mm/swapfile: move get_swap_page_of_type() under CONFIG_HIBERNATION
[linux-2.6-microblaze.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49                                  unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103         if (type >= READ_ONCE(nr_swapfiles))
104                 return NULL;
105
106         smp_rmb();      /* Pairs with smp_wmb in alloc_swap_info. */
107         return READ_ONCE(swap_info[type]);
108 }
109
110 static inline unsigned char swap_count(unsigned char ent)
111 {
112         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
113 }
114
115 /* Reclaim the swap entry anyway if possible */
116 #define TTRS_ANYWAY             0x1
117 /*
118  * Reclaim the swap entry if there are no more mappings of the
119  * corresponding page
120  */
121 #define TTRS_UNMAPPED           0x2
122 /* Reclaim the swap entry if swap is getting full*/
123 #define TTRS_FULL               0x4
124
125 /* returns 1 if swap entry is freed */
126 static int __try_to_reclaim_swap(struct swap_info_struct *si,
127                                  unsigned long offset, unsigned long flags)
128 {
129         swp_entry_t entry = swp_entry(si->type, offset);
130         struct page *page;
131         int ret = 0;
132
133         page = find_get_page(swap_address_space(entry), offset);
134         if (!page)
135                 return 0;
136         /*
137          * When this function is called from scan_swap_map_slots() and it's
138          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139          * here. We have to use trylock for avoiding deadlock. This is a special
140          * case and you should use try_to_free_swap() with explicit lock_page()
141          * in usual operations.
142          */
143         if (trylock_page(page)) {
144                 if ((flags & TTRS_ANYWAY) ||
145                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147                         ret = try_to_free_swap(page);
148                 unlock_page(page);
149         }
150         put_page(page);
151         return ret;
152 }
153
154 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155 {
156         struct rb_node *rb = rb_first(&sis->swap_extent_root);
157         return rb_entry(rb, struct swap_extent, rb_node);
158 }
159
160 static inline struct swap_extent *next_se(struct swap_extent *se)
161 {
162         struct rb_node *rb = rb_next(&se->rb_node);
163         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164 }
165
166 /*
167  * swapon tell device that all the old swap contents can be discarded,
168  * to allow the swap device to optimize its wear-levelling.
169  */
170 static int discard_swap(struct swap_info_struct *si)
171 {
172         struct swap_extent *se;
173         sector_t start_block;
174         sector_t nr_blocks;
175         int err = 0;
176
177         /* Do not discard the swap header page! */
178         se = first_se(si);
179         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181         if (nr_blocks) {
182                 err = blkdev_issue_discard(si->bdev, start_block,
183                                 nr_blocks, GFP_KERNEL, 0);
184                 if (err)
185                         return err;
186                 cond_resched();
187         }
188
189         for (se = next_se(se); se; se = next_se(se)) {
190                 start_block = se->start_block << (PAGE_SHIFT - 9);
191                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
192
193                 err = blkdev_issue_discard(si->bdev, start_block,
194                                 nr_blocks, GFP_KERNEL, 0);
195                 if (err)
196                         break;
197
198                 cond_resched();
199         }
200         return err;             /* That will often be -EOPNOTSUPP */
201 }
202
203 static struct swap_extent *
204 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205 {
206         struct swap_extent *se;
207         struct rb_node *rb;
208
209         rb = sis->swap_extent_root.rb_node;
210         while (rb) {
211                 se = rb_entry(rb, struct swap_extent, rb_node);
212                 if (offset < se->start_page)
213                         rb = rb->rb_left;
214                 else if (offset >= se->start_page + se->nr_pages)
215                         rb = rb->rb_right;
216                 else
217                         return se;
218         }
219         /* It *must* be present */
220         BUG();
221 }
222
223 sector_t swap_page_sector(struct page *page)
224 {
225         struct swap_info_struct *sis = page_swap_info(page);
226         struct swap_extent *se;
227         sector_t sector;
228         pgoff_t offset;
229
230         offset = __page_file_index(page);
231         se = offset_to_swap_extent(sis, offset);
232         sector = se->start_block + (offset - se->start_page);
233         return sector << (PAGE_SHIFT - 9);
234 }
235
236 /*
237  * swap allocation tell device that a cluster of swap can now be discarded,
238  * to allow the swap device to optimize its wear-levelling.
239  */
240 static void discard_swap_cluster(struct swap_info_struct *si,
241                                  pgoff_t start_page, pgoff_t nr_pages)
242 {
243         struct swap_extent *se = offset_to_swap_extent(si, start_page);
244
245         while (nr_pages) {
246                 pgoff_t offset = start_page - se->start_page;
247                 sector_t start_block = se->start_block + offset;
248                 sector_t nr_blocks = se->nr_pages - offset;
249
250                 if (nr_blocks > nr_pages)
251                         nr_blocks = nr_pages;
252                 start_page += nr_blocks;
253                 nr_pages -= nr_blocks;
254
255                 start_block <<= PAGE_SHIFT - 9;
256                 nr_blocks <<= PAGE_SHIFT - 9;
257                 if (blkdev_issue_discard(si->bdev, start_block,
258                                         nr_blocks, GFP_NOIO, 0))
259                         break;
260
261                 se = next_se(se);
262         }
263 }
264
265 #ifdef CONFIG_THP_SWAP
266 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
267
268 #define swap_entry_size(size)   (size)
269 #else
270 #define SWAPFILE_CLUSTER        256
271
272 /*
273  * Define swap_entry_size() as constant to let compiler to optimize
274  * out some code if !CONFIG_THP_SWAP
275  */
276 #define swap_entry_size(size)   1
277 #endif
278 #define LATENCY_LIMIT           256
279
280 static inline void cluster_set_flag(struct swap_cluster_info *info,
281         unsigned int flag)
282 {
283         info->flags = flag;
284 }
285
286 static inline unsigned int cluster_count(struct swap_cluster_info *info)
287 {
288         return info->data;
289 }
290
291 static inline void cluster_set_count(struct swap_cluster_info *info,
292                                      unsigned int c)
293 {
294         info->data = c;
295 }
296
297 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
298                                          unsigned int c, unsigned int f)
299 {
300         info->flags = f;
301         info->data = c;
302 }
303
304 static inline unsigned int cluster_next(struct swap_cluster_info *info)
305 {
306         return info->data;
307 }
308
309 static inline void cluster_set_next(struct swap_cluster_info *info,
310                                     unsigned int n)
311 {
312         info->data = n;
313 }
314
315 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
316                                          unsigned int n, unsigned int f)
317 {
318         info->flags = f;
319         info->data = n;
320 }
321
322 static inline bool cluster_is_free(struct swap_cluster_info *info)
323 {
324         return info->flags & CLUSTER_FLAG_FREE;
325 }
326
327 static inline bool cluster_is_null(struct swap_cluster_info *info)
328 {
329         return info->flags & CLUSTER_FLAG_NEXT_NULL;
330 }
331
332 static inline void cluster_set_null(struct swap_cluster_info *info)
333 {
334         info->flags = CLUSTER_FLAG_NEXT_NULL;
335         info->data = 0;
336 }
337
338 static inline bool cluster_is_huge(struct swap_cluster_info *info)
339 {
340         if (IS_ENABLED(CONFIG_THP_SWAP))
341                 return info->flags & CLUSTER_FLAG_HUGE;
342         return false;
343 }
344
345 static inline void cluster_clear_huge(struct swap_cluster_info *info)
346 {
347         info->flags &= ~CLUSTER_FLAG_HUGE;
348 }
349
350 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
351                                                      unsigned long offset)
352 {
353         struct swap_cluster_info *ci;
354
355         ci = si->cluster_info;
356         if (ci) {
357                 ci += offset / SWAPFILE_CLUSTER;
358                 spin_lock(&ci->lock);
359         }
360         return ci;
361 }
362
363 static inline void unlock_cluster(struct swap_cluster_info *ci)
364 {
365         if (ci)
366                 spin_unlock(&ci->lock);
367 }
368
369 /*
370  * Determine the locking method in use for this device.  Return
371  * swap_cluster_info if SSD-style cluster-based locking is in place.
372  */
373 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
374                 struct swap_info_struct *si, unsigned long offset)
375 {
376         struct swap_cluster_info *ci;
377
378         /* Try to use fine-grained SSD-style locking if available: */
379         ci = lock_cluster(si, offset);
380         /* Otherwise, fall back to traditional, coarse locking: */
381         if (!ci)
382                 spin_lock(&si->lock);
383
384         return ci;
385 }
386
387 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
388                                                struct swap_cluster_info *ci)
389 {
390         if (ci)
391                 unlock_cluster(ci);
392         else
393                 spin_unlock(&si->lock);
394 }
395
396 static inline bool cluster_list_empty(struct swap_cluster_list *list)
397 {
398         return cluster_is_null(&list->head);
399 }
400
401 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
402 {
403         return cluster_next(&list->head);
404 }
405
406 static void cluster_list_init(struct swap_cluster_list *list)
407 {
408         cluster_set_null(&list->head);
409         cluster_set_null(&list->tail);
410 }
411
412 static void cluster_list_add_tail(struct swap_cluster_list *list,
413                                   struct swap_cluster_info *ci,
414                                   unsigned int idx)
415 {
416         if (cluster_list_empty(list)) {
417                 cluster_set_next_flag(&list->head, idx, 0);
418                 cluster_set_next_flag(&list->tail, idx, 0);
419         } else {
420                 struct swap_cluster_info *ci_tail;
421                 unsigned int tail = cluster_next(&list->tail);
422
423                 /*
424                  * Nested cluster lock, but both cluster locks are
425                  * only acquired when we held swap_info_struct->lock
426                  */
427                 ci_tail = ci + tail;
428                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
429                 cluster_set_next(ci_tail, idx);
430                 spin_unlock(&ci_tail->lock);
431                 cluster_set_next_flag(&list->tail, idx, 0);
432         }
433 }
434
435 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
436                                            struct swap_cluster_info *ci)
437 {
438         unsigned int idx;
439
440         idx = cluster_next(&list->head);
441         if (cluster_next(&list->tail) == idx) {
442                 cluster_set_null(&list->head);
443                 cluster_set_null(&list->tail);
444         } else
445                 cluster_set_next_flag(&list->head,
446                                       cluster_next(&ci[idx]), 0);
447
448         return idx;
449 }
450
451 /* Add a cluster to discard list and schedule it to do discard */
452 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
453                 unsigned int idx)
454 {
455         /*
456          * If scan_swap_map_slots() can't find a free cluster, it will check
457          * si->swap_map directly. To make sure the discarding cluster isn't
458          * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
459          * It will be cleared after discard
460          */
461         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
462                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
463
464         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
465
466         schedule_work(&si->discard_work);
467 }
468
469 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
470 {
471         struct swap_cluster_info *ci = si->cluster_info;
472
473         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
474         cluster_list_add_tail(&si->free_clusters, ci, idx);
475 }
476
477 /*
478  * Doing discard actually. After a cluster discard is finished, the cluster
479  * will be added to free cluster list. caller should hold si->lock.
480 */
481 static void swap_do_scheduled_discard(struct swap_info_struct *si)
482 {
483         struct swap_cluster_info *info, *ci;
484         unsigned int idx;
485
486         info = si->cluster_info;
487
488         while (!cluster_list_empty(&si->discard_clusters)) {
489                 idx = cluster_list_del_first(&si->discard_clusters, info);
490                 spin_unlock(&si->lock);
491
492                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
493                                 SWAPFILE_CLUSTER);
494
495                 spin_lock(&si->lock);
496                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
497                 __free_cluster(si, idx);
498                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
499                                 0, SWAPFILE_CLUSTER);
500                 unlock_cluster(ci);
501         }
502 }
503
504 static void swap_discard_work(struct work_struct *work)
505 {
506         struct swap_info_struct *si;
507
508         si = container_of(work, struct swap_info_struct, discard_work);
509
510         spin_lock(&si->lock);
511         swap_do_scheduled_discard(si);
512         spin_unlock(&si->lock);
513 }
514
515 static void swap_users_ref_free(struct percpu_ref *ref)
516 {
517         struct swap_info_struct *si;
518
519         si = container_of(ref, struct swap_info_struct, users);
520         complete(&si->comp);
521 }
522
523 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
524 {
525         struct swap_cluster_info *ci = si->cluster_info;
526
527         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
528         cluster_list_del_first(&si->free_clusters, ci);
529         cluster_set_count_flag(ci + idx, 0, 0);
530 }
531
532 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
533 {
534         struct swap_cluster_info *ci = si->cluster_info + idx;
535
536         VM_BUG_ON(cluster_count(ci) != 0);
537         /*
538          * If the swap is discardable, prepare discard the cluster
539          * instead of free it immediately. The cluster will be freed
540          * after discard.
541          */
542         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
543             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
544                 swap_cluster_schedule_discard(si, idx);
545                 return;
546         }
547
548         __free_cluster(si, idx);
549 }
550
551 /*
552  * The cluster corresponding to page_nr will be used. The cluster will be
553  * removed from free cluster list and its usage counter will be increased.
554  */
555 static void inc_cluster_info_page(struct swap_info_struct *p,
556         struct swap_cluster_info *cluster_info, unsigned long page_nr)
557 {
558         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559
560         if (!cluster_info)
561                 return;
562         if (cluster_is_free(&cluster_info[idx]))
563                 alloc_cluster(p, idx);
564
565         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
566         cluster_set_count(&cluster_info[idx],
567                 cluster_count(&cluster_info[idx]) + 1);
568 }
569
570 /*
571  * The cluster corresponding to page_nr decreases one usage. If the usage
572  * counter becomes 0, which means no page in the cluster is in using, we can
573  * optionally discard the cluster and add it to free cluster list.
574  */
575 static void dec_cluster_info_page(struct swap_info_struct *p,
576         struct swap_cluster_info *cluster_info, unsigned long page_nr)
577 {
578         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
579
580         if (!cluster_info)
581                 return;
582
583         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
584         cluster_set_count(&cluster_info[idx],
585                 cluster_count(&cluster_info[idx]) - 1);
586
587         if (cluster_count(&cluster_info[idx]) == 0)
588                 free_cluster(p, idx);
589 }
590
591 /*
592  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
593  * cluster list. Avoiding such abuse to avoid list corruption.
