Merge tag 'riscv-for-linus-5.18-mw0' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blk-cgroup.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49                                  unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51
52 static DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 static PLIST_HEAD(swap_active_head);
75
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103         if (type >= MAX_SWAPFILES)
104                 return NULL;
105
106         return READ_ONCE(swap_info[type]); /* rcu_dereference() */
107 }
108
109 static inline unsigned char swap_count(unsigned char ent)
110 {
111         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
112 }
113
114 /* Reclaim the swap entry anyway if possible */
115 #define TTRS_ANYWAY             0x1
116 /*
117  * Reclaim the swap entry if there are no more mappings of the
118  * corresponding page
119  */
120 #define TTRS_UNMAPPED           0x2
121 /* Reclaim the swap entry if swap is getting full*/
122 #define TTRS_FULL               0x4
123
124 /* returns 1 if swap entry is freed */
125 static int __try_to_reclaim_swap(struct swap_info_struct *si,
126                                  unsigned long offset, unsigned long flags)
127 {
128         swp_entry_t entry = swp_entry(si->type, offset);
129         struct page *page;
130         int ret = 0;
131
132         page = find_get_page(swap_address_space(entry), offset);
133         if (!page)
134                 return 0;
135         /*
136          * When this function is called from scan_swap_map_slots() and it's
137          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
138          * here. We have to use trylock for avoiding deadlock. This is a special
139          * case and you should use try_to_free_swap() with explicit lock_page()
140          * in usual operations.
141          */
142         if (trylock_page(page)) {
143                 if ((flags & TTRS_ANYWAY) ||
144                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
145                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
146                         ret = try_to_free_swap(page);
147                 unlock_page(page);
148         }
149         put_page(page);
150         return ret;
151 }
152
153 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
154 {
155         struct rb_node *rb = rb_first(&sis->swap_extent_root);
156         return rb_entry(rb, struct swap_extent, rb_node);
157 }
158
159 static inline struct swap_extent *next_se(struct swap_extent *se)
160 {
161         struct rb_node *rb = rb_next(&se->rb_node);
162         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
163 }
164
165 /*
166  * swapon tell device that all the old swap contents can be discarded,
167  * to allow the swap device to optimize its wear-levelling.
168  */
169 static int discard_swap(struct swap_info_struct *si)
170 {
171         struct swap_extent *se;
172         sector_t start_block;
173         sector_t nr_blocks;
174         int err = 0;
175
176         /* Do not discard the swap header page! */
177         se = first_se(si);
178         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
179         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
180         if (nr_blocks) {
181                 err = blkdev_issue_discard(si->bdev, start_block,
182                                 nr_blocks, GFP_KERNEL, 0);
183                 if (err)
184                         return err;
185                 cond_resched();
186         }
187
188         for (se = next_se(se); se; se = next_se(se)) {
189                 start_block = se->start_block << (PAGE_SHIFT - 9);
190                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
191
192                 err = blkdev_issue_discard(si->bdev, start_block,
193                                 nr_blocks, GFP_KERNEL, 0);
194                 if (err)
195                         break;
196
197                 cond_resched();
198         }
199         return err;             /* That will often be -EOPNOTSUPP */
200 }
201
202 static struct swap_extent *
203 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
204 {
205         struct swap_extent *se;
206         struct rb_node *rb;
207
208         rb = sis->swap_extent_root.rb_node;
209         while (rb) {
210                 se = rb_entry(rb, struct swap_extent, rb_node);
211                 if (offset < se->start_page)
212                         rb = rb->rb_left;
213                 else if (offset >= se->start_page + se->nr_pages)
214                         rb = rb->rb_right;
215                 else
216                         return se;
217         }
218         /* It *must* be present */
219         BUG();
220 }
221
222 sector_t swap_page_sector(struct page *page)
223 {
224         struct swap_info_struct *sis = page_swap_info(page);
225         struct swap_extent *se;
226         sector_t sector;
227         pgoff_t offset;
228
229         offset = __page_file_index(page);
230         se = offset_to_swap_extent(sis, offset);
231         sector = se->start_block + (offset - se->start_page);
232         return sector << (PAGE_SHIFT - 9);
233 }
234
235 /*
236  * swap allocation tell device that a cluster of swap can now be discarded,
237  * to allow the swap device to optimize its wear-levelling.
238  */
239 static void discard_swap_cluster(struct swap_info_struct *si,
240                                  pgoff_t start_page, pgoff_t nr_pages)
241 {
242         struct swap_extent *se = offset_to_swap_extent(si, start_page);
243
244         while (nr_pages) {
245                 pgoff_t offset = start_page - se->start_page;
246                 sector_t start_block = se->start_block + offset;
247                 sector_t nr_blocks = se->nr_pages - offset;
248
249                 if (nr_blocks > nr_pages)
250                         nr_blocks = nr_pages;
251                 start_page += nr_blocks;
252                 nr_pages -= nr_blocks;
253
254                 start_block <<= PAGE_SHIFT - 9;
255                 nr_blocks <<= PAGE_SHIFT - 9;
256                 if (blkdev_issue_discard(si->bdev, start_block,
257                                         nr_blocks, GFP_NOIO, 0))
258                         break;
259
260                 se = next_se(se);
261         }
262 }
263
264 #ifdef CONFIG_THP_SWAP
265 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
266
267 #define swap_entry_size(size)   (size)
268 #else
269 #define SWAPFILE_CLUSTER        256
270
271 /*
272  * Define swap_entry_size() as constant to let compiler to optimize
273  * out some code if !CONFIG_THP_SWAP
274  */
275 #define swap_entry_size(size)   1
276 #endif
277 #define LATENCY_LIMIT           256
278
279 static inline void cluster_set_flag(struct swap_cluster_info *info,
280         unsigned int flag)
281 {
282         info->flags = flag;
283 }
284
285 static inline unsigned int cluster_count(struct swap_cluster_info *info)
286 {
287         return info->data;
288 }
289
290 static inline void cluster_set_count(struct swap_cluster_info *info,
291                                      unsigned int c)
292 {
293         info->data = c;
294 }
295
296 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
297                                          unsigned int c, unsigned int f)
298 {
299         info->flags = f;
300         info->data = c;
301 }
302
303 static inline unsigned int cluster_next(struct swap_cluster_info *info)
304 {
305         return info->data;
306 }
307
308 static inline void cluster_set_next(struct swap_cluster_info *info,
309                                     unsigned int n)
310 {
311         info->data = n;
312 }
313
314 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
315                                          unsigned int n, unsigned int f)
316 {
317         info->flags = f;
318         info->data = n;
319 }
320
321 static inline bool cluster_is_free(struct swap_cluster_info *info)
322 {
323         return info->flags & CLUSTER_FLAG_FREE;
324 }
325
326 static inline bool cluster_is_null(struct swap_cluster_info *info)
327 {
328         return info->flags & CLUSTER_FLAG_NEXT_NULL;
329 }
330
331 static inline void cluster_set_null(struct swap_cluster_info *info)
332 {
333         info->flags = CLUSTER_FLAG_NEXT_NULL;
334         info->data = 0;
335 }
336
337 static inline bool cluster_is_huge(struct swap_cluster_info *info)
338 {
339         if (IS_ENABLED(CONFIG_THP_SWAP))
340                 return info->flags & CLUSTER_FLAG_HUGE;
341         return false;
342 }
343
344 static inline void cluster_clear_huge(struct swap_cluster_info *info)
345 {
346         info->flags &= ~CLUSTER_FLAG_HUGE;
347 }
348
349 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
350                                                      unsigned long offset)
351 {
352         struct swap_cluster_info *ci;
353
354         ci = si->cluster_info;
355         if (ci) {
356                 ci += offset / SWAPFILE_CLUSTER;
357                 spin_lock(&ci->lock);
358         }
359         return ci;
360 }
361
362 static inline void unlock_cluster(struct swap_cluster_info *ci)
363 {
364         if (ci)
365                 spin_unlock(&ci->lock);
366 }
367
368 /*
369  * Determine the locking method in use for this device.  Return
370  * swap_cluster_info if SSD-style cluster-based locking is in place.
371  */
372 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
373                 struct swap_info_struct *si, unsigned long offset)
374 {
375         struct swap_cluster_info *ci;
376
377         /* Try to use fine-grained SSD-style locking if available: */
378         ci = lock_cluster(si, offset);
379         /* Otherwise, fall back to traditional, coarse locking: */
380         if (!ci)
381                 spin_lock(&si->lock);
382
383         return ci;
384 }
385
386 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
387                                                struct swap_cluster_info *ci)
388 {
389         if (ci)
390                 unlock_cluster(ci);
391         else
392                 spin_unlock(&si->lock);
393 }
394
395 static inline bool cluster_list_empty(struct swap_cluster_list *list)
396 {
397         return cluster_is_null(&list->head);
398 }
399
400 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
401 {
402         return cluster_next(&list->head);
403 }
404
405 static void cluster_list_init(struct swap_cluster_list *list)
406 {
407         cluster_set_null(&list->head);
408         cluster_set_null(&list->tail);
409 }
410
411 static void cluster_list_add_tail(struct swap_cluster_list *list,
412                                   struct swap_cluster_info *ci,
413                                   unsigned int idx)
414 {
415         if (cluster_list_empty(list)) {
416                 cluster_set_next_flag(&list->head, idx, 0);
417                 cluster_set_next_flag(&list->tail, idx, 0);
418         } else {
419                 struct swap_cluster_info *ci_tail;
420                 unsigned int tail = cluster_next(&list->tail);
421
422                 /*
423                  * Nested cluster lock, but both cluster locks are
424                  * only acquired when we held swap_info_struct->lock
425                  */
426                 ci_tail = ci + tail;
427                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
428                 cluster_set_next(ci_tail, idx);
429                 spin_unlock(&ci_tail->lock);
430                 cluster_set_next_flag(&list->tail, idx, 0);
431         }
432 }
433
434 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
435                                            struct swap_cluster_info *ci)
436 {
437         unsigned int idx;
438
439         idx = cluster_next(&list->head);
440         if (cluster_next(&list->tail) == idx) {
441                 cluster_set_null(&list->head);
442                 cluster_set_null(&list->tail);
443         } else
444                 cluster_set_next_flag(&list->head,
445                                       cluster_next(&ci[idx]), 0);
446
447         return idx;
448 }
449
450 /* Add a cluster to discard list and schedule it to do discard */
451 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
452                 unsigned int idx)
453 {
454         /*
455          * If scan_swap_map_slots() can't find a free cluster, it will check
456          * si->swap_map directly. To make sure the discarding cluster isn't
457          * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
458          * It will be cleared after discard
459          */
460         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
461                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
462
463         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
464
465         schedule_work(&si->discard_work);
466 }
467
468 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
469 {
470         struct swap_cluster_info *ci = si->cluster_info;
471
472         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
473         cluster_list_add_tail(&si->free_clusters, ci, idx);
474 }
475
476 /*
477  * Doing discard actually. After a cluster discard is finished, the cluster
478  * will be added to free cluster list. caller should hold si->lock.
479 */
480 static void swap_do_scheduled_discard(struct swap_info_struct *si)
481 {
482         struct swap_cluster_info *info, *ci;
483         unsigned int idx;
484
485         info = si->cluster_info;
486
487         while (!cluster_list_empty(&si->discard_clusters)) {
488                 idx = cluster_list_del_first(&si->discard_clusters, info);
489                 spin_unlock(&si->lock);
490
491                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
492                                 SWAPFILE_CLUSTER);
493
494                 spin_lock(&si->lock);
495                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
496                 __free_cluster(si, idx);
497                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
498                                 0, SWAPFILE_CLUSTER);
499                 unlock_cluster(ci);
500         }
501 }
502
503 static void swap_discard_work(struct work_struct *work)
504 {
505         struct swap_info_struct *si;
506
507         si = container_of(work, struct swap_info_struct, discard_work);
508
509         spin_lock(&si->lock);
510         swap_do_scheduled_discard(si);
511         spin_unlock(&si->lock);
512 }
513
514 static void swap_users_ref_free(struct percpu_ref *ref)
515 {
516         struct swap_info_struct *si;
517
518         si = container_of(ref, struct swap_info_struct, users);
519         complete(&si->comp);
520 }
521
522 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
523 {
524         struct swap_cluster_info *ci = si->cluster_info;
525
526         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
527         cluster_list_del_first(&si->free_clusters, ci);
528         cluster_set_count_flag(ci + idx, 0, 0);
529 }
530
531 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
532 {
533         struct swap_cluster_info *ci = si->cluster_info + idx;
534
535         VM_BUG_ON(cluster_count(ci) != 0);
536         /*
537          * If the swap is discardable, prepare discard the cluster
538          * instead of free it immediately. The cluster will be freed
539          * after discard.
540          */
541         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
542             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
543                 swap_cluster_schedule_discard(si, idx);
544                 return;
545         }
546
547         __free_cluster(si, idx);
548 }
549
550 /*
551  * The cluster corresponding to page_nr will be used. The cluster will be
552  * removed from free cluster list and its usage counter will be increased.
553  */
554 static void inc_cluster_info_page(struct swap_info_struct *p,
555         struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558
559         if (!cluster_info)
560                 return;
561         if (cluster_is_free(&cluster_info[idx]))
562                 alloc_cluster(p, idx);
563
564         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
565         cluster_set_count(&cluster_info[idx],
566                 cluster_count(&cluster_info[idx]) + 1);
567 }
568
569 /*
570  * The cluster corresponding to page_nr decreases one usage. If the usage
571  * counter becomes 0, which means no page in the cluster is in using, we can
572  * optionally discard the cluster and add it to free cluster list.
573  */
574 static void dec_cluster_info_page(struct swap_info_struct *p,
575         struct swap_cluster_info *cluster_info, unsigned long page_nr)
576 {
577         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
578
579         if (!cluster_info)
580                 return;
581
582         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
583         cluster_set_count(&cluster_info[idx],
584                 cluster_count(&cluster_info[idx]) - 1);
585
586         if (cluster_count(&cluster_info[idx]) == 0)
587                 free_cluster(p, idx);
588 }
589
590 /*
591  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
592  * cluster list. Avoiding such abuse to avoid list corruption.
