Merge tag 'auxdisplay-6.3' of https://github.com/ojeda/linux
[linux-2.6-microblaze.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/frontswap.h>
39 #include <linux/swapfile.h>
40 #include <linux/export.h>
41 #include <linux/swap_slots.h>
42 #include <linux/sort.h>
43 #include <linux/completion.h>
44
45 #include <asm/tlbflush.h>
46 #include <linux/swapops.h>
47 #include <linux/swap_cgroup.h>
48 #include "swap.h"
49
50 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
51                                  unsigned char);
52 static void free_swap_count_continuations(struct swap_info_struct *);
53
54 static DEFINE_SPINLOCK(swap_lock);
55 static unsigned int nr_swapfiles;
56 atomic_long_t nr_swap_pages;
57 /*
58  * Some modules use swappable objects and may try to swap them out under
59  * memory pressure (via the shrinker). Before doing so, they may wish to
60  * check to see if any swap space is available.
61  */
62 EXPORT_SYMBOL_GPL(nr_swap_pages);
63 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
64 long total_swap_pages;
65 static int least_priority = -1;
66 unsigned long swapfile_maximum_size;
67 #ifdef CONFIG_MIGRATION
68 bool swap_migration_ad_supported;
69 #endif  /* CONFIG_MIGRATION */
70
71 static const char Bad_file[] = "Bad swap file entry ";
72 static const char Unused_file[] = "Unused swap file entry ";
73 static const char Bad_offset[] = "Bad swap offset entry ";
74 static const char Unused_offset[] = "Unused swap offset entry ";
75
76 /*
77  * all active swap_info_structs
78  * protected with swap_lock, and ordered by priority.
79  */
80 static PLIST_HEAD(swap_active_head);
81
82 /*
83  * all available (active, not full) swap_info_structs
84  * protected with swap_avail_lock, ordered by priority.
85  * This is used by folio_alloc_swap() instead of swap_active_head
86  * because swap_active_head includes all swap_info_structs,
87  * but folio_alloc_swap() doesn't need to look at full ones.
88  * This uses its own lock instead of swap_lock because when a
89  * swap_info_struct changes between not-full/full, it needs to
90  * add/remove itself to/from this list, but the swap_info_struct->lock
91  * is held and the locking order requires swap_lock to be taken
92  * before any swap_info_struct->lock.
93  */
94 static struct plist_head *swap_avail_heads;
95 static DEFINE_SPINLOCK(swap_avail_lock);
96
97 struct swap_info_struct *swap_info[MAX_SWAPFILES];
98
99 static DEFINE_MUTEX(swapon_mutex);
100
101 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
102 /* Activity counter to indicate that a swapon or swapoff has occurred */
103 static atomic_t proc_poll_event = ATOMIC_INIT(0);
104
105 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
106
107 static struct swap_info_struct *swap_type_to_swap_info(int type)
108 {
109         if (type >= MAX_SWAPFILES)
110                 return NULL;
111
112         return READ_ONCE(swap_info[type]); /* rcu_dereference() */
113 }
114
115 static inline unsigned char swap_count(unsigned char ent)
116 {
117         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
118 }
119
120 /* Reclaim the swap entry anyway if possible */
121 #define TTRS_ANYWAY             0x1
122 /*
123  * Reclaim the swap entry if there are no more mappings of the
124  * corresponding page
125  */
126 #define TTRS_UNMAPPED           0x2
127 /* Reclaim the swap entry if swap is getting full*/
128 #define TTRS_FULL               0x4
129
130 /* returns 1 if swap entry is freed */
131 static int __try_to_reclaim_swap(struct swap_info_struct *si,
132                                  unsigned long offset, unsigned long flags)
133 {
134         swp_entry_t entry = swp_entry(si->type, offset);
135         struct folio *folio;
136         int ret = 0;
137
138         folio = filemap_get_folio(swap_address_space(entry), offset);
139         if (!folio)
140                 return 0;
141         /*
142          * When this function is called from scan_swap_map_slots() and it's
143          * called by vmscan.c at reclaiming folios. So we hold a folio lock
144          * here. We have to use trylock for avoiding deadlock. This is a special
145          * case and you should use folio_free_swap() with explicit folio_lock()
146          * in usual operations.