594  */
595 static bool
596 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
597         unsigned long offset)
598 {
599         struct percpu_cluster *percpu_cluster;
600         bool conflict;
601
602         offset /= SWAPFILE_CLUSTER;
603         conflict = !cluster_list_empty(&si->free_clusters) &&
604                 offset != cluster_list_first(&si->free_clusters) &&
605                 cluster_is_free(&si->cluster_info[offset]);
606
607         if (!conflict)
608                 return false;
609
610         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
611         cluster_set_null(&percpu_cluster->index);
612         return true;
613 }
614
615 /*
616  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
617  * might involve allocating a new cluster for current CPU too.
618  */
619 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
620         unsigned long *offset, unsigned long *scan_base)
621 {
622         struct percpu_cluster *cluster;
623         struct swap_cluster_info *ci;
624         unsigned long tmp, max;
625
626 new_cluster:
627         cluster = this_cpu_ptr(si->percpu_cluster);
628         if (cluster_is_null(&cluster->index)) {
629                 if (!cluster_list_empty(&si->free_clusters)) {
630                         cluster->index = si->free_clusters.head;
631                         cluster->next = cluster_next(&cluster->index) *
632                                         SWAPFILE_CLUSTER;
633                 } else if (!cluster_list_empty(&si->discard_clusters)) {
634                         /*
635                          * we don't have free cluster but have some clusters in
636                          * discarding, do discard now and reclaim them, then
637                          * reread cluster_next_cpu since we dropped si->lock
638                          */
639                         swap_do_scheduled_discard(si);
640                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
641                         *offset = *scan_base;
642                         goto new_cluster;
643                 } else
644                         return false;
645         }
646
647         /*
648          * Other CPUs can use our cluster if they can't find a free cluster,
649          * check if there is still free entry in the cluster
650          */
651         tmp = cluster->next;
652         max = min_t(unsigned long, si->max,
653                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
654         if (tmp < max) {
655                 ci = lock_cluster(si, tmp);
656                 while (tmp < max) {
657                         if (!si->swap_map[tmp])
658                                 break;
659                         tmp++;
660                 }
661                 unlock_cluster(ci);
662         }
663         if (tmp >= max) {
664                 cluster_set_null(&cluster->index);
665                 goto new_cluster;
666         }
667         cluster->next = tmp + 1;
668         *offset = tmp;
669         *scan_base = tmp;
670         return true;
671 }
672
673 static void __del_from_avail_list(struct swap_info_struct *p)
674 {
675         int nid;
676
677         for_each_node(nid)
678                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
679 }
680
681 static void del_from_avail_list(struct swap_info_struct *p)
682 {
683         spin_lock(&swap_avail_lock);
684         __del_from_avail_list(p);
685         spin_unlock(&swap_avail_lock);
686 }
687
688 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
689                              unsigned int nr_entries)
690 {
691         unsigned int end = offset + nr_entries - 1;
692
693         if (offset == si->lowest_bit)
694                 si->lowest_bit += nr_entries;
695         if (end == si->highest_bit)
696                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
697         si->inuse_pages += nr_entries;
698         if (si->inuse_pages == si->pages) {
699                 si->lowest_bit = si->max;
700                 si->highest_bit = 0;
701                 del_from_avail_list(si);
702         }
703 }
704
705 static void add_to_avail_list(struct swap_info_struct *p)
706 {
707         int nid;
708
709         spin_lock(&swap_avail_lock);
710         for_each_node(nid) {
711                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
712                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
713         }
714         spin_unlock(&swap_avail_lock);
715 }
716
717 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
718                             unsigned int nr_entries)
719 {
720         unsigned long begin = offset;
721         unsigned long end = offset + nr_entries - 1;
722         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
723
724         if (offset < si->lowest_bit)
725                 si->lowest_bit = offset;
726         if (end > si->highest_bit) {
727                 bool was_full = !si->highest_bit;
728
729                 WRITE_ONCE(si->highest_bit, end);
730                 if (was_full && (si->flags & SWP_WRITEOK))
731                         add_to_avail_list(si);
732         }
733         atomic_long_add(nr_entries, &nr_swap_pages);
734         si->inuse_pages -= nr_entries;
735         if (si->flags & SWP_BLKDEV)
736                 swap_slot_free_notify =
737                         si->bdev->bd_disk->fops->swap_slot_free_notify;
738         else
739                 swap_slot_free_notify = NULL;
740         while (offset <= end) {
741                 arch_swap_invalidate_page(si->type, offset);
742                 frontswap_invalidate_page(si->type, offset);
743                 if (swap_slot_free_notify)
744                         swap_slot_free_notify(si->bdev, offset);
745                 offset++;
746         }
747         clear_shadow_from_swap_cache(si->type, begin, end);
748 }
749
750 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
751 {
752         unsigned long prev;
753
754         if (!(si->flags & SWP_SOLIDSTATE)) {
755                 si->cluster_next = next;
756                 return;
757         }
758
759         prev = this_cpu_read(*si->cluster_next_cpu);
760         /*
761          * Cross the swap address space size aligned trunk, choose
762          * another trunk randomly to avoid lock contention on swap
763          * address space if possible.
764          */
765         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
766             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
767                 /* No free swap slots available */
768                 if (si->highest_bit <= si->lowest_bit)
769                         return;
770                 next = si->lowest_bit +
771                         prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
772                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
773                 next = max_t(unsigned int, next, si->lowest_bit);
774         }
775         this_cpu_write(*si->cluster_next_cpu, next);
776 }
777
778 static int scan_swap_map_slots(struct swap_info_struct *si,
779                                unsigned char usage, int nr,
780                                swp_entry_t slots[])
781 {
782         struct swap_cluster_info *ci;
783         unsigned long offset;
784         unsigned long scan_base;
785         unsigned long last_in_cluster = 0;
786         int latency_ration = LATENCY_LIMIT;
787         int n_ret = 0;
788         bool scanned_many = false;
789
790         /*
791          * We try to cluster swap pages by allocating them sequentially
792          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
793          * way, however, we resort to first-free allocation, starting
794          * a new cluster.  This prevents us from scattering swap pages
795          * all over the entire swap partition, so that we reduce
796          * overall disk seek times between swap pages.  -- sct
797          * But we do now try to find an empty cluster.  -Andrea
798          * And we let swap pages go all over an SSD partition.  Hugh
799          */
800
801         si->flags += SWP_SCANNING;
802         /*
803          * Use percpu scan base for SSD to reduce lock contention on
804          * cluster and swap cache.  For HDD, sequential access is more
805          * important.
806          */
807         if (si->flags & SWP_SOLIDSTATE)
808                 scan_base = this_cpu_read(*si->cluster_next_cpu);
809         else
810                 scan_base = si->cluster_next;
811         offset = scan_base;
812
813         /* SSD algorithm */
814         if (si->cluster_info) {
815                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
816                         goto scan;
817         } else if (unlikely(!si->cluster_nr--)) {
818                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
819                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
820                         goto checks;
821                 }
822
823                 spin_unlock(&si->lock);
824
825                 /*
826                  * If seek is expensive, start searching for new cluster from
827                  * start of partition, to minimize the span of allocated swap.
828                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
829                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
830                  */
831                 scan_base = offset = si->lowest_bit;
832                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
833
834                 /* Locate the first empty (unaligned) cluster */
835                 for (; last_in_cluster <= si->highest_bit; offset++) {
836                         if (si->swap_map[offset])
837                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
838                         else if (offset == last_in_cluster) {
839                                 spin_lock(&si->lock);
840                                 offset -= SWAPFILE_CLUSTER - 1;
841                                 si->cluster_next = offset;
842                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
843                                 goto checks;
844                         }
845                         if (unlikely(--latency_ration < 0)) {
846                                 cond_resched();
847                                 latency_ration = LATENCY_LIMIT;
848                         }
849                 }
850
851                 offset = scan_base;
852                 spin_lock(&si->lock);
853                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
854         }
855
856 checks:
857         if (si->cluster_info) {
858                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
859                 /* take a break if we already got some slots */
860                         if (n_ret)
861                                 goto done;
862                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
863                                                         &scan_base))
864                                 goto scan;
865                 }
866         }
867         if (!(si->flags & SWP_WRITEOK))
868                 goto no_page;
869         if (!si->highest_bit)
870                 goto no_page;
871         if (offset > si->highest_bit)
872                 scan_base = offset = si->lowest_bit;
873
874         ci = lock_cluster(si, offset);
875         /* reuse swap entry of cache-only swap if not busy. */
876         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
877                 int swap_was_freed;
878                 unlock_cluster(ci);
879                 spin_unlock(&si->lock);
880                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
881                 spin_lock(&si->lock);
882                 /* entry was freed successfully, try to use this again */
883                 if (swap_was_freed)
884                         goto checks;
885                 goto scan; /* check next one */
886         }
887
888         if (si->swap_map[offset]) {
889                 unlock_cluster(ci);
890                 if (!n_ret)
891                         goto scan;
892                 else
893                         goto done;
894         }
895         WRITE_ONCE(si->swap_map[offset], usage);
896         inc_cluster_info_page(si, si->cluster_info, offset);
897         unlock_cluster(ci);
898
899         swap_range_alloc(si, offset, 1);
900         slots[n_ret++] = swp_entry(si->type, offset);
901
902         /* got enough slots or reach max slots? */
903         if ((n_ret == nr) || (offset >= si->highest_bit))
904                 goto done;
905
906         /* search for next available slot */
907
908         /* time to take a break? */
909         if (unlikely(--latency_ration < 0)) {
910                 if (n_ret)
911                         goto done;
912                 spin_unlock(&si->lock);
913                 cond_resched();
914                 spin_lock(&si->lock);
915                 latency_ration = LATENCY_LIMIT;
916         }
917
918         /* try to get more slots in cluster */
919         if (si->cluster_info) {
920                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
921                         goto checks;
922         } else if (si->cluster_nr && !si->swap_map[++offset]) {
923                 /* non-ssd case, still more slots in cluster? */
924                 --si->cluster_nr;
925                 goto checks;
926         }
927
928         /*
929          * Even if there's no free clusters available (fragmented),
930          * try to scan a little more quickly with lock held unless we
931          * have scanned too many slots already.
932          */
933         if (!scanned_many) {
934                 unsigned long scan_limit;
935
936                 if (offset < scan_base)
937                         scan_limit = scan_base;
938                 else
939                         scan_limit = si->highest_bit;
940                 for (; offset <= scan_limit && --latency_ration > 0;
941                      offset++) {
942                         if (!si->swap_map[offset])
943                                 goto checks;
944                 }
945         }
946
947 done:
948         set_cluster_next(si, offset + 1);
949         si->flags -= SWP_SCANNING;
950         return n_ret;
951
952 scan:
953         spin_unlock(&si->lock);
954         while (++offset <= READ_ONCE(si->highest_bit)) {
955                 if (data_race(!si->swap_map[offset])) {
956                         spin_lock(&si->lock);
957                         goto checks;
958                 }
959                 if (vm_swap_full() &&
960                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
961                         spin_lock(&si->lock);
962                         goto checks;
963                 }
964                 if (unlikely(--latency_ration < 0)) {
965                         cond_resched();
966                         latency_ration = LATENCY_LIMIT;
967                         scanned_many = true;
968                 }
969         }
970         offset = si->lowest_bit;
971         while (offset < scan_base) {
972                 if (data_race(!si->swap_map[offset])) {
973                         spin_lock(&si->lock);
974                         goto checks;
975                 }
976                 if (vm_swap_full() &&
977                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
978                         spin_lock(&si->lock);
979                         goto checks;
980                 }
981                 if (unlikely(--latency_ration < 0)) {
982                         cond_resched();
983                         latency_ration = LATENCY_LIMIT;
984                         scanned_many = true;
985                 }
986                 offset++;
987         }
988         spin_lock(&si->lock);
989
990 no_page:
991         si->flags -= SWP_SCANNING;
992         return n_ret;
993 }
994
995 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
996 {
997         unsigned long idx;
998         struct swap_cluster_info *ci;
999         unsigned long offset;
1000
1001         /*
1002          * Should not even be attempting cluster allocations when huge
1003          * page swap is disabled.  Warn and fail the allocation.
1004          */
1005         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1006                 VM_WARN_ON_ONCE(1);
1007                 return 0;
1008         }
1009
1010         if (cluster_list_empty(&si->free_clusters))
1011                 return 0;
1012
1013         idx = cluster_list_first(&si->free_clusters);
1014         offset = idx * SWAPFILE_CLUSTER;
1015         ci = lock_cluster(si, offset);
1016         alloc_cluster(si, idx);
1017         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1018
1019         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1020         unlock_cluster(ci);
1021         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1022         *slot = swp_entry(si->type, offset);
1023
1024         return 1;
1025 }
1026
1027 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1028 {
1029         unsigned long offset = idx * SWAPFILE_CLUSTER;
1030         struct swap_cluster_info *ci;
1031
1032         ci = lock_cluster(si, offset);
1033         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1034         cluster_set_count_flag(ci, 0, 0);
1035         free_cluster(si, idx);
1036         unlock_cluster(ci);
1037         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1038 }
1039
1040 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1041 {
1042         unsigned long size = swap_entry_size(entry_size);
1043         struct swap_info_struct *si, *next;
1044         long avail_pgs;
1045         int n_ret = 0;
1046         int node;
1047
1048         /* Only single cluster request supported */
1049         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1050
1051         spin_lock(&swap_avail_lock);
1052
1053         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1054         if (avail_pgs <= 0) {
1055                 spin_unlock(&swap_avail_lock);
1056                 goto noswap;
1057         }
1058
1059         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1060
1061         atomic_long_sub(n_goal * size, &nr_swap_pages);
1062
1063 start_over:
1064         node = numa_node_id();
1065         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1066                 /* requeue si to after same-priority siblings */
1067                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1068                 spin_unlock(&swap_avail_lock);
1069                 spin_lock(&si->lock);
1070                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1071                         spin_lock(&swap_avail_lock);
1072                         if (plist_node_empty(&si->avail_lists[node])) {
1073                                 spin_unlock(&si->lock);
1074                                 goto nextsi;
1075                         }
1076                         WARN(!si->highest_bit,
1077                              "swap_info %d in list but !highest_bit\n",
1078                              si->type);
1079                         WARN(!(si->flags & SWP_WRITEOK),
1080                              "swap_info %d in list but !SWP_WRITEOK\n",
1081                              si->type);
1082                         __del_from_avail_list(si);
1083                         spin_unlock(&si->lock);
1084                         goto nextsi;
1085                 }
1086                 if (size == SWAPFILE_CLUSTER) {
1087                         if (si->flags & SWP_BLKDEV)
1088                                 n_ret = swap_alloc_cluster(si, swp_entries);
1089                 } else
1090                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1091                                                     n_goal, swp_entries);
1092                 spin_unlock(&si->lock);
1093                 if (n_ret || size == SWAPFILE_CLUSTER)
1094                         goto check_out;
1095                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1096                         si->type);
1097
1098                 spin_lock(&swap_avail_lock);
1099 nextsi:
1100                 /*
1101                  * if we got here, it's likely that si was almost full before,
1102                  * and since scan_swap_map_slots() can drop the si->lock,
1103                  * multiple callers probably all tried to get a page from the
1104                  * same si and it filled up before we could get one; or, the si
1105                  * filled up between us dropping swap_avail_lock and taking
1106                  * si->lock. Since we dropped the swap_avail_lock, the
1107                  * swap_avail_head list may have been modified; so if next is
1108                  * still in the swap_avail_head list then try it, otherwise
1109                  * start over if we have not gotten any slots.