593  */
594 static bool
595 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
596         unsigned long offset)
597 {
598         struct percpu_cluster *percpu_cluster;
599         bool conflict;
600
601         offset /= SWAPFILE_CLUSTER;
602         conflict = !cluster_list_empty(&si->free_clusters) &&
603                 offset != cluster_list_first(&si->free_clusters) &&
604                 cluster_is_free(&si->cluster_info[offset]);
605
606         if (!conflict)
607                 return false;
608
609         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
610         cluster_set_null(&percpu_cluster->index);
611         return true;
612 }
613
614 /*
615  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
616  * might involve allocating a new cluster for current CPU too.
617  */
618 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
619         unsigned long *offset, unsigned long *scan_base)
620 {
621         struct percpu_cluster *cluster;
622         struct swap_cluster_info *ci;
623         unsigned long tmp, max;
624
625 new_cluster:
626         cluster = this_cpu_ptr(si->percpu_cluster);
627         if (cluster_is_null(&cluster->index)) {
628                 if (!cluster_list_empty(&si->free_clusters)) {
629                         cluster->index = si->free_clusters.head;
630                         cluster->next = cluster_next(&cluster->index) *
631                                         SWAPFILE_CLUSTER;
632                 } else if (!cluster_list_empty(&si->discard_clusters)) {
633                         /*
634                          * we don't have free cluster but have some clusters in
635                          * discarding, do discard now and reclaim them, then
636                          * reread cluster_next_cpu since we dropped si->lock
637                          */
638                         swap_do_scheduled_discard(si);
639                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
640                         *offset = *scan_base;
641                         goto new_cluster;
642                 } else
643                         return false;
644         }
645
646         /*
647          * Other CPUs can use our cluster if they can't find a free cluster,
648          * check if there is still free entry in the cluster
649          */
650         tmp = cluster->next;
651         max = min_t(unsigned long, si->max,
652                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
653         if (tmp < max) {
654                 ci = lock_cluster(si, tmp);
655                 while (tmp < max) {
656                         if (!si->swap_map[tmp])
657                                 break;
658                         tmp++;
659                 }
660                 unlock_cluster(ci);
661         }
662         if (tmp >= max) {
663                 cluster_set_null(&cluster->index);
664                 goto new_cluster;
665         }
666         cluster->next = tmp + 1;
667         *offset = tmp;
668         *scan_base = tmp;
669         return true;
670 }
671
672 static void __del_from_avail_list(struct swap_info_struct *p)
673 {
674         int nid;
675
676         for_each_node(nid)
677                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
678 }
679
680 static void del_from_avail_list(struct swap_info_struct *p)
681 {
682         spin_lock(&swap_avail_lock);
683         __del_from_avail_list(p);
684         spin_unlock(&swap_avail_lock);
685 }
686
687 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
688                              unsigned int nr_entries)
689 {
690         unsigned int end = offset + nr_entries - 1;
691
692         if (offset == si->lowest_bit)
693                 si->lowest_bit += nr_entries;
694         if (end == si->highest_bit)
695                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
696         si->inuse_pages += nr_entries;
697         if (si->inuse_pages == si->pages) {
698                 si->lowest_bit = si->max;
699                 si->highest_bit = 0;
700                 del_from_avail_list(si);
701         }
702 }
703
704 static void add_to_avail_list(struct swap_info_struct *p)
705 {
706         int nid;
707
708         spin_lock(&swap_avail_lock);
709         for_each_node(nid) {
710                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
711                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
712         }
713         spin_unlock(&swap_avail_lock);
714 }
715
716 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
717                             unsigned int nr_entries)
718 {
719         unsigned long begin = offset;
720         unsigned long end = offset + nr_entries - 1;
721         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
722
723         if (offset < si->lowest_bit)
724                 si->lowest_bit = offset;
725         if (end > si->highest_bit) {
726                 bool was_full = !si->highest_bit;
727
728                 WRITE_ONCE(si->highest_bit, end);
729                 if (was_full && (si->flags & SWP_WRITEOK))
730                         add_to_avail_list(si);
731         }
732         atomic_long_add(nr_entries, &nr_swap_pages);
733         si->inuse_pages -= nr_entries;
734         if (si->flags & SWP_BLKDEV)
735                 swap_slot_free_notify =
736                         si->bdev->bd_disk->fops->swap_slot_free_notify;
737         else
738                 swap_slot_free_notify = NULL;
739         while (offset <= end) {
740                 arch_swap_invalidate_page(si->type, offset);
741                 frontswap_invalidate_page(si->type, offset);
742                 if (swap_slot_free_notify)
743                         swap_slot_free_notify(si->bdev, offset);
744                 offset++;
745         }
746         clear_shadow_from_swap_cache(si->type, begin, end);
747 }
748
749 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
750 {
751         unsigned long prev;
752
753         if (!(si->flags & SWP_SOLIDSTATE)) {
754                 si->cluster_next = next;
755                 return;
756         }
757
758         prev = this_cpu_read(*si->cluster_next_cpu);
759         /*
760          * Cross the swap address space size aligned trunk, choose
761          * another trunk randomly to avoid lock contention on swap
762          * address space if possible.
763          */
764         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
765             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
766                 /* No free swap slots available */
767                 if (si->highest_bit <= si->lowest_bit)
768                         return;
769                 next = si->lowest_bit +
770                         prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
771                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
772                 next = max_t(unsigned int, next, si->lowest_bit);
773         }
774         this_cpu_write(*si->cluster_next_cpu, next);
775 }
776
777 static int scan_swap_map_slots(struct swap_info_struct *si,
778                                unsigned char usage, int nr,
779                                swp_entry_t slots[])
780 {
781         struct swap_cluster_info *ci;
782         unsigned long offset;
783         unsigned long scan_base;
784         unsigned long last_in_cluster = 0;
785         int latency_ration = LATENCY_LIMIT;
786         int n_ret = 0;
787         bool scanned_many = false;
788
789         /*
790          * We try to cluster swap pages by allocating them sequentially
791          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
792          * way, however, we resort to first-free allocation, starting
793          * a new cluster.  This prevents us from scattering swap pages
794          * all over the entire swap partition, so that we reduce
795          * overall disk seek times between swap pages.  -- sct
796          * But we do now try to find an empty cluster.  -Andrea
797          * And we let swap pages go all over an SSD partition.  Hugh
798          */
799
800         si->flags += SWP_SCANNING;
801         /*
802          * Use percpu scan base for SSD to reduce lock contention on
803          * cluster and swap cache.  For HDD, sequential access is more
804          * important.
805          */
806         if (si->flags & SWP_SOLIDSTATE)
807                 scan_base = this_cpu_read(*si->cluster_next_cpu);
808         else
809                 scan_base = si->cluster_next;
810         offset = scan_base;
811
812         /* SSD algorithm */
813         if (si->cluster_info) {
814                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
815                         goto scan;
816         } else if (unlikely(!si->cluster_nr--)) {
817                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
818                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
819                         goto checks;
820                 }
821
822                 spin_unlock(&si->lock);
823
824                 /*
825                  * If seek is expensive, start searching for new cluster from
826                  * start of partition, to minimize the span of allocated swap.
827                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
828                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
829                  */
830                 scan_base = offset = si->lowest_bit;
831                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
832
833                 /* Locate the first empty (unaligned) cluster */
834                 for (; last_in_cluster <= si->highest_bit; offset++) {
835                         if (si->swap_map[offset])
836                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
837                         else if (offset == last_in_cluster) {
838                                 spin_lock(&si->lock);
839                                 offset -= SWAPFILE_CLUSTER - 1;
840                                 si->cluster_next = offset;
841                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
842                                 goto checks;
843                         }
844                         if (unlikely(--latency_ration < 0)) {
845                                 cond_resched();
846                                 latency_ration = LATENCY_LIMIT;
847                         }
848                 }
849
850                 offset = scan_base;
851                 spin_lock(&si->lock);
852                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
853         }
854
855 checks:
856         if (si->cluster_info) {
857                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
858                 /* take a break if we already got some slots */
859                         if (n_ret)
860                                 goto done;
861                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
862                                                         &scan_base))
863                                 goto scan;
864                 }
865         }
866         if (!(si->flags & SWP_WRITEOK))
867                 goto no_page;
868         if (!si->highest_bit)
869                 goto no_page;
870         if (offset > si->highest_bit)
871                 scan_base = offset = si->lowest_bit;
872
873         ci = lock_cluster(si, offset);
874         /* reuse swap entry of cache-only swap if not busy. */
875         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
876                 int swap_was_freed;
877                 unlock_cluster(ci);
878                 spin_unlock(&si->lock);
879                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
880                 spin_lock(&si->lock);
881                 /* entry was freed successfully, try to use this again */
882                 if (swap_was_freed)
883                         goto checks;
884                 goto scan; /* check next one */
885         }
886
887         if (si->swap_map[offset]) {
888                 unlock_cluster(ci);
889                 if (!n_ret)
890                         goto scan;
891                 else
892                         goto done;
893         }
894         WRITE_ONCE(si->swap_map[offset], usage);
895         inc_cluster_info_page(si, si->cluster_info, offset);
896         unlock_cluster(ci);
897
898         swap_range_alloc(si, offset, 1);
899         slots[n_ret++] = swp_entry(si->type, offset);
900
901         /* got enough slots or reach max slots? */
902         if ((n_ret == nr) || (offset >= si->highest_bit))
903                 goto done;
904
905         /* search for next available slot */
906
907         /* time to take a break? */
908         if (unlikely(--latency_ration < 0)) {
909                 if (n_ret)
910                         goto done;
911                 spin_unlock(&si->lock);
912                 cond_resched();
913                 spin_lock(&si->lock);
914                 latency_ration = LATENCY_LIMIT;
915         }
916
917         /* try to get more slots in cluster */
918         if (si->cluster_info) {
919                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
920                         goto checks;
921         } else if (si->cluster_nr && !si->swap_map[++offset]) {
922                 /* non-ssd case, still more slots in cluster? */
923                 --si->cluster_nr;
924                 goto checks;
925         }
926
927         /*
928          * Even if there's no free clusters available (fragmented),
929          * try to scan a little more quickly with lock held unless we
930          * have scanned too many slots already.
931          */
932         if (!scanned_many) {
933                 unsigned long scan_limit;
934
935                 if (offset < scan_base)
936                         scan_limit = scan_base;
937                 else
938                         scan_limit = si->highest_bit;
939                 for (; offset <= scan_limit && --latency_ration > 0;
940                      offset++) {
941                         if (!si->swap_map[offset])
942                                 goto checks;
943                 }
944         }
945
946 done:
947         set_cluster_next(si, offset + 1);
948         si->flags -= SWP_SCANNING;
949         return n_ret;
950
951 scan:
952         spin_unlock(&si->lock);
953         while (++offset <= READ_ONCE(si->highest_bit)) {
954                 if (data_race(!si->swap_map[offset])) {
955                         spin_lock(&si->lock);
956                         goto checks;
957                 }
958                 if (vm_swap_full() &&
959                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
960                         spin_lock(&si->lock);
961                         goto checks;
962                 }
963                 if (unlikely(--latency_ration < 0)) {
964                         cond_resched();
965                         latency_ration = LATENCY_LIMIT;
966                         scanned_many = true;
967                 }
968         }
969         offset = si->lowest_bit;
970         while (offset < scan_base) {
971                 if (data_race(!si->swap_map[offset])) {
972                         spin_lock(&si->lock);
973                         goto checks;
974                 }
975                 if (vm_swap_full() &&
976                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
977                         spin_lock(&si->lock);
978                         goto checks;
979                 }
980                 if (unlikely(--latency_ration < 0)) {
981                         cond_resched();
982                         latency_ration = LATENCY_LIMIT;
983                         scanned_many = true;
984                 }
985                 offset++;
986         }
987         spin_lock(&si->lock);
988
989 no_page:
990         si->flags -= SWP_SCANNING;
991         return n_ret;
992 }
993
994 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
995 {
996         unsigned long idx;
997         struct swap_cluster_info *ci;
998         unsigned long offset;
999
1000         /*
1001          * Should not even be attempting cluster allocations when huge
1002          * page swap is disabled.  Warn and fail the allocation.
1003          */
1004         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1005                 VM_WARN_ON_ONCE(1);
1006                 return 0;
1007         }
1008
1009         if (cluster_list_empty(&si->free_clusters))
1010                 return 0;
1011
1012         idx = cluster_list_first(&si->free_clusters);
1013         offset = idx * SWAPFILE_CLUSTER;
1014         ci = lock_cluster(si, offset);
1015         alloc_cluster(si, idx);
1016         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1017
1018         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1019         unlock_cluster(ci);
1020         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1021         *slot = swp_entry(si->type, offset);
1022
1023         return 1;
1024 }
1025
1026 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1027 {
1028         unsigned long offset = idx * SWAPFILE_CLUSTER;
1029         struct swap_cluster_info *ci;
1030
1031         ci = lock_cluster(si, offset);
1032         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1033         cluster_set_count_flag(ci, 0, 0);
1034         free_cluster(si, idx);
1035         unlock_cluster(ci);
1036         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1037 }
1038
1039 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1040 {
1041         unsigned long size = swap_entry_size(entry_size);
1042         struct swap_info_struct *si, *next;
1043         long avail_pgs;
1044         int n_ret = 0;
1045         int node;
1046
1047         /* Only single cluster request supported */
1048         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1049
1050         spin_lock(&swap_avail_lock);
1051
1052         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1053         if (avail_pgs <= 0) {
1054                 spin_unlock(&swap_avail_lock);
1055                 goto noswap;
1056         }
1057
1058         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1059
1060         atomic_long_sub(n_goal * size, &nr_swap_pages);
1061
1062 start_over:
1063         node = numa_node_id();
1064         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1065                 /* requeue si to after same-priority siblings */
1066                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1067                 spin_unlock(&swap_avail_lock);
1068                 spin_lock(&si->lock);
1069                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1070                         spin_lock(&swap_avail_lock);
1071                         if (plist_node_empty(&si->avail_lists[node])) {
1072                                 spin_unlock(&si->lock);
1073                                 goto nextsi;
1074                         }
1075                         WARN(!si->highest_bit,
1076                              "swap_info %d in list but !highest_bit\n",
1077                              si->type);
1078                         WARN(!(si->flags & SWP_WRITEOK),
1079                              "swap_info %d in list but !SWP_WRITEOK\n",
1080                              si->type);
1081                         __del_from_avail_list(si);
1082                         spin_unlock(&si->lock);
1083                         goto nextsi;
1084                 }
1085                 if (size == SWAPFILE_CLUSTER) {
1086                         if (si->flags & SWP_BLKDEV)
1087                                 n_ret = swap_alloc_cluster(si, swp_entries);
1088                 } else
1089                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1090                                                     n_goal, swp_entries);
1091                 spin_unlock(&si->lock);
1092                 if (n_ret || size == SWAPFILE_CLUSTER)
1093                         goto check_out;
1094                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1095                         si->type);
1096
1097                 spin_lock(&swap_avail_lock);
1098 nextsi:
1099                 /*
1100                  * if we got here, it's likely that si was almost full before,
1101                  * and since scan_swap_map_slots() can drop the si->lock,
1102                  * multiple callers probably all tried to get a page from the
1103                  * same si and it filled up before we could get one; or, the si
1104                  * filled up between us dropping swap_avail_lock and taking
1105                  * si->lock. Since we dropped the swap_avail_lock, the
1106                  * swap_avail_head list may have been modified; so if next is
1107                  * still in the swap_avail_head list then try it, otherwise
1108                  * start over if we have not gotten any slots.