147          */
148         if (folio_trylock(folio)) {
149                 if ((flags & TTRS_ANYWAY) ||
150                     ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
151                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
152                         ret = folio_free_swap(folio);
153                 folio_unlock(folio);
154         }
155         folio_put(folio);
156         return ret;
157 }
158
159 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
160 {
161         struct rb_node *rb = rb_first(&sis->swap_extent_root);
162         return rb_entry(rb, struct swap_extent, rb_node);
163 }
164
165 static inline struct swap_extent *next_se(struct swap_extent *se)
166 {
167         struct rb_node *rb = rb_next(&se->rb_node);
168         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
169 }
170
171 /*
172  * swapon tell device that all the old swap contents can be discarded,
173  * to allow the swap device to optimize its wear-levelling.
174  */
175 static int discard_swap(struct swap_info_struct *si)
176 {
177         struct swap_extent *se;
178         sector_t start_block;
179         sector_t nr_blocks;
180         int err = 0;
181
182         /* Do not discard the swap header page! */
183         se = first_se(si);
184         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
185         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
186         if (nr_blocks) {
187                 err = blkdev_issue_discard(si->bdev, start_block,
188                                 nr_blocks, GFP_KERNEL);
189                 if (err)
190                         return err;
191                 cond_resched();
192         }
193
194         for (se = next_se(se); se; se = next_se(se)) {
195                 start_block = se->start_block << (PAGE_SHIFT - 9);
196                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
197
198                 err = blkdev_issue_discard(si->bdev, start_block,
199                                 nr_blocks, GFP_KERNEL);
200                 if (err)
201                         break;
202
203                 cond_resched();
204         }
205         return err;             /* That will often be -EOPNOTSUPP */
206 }
207
208 static struct swap_extent *
209 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
210 {
211         struct swap_extent *se;
212         struct rb_node *rb;
213
214         rb = sis->swap_extent_root.rb_node;
215         while (rb) {
216                 se = rb_entry(rb, struct swap_extent, rb_node);
217                 if (offset < se->start_page)
218                         rb = rb->rb_left;
219                 else if (offset >= se->start_page + se->nr_pages)
220                         rb = rb->rb_right;
221                 else
222                         return se;
223         }
224         /* It *must* be present */
225         BUG();
226 }
227
228 sector_t swap_page_sector(struct page *page)
229 {
230         struct swap_info_struct *sis = page_swap_info(page);
231         struct swap_extent *se;
232         sector_t sector;
233         pgoff_t offset;
234
235         offset = __page_file_index(page);
236         se = offset_to_swap_extent(sis, offset);
237         sector = se->start_block + (offset - se->start_page);
238         return sector << (PAGE_SHIFT - 9);
239 }
240
241 /*
242  * swap allocation tell device that a cluster of swap can now be discarded,
243  * to allow the swap device to optimize its wear-levelling.
244  */
245 static void discard_swap_cluster(struct swap_info_struct *si,
246                                  pgoff_t start_page, pgoff_t nr_pages)
247 {
248         struct swap_extent *se = offset_to_swap_extent(si, start_page);
249
250         while (nr_pages) {
251                 pgoff_t offset = start_page - se->start_page;
252                 sector_t start_block = se->start_block + offset;
253                 sector_t nr_blocks = se->nr_pages - offset;
254
255                 if (nr_blocks > nr_pages)
256                         nr_blocks = nr_pages;
257                 start_page += nr_blocks;
258                 nr_pages -= nr_blocks;
259
260                 start_block <<= PAGE_SHIFT - 9;
261                 nr_blocks <<= PAGE_SHIFT - 9;
262                 if (blkdev_issue_discard(si->bdev, start_block,
263                                         nr_blocks, GFP_NOIO))
264                         break;
265
266                 se = next_se(se);
267         }
268 }
269
270 #ifdef CONFIG_THP_SWAP
271 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
272
273 #define swap_entry_size(size)   (size)
274 #else
275 #define SWAPFILE_CLUSTER        256
276
277 /*
278  * Define swap_entry_size() as constant to let compiler to optimize
279  * out some code if !CONFIG_THP_SWAP
280  */
281 #define swap_entry_size(size)   1
282 #endif
283 #define LATENCY_LIMIT           256
284
285 static inline void cluster_set_flag(struct swap_cluster_info *info,
286         unsigned int flag)
287 {
288         info->flags = flag;
289 }
290
291 static inline unsigned int cluster_count(struct swap_cluster_info *info)
292 {
293         return info->data;
294 }
295
296 static inline void cluster_set_count(struct swap_cluster_info *info,
297                                      unsigned int c)
298 {
299         info->data = c;
300 }
301
302 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
303                                          unsigned int c, unsigned int f)
304 {
305         info->flags = f;
306         info->data = c;
307 }
308
309 static inline unsigned int cluster_next(struct swap_cluster_info *info)
310 {
311         return info->data;
312 }
313
314 static inline void cluster_set_next(struct swap_cluster_info *info,
