Merge tag 'gfs2-for-5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux...
[linux-2.6-microblaze.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/pgtable.h>
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49                                  unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57  * Some modules use swappable objects and may try to swap them out under
58  * memory pressure (via the shrinker). Before doing so, they may wish to
59  * check to see if any swap space is available.
60  */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70
71 /*
72  * all active swap_info_structs
73  * protected with swap_lock, and ordered by priority.
74  */
75 PLIST_HEAD(swap_active_head);
76
77 /*
78  * all available (active, not full) swap_info_structs
79  * protected with swap_avail_lock, ordered by priority.
80  * This is used by get_swap_page() instead of swap_active_head
81  * because swap_active_head includes all swap_info_structs,
82  * but get_swap_page() doesn't need to look at full ones.
83  * This uses its own lock instead of swap_lock because when a
84  * swap_info_struct changes between not-full/full, it needs to
85  * add/remove itself to/from this list, but the swap_info_struct->lock
86  * is held and the locking order requires swap_lock to be taken
87  * before any swap_info_struct->lock.
88  */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93
94 static DEFINE_MUTEX(swapon_mutex);
95
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104         if (type >= READ_ONCE(nr_swapfiles))
105                 return NULL;
106
107         smp_rmb();      /* Pairs with smp_wmb in alloc_swap_info. */
108         return READ_ONCE(swap_info[type]);
109 }
110
111 static inline unsigned char swap_count(unsigned char ent)
112 {
113         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
114 }
115
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY             0x1
118 /*
119  * Reclaim the swap entry if there are no more mappings of the
120  * corresponding page
121  */
122 #define TTRS_UNMAPPED           0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL               0x4
125
126 /* returns 1 if swap entry is freed */
127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128                                  unsigned long offset, unsigned long flags)
129 {
130         swp_entry_t entry = swp_entry(si->type, offset);
131         struct page *page;
132         int ret = 0;
133
134         page = find_get_page(swap_address_space(entry), offset);
135         if (!page)
136                 return 0;
137         /*
138          * When this function is called from scan_swap_map_slots() and it's
139          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140          * here. We have to use trylock for avoiding deadlock. This is a special
141          * case and you should use try_to_free_swap() with explicit lock_page()
142          * in usual operations.
143          */
144         if (trylock_page(page)) {
145                 if ((flags & TTRS_ANYWAY) ||
146                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148                         ret = try_to_free_swap(page);
149                 unlock_page(page);
150         }
151         put_page(page);
152         return ret;
153 }
154
155 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156 {
157         struct rb_node *rb = rb_first(&sis->swap_extent_root);
158         return rb_entry(rb, struct swap_extent, rb_node);
159 }
160
161 static inline struct swap_extent *next_se(struct swap_extent *se)
162 {
163         struct rb_node *rb = rb_next(&se->rb_node);
164         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165 }
166
167 /*
168  * swapon tell device that all the old swap contents can be discarded,
169  * to allow the swap device to optimize its wear-levelling.
170  */
171 static int discard_swap(struct swap_info_struct *si)
172 {
173         struct swap_extent *se;
174         sector_t start_block;
175         sector_t nr_blocks;
176         int err = 0;
177
178         /* Do not discard the swap header page! */
179         se = first_se(si);
180         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182         if (nr_blocks) {
183                 err = blkdev_issue_discard(si->bdev, start_block,
184                                 nr_blocks, GFP_KERNEL, 0);
185                 if (err)
186                         return err;
187                 cond_resched();
188         }
189
190         for (se = next_se(se); se; se = next_se(se)) {
191                 start_block = se->start_block << (PAGE_SHIFT - 9);
192                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
193
194                 err = blkdev_issue_discard(si->bdev, start_block,
195                                 nr_blocks, GFP_KERNEL, 0);
196                 if (err)
197                         break;
198
199                 cond_resched();
200         }
201         return err;             /* That will often be -EOPNOTSUPP */
202 }
203
204 static struct swap_extent *
205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206 {
207         struct swap_extent *se;
208         struct rb_node *rb;
209
210         rb = sis->swap_extent_root.rb_node;
211         while (rb) {
212                 se = rb_entry(rb, struct swap_extent, rb_node);
213                 if (offset < se->start_page)
214                         rb = rb->rb_left;
215                 else if (offset >= se->start_page + se->nr_pages)
216                         rb = rb->rb_right;
217                 else
218                         return se;
219         }
220         /* It *must* be present */
221         BUG();
222 }
223
224 /*
225  * swap allocation tell device that a cluster of swap can now be discarded,
226  * to allow the swap device to optimize its wear-levelling.
227  */
228 static void discard_swap_cluster(struct swap_info_struct *si,
229                                  pgoff_t start_page, pgoff_t nr_pages)
230 {
231         struct swap_extent *se = offset_to_swap_extent(si, start_page);
232
233         while (nr_pages) {
234                 pgoff_t offset = start_page - se->start_page;
235                 sector_t start_block = se->start_block + offset;
236                 sector_t nr_blocks = se->nr_pages - offset;
237
238                 if (nr_blocks > nr_pages)
239                         nr_blocks = nr_pages;
240                 start_page += nr_blocks;
241                 nr_pages -= nr_blocks;
242
243                 start_block <<= PAGE_SHIFT - 9;
244                 nr_blocks <<= PAGE_SHIFT - 9;
245                 if (blkdev_issue_discard(si->bdev, start_block,
246                                         nr_blocks, GFP_NOIO, 0))
247                         break;
248
249                 se = next_se(se);
250         }
251 }
252
253 #ifdef CONFIG_THP_SWAP
254 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
255
256 #define swap_entry_size(size)   (size)
257 #else
258 #define SWAPFILE_CLUSTER        256
259
260 /*
261  * Define swap_entry_size() as constant to let compiler to optimize
262  * out some code if !CONFIG_THP_SWAP
263  */
264 #define swap_entry_size(size)   1
265 #endif
266 #define LATENCY_LIMIT           256
267
268 static inline void cluster_set_flag(struct swap_cluster_info *info,
269         unsigned int flag)
270 {
271         info->flags = flag;
272 }
273
274 static inline unsigned int cluster_count(struct swap_cluster_info *info)
275 {
276         return info->data;
277 }
278
279 static inline void cluster_set_count(struct swap_cluster_info *info,
280                                      unsigned int c)
281 {
282         info->data = c;
283 }
284
285 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
286                                          unsigned int c, unsigned int f)
287 {
288         info->flags = f;
289         info->data = c;
290 }
291
292 static inline unsigned int cluster_next(struct swap_cluster_info *info)
293 {
294         return info->data;
295 }
296
297 static inline void cluster_set_next(struct swap_cluster_info *info,
298                                     unsigned int n)
299 {
300         info->data = n;
301 }
302
303 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
304                                          unsigned int n, unsigned int f)
305 {
306         info->flags = f;
307         info->data = n;
308 }
309
310 static inline bool cluster_is_free(struct swap_cluster_info *info)
311 {
312         return info->flags & CLUSTER_FLAG_FREE;
313 }
314
315 static inline bool cluster_is_null(struct swap_cluster_info *info)
316 {
317         return info->flags & CLUSTER_FLAG_NEXT_NULL;
318 }
319
320 static inline void cluster_set_null(struct swap_cluster_info *info)
321 {
322         info->flags = CLUSTER_FLAG_NEXT_NULL;
323         info->data = 0;
324 }
325
326 static inline bool cluster_is_huge(struct swap_cluster_info *info)
327 {
328         if (IS_ENABLED(CONFIG_THP_SWAP))
329                 return info->flags & CLUSTER_FLAG_HUGE;
330         return false;
331 }
332
333 static inline void cluster_clear_huge(struct swap_cluster_info *info)
334 {
335         info->flags &= ~CLUSTER_FLAG_HUGE;
336 }
337
338 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
339                                                      unsigned long offset)
340 {
341         struct swap_cluster_info *ci;
342
343         ci = si->cluster_info;
344         if (ci) {
345                 ci += offset / SWAPFILE_CLUSTER;
346                 spin_lock(&ci->lock);
347         }
348         return ci;
349 }
350
351 static inline void unlock_cluster(struct swap_cluster_info *ci)
352 {
353         if (ci)
354                 spin_unlock(&ci->lock);
355 }
356
357 /*
358  * Determine the locking method in use for this device.  Return
359  * swap_cluster_info if SSD-style cluster-based locking is in place.
360  */
361 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
362                 struct swap_info_struct *si, unsigned long offset)
363 {
364         struct swap_cluster_info *ci;
365
366         /* Try to use fine-grained SSD-style locking if available: */
367         ci = lock_cluster(si, offset);
368         /* Otherwise, fall back to traditional, coarse locking: */
369         if (!ci)
370                 spin_lock(&si->lock);
371
372         return ci;
373 }
374
375 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
376                                                struct swap_cluster_info *ci)
377 {
378         if (ci)
379                 unlock_cluster(ci);
380         else
381                 spin_unlock(&si->lock);
382 }
383
384 static inline bool cluster_list_empty(struct swap_cluster_list *list)
385 {
386         return cluster_is_null(&list->head);
387 }
388
389 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
390 {
391         return cluster_next(&list->head);
392 }
393
394 static void cluster_list_init(struct swap_cluster_list *list)
395 {
396         cluster_set_null(&list->head);
397         cluster_set_null(&list->tail);
398 }
399
400 static void cluster_list_add_tail(struct swap_cluster_list *list,
401                                   struct swap_cluster_info *ci,
402                                   unsigned int idx)
403 {
404         if (cluster_list_empty(list)) {
405                 cluster_set_next_flag(&list->head, idx, 0);
406                 cluster_set_next_flag(&list->tail, idx, 0);
407         } else {
408                 struct swap_cluster_info *ci_tail;
409                 unsigned int tail = cluster_next(&list->tail);
410
411                 /*
412                  * Nested cluster lock, but both cluster locks are
413                  * only acquired when we held swap_info_struct->lock
414                  */
415                 ci_tail = ci + tail;
416                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
417                 cluster_set_next(ci_tail, idx);
418                 spin_unlock(&ci_tail->lock);
419                 cluster_set_next_flag(&list->tail, idx, 0);
420         }
421 }
422
423 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
424                                            struct swap_cluster_info *ci)
425 {
426         unsigned int idx;
427
428         idx = cluster_next(&list->head);
429         if (cluster_next(&list->tail) == idx) {
430                 cluster_set_null(&list->head);
431                 cluster_set_null(&list->tail);
432         } else
433                 cluster_set_next_flag(&list->head,
434                                       cluster_next(&ci[idx]), 0);
435
436         return idx;
437 }
438
439 /* Add a cluster to discard list and schedule it to do discard */
440 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
441                 unsigned int idx)
442 {
443         /*
444          * If scan_swap_map() can't find a free cluster, it will check
445          * si->swap_map directly. To make sure the discarding cluster isn't
446          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
447          * will be cleared after discard
448          */
449         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
450                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
451
452         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
453
454         schedule_work(&si->discard_work);
455 }
456
457 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
458 {
459         struct swap_cluster_info *ci = si->cluster_info;
460
461         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
462         cluster_list_add_tail(&si->free_clusters, ci, idx);
463 }
464
465 /*
466  * Doing discard actually. After a cluster discard is finished, the cluster
467  * will be added to free cluster list. caller should hold si->lock.
468 */
469 static void swap_do_scheduled_discard(struct swap_info_struct *si)
470 {
471         struct swap_cluster_info *info, *ci;
472         unsigned int idx;
473
474         info = si->cluster_info;
475
476         while (!cluster_list_empty(&si->discard_clusters)) {
477                 idx = cluster_list_del_first(&si->discard_clusters, info);
478                 spin_unlock(&si->lock);
479
480                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
481                                 SWAPFILE_CLUSTER);
482
483                 spin_lock(&si->lock);
484                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
485                 __free_cluster(si, idx);
486                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
487                                 0, SWAPFILE_CLUSTER);
488                 unlock_cluster(ci);
489         }
490 }
491
492 static void swap_discard_work(struct work_struct *work)
493 {
494         struct swap_info_struct *si;
495
496         si = container_of(work, struct swap_info_struct, discard_work);
497
498         spin_lock(&si->lock);
499         swap_do_scheduled_discard(si);
500         spin_unlock(&si->lock);
501 }
502
503 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
504 {
505         struct swap_cluster_info *ci = si->cluster_info;
506
507         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
508         cluster_list_del_first(&si->free_clusters, ci);
509         cluster_set_count_flag(ci + idx, 0, 0);
510 }
511
512 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
513 {
514         struct swap_cluster_info *ci = si->cluster_info + idx;
515
516         VM_BUG_ON(cluster_count(ci) != 0);
517         /*
518          * If the swap is discardable, prepare discard the cluster
519          * instead of free it immediately. The cluster will be freed
520          * after discard.
521          */
522         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
523             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
524                 swap_cluster_schedule_discard(si, idx);
525                 return;
526         }
527
528         __free_cluster(si, idx);
529 }
530
531 /*
532  * The cluster corresponding to page_nr will be used. The cluster will be
533  * removed from free cluster list and its usage counter will be increased.
534  */
535 static void inc_cluster_info_page(struct swap_info_struct *p,
536         struct swap_cluster_info *cluster_info, unsigned long page_nr)
537 {
538         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
539
540         if (!cluster_info)
541                 return;
542         if (cluster_is_free(&cluster_info[idx]))
543                 alloc_cluster(p, idx);
544
545         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
546         cluster_set_count(&cluster_info[idx],
547                 cluster_count(&cluster_info[idx]) + 1);
548 }
549
550 /*
551  * The cluster corresponding to page_nr decreases one usage. If the usage
552  * counter becomes 0, which means no page in the cluster is in using, we can
553  * optionally discard the cluster and add it to free cluster list.
554  */
555 static void dec_cluster_info_page(struct swap_info_struct *p,
556         struct swap_cluster_info *cluster_info, unsigned long page_nr)
557 {
558         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559
560         if (!cluster_info)
561                 return;
562
563         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
564         cluster_set_count(&cluster_info[idx],
565                 cluster_count(&cluster_info[idx]) - 1);
566
567         if (cluster_count(&cluster_info[idx]) == 0)
568                 free_cluster(p, idx);
569 }
570
571 /*
572  * It's possible scan_swap_map() uses a free cluster in the middle of free
573  * cluster list. Avoiding such abuse to avoid list corruption.
