int i, step = 1U << page_order;
2669
2670                 for (i = 0; i < area->nr_pages; i += step) {
2671                         struct page *page = area->pages[i];
2672
2673                         BUG_ON(!page);
2674                         mod_memcg_page_state(page, MEMCG_VMALLOC, -step);
2675                         __free_pages(page, page_order);
2676                         cond_resched();
2677                 }
2678                 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2679
2680                 kvfree(area->pages);
2681         }
2682
2683         kfree(area);
2684 }
2685
2686 static inline void __vfree_deferred(const void *addr)
2687 {
2688         /*
2689          * Use raw_cpu_ptr() because this can be called from preemptible
2690          * context. Preemption is absolutely fine here, because the llist_add()
2691          * implementation is lockless, so it works even if we are adding to
2692          * another cpu's list. schedule_work() should be fine with this too.
2693          */
2694         struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2695
2696         if (llist_add((struct llist_node *)addr, &p->list))
2697                 schedule_work(&p->wq);
2698 }
2699
2700 /**
2701  * vfree_atomic - release memory allocated by vmalloc()
2702  * @addr:         memory base address
2703  *
2704  * This one is just like vfree() but can be called in any atomic context
2705  * except NMIs.
2706  */
2707 void vfree_atomic(const void *addr)
2708 {
2709         BUG_ON(in_nmi());
2710
2711         kmemleak_free(addr);
2712
2713         if (!addr)
2714                 return;
2715         __vfree_deferred(addr);
2716 }
2717
2718 static void __vfree(const void *addr)
2719 {
2720         if (unlikely(in_interrupt()))
2721                 __vfree_deferred(addr);
2722         else
2723                 __vunmap(addr, 1);
2724 }
2725
2726 /**
2727  * vfree - Release memory allocated by vmalloc()
2728  * @addr:  Memory base address
2729  *
2730  * Free the virtually continuous memory area starting at @addr, as obtained
2731  * from one of the vmalloc() family of APIs.  This will usually also free the
2732  * physical memory underlying the virtual allocation, but that memory is
2733  * reference counted, so it will not be freed until the last user goes away.
2734  *
2735  * If @addr is NULL, no operation is performed.
2736  *
2737  * Context:
2738  * May sleep if called *not* from interrupt context.
2739  * Must not be called in NMI context (strictly speaking, it could be
2740  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2741  * conventions for vfree() arch-dependent would be a really bad idea).
2742  */
2743 void vfree(const void *addr)
2744 {
2745         BUG_ON(in_nmi());
2746
2747         kmemleak_free(addr);
2748
2749         might_sleep_if(!in_interrupt());
2750
2751         if (!addr)
2752                 return;
2753
2754         __vfree(addr);
2755 }
2756 EXPORT_SYMBOL(vfree);
2757
2758 /**
2759  * vunmap - release virtual mapping obtained by vmap()
2760  * @addr:   memory base address
2761  *
2762  * Free the virtually contiguous memory area starting at @addr,
2763  * which was created from the page array passed to vmap().
2764  *
2765  * Must not be called in interrupt context.
2766  */
2767 void vunmap(const void *addr)
2768 {
2769         BUG_ON(in_interrupt());
2770         might_sleep();
2771         if (addr)
2772                 __vunmap(addr, 0);
2773 }
2774 EXPORT_SYMBOL(vunmap);
2775
2776 /**
2777  * vmap - map an array of pages into virtually contiguous space
2778  * @pages: array of page pointers
2779  * @count: number of pages to map
2780  * @flags: vm_area->flags
2781  * @prot: page protection for the mapping
2782  *
2783  * Maps @count pages from @pages into contiguous kernel virtual space.
2784  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2785  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2786  * are transferred from the caller to vmap(), and will be freed / dropped when
2787  * vfree() is called on the return value.
2788  *
2789  * Return: the address of the area or %NULL on failure
2790  */
2791 void *vmap(struct page **pages, unsigned int count,
2792            unsigned long flags, pgprot_t prot)
2793 {
2794         struct vm_struct *area;
2795         unsigned long addr;
2796         unsigned long size;             /* In bytes */
2797
2798         might_sleep();
2799
2800         /*
2801          * Your top guard is someone else's bottom guard. Not having a top
2802          * guard compromises someone else's mappings too.
2803          */
2804         if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2805                 flags &= ~VM_NO_GUARD;
2806
2807         if (count > totalram_pages())
2808                 return NULL;
2809
2810         size = (unsigned long)count << PAGE_SHIFT;
2811         area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2812         if (!area)
2813                 return NULL;
2814
2815         addr = (unsigned long)area->addr;
2816         if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2817                                 pages, PAGE_SHIFT) < 0) {
2818                 vunmap(area->addr);
2819                 return NULL;
2820         }
2821
2822         if (flags & VM_MAP_PUT_PAGES) {
2823                 area->pages = pages;
2824                 area->nr_pages = count;
2825         }
2826         return area->addr;
2827 }
2828 EXPORT_SYMBOL(vmap);
2829
2830 #ifdef CONFIG_VMAP_PFN
2831 struct vmap_pfn_data {
2832         unsigned long   *pfns;
2833         pgprot_t        prot;
2834         unsigned int    idx;
2835 };
2836
2837 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2838 {
2839         struct vmap_pfn_data *data = private;
2840
2841         if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2842                 return -EINVAL;
2843         *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2844         return 0;
2845 }
2846
2847 /**
2848  * vmap_pfn - map an array of PFNs into virtually contiguous space
2849  * @pfns: array of PFNs
2850  * @count: number of pages to map
2851  * @prot: page protection for the mapping
2852  *
2853  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2854  * the start address of the mapping.