1110                  */
1111                 if (plist_node_empty(&next->avail_lists[node]))
1112                         goto start_over;
1113         }
1114
1115         spin_unlock(&swap_avail_lock);
1116
1117 check_out:
1118         if (n_ret < n_goal)
1119                 atomic_long_add((long)(n_goal - n_ret) * size,
1120                                 &nr_swap_pages);
1121 noswap:
1122         return n_ret;
1123 }
1124
1125 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1126 {
1127         struct swap_info_struct *p;
1128         unsigned long offset;
1129
1130         if (!entry.val)
1131                 goto out;
1132         p = swp_swap_info(entry);
1133         if (!p)
1134                 goto bad_nofile;
1135         if (data_race(!(p->flags & SWP_USED)))
1136                 goto bad_device;
1137         offset = swp_offset(entry);
1138         if (offset >= p->max)
1139                 goto bad_offset;
1140         return p;
1141
1142 bad_offset:
1143         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1144         goto out;
1145 bad_device:
1146         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1147         goto out;
1148 bad_nofile:
1149         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1150 out:
1151         return NULL;
1152 }
1153
1154 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1155 {
1156         struct swap_info_struct *p;
1157
1158         p = __swap_info_get(entry);
1159         if (!p)
1160                 goto out;
1161         if (data_race(!p->swap_map[swp_offset(entry)]))
1162                 goto bad_free;
1163         return p;
1164
1165 bad_free:
1166         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1167 out:
1168         return NULL;
1169 }
1170
1171 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1172 {
1173         struct swap_info_struct *p;
1174
1175         p = _swap_info_get(entry);
1176         if (p)
1177                 spin_lock(&p->lock);
1178         return p;
1179 }
1180
1181 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1182                                         struct swap_info_struct *q)
1183 {
1184         struct swap_info_struct *p;
1185
1186         p = _swap_info_get(entry);
1187
1188         if (p != q) {
1189                 if (q != NULL)
1190                         spin_unlock(&q->lock);
1191                 if (p != NULL)
1192                         spin_lock(&p->lock);
1193         }
1194         return p;
1195 }
1196
1197 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1198                                               unsigned long offset,
1199                                               unsigned char usage)
1200 {
1201         unsigned char count;
1202         unsigned char has_cache;
1203
1204         count = p->swap_map[offset];
1205
1206         has_cache = count & SWAP_HAS_CACHE;
1207         count &= ~SWAP_HAS_CACHE;
1208
1209         if (usage == SWAP_HAS_CACHE) {
1210                 VM_BUG_ON(!has_cache);
1211                 has_cache = 0;
1212         } else if (count == SWAP_MAP_SHMEM) {
1213                 /*
1214                  * Or we could insist on shmem.c using a special
1215                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1216                  */
1217                 count = 0;
1218         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1219                 if (count == COUNT_CONTINUED) {
1220                         if (swap_count_continued(p, offset, count))
1221                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1222                         else
1223                                 count = SWAP_MAP_MAX;
1224                 } else
1225                         count--;
1226         }
1227
1228         usage = count | has_cache;
1229         if (usage)
1230                 WRITE_ONCE(p->swap_map[offset], usage);
1231         else
1232                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1233
1234         return usage;
1235 }
1236
1237 /*
1238  * Check whether swap entry is valid in the swap device.  If so,
1239  * return pointer to swap_info_struct, and keep the swap entry valid
1240  * via preventing the swap device from being swapoff, until
1241  * put_swap_device() is called.  Otherwise return NULL.
1242  *
1243  * Notice that swapoff or swapoff+swapon can still happen before the
1244  * percpu_ref_tryget_live() in get_swap_device() or after the
1245  * percpu_ref_put() in put_swap_device() if there isn't any other way
1246  * to prevent swapoff, such as page lock, page table lock, etc.  The
1247  * caller must be prepared for that.  For example, the following
1248  * situation is possible.
1249  *
1250  *   CPU1                               CPU2
1251  *   do_swap_page()
1252  *     ...                              swapoff+swapon
1253  *     __read_swap_cache_async()
1254  *       swapcache_prepare()
1255  *         __swap_duplicate()
1256  *           // check swap_map
1257  *     // verify PTE not changed
1258  *
1259  * In __swap_duplicate(), the swap_map need to be checked before
1260  * changing partly because the specified swap entry may be for another
1261  * swap device which has been swapoff.  And in do_swap_page(), after
1262  * the page is read from the swap device, the PTE is verified not
1263  * changed with the page table locked to check whether the swap device
1264  * has been swapoff or swapoff+swapon.
1265  */
1266 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1267 {
1268         struct swap_info_struct *si;
1269         unsigned long offset;
1270
1271         if (!entry.val)
1272                 goto out;
1273         si = swp_swap_info(entry);
1274         if (!si)
1275                 goto bad_nofile;
1276         if (!percpu_ref_tryget_live(&si->users))
1277                 goto out;
1278         /*
1279          * Guarantee the si->users are checked before accessing other
1280          * fields of swap_info_struct.
1281          *
1282          * Paired with the spin_unlock() after setup_swap_info() in
1283          * enable_swap_info().
1284          */
1285         smp_rmb();
1286         offset = swp_offset(entry);
1287         if (offset >= si->max)
1288                 goto put_out;
1289
1290         return si;
1291 bad_nofile:
1292         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1293 out:
1294         return NULL;
1295 put_out:
1296         percpu_ref_put(&si->users);
1297         return NULL;
1298 }
1299
1300 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1301                                        swp_entry_t entry)
1302 {
1303         struct swap_cluster_info *ci;
1304         unsigned long offset = swp_offset(entry);
1305         unsigned char usage;
1306
1307         ci = lock_cluster_or_swap_info(p, offset);
1308         usage = __swap_entry_free_locked(p, offset, 1);
1309         unlock_cluster_or_swap_info(p, ci);
1310         if (!usage)
1311                 free_swap_slot(entry);
1312
1313         return usage;
1314 }
1315
1316 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1317 {
1318         struct swap_cluster_info *ci;
1319         unsigned long offset = swp_offset(entry);
1320         unsigned char count;
1321
1322         ci = lock_cluster(p, offset);
1323         count = p->swap_map[offset];
1324         VM_BUG_ON(count != SWAP_HAS_CACHE);
1325         p->swap_map[offset] = 0;
1326         dec_cluster_info_page(p, p->cluster_info, offset);
1327         unlock_cluster(ci);
1328
1329         mem_cgroup_uncharge_swap(entry, 1);
1330         swap_range_free(p, offset, 1);
1331 }
1332
1333 /*
1334  * Caller has made sure that the swap device corresponding to entry
1335  * is still around or has not been recycled.
1336  */
1337 void swap_free(swp_entry_t entry)
1338 {
1339         struct swap_info_struct *p;
1340
1341         p = _swap_info_get(entry);
1342         if (p)
1343                 __swap_entry_free(p, entry);
1344 }
1345
1346 /*
1347  * Called after dropping swapcache to decrease refcnt to swap entries.
1348  */
1349 void put_swap_page(struct page *page, swp_entry_t entry)
1350 {
1351         unsigned long offset = swp_offset(entry);
1352         unsigned long idx = offset / SWAPFILE_CLUSTER;
1353         struct swap_cluster_info *ci;
1354         struct swap_info_struct *si;
1355         unsigned char *map;
1356         unsigned int i, free_entries = 0;
1357         unsigned char val;
1358         int size = swap_entry_size(thp_nr_pages(page));
1359
1360         si = _swap_info_get(entry);
1361         if (!si)
1362                 return;
1363
1364         ci = lock_cluster_or_swap_info(si, offset);
1365         if (size == SWAPFILE_CLUSTER) {
1366                 VM_BUG_ON(!cluster_is_huge(ci));
1367                 map = si->swap_map + offset;
1368                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1369                         val = map[i];
1370                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1371                         if (val == SWAP_HAS_CACHE)
1372                                 free_entries++;
1373                 }
1374                 cluster_clear_huge(ci);
1375                 if (free_entries == SWAPFILE_CLUSTER) {
1376                         unlock_cluster_or_swap_info(si, ci);
1377                         spin_lock(&si->lock);
1378                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1379                         swap_free_cluster(si, idx);
1380                         spin_unlock(&si->lock);
1381                         return;
1382                 }
1383         }
1384         for (i = 0; i < size; i++, entry.val++) {
1385                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1386                         unlock_cluster_or_swap_info(si, ci);
1387                         free_swap_slot(entry);
1388                         if (i == size - 1)
1389                                 return;
1390                         lock_cluster_or_swap_info(si, offset);
1391                 }
1392         }
1393         unlock_cluster_or_swap_info(si, ci);
1394 }
1395
1396 #ifdef CONFIG_THP_SWAP
1397 int split_swap_cluster(swp_entry_t entry)
1398 {
1399         struct swap_info_struct *si;
1400         struct swap_cluster_info *ci;
1401         unsigned long offset = swp_offset(entry);
1402
1403         si = _swap_info_get(entry);
1404         if (!si)
1405                 return -EBUSY;
1406         ci = lock_cluster(si, offset);
1407         cluster_clear_huge(ci);
1408         unlock_cluster(ci);
1409         return 0;
1410 }
1411 #endif
1412
1413 static int swp_entry_cmp(const void *ent1, const void *ent2)
1414 {
1415         const swp_entry_t *e1 = ent1, *e2 = ent2;
1416
1417         return (int)swp_type(*e1) - (int)swp_type(*e2);
1418 }
1419
1420 void swapcache_free_entries(swp_entry_t *entries, int n)
1421 {
1422         struct swap_info_struct *p, *prev;
1423         int i;
1424
1425         if (n <= 0)
1426                 return;
1427
1428         prev = NULL;
1429         p = NULL;
1430
1431         /*
1432          * Sort swap entries by swap device, so each lock is only taken once.
1433          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1434          * so low that it isn't necessary to optimize further.
1435          */
1436         if (nr_swapfiles > 1)
1437                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1438         for (i = 0; i < n; ++i) {
1439                 p = swap_info_get_cont(entries[i], prev);
1440                 if (p)
1441                         swap_entry_free(p, entries[i]);
1442                 prev = p;
1443         }
1444         if (p)
1445                 spin_unlock(&p->lock);
1446 }
1447
1448 /*
1449  * How many references to page are currently swapped out?
1450  * This does not give an exact answer when swap count is continued,
1451  * but does include the high COUNT_CONTINUED flag to allow for that.
1452  */
1453 int page_swapcount(struct page *page)
1454 {
1455         int count = 0;
1456         struct swap_info_struct *p;
1457         struct swap_cluster_info *ci;
1458         swp_entry_t entry;
1459         unsigned long offset;
1460
1461         entry.val = page_private(page);
1462         p = _swap_info_get(entry);
1463         if (p) {
1464                 offset = swp_offset(entry);
1465                 ci = lock_cluster_or_swap_info(p, offset);
1466                 count = swap_count(p->swap_map[offset]);
1467                 unlock_cluster_or_swap_info(p, ci);
1468         }
1469         return count;
1470 }
1471
1472 int __swap_count(swp_entry_t entry)
1473 {
1474         struct swap_info_struct *si;
1475         pgoff_t offset = swp_offset(entry);
1476         int count = 0;
1477
1478         si = get_swap_device(entry);
1479         if (si) {
1480                 count = swap_count(si->swap_map[offset]);
1481                 put_swap_device(si);
1482         }
1483         return count;
1484 }
1485
1486 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1487 {
1488         int count = 0;
1489         pgoff_t offset = swp_offset(entry);
1490         struct swap_cluster_info *ci;
1491
1492         ci = lock_cluster_or_swap_info(si, offset);
1493         count = swap_count(si->swap_map[offset]);
1494         unlock_cluster_or_swap_info(si, ci);
1495         return count;
1496 }
1497
1498 /*
1499  * How many references to @entry are currently swapped out?
1500  * This does not give an exact answer when swap count is continued,
1501  * but does include the high COUNT_CONTINUED flag to allow for that.
1502  */
1503 int __swp_swapcount(swp_entry_t entry)
1504 {
1505         int count = 0;
1506         struct swap_info_struct *si;
1507
1508         si = get_swap_device(entry);
1509         if (si) {
1510                 count = swap_swapcount(si, entry);
1511                 put_swap_device(si);
1512         }
1513         return count;
1514 }
1515
1516 /*
1517  * How many references to @entry are currently swapped out?
1518  * This considers COUNT_CONTINUED so it returns exact answer.