574  */
575 static bool
576 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
577         unsigned long offset)
578 {
579         struct percpu_cluster *percpu_cluster;
580         bool conflict;
581
582         offset /= SWAPFILE_CLUSTER;
583         conflict = !cluster_list_empty(&si->free_clusters) &&
584                 offset != cluster_list_first(&si->free_clusters) &&
585                 cluster_is_free(&si->cluster_info[offset]);
586
587         if (!conflict)
588                 return false;
589
590         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
591         cluster_set_null(&percpu_cluster->index);
592         return true;
593 }
594
595 /*
596  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
597  * might involve allocating a new cluster for current CPU too.
598  */
599 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
600         unsigned long *offset, unsigned long *scan_base)
601 {
602         struct percpu_cluster *cluster;
603         struct swap_cluster_info *ci;
604         unsigned long tmp, max;
605
606 new_cluster:
607         cluster = this_cpu_ptr(si->percpu_cluster);
608         if (cluster_is_null(&cluster->index)) {
609                 if (!cluster_list_empty(&si->free_clusters)) {
610                         cluster->index = si->free_clusters.head;
611                         cluster->next = cluster_next(&cluster->index) *
612                                         SWAPFILE_CLUSTER;
613                 } else if (!cluster_list_empty(&si->discard_clusters)) {
614                         /*
615                          * we don't have free cluster but have some clusters in
616                          * discarding, do discard now and reclaim them, then
617                          * reread cluster_next_cpu since we dropped si->lock
618                          */
619                         swap_do_scheduled_discard(si);
620                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
621                         *offset = *scan_base;
622                         goto new_cluster;
623                 } else
624                         return false;
625         }
626
627         /*
628          * Other CPUs can use our cluster if they can't find a free cluster,
629          * check if there is still free entry in the cluster
630          */
631         tmp = cluster->next;
632         max = min_t(unsigned long, si->max,
633                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
634         if (tmp < max) {
635                 ci = lock_cluster(si, tmp);
636                 while (tmp < max) {
637                         if (!si->swap_map[tmp])
638                                 break;
639                         tmp++;
640                 }
641                 unlock_cluster(ci);
642         }
643         if (tmp >= max) {
644                 cluster_set_null(&cluster->index);
645                 goto new_cluster;
646         }
647         cluster->next = tmp + 1;
648         *offset = tmp;
649         *scan_base = tmp;
650         return true;
651 }
652
653 static void __del_from_avail_list(struct swap_info_struct *p)
654 {
655         int nid;
656
657         for_each_node(nid)
658                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
659 }
660
661 static void del_from_avail_list(struct swap_info_struct *p)
662 {
663         spin_lock(&swap_avail_lock);
664         __del_from_avail_list(p);
665         spin_unlock(&swap_avail_lock);
666 }
667
668 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
669                              unsigned int nr_entries)
670 {
671         unsigned int end = offset + nr_entries - 1;
672
673         if (offset == si->lowest_bit)
674                 si->lowest_bit += nr_entries;
675         if (end == si->highest_bit)
676                 si->highest_bit -= nr_entries;
677         si->inuse_pages += nr_entries;
678         if (si->inuse_pages == si->pages) {
679                 si->lowest_bit = si->max;
680                 si->highest_bit = 0;
681                 del_from_avail_list(si);
682         }
683 }
684
685 static void add_to_avail_list(struct swap_info_struct *p)
686 {
687         int nid;
688
689         spin_lock(&swap_avail_lock);
690         for_each_node(nid) {
691                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
692                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
693         }
694         spin_unlock(&swap_avail_lock);
695 }
696
697 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
698                             unsigned int nr_entries)
699 {
700         unsigned long end = offset + nr_entries - 1;
701         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
702
703         if (offset < si->lowest_bit)
704                 si->lowest_bit = offset;
705         if (end > si->highest_bit) {
706                 bool was_full = !si->highest_bit;
707
708                 si->highest_bit = end;
709                 if (was_full && (si->flags & SWP_WRITEOK))
710                         add_to_avail_list(si);
711         }
712         atomic_long_add(nr_entries, &nr_swap_pages);
713         si->inuse_pages -= nr_entries;
714         if (si->flags & SWP_BLKDEV)
715                 swap_slot_free_notify =
716                         si->bdev->bd_disk->fops->swap_slot_free_notify;
717         else
718                 swap_slot_free_notify = NULL;
719         while (offset <= end) {
720                 frontswap_invalidate_page(si->type, offset);
721                 if (swap_slot_free_notify)
722                         swap_slot_free_notify(si->bdev, offset);
723                 offset++;
724         }
725 }
726
727 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
728 {
729         unsigned long prev;
730
731         if (!(si->flags & SWP_SOLIDSTATE)) {
732                 si->cluster_next = next;
733                 return;
734         }
735
736         prev = this_cpu_read(*si->cluster_next_cpu);
737         /*
738          * Cross the swap address space size aligned trunk, choose
739          * another trunk randomly to avoid lock contention on swap
740          * address space if possible.
741          */
742         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
743             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
744                 /* No free swap slots available */
745                 if (si->highest_bit <= si->lowest_bit)
746                         return;
747                 next = si->lowest_bit +
748                         prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
749                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
750                 next = max_t(unsigned int, next, si->lowest_bit);
751         }
752         this_cpu_write(*si->cluster_next_cpu, next);
753 }
754
755 static int scan_swap_map_slots(struct swap_info_struct *si,
756                                unsigned char usage, int nr,
757                                swp_entry_t slots[])
758 {
759         struct swap_cluster_info *ci;
760         unsigned long offset;
761         unsigned long scan_base;
762         unsigned long last_in_cluster = 0;
763         int latency_ration = LATENCY_LIMIT;
764         int n_ret = 0;
765         bool scanned_many = false;
766
767         /*
768          * We try to cluster swap pages by allocating them sequentially
769          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
770          * way, however, we resort to first-free allocation, starting
771          * a new cluster.  This prevents us from scattering swap pages
772          * all over the entire swap partition, so that we reduce
773          * overall disk seek times between swap pages.  -- sct
774          * But we do now try to find an empty cluster.  -Andrea
775          * And we let swap pages go all over an SSD partition.  Hugh
776          */
777
778         si->flags += SWP_SCANNING;
779         /*
780          * Use percpu scan base for SSD to reduce lock contention on
781          * cluster and swap cache.  For HDD, sequential access is more
782          * important.
783          */
784         if (si->flags & SWP_SOLIDSTATE)
785                 scan_base = this_cpu_read(*si->cluster_next_cpu);
786         else
787                 scan_base = si->cluster_next;
788         offset = scan_base;
789
790         /* SSD algorithm */
791         if (si->cluster_info) {
792                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
793                         goto scan;
794         } else if (unlikely(!si->cluster_nr--)) {
795                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
796                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
797                         goto checks;
798                 }
799
800                 spin_unlock(&si->lock);
801
802                 /*
803                  * If seek is expensive, start searching for new cluster from
804                  * start of partition, to minimize the span of allocated swap.
805                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
806                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
807                  */
808                 scan_base = offset = si->lowest_bit;
809                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
810
811                 /* Locate the first empty (unaligned) cluster */
812                 for (; last_in_cluster <= si->highest_bit; offset++) {
813                         if (si->swap_map[offset])
814                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
815                         else if (offset == last_in_cluster) {
816                                 spin_lock(&si->lock);
817                                 offset -= SWAPFILE_CLUSTER - 1;
818                                 si->cluster_next = offset;
819                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
820                                 goto checks;
821                         }
822                         if (unlikely(--latency_ration < 0)) {
823                                 cond_resched();
824                                 latency_ration = LATENCY_LIMIT;
825                         }
826                 }
827
828                 offset = scan_base;
829                 spin_lock(&si->lock);
830                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
831         }
832
833 checks:
834         if (si->cluster_info) {
835                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
836                 /* take a break if we already got some slots */
837                         if (n_ret)
838                                 goto done;
839                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
840                                                         &scan_base))
841                                 goto scan;
842                 }
843         }
844         if (!(si->flags & SWP_WRITEOK))
845                 goto no_page;
846         if (!si->highest_bit)
847                 goto no_page;
848         if (offset > si->highest_bit)
849                 scan_base = offset = si->lowest_bit;
850
851         ci = lock_cluster(si, offset);
852         /* reuse swap entry of cache-only swap if not busy. */
853         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
854                 int swap_was_freed;
855                 unlock_cluster(ci);
856                 spin_unlock(&si->lock);
857                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
858                 spin_lock(&si->lock);
859                 /* entry was freed successfully, try to use this again */
860                 if (swap_was_freed)
861                         goto checks;
862                 goto scan; /* check next one */
863         }
864
865         if (si->swap_map[offset]) {
866                 unlock_cluster(ci);
867                 if (!n_ret)
868                         goto scan;
869                 else
870                         goto done;
871         }
872         si->swap_map[offset] = usage;
873         inc_cluster_info_page(si, si->cluster_info, offset);
874         unlock_cluster(ci);
875
876         swap_range_alloc(si, offset, 1);
877         slots[n_ret++] = swp_entry(si->type, offset);
878
879         /* got enough slots or reach max slots? */
880         if ((n_ret == nr) || (offset >= si->highest_bit))
881                 goto done;
882
883         /* search for next available slot */
884
885         /* time to take a break? */
886         if (unlikely(--latency_ration < 0)) {
887                 if (n_ret)
888                         goto done;
889                 spin_unlock(&si->lock);
890                 cond_resched();
891                 spin_lock(&si->lock);
892                 latency_ration = LATENCY_LIMIT;
893         }
894
895         /* try to get more slots in cluster */
896         if (si->cluster_info) {
897                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
898                         goto checks;
899         } else if (si->cluster_nr && !si->swap_map[++offset]) {
900                 /* non-ssd case, still more slots in cluster? */
901                 --si->cluster_nr;
902                 goto checks;
903         }
904
905         /*
906          * Even if there's no free clusters available (fragmented),
907          * try to scan a little more quickly with lock held unless we
908          * have scanned too many slots already.
909          */
910         if (!scanned_many) {
911                 unsigned long scan_limit;
912
913                 if (offset < scan_base)
914                         scan_limit = scan_base;
915                 else
916                         scan_limit = si->highest_bit;
917                 for (; offset <= scan_limit && --latency_ration > 0;
918                      offset++) {
919                         if (!si->swap_map[offset])
920                                 goto checks;
921                 }
922         }
923
924 done:
925         set_cluster_next(si, offset + 1);
926         si->flags -= SWP_SCANNING;
927         return n_ret;
928
929 scan:
930         spin_unlock(&si->lock);
931         while (++offset <= si->highest_bit) {
932                 if (!si->swap_map[offset]) {
933                         spin_lock(&si->lock);
934                         goto checks;
935                 }
936                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
937                         spin_lock(&si->lock);
938                         goto checks;
939                 }
940                 if (unlikely(--latency_ration < 0)) {
941                         cond_resched();
942                         latency_ration = LATENCY_LIMIT;
943                         scanned_many = true;
944                 }
945         }
946         offset = si->lowest_bit;
947         while (offset < scan_base) {
948                 if (!si->swap_map[offset]) {
949                         spin_lock(&si->lock);
950                         goto checks;
951                 }
952                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
953                         spin_lock(&si->lock);
954                         goto checks;
955                 }
956                 if (unlikely(--latency_ration < 0)) {
957                         cond_resched();
958                         latency_ration = LATENCY_LIMIT;
959                         scanned_many = true;
960                 }
961                 offset++;
962         }
963         spin_lock(&si->lock);
964
965 no_page:
966         si->flags -= SWP_SCANNING;
967         return n_ret;
968 }
969
970 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
971 {
972         unsigned long idx;
973         struct swap_cluster_info *ci;
974         unsigned long offset, i;
975         unsigned char *map;
976
977         /*
978          * Should not even be attempting cluster allocations when huge
979          * page swap is disabled.  Warn and fail the allocation.
980          */
981         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
982                 VM_WARN_ON_ONCE(1);
983                 return 0;
984         }
985
986         if (cluster_list_empty(&si->free_clusters))
987                 return 0;
988
989         idx = cluster_list_first(&si->free_clusters);
990         offset = idx * SWAPFILE_CLUSTER;
991         ci = lock_cluster(si, offset);
992         alloc_cluster(si, idx);
993         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
994
995         map = si->swap_map + offset;
996         for (i = 0; i < SWAPFILE_CLUSTER; i++)
997                 map[i] = SWAP_HAS_CACHE;
998         unlock_cluster(ci);
999         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1000         *slot = swp_entry(si->type, offset);
1001
1002         return 1;
1003 }
1004
1005 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1006 {
1007         unsigned long offset = idx * SWAPFILE_CLUSTER;
1008         struct swap_cluster_info *ci;
1009
1010         ci = lock_cluster(si, offset);
1011         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1012         cluster_set_count_flag(ci, 0, 0);
1013         free_cluster(si, idx);
1014         unlock_cluster(ci);
1015         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1016 }
1017
1018 static unsigned long scan_swap_map(struct swap_info_struct *si,
1019                                    unsigned char usage)
1020 {
1021         swp_entry_t entry;
1022         int n_ret;
1023
1024         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1025
1026         if (n_ret)
1027                 return swp_offset(entry);
1028         else
1029                 return 0;
1030
1031 }
1032
1033 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1034 {
1035         unsigned long size = swap_entry_size(entry_size);
1036         struct swap_info_struct *si, *next;
1037         long avail_pgs;
1038         int n_ret = 0;
1039         int node;
1040
1041         /* Only single cluster request supported */
1042         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1043
1044         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1045         if (avail_pgs <= 0)
1046                 goto noswap;
1047
1048         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1049
1050         atomic_long_sub(n_goal * size, &nr_swap_pages);
1051
1052         spin_lock(&swap_avail_lock);
1053
1054 start_over:
1055         node = numa_node_id();
1056         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1057                 /* requeue si to after same-priority siblings */
1058                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1059                 spin_unlock(&swap_avail_lock);
1060                 spin_lock(&si->lock);
1061                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1062                         spin_lock(&swap_avail_lock);
1063                         if (plist_node_empty(&si->avail_lists[node])) {
1064                                 spin_unlock(&si->lock);
1065                                 goto nextsi;
1066                         }
1067                         WARN(!si->highest_bit,
1068                              "swap_info %d in list but !highest_bit\n",
1069                              si->type);
1070                         WARN(!(si->flags & SWP_WRITEOK),
1071                              "swap_info %d in list but !SWP_WRITEOK\n",
1072                              si->type);
1073                         __del_from_avail_list(si);
1074                         spin_unlock(&si->lock);
1075                         goto nextsi;
1076                 }
1077                 if (size == SWAPFILE_CLUSTER) {
1078                         if (!(si->flags & SWP_FS))
1079                                 n_ret = swap_alloc_cluster(si, swp_entries);
1080                 } else
1081                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1082                                                     n_goal, swp_entries);
1083                 spin_unlock(&si->lock);
1084                 if (n_ret || size == SWAPFILE_CLUSTER)
1085                         goto check_out;
1086                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1087                         si->type);
1088
1089                 spin_lock(&swap_avail_lock);
1090 nextsi:
1091                 /*
1092                  * if we got here, it's likely that si was almost full before,
1093                  * and since scan_swap_map() can drop the si->lock, multiple
1094                  * callers probably all tried to get a page from the same si
1095                  * and it filled up before we could get one; or, the si filled
1096                  * up between us dropping swap_avail_lock and taking si->lock.