315                                     unsigned int n)
316 {
317         info->data = n;
318 }
319
320 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
321                                          unsigned int n, unsigned int f)
322 {
323         info->flags = f;
324         info->data = n;
325 }
326
327 static inline bool cluster_is_free(struct swap_cluster_info *info)
328 {
329         return info->flags & CLUSTER_FLAG_FREE;
330 }
331
332 static inline bool cluster_is_null(struct swap_cluster_info *info)
333 {
334         return info->flags & CLUSTER_FLAG_NEXT_NULL;
335 }
336
337 static inline void cluster_set_null(struct swap_cluster_info *info)
338 {
339         info->flags = CLUSTER_FLAG_NEXT_NULL;
340         info->data = 0;
341 }
342
343 static inline bool cluster_is_huge(struct swap_cluster_info *info)
344 {
345         if (IS_ENABLED(CONFIG_THP_SWAP))
346                 return info->flags & CLUSTER_FLAG_HUGE;
347         return false;
348 }
349
350 static inline void cluster_clear_huge(struct swap_cluster_info *info)
351 {
352         info->flags &= ~CLUSTER_FLAG_HUGE;
353 }
354
355 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
356                                                      unsigned long offset)
357 {
358         struct swap_cluster_info *ci;
359
360         ci = si->cluster_info;
361         if (ci) {
362                 ci += offset / SWAPFILE_CLUSTER;
363                 spin_lock(&ci->lock);
364         }
365         return ci;
366 }
367
368 static inline void unlock_cluster(struct swap_cluster_info *ci)
369 {
370         if (ci)
371                 spin_unlock(&ci->lock);
372 }
373
374 /*
375  * Determine the locking method in use for this device.  Return
376  * swap_cluster_info if SSD-style cluster-based locking is in place.
377  */
378 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
379                 struct swap_info_struct *si, unsigned long offset)
380 {
381         struct swap_cluster_info *ci;
382
383         /* Try to use fine-grained SSD-style locking if available: */
384         ci = lock_cluster(si, offset);
385         /* Otherwise, fall back to traditional, coarse locking: */
386         if (!ci)
387                 spin_lock(&si->lock);
388
389         return ci;
390 }
391
392 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
393                                                struct swap_cluster_info *ci)
394 {
395         if (ci)
396                 unlock_cluster(ci);
397         else
398                 spin_unlock(&si->lock);
399 }
400
401 static inline bool cluster_list_empty(struct swap_cluster_list *list)
402 {
403         return cluster_is_null(&list->head);
404 }
405
406 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
407 {
408         return cluster_next(&list->head);
409 }
410
411 static void cluster_list_init(struct swap_cluster_list *list)
412 {
413         cluster_set_null(&list->head);
414         cluster_set_null(&list->tail);
415 }
416
417 static void cluster_list_add_tail(struct swap_cluster_list *list,
418                                   struct swap_cluster_info *ci,
419                                   unsigned int idx)
420 {
421         if (cluster_list_empty(list)) {
422                 cluster_set_next_flag(&list->head, idx, 0);
423                 cluster_set_next_flag(&list->tail, idx, 0);
424         } else {
425                 struct swap_cluster_info *ci_tail;
426                 unsigned int tail = cluster_next(&list->tail);
427
428                 /*
429                  * Nested cluster lock, but both cluster locks are
430                  * only acquired when we held swap_info_struct->lock
431                  */
432                 ci_tail = ci + tail;
433                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
434                 cluster_set_next(ci_tail, idx);
435                 spin_unlock(&ci_tail->lock);
436                 cluster_set_next_flag(&list->tail, idx, 0);
437         }
438 }
439
440 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
441                                            struct swap_cluster_info *ci)
442 {
443         unsigned int idx;
444
445         idx = cluster_next(&list->head);
446         if (cluster_next(&list->tail) == idx) {
447                 cluster_set_null(&list->head);
448                 cluster_set_null(&list->tail);
449         } else
450                 cluster_set_next_flag(&list->head,
451                                       cluster_next(&ci[idx]), 0);
452
453         return idx;
454 }
455
456 /* Add a cluster to discard list and schedule it to do discard */
457 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
458                 unsigned int idx)
459 {
460         /*
461          * If scan_swap_map_slots() can't find a free cluster, it will check
462          * si->swap_map directly. To make sure the discarding cluster isn't
463          * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
464          * It will be cleared after discard
465          */
466         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
467                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
468
469         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
470
471         schedule_work(&si->discard_work);
472 }
473
474 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
475 {
476         struct swap_cluster_info *ci = si->cluster_info;
477
478         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
479         cluster_list_add_tail(&si->free_clusters, ci, idx);
480 }
481
482 /*
483  * Doing discard actually. After a cluster discard is finished, the cluster
484  * will be added to free cluster list. caller should hold si->lock.