1519  */
1520 int swp_swapcount(swp_entry_t entry)
1521 {
1522         int count, tmp_count, n;
1523         struct swap_info_struct *p;
1524         struct swap_cluster_info *ci;
1525         struct page *page;
1526         pgoff_t offset;
1527         unsigned char *map;
1528
1529         p = _swap_info_get(entry);
1530         if (!p)
1531                 return 0;
1532
1533         offset = swp_offset(entry);
1534
1535         ci = lock_cluster_or_swap_info(p, offset);
1536
1537         count = swap_count(p->swap_map[offset]);
1538         if (!(count & COUNT_CONTINUED))
1539                 goto out;
1540
1541         count &= ~COUNT_CONTINUED;
1542         n = SWAP_MAP_MAX + 1;
1543
1544         page = vmalloc_to_page(p->swap_map + offset);
1545         offset &= ~PAGE_MASK;
1546         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1547
1548         do {
1549                 page = list_next_entry(page, lru);
1550                 map = kmap_atomic(page);
1551                 tmp_count = map[offset];
1552                 kunmap_atomic(map);
1553
1554                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1555                 n *= (SWAP_CONT_MAX + 1);
1556         } while (tmp_count & COUNT_CONTINUED);
1557 out:
1558         unlock_cluster_or_swap_info(p, ci);
1559         return count;
1560 }
1561
1562 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1563                                          swp_entry_t entry)
1564 {
1565         struct swap_cluster_info *ci;
1566         unsigned char *map = si->swap_map;
1567         unsigned long roffset = swp_offset(entry);
1568         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1569         int i;
1570         bool ret = false;
1571
1572         ci = lock_cluster_or_swap_info(si, offset);
1573         if (!ci || !cluster_is_huge(ci)) {
1574                 if (swap_count(map[roffset]))
1575                         ret = true;
1576                 goto unlock_out;
1577         }
1578         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1579                 if (swap_count(map[offset + i])) {
1580                         ret = true;
1581                         break;
1582                 }
1583         }
1584 unlock_out:
1585         unlock_cluster_or_swap_info(si, ci);
1586         return ret;
1587 }
1588
1589 static bool page_swapped(struct page *page)
1590 {
1591         swp_entry_t entry;
1592         struct swap_info_struct *si;
1593
1594         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1595                 return page_swapcount(page) != 0;
1596
1597         page = compound_head(page);
1598         entry.val = page_private(page);
1599         si = _swap_info_get(entry);
1600         if (si)
1601                 return swap_page_trans_huge_swapped(si, entry);
1602         return false;
1603 }
1604
1605 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1606                                          int *total_swapcount)
1607 {
1608         int i, map_swapcount, _total_mapcount, _total_swapcount;
1609         unsigned long offset = 0;
1610         struct swap_info_struct *si;
1611         struct swap_cluster_info *ci = NULL;
1612         unsigned char *map = NULL;
1613         int mapcount, swapcount = 0;
1614
1615         /* hugetlbfs shouldn't call it */
1616         VM_BUG_ON_PAGE(PageHuge(page), page);
1617
1618         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1619                 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1620                 if (PageSwapCache(page))
1621                         swapcount = page_swapcount(page);
1622                 if (total_swapcount)
1623                         *total_swapcount = swapcount;
1624                 return mapcount + swapcount;
1625         }
1626
1627         page = compound_head(page);
1628
1629         _total_mapcount = _total_swapcount = map_swapcount = 0;
1630         if (PageSwapCache(page)) {
1631                 swp_entry_t entry;
1632
1633                 entry.val = page_private(page);
1634                 si = _swap_info_get(entry);
1635                 if (si) {
1636                         map = si->swap_map;
1637                         offset = swp_offset(entry);
1638                 }
1639         }
1640         if (map)
1641                 ci = lock_cluster(si, offset);
1642         for (i = 0; i < HPAGE_PMD_NR; i++) {
1643                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1644                 _total_mapcount += mapcount;
1645                 if (map) {
1646                         swapcount = swap_count(map[offset + i]);
1647                         _total_swapcount += swapcount;
1648                 }
1649                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1650         }
1651         unlock_cluster(ci);
1652         if (PageDoubleMap(page)) {
1653                 map_swapcount -= 1;
1654                 _total_mapcount -= HPAGE_PMD_NR;
1655         }
1656         mapcount = compound_mapcount(page);
1657         map_swapcount += mapcount;
1658         _total_mapcount += mapcount;
1659         if (total_mapcount)
1660                 *total_mapcount = _total_mapcount;
1661         if (total_swapcount)
1662                 *total_swapcount = _total_swapcount;
1663
1664         return map_swapcount;
1665 }
1666
1667 /*
1668  * We can write to an anon page without COW if there are no other references
1669  * to it.  And as a side-effect, free up its swap: because the old content
1670  * on disk will never be read, and seeking back there to write new content
1671  * later would only waste time away from clustering.
1672  *
1673  * NOTE: total_map_swapcount should not be relied upon by the caller if
1674  * reuse_swap_page() returns false, but it may be always overwritten
1675  * (see the other implementation for CONFIG_SWAP=n).
1676  */
1677 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1678 {
1679         int count, total_mapcount, total_swapcount;
1680
1681         VM_BUG_ON_PAGE(!PageLocked(page), page);
1682         if (unlikely(PageKsm(page)))
1683                 return false;
1684         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1685                                               &total_swapcount);
1686         if (total_map_swapcount)
1687                 *total_map_swapcount = total_mapcount + total_swapcount;
1688         if (count == 1 && PageSwapCache(page) &&
1689             (likely(!PageTransCompound(page)) ||
1690              /* The remaining swap count will be freed soon */
1691              total_swapcount == page_swapcount(page))) {
1692                 if (!PageWriteback(page)) {
1693                         page = compound_head(page);
1694                         delete_from_swap_cache(page);
1695                         SetPageDirty(page);
1696                 } else {
1697                         swp_entry_t entry;
1698                         struct swap_info_struct *p;
1699
1700                         entry.val = page_private(page);
1701                         p = swap_info_get(entry);
1702                         if (p->flags & SWP_STABLE_WRITES) {
1703                                 spin_unlock(&p->lock);
1704                                 return false;
1705                         }
1706                         spin_unlock(&p->lock);
1707                 }
1708         }
1709
1710         return count <= 1;
1711 }
1712
1713 /*
1714  * If swap is getting full, or if there are no more mappings of this page,
1715  * then try_to_free_swap is called to free its swap space.
1716  */
1717 int try_to_free_swap(struct page *page)
1718 {
1719         VM_BUG_ON_PAGE(!PageLocked(page), page);
1720
1721         if (!PageSwapCache(page))
1722                 return 0;
1723         if (PageWriteback(page))
1724                 return 0;
1725         if (page_swapped(page))
1726                 return 0;
1727
1728         /*
1729          * Once hibernation has begun to create its image of memory,
1730          * there's a danger that one of the calls to try_to_free_swap()
1731          * - most probably a call from __try_to_reclaim_swap() while
1732          * hibernation is allocating its own swap pages for the image,
1733          * but conceivably even a call from memory reclaim - will free
1734          * the swap from a page which has already been recorded in the
1735          * image as a clean swapcache page, and then reuse its swap for
1736          * another page of the image.  On waking from hibernation, the
1737          * original page might be freed under memory pressure, then
1738          * later read back in from swap, now with the wrong data.
1739          *
1740          * Hibernation suspends storage while it is writing the image
1741          * to disk so check that here.
1742          */
1743         if (pm_suspended_storage())
1744                 return 0;
1745
1746         page = compound_head(page);
1747         delete_from_swap_cache(page);
1748         SetPageDirty(page);
1749         return 1;
1750 }
1751
1752 /*
1753  * Free the swap entry like above, but also try to
1754  * free the page cache entry if it is the last user.
1755  */
1756 int free_swap_and_cache(swp_entry_t entry)
1757 {
1758         struct swap_info_struct *p;
1759         unsigned char count;
1760
1761         if (non_swap_entry(entry))
1762                 return 1;
1763
1764         p = _swap_info_get(entry);
1765         if (p) {
1766                 count = __swap_entry_free(p, entry);
1767                 if (count == SWAP_HAS_CACHE &&
1768                     !swap_page_trans_huge_swapped(p, entry))
1769                         __try_to_reclaim_swap(p, swp_offset(entry),
1770                                               TTRS_UNMAPPED | TTRS_FULL);
1771         }
1772         return p != NULL;
1773 }
1774
1775 #ifdef CONFIG_HIBERNATION
1776
1777 swp_entry_t get_swap_page_of_type(int type)
1778 {
1779         struct swap_info_struct *si = swap_type_to_swap_info(type);
1780         swp_entry_t entry = {0};
1781
1782         if (!si)
1783                 goto fail;
1784
1785         /* This is called for allocating swap entry, not cache */
1786         spin_lock(&si->lock);
1787         if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1788                 atomic_long_dec(&nr_swap_pages);
1789         spin_unlock(&si->lock);
1790 fail:
1791         return entry;
1792 }
1793
1794 /*
1795  * Find the swap type that corresponds to given device (if any).
1796  *
1797  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1798  * from 0, in which the swap header is expected to be located.
1799  *
1800  * This is needed for the suspend to disk (aka swsusp).
1801  */
1802 int swap_type_of(dev_t device, sector_t offset)
1803 {
1804         int type;
1805
1806         if (!device)
1807                 return -1;
1808
1809         spin_lock(&swap_lock);
1810         for (type = 0; type < nr_swapfiles; type++) {
1811                 struct swap_info_struct *sis = swap_info[type];
1812
1813                 if (!(sis->flags & SWP_WRITEOK))
1814                         continue;
1815
1816                 if (device == sis->bdev->bd_dev) {
1817                         struct swap_extent *se = first_se(sis);
1818
1819                         if (se->start_block == offset) {
1820                                 spin_unlock(&swap_lock);
1821                                 return type;
1822                         }
1823                 }
1824         }
1825         spin_unlock(&swap_lock);
1826         return -ENODEV;
1827 }
1828
1829 int find_first_swap(dev_t *device)
1830 {
1831         int type;
1832
1833         spin_lock(&swap_lock);
1834         for (type = 0; type < nr_swapfiles; type++) {
1835                 struct swap_info_struct *sis = swap_info[type];
1836
1837                 if (!(sis->flags & SWP_WRITEOK))
1838                         continue;
1839                 *device = sis->bdev->bd_dev;
1840                 spin_unlock(&swap_lock);
1841                 return type;
1842         }
1843         spin_unlock(&swap_lock);
1844         return -ENODEV;
1845 }
1846
1847 /*
1848  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1849  * corresponding to given index in swap_info (swap type).
1850  */
1851 sector_t swapdev_block(int type, pgoff_t offset)
1852 {
1853         struct swap_info_struct *si = swap_type_to_swap_info(type);
1854         struct swap_extent *se;
1855
1856         if (!si || !(si->flags & SWP_WRITEOK))
1857                 return 0;
1858         se = offset_to_swap_extent(si, offset);
1859         return se->start_block + (offset - se->start_page);
1860 }
1861
1862 /*
1863  * Return either the total number of swap pages of given type, or the number
1864  * of free pages of that type (depending on @free)
1865  *
1866  * This is needed for software suspend
1867  */
1868 unsigned int count_swap_pages(int type, int free)
1869 {
1870         unsigned int n = 0;
1871
1872         spin_lock(&swap_lock);
1873         if ((unsigned int)type < nr_swapfiles) {
1874                 struct swap_info_struct *sis = swap_info[type];
1875
1876                 spin_lock(&sis->lock);
1877                 if (sis->flags & SWP_WRITEOK) {
1878                         n = sis->pages;
1879                         if (free)
1880                                 n -= sis->inuse_pages;
1881                 }
1882                 spin_unlock(&sis->lock);
1883         }
1884         spin_unlock(&swap_lock);
1885         return n;
1886 }
1887 #endif /* CONFIG_HIBERNATION */
1888
1889 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1890 {
1891         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1892 }
1893
1894 /*
1895  * No need to decide whether this PTE shares the swap entry with others,
1896  * just let do_wp_page work it out if a write is requested later - to
1897  * force COW, vm_page_prot omits write permission from any private vma.