2855  */
2856 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2857 {
2858         struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2859         struct vm_struct *area;
2860
2861         area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2862                         __builtin_return_address(0));
2863         if (!area)
2864                 return NULL;
2865         if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2866                         count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2867                 free_vm_area(area);
2868                 return NULL;
2869         }
2870         return area->addr;
2871 }
2872 EXPORT_SYMBOL_GPL(vmap_pfn);
2873 #endif /* CONFIG_VMAP_PFN */
2874
2875 static inline unsigned int
2876 vm_area_alloc_pages(gfp_t gfp, int nid,
2877                 unsigned int order, unsigned int nr_pages, struct page **pages)
2878 {
2879         unsigned int nr_allocated = 0;
2880         struct page *page;
2881         int i;
2882
2883         /*
2884          * For order-0 pages we make use of bulk allocator, if
2885          * the page array is partly or not at all populated due
2886          * to fails, fallback to a single page allocator that is
2887          * more permissive.
2888          */
2889         if (!order) {
2890                 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
2891
2892                 while (nr_allocated < nr_pages) {
2893                         unsigned int nr, nr_pages_request;
2894
2895                         /*
2896                          * A maximum allowed request is hard-coded and is 100
2897                          * pages per call. That is done in order to prevent a
2898                          * long preemption off scenario in the bulk-allocator
2899                          * so the range is [1:100].
2900                          */
2901                         nr_pages_request = min(100U, nr_pages - nr_allocated);
2902
2903                         /* memory allocation should consider mempolicy, we can't
2904                          * wrongly use nearest node when nid == NUMA_NO_NODE,
2905                          * otherwise memory may be allocated in only one node,
2906                          * but mempolcy want to alloc memory by interleaving.
2907                          */
2908                         if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
2909                                 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
2910                                                         nr_pages_request,
2911                                                         pages + nr_allocated);
2912
2913                         else
2914                                 nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
2915                                                         nr_pages_request,
2916                                                         pages + nr_allocated);
2917
2918                         nr_allocated += nr;
2919                         cond_resched();
2920
2921                         /*
2922                          * If zero or pages were obtained partly,
2923                          * fallback to a single page allocator.
2924                          */
2925                         if (nr != nr_pages_request)
2926                                 break;
2927                 }
2928         } else
2929                 /*
2930                  * Compound pages required for remap_vmalloc_page if
2931                  * high-order pages.
2932                  */
2933                 gfp |= __GFP_COMP;
2934
2935         /* High-order pages or fallback path if "bulk" fails. */
2936
2937         while (nr_allocated < nr_pages) {
2938                 if (fatal_signal_pending(current))
2939                         break;
2940
2941                 if (nid == NUMA_NO_NODE)
2942                         page = alloc_pages(gfp, order);
2943                 else
2944                         page = alloc_pages_node(nid, gfp, order);
2945                 if (unlikely(!page))
2946                         break;
2947
2948                 /*
2949                  * Careful, we allocate and map page-order pages, but
2950                  * tracking is done per PAGE_SIZE page so as to keep the
2951                  * vm_struct APIs independent of the physical/mapped size.
2952                  */
2953                 for (i = 0; i < (1U << order); i++)
2954                         pages[nr_allocated + i] = page + i;
2955
2956                 cond_resched();
2957                 nr_allocated += 1U << order;
2958         }
2959
2960         return nr_allocated;
2961 }
2962
2963 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2964                                  pgprot_t prot, unsigned int page_shift,
2965                                  int node)
2966 {
2967         const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2968         bool nofail = gfp_mask & __GFP_NOFAIL;
2969         unsigned long addr = (unsigned long)area->addr;
2970         unsigned long size = get_vm_area_size(area);
2971         unsigned long array_size;
2972         unsigned int nr_small_pages = size >> PAGE_SHIFT;
2973         unsigned int page_order;
2974         unsigned int flags;
2975         int ret;
2976
2977         array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
2978         gfp_mask |= __GFP_NOWARN;
2979         if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2980                 gfp_mask |= __GFP_HIGHMEM;
2981
2982         /* Please note that the recursion is strictly bounded. */
2983         if (array_size > PAGE_SIZE) {
2984                 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2985                                         area->caller);
2986         } else {
2987                 area->pages = kmalloc_node(array_size, nested_gfp, node);
2988         }
2989
2990         if (!area->pages) {
2991                 warn_alloc(gfp_mask, NULL,
2992                         "vmalloc error: size %lu, failed to allocated page array size %lu",
2993                         nr_small_pages * PAGE_SIZE, array_size);
2994                 free_vm_area(area);
2995                 return NULL;
2996         }
2997
2998         set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
2999         page_order = vm_area_page_order(area);
3000
3001         area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3002                 node, page_order, nr_small_pages, area->pages);
3003
3004         atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3005         if (gfp_mask & __GFP_ACCOUNT) {
3006                 int i, step = 1U << page_order;
3007
3008                 for (i = 0; i < area->nr_pages; i += step)
3009                         mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC,
3010                                              step);
3011         }
3012
3013         /*
3014          * If not enough pages were obtained to accomplish an
3015          * allocation request, free them via __vfree() if any.
3016          */
3017         if (area->nr_pages != nr_small_pages) {
3018                 warn_alloc(gfp_mask, NULL,
3019                         "vmalloc error: size %lu, page order %u, failed to allocate pages",
3020                         area->nr_pages * PAGE_SIZE, page_order);
3021                 goto fail;
3022         }
3023
3024         /*
3025          * page tables allocations ignore external gfp mask, enforce it
3026          * by the scope API
3027          */
3028         if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3029                 flags = memalloc_nofs_save();
3030         else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3031                 flags = memalloc_noio_save();
3032
3033         do {
3034                 ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3035                         page_shift);
3036                 if (nofail && (ret < 0))
3037                         schedule_timeout_uninterruptible(1);
3038         } while (nofail && (ret < 0));
3039
3040         if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3041                 memalloc_nofs_restore(flags);
3042         else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3043                 memalloc_noio_restore(flags);
3044
3045         if (ret < 0) {
3046                 warn_alloc(gfp_mask, NULL,
3047                         "vmalloc error: size %lu, failed to map pages",
3048                         area->nr_pages * PAGE_SIZE);
3049                 goto fail;
3050         }
3051
3052         return area->addr;
3053
3054 fail:
3055         __vfree(area->addr);
3056         return NULL;
3057 }
3058
3059 /**
3060  * __vmalloc_node_range - allocate virtually contiguous memory
3061  * @size:                 allocation size
3062  * @align:                desired alignment
3063  * @start:                vm area range start
3064  * @end:                  vm area range end
3065  * @gfp_mask:             flags for the page level allocator
3066  * @prot:                 protection mask for the allocated pages
3067  * @vm_flags:             additional vm area flags (e.g. %VM_NO_GUARD)
3068  * @node:                 node to use for allocation or NUMA_NO_NODE
3069  * @caller:               caller's return address
3070  *
3071  * Allocate enough pages to cover @size from the page level
3072  * allocator with @gfp_mask flags. Please note that the full set of gfp
3073  * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3074  * supported.