1097                  * Since we dropped the swap_avail_lock, the swap_avail_head
1098                  * list may have been modified; so if next is still in the
1099                  * swap_avail_head list then try it, otherwise start over
1100                  * if we have not gotten any slots.
1101                  */
1102                 if (plist_node_empty(&next->avail_lists[node]))
1103                         goto start_over;
1104         }
1105
1106         spin_unlock(&swap_avail_lock);
1107
1108 check_out:
1109         if (n_ret < n_goal)
1110                 atomic_long_add((long)(n_goal - n_ret) * size,
1111                                 &nr_swap_pages);
1112 noswap:
1113         return n_ret;
1114 }
1115
1116 /* The only caller of this function is now suspend routine */
1117 swp_entry_t get_swap_page_of_type(int type)
1118 {
1119         struct swap_info_struct *si = swap_type_to_swap_info(type);
1120         pgoff_t offset;
1121
1122         if (!si)
1123                 goto fail;
1124
1125         spin_lock(&si->lock);
1126         if (si->flags & SWP_WRITEOK) {
1127                 atomic_long_dec(&nr_swap_pages);
1128                 /* This is called for allocating swap entry, not cache */
1129                 offset = scan_swap_map(si, 1);
1130                 if (offset) {
1131                         spin_unlock(&si->lock);
1132                         return swp_entry(type, offset);
1133                 }
1134                 atomic_long_inc(&nr_swap_pages);
1135         }
1136         spin_unlock(&si->lock);
1137 fail:
1138         return (swp_entry_t) {0};
1139 }
1140
1141 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1142 {
1143         struct swap_info_struct *p;
1144         unsigned long offset;
1145
1146         if (!entry.val)
1147                 goto out;
1148         p = swp_swap_info(entry);
1149         if (!p)
1150                 goto bad_nofile;
1151         if (!(p->flags & SWP_USED))
1152                 goto bad_device;
1153         offset = swp_offset(entry);
1154         if (offset >= p->max)
1155                 goto bad_offset;
1156         return p;
1157
1158 bad_offset:
1159         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1160         goto out;
1161 bad_device:
1162         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1163         goto out;
1164 bad_nofile:
1165         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1166 out:
1167         return NULL;
1168 }
1169
1170 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1171 {
1172         struct swap_info_struct *p;
1173
1174         p = __swap_info_get(entry);
1175         if (!p)
1176                 goto out;
1177         if (!p->swap_map[swp_offset(entry)])
1178                 goto bad_free;
1179         return p;
1180
1181 bad_free:
1182         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1183         goto out;
1184 out:
1185         return NULL;
1186 }
1187
1188 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1189 {
1190         struct swap_info_struct *p;
1191
1192         p = _swap_info_get(entry);
1193         if (p)
1194                 spin_lock(&p->lock);
1195         return p;
1196 }
1197
1198 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1199                                         struct swap_info_struct *q)
1200 {
1201         struct swap_info_struct *p;
1202
1203         p = _swap_info_get(entry);
1204
1205         if (p != q) {
1206                 if (q != NULL)
1207                         spin_unlock(&q->lock);
1208                 if (p != NULL)
1209                         spin_lock(&p->lock);
1210         }
1211         return p;
1212 }
1213
1214 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1215                                               unsigned long offset,
1216                                               unsigned char usage)
1217 {
1218         unsigned char count;
1219         unsigned char has_cache;
1220
1221         count = p->swap_map[offset];
1222
1223         has_cache = count & SWAP_HAS_CACHE;
1224         count &= ~SWAP_HAS_CACHE;
1225
1226         if (usage == SWAP_HAS_CACHE) {
1227                 VM_BUG_ON(!has_cache);
1228                 has_cache = 0;
1229         } else if (count == SWAP_MAP_SHMEM) {
1230                 /*
1231                  * Or we could insist on shmem.c using a special
1232                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1233                  */
1234                 count = 0;
1235         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1236                 if (count == COUNT_CONTINUED) {
1237                         if (swap_count_continued(p, offset, count))
1238                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1239                         else
1240                                 count = SWAP_MAP_MAX;
1241                 } else
1242                         count--;
1243         }
1244
1245         usage = count | has_cache;
1246         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1247
1248         return usage;
1249 }
1250
1251 /*
1252  * Check whether swap entry is valid in the swap device.  If so,
1253  * return pointer to swap_info_struct, and keep the swap entry valid
1254  * via preventing the swap device from being swapoff, until
1255  * put_swap_device() is called.  Otherwise return NULL.
1256  *
1257  * The entirety of the RCU read critical section must come before the
1258  * return from or after the call to synchronize_rcu() in
1259  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1260  * true, the si->map, si->cluster_info, etc. must be valid in the
1261  * critical section.
1262  *
1263  * Notice that swapoff or swapoff+swapon can still happen before the
1264  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1265  * in put_swap_device() if there isn't any other way to prevent
1266  * swapoff, such as page lock, page table lock, etc.  The caller must
1267  * be prepared for that.  For example, the following situation is
1268  * possible.
1269  *
1270  *   CPU1                               CPU2
1271  *   do_swap_page()
1272  *     ...                              swapoff+swapon
1273  *     __read_swap_cache_async()
1274  *       swapcache_prepare()
1275  *         __swap_duplicate()
1276  *           // check swap_map
1277  *     // verify PTE not changed
1278  *
1279  * In __swap_duplicate(), the swap_map need to be checked before
1280  * changing partly because the specified swap entry may be for another
1281  * swap device which has been swapoff.  And in do_swap_page(), after
1282  * the page is read from the swap device, the PTE is verified not
1283  * changed with the page table locked to check whether the swap device
1284  * has been swapoff or swapoff+swapon.
1285  */
1286 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1287 {
1288         struct swap_info_struct *si;
1289         unsigned long offset;
1290
1291         if (!entry.val)
1292                 goto out;
1293         si = swp_swap_info(entry);
1294         if (!si)
1295                 goto bad_nofile;
1296
1297         rcu_read_lock();
1298         if (!(si->flags & SWP_VALID))
1299                 goto unlock_out;
1300         offset = swp_offset(entry);
1301         if (offset >= si->max)
1302                 goto unlock_out;
1303
1304         return si;
1305 bad_nofile:
1306         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1307 out:
1308         return NULL;
1309 unlock_out:
1310         rcu_read_unlock();
1311         return NULL;
1312 }
1313
1314 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1315                                        swp_entry_t entry)
1316 {
1317         struct swap_cluster_info *ci;
1318         unsigned long offset = swp_offset(entry);
1319         unsigned char usage;
1320
1321         ci = lock_cluster_or_swap_info(p, offset);
1322         usage = __swap_entry_free_locked(p, offset, 1);
1323         unlock_cluster_or_swap_info(p, ci);
1324         if (!usage)
1325                 free_swap_slot(entry);
1326
1327         return usage;
1328 }
1329
1330 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1331 {
1332         struct swap_cluster_info *ci;
1333         unsigned long offset = swp_offset(entry);
1334         unsigned char count;
1335
1336         ci = lock_cluster(p, offset);
1337         count = p->swap_map[offset];
1338         VM_BUG_ON(count != SWAP_HAS_CACHE);
1339         p->swap_map[offset] = 0;
1340         dec_cluster_info_page(p, p->cluster_info, offset);
1341         unlock_cluster(ci);
1342
1343         mem_cgroup_uncharge_swap(entry, 1);
1344         swap_range_free(p, offset, 1);
1345 }
1346
1347 /*
1348  * Caller has made sure that the swap device corresponding to entry
1349  * is still around or has not been recycled.
1350  */
1351 void swap_free(swp_entry_t entry)
1352 {
1353         struct swap_info_struct *p;
1354
1355         p = _swap_info_get(entry);
1356         if (p)
1357                 __swap_entry_free(p, entry);
1358 }
1359
1360 /*
1361  * Called after dropping swapcache to decrease refcnt to swap entries.
1362  */
1363 void put_swap_page(struct page *page, swp_entry_t entry)
1364 {
1365         unsigned long offset = swp_offset(entry);
1366         unsigned long idx = offset / SWAPFILE_CLUSTER;
1367         struct swap_cluster_info *ci;
1368         struct swap_info_struct *si;
1369         unsigned char *map;
1370         unsigned int i, free_entries = 0;
1371         unsigned char val;
1372         int size = swap_entry_size(hpage_nr_pages(page));
1373
1374         si = _swap_info_get(entry);
1375         if (!si)
1376                 return;
1377
1378         ci = lock_cluster_or_swap_info(si, offset);
1379         if (size == SWAPFILE_CLUSTER) {
1380                 VM_BUG_ON(!cluster_is_huge(ci));
1381                 map = si->swap_map + offset;
1382                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1383                         val = map[i];
1384                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1385                         if (val == SWAP_HAS_CACHE)
1386                                 free_entries++;
1387                 }
1388                 cluster_clear_huge(ci);
1389                 if (free_entries == SWAPFILE_CLUSTER) {
1390                         unlock_cluster_or_swap_info(si, ci);
1391                         spin_lock(&si->lock);
1392                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1393                         swap_free_cluster(si, idx);
1394                         spin_unlock(&si->lock);
1395                         return;
1396                 }
1397         }
1398         for (i = 0; i < size; i++, entry.val++) {
1399                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1400                         unlock_cluster_or_swap_info(si, ci);
1401                         free_swap_slot(entry);
1402                         if (i == size - 1)
1403                                 return;
1404                         lock_cluster_or_swap_info(si, offset);
1405                 }
1406         }
1407         unlock_cluster_or_swap_info(si, ci);
1408 }
1409
1410 #ifdef CONFIG_THP_SWAP
1411 int split_swap_cluster(swp_entry_t entry)
1412 {
1413         struct swap_info_struct *si;
1414         struct swap_cluster_info *ci;
1415         unsigned long offset = swp_offset(entry);
1416
1417         si = _swap_info_get(entry);
1418         if (!si)
1419                 return -EBUSY;
1420         ci = lock_cluster(si, offset);
1421         cluster_clear_huge(ci);
1422         unlock_cluster(ci);
1423         return 0;
1424 }
1425 #endif
1426
1427 static int swp_entry_cmp(const void *ent1, const void *ent2)
1428 {
1429         const swp_entry_t *e1 = ent1, *e2 = ent2;
1430
1431         return (int)swp_type(*e1) - (int)swp_type(*e2);
1432 }
1433
1434 void swapcache_free_entries(swp_entry_t *entries, int n)
1435 {
1436         struct swap_info_struct *p, *prev;
1437         int i;
1438
1439         if (n <= 0)
1440                 return;
1441
1442         prev = NULL;
1443         p = NULL;
1444
1445         /*
1446          * Sort swap entries by swap device, so each lock is only taken once.
1447          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1448          * so low that it isn't necessary to optimize further.
1449          */
1450         if (nr_swapfiles > 1)
1451                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1452         for (i = 0; i < n; ++i) {
1453                 p = swap_info_get_cont(entries[i], prev);
1454                 if (p)
1455                         swap_entry_free(p, entries[i]);
1456                 prev = p;
1457         }
1458         if (p)
1459                 spin_unlock(&p->lock);
1460 }
1461
1462 /*
1463  * How many references to page are currently swapped out?
1464  * This does not give an exact answer when swap count is continued,
1465  * but does include the high COUNT_CONTINUED flag to allow for that.
1466  */
1467 int page_swapcount(struct page *page)
1468 {
1469         int count = 0;
1470         struct swap_info_struct *p;
1471         struct swap_cluster_info *ci;
1472         swp_entry_t entry;
1473         unsigned long offset;
1474
1475         entry.val = page_private(page);
1476         p = _swap_info_get(entry);
1477         if (p) {
1478                 offset = swp_offset(entry);
1479                 ci = lock_cluster_or_swap_info(p, offset);
1480                 count = swap_count(p->swap_map[offset]);
1481                 unlock_cluster_or_swap_info(p, ci);
1482         }
1483         return count;
1484 }
1485
1486 int __swap_count(swp_entry_t entry)
1487 {
1488         struct swap_info_struct *si;
1489         pgoff_t offset = swp_offset(entry);
1490         int count = 0;
1491
1492         si = get_swap_device(entry);
1493         if (si) {
1494                 count = swap_count(si->swap_map[offset]);
1495                 put_swap_device(si);
1496         }
1497         return count;
1498 }
1499
1500 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1501 {
1502         int count = 0;
1503         pgoff_t offset = swp_offset(entry);
1504         struct swap_cluster_info *ci;
1505
1506         ci = lock_cluster_or_swap_info(si, offset);
1507         count = swap_count(si->swap_map[offset]);
1508         unlock_cluster_or_swap_info(si, ci);
1509         return count;
1510 }
1511
1512 /*
1513  * How many references to @entry are currently swapped out?
1514  * This does not give an exact answer when swap count is continued,
1515  * but does include the high COUNT_CONTINUED flag to allow for that.
1516  */
1517 int __swp_swapcount(swp_entry_t entry)
1518 {
1519         int count = 0;
1520         struct swap_info_struct *si;
1521
1522         si = get_swap_device(entry);
1523         if (si) {
1524                 count = swap_swapcount(si, entry);
1525                 put_swap_device(si);
1526         }
1527         return count;
1528 }
1529
1530 /*
1531  * How many references to @entry are currently swapped out?