1898  */
1899 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1900                 unsigned long addr, swp_entry_t entry, struct page *page)
1901 {
1902         struct page *swapcache;
1903         spinlock_t *ptl;
1904         pte_t *pte;
1905         int ret = 1;
1906
1907         swapcache = page;
1908         page = ksm_might_need_to_copy(page, vma, addr);
1909         if (unlikely(!page))
1910                 return -ENOMEM;
1911
1912         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1913         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1914                 ret = 0;
1915                 goto out;
1916         }
1917
1918         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1919         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1920         get_page(page);
1921         set_pte_at(vma->vm_mm, addr, pte,
1922                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1923         if (page == swapcache) {
1924                 page_add_anon_rmap(page, vma, addr, false);
1925         } else { /* ksm created a completely new copy */
1926                 page_add_new_anon_rmap(page, vma, addr, false);
1927                 lru_cache_add_inactive_or_unevictable(page, vma);
1928         }
1929         swap_free(entry);
1930 out:
1931         pte_unmap_unlock(pte, ptl);
1932         if (page != swapcache) {
1933                 unlock_page(page);
1934                 put_page(page);
1935         }
1936         return ret;
1937 }
1938
1939 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1940                         unsigned long addr, unsigned long end,
1941                         unsigned int type, bool frontswap,
1942                         unsigned long *fs_pages_to_unuse)
1943 {
1944         struct page *page;
1945         swp_entry_t entry;
1946         pte_t *pte;
1947         struct swap_info_struct *si;
1948         unsigned long offset;
1949         int ret = 0;
1950         volatile unsigned char *swap_map;
1951
1952         si = swap_info[type];
1953         pte = pte_offset_map(pmd, addr);
1954         do {
1955                 if (!is_swap_pte(*pte))
1956                         continue;
1957
1958                 entry = pte_to_swp_entry(*pte);
1959                 if (swp_type(entry) != type)
1960                         continue;
1961
1962                 offset = swp_offset(entry);
1963                 if (frontswap && !frontswap_test(si, offset))
1964                         continue;
1965
1966                 pte_unmap(pte);
1967                 swap_map = &si->swap_map[offset];
1968                 page = lookup_swap_cache(entry, vma, addr);
1969                 if (!page) {
1970                         struct vm_fault vmf = {
1971                                 .vma = vma,
1972                                 .address = addr,
1973                                 .pmd = pmd,
1974                         };
1975
1976                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1977                                                 &vmf);
1978                 }
1979                 if (!page) {
1980                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1981                                 goto try_next;
1982                         return -ENOMEM;
1983                 }
1984
1985                 lock_page(page);
1986                 wait_on_page_writeback(page);
1987                 ret = unuse_pte(vma, pmd, addr, entry, page);
1988                 if (ret < 0) {
1989                         unlock_page(page);
1990                         put_page(page);
1991                         goto out;
1992                 }
1993
1994                 try_to_free_swap(page);
1995                 unlock_page(page);
1996                 put_page(page);
1997
1998                 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1999                         ret = FRONTSWAP_PAGES_UNUSED;
2000                         goto out;
2001                 }
2002 try_next:
2003                 pte = pte_offset_map(pmd, addr);
2004         } while (pte++, addr += PAGE_SIZE, addr != end);
2005         pte_unmap(pte - 1);
2006
2007         ret = 0;
2008 out:
2009         return ret;
2010 }
2011
2012 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2013                                 unsigned long addr, unsigned long end,
2014                                 unsigned int type, bool frontswap,
2015                                 unsigned long *fs_pages_to_unuse)
2016 {
2017         pmd_t *pmd;
2018         unsigned long next;
2019         int ret;
2020
2021         pmd = pmd_offset(pud, addr);
2022         do {
2023                 cond_resched();
2024                 next = pmd_addr_end(addr, end);
2025                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2026                         continue;
2027                 ret = unuse_pte_range(vma, pmd, addr, next, type,
2028                                       frontswap, fs_pages_to_unuse);
2029                 if (ret)
2030                         return ret;
2031         } while (pmd++, addr = next, addr != end);
2032         return 0;
2033 }
2034
2035 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2036                                 unsigned long addr, unsigned long end,
2037                                 unsigned int type, bool frontswap,
2038                                 unsigned long *fs_pages_to_unuse)
2039 {
2040         pud_t *pud;
2041         unsigned long next;
2042         int ret;
2043
2044         pud = pud_offset(p4d, addr);
2045         do {
2046                 next = pud_addr_end(addr, end);
2047                 if (pud_none_or_clear_bad(pud))
2048                         continue;
2049                 ret = unuse_pmd_range(vma, pud, addr, next, type,
2050                                       frontswap, fs_pages_to_unuse);
2051                 if (ret)
2052                         return ret;
2053         } while (pud++, addr = next, addr != end);
2054         return 0;
2055 }
2056
2057 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2058                                 unsigned long addr, unsigned long end,
2059                                 unsigned int type, bool frontswap,
2060                                 unsigned long *fs_pages_to_unuse)
2061 {
2062         p4d_t *p4d;
2063         unsigned long next;
2064         int ret;
2065
2066         p4d = p4d_offset(pgd, addr);
2067         do {
2068                 next = p4d_addr_end(addr, end);
2069                 if (p4d_none_or_clear_bad(p4d))
2070                         continue;
2071                 ret = unuse_pud_range(vma, p4d, addr, next, type,
2072                                       frontswap, fs_pages_to_unuse);
2073                 if (ret)
2074                         return ret;
2075         } while (p4d++, addr = next, addr != end);
2076         return 0;
2077 }
2078
2079 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2080                      bool frontswap, unsigned long *fs_pages_to_unuse)
2081 {
2082         pgd_t *pgd;
2083         unsigned long addr, end, next;
2084         int ret;
2085
2086         addr = vma->vm_start;
2087         end = vma->vm_end;
2088
2089         pgd = pgd_offset(vma->vm_mm, addr);
2090         do {
2091                 next = pgd_addr_end(addr, end);
2092                 if (pgd_none_or_clear_bad(pgd))
2093                         continue;
2094                 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2095                                       frontswap, fs_pages_to_unuse);
2096                 if (ret)
2097                         return ret;
2098         } while (pgd++, addr = next, addr != end);
2099         return 0;
2100 }
2101
2102 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2103                     bool frontswap, unsigned long *fs_pages_to_unuse)
2104 {
2105         struct vm_area_struct *vma;
2106         int ret = 0;
2107
2108         mmap_read_lock(mm);
2109         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2110                 if (vma->anon_vma) {
2111                         ret = unuse_vma(vma, type, frontswap,
2112                                         fs_pages_to_unuse);
2113                         if (ret)
2114                                 break;
2115                 }
2116                 cond_resched();
2117         }
2118         mmap_read_unlock(mm);
2119         return ret;
2120 }
2121
2122 /*
2123  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2124  * from current position to next entry still in use. Return 0
2125  * if there are no inuse entries after prev till end of the map.
2126  */
2127 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2128                                         unsigned int prev, bool frontswap)
2129 {
2130         unsigned int i;
2131         unsigned char count;
2132
2133         /*
2134          * No need for swap_lock here: we're just looking
2135          * for whether an entry is in use, not modifying it; false
2136          * hits are okay, and sys_swapoff() has already prevented new
2137          * allocations from this area (while holding swap_lock).
2138          */
2139         for (i = prev + 1; i < si->max; i++) {
2140                 count = READ_ONCE(si->swap_map[i]);
2141                 if (count && swap_count(count) != SWAP_MAP_BAD)
2142                         if (!frontswap || frontswap_test(si, i))
2143                                 break;
2144                 if ((i % LATENCY_LIMIT) == 0)
2145                         cond_resched();
2146         }
2147
2148         if (i == si->max)
2149                 i = 0;
2150
2151         return i;
2152 }
2153
2154 /*
2155  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2156  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2157  */
2158 int try_to_unuse(unsigned int type, bool frontswap,
2159                  unsigned long pages_to_unuse)
2160 {
2161         struct mm_struct *prev_mm;
2162         struct mm_struct *mm;
2163         struct list_head *p;
2164         int retval = 0;
2165         struct swap_info_struct *si = swap_info[type];
2166         struct page *page;
2167         swp_entry_t entry;
2168         unsigned int i;
2169
2170         if (!READ_ONCE(si->inuse_pages))
2171                 return 0;
2172
2173         if (!frontswap)
2174                 pages_to_unuse = 0;
2175
2176 retry:
2177         retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2178         if (retval)
2179                 goto out;
2180
2181         prev_mm = &init_mm;
2182         mmget(prev_mm);
2183
2184         spin_lock(&mmlist_lock);
2185         p = &init_mm.mmlist;
2186         while (READ_ONCE(si->inuse_pages) &&
2187                !signal_pending(current) &&
2188                (p = p->next) != &init_mm.mmlist) {
2189
2190                 mm = list_entry(p, struct mm_struct, mmlist);
2191                 if (!mmget_not_zero(mm))
2192                         continue;
2193                 spin_unlock(&mmlist_lock);
2194                 mmput(prev_mm);
2195                 prev_mm = mm;
2196                 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2197
2198                 if (retval) {
2199                         mmput(prev_mm);
2200                         goto out;
2201                 }
2202
2203                 /*
2204                  * Make sure that we aren't completely killing
2205                  * interactive performance.
2206                  */
2207                 cond_resched();
2208                 spin_lock(&mmlist_lock);
2209         }
2210         spin_unlock(&mmlist_lock);
2211
2212         mmput(prev_mm);
2213
2214         i = 0;
2215         while (READ_ONCE(si->inuse_pages) &&
2216                !signal_pending(current) &&
2217                (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2218
2219                 entry = swp_entry(type, i);
2220                 page = find_get_page(swap_address_space(entry), i);
2221                 if (!page)
2222                         continue;
2223
2224                 /*
2225                  * It is conceivable that a racing task removed this page from
2226                  * swap cache just before we acquired the page lock. The page
2227                  * might even be back in swap cache on another swap area. But
2228                  * that is okay, try_to_free_swap() only removes stale pages.
2229                  */
2230                 lock_page(page);
2231                 wait_on_page_writeback(page);
2232                 try_to_free_swap(page);
2233                 unlock_page(page);
2234                 put_page(page);
2235
2236                 /*
2237                  * For frontswap, we just need to unuse pages_to_unuse, if
2238                  * it was specified. Need not check frontswap again here as
2239                  * we already zeroed out pages_to_unuse if not frontswap.
2240                  */
2241                 if (pages_to_unuse && --pages_to_unuse == 0)
2242                         goto out;
2243         }
2244
2245         /*
2246          * Lets check again to see if there are still swap entries in the map.
2247          * If yes, we would need to do retry the unuse logic again.
2248          * Under global memory pressure, swap entries can be reinserted back
2249          * into process space after the mmlist loop above passes over them.
2250          *
2251          * Limit the number of retries? No: when mmget_not_zero() above fails,
2252          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2253          * at its own independent pace; and even shmem_writepage() could have
2254          * been preempted after get_swap_page(), temporarily hiding that swap.
2255          * It's easy and robust (though cpu-intensive) just to keep retrying.
2256          */
2257         if (READ_ONCE(si->inuse_pages)) {
2258                 if (!signal_pending(current))
2259                         goto retry;
2260                 retval = -EINTR;
2261         }
2262 out:
2263         return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2264 }
2265
2266 /*
2267  * After a successful try_to_unuse, if no swap is now in use, we know
2268  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2269  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2270  * added to the mmlist just after page_duplicate - before would be racy.
2271  */
2272 static void drain_mmlist(void)
2273 {
2274         struct list_head *p, *next;
2275         unsigned int type;
2276
2277         for (type = 0; type < nr_swapfiles; type++)
2278                 if (swap_info[type]->inuse_pages)
2279                         return;
2280         spin_lock(&mmlist_lock);
2281         list_for_each_safe(p, next, &init_mm.mmlist)
2282                 list_del_init(p);
2283         spin_unlock(&mmlist_lock);
2284 }
2285
2286 /*
2287  * Free all of a swapdev's extent information
2288  */
2289 static void destroy_swap_extents(struct swap_info_struct *sis)
2290 {
2291         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2292                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2293                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2294
2295                 rb_erase(rb, &sis->swap_extent_root);
2296                 kfree(se);
2297         }
2298
2299         if (sis->flags & SWP_ACTIVATED) {
2300                 struct file *swap_file = sis->swap_file;
2301                 struct address_space *mapping = swap_file->f_mapping;
2302
2303                 sis->flags &= ~SWP_ACTIVATED;
2304                 if (mapping->a_ops->swap_deactivate)
2305                         mapping->a_ops->swap_deactivate(swap_file);
2306         }
2307 }
2308
2309 /*
2310  * Add a block range (and the corresponding page range) into this swapdev's
2311  * extent tree.
2312  *
2313  * This function rather assumes that it is called in ascending page order.
2314  */
2315 int
2316 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2317                 unsigned long nr_pages, sector_t start_block)
2318 {
2319         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2320         struct swap_extent *se;
2321         struct swap_extent *new_se;
2322
2323         /*
2324          * place the new node at the right most since the
2325          * function is called in ascending page order.
2326          */
2327         while (*link) {
2328                 parent = *link;
2329                 link = &parent->rb_right;
2330         }
2331
2332         if (parent) {
2333                 se = rb_entry(parent, struct swap_extent, rb_node);
2334                 BUG_ON(se->start_page + se->nr_pages != start_page);
2335                 if (se->start_block + se->nr_pages == start_block) {
2336                         /* Merge it */
2337                         se->nr_pages += nr_pages;
2338                         return 0;
2339                 }
2340         }
2341
2342         /* No merge, insert a new extent. */
2343         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2344         if (new_se == NULL)
2345                 return -ENOMEM;
2346         new_se->start_page = start_page;
2347         new_se->nr_pages = nr_pages;
2348         new_se->start_block = start_block;
2349
2350         rb_link_node(&new_se->rb_node, parent, link);
2351         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2352         return 1;
2353 }
2354 EXPORT_SYMBOL_GPL(add_swap_extent);
2355
2356 /*
2357  * A `swap extent' is a simple thing which maps a contiguous range of pages
2358  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2359  * is built at swapon time and is then used at swap_writepage/swap_readpage
2360  * time for locating where on disk a page belongs.
2361  *
2362  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2363  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2364  * swap files identically.
2365  *
2366  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2367  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2368  * swapfiles are handled *identically* after swapon time.
2369  *
2370  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2371  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2372  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2373  * requirements, they are simply tossed out - we will never use those blocks
2374  * for swapping.
2375  *
2376  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2377  * prevents users from writing to the swap device, which will corrupt memory.
2378  *
2379  * The amount of disk space which a single swap extent represents varies.
2380  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2381  * extents in the list.  To avoid much list walking, we cache the previous
2382  * search location in `curr_swap_extent', and start new searches from there.
2383  * This is extremely effective.  The average number of iterations in
2384  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2385  */
2386 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2387 {
2388         struct file *swap_file = sis->swap_file;
2389         struct address_space *mapping = swap_file->f_mapping;
2390         struct inode *inode = mapping->host;
2391         int ret;
2392
2393         if (S_ISBLK(inode->i_mode)) {
2394                 ret = add_swap_extent(sis, 0, sis->max, 0);
2395                 *span = sis->pages;
2396                 return ret;
2397         }
2398
2399         if (mapping->a_ops->swap_activate) {
2400                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2401                 if (ret >= 0)
2402                         sis->flags |= SWP_ACTIVATED;
2403                 if (!ret) {
2404                         sis->flags |= SWP_FS_OPS;
2405                         ret = add_swap_extent(sis, 0, sis->max, 0);
2406                         *span = sis->pages;
2407                 }
2408                 return ret;
2409         }
2410
2411         return generic_swapfile_activate(sis, swap_file, span);
2412 }
2413
2414 static int swap_node(struct swap_info_struct *p)
2415 {
2416         struct block_device *bdev;
2417
2418         if (p->bdev)
2419                 bdev = p->bdev;
2420         else
2421                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2422
2423         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2424 }
2425
2426 static void setup_swap_info(struct swap_info_struct *p, int prio,
2427                             unsigned char *swap_map,
2428                             struct swap_cluster_info *cluster_info)
2429 {
2430         int i;
2431
2432         if (prio >= 0)
2433                 p->prio = prio;
2434         else
2435                 p->prio = --least_priority;
2436         /*
2437          * the plist prio is negated because plist ordering is
2438          * low-to-high, while swap ordering is high-to-low
2439          */
2440         p->list.prio = -p->prio;
2441         for_each_node(i) {
2442                 if (p->prio >= 0)
2443                         p->avail_lists[i].prio = -p->prio;
2444                 else {
2445                         if (swap_node(p) == i)
2446                                 p->avail_lists[i].prio = 1;
2447                         else
2448                                 p->avail_lists[i].prio = -p->prio;
2449                 }
2450         }
2451         p->swap_map = swap_map;
2452         p->cluster_info = cluster_info;
2453 }
2454
2455 static void _enable_swap_info(struct swap_info_struct *p)
2456 {
2457         p->flags |= SWP_WRITEOK;
2458         atomic_long_add(p->pages, &nr_swap_pages);
2459         total_swap_pages += p->pages;
2460
2461         assert_spin_locked(&swap_lock);
2462         /*
2463          * both lists are plists, and thus priority ordered.