1109                  */
1110                 if (plist_node_empty(&next->avail_lists[node]))
1111                         goto start_over;
1112         }
1113
1114         spin_unlock(&swap_avail_lock);
1115
1116 check_out:
1117         if (n_ret < n_goal)
1118                 atomic_long_add((long)(n_goal - n_ret) * size,
1119                                 &nr_swap_pages);
1120 noswap:
1121         return n_ret;
1122 }
1123
1124 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1125 {
1126         struct swap_info_struct *p;
1127         unsigned long offset;
1128
1129         if (!entry.val)
1130                 goto out;
1131         p = swp_swap_info(entry);
1132         if (!p)
1133                 goto bad_nofile;
1134         if (data_race(!(p->flags & SWP_USED)))
1135                 goto bad_device;
1136         offset = swp_offset(entry);
1137         if (offset >= p->max)
1138                 goto bad_offset;
1139         return p;
1140
1141 bad_offset:
1142         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1143         goto out;
1144 bad_device:
1145         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1146         goto out;
1147 bad_nofile:
1148         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1149 out:
1150         return NULL;
1151 }
1152
1153 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1154 {
1155         struct swap_info_struct *p;
1156
1157         p = __swap_info_get(entry);
1158         if (!p)
1159                 goto out;
1160         if (data_race(!p->swap_map[swp_offset(entry)]))
1161                 goto bad_free;
1162         return p;
1163
1164 bad_free:
1165         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1166 out:
1167         return NULL;
1168 }
1169
1170 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1171 {
1172         struct swap_info_struct *p;
1173
1174         p = _swap_info_get(entry);
1175         if (p)
1176                 spin_lock(&p->lock);
1177         return p;
1178 }
1179
1180 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1181                                         struct swap_info_struct *q)
1182 {
1183         struct swap_info_struct *p;
1184
1185         p = _swap_info_get(entry);
1186
1187         if (p != q) {
1188                 if (q != NULL)
1189                         spin_unlock(&q->lock);
1190                 if (p != NULL)
1191                         spin_lock(&p->lock);
1192         }
1193         return p;
1194 }
1195
1196 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1197                                               unsigned long offset,
1198                                               unsigned char usage)
1199 {
1200         unsigned char count;
1201         unsigned char has_cache;
1202
1203         count = p->swap_map[offset];
1204
1205         has_cache = count & SWAP_HAS_CACHE;
1206         count &= ~SWAP_HAS_CACHE;
1207
1208         if (usage == SWAP_HAS_CACHE) {
1209                 VM_BUG_ON(!has_cache);
1210                 has_cache = 0;
1211         } else if (count == SWAP_MAP_SHMEM) {
1212                 /*
1213                  * Or we could insist on shmem.c using a special
1214                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1215                  */
1216                 count = 0;
1217         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1218                 if (count == COUNT_CONTINUED) {
1219                         if (swap_count_continued(p, offset, count))
1220                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1221                         else
1222                                 count = SWAP_MAP_MAX;
1223                 } else
1224                         count--;
1225         }
1226
1227         usage = count | has_cache;
1228         if (usage)
1229                 WRITE_ONCE(p->swap_map[offset], usage);
1230         else
1231                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1232
1233         return usage;
1234 }
1235
1236 /*
1237  * Check whether swap entry is valid in the swap device.  If so,
1238  * return pointer to swap_info_struct, and keep the swap entry valid
1239  * via preventing the swap device from being swapoff, until
1240  * put_swap_device() is called.  Otherwise return NULL.
1241  *
1242  * Notice that swapoff or swapoff+swapon can still happen before the
1243  * percpu_ref_tryget_live() in get_swap_device() or after the
1244  * percpu_ref_put() in put_swap_device() if there isn't any other way
1245  * to prevent swapoff, such as page lock, page table lock, etc.  The
1246  * caller must be prepared for that.  For example, the following
1247  * situation is possible.
1248  *
1249  *   CPU1                               CPU2
1250  *   do_swap_page()
1251  *     ...                              swapoff+swapon
1252  *     __read_swap_cache_async()
1253  *       swapcache_prepare()
1254  *         __swap_duplicate()
1255  *           // check swap_map
1256  *     // verify PTE not changed
1257  *
1258  * In __swap_duplicate(), the swap_map need to be checked before
1259  * changing partly because the specified swap entry may be for another
1260  * swap device which has been swapoff.  And in do_swap_page(), after
1261  * the page is read from the swap device, the PTE is verified not
1262  * changed with the page table locked to check whether the swap device
1263  * has been swapoff or swapoff+swapon.
1264  */
1265 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1266 {
1267         struct swap_info_struct *si;
1268         unsigned long offset;
1269
1270         if (!entry.val)
1271                 goto out;
1272         si = swp_swap_info(entry);
1273         if (!si)
1274                 goto bad_nofile;
1275         if (!percpu_ref_tryget_live(&si->users))
1276                 goto out;
1277         /*
1278          * Guarantee the si->users are checked before accessing other
1279          * fields of swap_info_struct.
1280          *
1281          * Paired with the spin_unlock() after setup_swap_info() in
1282          * enable_swap_info().
1283          */
1284         smp_rmb();
1285         offset = swp_offset(entry);
1286         if (offset >= si->max)
1287                 goto put_out;
1288
1289         return si;
1290 bad_nofile:
1291         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1292 out:
1293         return NULL;
1294 put_out:
1295         percpu_ref_put(&si->users);
1296         return NULL;
1297 }
1298
1299 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1300                                        swp_entry_t entry)
1301 {
1302         struct swap_cluster_info *ci;
1303         unsigned long offset = swp_offset(entry);
1304         unsigned char usage;
1305
1306         ci = lock_cluster_or_swap_info(p, offset);
1307         usage = __swap_entry_free_locked(p, offset, 1);
1308         unlock_cluster_or_swap_info(p, ci);
1309         if (!usage)
1310                 free_swap_slot(entry);
1311
1312         return usage;
1313 }
1314
1315 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1316 {
1317         struct swap_cluster_info *ci;
1318         unsigned long offset = swp_offset(entry);
1319         unsigned char count;
1320
1321         ci = lock_cluster(p, offset);
1322         count = p->swap_map[offset];
1323         VM_BUG_ON(count != SWAP_HAS_CACHE);
1324         p->swap_map[offset] = 0;
1325         dec_cluster_info_page(p, p->cluster_info, offset);
1326         unlock_cluster(ci);
1327
1328         mem_cgroup_uncharge_swap(entry, 1);
1329         swap_range_free(p, offset, 1);
1330 }
1331
1332 /*
1333  * Caller has made sure that the swap device corresponding to entry
1334  * is still around or has not been recycled.
1335  */
1336 void swap_free(swp_entry_t entry)
1337 {
1338         struct swap_info_struct *p;
1339
1340         p = _swap_info_get(entry);
1341         if (p)
1342                 __swap_entry_free(p, entry);
1343 }
1344
1345 /*
1346  * Called after dropping swapcache to decrease refcnt to swap entries.
1347  */
1348 void put_swap_page(struct page *page, swp_entry_t entry)
1349 {
1350         unsigned long offset = swp_offset(entry);
1351         unsigned long idx = offset / SWAPFILE_CLUSTER;
1352         struct swap_cluster_info *ci;
1353         struct swap_info_struct *si;
1354         unsigned char *map;
1355         unsigned int i, free_entries = 0;
1356         unsigned char val;
1357         int size = swap_entry_size(thp_nr_pages(page));
1358
1359         si = _swap_info_get(entry);
1360         if (!si)
1361                 return;
1362
1363         ci = lock_cluster_or_swap_info(si, offset);
1364         if (size == SWAPFILE_CLUSTER) {
1365                 VM_BUG_ON(!cluster_is_huge(ci));
1366                 map = si->swap_map + offset;
1367                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1368                         val = map[i];
1369                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1370                         if (val == SWAP_HAS_CACHE)
1371                                 free_entries++;
1372                 }
1373                 cluster_clear_huge(ci);
1374                 if (free_entries == SWAPFILE_CLUSTER) {
1375                         unlock_cluster_or_swap_info(si, ci);
1376                         spin_lock(&si->lock);
1377                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1378                         swap_free_cluster(si, idx);
1379                         spin_unlock(&si->lock);
1380                         return;
1381                 }
1382         }
1383         for (i = 0; i < size; i++, entry.val++) {
1384                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1385                         unlock_cluster_or_swap_info(si, ci);
1386                         free_swap_slot(entry);
1387                         if (i == size - 1)
1388                                 return;
1389                         lock_cluster_or_swap_info(si, offset);
1390                 }
1391         }
1392         unlock_cluster_or_swap_info(si, ci);
1393 }
1394
1395 #ifdef CONFIG_THP_SWAP
1396 int split_swap_cluster(swp_entry_t entry)
1397 {
1398         struct swap_info_struct *si;
1399         struct swap_cluster_info *ci;
1400         unsigned long offset = swp_offset(entry);
1401
1402         si = _swap_info_get(entry);
1403         if (!si)
1404                 return -EBUSY;
1405         ci = lock_cluster(si, offset);
1406         cluster_clear_huge(ci);
1407         unlock_cluster(ci);
1408         return 0;
1409 }
1410 #endif
1411
1412 static int swp_entry_cmp(const void *ent1, const void *ent2)
1413 {
1414         const swp_entry_t *e1 = ent1, *e2 = ent2;
1415
1416         return (int)swp_type(*e1) - (int)swp_type(*e2);
1417 }
1418
1419 void swapcache_free_entries(swp_entry_t *entries, int n)
1420 {
1421         struct swap_info_struct *p, *prev;
1422         int i;
1423
1424         if (n <= 0)
1425                 return;
1426
1427         prev = NULL;
1428         p = NULL;
1429
1430         /*
1431          * Sort swap entries by swap device, so each lock is only taken once.
1432          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1433          * so low that it isn't necessary to optimize further.
1434          */
1435         if (nr_swapfiles > 1)
1436                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1437         for (i = 0; i < n; ++i) {
1438                 p = swap_info_get_cont(entries[i], prev);
1439                 if (p)
1440                         swap_entry_free(p, entries[i]);
1441                 prev = p;
1442         }
1443         if (p)
1444                 spin_unlock(&p->lock);
1445 }
1446
1447 /*
1448  * How many references to page are currently swapped out?
1449  * This does not give an exact answer when swap count is continued,
1450  * but does include the high COUNT_CONTINUED flag to allow for that.
1451  */
1452 int page_swapcount(struct page *page)
1453 {
1454         int count = 0;
1455         struct swap_info_struct *p;
1456         struct swap_cluster_info *ci;
1457         swp_entry_t entry;
1458         unsigned long offset;
1459
1460         entry.val = page_private(page);
1461         p = _swap_info_get(entry);
1462         if (p) {
1463                 offset = swp_offset(entry);
1464                 ci = lock_cluster_or_swap_info(p, offset);
1465                 count = swap_count(p->swap_map[offset]);
1466                 unlock_cluster_or_swap_info(p, ci);
1467         }
1468         return count;
1469 }
1470
1471 int __swap_count(swp_entry_t entry)
1472 {
1473         struct swap_info_struct *si;
1474         pgoff_t offset = swp_offset(entry);
1475         int count = 0;
1476
1477         si = get_swap_device(entry);
1478         if (si) {
1479                 count = swap_count(si->swap_map[offset]);
1480                 put_swap_device(si);
1481         }
1482         return count;
1483 }
1484
1485 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1486 {
1487         int count = 0;
1488         pgoff_t offset = swp_offset(entry);
1489         struct swap_cluster_info *ci;
1490
1491         ci = lock_cluster_or_swap_info(si, offset);
1492         count = swap_count(si->swap_map[offset]);
1493         unlock_cluster_or_swap_info(si, ci);
1494         return count;
1495 }
1496
1497 /*
1498  * How many references to @entry are currently swapped out?
1499  * This does not give an exact answer when swap count is continued,
1500  * but does include the high COUNT_CONTINUED flag to allow for that.
1501  */
1502 int __swp_swapcount(swp_entry_t entry)
1503 {
1504         int count = 0;
1505         struct swap_info_struct *si;
1506
1507         si = get_swap_device(entry);
1508         if (si) {
1509                 count = swap_swapcount(si, entry);
1510                 put_swap_device(si);
1511         }
1512         return count;
1513 }
1514
1515 /*
1516  * How many references to @entry are currently swapped out?
1517  * This considers COUNT_CONTINUED so it returns exact answer.