1532  * This considers COUNT_CONTINUED so it returns exact answer.
1533  */
1534 int swp_swapcount(swp_entry_t entry)
1535 {
1536         int count, tmp_count, n;
1537         struct swap_info_struct *p;
1538         struct swap_cluster_info *ci;
1539         struct page *page;
1540         pgoff_t offset;
1541         unsigned char *map;
1542
1543         p = _swap_info_get(entry);
1544         if (!p)
1545                 return 0;
1546
1547         offset = swp_offset(entry);
1548
1549         ci = lock_cluster_or_swap_info(p, offset);
1550
1551         count = swap_count(p->swap_map[offset]);
1552         if (!(count & COUNT_CONTINUED))
1553                 goto out;
1554
1555         count &= ~COUNT_CONTINUED;
1556         n = SWAP_MAP_MAX + 1;
1557
1558         page = vmalloc_to_page(p->swap_map + offset);
1559         offset &= ~PAGE_MASK;
1560         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1561
1562         do {
1563                 page = list_next_entry(page, lru);
1564                 map = kmap_atomic(page);
1565                 tmp_count = map[offset];
1566                 kunmap_atomic(map);
1567
1568                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1569                 n *= (SWAP_CONT_MAX + 1);
1570         } while (tmp_count & COUNT_CONTINUED);
1571 out:
1572         unlock_cluster_or_swap_info(p, ci);
1573         return count;
1574 }
1575
1576 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1577                                          swp_entry_t entry)
1578 {
1579         struct swap_cluster_info *ci;
1580         unsigned char *map = si->swap_map;
1581         unsigned long roffset = swp_offset(entry);
1582         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1583         int i;
1584         bool ret = false;
1585
1586         ci = lock_cluster_or_swap_info(si, offset);
1587         if (!ci || !cluster_is_huge(ci)) {
1588                 if (swap_count(map[roffset]))
1589                         ret = true;
1590                 goto unlock_out;
1591         }
1592         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1593                 if (swap_count(map[offset + i])) {
1594                         ret = true;
1595                         break;
1596                 }
1597         }
1598 unlock_out:
1599         unlock_cluster_or_swap_info(si, ci);
1600         return ret;
1601 }
1602
1603 static bool page_swapped(struct page *page)
1604 {
1605         swp_entry_t entry;
1606         struct swap_info_struct *si;
1607
1608         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1609                 return page_swapcount(page) != 0;
1610
1611         page = compound_head(page);
1612         entry.val = page_private(page);
1613         si = _swap_info_get(entry);
1614         if (si)
1615                 return swap_page_trans_huge_swapped(si, entry);
1616         return false;
1617 }
1618
1619 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1620                                          int *total_swapcount)
1621 {
1622         int i, map_swapcount, _total_mapcount, _total_swapcount;
1623         unsigned long offset = 0;
1624         struct swap_info_struct *si;
1625         struct swap_cluster_info *ci = NULL;
1626         unsigned char *map = NULL;
1627         int mapcount, swapcount = 0;
1628
1629         /* hugetlbfs shouldn't call it */
1630         VM_BUG_ON_PAGE(PageHuge(page), page);
1631
1632         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1633                 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1634                 if (PageSwapCache(page))
1635                         swapcount = page_swapcount(page);
1636                 if (total_swapcount)
1637                         *total_swapcount = swapcount;
1638                 return mapcount + swapcount;
1639         }
1640
1641         page = compound_head(page);
1642
1643         _total_mapcount = _total_swapcount = map_swapcount = 0;
1644         if (PageSwapCache(page)) {
1645                 swp_entry_t entry;
1646
1647                 entry.val = page_private(page);
1648                 si = _swap_info_get(entry);
1649                 if (si) {
1650                         map = si->swap_map;
1651                         offset = swp_offset(entry);
1652                 }
1653         }
1654         if (map)
1655                 ci = lock_cluster(si, offset);
1656         for (i = 0; i < HPAGE_PMD_NR; i++) {
1657                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1658                 _total_mapcount += mapcount;
1659                 if (map) {
1660                         swapcount = swap_count(map[offset + i]);
1661                         _total_swapcount += swapcount;
1662                 }
1663                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1664         }
1665         unlock_cluster(ci);
1666         if (PageDoubleMap(page)) {
1667                 map_swapcount -= 1;
1668                 _total_mapcount -= HPAGE_PMD_NR;
1669         }
1670         mapcount = compound_mapcount(page);
1671         map_swapcount += mapcount;
1672         _total_mapcount += mapcount;
1673         if (total_mapcount)
1674                 *total_mapcount = _total_mapcount;
1675         if (total_swapcount)
1676                 *total_swapcount = _total_swapcount;
1677
1678         return map_swapcount;
1679 }
1680
1681 /*
1682  * We can write to an anon page without COW if there are no other references
1683  * to it.  And as a side-effect, free up its swap: because the old content
1684  * on disk will never be read, and seeking back there to write new content
1685  * later would only waste time away from clustering.
1686  *
1687  * NOTE: total_map_swapcount should not be relied upon by the caller if
1688  * reuse_swap_page() returns false, but it may be always overwritten
1689  * (see the other implementation for CONFIG_SWAP=n).
1690  */
1691 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1692 {
1693         int count, total_mapcount, total_swapcount;
1694
1695         VM_BUG_ON_PAGE(!PageLocked(page), page);
1696         if (unlikely(PageKsm(page)))
1697                 return false;
1698         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1699                                               &total_swapcount);
1700         if (total_map_swapcount)
1701                 *total_map_swapcount = total_mapcount + total_swapcount;
1702         if (count == 1 && PageSwapCache(page) &&
1703             (likely(!PageTransCompound(page)) ||
1704              /* The remaining swap count will be freed soon */
1705              total_swapcount == page_swapcount(page))) {
1706                 if (!PageWriteback(page)) {
1707                         page = compound_head(page);
1708                         delete_from_swap_cache(page);
1709                         SetPageDirty(page);
1710                 } else {
1711                         swp_entry_t entry;
1712                         struct swap_info_struct *p;
1713
1714                         entry.val = page_private(page);
1715                         p = swap_info_get(entry);
1716                         if (p->flags & SWP_STABLE_WRITES) {
1717                                 spin_unlock(&p->lock);
1718                                 return false;
1719                         }
1720                         spin_unlock(&p->lock);
1721                 }
1722         }
1723
1724         return count <= 1;
1725 }
1726
1727 /*
1728  * If swap is getting full, or if there are no more mappings of this page,
1729  * then try_to_free_swap is called to free its swap space.
1730  */
1731 int try_to_free_swap(struct page *page)
1732 {
1733         VM_BUG_ON_PAGE(!PageLocked(page), page);
1734
1735         if (!PageSwapCache(page))
1736                 return 0;
1737         if (PageWriteback(page))
1738                 return 0;
1739         if (page_swapped(page))
1740                 return 0;
1741
1742         /*
1743          * Once hibernation has begun to create its image of memory,
1744          * there's a danger that one of the calls to try_to_free_swap()
1745          * - most probably a call from __try_to_reclaim_swap() while
1746          * hibernation is allocating its own swap pages for the image,
1747          * but conceivably even a call from memory reclaim - will free
1748          * the swap from a page which has already been recorded in the
1749          * image as a clean swapcache page, and then reuse its swap for
1750          * another page of the image.  On waking from hibernation, the
1751          * original page might be freed under memory pressure, then
1752          * later read back in from swap, now with the wrong data.
1753          *
1754          * Hibernation suspends storage while it is writing the image
1755          * to disk so check that here.
1756          */
1757         if (pm_suspended_storage())
1758                 return 0;
1759
1760         page = compound_head(page);
1761         delete_from_swap_cache(page);
1762         SetPageDirty(page);
1763         return 1;
1764 }
1765
1766 /*
1767  * Free the swap entry like above, but also try to
1768  * free the page cache entry if it is the last user.
1769  */
1770 int free_swap_and_cache(swp_entry_t entry)
1771 {
1772         struct swap_info_struct *p;
1773         unsigned char count;
1774
1775         if (non_swap_entry(entry))
1776                 return 1;
1777
1778         p = _swap_info_get(entry);
1779         if (p) {
1780                 count = __swap_entry_free(p, entry);
1781                 if (count == SWAP_HAS_CACHE &&
1782                     !swap_page_trans_huge_swapped(p, entry))
1783                         __try_to_reclaim_swap(p, swp_offset(entry),
1784                                               TTRS_UNMAPPED | TTRS_FULL);
1785         }
1786         return p != NULL;
1787 }
1788
1789 #ifdef CONFIG_HIBERNATION
1790 /*
1791  * Find the swap type that corresponds to given device (if any).
1792  *
1793  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1794  * from 0, in which the swap header is expected to be located.
1795  *
1796  * This is needed for the suspend to disk (aka swsusp).
1797  */
1798 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1799 {
1800         struct block_device *bdev = NULL;
1801         int type;
1802
1803         if (device)
1804                 bdev = bdget(device);
1805
1806         spin_lock(&swap_lock);
1807         for (type = 0; type < nr_swapfiles; type++) {
1808                 struct swap_info_struct *sis = swap_info[type];
1809
1810                 if (!(sis->flags & SWP_WRITEOK))
1811                         continue;
1812
1813                 if (!bdev) {
1814                         if (bdev_p)
1815                                 *bdev_p = bdgrab(sis->bdev);
1816
1817                         spin_unlock(&swap_lock);
1818                         return type;
1819                 }
1820                 if (bdev == sis->bdev) {
1821                         struct swap_extent *se = first_se(sis);
1822
1823                         if (se->start_block == offset) {
1824                                 if (bdev_p)
1825                                         *bdev_p = bdgrab(sis->bdev);
1826
1827                                 spin_unlock(&swap_lock);
1828                                 bdput(bdev);
1829                                 return type;
1830                         }
1831                 }
1832         }
1833         spin_unlock(&swap_lock);
1834         if (bdev)
1835                 bdput(bdev);
1836
1837         return -ENODEV;
1838 }
1839
1840 /*
1841  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1842  * corresponding to given index in swap_info (swap type).
1843  */
1844 sector_t swapdev_block(int type, pgoff_t offset)
1845 {
1846         struct block_device *bdev;
1847         struct swap_info_struct *si = swap_type_to_swap_info(type);
1848
1849         if (!si || !(si->flags & SWP_WRITEOK))
1850                 return 0;
1851         return map_swap_entry(swp_entry(type, offset), &bdev);
1852 }
1853
1854 /*
1855  * Return either the total number of swap pages of given type, or the number
1856  * of free pages of that type (depending on @free)
1857  *
1858  * This is needed for software suspend
1859  */
1860 unsigned int count_swap_pages(int type, int free)
1861 {
1862         unsigned int n = 0;
1863
1864         spin_lock(&swap_lock);
1865         if ((unsigned int)type < nr_swapfiles) {
1866                 struct swap_info_struct *sis = swap_info[type];
1867
1868                 spin_lock(&sis->lock);
1869                 if (sis->flags & SWP_WRITEOK) {
1870                         n = sis->pages;
1871                         if (free)
1872                                 n -= sis->inuse_pages;
1873                 }
1874                 spin_unlock(&sis->lock);
1875         }
1876         spin_unlock(&swap_lock);
1877         return n;
1878 }
1879 #endif /* CONFIG_HIBERNATION */
1880
1881 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1882 {
1883         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1884 }
1885
1886 /*
1887  * No need to decide whether this PTE shares the swap entry with others,
1888  * just let do_wp_page work it out if a write is requested later - to
1889  * force COW, vm_page_prot omits write permission from any private vma.
1890  */
1891 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1892                 unsigned long addr, swp_entry_t entry, struct page *page)
1893 {
1894         struct page *swapcache;
1895         spinlock_t *ptl;
1896         pte_t *pte;
1897         int ret = 1;
1898
1899         swapcache = page;
1900         page = ksm_might_need_to_copy(page, vma, addr);
1901         if (unlikely(!page))
1902                 return -ENOMEM;
1903
1904         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1905         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1906                 ret = 0;
1907                 goto out;
1908         }
1909
1910         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1911         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1912         get_page(page);
1913         set_pte_at(vma->vm_mm, addr, pte,
1914                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1915         if (page == swapcache) {
1916                 page_add_anon_rmap(page, vma, addr, false);
1917         } else { /* ksm created a completely new copy */
1918                 page_add_new_anon_rmap(page, vma, addr, false);
1919                 lru_cache_add_active_or_unevictable(page, vma);
1920         }
1921         swap_free(entry);
1922         /*
1923          * Move the page to the active list so it is not
1924          * immediately swapped out again after swapon.