2464          * swap_active_head needs to be priority ordered for swapoff(),
2465          * which on removal of any swap_info_struct with an auto-assigned
2466          * (i.e. negative) priority increments the auto-assigned priority
2467          * of any lower-priority swap_info_structs.
2468          * swap_avail_head needs to be priority ordered for get_swap_page(),
2469          * which allocates swap pages from the highest available priority
2470          * swap_info_struct.
2471          */
2472         plist_add(&p->list, &swap_active_head);
2473         add_to_avail_list(p);
2474 }
2475
2476 static void enable_swap_info(struct swap_info_struct *p, int prio,
2477                                 unsigned char *swap_map,
2478                                 struct swap_cluster_info *cluster_info,
2479                                 unsigned long *frontswap_map)
2480 {
2481         frontswap_init(p->type, frontswap_map);
2482         spin_lock(&swap_lock);
2483         spin_lock(&p->lock);
2484         setup_swap_info(p, prio, swap_map, cluster_info);
2485         spin_unlock(&p->lock);
2486         spin_unlock(&swap_lock);
2487         /*
2488          * Finished initializing swap device, now it's safe to reference it.
2489          */
2490         percpu_ref_resurrect(&p->users);
2491         spin_lock(&swap_lock);
2492         spin_lock(&p->lock);
2493         _enable_swap_info(p);
2494         spin_unlock(&p->lock);
2495         spin_unlock(&swap_lock);
2496 }
2497
2498 static void reinsert_swap_info(struct swap_info_struct *p)
2499 {
2500         spin_lock(&swap_lock);
2501         spin_lock(&p->lock);
2502         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2503         _enable_swap_info(p);
2504         spin_unlock(&p->lock);
2505         spin_unlock(&swap_lock);
2506 }
2507
2508 bool has_usable_swap(void)
2509 {
2510         bool ret = true;
2511
2512         spin_lock(&swap_lock);
2513         if (plist_head_empty(&swap_active_head))
2514                 ret = false;
2515         spin_unlock(&swap_lock);
2516         return ret;
2517 }
2518
2519 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2520 {
2521         struct swap_info_struct *p = NULL;
2522         unsigned char *swap_map;
2523         struct swap_cluster_info *cluster_info;
2524         unsigned long *frontswap_map;
2525         struct file *swap_file, *victim;
2526         struct address_space *mapping;
2527         struct inode *inode;
2528         struct filename *pathname;
2529         int err, found = 0;
2530         unsigned int old_block_size;
2531
2532         if (!capable(CAP_SYS_ADMIN))
2533                 return -EPERM;
2534
2535         BUG_ON(!current->mm);
2536
2537         pathname = getname(specialfile);
2538         if (IS_ERR(pathname))
2539                 return PTR_ERR(pathname);
2540
2541         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2542         err = PTR_ERR(victim);
2543         if (IS_ERR(victim))
2544                 goto out;
2545
2546         mapping = victim->f_mapping;
2547         spin_lock(&swap_lock);
2548         plist_for_each_entry(p, &swap_active_head, list) {
2549                 if (p->flags & SWP_WRITEOK) {
2550                         if (p->swap_file->f_mapping == mapping) {
2551                                 found = 1;
2552                                 break;
2553                         }
2554                 }
2555         }
2556         if (!found) {
2557                 err = -EINVAL;
2558                 spin_unlock(&swap_lock);
2559                 goto out_dput;
2560         }
2561         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2562                 vm_unacct_memory(p->pages);
2563         else {
2564                 err = -ENOMEM;
2565                 spin_unlock(&swap_lock);
2566                 goto out_dput;
2567         }
2568         del_from_avail_list(p);
2569         spin_lock(&p->lock);
2570         if (p->prio < 0) {
2571                 struct swap_info_struct *si = p;
2572                 int nid;
2573
2574                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2575                         si->prio++;
2576                         si->list.prio--;
2577                         for_each_node(nid) {
2578                                 if (si->avail_lists[nid].prio != 1)
2579                                         si->avail_lists[nid].prio--;
2580                         }
2581                 }
2582                 least_priority++;
2583         }
2584         plist_del(&p->list, &swap_active_head);
2585         atomic_long_sub(p->pages, &nr_swap_pages);
2586         total_swap_pages -= p->pages;
2587         p->flags &= ~SWP_WRITEOK;
2588         spin_unlock(&p->lock);
2589         spin_unlock(&swap_lock);
2590
2591         disable_swap_slots_cache_lock();
2592
2593         set_current_oom_origin();
2594         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2595         clear_current_oom_origin();
2596
2597         if (err) {
2598                 /* re-insert swap space back into swap_list */
2599                 reinsert_swap_info(p);
2600                 reenable_swap_slots_cache_unlock();
2601                 goto out_dput;
2602         }
2603
2604         reenable_swap_slots_cache_unlock();
2605
2606         /*
2607          * Wait for swap operations protected by get/put_swap_device()
2608          * to complete.
2609          *
2610          * We need synchronize_rcu() here to protect the accessing to
2611          * the swap cache data structure.
2612          */
2613         percpu_ref_kill(&p->users);
2614         synchronize_rcu();
2615         wait_for_completion(&p->comp);
2616
2617         flush_work(&p->discard_work);
2618
2619         destroy_swap_extents(p);
2620         if (p->flags & SWP_CONTINUED)
2621                 free_swap_count_continuations(p);
2622
2623         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2624                 atomic_dec(&nr_rotate_swap);
2625
2626         mutex_lock(&swapon_mutex);
2627         spin_lock(&swap_lock);
2628         spin_lock(&p->lock);
2629         drain_mmlist();
2630
2631         /* wait for anyone still in scan_swap_map_slots */
2632         p->highest_bit = 0;             /* cuts scans short */
2633         while (p->flags >= SWP_SCANNING) {
2634                 spin_unlock(&p->lock);
2635                 spin_unlock(&swap_lock);
2636                 schedule_timeout_uninterruptible(1);
2637                 spin_lock(&swap_lock);
2638                 spin_lock(&p->lock);
2639         }
2640
2641         swap_file = p->swap_file;
2642         old_block_size = p->old_block_size;
2643         p->swap_file = NULL;
2644         p->max = 0;
2645         swap_map = p->swap_map;
2646         p->swap_map = NULL;
2647         cluster_info = p->cluster_info;
2648         p->cluster_info = NULL;
2649         frontswap_map = frontswap_map_get(p);
2650         spin_unlock(&p->lock);
2651         spin_unlock(&swap_lock);
2652         arch_swap_invalidate_area(p->type);
2653         frontswap_invalidate_area(p->type);
2654         frontswap_map_set(p, NULL);
2655         mutex_unlock(&swapon_mutex);
2656         free_percpu(p->percpu_cluster);
2657         p->percpu_cluster = NULL;
2658         free_percpu(p->cluster_next_cpu);
2659         p->cluster_next_cpu = NULL;
2660         vfree(swap_map);
2661         kvfree(cluster_info);
2662         kvfree(frontswap_map);
2663         /* Destroy swap account information */
2664         swap_cgroup_swapoff(p->type);
2665         exit_swap_address_space(p->type);
2666
2667         inode = mapping->host;
2668         if (S_ISBLK(inode->i_mode)) {
2669                 struct block_device *bdev = I_BDEV(inode);
2670
2671                 set_blocksize(bdev, old_block_size);
2672                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2673         }
2674
2675         inode_lock(inode);
2676         inode->i_flags &= ~S_SWAPFILE;
2677         inode_unlock(inode);
2678         filp_close(swap_file, NULL);
2679
2680         /*
2681          * Clear the SWP_USED flag after all resources are freed so that swapon
2682          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2683          * not hold p->lock after we cleared its SWP_WRITEOK.
2684          */
2685         spin_lock(&swap_lock);
2686         p->flags = 0;
2687         spin_unlock(&swap_lock);
2688
2689         err = 0;
2690         atomic_inc(&proc_poll_event);
2691         wake_up_interruptible(&proc_poll_wait);
2692
2693 out_dput:
2694         filp_close(victim, NULL);
2695 out:
2696         putname(pathname);
2697         return err;
2698 }
2699
2700 #ifdef CONFIG_PROC_FS
2701 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2702 {
2703         struct seq_file *seq = file->private_data;
2704
2705         poll_wait(file, &proc_poll_wait, wait);
2706
2707         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2708                 seq->poll_event = atomic_read(&proc_poll_event);
2709                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2710         }
2711
2712         return EPOLLIN | EPOLLRDNORM;
2713 }
2714
2715 /* iterator */
2716 static void *swap_start(struct seq_file *swap, loff_t *pos)
2717 {
2718         struct swap_info_struct *si;
2719         int type;
2720         loff_t l = *pos;
2721
2722         mutex_lock(&swapon_mutex);
2723
2724         if (!l)
2725                 return SEQ_START_TOKEN;
2726
2727         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2728                 if (!(si->flags & SWP_USED) || !si->swap_map)
2729                         continue;
2730                 if (!--l)
2731                         return si;
2732         }
2733
2734         return NULL;
2735 }
2736
2737 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2738 {
2739         struct swap_info_struct *si = v;
2740         int type;
2741
2742         if (v == SEQ_START_TOKEN)
2743                 type = 0;
2744         else
2745                 type = si->type + 1;
2746
2747         ++(*pos);
2748         for (; (si = swap_type_to_swap_info(type)); type++) {
2749                 if (!(si->flags & SWP_USED) || !si->swap_map)
2750                         continue;
2751                 return si;
2752         }
2753
2754         return NULL;
2755 }
2756
2757 static void swap_stop(struct seq_file *swap, void *v)
2758 {
2759         mutex_unlock(&swapon_mutex);
2760 }
2761
2762 static int swap_show(struct seq_file *swap, void *v)
2763 {
2764         struct swap_info_struct *si = v;
2765         struct file *file;
2766         int len;
2767         unsigned int bytes, inuse;
2768
2769         if (si == SEQ_START_TOKEN) {
2770                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2771                 return 0;
2772         }
2773
2774         bytes = si->pages << (PAGE_SHIFT - 10);
2775         inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2776
2777         file = si->swap_file;
2778         len = seq_file_path(swap, file, " \t\n\\");
2779         seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2780                         len < 40 ? 40 - len : 1, " ",
2781                         S_ISBLK(file_inode(file)->i_mode) ?
2782                                 "partition" : "file\t",
2783                         bytes, bytes < 10000000 ? "\t" : "",
2784                         inuse, inuse < 10000000 ? "\t" : "",
2785                         si->prio);
2786         return 0;
2787 }
2788
2789 static const struct seq_operations swaps_op = {
2790         .start =        swap_start,
2791         .next =         swap_next,
2792         .stop =         swap_stop,
2793         .show =         swap_show
2794 };
2795
2796 static int swaps_open(struct inode *inode, struct file *file)
2797 {
2798         struct seq_file *seq;
2799         int ret;
2800
2801         ret = seq_open(file, &swaps_op);
2802         if (ret)
2803                 return ret;
2804
2805         seq = file->private_data;
2806         seq->poll_event = atomic_read(&proc_poll_event);
2807         return 0;
2808 }
2809
2810 static const struct proc_ops swaps_proc_ops = {
2811         .proc_flags     = PROC_ENTRY_PERMANENT,
2812         .proc_open      = swaps_open,
2813         .proc_read      = seq_read,
2814         .proc_lseek     = seq_lseek,
2815         .proc_release   = seq_release,
2816         .proc_poll      = swaps_poll,
2817 };
2818
2819 static int __init procswaps_init(void)
2820 {
2821         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2822         return 0;
2823 }
2824 __initcall(procswaps_init);
2825 #endif /* CONFIG_PROC_FS */
2826
2827 #ifdef MAX_SWAPFILES_CHECK
2828 static int __init max_swapfiles_check(void)
2829 {
2830         MAX_SWAPFILES_CHECK();
2831         return 0;
2832 }
2833 late_initcall(max_swapfiles_check);
2834 #endif
2835
2836 static struct swap_info_struct *alloc_swap_info(void)
2837 {
2838         struct swap_info_struct *p;
2839         struct swap_info_struct *defer = NULL;
2840         unsigned int type;
2841         int i;
2842
2843         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2844         if (!p)
2845                 return ERR_PTR(-ENOMEM);
2846
2847         if (percpu_ref_init(&p->users, swap_users_ref_free,
2848                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2849                 kvfree(p);
2850                 return ERR_PTR(-ENOMEM);
2851         }
2852
2853         spin_lock(&swap_lock);
2854         for (type = 0; type < nr_swapfiles; type++) {
2855                 if (!(swap_info[type]->flags & SWP_USED))
2856                         break;
2857         }
2858         if (type >= MAX_SWAPFILES) {
2859                 spin_unlock(&swap_lock);
2860                 percpu_ref_exit(&p->users);
2861                 kvfree(p);
2862                 return ERR_PTR(-EPERM);
2863         }
2864         if (type >= nr_swapfiles) {
2865                 p->type = type;
2866                 WRITE_ONCE(swap_info[type], p);
2867                 /*
2868                  * Write swap_info[type] before nr_swapfiles, in case a
2869                  * racing procfs swap_start() or swap_next() is reading them.
2870                  * (We never shrink nr_swapfiles, we never free this entry.)
2871                  */
2872                 smp_wmb();
2873                 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2874         } else {
2875                 defer = p;
2876                 p = swap_info[type];
2877                 /*
2878                  * Do not memset this entry: a racing procfs swap_next()
2879                  * would be relying on p->type to remain valid.