3075  * Zone modifiers are not supported. From the reclaim modifiers
3076  * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3077  * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3078  * __GFP_RETRY_MAYFAIL are not supported).
3079  *
3080  * __GFP_NOWARN can be used to suppress failures messages.
3081  *
3082  * Map them into contiguous kernel virtual space, using a pagetable
3083  * protection of @prot.
3084  *
3085  * Return: the address of the area or %NULL on failure
3086  */
3087 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3088                         unsigned long start, unsigned long end, gfp_t gfp_mask,
3089                         pgprot_t prot, unsigned long vm_flags, int node,
3090                         const void *caller)
3091 {
3092         struct vm_struct *area;
3093         void *ret;
3094         kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3095         unsigned long real_size = size;
3096         unsigned long real_align = align;
3097         unsigned int shift = PAGE_SHIFT;
3098
3099         if (WARN_ON_ONCE(!size))
3100                 return NULL;
3101
3102         if ((size >> PAGE_SHIFT) > totalram_pages()) {
3103                 warn_alloc(gfp_mask, NULL,
3104                         "vmalloc error: size %lu, exceeds total pages",
3105                         real_size);
3106                 return NULL;
3107         }
3108
3109         if (vmap_allow_huge && !(vm_flags & VM_NO_HUGE_VMAP)) {
3110                 unsigned long size_per_node;
3111
3112                 /*
3113                  * Try huge pages. Only try for PAGE_KERNEL allocations,
3114                  * others like modules don't yet expect huge pages in
3115                  * their allocations due to apply_to_page_range not
3116                  * supporting them.
3117                  */
3118
3119                 size_per_node = size;
3120                 if (node == NUMA_NO_NODE)
3121                         size_per_node /= num_online_nodes();
3122                 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3123                         shift = PMD_SHIFT;
3124                 else
3125                         shift = arch_vmap_pte_supported_shift(size_per_node);
3126
3127                 align = max(real_align, 1UL << shift);
3128                 size = ALIGN(real_size, 1UL << shift);
3129         }
3130
3131 again:
3132         area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3133                                   VM_UNINITIALIZED | vm_flags, start, end, node,
3134                                   gfp_mask, caller);
3135         if (!area) {
3136                 bool nofail = gfp_mask & __GFP_NOFAIL;
3137                 warn_alloc(gfp_mask, NULL,
3138                         "vmalloc error: size %lu, vm_struct allocation failed%s",
3139                         real_size, (nofail) ? ". Retrying." : "");
3140                 if (nofail) {
3141                         schedule_timeout_uninterruptible(1);
3142                         goto again;
3143                 }
3144                 goto fail;
3145         }
3146
3147         /*
3148          * Prepare arguments for __vmalloc_area_node() and
3149          * kasan_unpoison_vmalloc().
3150          */
3151         if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3152                 if (kasan_hw_tags_enabled()) {
3153                         /*
3154                          * Modify protection bits to allow tagging.
3155                          * This must be done before mapping.
3156                          */
3157                         prot = arch_vmap_pgprot_tagged(prot);
3158
3159                         /*
3160                          * Skip page_alloc poisoning and zeroing for physical
3161                          * pages backing VM_ALLOC mapping. Memory is instead
3162                          * poisoned and zeroed by kasan_unpoison_vmalloc().
3163                          */
3164                         gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO;
3165                 }
3166
3167                 /* Take note that the mapping is PAGE_KERNEL. */
3168                 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3169         }
3170
3171         /* Allocate physical pages and map them into vmalloc space. */
3172         ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3173         if (!ret)
3174                 goto fail;
3175
3176         /*
3177          * Mark the pages as accessible, now that they are mapped.
3178          * The init condition should match the one in post_alloc_hook()
3179          * (except for the should_skip_init() check) to make sure that memory
3180          * is initialized under the same conditions regardless of the enabled
3181          * KASAN mode.
3182          * Tag-based KASAN modes only assign tags to normal non-executable
3183          * allocations, see __kasan_unpoison_vmalloc().
3184          */
3185         kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3186         if (!want_init_on_free() && want_init_on_alloc(gfp_mask))
3187                 kasan_flags |= KASAN_VMALLOC_INIT;
3188         /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3189         area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3190
3191         /*
3192          * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3193          * flag. It means that vm_struct is not fully initialized.
3194          * Now, it is fully initialized, so remove this flag here.
3195          */
3196         clear_vm_uninitialized_flag(area);
3197
3198         size = PAGE_ALIGN(size);
3199         if (!(vm_flags & VM_DEFER_KMEMLEAK))
3200                 kmemleak_vmalloc(area, size, gfp_mask);
3201
3202         return area->addr;
3203
3204 fail:
3205         if (shift > PAGE_SHIFT) {
3206                 shift = PAGE_SHIFT;
3207                 align = real_align;
3208                 size = real_size;
3209                 goto again;
3210         }
3211
3212         return NULL;
3213 }
3214
3215 /**
3216  * __vmalloc_node - allocate virtually contiguous memory
3217  * @size:           allocation size
3218  * @align:          desired alignment
3219  * @gfp_mask:       flags for the page level allocator
3220  * @node:           node to use for allocation or NUMA_NO_NODE
3221  * @caller:         caller's return address
3222  *
3223  * Allocate enough pages to cover @size from the page level allocator with
3224  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3225  *
3226  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3227  * and __GFP_NOFAIL are not supported
3228  *
3229  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3230  * with mm people.