1925          */
1926         activate_page(page);
1927 out:
1928         pte_unmap_unlock(pte, ptl);
1929         if (page != swapcache) {
1930                 unlock_page(page);
1931                 put_page(page);
1932         }
1933         return ret;
1934 }
1935
1936 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1937                         unsigned long addr, unsigned long end,
1938                         unsigned int type, bool frontswap,
1939                         unsigned long *fs_pages_to_unuse)
1940 {
1941         struct page *page;
1942         swp_entry_t entry;
1943         pte_t *pte;
1944         struct swap_info_struct *si;
1945         unsigned long offset;
1946         int ret = 0;
1947         volatile unsigned char *swap_map;
1948
1949         si = swap_info[type];
1950         pte = pte_offset_map(pmd, addr);
1951         do {
1952                 struct vm_fault vmf;
1953
1954                 if (!is_swap_pte(*pte))
1955                         continue;
1956
1957                 entry = pte_to_swp_entry(*pte);
1958                 if (swp_type(entry) != type)
1959                         continue;
1960
1961                 offset = swp_offset(entry);
1962                 if (frontswap && !frontswap_test(si, offset))
1963                         continue;
1964
1965                 pte_unmap(pte);
1966                 swap_map = &si->swap_map[offset];
1967                 page = lookup_swap_cache(entry, vma, addr);
1968                 if (!page) {
1969                         vmf.vma = vma;
1970                         vmf.address = addr;
1971                         vmf.pmd = pmd;
1972                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1973                                                 &vmf);
1974                 }
1975                 if (!page) {
1976                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1977                                 goto try_next;
1978                         return -ENOMEM;
1979                 }
1980
1981                 lock_page(page);
1982                 wait_on_page_writeback(page);
1983                 ret = unuse_pte(vma, pmd, addr, entry, page);
1984                 if (ret < 0) {
1985                         unlock_page(page);
1986                         put_page(page);
1987                         goto out;
1988                 }
1989
1990                 try_to_free_swap(page);
1991                 unlock_page(page);
1992                 put_page(page);
1993
1994                 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1995                         ret = FRONTSWAP_PAGES_UNUSED;
1996                         goto out;
1997                 }
1998 try_next:
1999                 pte = pte_offset_map(pmd, addr);
2000         } while (pte++, addr += PAGE_SIZE, addr != end);
2001         pte_unmap(pte - 1);
2002
2003         ret = 0;
2004 out:
2005         return ret;
2006 }
2007
2008 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2009                                 unsigned long addr, unsigned long end,
2010                                 unsigned int type, bool frontswap,
2011                                 unsigned long *fs_pages_to_unuse)
2012 {
2013         pmd_t *pmd;
2014         unsigned long next;
2015         int ret;
2016
2017         pmd = pmd_offset(pud, addr);
2018         do {
2019                 cond_resched();
2020                 next = pmd_addr_end(addr, end);
2021                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2022                         continue;
2023                 ret = unuse_pte_range(vma, pmd, addr, next, type,
2024                                       frontswap, fs_pages_to_unuse);
2025                 if (ret)
2026                         return ret;
2027         } while (pmd++, addr = next, addr != end);
2028         return 0;
2029 }
2030
2031 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2032                                 unsigned long addr, unsigned long end,
2033                                 unsigned int type, bool frontswap,
2034                                 unsigned long *fs_pages_to_unuse)
2035 {
2036         pud_t *pud;
2037         unsigned long next;
2038         int ret;
2039
2040         pud = pud_offset(p4d, addr);
2041         do {
2042                 next = pud_addr_end(addr, end);
2043                 if (pud_none_or_clear_bad(pud))
2044                         continue;
2045                 ret = unuse_pmd_range(vma, pud, addr, next, type,
2046                                       frontswap, fs_pages_to_unuse);
2047                 if (ret)
2048                         return ret;
2049         } while (pud++, addr = next, addr != end);
2050         return 0;
2051 }
2052
2053 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2054                                 unsigned long addr, unsigned long end,
2055                                 unsigned int type, bool frontswap,
2056                                 unsigned long *fs_pages_to_unuse)
2057 {
2058         p4d_t *p4d;
2059         unsigned long next;
2060         int ret;
2061
2062         p4d = p4d_offset(pgd, addr);
2063         do {
2064                 next = p4d_addr_end(addr, end);
2065                 if (p4d_none_or_clear_bad(p4d))
2066                         continue;
2067                 ret = unuse_pud_range(vma, p4d, addr, next, type,
2068                                       frontswap, fs_pages_to_unuse);
2069                 if (ret)
2070                         return ret;
2071         } while (p4d++, addr = next, addr != end);
2072         return 0;
2073 }
2074
2075 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2076                      bool frontswap, unsigned long *fs_pages_to_unuse)
2077 {
2078         pgd_t *pgd;
2079         unsigned long addr, end, next;
2080         int ret;
2081
2082         addr = vma->vm_start;
2083         end = vma->vm_end;
2084
2085         pgd = pgd_offset(vma->vm_mm, addr);
2086         do {
2087                 next = pgd_addr_end(addr, end);
2088                 if (pgd_none_or_clear_bad(pgd))
2089                         continue;
2090                 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2091                                       frontswap, fs_pages_to_unuse);
2092                 if (ret)
2093                         return ret;
2094         } while (pgd++, addr = next, addr != end);
2095         return 0;
2096 }
2097
2098 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2099                     bool frontswap, unsigned long *fs_pages_to_unuse)
2100 {
2101         struct vm_area_struct *vma;
2102         int ret = 0;
2103
2104         down_read(&mm->mmap_sem);
2105         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2106                 if (vma->anon_vma) {
2107                         ret = unuse_vma(vma, type, frontswap,
2108                                         fs_pages_to_unuse);
2109                         if (ret)
2110                                 break;
2111                 }
2112                 cond_resched();
2113         }
2114         up_read(&mm->mmap_sem);
2115         return ret;
2116 }
2117
2118 /*
2119  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2120  * from current position to next entry still in use. Return 0
2121  * if there are no inuse entries after prev till end of the map.
2122  */
2123 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2124                                         unsigned int prev, bool frontswap)
2125 {
2126         unsigned int i;
2127         unsigned char count;
2128
2129         /*
2130          * No need for swap_lock here: we're just looking
2131          * for whether an entry is in use, not modifying it; false
2132          * hits are okay, and sys_swapoff() has already prevented new
2133          * allocations from this area (while holding swap_lock).
2134          */
2135         for (i = prev + 1; i < si->max; i++) {
2136                 count = READ_ONCE(si->swap_map[i]);
2137                 if (count && swap_count(count) != SWAP_MAP_BAD)
2138                         if (!frontswap || frontswap_test(si, i))
2139                                 break;
2140                 if ((i % LATENCY_LIMIT) == 0)
2141                         cond_resched();
2142         }
2143
2144         if (i == si->max)
2145                 i = 0;
2146
2147         return i;
2148 }
2149
2150 /*
2151  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2152  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2153  */
2154 int try_to_unuse(unsigned int type, bool frontswap,
2155                  unsigned long pages_to_unuse)
2156 {
2157         struct mm_struct *prev_mm;
2158         struct mm_struct *mm;
2159         struct list_head *p;
2160         int retval = 0;
2161         struct swap_info_struct *si = swap_info[type];
2162         struct page *page;
2163         swp_entry_t entry;
2164         unsigned int i;
2165
2166         if (!READ_ONCE(si->inuse_pages))
2167                 return 0;
2168
2169         if (!frontswap)
2170                 pages_to_unuse = 0;
2171
2172 retry:
2173         retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2174         if (retval)
2175                 goto out;
2176
2177         prev_mm = &init_mm;
2178         mmget(prev_mm);
2179
2180         spin_lock(&mmlist_lock);
2181         p = &init_mm.mmlist;
2182         while (READ_ONCE(si->inuse_pages) &&
2183                !signal_pending(current) &&
2184                (p = p->next) != &init_mm.mmlist) {
2185
2186                 mm = list_entry(p, struct mm_struct, mmlist);
2187                 if (!mmget_not_zero(mm))
2188                         continue;
2189                 spin_unlock(&mmlist_lock);
2190                 mmput(prev_mm);
2191                 prev_mm = mm;
2192                 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2193
2194                 if (retval) {
2195                         mmput(prev_mm);
2196                         goto out;
2197                 }
2198
2199                 /*
2200                  * Make sure that we aren't completely killing
2201                  * interactive performance.
2202                  */
2203                 cond_resched();
2204                 spin_lock(&mmlist_lock);
2205         }
2206         spin_unlock(&mmlist_lock);
2207
2208         mmput(prev_mm);
2209
2210         i = 0;
2211         while (READ_ONCE(si->inuse_pages) &&
2212                !signal_pending(current) &&
2213                (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2214
2215                 entry = swp_entry(type, i);
2216                 page = find_get_page(swap_address_space(entry), i);
2217                 if (!page)
2218                         continue;
2219
2220                 /*
2221                  * It is conceivable that a racing task removed this page from
2222                  * swap cache just before we acquired the page lock. The page
2223                  * might even be back in swap cache on another swap area. But
2224                  * that is okay, try_to_free_swap() only removes stale pages.
2225                  */
2226                 lock_page(page);
2227                 wait_on_page_writeback(page);
2228                 try_to_free_swap(page);
2229                 unlock_page(page);
2230                 put_page(page);
2231
2232                 /*
2233                  * For frontswap, we just need to unuse pages_to_unuse, if
2234                  * it was specified. Need not check frontswap again here as
2235                  * we already zeroed out pages_to_unuse if not frontswap.
2236                  */
2237                 if (pages_to_unuse && --pages_to_unuse == 0)
2238                         goto out;
2239         }
2240
2241         /*
2242          * Lets check again to see if there are still swap entries in the map.
2243          * If yes, we would need to do retry the unuse logic again.
2244          * Under global memory pressure, swap entries can be reinserted back
2245          * into process space after the mmlist loop above passes over them.
2246          *
2247          * Limit the number of retries? No: when mmget_not_zero() above fails,
2248          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2249          * at its own independent pace; and even shmem_writepage() could have
2250          * been preempted after get_swap_page(), temporarily hiding that swap.
2251          * It's easy and robust (though cpu-intensive) just to keep retrying.
2252          */
2253         if (READ_ONCE(si->inuse_pages)) {
2254                 if (!signal_pending(current))
2255                         goto retry;
2256                 retval = -EINTR;
2257         }
2258 out:
2259         return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2260 }
2261
2262 /*
2263  * After a successful try_to_unuse, if no swap is now in use, we know
2264  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2265  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2266  * added to the mmlist just after page_duplicate - before would be racy.
2267  */
2268 static void drain_mmlist(void)
2269 {
2270         struct list_head *p, *next;
2271         unsigned int type;
2272
2273         for (type = 0; type < nr_swapfiles; type++)
2274                 if (swap_info[type]->inuse_pages)
2275                         return;
2276         spin_lock(&mmlist_lock);
2277         list_for_each_safe(p, next, &init_mm.mmlist)
2278                 list_del_init(p);
2279         spin_unlock(&mmlist_lock);
2280 }
2281
2282 /*
2283  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2284  * corresponds to page offset for the specified swap entry.
2285  * Note that the type of this function is sector_t, but it returns page offset
2286  * into the bdev, not sector offset.
2287  */
2288 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2289 {
2290         struct swap_info_struct *sis;
2291         struct swap_extent *se;
2292         pgoff_t offset;
2293
2294         sis = swp_swap_info(entry);
2295         *bdev = sis->bdev;
2296
2297         offset = swp_offset(entry);
2298         se = offset_to_swap_extent(sis, offset);
2299         return se->start_block + (offset - se->start_page);
2300 }
2301
2302 /*
2303  * Returns the page offset into bdev for the specified page's swap entry.
2304  */
2305 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2306 {
2307         swp_entry_t entry;
2308         entry.val = page_private(page);
2309         return map_swap_entry(entry, bdev);
2310 }
2311
2312 /*
2313  * Free all of a swapdev's extent information
2314  */
2315 static void destroy_swap_extents(struct swap_info_struct *sis)
2316 {
2317         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2318                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2319                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2320
2321                 rb_erase(rb, &sis->swap_extent_root);
2322                 kfree(se);
2323         }
2324
2325         if (sis->flags & SWP_ACTIVATED) {
2326                 struct file *swap_file = sis->swap_file;
2327                 struct address_space *mapping = swap_file->f_mapping;
2328
2329                 sis->flags &= ~SWP_ACTIVATED;
2330                 if (mapping->a_ops->swap_deactivate)
2331                         mapping->a_ops->swap_deactivate(swap_file);
2332         }
2333 }
2334
2335 /*
2336  * Add a block range (and the corresponding page range) into this swapdev's
2337  * extent tree.
2338  *
2339  * This function rather assumes that it is called in ascending page order.
2340  */
2341 int
2342 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2343                 unsigned long nr_pages, sector_t start_block)
2344 {
2345         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2346         struct swap_extent *se;
2347         struct swap_extent *new_se;
2348
2349         /*
2350          * place the new node at the right most since the
2351          * function is called in ascending page order.
2352          */
2353         while (*link) {
2354                 parent = *link;
2355                 link = &parent->rb_right;
2356         }
2357
2358         if (parent) {
2359                 se = rb_entry(parent, struct swap_extent, rb_node);
2360                 BUG_ON(se->start_page + se->nr_pages != start_page);
2361                 if (se->start_block + se->nr_pages == start_block) {
2362                         /* Merge it */
2363                         se->nr_pages += nr_pages;
2364                         return 0;
2365                 }
2366         }
2367
2368         /* No merge, insert a new extent. */
2369         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2370         if (new_se == NULL)
2371                 return -ENOMEM;
2372         new_se->start_page = start_page;
2373         new_se->nr_pages = nr_pages;
2374         new_se->start_block = start_block;
2375
2376         rb_link_node(&new_se->rb_node, parent, link);
2377         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2378         return 1;
2379 }
2380 EXPORT_SYMBOL_GPL(add_swap_extent);
2381
2382 /*
2383  * A `swap extent' is a simple thing which maps a contiguous range of pages
2384  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2385  * is built at swapon time and is then used at swap_writepage/swap_readpage
2386  * time for locating where on disk a page belongs.
2387  *
2388  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2389  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2390  * swap files identically.
2391  *
2392  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2393  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2394  * swapfiles are handled *identically* after swapon time.
2395  *
2396  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2397  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2398  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2399  * requirements, they are simply tossed out - we will never use those blocks
2400  * for swapping.
2401  *
2402  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2403  * prevents users from writing to the swap device, which will corrupt memory.
2404  *
2405  * The amount of disk space which a single swap extent represents varies.
2406  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2407  * extents in the list.  To avoid much list walking, we cache the previous
2408  * search location in `curr_swap_extent', and start new searches from there.
2409  * This is extremely effective.  The average number of iterations in
2410  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2411  */
2412 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2413 {
2414         struct file *swap_file = sis->swap_file;
2415         struct address_space *mapping = swap_file->f_mapping;
2416         struct inode *inode = mapping->host;
2417         int ret;
2418
2419         if (S_ISBLK(inode->i_mode)) {
2420                 ret = add_swap_extent(sis, 0, sis->max, 0);
2421                 *span = sis->pages;
2422                 return ret;
2423         }
2424
2425         if (mapping->a_ops->swap_activate) {
2426                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2427                 if (ret >= 0)
2428                         sis->flags |= SWP_ACTIVATED;
2429                 if (!ret) {
2430                         sis->flags |= SWP_FS;
2431                         ret = add_swap_extent(sis, 0, sis->max, 0);
2432                         *span = sis->pages;
2433                 }
2434                 return ret;
2435         }
2436
2437         return generic_swapfile_activate(sis, swap_file, span);
2438 }
2439
2440 static int swap_node(struct swap_info_struct *p)
2441 {
2442         struct block_device *bdev;
2443
2444         if (p->bdev)
2445                 bdev = p->bdev;
2446         else
2447                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2448
2449         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2450 }
2451
2452 static void setup_swap_info(struct swap_info_struct *p, int prio,
2453                             unsigned char *swap_map,
2454                             struct swap_cluster_info *cluster_info)
2455 {
2456         int i;
2457
2458         if (prio >= 0)
2459                 p->prio = prio;
2460         else
2461                 p->prio = --least_priority;
2462         /*
2463          * the plist prio is negated because plist ordering is
2464          * low-to-high, while swap ordering is high-to-low
2465          */
2466         p->list.prio = -p->prio;
2467         for_each_node(i) {
2468                 if (p->prio >= 0)
2469                         p->avail_lists[i].prio = -p->prio;
2470                 else {
2471                         if (swap_node(p) == i)
2472                                 p->avail_lists[i].prio = 1;
2473                         else
2474                                 p->avail_lists[i].prio = -p->prio;
2475                 }
2476         }
2477         p->swap_map = swap_map;
2478         p->cluster_info = cluster_info;
2479 }
2480
2481 static void _enable_swap_info(struct swap_info_struct *p)
2482 {
2483         p->flags |= SWP_WRITEOK | SWP_VALID;
2484         atomic_long_add(p->pages, &nr_swap_pages);
2485         total_swap_pages += p->pages;
2486
2487         assert_spin_locked(&swap_lock);
2488         /*
2489          * both lists are plists, and thus priority ordered.