2880                  */
2881         }
2882         p->swap_extent_root = RB_ROOT;
2883         plist_node_init(&p->list, 0);
2884         for_each_node(i)
2885                 plist_node_init(&p->avail_lists[i], 0);
2886         p->flags = SWP_USED;
2887         spin_unlock(&swap_lock);
2888         if (defer) {
2889                 percpu_ref_exit(&defer->users);
2890                 kvfree(defer);
2891         }
2892         spin_lock_init(&p->lock);
2893         spin_lock_init(&p->cont_lock);
2894         init_completion(&p->comp);
2895
2896         return p;
2897 }
2898
2899 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2900 {
2901         int error;
2902
2903         if (S_ISBLK(inode->i_mode)) {
2904                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2905                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2906                 if (IS_ERR(p->bdev)) {
2907                         error = PTR_ERR(p->bdev);
2908                         p->bdev = NULL;
2909                         return error;
2910                 }
2911                 p->old_block_size = block_size(p->bdev);
2912                 error = set_blocksize(p->bdev, PAGE_SIZE);
2913                 if (error < 0)
2914                         return error;
2915                 /*
2916                  * Zoned block devices contain zones that have a sequential
2917                  * write only restriction.  Hence zoned block devices are not
2918                  * suitable for swapping.  Disallow them here.
2919                  */
2920                 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2921                         return -EINVAL;
2922                 p->flags |= SWP_BLKDEV;
2923         } else if (S_ISREG(inode->i_mode)) {
2924                 p->bdev = inode->i_sb->s_bdev;
2925         }
2926
2927         return 0;
2928 }
2929
2930
2931 /*
2932  * Find out how many pages are allowed for a single swap device. There
2933  * are two limiting factors:
2934  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2935  * 2) the number of bits in the swap pte, as defined by the different
2936  * architectures.
2937  *
2938  * In order to find the largest possible bit mask, a swap entry with
2939  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2940  * decoded to a swp_entry_t again, and finally the swap offset is
2941  * extracted.
2942  *
2943  * This will mask all the bits from the initial ~0UL mask that can't
2944  * be encoded in either the swp_entry_t or the architecture definition
2945  * of a swap pte.
2946  */
2947 unsigned long generic_max_swapfile_size(void)
2948 {
2949         return swp_offset(pte_to_swp_entry(
2950                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2951 }
2952
2953 /* Can be overridden by an architecture for additional checks. */
2954 __weak unsigned long max_swapfile_size(void)
2955 {
2956         return generic_max_swapfile_size();
2957 }
2958
2959 static unsigned long read_swap_header(struct swap_info_struct *p,
2960                                         union swap_header *swap_header,
2961                                         struct inode *inode)
2962 {
2963         int i;
2964         unsigned long maxpages;
2965         unsigned long swapfilepages;
2966         unsigned long last_page;
2967
2968         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2969                 pr_err("Unable to find swap-space signature\n");
2970                 return 0;
2971         }
2972
2973         /* swap partition endianess hack... */
2974         if (swab32(swap_header->info.version) == 1) {
2975                 swab32s(&swap_header->info.version);
2976                 swab32s(&swap_header->info.last_page);
2977                 swab32s(&swap_header->info.nr_badpages);
2978                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2979                         return 0;
2980                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2981                         swab32s(&swap_header->info.badpages[i]);
2982         }
2983         /* Check the swap header's sub-version */
2984         if (swap_header->info.version != 1) {
2985                 pr_warn("Unable to handle swap header version %d\n",
2986                         swap_header->info.version);
2987                 return 0;
2988         }
2989
2990         p->lowest_bit  = 1;
2991         p->cluster_next = 1;
2992         p->cluster_nr = 0;
2993
2994         maxpages = max_swapfile_size();
2995         last_page = swap_header->info.last_page;
2996         if (!last_page) {
2997                 pr_warn("Empty swap-file\n");
2998                 return 0;
2999         }
3000         if (last_page > maxpages) {
3001                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3002                         maxpages << (PAGE_SHIFT - 10),
3003                         last_page << (PAGE_SHIFT - 10));
3004         }
3005         if (maxpages > last_page) {
3006                 maxpages = last_page + 1;
3007                 /* p->max is an unsigned int: don't overflow it */
3008                 if ((unsigned int)maxpages == 0)
3009                         maxpages = UINT_MAX;
3010         }
3011         p->highest_bit = maxpages - 1;
3012
3013         if (!maxpages)
3014                 return 0;
3015         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3016         if (swapfilepages && maxpages > swapfilepages) {
3017                 pr_warn("Swap area shorter than signature indicates\n");
3018                 return 0;
3019         }
3020         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3021                 return 0;
3022         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3023                 return 0;
3024
3025         return maxpages;
3026 }
3027
3028 #define SWAP_CLUSTER_INFO_COLS                                          \
3029         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3030 #define SWAP_CLUSTER_SPACE_COLS                                         \
3031         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3032 #define SWAP_CLUSTER_COLS                                               \
3033         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3034
3035 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3036                                         union swap_header *swap_header,
3037                                         unsigned char *swap_map,
3038                                         struct swap_cluster_info *cluster_info,
3039                                         unsigned long maxpages,
3040                                         sector_t *span)
3041 {
3042         unsigned int j, k;
3043         unsigned int nr_good_pages;
3044         int nr_extents;
3045         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3046         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3047         unsigned long i, idx;
3048
3049         nr_good_pages = maxpages - 1;   /* omit header page */
3050
3051         cluster_list_init(&p->free_clusters);
3052         cluster_list_init(&p->discard_clusters);
3053
3054         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3055                 unsigned int page_nr = swap_header->info.badpages[i];
3056                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3057                         return -EINVAL;
3058                 if (page_nr < maxpages) {
3059                         swap_map[page_nr] = SWAP_MAP_BAD;
3060                         nr_good_pages--;
3061                         /*
3062                          * Haven't marked the cluster free yet, no list
3063                          * operation involved
3064                          */
3065                         inc_cluster_info_page(p, cluster_info, page_nr);
3066                 }
3067         }
3068
3069         /* Haven't marked the cluster free yet, no list operation involved */
3070         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3071                 inc_cluster_info_page(p, cluster_info, i);
3072
3073         if (nr_good_pages) {
3074                 swap_map[0] = SWAP_MAP_BAD;
3075                 /*
3076                  * Not mark the cluster free yet, no list
3077                  * operation involved
3078                  */
3079                 inc_cluster_info_page(p, cluster_info, 0);
3080                 p->max = maxpages;
3081                 p->pages = nr_good_pages;
3082                 nr_extents = setup_swap_extents(p, span);
3083                 if (nr_extents < 0)
3084                         return nr_extents;
3085                 nr_good_pages = p->pages;
3086         }
3087         if (!nr_good_pages) {
3088                 pr_warn("Empty swap-file\n");
3089                 return -EINVAL;
3090         }
3091
3092         if (!cluster_info)
3093                 return nr_extents;
3094
3095
3096         /*
3097          * Reduce false cache line sharing between cluster_info and
3098          * sharing same address space.
3099          */
3100         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3101                 j = (k + col) % SWAP_CLUSTER_COLS;
3102                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3103                         idx = i * SWAP_CLUSTER_COLS + j;
3104                         if (idx >= nr_clusters)
3105                                 continue;
3106                         if (cluster_count(&cluster_info[idx]))
3107                                 continue;
3108                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3109                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3110                                               idx);
3111                 }
3112         }
3113         return nr_extents;
3114 }
3115
3116 /*
3117  * Helper to sys_swapon determining if a given swap
3118  * backing device queue supports DISCARD operations.
3119  */
3120 static bool swap_discardable(struct swap_info_struct *si)
3121 {
3122         struct request_queue *q = bdev_get_queue(si->bdev);
3123
3124         if (!q || !blk_queue_discard(q))
3125                 return false;
3126
3127         return true;
3128 }
3129
3130 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3131 {
3132         struct swap_info_struct *p;
3133         struct filename *name;
3134         struct file *swap_file = NULL;
3135         struct address_space *mapping;
3136         int prio;
3137         int error;
3138         union swap_header *swap_header;
3139         int nr_extents;
3140         sector_t span;
3141         unsigned long maxpages;
3142         unsigned char *swap_map = NULL;
3143         struct swap_cluster_info *cluster_info = NULL;
3144         unsigned long *frontswap_map = NULL;
3145         struct page *page = NULL;
3146         struct inode *inode = NULL;
3147         bool inced_nr_rotate_swap = false;
3148
3149         if (swap_flags & ~SWAP_FLAGS_VALID)
3150                 return -EINVAL;
3151
3152         if (!capable(CAP_SYS_ADMIN))
3153                 return -EPERM;
3154
3155         if (!swap_avail_heads)
3156                 return -ENOMEM;
3157
3158         p = alloc_swap_info();
3159         if (IS_ERR(p))
3160                 return PTR_ERR(p);
3161
3162         INIT_WORK(&p->discard_work, swap_discard_work);
3163
3164         name = getname(specialfile);
3165         if (IS_ERR(name)) {
3166                 error = PTR_ERR(name);
3167                 name = NULL;
3168                 goto bad_swap;
3169         }
3170         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3171         if (IS_ERR(swap_file)) {
3172                 error = PTR_ERR(swap_file);
3173                 swap_file = NULL;
3174                 goto bad_swap;
3175         }
3176
3177         p->swap_file = swap_file;
3178         mapping = swap_file->f_mapping;
3179         inode = mapping->host;
3180
3181         error = claim_swapfile(p, inode);
3182         if (unlikely(error))
3183                 goto bad_swap;
3184
3185         inode_lock(inode);
3186         if (IS_SWAPFILE(inode)) {
3187                 error = -EBUSY;
3188                 goto bad_swap_unlock_inode;
3189         }
3190
3191         /*
3192          * Read the swap header.
3193          */
3194         if (!mapping->a_ops->readpage) {
3195                 error = -EINVAL;
3196                 goto bad_swap_unlock_inode;
3197         }
3198         page = read_mapping_page(mapping, 0, swap_file);
3199         if (IS_ERR(page)) {
3200                 error = PTR_ERR(page);
3201                 goto bad_swap_unlock_inode;
3202         }
3203         swap_header = kmap(page);
3204
3205         maxpages = read_swap_header(p, swap_header, inode);
3206         if (unlikely(!maxpages)) {
3207                 error = -EINVAL;
3208                 goto bad_swap_unlock_inode;
3209         }
3210
3211         /* OK, set up the swap map and apply the bad block list */
3212         swap_map = vzalloc(maxpages);
3213         if (!swap_map) {
3214                 error = -ENOMEM;
3215                 goto bad_swap_unlock_inode;
3216         }
3217
3218         if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3219                 p->flags |= SWP_STABLE_WRITES;
3220
3221         if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3222                 p->flags |= SWP_SYNCHRONOUS_IO;
3223
3224         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3225                 int cpu;
3226                 unsigned long ci, nr_cluster;
3227
3228                 p->flags |= SWP_SOLIDSTATE;
3229                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3230                 if (!p->cluster_next_cpu) {
3231                         error = -ENOMEM;
3232                         goto bad_swap_unlock_inode;
3233                 }
3234                 /*
3235                  * select a random position to start with to help wear leveling
3236                  * SSD
3237                  */
3238                 for_each_possible_cpu(cpu) {
3239                         per_cpu(*p->cluster_next_cpu, cpu) =
3240                                 1 + prandom_u32_max(p->highest_bit);
3241                 }
3242                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3243
3244                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3245                                         GFP_KERNEL);
3246                 if (!cluster_info) {
3247                         error = -ENOMEM;
3248                         goto bad_swap_unlock_inode;
3249                 }
3250
3251                 for (ci = 0; ci < nr_cluster; ci++)
3252                         spin_lock_init(&((cluster_info + ci)->lock));
3253
3254                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3255                 if (!p->percpu_cluster) {
3256                         error = -ENOMEM;
3257                         goto bad_swap_unlock_inode;
3258                 }
3259                 for_each_possible_cpu(cpu) {
3260                         struct percpu_cluster *cluster;
3261                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3262                         cluster_set_null(&cluster->index);
3263                 }
3264         } else {
3265                 atomic_inc(&nr_rotate_swap);
3266                 inced_nr_rotate_swap = true;
3267         }
3268
3269         error = swap_cgroup_swapon(p->type, maxpages);
3270         if (error)
3271                 goto bad_swap_unlock_inode;
3272
3273         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3274                 cluster_info, maxpages, &span);
3275         if (unlikely(nr_extents < 0)) {
3276                 error = nr_extents;
3277                 goto bad_swap_unlock_inode;
3278         }
3279         /* frontswap enabled? set up bit-per-page map for frontswap */
3280         if (IS_ENABLED(CONFIG_FRONTSWAP))
3281                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3282                                          sizeof(long),
3283                                          GFP_KERNEL);
3284
3285         if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3286                 /*
3287                  * When discard is enabled for swap with no particular
3288                  * policy flagged, we set all swap discard flags here in
3289                  * order to sustain backward compatibility with older
3290                  * swapon(8) releases.
3291                  */
3292                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3293                              SWP_PAGE_DISCARD);
3294
3295                 /*
3296                  * By flagging sys_swapon, a sysadmin can tell us to
3297                  * either do single-time area discards only, or to just
3298                  * perform discards for released swap page-clusters.
3299                  * Now it's time to adjust the p->flags accordingly.
3300                  */
3301                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3302                         p->flags &= ~SWP_PAGE_DISCARD;
3303                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3304                         p->flags &= ~SWP_AREA_DISCARD;
3305
3306                 /* issue a swapon-time discard if it's still required */
3307                 if (p->flags & SWP_AREA_DISCARD) {
3308                         int err = discard_swap(p);
3309                         if (unlikely(err))
3310                                 pr_err("swapon: discard_swap(%p): %d\n",
3311                                         p, err);
3312                 }
3313         }
3314
3315         error = init_swap_address_space(p->type, maxpages);
3316         if (error)
3317                 goto bad_swap_unlock_inode;
3318
3319         /*
3320          * Flush any pending IO and dirty mappings before we start using this
3321          * swap device.