485 */
486 static void swap_do_scheduled_discard(struct swap_info_struct *si)
487 {
488         struct swap_cluster_info *info, *ci;
489         unsigned int idx;
490
491         info = si->cluster_info;
492
493         while (!cluster_list_empty(&si->discard_clusters)) {
494                 idx = cluster_list_del_first(&si->discard_clusters, info);
495                 spin_unlock(&si->lock);
496
497                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
498                                 SWAPFILE_CLUSTER);
499
500                 spin_lock(&si->lock);
501                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
502                 __free_cluster(si, idx);
503                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
504                                 0, SWAPFILE_CLUSTER);
505                 unlock_cluster(ci);
506         }
507 }
508
509 static void swap_discard_work(struct work_struct *work)
510 {
511         struct swap_info_struct *si;
512
513         si = container_of(work, struct swap_info_struct, discard_work);
514
515         spin_lock(&si->lock);
516         swap_do_scheduled_discard(si);
517         spin_unlock(&si->lock);
518 }
519
520 static void swap_users_ref_free(struct percpu_ref *ref)
521 {
522         struct swap_info_struct *si;
523
524         si = container_of(ref, struct swap_info_struct, users);
525         complete(&si->comp);
526 }
527
528 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
529 {
530         struct swap_cluster_info *ci = si->cluster_info;
531
532         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
533         cluster_list_del_first(&si->free_clusters, ci);
534         cluster_set_count_flag(ci + idx, 0, 0);
535 }
536
537 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
538 {
539         struct swap_cluster_info *ci = si->cluster_info + idx;
540
541         VM_BUG_ON(cluster_count(ci) != 0);
542         /*
543          * If the swap is discardable, prepare discard the cluster
544          * instead of free it immediately. The cluster will be freed
545          * after discard.
546          */
547         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
548             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
549                 swap_cluster_schedule_discard(si, idx);
550                 return;
551         }
552
553         __free_cluster(si, idx);
554 }
555
556 /*
557  * The cluster corresponding to page_nr will be used. The cluster will be
558  * removed from free cluster list and its usage counter will be increased.
559  */
560 static void inc_cluster_info_page(struct swap_info_struct *p,
561         struct swap_cluster_info *cluster_info, unsigned long page_nr)
562 {
563         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
564
565         if (!cluster_info)
566                 return;
567         if (cluster_is_free(&cluster_info[idx]))
568                 alloc_cluster(p, idx);
569
570         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
571         cluster_set_count(&cluster_info[idx],
572                 cluster_count(&cluster_info[idx]) + 1);
573 }
574
575 /*
576  * The cluster corresponding to page_nr decreases one usage. If the usage
577  * counter becomes 0, which means no page in the cluster is in using, we can
578  * optionally discard the cluster and add it to free cluster list.
579  */
580 static void dec_cluster_info_page(struct swap_info_struct *p,
581         struct swap_cluster_info *cluster_info, unsigned long page_nr)
582 {
583         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
584
585         if (!cluster_info)
586                 return;
587
588         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
589         cluster_set_count(&cluster_info[idx],
590                 cluster_count(&cluster_info[idx]) - 1);
591
592         if (cluster_count(&cluster_info[idx]) == 0)
593                 free_cluster(p, idx);
594 }
595
596 /*
597  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
598  * cluster list. Avoiding such abuse to avoid list corruption.