2490          * swap_active_head needs to be priority ordered for swapoff(),
2491          * which on removal of any swap_info_struct with an auto-assigned
2492          * (i.e. negative) priority increments the auto-assigned priority
2493          * of any lower-priority swap_info_structs.
2494          * swap_avail_head needs to be priority ordered for get_swap_page(),
2495          * which allocates swap pages from the highest available priority
2496          * swap_info_struct.
2497          */
2498         plist_add(&p->list, &swap_active_head);
2499         add_to_avail_list(p);
2500 }
2501
2502 static void enable_swap_info(struct swap_info_struct *p, int prio,
2503                                 unsigned char *swap_map,
2504                                 struct swap_cluster_info *cluster_info,
2505                                 unsigned long *frontswap_map)
2506 {
2507         frontswap_init(p->type, frontswap_map);
2508         spin_lock(&swap_lock);
2509         spin_lock(&p->lock);
2510         setup_swap_info(p, prio, swap_map, cluster_info);
2511         spin_unlock(&p->lock);
2512         spin_unlock(&swap_lock);
2513         /*
2514          * Guarantee swap_map, cluster_info, etc. fields are valid
2515          * between get/put_swap_device() if SWP_VALID bit is set
2516          */
2517         synchronize_rcu();
2518         spin_lock(&swap_lock);
2519         spin_lock(&p->lock);
2520         _enable_swap_info(p);
2521         spin_unlock(&p->lock);
2522         spin_unlock(&swap_lock);
2523 }
2524
2525 static void reinsert_swap_info(struct swap_info_struct *p)
2526 {
2527         spin_lock(&swap_lock);
2528         spin_lock(&p->lock);
2529         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2530         _enable_swap_info(p);
2531         spin_unlock(&p->lock);
2532         spin_unlock(&swap_lock);
2533 }
2534
2535 bool has_usable_swap(void)
2536 {
2537         bool ret = true;
2538
2539         spin_lock(&swap_lock);
2540         if (plist_head_empty(&swap_active_head))
2541                 ret = false;
2542         spin_unlock(&swap_lock);
2543         return ret;
2544 }
2545
2546 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2547 {
2548         struct swap_info_struct *p = NULL;
2549         unsigned char *swap_map;
2550         struct swap_cluster_info *cluster_info;
2551         unsigned long *frontswap_map;
2552         struct file *swap_file, *victim;
2553         struct address_space *mapping;
2554         struct inode *inode;
2555         struct filename *pathname;
2556         int err, found = 0;
2557         unsigned int old_block_size;
2558
2559         if (!capable(CAP_SYS_ADMIN))
2560                 return -EPERM;
2561
2562         BUG_ON(!current->mm);
2563
2564         pathname = getname(specialfile);
2565         if (IS_ERR(pathname))
2566                 return PTR_ERR(pathname);
2567
2568         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2569         err = PTR_ERR(victim);
2570         if (IS_ERR(victim))
2571                 goto out;
2572
2573         mapping = victim->f_mapping;
2574         spin_lock(&swap_lock);
2575         plist_for_each_entry(p, &swap_active_head, list) {
2576                 if (p->flags & SWP_WRITEOK) {
2577                         if (p->swap_file->f_mapping == mapping) {
2578                                 found = 1;
2579                                 break;
2580                         }
2581                 }
2582         }
2583         if (!found) {
2584                 err = -EINVAL;
2585                 spin_unlock(&swap_lock);
2586                 goto out_dput;
2587         }
2588         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2589                 vm_unacct_memory(p->pages);
2590         else {
2591                 err = -ENOMEM;
2592                 spin_unlock(&swap_lock);
2593                 goto out_dput;
2594         }
2595         del_from_avail_list(p);
2596         spin_lock(&p->lock);
2597         if (p->prio < 0) {
2598                 struct swap_info_struct *si = p;
2599                 int nid;
2600
2601                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2602                         si->prio++;
2603                         si->list.prio--;
2604                         for_each_node(nid) {
2605                                 if (si->avail_lists[nid].prio != 1)
2606                                         si->avail_lists[nid].prio--;
2607                         }
2608                 }
2609                 least_priority++;
2610         }
2611         plist_del(&p->list, &swap_active_head);
2612         atomic_long_sub(p->pages, &nr_swap_pages);
2613         total_swap_pages -= p->pages;
2614         p->flags &= ~SWP_WRITEOK;
2615         spin_unlock(&p->lock);
2616         spin_unlock(&swap_lock);
2617
2618         disable_swap_slots_cache_lock();
2619
2620         set_current_oom_origin();
2621         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2622         clear_current_oom_origin();
2623
2624         if (err) {
2625                 /* re-insert swap space back into swap_list */
2626                 reinsert_swap_info(p);
2627                 reenable_swap_slots_cache_unlock();
2628                 goto out_dput;
2629         }
2630
2631         reenable_swap_slots_cache_unlock();
2632
2633         spin_lock(&swap_lock);
2634         spin_lock(&p->lock);
2635         p->flags &= ~SWP_VALID;         /* mark swap device as invalid */
2636         spin_unlock(&p->lock);
2637         spin_unlock(&swap_lock);
2638         /*
2639          * wait for swap operations protected by get/put_swap_device()
2640          * to complete
2641          */
2642         synchronize_rcu();
2643
2644         flush_work(&p->discard_work);
2645
2646         destroy_swap_extents(p);
2647         if (p->flags & SWP_CONTINUED)
2648                 free_swap_count_continuations(p);
2649
2650         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2651                 atomic_dec(&nr_rotate_swap);
2652
2653         mutex_lock(&swapon_mutex);
2654         spin_lock(&swap_lock);
2655         spin_lock(&p->lock);
2656         drain_mmlist();
2657
2658         /* wait for anyone still in scan_swap_map */
2659         p->highest_bit = 0;             /* cuts scans short */
2660         while (p->flags >= SWP_SCANNING) {
2661                 spin_unlock(&p->lock);
2662                 spin_unlock(&swap_lock);
2663                 schedule_timeout_uninterruptible(1);
2664                 spin_lock(&swap_lock);
2665                 spin_lock(&p->lock);
2666         }
2667
2668         swap_file = p->swap_file;
2669         old_block_size = p->old_block_size;
2670         p->swap_file = NULL;
2671         p->max = 0;
2672         swap_map = p->swap_map;
2673         p->swap_map = NULL;
2674         cluster_info = p->cluster_info;
2675         p->cluster_info = NULL;
2676         frontswap_map = frontswap_map_get(p);
2677         spin_unlock(&p->lock);
2678         spin_unlock(&swap_lock);
2679         frontswap_invalidate_area(p->type);
2680         frontswap_map_set(p, NULL);
2681         mutex_unlock(&swapon_mutex);
2682         free_percpu(p->percpu_cluster);
2683         p->percpu_cluster = NULL;
2684         free_percpu(p->cluster_next_cpu);
2685         p->cluster_next_cpu = NULL;
2686         vfree(swap_map);
2687         kvfree(cluster_info);
2688         kvfree(frontswap_map);
2689         /* Destroy swap account information */
2690         swap_cgroup_swapoff(p->type);
2691         exit_swap_address_space(p->type);
2692
2693         inode = mapping->host;
2694         if (S_ISBLK(inode->i_mode)) {
2695                 struct block_device *bdev = I_BDEV(inode);
2696
2697                 set_blocksize(bdev, old_block_size);
2698                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2699         }
2700
2701         inode_lock(inode);
2702         inode->i_flags &= ~S_SWAPFILE;
2703         inode_unlock(inode);
2704         filp_close(swap_file, NULL);
2705
2706         /*
2707          * Clear the SWP_USED flag after all resources are freed so that swapon
2708          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2709          * not hold p->lock after we cleared its SWP_WRITEOK.
2710          */
2711         spin_lock(&swap_lock);
2712         p->flags = 0;
2713         spin_unlock(&swap_lock);
2714
2715         err = 0;
2716         atomic_inc(&proc_poll_event);
2717         wake_up_interruptible(&proc_poll_wait);
2718
2719 out_dput:
2720         filp_close(victim, NULL);
2721 out:
2722         putname(pathname);
2723         return err;
2724 }
2725
2726 #ifdef CONFIG_PROC_FS
2727 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2728 {
2729         struct seq_file *seq = file->private_data;
2730
2731         poll_wait(file, &proc_poll_wait, wait);
2732
2733         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2734                 seq->poll_event = atomic_read(&proc_poll_event);
2735                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2736         }
2737
2738         return EPOLLIN | EPOLLRDNORM;
2739 }
2740
2741 /* iterator */
2742 static void *swap_start(struct seq_file *swap, loff_t *pos)
2743 {
2744         struct swap_info_struct *si;
2745         int type;
2746         loff_t l = *pos;
2747
2748         mutex_lock(&swapon_mutex);
2749
2750         if (!l)
2751                 return SEQ_START_TOKEN;
2752
2753         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2754                 if (!(si->flags & SWP_USED) || !si->swap_map)
2755                         continue;
2756                 if (!--l)
2757                         return si;
2758         }
2759
2760         return NULL;
2761 }
2762
2763 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2764 {
2765         struct swap_info_struct *si = v;
2766         int type;
2767
2768         if (v == SEQ_START_TOKEN)
2769                 type = 0;
2770         else
2771                 type = si->type + 1;
2772
2773         ++(*pos);
2774         for (; (si = swap_type_to_swap_info(type)); type++) {
2775                 if (!(si->flags & SWP_USED) || !si->swap_map)
2776                         continue;
2777                 return si;
2778         }
2779
2780         return NULL;
2781 }
2782
2783 static void swap_stop(struct seq_file *swap, void *v)
2784 {
2785         mutex_unlock(&swapon_mutex);
2786 }
2787
2788 static int swap_show(struct seq_file *swap, void *v)
2789 {
2790         struct swap_info_struct *si = v;
2791         struct file *file;
2792         int len;
2793         unsigned int bytes, inuse;
2794
2795         if (si == SEQ_START_TOKEN) {
2796                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2797                 return 0;
2798         }
2799
2800         bytes = si->pages << (PAGE_SHIFT - 10);
2801         inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2802
2803         file = si->swap_file;
2804         len = seq_file_path(swap, file, " \t\n\\");
2805         seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2806                         len < 40 ? 40 - len : 1, " ",
2807                         S_ISBLK(file_inode(file)->i_mode) ?
2808                                 "partition" : "file\t",
2809                         bytes, bytes < 10000000 ? "\t" : "",
2810                         inuse, inuse < 10000000 ? "\t" : "",
2811                         si->prio);
2812         return 0;
2813 }
2814
2815 static const struct seq_operations swaps_op = {
2816         .start =        swap_start,
2817         .next =         swap_next,
2818         .stop =         swap_stop,
2819         .show =         swap_show
2820 };
2821
2822 static int swaps_open(struct inode *inode, struct file *file)
2823 {
2824         struct seq_file *seq;
2825         int ret;
2826
2827         ret = seq_open(file, &swaps_op);
2828         if (ret)
2829                 return ret;
2830
2831         seq = file->private_data;
2832         seq->poll_event = atomic_read(&proc_poll_event);
2833         return 0;
2834 }
2835
2836 static const struct proc_ops swaps_proc_ops = {
2837         .proc_flags     = PROC_ENTRY_PERMANENT,
2838         .proc_open      = swaps_open,
2839         .proc_read      = seq_read,
2840         .proc_lseek     = seq_lseek,
2841         .proc_release   = seq_release,
2842         .proc_poll      = swaps_poll,
2843 };
2844
2845 static int __init procswaps_init(void)
2846 {
2847         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2848         return 0;
2849 }
2850 __initcall(procswaps_init);
2851 #endif /* CONFIG_PROC_FS */
2852
2853 #ifdef MAX_SWAPFILES_CHECK
2854 static int __init max_swapfiles_check(void)
2855 {
2856         MAX_SWAPFILES_CHECK();
2857         return 0;
2858 }
2859 late_initcall(max_swapfiles_check);
2860 #endif
2861
2862 static struct swap_info_struct *alloc_swap_info(void)
2863 {
2864         struct swap_info_struct *p;
2865         unsigned int type;
2866         int i;
2867
2868         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2869         if (!p)
2870                 return ERR_PTR(-ENOMEM);
2871
2872         spin_lock(&swap_lock);
2873         for (type = 0; type < nr_swapfiles; type++) {
2874                 if (!(swap_info[type]->flags & SWP_USED))
2875                         break;
2876         }
2877         if (type >= MAX_SWAPFILES) {
2878                 spin_unlock(&swap_lock);
2879                 kvfree(p);
2880                 return ERR_PTR(-EPERM);
2881         }
2882         if (type >= nr_swapfiles) {
2883                 p->type = type;
2884                 WRITE_ONCE(swap_info[type], p);
2885                 /*
2886                  * Write swap_info[type] before nr_swapfiles, in case a
2887                  * racing procfs swap_start() or swap_next() is reading them.
2888                  * (We never shrink nr_swapfiles, we never free this entry.)
2889                  */
2890                 smp_wmb();
2891                 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2892         } else {
2893                 kvfree(p);
2894                 p = swap_info[type];
2895                 /*
2896                  * Do not memset this entry: a racing procfs swap_next()
2897                  * would be relying on p->type to remain valid.