3231  *
3232  * Return: pointer to the allocated memory or %NULL on error
3233  */
3234 void *__vmalloc_node(unsigned long size, unsigned long align,
3235                             gfp_t gfp_mask, int node, const void *caller)
3236 {
3237         return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3238                                 gfp_mask, PAGE_KERNEL, 0, node, caller);
3239 }
3240 /*
3241  * This is only for performance analysis of vmalloc and stress purpose.
3242  * It is required by vmalloc test module, therefore do not use it other
3243  * than that.
3244  */
3245 #ifdef CONFIG_TEST_VMALLOC_MODULE
3246 EXPORT_SYMBOL_GPL(__vmalloc_node);
3247 #endif
3248
3249 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3250 {
3251         return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3252                                 __builtin_return_address(0));
3253 }
3254 EXPORT_SYMBOL(__vmalloc);
3255
3256 /**
3257  * vmalloc - allocate virtually contiguous memory
3258  * @size:    allocation size
3259  *
3260  * Allocate enough pages to cover @size from the page level
3261  * allocator and map them into contiguous kernel virtual space.
3262  *
3263  * For tight control over page level allocator and protection flags
3264  * use __vmalloc() instead.
3265  *
3266  * Return: pointer to the allocated memory or %NULL on error
3267  */
3268 void *vmalloc(unsigned long size)
3269 {
3270         return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3271                                 __builtin_return_address(0));
3272 }
3273 EXPORT_SYMBOL(vmalloc);
3274
3275 /**
3276  * vmalloc_no_huge - allocate virtually contiguous memory using small pages
3277  * @size:    allocation size
3278  *
3279  * Allocate enough non-huge pages to cover @size from the page level
3280  * allocator and map them into contiguous kernel virtual space.
3281  *
3282  * Return: pointer to the allocated memory or %NULL on error
3283  */
3284 void *vmalloc_no_huge(unsigned long size)
3285 {
3286         return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3287                                     GFP_KERNEL, PAGE_KERNEL, VM_NO_HUGE_VMAP,
3288                                     NUMA_NO_NODE, __builtin_return_address(0));
3289 }
3290 EXPORT_SYMBOL(vmalloc_no_huge);
3291
3292 /**
3293  * vzalloc - allocate virtually contiguous memory with zero fill
3294  * @size:    allocation size
3295  *
3296  * Allocate enough pages to cover @size from the page level
3297  * allocator and map them into contiguous kernel virtual space.
3298  * The memory allocated is set to zero.
3299  *
3300  * For tight control over page level allocator and protection flags
3301  * use __vmalloc() instead.
3302  *
3303  * Return: pointer to the allocated memory or %NULL on error
3304  */
3305 void *vzalloc(unsigned long size)
3306 {
3307         return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3308                                 __builtin_return_address(0));
3309 }
3310 EXPORT_SYMBOL(vzalloc);
3311
3312 /**
3313  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3314  * @size: allocation size
3315  *
3316  * The resulting memory area is zeroed so it can be mapped to userspace
3317  * without leaking data.
3318  *
3319  * Return: pointer to the allocated memory or %NULL on error
3320  */
3321 void *vmalloc_user(unsigned long size)
3322 {
3323         return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3324                                     GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3325                                     VM_USERMAP, NUMA_NO_NODE,
3326                                     __builtin_return_address(0));
3327 }
3328 EXPORT_SYMBOL(vmalloc_user);
3329
3330 /**
3331  * vmalloc_node - allocate memory on a specific node
3332  * @size:         allocation size
3333  * @node:         numa node
3334  *
3335  * Allocate enough pages to cover @size from the page level
3336  * allocator and map them into contiguous kernel virtual space.
3337  *
3338  * For tight control over page level allocator and protection flags
3339  * use __vmalloc() instead.
3340  *
3341  * Return: pointer to the allocated memory or %NULL on error
3342  */
3343 void *vmalloc_node(unsigned long size, int node)
3344 {
3345         return __vmalloc_node(size, 1, GFP_KERNEL, node,
3346                         __builtin_return_address(0));
3347 }
3348 EXPORT_SYMBOL(vmalloc_node);
3349
3350 /**
3351  * vzalloc_node - allocate memory on a specific node with zero fill
3352  * @size:       allocation size
3353  * @node:       numa node
3354  *
3355  * Allocate enough pages to cover @size from the page level
3356  * allocator and map them into contiguous kernel virtual space.
3357  * The memory allocated is set to zero.
3358  *
3359  * Return: pointer to the allocated memory or %NULL on error
3360  */
3361 void *vzalloc_node(unsigned long size, int node)
3362 {
3363         return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3364                                 __builtin_return_address(0));
3365 }
3366 EXPORT_SYMBOL(vzalloc_node);
3367
3368 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3369 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3370 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3371 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3372 #else
3373 /*
3374  * 64b systems should always have either DMA or DMA32 zones. For others
3375  * GFP_DMA32 should do the right thing and use the normal zone.
3376  */
3377 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3378 #endif
3379
3380 /**
3381  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3382  * @size:       allocation size
3383  *
3384  * Allocate enough 32bit PA addressable pages to cover @size from the
3385  * page level allocator and map them into contiguous kernel virtual space.
3386  *
3387  * Return: pointer to the allocated memory or %NULL on error
3388  */
3389 void *vmalloc_32(unsigned long size)
3390 {
3391         return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3392                         __builtin_return_address(0));
3393 }
3394 EXPORT_SYMBOL(vmalloc_32);
3395
3396 /**
3397  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3398  * @size:            allocation size
3399  *
3400  * The resulting memory area is 32bit addressable and zeroed so it can be
3401  * mapped to userspace without leaking data.
3402  *
3403  * Return: pointer to the allocated memory or %NULL on error
3404  */
3405 void *vmalloc_32_user(unsigned long size)
3406 {
3407         return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3408                                     GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3409                                     VM_USERMAP, NUMA_NO_NODE,
3410                                     __builtin_return_address(0));
3411 }
3412 EXPORT_SYMBOL(vmalloc_32_user);
3413
3414 /*
3415  * small helper routine , copy contents to buf from addr.