599  */
600 static bool
601 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
602         unsigned long offset)
603 {
604         struct percpu_cluster *percpu_cluster;
605         bool conflict;
606
607         offset /= SWAPFILE_CLUSTER;
608         conflict = !cluster_list_empty(&si->free_clusters) &&
609                 offset != cluster_list_first(&si->free_clusters) &&
610                 cluster_is_free(&si->cluster_info[offset]);
611
612         if (!conflict)
613                 return false;
614
615         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
616         cluster_set_null(&percpu_cluster->index);
617         return true;
618 }
619
620 /*
621  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
622  * might involve allocating a new cluster for current CPU too.
623  */
624 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
625         unsigned long *offset, unsigned long *scan_base)
626 {
627         struct percpu_cluster *cluster;
628         struct swap_cluster_info *ci;
629         unsigned long tmp, max;
630
631 new_cluster:
632         cluster = this_cpu_ptr(si->percpu_cluster);
633         if (cluster_is_null(&cluster->index)) {
634                 if (!cluster_list_empty(&si->free_clusters)) {
635                         cluster->index = si->free_clusters.head;
636                         cluster->next = cluster_next(&cluster->index) *
637                                         SWAPFILE_CLUSTER;
638                 } else if (!cluster_list_empty(&si->discard_clusters)) {
639                         /*
640                          * we don't have free cluster but have some clusters in
641                          * discarding, do discard now and reclaim them, then
642                          * reread cluster_next_cpu since we dropped si->lock
643                          */
644                         swap_do_scheduled_discard(si);
645                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
646                         *offset = *scan_base;
647                         goto new_cluster;
648                 } else
649                         return false;
650         }
651
652         /*
653          * Other CPUs can use our cluster if they can't find a free cluster,
654          * check if there is still free entry in the cluster
655          */
656         tmp = cluster->next;
657         max = min_t(unsigned long, si->max,
658                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
659         if (tmp < max) {
660                 ci = lock_cluster(si, tmp);
661                 while (tmp < max) {
662                         if (!si->swap_map[tmp])
663                                 break;
664                         tmp++;
665                 }
666                 unlock_cluster(ci);
667         }
668         if (tmp >= max) {
669                 cluster_set_null(&cluster->index);
670                 goto new_cluster;
671         }
672         cluster->next = tmp + 1;
673         *offset = tmp;
674         *scan_base = tmp;
675         return true;
676 }
677
678 static void __del_from_avail_list(struct swap_info_struct *p)
679 {
680         int nid;
681
682         for_each_node(nid)
683                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
684 }
685
686 static void del_from_avail_list(struct swap_info_struct *p)
687 {
688         spin_lock(&swap_avail_lock);
689         __del_from_avail_list(p);
690         spin_unlock(&swap_avail_lock);
691 }
692
693 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
694                              unsigned int nr_entries)
695 {
696         unsigned int end = offset + nr_entries - 1;
697
698         if (offset == si->lowest_bit)
699                 si->lowest_bit += nr_entries;
700         if (end == si->highest_bit)
701                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
702         WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
703         if (si->inuse_pages == si->pages) {
704                 si->lowest_bit = si->max;
705                 si->highest_bit = 0;
706                 del_from_avail_list(si);
707         }
708 }
709
710 static void add_to_avail_list(struct swap_info_struct *p)
711 {
712         int nid;
713
714         spin_lock(&swap_avail_lock);
715         for_each_node(nid) {
716                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
717                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
718         }
719         spin_unlock(&swap_avail_lock);
720 }
721
722 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
723                             unsigned int nr_entries)
724 {
725         unsigned long begin = offset;
726         unsigned long end = offset + nr_entries - 1;
727         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
728
729         if (offset < si->lowest_bit)
730                 si->lowest_bit = offset;
731         if (end > si->highest_bit) {
732                 bool was_full = !si->highest_bit;
733
734                 WRITE_ONCE(si->highest_bit, end);
735                 if (was_full && (si->flags & SWP_WRITEOK))
736                         add_to_avail_list(si);
737         }
738         atomic_long_add(nr_entries, &nr_swap_pages);
739         WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
740         if (si->flags & SWP_BLKDEV)
741                 swap_slot_free_notify =
742                         si->bdev->bd_disk->fops->swap_slot_free_notify;
743         else
744                 swap_slot_free_notify = NULL;
745         while (offset <= end) {
746                 arch_swap_invalidate_page(si->type, offset);
747                 frontswap_invalidate_page(si->type, offset);
748                 if (swap_slot_free_notify)
749                         swap_slot_free_notify(si->bdev, offset);
750                 offset++;
751         }
752         clear_shadow_from_swap_cache(si->type, begin, end);
753 }
754
755 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
756 {
757         unsigned long prev;
758
759         if (!(si->flags & SWP_SOLIDSTATE)) {
760                 si->cluster_next = next;
761                 return;
762         }
763
764         prev = this_cpu_read(*si->cluster_next_cpu);
765         /*
766          * Cross the swap address space size aligned trunk, choose
767          * another trunk randomly to avoid lock contention on swap
768          * address space if possible.