3322          */
3323         inode->i_flags |= S_SWAPFILE;
3324         error = inode_drain_writes(inode);
3325         if (error) {
3326                 inode->i_flags &= ~S_SWAPFILE;
3327                 goto free_swap_address_space;
3328         }
3329
3330         mutex_lock(&swapon_mutex);
3331         prio = -1;
3332         if (swap_flags & SWAP_FLAG_PREFER)
3333                 prio =
3334                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3335         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3336
3337         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3338                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3339                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3340                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3341                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3342                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3343                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3344                 (frontswap_map) ? "FS" : "");
3345
3346         mutex_unlock(&swapon_mutex);
3347         atomic_inc(&proc_poll_event);
3348         wake_up_interruptible(&proc_poll_wait);
3349
3350         error = 0;
3351         goto out;
3352 free_swap_address_space:
3353         exit_swap_address_space(p->type);
3354 bad_swap_unlock_inode:
3355         inode_unlock(inode);
3356 bad_swap:
3357         free_percpu(p->percpu_cluster);
3358         p->percpu_cluster = NULL;
3359         free_percpu(p->cluster_next_cpu);
3360         p->cluster_next_cpu = NULL;
3361         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3362                 set_blocksize(p->bdev, p->old_block_size);
3363                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3364         }
3365         inode = NULL;
3366         destroy_swap_extents(p);
3367         swap_cgroup_swapoff(p->type);
3368         spin_lock(&swap_lock);
3369         p->swap_file = NULL;
3370         p->flags = 0;
3371         spin_unlock(&swap_lock);
3372         vfree(swap_map);
3373         kvfree(cluster_info);
3374         kvfree(frontswap_map);
3375         if (inced_nr_rotate_swap)
3376                 atomic_dec(&nr_rotate_swap);
3377         if (swap_file)
3378                 filp_close(swap_file, NULL);
3379 out:
3380         if (page && !IS_ERR(page)) {
3381                 kunmap(page);
3382                 put_page(page);
3383         }
3384         if (name)
3385                 putname(name);
3386         if (inode)
3387                 inode_unlock(inode);
3388         if (!error)
3389                 enable_swap_slots_cache();
3390         return error;
3391 }
3392
3393 void si_swapinfo(struct sysinfo *val)
3394 {
3395         unsigned int type;
3396         unsigned long nr_to_be_unused = 0;
3397
3398         spin_lock(&swap_lock);
3399         for (type = 0; type < nr_swapfiles; type++) {
3400                 struct swap_info_struct *si = swap_info[type];
3401
3402                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3403                         nr_to_be_unused += si->inuse_pages;
3404         }
3405         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3406         val->totalswap = total_swap_pages + nr_to_be_unused;
3407         spin_unlock(&swap_lock);
3408 }
3409
3410 /*
3411  * Verify that a swap entry is valid and increment its swap map count.
3412  *
3413  * Returns error code in following case.
3414  * - success -> 0
3415  * - swp_entry is invalid -> EINVAL
3416  * - swp_entry is migration entry -> EINVAL
3417  * - swap-cache reference is requested but there is already one. -> EEXIST
3418  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3419  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3420  */
3421 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3422 {
3423         struct swap_info_struct *p;
3424         struct swap_cluster_info *ci;
3425         unsigned long offset;
3426         unsigned char count;
3427         unsigned char has_cache;
3428         int err;
3429
3430         p = get_swap_device(entry);
3431         if (!p)
3432                 return -EINVAL;
3433
3434         offset = swp_offset(entry);
3435         ci = lock_cluster_or_swap_info(p, offset);
3436
3437         count = p->swap_map[offset];
3438
3439         /*
3440          * swapin_readahead() doesn't check if a swap entry is valid, so the
3441          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3442          */
3443         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3444                 err = -ENOENT;
3445                 goto unlock_out;
3446         }
3447
3448         has_cache = count & SWAP_HAS_CACHE;
3449         count &= ~SWAP_HAS_CACHE;
3450         err = 0;
3451
3452         if (usage == SWAP_HAS_CACHE) {
3453
3454                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3455                 if (!has_cache && count)
3456                         has_cache = SWAP_HAS_CACHE;
3457                 else if (has_cache)             /* someone else added cache */
3458                         err = -EEXIST;
3459                 else                            /* no users remaining */
3460                         err = -ENOENT;
3461
3462         } else if (count || has_cache) {
3463
3464                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3465                         count += usage;
3466                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3467                         err = -EINVAL;
3468                 else if (swap_count_continued(p, offset, count))
3469                         count = COUNT_CONTINUED;
3470                 else
3471                         err = -ENOMEM;
3472         } else
3473                 err = -ENOENT;                  /* unused swap entry */
3474
3475         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3476
3477 unlock_out:
3478         unlock_cluster_or_swap_info(p, ci);
3479         if (p)
3480                 put_swap_device(p);
3481         return err;
3482 }
3483
3484 /*
3485  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3486  * (in which case its reference count is never incremented).
3487  */
3488 void swap_shmem_alloc(swp_entry_t entry)
3489 {
3490         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3491 }
3492
3493 /*
3494  * Increase reference count of swap entry by 1.
3495  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3496  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3497  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3498  * might occur if a page table entry has got corrupted.
3499  */
3500 int swap_duplicate(swp_entry_t entry)
3501 {
3502         int err = 0;
3503
3504         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3505                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3506         return err;
3507 }
3508
3509 /*
3510  * @entry: swap entry for which we allocate swap cache.
3511  *
3512  * Called when allocating swap cache for existing swap entry,
3513  * This can return error codes. Returns 0 at success.
3514  * -EEXIST means there is a swap cache.
3515  * Note: return code is different from swap_duplicate().
3516  */
3517 int swapcache_prepare(swp_entry_t entry)
3518 {
3519         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3520 }
3521
3522 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3523 {
3524         return swap_type_to_swap_info(swp_type(entry));
3525 }
3526
3527 struct swap_info_struct *page_swap_info(struct page *page)
3528 {
3529         swp_entry_t entry = { .val = page_private(page) };
3530         return swp_swap_info(entry);
3531 }
3532
3533 /*
3534  * out-of-line __page_file_ methods to avoid include hell.
3535  */
3536 struct address_space *__page_file_mapping(struct page *page)
3537 {
3538         return page_swap_info(page)->swap_file->f_mapping;
3539 }
3540 EXPORT_SYMBOL_GPL(__page_file_mapping);
3541
3542 pgoff_t __page_file_index(struct page *page)
3543 {
3544         swp_entry_t swap = { .val = page_private(page) };
3545         return swp_offset(swap);
3546 }
3547 EXPORT_SYMBOL_GPL(__page_file_index);
3548
3549 /*
3550  * add_swap_count_continuation - called when a swap count is duplicated
3551  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3552  * page of the original vmalloc'ed swap_map, to hold the continuation count
3553  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3554  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3555  *
3556  * These continuation pages are seldom referenced: the common paths all work
3557  * on the original swap_map, only referring to a continuation page when the
3558  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3559  *
3560  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3561  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3562  * can be called after dropping locks.
3563  */
3564 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3565 {
3566         struct swap_info_struct *si;
3567         struct swap_cluster_info *ci;
3568         struct page *head;
3569         struct page *page;
3570         struct page *list_page;
3571         pgoff_t offset;
3572         unsigned char count;
3573         int ret = 0;
3574
3575         /*
3576          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3577          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3578          */
3579         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3580
3581         si = get_swap_device(entry);
3582         if (!si) {
3583                 /*
3584                  * An acceptable race has occurred since the failing
3585                  * __swap_duplicate(): the swap device may be swapoff
3586                  */
3587                 goto outer;
3588         }
3589         spin_lock(&si->lock);
3590
3591         offset = swp_offset(entry);
3592
3593         ci = lock_cluster(si, offset);
3594
3595         count = swap_count(si->swap_map[offset]);
3596
3597         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3598                 /*
3599                  * The higher the swap count, the more likely it is that tasks
3600                  * will race to add swap count continuation: we need to avoid
3601                  * over-provisioning.
3602                  */
3603                 goto out;
3604         }
3605
3606         if (!page) {
3607                 ret = -ENOMEM;
3608                 goto out;
3609         }
3610
3611         /*
3612          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3613          * no architecture is using highmem pages for kernel page tables: so it
3614          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3615          */
3616         head = vmalloc_to_page(si->swap_map + offset);
3617         offset &= ~PAGE_MASK;
3618
3619         spin_lock(&si->cont_lock);
3620         /*
3621          * Page allocation does not initialize the page's lru field,
3622          * but it does always reset its private field.
3623          */
3624         if (!page_private(head)) {
3625                 BUG_ON(count & COUNT_CONTINUED);
3626                 INIT_LIST_HEAD(&head->lru);
3627                 set_page_private(head, SWP_CONTINUED);
3628                 si->flags |= SWP_CONTINUED;
3629         }
3630
3631         list_for_each_entry(list_page, &head->lru, lru) {
3632                 unsigned char *map;
3633
3634                 /*
3635                  * If the previous map said no continuation, but we've found
3636                  * a continuation page, free our allocation and use this one.
3637                  */
3638                 if (!(count & COUNT_CONTINUED))
3639                         goto out_unlock_cont;
3640
3641                 map = kmap_atomic(list_page) + offset;
3642                 count = *map;
3643                 kunmap_atomic(map);
3644
3645                 /*
3646                  * If this continuation count now has some space in it,
3647                  * free our allocation and use this one.
3648                  */
3649                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3650                         goto out_unlock_cont;
3651         }
3652
3653         list_add_tail(&page->lru, &head->lru);
3654         page = NULL;                    /* now it's attached, don't free it */
3655 out_unlock_cont:
3656         spin_unlock(&si->cont_lock);
3657 out:
3658         unlock_cluster(ci);
3659         spin_unlock(&si->lock);
3660         put_swap_device(si);
3661 outer:
3662         if (page)
3663                 __free_page(page);
3664         return ret;
3665 }
3666
3667 /*
3668  * swap_count_continued - when the original swap_map count is incremented
3669  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3670  * into, carry if so, or else fail until a new continuation page is allocated;
3671  * when the original swap_map count is decremented from 0 with continuation,
3672  * borrow from the continuation and report whether it still holds more.
3673  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3674  * lock.
3675  */
3676 static bool swap_count_continued(struct swap_info_struct *si,
3677                                  pgoff_t offset, unsigned char count)
3678 {
3679         struct page *head;
3680         struct page *page;
3681         unsigned char *map;
3682         bool ret;
3683
3684         head = vmalloc_to_page(si->swap_map + offset);
3685         if (page_private(head) != SWP_CONTINUED) {
3686                 BUG_ON(count & COUNT_CONTINUED);
3687                 return false;           /* need to add count continuation */
3688         }
3689
3690         spin_lock(&si->cont_lock);
3691         offset &= ~PAGE_MASK;
3692         page = list_next_entry(head, lru);
3693         map = kmap_atomic(page) + offset;
3694
3695         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3696                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3697
3698         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3699                 /*
3700                  * Think of how you add 1 to 999
3701                  */
3702                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3703                         kunmap_atomic(map);
3704                         page = list_next_entry(page, lru);
3705                         BUG_ON(page == head);
3706                         map = kmap_atomic(page) + offset;
3707                 }
3708                 if (*map == SWAP_CONT_MAX) {
3709                         kunmap_atomic(map);
3710                         page = list_next_entry(page, lru);
3711                         if (page == head) {
3712                                 ret = false;    /* add count continuation */
3713                                 goto out;
3714                         }
3715                         map = kmap_atomic(page) + offset;
3716 init_map:               *map = 0;               /* we didn't zero the page */
3717                 }
3718                 *map += 1;
3719                 kunmap_atomic(map);
3720                 while ((page = list_prev_entry(page, lru)) != head) {
3721                         map = kmap_atomic(page) + offset;
3722                         *map = COUNT_CONTINUED;
3723                         kunmap_atomic(map);
3724                 }
3725                 ret = true;                     /* incremented */
3726
3727         } else {                                /* decrementing */
3728                 /*
3729                  * Think of how you subtract 1 from 1000
3730                  */
3731                 BUG_ON(count != COUNT_CONTINUED);
3732                 while (*map == COUNT_CONTINUED) {
3733                         kunmap_atomic(map);
3734                         page = list_next_entry(page, lru);
3735                         BUG_ON(page == head);
3736                         map = kmap_atomic(page) + offset;
3737                 }
3738                 BUG_ON(*map == 0);
3739                 *map -= 1;
3740                 if (*map == 0)
3741                         count = 0;
3742                 kunmap_atomic(map);
3743                 while ((page = list_prev_entry(page, lru)) != head) {
3744                         map = kmap_atomic(page) + offset;
3745                         *map = SWAP_CONT_MAX | count;
3746                         count = COUNT_CONTINUED;
3747                         kunmap_atomic(map);
3748                 }
3749                 ret = count == COUNT_CONTINUED;
3750         }
3751 out:
3752         spin_unlock(&si->cont_lock);
3753         return ret;
3754 }
3755
3756 /*
3757  * free_swap_count_continuations - swapoff free all the continuation pages
3758  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3759  */
3760 static void free_swap_count_continuations(struct swap_info_struct *si)
3761 {
3762         pgoff_t offset;
3763
3764         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3765                 struct page *head;
3766                 head = vmalloc_to_page(si->swap_map + offset);
3767                 if (page_private(head)) {
3768                         struct page *page, *next;
3769
3770                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3771                                 list_del(&page->lru);
3772                                 __free_page(page);
3773                         }
3774                 }
3775         }
3776 }
3777
3778 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3779 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3780 {
3781         struct swap_info_struct *si, *next;
3782         int nid = page_to_nid(page);
3783
3784         if (!(gfp_mask & __GFP_IO))
3785                 return;
3786
3787         if (!blk_cgroup_congested())
3788                 return;
3789
3790         /*
3791          * We've already scheduled a throttle, avoid taking the global swap
3792          * lock.
3793          */
3794         if (current->throttle_queue)
3795                 return;
3796
3797         spin_lock(&swap_avail_lock);
3798         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3799                                   avail_lists[nid]) {
3800                 if (si->bdev) {
3801                         blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3802                         break;
3803                 }
3804         }
3805         spin_unlock(&swap_avail_lock);
3806 }
3807 #endif
3808
3809 static int __init swapfile_init(void)
3810 {
3811         int nid;
3812
3813         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3814                                          GFP_KERNEL);
3815         if (!swap_avail_heads) {
3816                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3817                 return -ENOMEM;
3818         }
3819
3820         for_each_node(nid)
3821                 plist_head_init(&swap_avail_heads[nid]);
3822
3823         return 0;
3824 }
3825 subsys_initcall(swapfile_init);