1518  */
1519 int swp_swapcount(swp_entry_t entry)
1520 {
1521         int count, tmp_count, n;
1522         struct swap_info_struct *p;
1523         struct swap_cluster_info *ci;
1524         struct page *page;
1525         pgoff_t offset;
1526         unsigned char *map;
1527
1528         p = _swap_info_get(entry);
1529         if (!p)
1530                 return 0;
1531
1532         offset = swp_offset(entry);
1533
1534         ci = lock_cluster_or_swap_info(p, offset);
1535
1536         count = swap_count(p->swap_map[offset]);
1537         if (!(count & COUNT_CONTINUED))
1538                 goto out;
1539
1540         count &= ~COUNT_CONTINUED;
1541         n = SWAP_MAP_MAX + 1;
1542
1543         page = vmalloc_to_page(p->swap_map + offset);
1544         offset &= ~PAGE_MASK;
1545         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1546
1547         do {
1548                 page = list_next_entry(page, lru);
1549                 map = kmap_atomic(page);
1550                 tmp_count = map[offset];
1551                 kunmap_atomic(map);
1552
1553                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1554                 n *= (SWAP_CONT_MAX + 1);
1555         } while (tmp_count & COUNT_CONTINUED);
1556 out:
1557         unlock_cluster_or_swap_info(p, ci);
1558         return count;
1559 }
1560
1561 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1562                                          swp_entry_t entry)
1563 {
1564         struct swap_cluster_info *ci;
1565         unsigned char *map = si->swap_map;
1566         unsigned long roffset = swp_offset(entry);
1567         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1568         int i;
1569         bool ret = false;
1570
1571         ci = lock_cluster_or_swap_info(si, offset);
1572         if (!ci || !cluster_is_huge(ci)) {
1573                 if (swap_count(map[roffset]))
1574                         ret = true;
1575                 goto unlock_out;
1576         }
1577         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1578                 if (swap_count(map[offset + i])) {
1579                         ret = true;
1580                         break;
1581                 }
1582         }
1583 unlock_out:
1584         unlock_cluster_or_swap_info(si, ci);
1585         return ret;
1586 }
1587
1588 static bool page_swapped(struct page *page)
1589 {
1590         swp_entry_t entry;
1591         struct swap_info_struct *si;
1592
1593         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1594                 return page_swapcount(page) != 0;
1595
1596         page = compound_head(page);
1597         entry.val = page_private(page);
1598         si = _swap_info_get(entry);
1599         if (si)
1600                 return swap_page_trans_huge_swapped(si, entry);
1601         return false;
1602 }
1603
1604 static int page_trans_huge_map_swapcount(struct page *page,
1605                                          int *total_swapcount)
1606 {
1607         int i, map_swapcount, _total_swapcount;
1608         unsigned long offset = 0;
1609         struct swap_info_struct *si;
1610         struct swap_cluster_info *ci = NULL;
1611         unsigned char *map = NULL;
1612         int swapcount = 0;
1613
1614         /* hugetlbfs shouldn't call it */
1615         VM_BUG_ON_PAGE(PageHuge(page), page);
1616
1617         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1618                 if (PageSwapCache(page))
1619                         swapcount = page_swapcount(page);
1620                 if (total_swapcount)
1621                         *total_swapcount = swapcount;
1622                 return swapcount + page_trans_huge_mapcount(page);
1623         }
1624
1625         page = compound_head(page);
1626
1627         _total_swapcount = map_swapcount = 0;
1628         if (PageSwapCache(page)) {
1629                 swp_entry_t entry;
1630
1631                 entry.val = page_private(page);
1632                 si = _swap_info_get(entry);
1633                 if (si) {
1634                         map = si->swap_map;
1635                         offset = swp_offset(entry);
1636                 }
1637         }
1638         if (map)
1639                 ci = lock_cluster(si, offset);
1640         for (i = 0; i < HPAGE_PMD_NR; i++) {
1641                 int mapcount = atomic_read(&page[i]._mapcount) + 1;
1642                 if (map) {
1643                         swapcount = swap_count(map[offset + i]);
1644                         _total_swapcount += swapcount;
1645                 }
1646                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1647         }
1648         unlock_cluster(ci);
1649
1650         if (PageDoubleMap(page))
1651                 map_swapcount -= 1;
1652
1653         if (total_swapcount)
1654                 *total_swapcount = _total_swapcount;
1655
1656         return map_swapcount + compound_mapcount(page);
1657 }
1658
1659 /*
1660  * We can write to an anon page without COW if there are no other references
1661  * to it.  And as a side-effect, free up its swap: because the old content
1662  * on disk will never be read, and seeking back there to write new content
1663  * later would only waste time away from clustering.
1664  */
1665 bool reuse_swap_page(struct page *page)
1666 {
1667         int count, total_swapcount;
1668
1669         VM_BUG_ON_PAGE(!PageLocked(page), page);
1670         if (unlikely(PageKsm(page)))
1671                 return false;
1672         count = page_trans_huge_map_swapcount(page, &total_swapcount);
1673         if (count == 1 && PageSwapCache(page) &&
1674             (likely(!PageTransCompound(page)) ||
1675              /* The remaining swap count will be freed soon */
1676              total_swapcount == page_swapcount(page))) {
1677                 if (!PageWriteback(page)) {
1678                         page = compound_head(page);
1679                         delete_from_swap_cache(page);
1680                         SetPageDirty(page);
1681                 } else {
1682                         swp_entry_t entry;
1683                         struct swap_info_struct *p;
1684
1685                         entry.val = page_private(page);
1686                         p = swap_info_get(entry);
1687                         if (p->flags & SWP_STABLE_WRITES) {
1688                                 spin_unlock(&p->lock);
1689                                 return false;
1690                         }
1691                         spin_unlock(&p->lock);
1692                 }
1693         }
1694
1695         return count <= 1;
1696 }
1697
1698 /*
1699  * If swap is getting full, or if there are no more mappings of this page,
1700  * then try_to_free_swap is called to free its swap space.
1701  */
1702 int try_to_free_swap(struct page *page)
1703 {
1704         VM_BUG_ON_PAGE(!PageLocked(page), page);
1705
1706         if (!PageSwapCache(page))
1707                 return 0;
1708         if (PageWriteback(page))
1709                 return 0;
1710         if (page_swapped(page))
1711                 return 0;
1712
1713         /*
1714          * Once hibernation has begun to create its image of memory,
1715          * there's a danger that one of the calls to try_to_free_swap()
1716          * - most probably a call from __try_to_reclaim_swap() while
1717          * hibernation is allocating its own swap pages for the image,
1718          * but conceivably even a call from memory reclaim - will free
1719          * the swap from a page which has already been recorded in the
1720          * image as a clean swapcache page, and then reuse its swap for
1721          * another page of the image.  On waking from hibernation, the
1722          * original page might be freed under memory pressure, then
1723          * later read back in from swap, now with the wrong data.
1724          *
1725          * Hibernation suspends storage while it is writing the image
1726          * to disk so check that here.
1727          */
1728         if (pm_suspended_storage())
1729                 return 0;
1730
1731         page = compound_head(page);
1732         delete_from_swap_cache(page);
1733         SetPageDirty(page);
1734         return 1;
1735 }
1736
1737 /*
1738  * Free the swap entry like above, but also try to
1739  * free the page cache entry if it is the last user.
1740  */
1741 int free_swap_and_cache(swp_entry_t entry)
1742 {
1743         struct swap_info_struct *p;
1744         unsigned char count;
1745
1746         if (non_swap_entry(entry))
1747                 return 1;
1748
1749         p = _swap_info_get(entry);
1750         if (p) {
1751                 count = __swap_entry_free(p, entry);
1752                 if (count == SWAP_HAS_CACHE &&
1753                     !swap_page_trans_huge_swapped(p, entry))
1754                         __try_to_reclaim_swap(p, swp_offset(entry),
1755                                               TTRS_UNMAPPED | TTRS_FULL);
1756         }
1757         return p != NULL;
1758 }
1759
1760 #ifdef CONFIG_HIBERNATION
1761
1762 swp_entry_t get_swap_page_of_type(int type)
1763 {
1764         struct swap_info_struct *si = swap_type_to_swap_info(type);
1765         swp_entry_t entry = {0};
1766
1767         if (!si)
1768                 goto fail;
1769
1770         /* This is called for allocating swap entry, not cache */
1771         spin_lock(&si->lock);
1772         if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1773                 atomic_long_dec(&nr_swap_pages);
1774         spin_unlock(&si->lock);
1775 fail:
1776         return entry;
1777 }
1778
1779 /*
1780  * Find the swap type that corresponds to given device (if any).
1781  *
1782  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1783  * from 0, in which the swap header is expected to be located.
1784  *
1785  * This is needed for the suspend to disk (aka swsusp).
1786  */
1787 int swap_type_of(dev_t device, sector_t offset)
1788 {
1789         int type;
1790
1791         if (!device)
1792                 return -1;
1793
1794         spin_lock(&swap_lock);
1795         for (type = 0; type < nr_swapfiles; type++) {
1796                 struct swap_info_struct *sis = swap_info[type];
1797
1798                 if (!(sis->flags & SWP_WRITEOK))
1799                         continue;
1800
1801                 if (device == sis->bdev->bd_dev) {
1802                         struct swap_extent *se = first_se(sis);
1803
1804                         if (se->start_block == offset) {
1805                                 spin_unlock(&swap_lock);
1806                                 return type;
1807                         }
1808                 }
1809         }
1810         spin_unlock(&swap_lock);
1811         return -ENODEV;
1812 }
1813
1814 int find_first_swap(dev_t *device)
1815 {
1816         int type;
1817
1818         spin_lock(&swap_lock);
1819         for (type = 0; type < nr_swapfiles; type++) {
1820                 struct swap_info_struct *sis = swap_info[type];
1821
1822                 if (!(sis->flags & SWP_WRITEOK))
1823                         continue;
1824                 *device = sis->bdev->bd_dev;
1825                 spin_unlock(&swap_lock);
1826                 return type;
1827         }
1828         spin_unlock(&swap_lock);
1829         return -ENODEV;
1830 }
1831
1832 /*
1833  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1834  * corresponding to given index in swap_info (swap type).
1835  */
1836 sector_t swapdev_block(int type, pgoff_t offset)
1837 {
1838         struct swap_info_struct *si = swap_type_to_swap_info(type);
1839         struct swap_extent *se;
1840
1841         if (!si || !(si->flags & SWP_WRITEOK))
1842                 return 0;
1843         se = offset_to_swap_extent(si, offset);
1844         return se->start_block + (offset - se->start_page);
1845 }
1846
1847 /*
1848  * Return either the total number of swap pages of given type, or the number
1849  * of free pages of that type (depending on @free)
1850  *
1851  * This is needed for software suspend
1852  */
1853 unsigned int count_swap_pages(int type, int free)
1854 {
1855         unsigned int n = 0;
1856
1857         spin_lock(&swap_lock);
1858         if ((unsigned int)type < nr_swapfiles) {
1859                 struct swap_info_struct *sis = swap_info[type];
1860
1861                 spin_lock(&sis->lock);
1862                 if (sis->flags & SWP_WRITEOK) {
1863                         n = sis->pages;
1864                         if (free)
1865                                 n -= sis->inuse_pages;
1866                 }
1867                 spin_unlock(&sis->lock);
1868         }
1869         spin_unlock(&swap_lock);
1870         return n;
1871 }
1872 #endif /* CONFIG_HIBERNATION */
1873
1874 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1875 {
1876         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1877 }
1878
1879 /*
1880  * No need to decide whether this PTE shares the swap entry with others,
1881  * just let do_wp_page work it out if a write is requested later - to
1882  * force COW, vm_page_prot omits write permission from any private vma.