2898                  */
2899         }
2900         p->swap_extent_root = RB_ROOT;
2901         plist_node_init(&p->list, 0);
2902         for_each_node(i)
2903                 plist_node_init(&p->avail_lists[i], 0);
2904         p->flags = SWP_USED;
2905         spin_unlock(&swap_lock);
2906         spin_lock_init(&p->lock);
2907         spin_lock_init(&p->cont_lock);
2908
2909         return p;
2910 }
2911
2912 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2913 {
2914         int error;
2915
2916         if (S_ISBLK(inode->i_mode)) {
2917                 p->bdev = bdgrab(I_BDEV(inode));
2918                 error = blkdev_get(p->bdev,
2919                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2920                 if (error < 0) {
2921                         p->bdev = NULL;
2922                         return error;
2923                 }
2924                 p->old_block_size = block_size(p->bdev);
2925                 error = set_blocksize(p->bdev, PAGE_SIZE);
2926                 if (error < 0)
2927                         return error;
2928                 /*
2929                  * Zoned block devices contain zones that have a sequential
2930                  * write only restriction.  Hence zoned block devices are not
2931                  * suitable for swapping.  Disallow them here.
2932                  */
2933                 if (blk_queue_is_zoned(p->bdev->bd_queue))
2934                         return -EINVAL;
2935                 p->flags |= SWP_BLKDEV;
2936         } else if (S_ISREG(inode->i_mode)) {
2937                 p->bdev = inode->i_sb->s_bdev;
2938         }
2939
2940         return 0;
2941 }
2942
2943
2944 /*
2945  * Find out how many pages are allowed for a single swap device. There
2946  * are two limiting factors:
2947  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2948  * 2) the number of bits in the swap pte, as defined by the different
2949  * architectures.
2950  *
2951  * In order to find the largest possible bit mask, a swap entry with
2952  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2953  * decoded to a swp_entry_t again, and finally the swap offset is
2954  * extracted.
2955  *
2956  * This will mask all the bits from the initial ~0UL mask that can't
2957  * be encoded in either the swp_entry_t or the architecture definition
2958  * of a swap pte.
2959  */
2960 unsigned long generic_max_swapfile_size(void)
2961 {
2962         return swp_offset(pte_to_swp_entry(
2963                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2964 }
2965
2966 /* Can be overridden by an architecture for additional checks. */
2967 __weak unsigned long max_swapfile_size(void)
2968 {
2969         return generic_max_swapfile_size();
2970 }
2971
2972 static unsigned long read_swap_header(struct swap_info_struct *p,
2973                                         union swap_header *swap_header,
2974                                         struct inode *inode)
2975 {
2976         int i;
2977         unsigned long maxpages;
2978         unsigned long swapfilepages;
2979         unsigned long last_page;
2980
2981         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2982                 pr_err("Unable to find swap-space signature\n");
2983                 return 0;
2984         }
2985
2986         /* swap partition endianess hack... */
2987         if (swab32(swap_header->info.version) == 1) {
2988                 swab32s(&swap_header->info.version);
2989                 swab32s(&swap_header->info.last_page);
2990                 swab32s(&swap_header->info.nr_badpages);
2991                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2992                         return 0;
2993                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2994                         swab32s(&swap_header->info.badpages[i]);
2995         }
2996         /* Check the swap header's sub-version */
2997         if (swap_header->info.version != 1) {
2998                 pr_warn("Unable to handle swap header version %d\n",
2999                         swap_header->info.version);
3000                 return 0;
3001         }
3002
3003         p->lowest_bit  = 1;
3004         p->cluster_next = 1;
3005         p->cluster_nr = 0;
3006
3007         maxpages = max_swapfile_size();
3008         last_page = swap_header->info.last_page;
3009         if (!last_page) {
3010                 pr_warn("Empty swap-file\n");
3011                 return 0;
3012         }
3013         if (last_page > maxpages) {
3014                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3015                         maxpages << (PAGE_SHIFT - 10),
3016                         last_page << (PAGE_SHIFT - 10));
3017         }
3018         if (maxpages > last_page) {
3019                 maxpages = last_page + 1;
3020                 /* p->max is an unsigned int: don't overflow it */
3021                 if ((unsigned int)maxpages == 0)
3022                         maxpages = UINT_MAX;
3023         }
3024         p->highest_bit = maxpages - 1;
3025
3026         if (!maxpages)
3027                 return 0;
3028         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3029         if (swapfilepages && maxpages > swapfilepages) {
3030                 pr_warn("Swap area shorter than signature indicates\n");
3031                 return 0;
3032         }
3033         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3034                 return 0;
3035         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3036                 return 0;
3037
3038         return maxpages;
3039 }
3040
3041 #define SWAP_CLUSTER_INFO_COLS                                          \
3042         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3043 #define SWAP_CLUSTER_SPACE_COLS                                         \
3044         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3045 #define SWAP_CLUSTER_COLS                                               \
3046         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3047
3048 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3049                                         union swap_header *swap_header,
3050                                         unsigned char *swap_map,
3051                                         struct swap_cluster_info *cluster_info,
3052                                         unsigned long maxpages,
3053                                         sector_t *span)
3054 {
3055         unsigned int j, k;
3056         unsigned int nr_good_pages;
3057         int nr_extents;
3058         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3059         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3060         unsigned long i, idx;
3061
3062         nr_good_pages = maxpages - 1;   /* omit header page */
3063
3064         cluster_list_init(&p->free_clusters);
3065         cluster_list_init(&p->discard_clusters);
3066
3067         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3068                 unsigned int page_nr = swap_header->info.badpages[i];
3069                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3070                         return -EINVAL;
3071                 if (page_nr < maxpages) {
3072                         swap_map[page_nr] = SWAP_MAP_BAD;
3073                         nr_good_pages--;
3074                         /*
3075                          * Haven't marked the cluster free yet, no list
3076                          * operation involved
3077                          */
3078                         inc_cluster_info_page(p, cluster_info, page_nr);
3079                 }
3080         }
3081
3082         /* Haven't marked the cluster free yet, no list operation involved */
3083         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3084                 inc_cluster_info_page(p, cluster_info, i);
3085
3086         if (nr_good_pages) {
3087                 swap_map[0] = SWAP_MAP_BAD;
3088                 /*
3089                  * Not mark the cluster free yet, no list
3090                  * operation involved
3091                  */
3092                 inc_cluster_info_page(p, cluster_info, 0);
3093                 p->max = maxpages;
3094                 p->pages = nr_good_pages;
3095                 nr_extents = setup_swap_extents(p, span);
3096                 if (nr_extents < 0)
3097                         return nr_extents;
3098                 nr_good_pages = p->pages;
3099         }
3100         if (!nr_good_pages) {
3101                 pr_warn("Empty swap-file\n");
3102                 return -EINVAL;
3103         }
3104
3105         if (!cluster_info)
3106                 return nr_extents;
3107
3108
3109         /*
3110          * Reduce false cache line sharing between cluster_info and
3111          * sharing same address space.
3112          */
3113         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3114                 j = (k + col) % SWAP_CLUSTER_COLS;
3115                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3116                         idx = i * SWAP_CLUSTER_COLS + j;
3117                         if (idx >= nr_clusters)
3118                                 continue;
3119                         if (cluster_count(&cluster_info[idx]))
3120                                 continue;
3121                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3122                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3123                                               idx);
3124                 }
3125         }
3126         return nr_extents;
3127 }
3128
3129 /*
3130  * Helper to sys_swapon determining if a given swap
3131  * backing device queue supports DISCARD operations.
3132  */
3133 static bool swap_discardable(struct swap_info_struct *si)
3134 {
3135         struct request_queue *q = bdev_get_queue(si->bdev);
3136
3137         if (!q || !blk_queue_discard(q))
3138                 return false;
3139
3140         return true;
3141 }
3142
3143 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3144 {
3145         struct swap_info_struct *p;
3146         struct filename *name;
3147         struct file *swap_file = NULL;
3148         struct address_space *mapping;
3149         int prio;
3150         int error;
3151         union swap_header *swap_header;
3152         int nr_extents;
3153         sector_t span;
3154         unsigned long maxpages;
3155         unsigned char *swap_map = NULL;
3156         struct swap_cluster_info *cluster_info = NULL;
3157         unsigned long *frontswap_map = NULL;
3158         struct page *page = NULL;
3159         struct inode *inode = NULL;
3160         bool inced_nr_rotate_swap = false;
3161
3162         if (swap_flags & ~SWAP_FLAGS_VALID)
3163                 return -EINVAL;
3164
3165         if (!capable(CAP_SYS_ADMIN))
3166                 return -EPERM;
3167
3168         if (!swap_avail_heads)
3169                 return -ENOMEM;
3170
3171         p = alloc_swap_info();
3172         if (IS_ERR(p))
3173                 return PTR_ERR(p);
3174
3175         INIT_WORK(&p->discard_work, swap_discard_work);
3176
3177         name = getname(specialfile);
3178         if (IS_ERR(name)) {
3179                 error = PTR_ERR(name);
3180                 name = NULL;
3181                 goto bad_swap;
3182         }
3183         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3184         if (IS_ERR(swap_file)) {
3185                 error = PTR_ERR(swap_file);
3186                 swap_file = NULL;
3187                 goto bad_swap;
3188         }
3189
3190         p->swap_file = swap_file;
3191         mapping = swap_file->f_mapping;
3192         inode = mapping->host;
3193
3194         error = claim_swapfile(p, inode);
3195         if (unlikely(error))
3196                 goto bad_swap;
3197
3198         inode_lock(inode);
3199         if (IS_SWAPFILE(inode)) {
3200                 error = -EBUSY;
3201                 goto bad_swap_unlock_inode;
3202         }
3203
3204         /*
3205          * Read the swap header.
3206          */
3207         if (!mapping->a_ops->readpage) {
3208                 error = -EINVAL;
3209                 goto bad_swap_unlock_inode;
3210         }
3211         page = read_mapping_page(mapping, 0, swap_file);
3212         if (IS_ERR(page)) {
3213                 error = PTR_ERR(page);
3214                 goto bad_swap_unlock_inode;
3215         }
3216         swap_header = kmap(page);
3217
3218         maxpages = read_swap_header(p, swap_header, inode);
3219         if (unlikely(!maxpages)) {
3220                 error = -EINVAL;
3221                 goto bad_swap_unlock_inode;
3222         }
3223
3224         /* OK, set up the swap map and apply the bad block list */
3225         swap_map = vzalloc(maxpages);
3226         if (!swap_map) {
3227                 error = -ENOMEM;
3228                 goto bad_swap_unlock_inode;
3229         }
3230
3231         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3232                 p->flags |= SWP_STABLE_WRITES;
3233
3234         if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3235                 p->flags |= SWP_SYNCHRONOUS_IO;
3236
3237         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3238                 int cpu;
3239                 unsigned long ci, nr_cluster;
3240
3241                 p->flags |= SWP_SOLIDSTATE;
3242                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3243                 if (!p->cluster_next_cpu) {
3244                         error = -ENOMEM;
3245                         goto bad_swap_unlock_inode;
3246                 }
3247                 /*
3248                  * select a random position to start with to help wear leveling
3249                  * SSD
3250                  */
3251                 for_each_possible_cpu(cpu) {
3252                         per_cpu(*p->cluster_next_cpu, cpu) =
3253                                 1 + prandom_u32_max(p->highest_bit);
3254                 }
3255                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3256
3257                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3258                                         GFP_KERNEL);
3259                 if (!cluster_info) {
3260                         error = -ENOMEM;
3261                         goto bad_swap_unlock_inode;
3262                 }
3263
3264                 for (ci = 0; ci < nr_cluster; ci++)
3265                         spin_lock_init(&((cluster_info + ci)->lock));
3266
3267                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3268                 if (!p->percpu_cluster) {
3269                         error = -ENOMEM;
3270                         goto bad_swap_unlock_inode;
3271                 }
3272                 for_each_possible_cpu(cpu) {
3273                         struct percpu_cluster *cluster;
3274                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3275                         cluster_set_null(&cluster->index);
3276                 }
3277         } else {
3278                 atomic_inc(&nr_rotate_swap);
3279                 inced_nr_rotate_swap = true;
3280         }
3281
3282         error = swap_cgroup_swapon(p->type, maxpages);
3283         if (error)
3284                 goto bad_swap_unlock_inode;
3285
3286         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3287                 cluster_info, maxpages, &span);
3288         if (unlikely(nr_extents < 0)) {
3289                 error = nr_extents;
3290                 goto bad_swap_unlock_inode;
3291         }
3292         /* frontswap enabled? set up bit-per-page map for frontswap */
3293         if (IS_ENABLED(CONFIG_FRONTSWAP))
3294                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3295                                          sizeof(long),
3296                                          GFP_KERNEL);
3297
3298         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3299                 /*
3300                  * When discard is enabled for swap with no particular
3301                  * policy flagged, we set all swap discard flags here in
3302                  * order to sustain backward compatibility with older
3303                  * swapon(8) releases.
3304                  */
3305                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3306                              SWP_PAGE_DISCARD);
3307
3308                 /*
3309                  * By flagging sys_swapon, a sysadmin can tell us to
3310                  * either do single-time area discards only, or to just
3311                  * perform discards for released swap page-clusters.
3312                  * Now it's time to adjust the p->flags accordingly.
3313                  */
3314                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3315                         p->flags &= ~SWP_PAGE_DISCARD;
3316                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3317                         p->flags &= ~SWP_AREA_DISCARD;
3318
3319                 /* issue a swapon-time discard if it's still required */
3320                 if (p->flags & SWP_AREA_DISCARD) {
3321                         int err = discard_swap(p);
3322                         if (unlikely(err))
3323                                 pr_err("swapon: discard_swap(%p): %d\n",
3324                                         p, err);
3325                 }
3326         }
3327
3328         error = init_swap_address_space(p->type, maxpages);
3329         if (error)
3330                 goto bad_swap_unlock_inode;
3331
3332         /*
3333          * Flush any pending IO and dirty mappings before we start using this
3334          * swap device.