3416  * If the page is not present, fill zero.
3417  */
3418
3419 static int aligned_vread(char *buf, char *addr, unsigned long count)
3420 {
3421         struct page *p;
3422         int copied = 0;
3423
3424         while (count) {
3425                 unsigned long offset, length;
3426
3427                 offset = offset_in_page(addr);
3428                 length = PAGE_SIZE - offset;
3429                 if (length > count)
3430                         length = count;
3431                 p = vmalloc_to_page(addr);
3432                 /*
3433                  * To do safe access to this _mapped_ area, we need
3434                  * lock. But adding lock here means that we need to add
3435                  * overhead of vmalloc()/vfree() calls for this _debug_
3436                  * interface, rarely used. Instead of that, we'll use
3437                  * kmap() and get small overhead in this access function.
3438                  */
3439                 if (p) {
3440                         /* We can expect USER0 is not used -- see vread() */
3441                         void *map = kmap_atomic(p);
3442                         memcpy(buf, map + offset, length);
3443                         kunmap_atomic(map);
3444                 } else
3445                         memset(buf, 0, length);
3446
3447                 addr += length;
3448                 buf += length;
3449                 copied += length;
3450                 count -= length;
3451         }
3452         return copied;
3453 }
3454
3455 /**
3456  * vread() - read vmalloc area in a safe way.
3457  * @buf:     buffer for reading data
3458  * @addr:    vm address.
3459  * @count:   number of bytes to be read.
3460  *
3461  * This function checks that addr is a valid vmalloc'ed area, and
3462  * copy data from that area to a given buffer. If the given memory range
3463  * of [addr...addr+count) includes some valid address, data is copied to
3464  * proper area of @buf. If there are memory holes, they'll be zero-filled.
3465  * IOREMAP area is treated as memory hole and no copy is done.
3466  *
3467  * If [addr...addr+count) doesn't includes any intersects with alive
3468  * vm_struct area, returns 0. @buf should be kernel's buffer.
3469  *
3470  * Note: In usual ops, vread() is never necessary because the caller
3471  * should know vmalloc() area is valid and can use memcpy().
3472  * This is for routines which have to access vmalloc area without
3473  * any information, as /proc/kcore.
3474  *
3475  * Return: number of bytes for which addr and buf should be increased
3476  * (same number as @count) or %0 if [addr...addr+count) doesn't
3477  * include any intersection with valid vmalloc area
3478  */
3479 long vread(char *buf, char *addr, unsigned long count)
3480 {
3481         struct vmap_area *va;
3482         struct vm_struct *vm;
3483         char *vaddr, *buf_start = buf;
3484         unsigned long buflen = count;
3485         unsigned long n;
3486
3487         addr = kasan_reset_tag(addr);
3488
3489         /* Don't allow overflow */
3490         if ((unsigned long) addr + count < count)
3491                 count = -(unsigned long) addr;
3492
3493         spin_lock(&vmap_area_lock);
3494         va = find_vmap_area_exceed_addr((unsigned long)addr);
3495         if (!va)
3496                 goto finished;
3497
3498         /* no intersects with alive vmap_area */
3499         if ((unsigned long)addr + count <= va->va_start)
3500                 goto finished;
3501
3502         list_for_each_entry_from(va, &vmap_area_list, list) {
3503                 if (!count)
3504                         break;
3505
3506                 if (!va->vm)
3507                         continue;
3508
3509                 vm = va->vm;
3510                 vaddr = (char *) vm->addr;
3511                 if (addr >= vaddr + get_vm_area_size(vm))
3512                         continue;
3513                 while (addr < vaddr) {
3514                         if (count == 0)
3515                                 goto finished;
3516                         *buf = '\0';
3517                         buf++;
3518                         addr++;
3519                         count--;
3520                 }
3521                 n = vaddr + get_vm_area_size(vm) - addr;
3522                 if (n > count)
3523                         n = count;
3524                 if (!(vm->flags & VM_IOREMAP))
3525                         aligned_vread(buf, addr, n);
3526                 else /* IOREMAP area is treated as memory hole */
3527                         memset(buf, 0, n);
3528                 buf += n;
3529                 addr += n;
3530                 count -= n;
3531         }
3532 finished:
3533         spin_unlock(&vmap_area_lock);
3534
3535         if (buf == buf_start)
3536                 return 0;
3537         /* zero-fill memory holes */
3538         if (buf != buf_start + buflen)
3539                 memset(buf, 0, buflen - (buf - buf_start));
3540
3541         return buflen;
3542 }
3543
3544 /**
3545  * remap_vmalloc_range_partial - map vmalloc pages to userspace
3546  * @vma:                vma to cover
3547  * @uaddr:              target user address to start at
3548  * @kaddr:              virtual address of vmalloc kernel memory
3549  * @pgoff:              offset from @kaddr to start at
3550  * @size:               size of map area
3551  *
3552  * Returns:     0 for success, -Exxx on failure
3553  *
3554  * This function checks that @kaddr is a valid vmalloc'ed area,
3555  * and that it is big enough to cover the range starting at
3556  * @uaddr in @vma. Will return failure if that criteria isn't
3557  * met.