1883  */
1884 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1885                 unsigned long addr, swp_entry_t entry, struct page *page)
1886 {
1887         struct page *swapcache;
1888         spinlock_t *ptl;
1889         pte_t *pte;
1890         int ret = 1;
1891
1892         swapcache = page;
1893         page = ksm_might_need_to_copy(page, vma, addr);
1894         if (unlikely(!page))
1895                 return -ENOMEM;
1896
1897         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1898         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1899                 ret = 0;
1900                 goto out;
1901         }
1902
1903         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1904         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1905         get_page(page);
1906         if (page == swapcache) {
1907                 page_add_anon_rmap(page, vma, addr, false);
1908         } else { /* ksm created a completely new copy */
1909                 page_add_new_anon_rmap(page, vma, addr, false);
1910                 lru_cache_add_inactive_or_unevictable(page, vma);
1911         }
1912         set_pte_at(vma->vm_mm, addr, pte,
1913                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1914         swap_free(entry);
1915 out:
1916         pte_unmap_unlock(pte, ptl);
1917         if (page != swapcache) {
1918                 unlock_page(page);
1919                 put_page(page);
1920         }
1921         return ret;
1922 }
1923
1924 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1925                         unsigned long addr, unsigned long end,
1926                         unsigned int type)
1927 {
1928         struct page *page;
1929         swp_entry_t entry;
1930         pte_t *pte;
1931         struct swap_info_struct *si;
1932         unsigned long offset;
1933         int ret = 0;
1934         volatile unsigned char *swap_map;
1935
1936         si = swap_info[type];
1937         pte = pte_offset_map(pmd, addr);
1938         do {
1939                 if (!is_swap_pte(*pte))
1940                         continue;
1941
1942                 entry = pte_to_swp_entry(*pte);
1943                 if (swp_type(entry) != type)
1944                         continue;
1945
1946                 offset = swp_offset(entry);
1947                 pte_unmap(pte);
1948                 swap_map = &si->swap_map[offset];
1949                 page = lookup_swap_cache(entry, vma, addr);
1950                 if (!page) {
1951                         struct vm_fault vmf = {
1952                                 .vma = vma,
1953                                 .address = addr,
1954                                 .real_address = addr,
1955                                 .pmd = pmd,
1956                         };
1957
1958                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1959                                                 &vmf);
1960                 }
1961                 if (!page) {
1962                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1963                                 goto try_next;
1964                         return -ENOMEM;
1965                 }
1966
1967                 lock_page(page);
1968                 wait_on_page_writeback(page);
1969                 ret = unuse_pte(vma, pmd, addr, entry, page);
1970                 if (ret < 0) {
1971                         unlock_page(page);
1972                         put_page(page);
1973                         goto out;
1974                 }
1975
1976                 try_to_free_swap(page);
1977                 unlock_page(page);
1978                 put_page(page);
1979 try_next:
1980                 pte = pte_offset_map(pmd, addr);
1981         } while (pte++, addr += PAGE_SIZE, addr != end);
1982         pte_unmap(pte - 1);
1983
1984         ret = 0;
1985 out:
1986         return ret;
1987 }
1988
1989 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1990                                 unsigned long addr, unsigned long end,
1991                                 unsigned int type)
1992 {
1993         pmd_t *pmd;
1994         unsigned long next;
1995         int ret;
1996
1997         pmd = pmd_offset(pud, addr);
1998         do {
1999                 cond_resched();
2000                 next = pmd_addr_end(addr, end);
2001                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2002                         continue;
2003                 ret = unuse_pte_range(vma, pmd, addr, next, type);
2004                 if (ret)
2005                         return ret;
2006         } while (pmd++, addr = next, addr != end);
2007         return 0;
2008 }
2009
2010 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2011                                 unsigned long addr, unsigned long end,
2012                                 unsigned int type)
2013 {
2014         pud_t *pud;
2015         unsigned long next;
2016         int ret;
2017
2018         pud = pud_offset(p4d, addr);
2019         do {
2020                 next = pud_addr_end(addr, end);
2021                 if (pud_none_or_clear_bad(pud))
2022                         continue;
2023                 ret = unuse_pmd_range(vma, pud, addr, next, type);
2024                 if (ret)
2025                         return ret;
2026         } while (pud++, addr = next, addr != end);
2027         return 0;
2028 }
2029
2030 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2031                                 unsigned long addr, unsigned long end,
2032                                 unsigned int type)
2033 {
2034         p4d_t *p4d;
2035         unsigned long next;
2036         int ret;
2037
2038         p4d = p4d_offset(pgd, addr);
2039         do {
2040                 next = p4d_addr_end(addr, end);
2041                 if (p4d_none_or_clear_bad(p4d))
2042                         continue;
2043                 ret = unuse_pud_range(vma, p4d, addr, next, type);
2044                 if (ret)
2045                         return ret;
2046         } while (p4d++, addr = next, addr != end);
2047         return 0;
2048 }
2049
2050 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2051 {
2052         pgd_t *pgd;
2053         unsigned long addr, end, next;
2054         int ret;
2055
2056         addr = vma->vm_start;
2057         end = vma->vm_end;
2058
2059         pgd = pgd_offset(vma->vm_mm, addr);
2060         do {
2061                 next = pgd_addr_end(addr, end);
2062                 if (pgd_none_or_clear_bad(pgd))
2063                         continue;
2064                 ret = unuse_p4d_range(vma, pgd, addr, next, type);
2065                 if (ret)
2066                         return ret;
2067         } while (pgd++, addr = next, addr != end);
2068         return 0;
2069 }
2070
2071 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2072 {
2073         struct vm_area_struct *vma;
2074         int ret = 0;
2075
2076         mmap_read_lock(mm);
2077         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2078                 if (vma->anon_vma) {
2079                         ret = unuse_vma(vma, type);
2080                         if (ret)
2081                                 break;
2082                 }
2083                 cond_resched();
2084         }
2085         mmap_read_unlock(mm);
2086         return ret;
2087 }
2088
2089 /*
2090  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2091  * from current position to next entry still in use. Return 0
2092  * if there are no inuse entries after prev till end of the map.
2093  */
2094 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2095                                         unsigned int prev)
2096 {
2097         unsigned int i;
2098         unsigned char count;
2099
2100         /*
2101          * No need for swap_lock here: we're just looking
2102          * for whether an entry is in use, not modifying it; false
2103          * hits are okay, and sys_swapoff() has already prevented new
2104          * allocations from this area (while holding swap_lock).
2105          */
2106         for (i = prev + 1; i < si->max; i++) {
2107                 count = READ_ONCE(si->swap_map[i]);
2108                 if (count && swap_count(count) != SWAP_MAP_BAD)
2109                         break;
2110                 if ((i % LATENCY_LIMIT) == 0)
2111                         cond_resched();
2112         }
2113
2114         if (i == si->max)
2115                 i = 0;
2116
2117         return i;
2118 }
2119
2120 static int try_to_unuse(unsigned int type)
2121 {
2122         struct mm_struct *prev_mm;
2123         struct mm_struct *mm;
2124         struct list_head *p;
2125         int retval = 0;
2126         struct swap_info_struct *si = swap_info[type];
2127         struct page *page;
2128         swp_entry_t entry;
2129         unsigned int i;
2130
2131         if (!READ_ONCE(si->inuse_pages))
2132                 return 0;
2133
2134 retry:
2135         retval = shmem_unuse(type);
2136         if (retval)
2137                 return retval;
2138
2139         prev_mm = &init_mm;
2140         mmget(prev_mm);
2141
2142         spin_lock(&mmlist_lock);
2143         p = &init_mm.mmlist;
2144         while (READ_ONCE(si->inuse_pages) &&
2145                !signal_pending(current) &&
2146                (p = p->next) != &init_mm.mmlist) {
2147
2148                 mm = list_entry(p, struct mm_struct, mmlist);
2149                 if (!mmget_not_zero(mm))
2150                         continue;
2151                 spin_unlock(&mmlist_lock);
2152                 mmput(prev_mm);
2153                 prev_mm = mm;
2154                 retval = unuse_mm(mm, type);
2155                 if (retval) {
2156                         mmput(prev_mm);
2157                         return retval;
2158                 }
2159
2160                 /*
2161                  * Make sure that we aren't completely killing
2162                  * interactive performance.
2163                  */
2164                 cond_resched();
2165                 spin_lock(&mmlist_lock);
2166         }
2167         spin_unlock(&mmlist_lock);
2168
2169         mmput(prev_mm);
2170
2171         i = 0;
2172         while (READ_ONCE(si->inuse_pages) &&
2173                !signal_pending(current) &&
2174                (i = find_next_to_unuse(si, i)) != 0) {
2175
2176                 entry = swp_entry(type, i);
2177                 page = find_get_page(swap_address_space(entry), i);
2178                 if (!page)
2179                         continue;
2180
2181                 /*
2182                  * It is conceivable that a racing task removed this page from
2183                  * swap cache just before we acquired the page lock. The page
2184                  * might even be back in swap cache on another swap area. But
2185                  * that is okay, try_to_free_swap() only removes stale pages.
2186                  */
2187                 lock_page(page);
2188                 wait_on_page_writeback(page);
2189                 try_to_free_swap(page);
2190                 unlock_page(page);
2191                 put_page(page);
2192         }
2193
2194         /*
2195          * Lets check again to see if there are still swap entries in the map.
2196          * If yes, we would need to do retry the unuse logic again.
2197          * Under global memory pressure, swap entries can be reinserted back
2198          * into process space after the mmlist loop above passes over them.
2199          *
2200          * Limit the number of retries? No: when mmget_not_zero() above fails,
2201          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2202          * at its own independent pace; and even shmem_writepage() could have
2203          * been preempted after get_swap_page(), temporarily hiding that swap.
2204          * It's easy and robust (though cpu-intensive) just to keep retrying.
2205          */
2206         if (READ_ONCE(si->inuse_pages)) {
2207                 if (!signal_pending(current))
2208                         goto retry;
2209                 return -EINTR;
2210         }
2211
2212         return 0;
2213 }
2214
2215 /*
2216  * After a successful try_to_unuse, if no swap is now in use, we know
2217  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2218  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2219  * added to the mmlist just after page_duplicate - before would be racy.
2220  */
2221 static void drain_mmlist(void)
2222 {
2223         struct list_head *p, *next;
2224         unsigned int type;
2225
2226         for (type = 0; type < nr_swapfiles; type++)
2227                 if (swap_info[type]->inuse_pages)
2228                         return;
2229         spin_lock(&mmlist_lock);
2230         list_for_each_safe(p, next, &init_mm.mmlist)
2231                 list_del_init(p);
2232         spin_unlock(&mmlist_lock);
2233 }
2234
2235 /*
2236  * Free all of a swapdev's extent information
2237  */
2238 static void destroy_swap_extents(struct swap_info_struct *sis)
2239 {
2240         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2241                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2242                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2243
2244                 rb_erase(rb, &sis->swap_extent_root);
2245                 kfree(se);
2246         }
2247
2248         if (sis->flags & SWP_ACTIVATED) {
2249                 struct file *swap_file = sis->swap_file;
2250                 struct address_space *mapping = swap_file->f_mapping;
2251
2252                 sis->flags &= ~SWP_ACTIVATED;
2253                 if (mapping->a_ops->swap_deactivate)
2254                         mapping->a_ops->swap_deactivate(swap_file);
2255         }
2256 }
2257
2258 /*
2259  * Add a block range (and the corresponding page range) into this swapdev's
2260  * extent tree.
2261  *
2262  * This function rather assumes that it is called in ascending page order.
2263  */
2264 int
2265 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2266                 unsigned long nr_pages, sector_t start_block)
2267 {
2268         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2269         struct swap_extent *se;
2270         struct swap_extent *new_se;
2271
2272         /*
2273          * place the new node at the right most since the
2274          * function is called in ascending page order.
2275          */
2276         while (*link) {
2277                 parent = *link;
2278                 link = &parent->rb_right;
2279         }
2280
2281         if (parent) {
2282                 se = rb_entry(parent, struct swap_extent, rb_node);
2283                 BUG_ON(se->start_page + se->nr_pages != start_page);
2284                 if (se->start_block + se->nr_pages == start_block) {
2285                         /* Merge it */
2286                         se->nr_pages += nr_pages;
2287                         return 0;
2288                 }
2289         }
2290
2291         /* No merge, insert a new extent. */
2292         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2293         if (new_se == NULL)
2294                 return -ENOMEM;
2295         new_se->start_page = start_page;
2296         new_se->nr_pages = nr_pages;
2297         new_se->start_block = start_block;
2298
2299         rb_link_node(&new_se->rb_node, parent, link);
2300         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2301         return 1;
2302 }
2303 EXPORT_SYMBOL_GPL(add_swap_extent);
2304
2305 /*
2306  * A `swap extent' is a simple thing which maps a contiguous range of pages
2307  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2308  * is built at swapon time and is then used at swap_writepage/swap_readpage
2309  * time for locating where on disk a page belongs.
2310  *
2311  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2312  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2313  * swap files identically.
2314  *
2315  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2316  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2317  * swapfiles are handled *identically* after swapon time.
2318  *
2319  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2320  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2321  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2322  * requirements, they are simply tossed out - we will never use those blocks
2323  * for swapping.
2324  *
2325  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2326  * prevents users from writing to the swap device, which will corrupt memory.
2327  *
2328  * The amount of disk space which a single swap extent represents varies.
2329  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2330  * extents in the list.  To avoid much list walking, we cache the previous
2331  * search location in `curr_swap_extent', and start new searches from there.
2332  * This is extremely effective.  The average number of iterations in
2333  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2334  */
2335 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2336 {
2337         struct file *swap_file = sis->swap_file;
2338         struct address_space *mapping = swap_file->f_mapping;
2339         struct inode *inode = mapping->host;
2340         int ret;
2341
2342         if (S_ISBLK(inode->i_mode)) {
2343                 ret = add_swap_extent(sis, 0, sis->max, 0);
2344                 *span = sis->pages;
2345                 return ret;
2346         }
2347
2348         if (mapping->a_ops->swap_activate) {
2349                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2350                 if (ret >= 0)
2351                         sis->flags |= SWP_ACTIVATED;
2352                 if (!ret) {
2353                         sis->flags |= SWP_FS_OPS;
2354                         ret = add_swap_extent(sis, 0, sis->max, 0);
2355                         *span = sis->pages;
2356                 }
2357                 return ret;
2358         }
2359
2360         return generic_swapfile_activate(sis, swap_file, span);
2361 }
2362
2363 static int swap_node(struct swap_info_struct *p)
2364 {
2365         struct block_device *bdev;
2366
2367         if (p->bdev)
2368                 bdev = p->bdev;
2369         else
2370                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2371
2372         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2373 }
2374
2375 static void setup_swap_info(struct swap_info_struct *p, int prio,
2376                             unsigned char *swap_map,
2377                             struct swap_cluster_info *cluster_info)
2378 {
2379         int i;
2380
2381         if (prio >= 0)
2382                 p->prio = prio;
2383         else
2384                 p->prio = --least_priority;
2385         /*
2386          * the plist prio is negated because plist ordering is
2387          * low-to-high, while swap ordering is high-to-low
2388          */
2389         p->list.prio = -p->prio;
2390         for_each_node(i) {
2391                 if (p->prio >= 0)
2392                         p->avail_lists[i].prio = -p->prio;
2393                 else {
2394                         if (swap_node(p) == i)
2395                                 p->avail_lists[i].prio = 1;
2396                         else
2397                                 p->avail_lists[i].prio = -p->prio;
2398                 }
2399         }
2400         p->swap_map = swap_map;
2401         p->cluster_info = cluster_info;
2402 }
2403
2404 static void _enable_swap_info(struct swap_info_struct *p)
2405 {
2406         p->flags |= SWP_WRITEOK;
2407         atomic_long_add(p->pages, &nr_swap_pages);
2408         total_swap_pages += p->pages;
2409
2410         assert_spin_locked(&swap_lock);
2411         /*
2412          * both lists are plists, and thus priority ordered.
2413          * swap_active_head needs to be priority ordered for swapoff(),
2414          * which on removal of any swap_info_struct with an auto-assigned
2415          * (i.e. negative) priority increments the auto-assigned priority
2416          * of any lower-priority swap_info_structs.
2417          * swap_avail_head needs to be priority ordered for get_swap_page(),
2418          * which allocates swap pages from the highest available priority
2419          * swap_info_struct.