769          */
770         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
771             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
772                 /* No free swap slots available */
773                 if (si->highest_bit <= si->lowest_bit)
774                         return;
775                 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
776                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
777                 next = max_t(unsigned int, next, si->lowest_bit);
778         }
779         this_cpu_write(*si->cluster_next_cpu, next);
780 }
781
782 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
783                                              unsigned long offset)
784 {
785         if (data_race(!si->swap_map[offset])) {
786                 spin_lock(&si->lock);
787                 return true;
788         }
789
790         if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
791                 spin_lock(&si->lock);
792                 return true;
793         }
794
795         return false;
796 }
797
798 static int scan_swap_map_slots(struct swap_info_struct *si,
799                                unsigned char usage, int nr,
800                                swp_entry_t slots[])
801 {
802         struct swap_cluster_info *ci;
803         unsigned long offset;
804         unsigned long scan_base;
805         unsigned long last_in_cluster = 0;
806         int latency_ration = LATENCY_LIMIT;
807         int n_ret = 0;
808         bool scanned_many = false;
809
810         /*
811          * We try to cluster swap pages by allocating them sequentially
812          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
813          * way, however, we resort to first-free allocation, starting
814          * a new cluster.  This prevents us from scattering swap pages
815          * all over the entire swap partition, so that we reduce
816          * overall disk seek times between swap pages.  -- sct
817          * But we do now try to find an empty cluster.  -Andrea
818          * And we let swap pages go all over an SSD partition.  Hugh
819          */
820
821         si->flags += SWP_SCANNING;
822         /*
823          * Use percpu scan base for SSD to reduce lock contention on
824          * cluster and swap cache.  For HDD, sequential access is more
825          * important.
826          */
827         if (si->flags & SWP_SOLIDSTATE)
828                 scan_base = this_cpu_read(*si->cluster_next_cpu);
829         else
830                 scan_base = si->cluster_next;
831         offset = scan_base;
832
833         /* SSD algorithm */
834         if (si->cluster_info) {
835                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
836                         goto scan;
837         } else if (unlikely(!si->cluster_nr--)) {
838                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
839                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
840                         goto checks;
841                 }
842
843                 spin_unlock(&si->lock);
844
845                 /*
846                  * If seek is expensive, start searching for new cluster from
847                  * start of partition, to minimize the span of allocated swap.