3558  *
3559  * Similar to remap_pfn_range() (see mm/memory.c)
3560  */
3561 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3562                                 void *kaddr, unsigned long pgoff,
3563                                 unsigned long size)
3564 {
3565         struct vm_struct *area;
3566         unsigned long off;
3567         unsigned long end_index;
3568
3569         if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3570                 return -EINVAL;
3571
3572         size = PAGE_ALIGN(size);
3573
3574         if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3575                 return -EINVAL;
3576
3577         area = find_vm_area(kaddr);
3578         if (!area)
3579                 return -EINVAL;
3580
3581         if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3582                 return -EINVAL;
3583
3584         if (check_add_overflow(size, off, &end_index) ||
3585             end_index > get_vm_area_size(area))
3586                 return -EINVAL;
3587         kaddr += off;
3588
3589         do {
3590                 struct page *page = vmalloc_to_page(kaddr);
3591                 int ret;
3592
3593                 ret = vm_insert_page(vma, uaddr, page);
3594                 if (ret)
3595                         return ret;
3596
3597                 uaddr += PAGE_SIZE;
3598                 kaddr += PAGE_SIZE;
3599                 size -= PAGE_SIZE;
3600         } while (size > 0);
3601
3602         vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3603
3604         return 0;
3605 }
3606
3607 /**
3608  * remap_vmalloc_range - map vmalloc pages to userspace
3609  * @vma:                vma to cover (map full range of vma)
3610  * @addr:               vmalloc memory
3611  * @pgoff:              number of pages into addr before first page to map
3612  *
3613  * Returns:     0 for success, -Exxx on failure
3614  *
3615  * This function checks that addr is a valid vmalloc'ed area, and
3616  * that it is big enough to cover the vma. Will return failure if
3617  * that criteria isn't met.
3618  *
3619  * Similar to remap_pfn_range() (see mm/memory.c)
3620  */
3621 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3622                                                 unsigned long pgoff)
3623 {
3624         return remap_vmalloc_range_partial(vma, vma->vm_start,
3625                                            addr, pgoff,
3626                                            vma->vm_end - vma->vm_start);
3627 }
3628 EXPORT_SYMBOL(remap_vmalloc_range);
3629
3630 void free_vm_area(struct vm_struct *area)
3631 {
3632         struct vm_struct *ret;
3633         ret = remove_vm_area(area->addr);
3634         BUG_ON(ret != area);
3635         kfree(area);
3636 }
3637 EXPORT_SYMBOL_GPL(free_vm_area);
3638
3639 #ifdef CONFIG_SMP
3640 static struct vmap_area *node_to_va(struct rb_node *n)
3641 {
3642         return rb_entry_safe(n, struct vmap_area, rb_node);
3643 }
3644
3645 /**
3646  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3647  * @addr: target address
3648  *
3649  * Returns: vmap_area if it is found. If there is no such area
3650  *   the first highest(reverse order) vmap_area is returned
3651  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3652  *   if there are no any areas before @addr.
3653  */
3654 static struct vmap_area *
3655 pvm_find_va_enclose_addr(unsigned long addr)
3656 {
3657         struct vmap_area *va, *tmp;
3658         struct rb_node *n;
3659
3660         n = free_vmap_area_root.rb_node;
3661         va = NULL;
3662
3663         while (n) {
3664                 tmp = rb_entry(n, struct vmap_area, rb_node);
3665                 if (tmp->va_start <= addr) {
3666                         va = tmp;
3667                         if (tmp->va_end >= addr)
3668                                 break;
3669
3670                         n = n->rb_right;
3671                 } else {
3672                         n = n->rb_left;
3673                 }
3674         }
3675
3676         return va;
3677 }
3678
3679 /**
3680  * pvm_determine_end_from_reverse - find the highest aligned address
3681  * of free block below VMALLOC_END
3682  * @va:
3683  *   in - the VA we start the search(reverse order);
3684  *   out - the VA with the highest aligned end address.
3685  * @align: alignment for required highest address
3686  *
3687  * Returns: determined end address within vmap_area
3688  */
3689 static unsigned long
3690 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3691 {
3692         unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3693         unsigned long addr;
3694
3695         if (likely(*va)) {
3696                 list_for_each_entry_from_reverse((*va),
3697                                 &free_vmap_area_list, list) {
3698                         addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3699                         if ((*va)->va_start < addr)
3700                                 return addr;
3701                 }
3702         }
3703
3704         return 0;
3705 }
3706
3707 /**
3708  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3709  * @offsets: array containing offset of each area
3710  * @sizes: array containing size of each area
3711  * @nr_vms: the number of areas to allocate
3712  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3713  *
3714  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3715  *          vm_structs on success, %NULL on failure
3716  *
3717  * Percpu allocator wants to use congruent vm areas so that it can
3718  * maintain the offsets among percpu areas.  This function allocates
3719  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3720  * be scattered pretty far, distance between two areas easily going up
3721  * to gigabytes.  To avoid interacting with regular vmallocs, these
3722  * areas are allocated from top.
3723  *
3724  * Despite its complicated look, this allocator is rather simple. It
3725  * does everything top-down and scans free blocks from the end looking
3726  * for matching base. While scanning, if any of the areas do not fit the
3727  * base address is pulled down to fit the area. Scanning is repeated till
3728  * all the areas fit and then all necessary data structures are inserted
3729  * and the result is returned.
3730  */
3731 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3732                                      const size_t *sizes, int nr_vms,
3733                                      size_t align)
3734 {
3735         const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3736         const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3737         struct vmap_area **vas, *va;
3738         struct vm_struct **vms;
3739         int area, area2, last_area, term_area;
3740         unsigned long base, start, size, end, last_end, orig_start, orig_end;
3741         bool purged = false;
3742         enum fit_type type;
3743
3744         /* verify parameters and allocate data structures */
3745         BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3746         for (last_area = 0, area = 0; area < nr_vms; area++) {
3747                 start = offsets[area];
3748                 end = start + sizes[area];
3749
3750                 /* is everything aligned properly? */
3751                 BUG_ON(!IS_ALIGNED(offsets[area], align));
3752                 BUG_ON(!IS_ALIGNED(sizes[area], align));
3753
3754                 /* detect the area with the highest address */
3755                 if (start > offsets[last_area])
3756                         last_area = area;
3757
3758                 for (area2 = area + 1; area2 < nr_vms; area2++) {
3759                         unsigned long start2 = offsets[area2];
3760                         unsigned long end2 = start2 + sizes[area2];
3761
3762                         BUG_ON(start2 < end && start < end2);
3763                 }
3764         }
3765         last_end = offsets[last_area] + sizes[last_area];
3766
3767         if (vmalloc_end - vmalloc_start < last_end) {
3768                 WARN_ON(true);
3769                 return NULL;
3770         }
3771
3772         vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3773         vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3774         if (!vas || !vms)
3775                 goto err_free2;
3776
3777         for (area = 0; area < nr_vms; area++) {
3778                 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3779                 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3780                 if (!vas[area] || !vms[area])
3781                         goto err_free;
3782         }
3783 retry:
3784         spin_lock(&free_vmap_area_lock);
3785
3786         /* start scanning - we scan from the top, begin with the last area */
3787         area = term_area = last_area;
3788         start = offsets[area];
3789         end = start + sizes[area];
3790
3791         va = pvm_find_va_enclose_addr(vmalloc_end);
3792         base = pvm_determine_end_from_reverse(&va, align) - end;
3793
3794         while (true) {
3795                 /*
3796                  * base might have underflowed, add last_end before
3797                  * comparing.