2420          */
2421         plist_add(&p->list, &swap_active_head);
2422         add_to_avail_list(p);
2423 }
2424
2425 static void enable_swap_info(struct swap_info_struct *p, int prio,
2426                                 unsigned char *swap_map,
2427                                 struct swap_cluster_info *cluster_info,
2428                                 unsigned long *frontswap_map)
2429 {
2430         if (IS_ENABLED(CONFIG_FRONTSWAP))
2431                 frontswap_init(p->type, frontswap_map);
2432         spin_lock(&swap_lock);
2433         spin_lock(&p->lock);
2434         setup_swap_info(p, prio, swap_map, cluster_info);
2435         spin_unlock(&p->lock);
2436         spin_unlock(&swap_lock);
2437         /*
2438          * Finished initializing swap device, now it's safe to reference it.
2439          */
2440         percpu_ref_resurrect(&p->users);
2441         spin_lock(&swap_lock);
2442         spin_lock(&p->lock);
2443         _enable_swap_info(p);
2444         spin_unlock(&p->lock);
2445         spin_unlock(&swap_lock);
2446 }
2447
2448 static void reinsert_swap_info(struct swap_info_struct *p)
2449 {
2450         spin_lock(&swap_lock);
2451         spin_lock(&p->lock);
2452         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2453         _enable_swap_info(p);
2454         spin_unlock(&p->lock);
2455         spin_unlock(&swap_lock);
2456 }
2457
2458 bool has_usable_swap(void)
2459 {
2460         bool ret = true;
2461
2462         spin_lock(&swap_lock);
2463         if (plist_head_empty(&swap_active_head))
2464                 ret = false;
2465         spin_unlock(&swap_lock);
2466         return ret;
2467 }
2468
2469 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2470 {
2471         struct swap_info_struct *p = NULL;
2472         unsigned char *swap_map;
2473         struct swap_cluster_info *cluster_info;
2474         unsigned long *frontswap_map;
2475         struct file *swap_file, *victim;
2476         struct address_space *mapping;
2477         struct inode *inode;
2478         struct filename *pathname;
2479         int err, found = 0;
2480         unsigned int old_block_size;
2481
2482         if (!capable(CAP_SYS_ADMIN))
2483                 return -EPERM;
2484
2485         BUG_ON(!current->mm);
2486
2487         pathname = getname(specialfile);
2488         if (IS_ERR(pathname))
2489                 return PTR_ERR(pathname);
2490
2491         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2492         err = PTR_ERR(victim);
2493         if (IS_ERR(victim))
2494                 goto out;
2495
2496         mapping = victim->f_mapping;
2497         spin_lock(&swap_lock);
2498         plist_for_each_entry(p, &swap_active_head, list) {
2499                 if (p->flags & SWP_WRITEOK) {
2500                         if (p->swap_file->f_mapping == mapping) {
2501                                 found = 1;
2502                                 break;
2503                         }
2504                 }
2505         }
2506         if (!found) {
2507                 err = -EINVAL;
2508                 spin_unlock(&swap_lock);
2509                 goto out_dput;
2510         }
2511         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2512                 vm_unacct_memory(p->pages);
2513         else {
2514                 err = -ENOMEM;
2515                 spin_unlock(&swap_lock);
2516                 goto out_dput;
2517         }
2518         del_from_avail_list(p);
2519         spin_lock(&p->lock);
2520         if (p->prio < 0) {
2521                 struct swap_info_struct *si = p;
2522                 int nid;
2523
2524                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2525                         si->prio++;
2526                         si->list.prio--;
2527                         for_each_node(nid) {
2528                                 if (si->avail_lists[nid].prio != 1)
2529                                         si->avail_lists[nid].prio--;
2530                         }
2531                 }
2532                 least_priority++;
2533         }
2534         plist_del(&p->list, &swap_active_head);
2535         atomic_long_sub(p->pages, &nr_swap_pages);
2536         total_swap_pages -= p->pages;
2537         p->flags &= ~SWP_WRITEOK;
2538         spin_unlock(&p->lock);
2539         spin_unlock(&swap_lock);
2540
2541         disable_swap_slots_cache_lock();
2542
2543         set_current_oom_origin();
2544         err = try_to_unuse(p->type);
2545         clear_current_oom_origin();
2546
2547         if (err) {
2548                 /* re-insert swap space back into swap_list */
2549                 reinsert_swap_info(p);
2550                 reenable_swap_slots_cache_unlock();
2551                 goto out_dput;
2552         }
2553
2554         reenable_swap_slots_cache_unlock();
2555
2556         /*
2557          * Wait for swap operations protected by get/put_swap_device()
2558          * to complete.
2559          *
2560          * We need synchronize_rcu() here to protect the accessing to
2561          * the swap cache data structure.
2562          */
2563         percpu_ref_kill(&p->users);
2564         synchronize_rcu();
2565         wait_for_completion(&p->comp);
2566
2567         flush_work(&p->discard_work);
2568
2569         destroy_swap_extents(p);
2570         if (p->flags & SWP_CONTINUED)
2571                 free_swap_count_continuations(p);
2572
2573         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2574                 atomic_dec(&nr_rotate_swap);
2575
2576         mutex_lock(&swapon_mutex);
2577         spin_lock(&swap_lock);
2578         spin_lock(&p->lock);
2579         drain_mmlist();
2580
2581         /* wait for anyone still in scan_swap_map_slots */
2582         p->highest_bit = 0;             /* cuts scans short */
2583         while (p->flags >= SWP_SCANNING) {
2584                 spin_unlock(&p->lock);
2585                 spin_unlock(&swap_lock);
2586                 schedule_timeout_uninterruptible(1);
2587                 spin_lock(&swap_lock);
2588                 spin_lock(&p->lock);
2589         }
2590
2591         swap_file = p->swap_file;
2592         old_block_size = p->old_block_size;
2593         p->swap_file = NULL;
2594         p->max = 0;
2595         swap_map = p->swap_map;
2596         p->swap_map = NULL;
2597         cluster_info = p->cluster_info;
2598         p->cluster_info = NULL;
2599         frontswap_map = frontswap_map_get(p);
2600         spin_unlock(&p->lock);
2601         spin_unlock(&swap_lock);
2602         arch_swap_invalidate_area(p->type);
2603         frontswap_invalidate_area(p->type);
2604         frontswap_map_set(p, NULL);
2605         mutex_unlock(&swapon_mutex);
2606         free_percpu(p->percpu_cluster);
2607         p->percpu_cluster = NULL;
2608         free_percpu(p->cluster_next_cpu);
2609         p->cluster_next_cpu = NULL;
2610         vfree(swap_map);
2611         kvfree(cluster_info);
2612         kvfree(frontswap_map);
2613         /* Destroy swap account information */
2614         swap_cgroup_swapoff(p->type);
2615         exit_swap_address_space(p->type);
2616
2617         inode = mapping->host;
2618         if (S_ISBLK(inode->i_mode)) {
2619                 struct block_device *bdev = I_BDEV(inode);
2620
2621                 set_blocksize(bdev, old_block_size);
2622                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2623         }
2624
2625         inode_lock(inode);
2626         inode->i_flags &= ~S_SWAPFILE;
2627         inode_unlock(inode);
2628         filp_close(swap_file, NULL);
2629
2630         /*
2631          * Clear the SWP_USED flag after all resources are freed so that swapon
2632          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2633          * not hold p->lock after we cleared its SWP_WRITEOK.
2634          */
2635         spin_lock(&swap_lock);
2636         p->flags = 0;
2637         spin_unlock(&swap_lock);
2638
2639         err = 0;
2640         atomic_inc(&proc_poll_event);
2641         wake_up_interruptible(&proc_poll_wait);
2642
2643 out_dput:
2644         filp_close(victim, NULL);
2645 out:
2646         putname(pathname);
2647         return err;
2648 }
2649
2650 #ifdef CONFIG_PROC_FS
2651 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2652 {
2653         struct seq_file *seq = file->private_data;
2654
2655         poll_wait(file, &proc_poll_wait, wait);
2656
2657         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2658                 seq->poll_event = atomic_read(&proc_poll_event);
2659                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2660         }
2661
2662         return EPOLLIN | EPOLLRDNORM;
2663 }
2664
2665 /* iterator */
2666 static void *swap_start(struct seq_file *swap, loff_t *pos)
2667 {
2668         struct swap_info_struct *si;
2669         int type;
2670         loff_t l = *pos;
2671
2672         mutex_lock(&swapon_mutex);
2673
2674         if (!l)
2675                 return SEQ_START_TOKEN;
2676
2677         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2678                 if (!(si->flags & SWP_USED) || !si->swap_map)
2679                         continue;
2680                 if (!--l)
2681                         return si;
2682         }
2683
2684         return NULL;
2685 }
2686
2687 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2688 {
2689         struct swap_info_struct *si = v;
2690         int type;
2691
2692         if (v == SEQ_START_TOKEN)
2693                 type = 0;
2694         else
2695                 type = si->type + 1;
2696
2697         ++(*pos);
2698         for (; (si = swap_type_to_swap_info(type)); type++) {
2699                 if (!(si->flags & SWP_USED) || !si->swap_map)
2700                         continue;
2701                 return si;
2702         }
2703
2704         return NULL;
2705 }
2706
2707 static void swap_stop(struct seq_file *swap, void *v)
2708 {
2709         mutex_unlock(&swapon_mutex);
2710 }
2711
2712 static int swap_show(struct seq_file *swap, void *v)
2713 {
2714         struct swap_info_struct *si = v;
2715         struct file *file;
2716         int len;
2717         unsigned long bytes, inuse;
2718
2719         if (si == SEQ_START_TOKEN) {
2720                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2721                 return 0;
2722         }
2723
2724         bytes = si->pages << (PAGE_SHIFT - 10);
2725         inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2726
2727         file = si->swap_file;
2728         len = seq_file_path(swap, file, " \t\n\\");
2729         seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2730                         len < 40 ? 40 - len : 1, " ",
2731                         S_ISBLK(file_inode(file)->i_mode) ?
2732                                 "partition" : "file\t",
2733                         bytes, bytes < 10000000 ? "\t" : "",
2734                         inuse, inuse < 10000000 ? "\t" : "",
2735                         si->prio);
2736         return 0;
2737 }
2738
2739 static const struct seq_operations swaps_op = {
2740         .start =        swap_start,
2741         .next =         swap_next,
2742         .stop =         swap_stop,
2743         .show =         swap_show
2744 };
2745
2746 static int swaps_open(struct inode *inode, struct file *file)
2747 {
2748         struct seq_file *seq;
2749         int ret;
2750
2751         ret = seq_open(file, &swaps_op);
2752         if (ret)
2753                 return ret;
2754
2755         seq = file->private_data;
2756         seq->poll_event = atomic_read(&proc_poll_event);
2757         return 0;
2758 }
2759
2760 static const struct proc_ops swaps_proc_ops = {
2761         .proc_flags     = PROC_ENTRY_PERMANENT,
2762         .proc_open      = swaps_open,
2763         .proc_read      = seq_read,
2764         .proc_lseek     = seq_lseek,
2765         .proc_release   = seq_release,
2766         .proc_poll      = swaps_poll,
2767 };
2768
2769 static int __init procswaps_init(void)
2770 {
2771         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2772         return 0;
2773 }
2774 __initcall(procswaps_init);
2775 #endif /* CONFIG_PROC_FS */
2776
2777 #ifdef MAX_SWAPFILES_CHECK
2778 static int __init max_swapfiles_check(void)
2779 {
2780         MAX_SWAPFILES_CHECK();
2781         return 0;
2782 }
2783 late_initcall(max_swapfiles_check);
2784 #endif
2785
2786 static struct swap_info_struct *alloc_swap_info(void)
2787 {
2788         struct swap_info_struct *p;
2789         struct swap_info_struct *defer = NULL;
2790         unsigned int type;
2791         int i;
2792
2793         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2794         if (!p)
2795                 return ERR_PTR(-ENOMEM);
2796
2797         if (percpu_ref_init(&p->users, swap_users_ref_free,
2798                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2799                 kvfree(p);
2800                 return ERR_PTR(-ENOMEM);
2801         }
2802
2803         spin_lock(&swap_lock);
2804         for (type = 0; type < nr_swapfiles; type++) {
2805                 if (!(swap_info[type]->flags & SWP_USED))
2806                         break;
2807         }
2808         if (type >= MAX_SWAPFILES) {
2809                 spin_unlock(&swap_lock);
2810                 percpu_ref_exit(&p->users);
2811                 kvfree(p);
2812                 return ERR_PTR(-EPERM);
2813         }
2814         if (type >= nr_swapfiles) {
2815                 p->type = type;
2816                 /*
2817                  * Publish the swap_info_struct after initializing it.
2818                  * Note that kvzalloc() above zeroes all its fields.
2819                  */
2820                 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2821                 nr_swapfiles++;
2822         } else {
2823                 defer = p;
2824                 p = swap_info[type];
2825                 /*
2826                  * Do not memset this entry: a racing procfs swap_next()
2827                  * would be relying on p->type to remain valid.
2828                  */
2829         }
2830         p->swap_extent_root = RB_ROOT;
2831         plist_node_init(&p->list, 0);
2832         for_each_node(i)
2833                 plist_node_init(&p->avail_lists[i], 0);
2834         p->flags = SWP_USED;
2835         spin_unlock(&swap_lock);
2836         if (defer) {
2837                 percpu_ref_exit(&defer->users);
2838                 kvfree(defer);
2839         }
2840         spin_lock_init(&p->lock);
2841         spin_lock_init(&p->cont_lock);
2842         init_completion(&p->comp);
2843
2844         return p;
2845 }
2846
2847 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2848 {
2849         int error;
2850
2851         if (S_ISBLK(inode->i_mode)) {
2852                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2853                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2854                 if (IS_ERR(p->bdev)) {
2855                         error = PTR_ERR(p->bdev);
2856                         p->bdev = NULL;
2857                         return error;
2858                 }
2859                 p->old_block_size = block_size(p->bdev);
2860                 error = set_blocksize(p->bdev, PAGE_SIZE);
2861                 if (error < 0)
2862                         return error;
2863                 /*
2864                  * Zoned block devices contain zones that have a sequential
2865                  * write only restriction.  Hence zoned block devices are not
2866                  * suitable for swapping.  Disallow them here.