848                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
849                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
850                  */
851                 scan_base = offset = si->lowest_bit;
852                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
853
854                 /* Locate the first empty (unaligned) cluster */
855                 for (; last_in_cluster <= si->highest_bit; offset++) {
856                         if (si->swap_map[offset])
857                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
858                         else if (offset == last_in_cluster) {
859                                 spin_lock(&si->lock);
860                                 offset -= SWAPFILE_CLUSTER - 1;
861                                 si->cluster_next = offset;
862                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
863                                 goto checks;
864                         }
865                         if (unlikely(--latency_ration < 0)) {
866                                 cond_resched();
867                                 latency_ration = LATENCY_LIMIT;
868                         }
869                 }
870
871                 offset = scan_base;
872                 spin_lock(&si->lock);
873                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
874         }
875
876 checks:
877         if (si->cluster_info) {
878                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
879                 /* take a break if we already got some slots */
880                         if (n_ret)
881                                 goto done;
882                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
883                                                         &scan_base))
884                                 goto scan;
885                 }
886         }
887         if (!(si->flags & SWP_WRITEOK))
888                 goto no_page;
889         if (!si->highest_bit)
890                 goto no_page;
891         if (offset > si->highest_bit)
892                 scan_base = offset = si->lowest_bit;
893
894         ci = lock_cluster(si, offset);
895         /* reuse swap entry of cache-only swap if not busy. */
896         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
897                 int swap_was_freed;
898                 unlock_cluster(ci);
899                 spin_unlock(&si->lock);
900                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
901                 spin_lock(&si->lock);
902                 /* entry was freed successfully, try to use this again */
903                 if (swap_was_freed)
904                         goto checks;
905                 goto scan; /* check next one */
906         }
907
908         if (si->swap_map[offset]) {
909                 unlock_cluster(ci);
910                 if (!n_ret)
911                         goto scan;
912                 else
913                         goto done;
914         }
915         WRITE_ONCE(si->swap_map[offset], usage);
916         inc_cluster_info_page(si, si->cluster_info, offset);
917         unlock_cluster(ci);
918
919         swap_range_alloc(si, offset, 1);
920         slots[n_ret++] = swp_entry(si->type, offset);
921
922         /* got enough slots or reach max slots? */
923         if ((n_ret == nr) || (offset >= si->highest_bit))
924                 goto done;
925
926         /* search for next available slot */
927
928         /* time to take a break? */
929         if (unlikely(--latency_ration < 0)) {
930                 if (n_ret)
931                         goto done;
932                 spin_unlock(&si->lock);
933                 cond_resched();
934                 spin_lock(&si->lock);
935                 latency_ration = LATENCY_LIMIT;
936         }
937
938         /* try to get more slots in cluster */
939         if (si->cluster_info) {
940                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
941                         goto checks;
942         } else if (si->cluster_nr && !si->swap_map[++offset]) {
943                 /* non-ssd case, still more slots in cluster? */
944                 --si->cluster_nr;
945                 goto checks;
946         }
947
948         /*
949          * Even if there's no free clusters available (fragmented),
950          * try to scan a little more quickly with lock held unless we
951          * have scanned too many slots already.
952          */
953         if (!scanned_many) {
954                 unsigned long scan_limit;
955
956                 if (offset < scan_base)
957                         scan_limit = scan_base;
958                 else
959                         scan_limit = si->highest_bit;
960                 for (; offset <= scan_limit && --latency_ration > 0;
961                      offset++) {
962                         if (!si->swap_map[offset])
963                                 goto checks;
964                 }
965         }
966
967 done:
968         set_cluster_next(si, offset + 1);
969         si->flags -= SWP_SCANNING;
970         return n_ret;
971
972 scan:
973         spin_unlock(&si->lock);
974         while (++offset <= READ_ONCE(si->highest_bit)) {
975                 if (unlikely(--latency_ration < 0)) {
976                         cond_resched();
977                         latency_ration = LATENCY_LIMIT;
978                         scanned_many = true;
979                 }
980                 if (swap_offset_available_and_locked(si, offset))
981                         goto checks;
982         }
983         offset = si->lowest_bit;
984         while (offset < scan_base) {
985                 if (unlikely(--latency_ration < 0)) {
986                         cond_resched();
987                         latency_ration = LATENCY_LIMIT;
988                         scanned_many = true;
989                 }
990                 if (swap_offset_available_and_locked(si, offset))
991                         goto checks;
992                 offset++;
993         }
994         spin_lock(&si->lock);
995
996 no_page:
997         si->flags -= SWP_SCANNING;
998         return n_ret;
999 }
1000
1001 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1002 {
1003         unsigned long idx;
1004         struct swap_cluster_info *ci;
1005         unsigned long offset;
1006
1007         /*
1008          * Should not even be attempting cluster allocations when huge
1009          * page swap is disabled.  Warn and fail the allocation.