3335          */
3336         inode->i_flags |= S_SWAPFILE;
3337         error = inode_drain_writes(inode);
3338         if (error) {
3339                 inode->i_flags &= ~S_SWAPFILE;
3340                 goto bad_swap_unlock_inode;
3341         }
3342
3343         mutex_lock(&swapon_mutex);
3344         prio = -1;
3345         if (swap_flags & SWAP_FLAG_PREFER)
3346                 prio =
3347                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3348         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3349
3350         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3351                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3352                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3353                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3354                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3355                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3356                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3357                 (frontswap_map) ? "FS" : "");
3358
3359         mutex_unlock(&swapon_mutex);
3360         atomic_inc(&proc_poll_event);
3361         wake_up_interruptible(&proc_poll_wait);
3362
3363         error = 0;
3364         goto out;
3365 bad_swap_unlock_inode:
3366         inode_unlock(inode);
3367 bad_swap:
3368         free_percpu(p->percpu_cluster);
3369         p->percpu_cluster = NULL;
3370         free_percpu(p->cluster_next_cpu);
3371         p->cluster_next_cpu = NULL;
3372         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3373                 set_blocksize(p->bdev, p->old_block_size);
3374                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3375         }
3376         inode = NULL;
3377         destroy_swap_extents(p);
3378         swap_cgroup_swapoff(p->type);
3379         spin_lock(&swap_lock);
3380         p->swap_file = NULL;
3381         p->flags = 0;
3382         spin_unlock(&swap_lock);
3383         vfree(swap_map);
3384         kvfree(cluster_info);
3385         kvfree(frontswap_map);
3386         if (inced_nr_rotate_swap)
3387                 atomic_dec(&nr_rotate_swap);
3388         if (swap_file)
3389                 filp_close(swap_file, NULL);
3390 out:
3391         if (page && !IS_ERR(page)) {
3392                 kunmap(page);
3393                 put_page(page);
3394         }
3395         if (name)
3396                 putname(name);
3397         if (inode)
3398                 inode_unlock(inode);
3399         if (!error)
3400                 enable_swap_slots_cache();
3401         return error;
3402 }
3403
3404 void si_swapinfo(struct sysinfo *val)
3405 {
3406         unsigned int type;
3407         unsigned long nr_to_be_unused = 0;
3408
3409         spin_lock(&swap_lock);
3410         for (type = 0; type < nr_swapfiles; type++) {
3411                 struct swap_info_struct *si = swap_info[type];
3412
3413                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3414                         nr_to_be_unused += si->inuse_pages;
3415         }
3416         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3417         val->totalswap = total_swap_pages + nr_to_be_unused;
3418         spin_unlock(&swap_lock);
3419 }
3420
3421 /*
3422  * Verify that a swap entry is valid and increment its swap map count.
3423  *
3424  * Returns error code in following case.
3425  * - success -> 0
3426  * - swp_entry is invalid -> EINVAL
3427  * - swp_entry is migration entry -> EINVAL
3428  * - swap-cache reference is requested but there is already one. -> EEXIST
3429  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3430  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3431  */
3432 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3433 {
3434         struct swap_info_struct *p;
3435         struct swap_cluster_info *ci;
3436         unsigned long offset;
3437         unsigned char count;
3438         unsigned char has_cache;
3439         int err = -EINVAL;
3440
3441         p = get_swap_device(entry);
3442         if (!p)
3443                 goto out;
3444
3445         offset = swp_offset(entry);
3446         ci = lock_cluster_or_swap_info(p, offset);
3447
3448         count = p->swap_map[offset];
3449
3450         /*
3451          * swapin_readahead() doesn't check if a swap entry is valid, so the
3452          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3453          */
3454         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3455                 err = -ENOENT;
3456                 goto unlock_out;
3457         }
3458
3459         has_cache = count & SWAP_HAS_CACHE;
3460         count &= ~SWAP_HAS_CACHE;
3461         err = 0;
3462
3463         if (usage == SWAP_HAS_CACHE) {
3464
3465                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3466                 if (!has_cache && count)
3467                         has_cache = SWAP_HAS_CACHE;
3468                 else if (has_cache)             /* someone else added cache */
3469                         err = -EEXIST;
3470                 else                            /* no users remaining */
3471                         err = -ENOENT;
3472
3473         } else if (count || has_cache) {
3474
3475                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3476                         count += usage;
3477                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3478                         err = -EINVAL;
3479                 else if (swap_count_continued(p, offset, count))
3480                         count = COUNT_CONTINUED;
3481                 else
3482                         err = -ENOMEM;
3483         } else
3484                 err = -ENOENT;                  /* unused swap entry */
3485
3486         p->swap_map[offset] = count | has_cache;
3487
3488 unlock_out:
3489         unlock_cluster_or_swap_info(p, ci);
3490 out:
3491         if (p)
3492                 put_swap_device(p);
3493         return err;
3494 }
3495
3496 /*
3497  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3498  * (in which case its reference count is never incremented).
3499  */
3500 void swap_shmem_alloc(swp_entry_t entry)
3501 {
3502         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3503 }
3504
3505 /*
3506  * Increase reference count of swap entry by 1.
3507  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3508  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3509  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3510  * might occur if a page table entry has got corrupted.
3511  */
3512 int swap_duplicate(swp_entry_t entry)
3513 {
3514         int err = 0;
3515
3516         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3517                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3518         return err;
3519 }
3520
3521 /*
3522  * @entry: swap entry for which we allocate swap cache.
3523  *
3524  * Called when allocating swap cache for existing swap entry,
3525  * This can return error codes. Returns 0 at success.
3526  * -EEXIST means there is a swap cache.
3527  * Note: return code is different from swap_duplicate().
3528  */
3529 int swapcache_prepare(swp_entry_t entry)
3530 {
3531         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3532 }
3533
3534 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3535 {
3536         return swap_type_to_swap_info(swp_type(entry));
3537 }
3538
3539 struct swap_info_struct *page_swap_info(struct page *page)
3540 {
3541         swp_entry_t entry = { .val = page_private(page) };
3542         return swp_swap_info(entry);
3543 }
3544
3545 /*
3546  * out-of-line __page_file_ methods to avoid include hell.
3547  */
3548 struct address_space *__page_file_mapping(struct page *page)
3549 {
3550         return page_swap_info(page)->swap_file->f_mapping;
3551 }
3552 EXPORT_SYMBOL_GPL(__page_file_mapping);
3553
3554 pgoff_t __page_file_index(struct page *page)
3555 {
3556         swp_entry_t swap = { .val = page_private(page) };
3557         return swp_offset(swap);
3558 }
3559 EXPORT_SYMBOL_GPL(__page_file_index);
3560
3561 /*
3562  * add_swap_count_continuation - called when a swap count is duplicated
3563  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3564  * page of the original vmalloc'ed swap_map, to hold the continuation count
3565  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3566  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3567  *
3568  * These continuation pages are seldom referenced: the common paths all work
3569  * on the original swap_map, only referring to a continuation page when the
3570  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3571  *
3572  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3573  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3574  * can be called after dropping locks.
3575  */
3576 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3577 {
3578         struct swap_info_struct *si;
3579         struct swap_cluster_info *ci;
3580         struct page *head;
3581         struct page *page;
3582         struct page *list_page;
3583         pgoff_t offset;
3584         unsigned char count;
3585         int ret = 0;
3586
3587         /*
3588          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3589          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3590          */
3591         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3592
3593         si = get_swap_device(entry);
3594         if (!si) {
3595                 /*
3596                  * An acceptable race has occurred since the failing
3597                  * __swap_duplicate(): the swap device may be swapoff
3598                  */
3599                 goto outer;
3600         }
3601         spin_lock(&si->lock);
3602
3603         offset = swp_offset(entry);
3604
3605         ci = lock_cluster(si, offset);
3606
3607         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3608
3609         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3610                 /*
3611                  * The higher the swap count, the more likely it is that tasks
3612                  * will race to add swap count continuation: we need to avoid
3613                  * over-provisioning.
3614                  */
3615                 goto out;
3616         }
3617
3618         if (!page) {
3619                 ret = -ENOMEM;
3620                 goto out;
3621         }
3622
3623         /*
3624          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3625          * no architecture is using highmem pages for kernel page tables: so it
3626          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3627          */
3628         head = vmalloc_to_page(si->swap_map + offset);
3629         offset &= ~PAGE_MASK;
3630
3631         spin_lock(&si->cont_lock);
3632         /*
3633          * Page allocation does not initialize the page's lru field,
3634          * but it does always reset its private field.
3635          */
3636         if (!page_private(head)) {
3637                 BUG_ON(count & COUNT_CONTINUED);
3638                 INIT_LIST_HEAD(&head->lru);
3639                 set_page_private(head, SWP_CONTINUED);
3640                 si->flags |= SWP_CONTINUED;
3641         }
3642
3643         list_for_each_entry(list_page, &head->lru, lru) {
3644                 unsigned char *map;
3645
3646                 /*
3647                  * If the previous map said no continuation, but we've found
3648                  * a continuation page, free our allocation and use this one.
3649                  */
3650                 if (!(count & COUNT_CONTINUED))
3651                         goto out_unlock_cont;
3652
3653                 map = kmap_atomic(list_page) + offset;
3654                 count = *map;
3655                 kunmap_atomic(map);
3656
3657                 /*
3658                  * If this continuation count now has some space in it,
3659                  * free our allocation and use this one.
3660                  */
3661                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3662                         goto out_unlock_cont;
3663         }
3664
3665         list_add_tail(&page->lru, &head->lru);
3666         page = NULL;                    /* now it's attached, don't free it */
3667 out_unlock_cont:
3668         spin_unlock(&si->cont_lock);
3669 out:
3670         unlock_cluster(ci);
3671         spin_unlock(&si->lock);
3672         put_swap_device(si);
3673 outer:
3674         if (page)
3675                 __free_page(page);
3676         return ret;
3677 }
3678
3679 /*
3680  * swap_count_continued - when the original swap_map count is incremented
3681  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3682  * into, carry if so, or else fail until a new continuation page is allocated;
3683  * when the original swap_map count is decremented from 0 with continuation,
3684  * borrow from the continuation and report whether it still holds more.
3685  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3686  * lock.
3687  */
3688 static bool swap_count_continued(struct swap_info_struct *si,
3689                                  pgoff_t offset, unsigned char count)
3690 {
3691         struct page *head;
3692         struct page *page;
3693         unsigned char *map;
3694         bool ret;
3695
3696         head = vmalloc_to_page(si->swap_map + offset);
3697         if (page_private(head) != SWP_CONTINUED) {
3698                 BUG_ON(count & COUNT_CONTINUED);
3699                 return false;           /* need to add count continuation */
3700         }
3701
3702         spin_lock(&si->cont_lock);
3703         offset &= ~PAGE_MASK;
3704         page = list_next_entry(head, lru);
3705         map = kmap_atomic(page) + offset;
3706
3707         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3708                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3709
3710         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3711                 /*
3712                  * Think of how you add 1 to 999
3713                  */
3714                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3715                         kunmap_atomic(map);
3716                         page = list_next_entry(page, lru);
3717                         BUG_ON(page == head);
3718                         map = kmap_atomic(page) + offset;
3719                 }
3720                 if (*map == SWAP_CONT_MAX) {
3721                         kunmap_atomic(map);
3722                         page = list_next_entry(page, lru);
3723                         if (page == head) {
3724                                 ret = false;    /* add count continuation */
3725                                 goto out;
3726                         }
3727                         map = kmap_atomic(page) + offset;
3728 init_map:               *map = 0;               /* we didn't zero the page */
3729                 }
3730                 *map += 1;
3731                 kunmap_atomic(map);
3732                 while ((page = list_prev_entry(page, lru)) != head) {
3733                         map = kmap_atomic(page) + offset;
3734                         *map = COUNT_CONTINUED;
3735                         kunmap_atomic(map);
3736                 }
3737                 ret = true;                     /* incremented */
3738
3739         } else {                                /* decrementing */
3740                 /*
3741                  * Think of how you subtract 1 from 1000
3742                  */
3743                 BUG_ON(count != COUNT_CONTINUED);
3744                 while (*map == COUNT_CONTINUED) {
3745                         kunmap_atomic(map);
3746                         page = list_next_entry(page, lru);
3747                         BUG_ON(page == head);
3748                         map = kmap_atomic(page) + offset;
3749                 }
3750                 BUG_ON(*map == 0);
3751                 *map -= 1;
3752                 if (*map == 0)
3753                         count = 0;
3754                 kunmap_atomic(map);
3755                 while ((page = list_prev_entry(page, lru)) != head) {
3756                         map = kmap_atomic(page) + offset;
3757                         *map = SWAP_CONT_MAX | count;
3758                         count = COUNT_CONTINUED;
3759                         kunmap_atomic(map);
3760                 }
3761                 ret = count == COUNT_CONTINUED;
3762         }
3763 out:
3764         spin_unlock(&si->cont_lock);
3765         return ret;
3766 }
3767
3768 /*
3769  * free_swap_count_continuations - swapoff free all the continuation pages
3770  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3771  */
3772 static void free_swap_count_continuations(struct swap_info_struct *si)
3773 {
3774         pgoff_t offset;
3775
3776         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3777                 struct page *head;
3778                 head = vmalloc_to_page(si->swap_map + offset);
3779                 if (page_private(head)) {
3780                         struct page *page, *next;
3781
3782                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3783                                 list_del(&page->lru);
3784                                 __free_page(page);
3785                         }
3786                 }
3787         }
3788 }
3789
3790 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3791 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3792 {
3793         struct swap_info_struct *si, *next;
3794         int nid = page_to_nid(page);
3795
3796         if (!(gfp_mask & __GFP_IO))
3797                 return;
3798
3799         if (!blk_cgroup_congested())
3800                 return;
3801
3802         /*
3803          * We've already scheduled a throttle, avoid taking the global swap
3804          * lock.
3805          */
3806         if (current->throttle_queue)
3807                 return;
3808
3809         spin_lock(&swap_avail_lock);
3810         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3811                                   avail_lists[nid]) {
3812                 if (si->bdev) {
3813                         blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3814                         break;
3815                 }
3816         }
3817         spin_unlock(&swap_avail_lock);
3818 }
3819 #endif
3820
3821 static int __init swapfile_init(void)
3822 {
3823         int nid;
3824
3825         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3826                                          GFP_KERNEL);
3827         if (!swap_avail_heads) {
3828                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3829                 return -ENOMEM;
3830         }
3831
3832         for_each_node(nid)
3833                 plist_head_init(&swap_avail_heads[nid]);
3834
3835         return 0;
3836 }
3837 subsys_initcall(swapfile_init);