2867                  */
2868                 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2869                         return -EINVAL;
2870                 p->flags |= SWP_BLKDEV;
2871         } else if (S_ISREG(inode->i_mode)) {
2872                 p->bdev = inode->i_sb->s_bdev;
2873         }
2874
2875         return 0;
2876 }
2877
2878
2879 /*
2880  * Find out how many pages are allowed for a single swap device. There
2881  * are two limiting factors:
2882  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2883  * 2) the number of bits in the swap pte, as defined by the different
2884  * architectures.
2885  *
2886  * In order to find the largest possible bit mask, a swap entry with
2887  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2888  * decoded to a swp_entry_t again, and finally the swap offset is
2889  * extracted.
2890  *
2891  * This will mask all the bits from the initial ~0UL mask that can't
2892  * be encoded in either the swp_entry_t or the architecture definition
2893  * of a swap pte.
2894  */
2895 unsigned long generic_max_swapfile_size(void)
2896 {
2897         return swp_offset(pte_to_swp_entry(
2898                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2899 }
2900
2901 /* Can be overridden by an architecture for additional checks. */
2902 __weak unsigned long max_swapfile_size(void)
2903 {
2904         return generic_max_swapfile_size();
2905 }
2906
2907 static unsigned long read_swap_header(struct swap_info_struct *p,
2908                                         union swap_header *swap_header,
2909                                         struct inode *inode)
2910 {
2911         int i;
2912         unsigned long maxpages;
2913         unsigned long swapfilepages;
2914         unsigned long last_page;
2915
2916         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2917                 pr_err("Unable to find swap-space signature\n");
2918                 return 0;
2919         }
2920
2921         /* swap partition endianness hack... */
2922         if (swab32(swap_header->info.version) == 1) {
2923                 swab32s(&swap_header->info.version);
2924                 swab32s(&swap_header->info.last_page);
2925                 swab32s(&swap_header->info.nr_badpages);
2926                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2927                         return 0;
2928                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2929                         swab32s(&swap_header->info.badpages[i]);
2930         }
2931         /* Check the swap header's sub-version */
2932         if (swap_header->info.version != 1) {
2933                 pr_warn("Unable to handle swap header version %d\n",
2934                         swap_header->info.version);
2935                 return 0;
2936         }
2937
2938         p->lowest_bit  = 1;
2939         p->cluster_next = 1;
2940         p->cluster_nr = 0;
2941
2942         maxpages = max_swapfile_size();
2943         last_page = swap_header->info.last_page;
2944         if (!last_page) {
2945                 pr_warn("Empty swap-file\n");
2946                 return 0;
2947         }
2948         if (last_page > maxpages) {
2949                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2950                         maxpages << (PAGE_SHIFT - 10),
2951                         last_page << (PAGE_SHIFT - 10));
2952         }
2953         if (maxpages > last_page) {
2954                 maxpages = last_page + 1;
2955                 /* p->max is an unsigned int: don't overflow it */
2956                 if ((unsigned int)maxpages == 0)
2957                         maxpages = UINT_MAX;
2958         }
2959         p->highest_bit = maxpages - 1;
2960
2961         if (!maxpages)
2962                 return 0;
2963         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2964         if (swapfilepages && maxpages > swapfilepages) {
2965                 pr_warn("Swap area shorter than signature indicates\n");
2966                 return 0;
2967         }
2968         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2969                 return 0;
2970         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2971                 return 0;
2972
2973         return maxpages;
2974 }
2975
2976 #define SWAP_CLUSTER_INFO_COLS                                          \
2977         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2978 #define SWAP_CLUSTER_SPACE_COLS                                         \
2979         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2980 #define SWAP_CLUSTER_COLS                                               \
2981         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2982
2983 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2984                                         union swap_header *swap_header,
2985                                         unsigned char *swap_map,
2986                                         struct swap_cluster_info *cluster_info,
2987                                         unsigned long maxpages,
2988                                         sector_t *span)
2989 {
2990         unsigned int j, k;
2991         unsigned int nr_good_pages;
2992         int nr_extents;
2993         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2994         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2995         unsigned long i, idx;
2996
2997         nr_good_pages = maxpages - 1;   /* omit header page */
2998
2999         cluster_list_init(&p->free_clusters);
3000         cluster_list_init(&p->discard_clusters);
3001
3002         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3003                 unsigned int page_nr = swap_header->info.badpages[i];
3004                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3005                         return -EINVAL;
3006                 if (page_nr < maxpages) {
3007                         swap_map[page_nr] = SWAP_MAP_BAD;
3008                         nr_good_pages--;
3009                         /*
3010                          * Haven't marked the cluster free yet, no list
3011                          * operation involved
3012                          */
3013                         inc_cluster_info_page(p, cluster_info, page_nr);
3014                 }
3015         }
3016
3017         /* Haven't marked the cluster free yet, no list operation involved */
3018         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3019                 inc_cluster_info_page(p, cluster_info, i);
3020
3021         if (nr_good_pages) {
3022                 swap_map[0] = SWAP_MAP_BAD;
3023                 /*
3024                  * Not mark the cluster free yet, no list
3025                  * operation involved
3026                  */
3027                 inc_cluster_info_page(p, cluster_info, 0);
3028                 p->max = maxpages;
3029                 p->pages = nr_good_pages;
3030                 nr_extents = setup_swap_extents(p, span);
3031                 if (nr_extents < 0)
3032                         return nr_extents;
3033                 nr_good_pages = p->pages;
3034         }
3035         if (!nr_good_pages) {
3036                 pr_warn("Empty swap-file\n");
3037                 return -EINVAL;
3038         }
3039
3040         if (!cluster_info)
3041                 return nr_extents;
3042
3043
3044         /*
3045          * Reduce false cache line sharing between cluster_info and
3046          * sharing same address space.
3047          */
3048         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3049                 j = (k + col) % SWAP_CLUSTER_COLS;
3050                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3051                         idx = i * SWAP_CLUSTER_COLS + j;
3052                         if (idx >= nr_clusters)
3053                                 continue;
3054                         if (cluster_count(&cluster_info[idx]))
3055                                 continue;
3056                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3057                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3058                                               idx);
3059                 }
3060         }
3061         return nr_extents;
3062 }
3063
3064 /*
3065  * Helper to sys_swapon determining if a given swap
3066  * backing device queue supports DISCARD operations.
3067  */
3068 static bool swap_discardable(struct swap_info_struct *si)
3069 {
3070         struct request_queue *q = bdev_get_queue(si->bdev);
3071
3072         if (!blk_queue_discard(q))
3073                 return false;
3074
3075         return true;
3076 }
3077
3078 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3079 {
3080         struct swap_info_struct *p;
3081         struct filename *name;
3082         struct file *swap_file = NULL;
3083         struct address_space *mapping;
3084         struct dentry *dentry;
3085         int prio;
3086         int error;
3087         union swap_header *swap_header;
3088         int nr_extents;
3089         sector_t span;
3090         unsigned long maxpages;
3091         unsigned char *swap_map = NULL;
3092         struct swap_cluster_info *cluster_info = NULL;
3093         unsigned long *frontswap_map = NULL;
3094         struct page *page = NULL;
3095         struct inode *inode = NULL;
3096         bool inced_nr_rotate_swap = false;
3097
3098         if (swap_flags & ~SWAP_FLAGS_VALID)
3099                 return -EINVAL;
3100
3101         if (!capable(CAP_SYS_ADMIN))
3102                 return -EPERM;
3103
3104         if (!swap_avail_heads)
3105                 return -ENOMEM;
3106
3107         p = alloc_swap_info();
3108         if (IS_ERR(p))
3109                 return PTR_ERR(p);
3110
3111         INIT_WORK(&p->discard_work, swap_discard_work);
3112
3113         name = getname(specialfile);
3114         if (IS_ERR(name)) {
3115                 error = PTR_ERR(name);
3116                 name = NULL;
3117                 goto bad_swap;
3118         }
3119         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3120         if (IS_ERR(swap_file)) {
3121                 error = PTR_ERR(swap_file);
3122                 swap_file = NULL;
3123                 goto bad_swap;
3124         }
3125
3126         p->swap_file = swap_file;
3127         mapping = swap_file->f_mapping;
3128         dentry = swap_file->f_path.dentry;
3129         inode = mapping->host;
3130
3131         error = claim_swapfile(p, inode);
3132         if (unlikely(error))
3133                 goto bad_swap;
3134
3135         inode_lock(inode);
3136         if (d_unlinked(dentry) || cant_mount(dentry)) {
3137                 error = -ENOENT;
3138                 goto bad_swap_unlock_inode;
3139         }
3140         if (IS_SWAPFILE(inode)) {
3141                 error = -EBUSY;
3142                 goto bad_swap_unlock_inode;
3143         }
3144
3145         /*
3146          * Read the swap header.
3147          */
3148         if (!mapping->a_ops->readpage) {
3149                 error = -EINVAL;
3150                 goto bad_swap_unlock_inode;
3151         }
3152         page = read_mapping_page(mapping, 0, swap_file);
3153         if (IS_ERR(page)) {
3154                 error = PTR_ERR(page);
3155                 goto bad_swap_unlock_inode;
3156         }
3157         swap_header = kmap(page);
3158
3159         maxpages = read_swap_header(p, swap_header, inode);
3160         if (unlikely(!maxpages)) {
3161                 error = -EINVAL;
3162                 goto bad_swap_unlock_inode;
3163         }
3164
3165         /* OK, set up the swap map and apply the bad block list */
3166         swap_map = vzalloc(maxpages);
3167         if (!swap_map) {
3168                 error = -ENOMEM;
3169                 goto bad_swap_unlock_inode;
3170         }
3171
3172         if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3173                 p->flags |= SWP_STABLE_WRITES;
3174
3175         if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3176                 p->flags |= SWP_SYNCHRONOUS_IO;
3177
3178         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3179                 int cpu;
3180                 unsigned long ci, nr_cluster;
3181
3182                 p->flags |= SWP_SOLIDSTATE;
3183                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3184                 if (!p->cluster_next_cpu) {
3185                         error = -ENOMEM;
3186                         goto bad_swap_unlock_inode;
3187                 }
3188                 /*
3189                  * select a random position to start with to help wear leveling
3190                  * SSD
3191                  */
3192                 for_each_possible_cpu(cpu) {
3193                         per_cpu(*p->cluster_next_cpu, cpu) =
3194                                 1 + prandom_u32_max(p->highest_bit);
3195                 }
3196                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3197
3198                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3199                                         GFP_KERNEL);
3200                 if (!cluster_info) {
3201                         error = -ENOMEM;
3202                         goto bad_swap_unlock_inode;
3203                 }
3204
3205                 for (ci = 0; ci < nr_cluster; ci++)
3206                         spin_lock_init(&((cluster_info + ci)->lock));
3207
3208                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3209                 if (!p->percpu_cluster) {
3210                         error = -ENOMEM;
3211                         goto bad_swap_unlock_inode;
3212                 }
3213                 for_each_possible_cpu(cpu) {
3214                         struct percpu_cluster *cluster;
3215                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3216                         cluster_set_null(&cluster->index);
3217                 }
3218         } else {
3219                 atomic_inc(&nr_rotate_swap);
3220                 inced_nr_rotate_swap = true;
3221         }
3222
3223         error = swap_cgroup_swapon(p->type, maxpages);
3224         if (error)
3225                 goto bad_swap_unlock_inode;
3226
3227         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3228                 cluster_info, maxpages, &span);
3229         if (unlikely(nr_extents < 0)) {
3230                 error = nr_extents;
3231                 goto bad_swap_unlock_inode;
3232         }
3233         /* frontswap enabled? set up bit-per-page map for frontswap */
3234         if (IS_ENABLED(CONFIG_FRONTSWAP))
3235                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3236                                          sizeof(long),
3237                                          GFP_KERNEL);
3238
3239         if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3240                 /*
3241                  * When discard is enabled for swap with no particular
3242                  * policy flagged, we set all swap discard flags here in
3243                  * order to sustain backward compatibility with older
3244                  * swapon(8) releases.
3245                  */
3246                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3247                              SWP_PAGE_DISCARD);
3248
3249                 /*
3250                  * By flagging sys_swapon, a sysadmin can tell us to
3251                  * either do single-time area discards only, or to just
3252                  * perform discards for released swap page-clusters.
3253                  * Now it's time to adjust the p->flags accordingly.
3254                  */
3255                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3256                         p->flags &= ~SWP_PAGE_DISCARD;
3257                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3258                         p->flags &= ~SWP_AREA_DISCARD;
3259
3260                 /* issue a swapon-time discard if it's still required */
3261                 if (p->flags & SWP_AREA_DISCARD) {
3262                         int err = discard_swap(p);
3263                         if (unlikely(err))
3264                                 pr_err("swapon: discard_swap(%p): %d\n",
3265                                         p, err);
3266                 }
3267         }
3268
3269         error = init_swap_address_space(p->type, maxpages);
3270         if (error)
3271                 goto bad_swap_unlock_inode;
3272
3273         /*
3274          * Flush any pending IO and dirty mappings before we start using this
3275          * swap device.