3798                  */
3799                 if (base + last_end < vmalloc_start + last_end)
3800                         goto overflow;
3801
3802                 /*
3803                  * Fitting base has not been found.
3804                  */
3805                 if (va == NULL)
3806                         goto overflow;
3807
3808                 /*
3809                  * If required width exceeds current VA block, move
3810                  * base downwards and then recheck.
3811                  */
3812                 if (base + end > va->va_end) {
3813                         base = pvm_determine_end_from_reverse(&va, align) - end;
3814                         term_area = area;
3815                         continue;
3816                 }
3817
3818                 /*
3819                  * If this VA does not fit, move base downwards and recheck.
3820                  */
3821                 if (base + start < va->va_start) {
3822                         va = node_to_va(rb_prev(&va->rb_node));
3823                         base = pvm_determine_end_from_reverse(&va, align) - end;
3824                         term_area = area;
3825                         continue;
3826                 }
3827
3828                 /*
3829                  * This area fits, move on to the previous one.  If
3830                  * the previous one is the terminal one, we're done.
3831                  */
3832                 area = (area + nr_vms - 1) % nr_vms;
3833                 if (area == term_area)
3834                         break;
3835
3836                 start = offsets[area];
3837                 end = start + sizes[area];
3838                 va = pvm_find_va_enclose_addr(base + end);
3839         }
3840
3841         /* we've found a fitting base, insert all va's */
3842         for (area = 0; area < nr_vms; area++) {
3843                 int ret;
3844
3845                 start = base + offsets[area];
3846                 size = sizes[area];
3847
3848                 va = pvm_find_va_enclose_addr(start);
3849                 if (WARN_ON_ONCE(va == NULL))
3850                         /* It is a BUG(), but trigger recovery instead. */
3851                         goto recovery;
3852
3853                 type = classify_va_fit_type(va, start, size);
3854                 if (WARN_ON_ONCE(type == NOTHING_FIT))
3855                         /* It is a BUG(), but trigger recovery instead. */
3856                         goto recovery;
3857
3858                 ret = adjust_va_to_fit_type(va, start, size, type);
3859                 if (unlikely(ret))
3860                         goto recovery;
3861
3862                 /* Allocated area. */
3863                 va = vas[area];
3864                 va->va_start = start;
3865                 va->va_end = start + size;
3866         }
3867
3868         spin_unlock(&free_vmap_area_lock);
3869
3870         /* populate the kasan shadow space */
3871         for (area = 0; area < nr_vms; area++) {
3872                 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3873                         goto err_free_shadow;
3874         }
3875
3876         /* insert all vm's */
3877         spin_lock(&vmap_area_lock);
3878         for (area = 0; area < nr_vms; area++) {
3879                 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3880
3881                 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3882                                  pcpu_get_vm_areas);
3883         }
3884         spin_unlock(&vmap_area_lock);
3885
3886         /*
3887          * Mark allocated areas as accessible. Do it now as a best-effort
3888          * approach, as they can be mapped outside of vmalloc code.
3889          * With hardware tag-based KASAN, marking is skipped for
3890          * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3891          */
3892         for (area = 0; area < nr_vms; area++)
3893                 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
3894                                 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
3895
3896         kfree(vas);
3897         return vms;
3898
3899 recovery:
3900         /*
3901          * Remove previously allocated areas. There is no
3902          * need in removing these areas from the busy tree,
3903          * because they are inserted only on the final step
3904          * and when pcpu_get_vm_areas() is success.
3905          */
3906         while (area--) {
3907                 orig_start = vas[area]->va_start;
3908                 orig_end = vas[area]->va_end;
3909                 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3910                                 &free_vmap_area_list);
3911                 if (va)
3912                         kasan_release_vmalloc(orig_start, orig_end,
3913                                 va->va_start, va->va_end);
3914                 vas[area] = NULL;
3915         }
3916
3917 overflow:
3918         spin_unlock(&free_vmap_area_lock);
3919         if (!purged) {
3920                 purge_vmap_area_lazy();
3921                 purged = true;
3922
3923                 /* Before "retry", check if we recover. */
3924                 for (area = 0; area < nr_vms; area++) {
3925                         if (vas[area])
3926                                 continue;
3927
3928                         vas[area] = kmem_cache_zalloc(
3929                                 vmap_area_cachep, GFP_KERNEL);
3930                         if (!vas[area])
3931                                 goto err_free;
3932                 }
3933
3934                 goto retry;
3935         }
3936
3937 err_free:
3938         for (area = 0; area < nr_vms; area++) {
3939                 if (vas[area])
3940                         kmem_cache_free(vmap_area_cachep, vas[area]);
3941
3942                 kfree(vms[area]);
3943         }
3944 err_free2:
3945         kfree(vas);
3946         kfree(vms);
3947         return NULL;
3948
3949 err_free_shadow:
3950         spin_lock(&free_vmap_area_lock);
3951         /*
3952          * We release all the vmalloc shadows, even the ones for regions that
3953          * hadn't been successfully added. This relies on kasan_release_vmalloc
3954          * being able to tolerate this case.
3955          */
3956         for (area = 0; area < nr_vms; area++) {
3957                 orig_start = vas[area]->va_start;
3958                 orig_end = vas[area]->va_end;
3959                 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3960                                 &free_vmap_area_list);
3961                 if (va)
3962                         kasan_release_vmalloc(orig_start, orig_end,
3963                                 va->va_start, va->va_end);
3964                 vas[area] = NULL;
3965                 kfree(vms[area]);
3966         }
3967         spin_unlock(&free_vmap_area_lock);
3968         kfree(vas);
3969         kfree(vms);
3970         return NULL;
3971 }
3972
3973 /**
3974  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3975  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3976  * @nr_vms: the number of allocated areas
3977  *
3978  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3979  */
3980 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3981 {
3982         int i;
3983
3984         for (i = 0; i < nr_vms; i++)
3985                 free_vm_area(vms[i]);
3986         kfree(vms);
3987 }
3988 #endif  /* CONFIG_SMP */
3989
3990 #ifdef CONFIG_PRINTK
3991 bool vmalloc_dump_obj(void *object)
3992 {
3993         struct vm_struct *vm;
3994         void *objp = (void *)PAGE_ALIGN((unsigned long)object);
3995
3996         vm = find_vm_area(objp);
3997         if (!vm)
3998                 return false;
3999         pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4000                 vm->nr_pages, (unsigned long)vm->addr, vm->caller);
4001         return true;
4002 }
4003 #endif
4004
4005 #ifdef CONFIG_PROC_FS
4006 static void *s_start(struct seq_file *m, loff_t *pos)
4007         __acquires(&vmap_purge_lock)
4008         __acquires(&vmap_area_lock)
4009 {
4010         mutex_lock(&vmap_purge_lock);
4011         spin_lock(&vmap_area_lock);
4012
4013         return seq_list_start(&vmap_area_list, *pos);
4014 }
4015
4016 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4017 {
4018         return seq_list_next(p, &vmap_area_list, pos);
4019 }
4020
4021 static void s_stop(struct seq_file *m, void *p)
4022         __releases(&vmap_area_lock)
4023         __releases(&vmap_purge_lock)
4024 {
4025         spin_unlock(&vmap_area_lock);
4026         mutex_unlock(&vmap_purge_lock);
4027 }
4028
4029 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4030 {
4031         if (IS_ENABLED(CONFIG_NUMA)) {
4032                 unsigned int nr, *counters = m->private;
4033                 unsigned int step = 1U << vm_area_page_order(v);
4034
4035                 if (!counters)
4036                         return;
4037
4038                 if (v->flags & VM_UNINITIALIZED)
4039                         return;
4040                 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4041                 smp_rmb();
4042
4043                 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4044
4045                 for (nr = 0; nr < v->nr_pages; nr += step)
4046                         counters[page_to_nid(v->pages[nr])] += step;
4047                 for_each_node_state(nr, N_HIGH_MEMORY)
4048                         if (counters[nr])
4049                                 seq_printf(m, " N%u=%u", nr, counters[nr]);
4050         }
4051 }
4052
4053 static void show_purge_info(struct seq_file *m)
4054 {
4055         struct vmap_area *va;
4056
4057         spin_lock(&purge_vmap_area_lock);
4058         list_for_each_entry(va, &purge_vmap_area_list, list) {
4059                 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4060                         (void *)va->va_start, (void *)va->va_end,
4061                         va->va_end - va->va_start);
4062         }
4063         spin_unlock(&purge_vmap_area_lock);
4064 }
4065
4066 static int s_show(struct seq_file *m, void *p)
4067 {
4068         struct vmap_area *va;
4069         struct vm_struct *v;
4070
4071         va = list_entry(p, struct vmap_area, list);
4072
4073         /*
4074          * s_show can encounter race with remove_vm_area, !vm on behalf
4075          * of vmap area is being tear down or vm_map_ram allocation.
4076          */
4077         if (!va->vm) {
4078                 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4079                         (void *)va->va_start, (void *)va->va_end,
4080                         va->va_end - va->va_start);
4081
4082                 goto final;
4083         }
4084
4085         v = va->vm;
4086
4087         seq_printf(m, "0x%pK-0x%pK %7ld",
4088                 v->addr, v->addr + v->size, v->size);
4089
4090         if (v->caller)
4091                 seq_printf(m, " %pS", v->caller);
4092
4093         if (v->nr_pages)
4094                 seq_printf(m, " pages=%d", v->nr_pages);
4095
4096         if (v->phys_addr)
4097                 seq_printf(m, " phys=%pa", &v->phys_addr);
4098
4099         if (v->flags & VM_IOREMAP)
4100                 seq_puts(m, " ioremap");
4101
4102         if (v->flags & VM_ALLOC)
4103                 seq_puts(m, " vmalloc");
4104
4105         if (v->flags & VM_MAP)
4106                 seq_puts(m, " vmap");
4107
4108         if (v->flags & VM_USERMAP)
4109                 seq_puts(m, " user");
4110
4111         if (v->flags & VM_DMA_COHERENT)
4112                 seq_puts(m, " dma-coherent");
4113
4114         if (is_vmalloc_addr(v->pages))
4115                 seq_puts(m, " vpages");
4116
4117         show_numa_info(m, v);
4118         seq_putc(m, '\n');
4119
4120         /*
4121          * As a final step, dump "unpurged" areas.
4122          */
4123 final:
4124         if (list_is_last(&va->list, &vmap_area_list))
4125                 show_purge_info(m);
4126
4127         return 0;
4128 }
4129
4130 static const struct seq_operations vmalloc_op = {
4131         .start = s_start,
4132         .next = s_next,
4133         .stop = s_stop,
4134         .show = s_show,
4135 };
4136
4137 static int __init proc_vmalloc_init(void)
4138 {
4139         if (IS_ENABLED(CONFIG_NUMA))
4140                 proc_create_seq_private("vmallocinfo", 0400, NULL,
4141                                 &vmalloc_op,
4142                                 nr_node_ids * sizeof(unsigned int), NULL);
4143         else
4144                 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4145         return 0;
4146 }
4147 module_init(proc_vmalloc_init);
4148
4149 #endif