3276          */
3277         inode->i_flags |= S_SWAPFILE;
3278         error = inode_drain_writes(inode);
3279         if (error) {
3280                 inode->i_flags &= ~S_SWAPFILE;
3281                 goto free_swap_address_space;
3282         }
3283
3284         mutex_lock(&swapon_mutex);
3285         prio = -1;
3286         if (swap_flags & SWAP_FLAG_PREFER)
3287                 prio =
3288                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3289         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3290
3291         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3292                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3293                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3294                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3295                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3296                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3297                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3298                 (frontswap_map) ? "FS" : "");
3299
3300         mutex_unlock(&swapon_mutex);
3301         atomic_inc(&proc_poll_event);
3302         wake_up_interruptible(&proc_poll_wait);
3303
3304         error = 0;
3305         goto out;
3306 free_swap_address_space:
3307         exit_swap_address_space(p->type);
3308 bad_swap_unlock_inode:
3309         inode_unlock(inode);
3310 bad_swap:
3311         free_percpu(p->percpu_cluster);
3312         p->percpu_cluster = NULL;
3313         free_percpu(p->cluster_next_cpu);
3314         p->cluster_next_cpu = NULL;
3315         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3316                 set_blocksize(p->bdev, p->old_block_size);
3317                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3318         }
3319         inode = NULL;
3320         destroy_swap_extents(p);
3321         swap_cgroup_swapoff(p->type);
3322         spin_lock(&swap_lock);
3323         p->swap_file = NULL;
3324         p->flags = 0;
3325         spin_unlock(&swap_lock);
3326         vfree(swap_map);
3327         kvfree(cluster_info);
3328         kvfree(frontswap_map);
3329         if (inced_nr_rotate_swap)
3330                 atomic_dec(&nr_rotate_swap);
3331         if (swap_file)
3332                 filp_close(swap_file, NULL);
3333 out:
3334         if (page && !IS_ERR(page)) {
3335                 kunmap(page);
3336                 put_page(page);
3337         }
3338         if (name)
3339                 putname(name);
3340         if (inode)
3341                 inode_unlock(inode);
3342         if (!error)
3343                 enable_swap_slots_cache();
3344         return error;
3345 }
3346
3347 void si_swapinfo(struct sysinfo *val)
3348 {
3349         unsigned int type;
3350         unsigned long nr_to_be_unused = 0;
3351
3352         spin_lock(&swap_lock);
3353         for (type = 0; type < nr_swapfiles; type++) {
3354                 struct swap_info_struct *si = swap_info[type];
3355
3356                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3357                         nr_to_be_unused += si->inuse_pages;
3358         }
3359         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3360         val->totalswap = total_swap_pages + nr_to_be_unused;
3361         spin_unlock(&swap_lock);
3362 }
3363
3364 /*
3365  * Verify that a swap entry is valid and increment its swap map count.
3366  *
3367  * Returns error code in following case.
3368  * - success -> 0
3369  * - swp_entry is invalid -> EINVAL
3370  * - swp_entry is migration entry -> EINVAL
3371  * - swap-cache reference is requested but there is already one. -> EEXIST
3372  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3373  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3374  */
3375 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3376 {
3377         struct swap_info_struct *p;
3378         struct swap_cluster_info *ci;
3379         unsigned long offset;
3380         unsigned char count;
3381         unsigned char has_cache;
3382         int err;
3383
3384         p = get_swap_device(entry);
3385         if (!p)
3386                 return -EINVAL;
3387
3388         offset = swp_offset(entry);
3389         ci = lock_cluster_or_swap_info(p, offset);
3390
3391         count = p->swap_map[offset];
3392
3393         /*
3394          * swapin_readahead() doesn't check if a swap entry is valid, so the
3395          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3396          */
3397         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3398                 err = -ENOENT;
3399                 goto unlock_out;
3400         }
3401
3402         has_cache = count & SWAP_HAS_CACHE;
3403         count &= ~SWAP_HAS_CACHE;
3404         err = 0;
3405
3406         if (usage == SWAP_HAS_CACHE) {
3407
3408                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3409                 if (!has_cache && count)
3410                         has_cache = SWAP_HAS_CACHE;
3411                 else if (has_cache)             /* someone else added cache */
3412                         err = -EEXIST;
3413                 else                            /* no users remaining */
3414                         err = -ENOENT;
3415
3416         } else if (count || has_cache) {
3417
3418                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3419                         count += usage;
3420                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3421                         err = -EINVAL;
3422                 else if (swap_count_continued(p, offset, count))
3423                         count = COUNT_CONTINUED;
3424                 else
3425                         err = -ENOMEM;
3426         } else
3427                 err = -ENOENT;                  /* unused swap entry */
3428
3429         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3430
3431 unlock_out:
3432         unlock_cluster_or_swap_info(p, ci);
3433         if (p)
3434                 put_swap_device(p);
3435         return err;
3436 }
3437
3438 /*
3439  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3440  * (in which case its reference count is never incremented).
3441  */
3442 void swap_shmem_alloc(swp_entry_t entry)
3443 {
3444         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3445 }
3446
3447 /*
3448  * Increase reference count of swap entry by 1.
3449  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3450  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3451  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3452  * might occur if a page table entry has got corrupted.
3453  */
3454 int swap_duplicate(swp_entry_t entry)
3455 {
3456         int err = 0;
3457
3458         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3459                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3460         return err;
3461 }
3462
3463 /*
3464  * @entry: swap entry for which we allocate swap cache.
3465  *
3466  * Called when allocating swap cache for existing swap entry,
3467  * This can return error codes. Returns 0 at success.
3468  * -EEXIST means there is a swap cache.
3469  * Note: return code is different from swap_duplicate().
3470  */
3471 int swapcache_prepare(swp_entry_t entry)
3472 {
3473         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3474 }
3475
3476 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3477 {
3478         return swap_type_to_swap_info(swp_type(entry));
3479 }
3480
3481 struct swap_info_struct *page_swap_info(struct page *page)
3482 {
3483         swp_entry_t entry = { .val = page_private(page) };
3484         return swp_swap_info(entry);
3485 }
3486
3487 /*
3488  * out-of-line methods to avoid include hell.
3489  */
3490 struct address_space *swapcache_mapping(struct folio *folio)
3491 {
3492         return page_swap_info(&folio->page)->swap_file->f_mapping;
3493 }
3494 EXPORT_SYMBOL_GPL(swapcache_mapping);
3495
3496 pgoff_t __page_file_index(struct page *page)
3497 {
3498         swp_entry_t swap = { .val = page_private(page) };
3499         return swp_offset(swap);
3500 }
3501 EXPORT_SYMBOL_GPL(__page_file_index);
3502
3503 /*
3504  * add_swap_count_continuation - called when a swap count is duplicated
3505  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3506  * page of the original vmalloc'ed swap_map, to hold the continuation count
3507  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3508  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3509  *
3510  * These continuation pages are seldom referenced: the common paths all work
3511  * on the original swap_map, only referring to a continuation page when the
3512  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3513  *
3514  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3515  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3516  * can be called after dropping locks.
3517  */
3518 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3519 {
3520         struct swap_info_struct *si;
3521         struct swap_cluster_info *ci;
3522         struct page *head;
3523         struct page *page;
3524         struct page *list_page;
3525         pgoff_t offset;
3526         unsigned char count;
3527         int ret = 0;
3528
3529         /*
3530          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3531          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3532          */
3533         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3534
3535         si = get_swap_device(entry);
3536         if (!si) {
3537                 /*
3538                  * An acceptable race has occurred since the failing
3539                  * __swap_duplicate(): the swap device may be swapoff
3540                  */
3541                 goto outer;
3542         }
3543         spin_lock(&si->lock);
3544
3545         offset = swp_offset(entry);
3546
3547         ci = lock_cluster(si, offset);
3548
3549         count = swap_count(si->swap_map[offset]);
3550
3551         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3552                 /*
3553                  * The higher the swap count, the more likely it is that tasks
3554                  * will race to add swap count continuation: we need to avoid
3555                  * over-provisioning.
3556                  */
3557                 goto out;
3558         }
3559
3560         if (!page) {
3561                 ret = -ENOMEM;
3562                 goto out;
3563         }
3564
3565         /*
3566          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3567          * no architecture is using highmem pages for kernel page tables: so it
3568          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3569          */
3570         head = vmalloc_to_page(si->swap_map + offset);
3571         offset &= ~PAGE_MASK;
3572
3573         spin_lock(&si->cont_lock);
3574         /*
3575          * Page allocation does not initialize the page's lru field,
3576          * but it does always reset its private field.
3577          */
3578         if (!page_private(head)) {
3579                 BUG_ON(count & COUNT_CONTINUED);
3580                 INIT_LIST_HEAD(&head->lru);
3581                 set_page_private(head, SWP_CONTINUED);
3582                 si->flags |= SWP_CONTINUED;
3583         }
3584
3585         list_for_each_entry(list_page, &head->lru, lru) {
3586                 unsigned char *map;
3587
3588                 /*
3589                  * If the previous map said no continuation, but we've found
3590                  * a continuation page, free our allocation and use this one.
3591                  */
3592                 if (!(count & COUNT_CONTINUED))
3593                         goto out_unlock_cont;
3594
3595                 map = kmap_atomic(list_page) + offset;
3596                 count = *map;
3597                 kunmap_atomic(map);
3598
3599                 /*
3600                  * If this continuation count now has some space in it,
3601                  * free our allocation and use this one.
3602                  */
3603                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3604                         goto out_unlock_cont;
3605         }
3606
3607         list_add_tail(&page->lru, &head->lru);
3608         page = NULL;                    /* now it's attached, don't free it */
3609 out_unlock_cont:
3610         spin_unlock(&si->cont_lock);
3611 out:
3612         unlock_cluster(ci);
3613         spin_unlock(&si->lock);
3614         put_swap_device(si);
3615 outer:
3616         if (page)
3617                 __free_page(page);
3618         return ret;
3619 }
3620
3621 /*
3622  * swap_count_continued - when the original swap_map count is incremented
3623  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3624  * into, carry if so, or else fail until a new continuation page is allocated;
3625  * when the original swap_map count is decremented from 0 with continuation,
3626  * borrow from the continuation and report whether it still holds more.
3627  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3628  * lock.
3629  */
3630 static bool swap_count_continued(struct swap_info_struct *si,
3631                                  pgoff_t offset, unsigned char count)
3632 {
3633         struct page *head;
3634         struct page *page;
3635         unsigned char *map;
3636         bool ret;
3637
3638         head = vmalloc_to_page(si->swap_map + offset);
3639         if (page_private(head) != SWP_CONTINUED) {
3640                 BUG_ON(count & COUNT_CONTINUED);
3641                 return false;           /* need to add count continuation */
3642         }
3643
3644         spin_lock(&si->cont_lock);
3645         offset &= ~PAGE_MASK;
3646         page = list_next_entry(head, lru);
3647         map = kmap_atomic(page) + offset;
3648
3649         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3650                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3651
3652         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3653                 /*
3654                  * Think of how you add 1 to 999
3655                  */
3656                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3657                         kunmap_atomic(map);
3658                         page = list_next_entry(page, lru);
3659                         BUG_ON(page == head);
3660                         map = kmap_atomic(page) + offset;
3661                 }
3662                 if (*map == SWAP_CONT_MAX) {
3663                         kunmap_atomic(map);
3664                         page = list_next_entry(page, lru);
3665                         if (page == head) {
3666                                 ret = false;    /* add count continuation */
3667                                 goto out;
3668                         }
3669                         map = kmap_atomic(page) + offset;
3670 init_map:               *map = 0;               /* we didn't zero the page */
3671                 }
3672                 *map += 1;
3673                 kunmap_atomic(map);
3674                 while ((page = list_prev_entry(page, lru)) != head) {
3675                         map = kmap_atomic(page) + offset;
3676                         *map = COUNT_CONTINUED;
3677                         kunmap_atomic(map);
3678                 }
3679                 ret = true;                     /* incremented */
3680
3681         } else {                                /* decrementing */
3682                 /*
3683                  * Think of how you subtract 1 from 1000
3684                  */
3685                 BUG_ON(count != COUNT_CONTINUED);
3686                 while (*map == COUNT_CONTINUED) {
3687                         kunmap_atomic(map);
3688                         page = list_next_entry(page, lru);
3689                         BUG_ON(page == head);
3690                         map = kmap_atomic(page) + offset;
3691                 }
3692                 BUG_ON(*map == 0);
3693                 *map -= 1;
3694                 if (*map == 0)
3695                         count = 0;
3696                 kunmap_atomic(map);
3697                 while ((page = list_prev_entry(page, lru)) != head) {
3698                         map = kmap_atomic(page) + offset;
3699                         *map = SWAP_CONT_MAX | count;
3700                         count = COUNT_CONTINUED;
3701                         kunmap_atomic(map);
3702                 }
3703                 ret = count == COUNT_CONTINUED;
3704         }
3705 out:
3706         spin_unlock(&si->cont_lock);
3707         return ret;
3708 }
3709
3710 /*
3711  * free_swap_count_continuations - swapoff free all the continuation pages
3712  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3713  */
3714 static void free_swap_count_continuations(struct swap_info_struct *si)
3715 {
3716         pgoff_t offset;
3717
3718         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3719                 struct page *head;
3720                 head = vmalloc_to_page(si->swap_map + offset);
3721                 if (page_private(head)) {
3722                         struct page *page, *next;
3723
3724                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3725                                 list_del(&page->lru);
3726                                 __free_page(page);
3727                         }
3728                 }
3729         }
3730 }
3731
3732 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3733 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3734 {
3735         struct swap_info_struct *si, *next;
3736         int nid = page_to_nid(page);
3737
3738         if (!(gfp_mask & __GFP_IO))
3739                 return;
3740
3741         if (!blk_cgroup_congested())
3742                 return;
3743
3744         /*
3745          * We've already scheduled a throttle, avoid taking the global swap
3746          * lock.
3747          */
3748         if (current->throttle_queue)
3749                 return;
3750
3751         spin_lock(&swap_avail_lock);
3752         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3753                                   avail_lists[nid]) {
3754                 if (si->bdev) {
3755                         blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3756                         break;
3757                 }
3758         }
3759         spin_unlock(&swap_avail_lock);
3760 }
3761 #endif
3762
3763 static int __init swapfile_init(void)
3764 {
3765         int nid;
3766
3767         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3768                                          GFP_KERNEL);
3769         if (!swap_avail_heads) {
3770                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3771                 return -ENOMEM;
3772         }
3773
3774         for_each_node(nid)
3775                 plist_head_init(&swap_avail_heads[nid]);
3776
3777         return 0;
3778 }
3779 subsys_initcall(swapfile_init);