1010          */
1011         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1012                 VM_WARN_ON_ONCE(1);
1013                 return 0;
1014         }
1015
1016         if (cluster_list_empty(&si->free_clusters))
1017                 return 0;
1018
1019         idx = cluster_list_first(&si->free_clusters);
1020         offset = idx * SWAPFILE_CLUSTER;
1021         ci = lock_cluster(si, offset);
1022         alloc_cluster(si, idx);
1023         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1024
1025         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1026         unlock_cluster(ci);
1027         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1028         *slot = swp_entry(si->type, offset);
1029
1030         return 1;
1031 }
1032
1033 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1034 {
1035         unsigned long offset = idx * SWAPFILE_CLUSTER;
1036         struct swap_cluster_info *ci;
1037
1038         ci = lock_cluster(si, offset);
1039         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1040         cluster_set_count_flag(ci, 0, 0);
1041         free_cluster(si, idx);
1042         unlock_cluster(ci);
1043         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1044 }
1045
1046 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1047 {
1048         unsigned long size = swap_entry_size(entry_size);
1049         struct swap_info_struct *si, *next;
1050         long avail_pgs;
1051         int n_ret = 0;
1052         int node;
1053
1054         /* Only single cluster request supported */
1055         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1056
1057         spin_lock(&swap_avail_lock);
1058
1059         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1060         if (avail_pgs <= 0) {
1061                 spin_unlock(&swap_avail_lock);
1062                 goto noswap;
1063         }
1064
1065         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1066
1067         atomic_long_sub(n_goal * size, &nr_swap_pages);
1068
1069 start_over:
1070         node = numa_node_id();
1071         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1072                 /* requeue si to after same-priority siblings */
1073                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1074                 spin_unlock(&swap_avail_lock);
1075                 spin_lock(&si->lock);
1076                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1077                         spin_lock(&swap_avail_lock);
1078                         if (plist_node_empty(&si->avail_lists[node])) {
1079                                 spin_unlock(&si->lock);
1080                                 goto nextsi;
1081                         }
1082                         WARN(!si->highest_bit,
1083                              "swap_info %d in list but !highest_bit\n",
1084                              si->type);
1085                         WARN(!(si->flags & SWP_WRITEOK),
1086                              "swap_info %d in list but !SWP_WRITEOK\n",
1087                              si->type);
1088                         __del_from_avail_list(si);
1089                         spin_unlock(&si->lock);
1090                         goto nextsi;
1091                 }
1092                 if (size == SWAPFILE_CLUSTER) {
1093                         if (si->flags & SWP_BLKDEV)
1094                                 n_ret = swap_alloc_cluster(si, swp_entries);
1095                 } else
1096                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1097                                                     n_goal, swp_entries);
1098                 spin_unlock(&si->lock);
1099                 if (n_ret || size == SWAPFILE_CLUSTER)
1100                         goto check_out;
1101                 cond_resched();
1102
1103                 spin_lock(&swap_avail_lock);
1104 nextsi:
1105                 /*
1106                  * if we got here, it's likely that si was almost full before,
1107                  * and since scan_swap_map_slots() can drop the si->lock,
1108                  * multiple callers probably all tried to get a page from the
1109                  * same si and it filled up before we could get one; or, the si
1110                  * filled up between us dropping swap_avail_lock and taking
1111                  * si->lock. Since we dropped the swap_avail_lock, the
1112                  * swap_avail_head list may have been modified; so if next is
1113                  * still in the swap_avail_head list then try it, otherwise
1114                  * start over if we have not gotten any slots.
1115                  */
1116                 if (plist_node_empty(&next->avail_lists[node]))
1117                         goto start_over;
1118         }
1119
1120         spin_unlock(&swap_avail_lock);
1121
1122 check_out:
1123         if (n_ret < n_goal)
1124                 atomic_long_add((long)(n_goal - n_ret) * size,
1125                                 &nr_swap_pages);
1126 noswap:
1127         return n_ret;
1128 }
1129
1130 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1131 {
1132         struct swap_info_struct *p;
1133         unsigned long offset;
1134
1135         if (!entry.val)
1136                 goto out;
1137         p = swp_swap_info(entry);
1138         if (!p)
1139                 goto bad_nofile;
1140         if (data_race(!(p->flags & SWP_USED)))
1141                 goto bad_device;
1142         offset = swp_offset(entry);
1143         if (offset >= p->max)
1144                 goto bad_offset;
1145         if (data_race(!p->swap_map[swp_offset(entry)]))
1146                 goto bad_free;
1147         return p;
1148
1149 bad_free:
1150         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1151         goto out;
1152 bad_offset:
1153         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1154         goto out;
1155 bad_device:
1156         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1157         goto out;
1158 bad_nofile:
1159         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1160 out:
1161         return NULL;
1162 }
1163
1164 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1165                                         struct swap_info_struct *q)
1166 {
1167         struct swap_info_struct *p;
1168
1169         p = _swap_info_get(entry);
1170
1171         if (p != q) {
1172                 if (q != NULL)
1173                         spin_unlock(&q->lock);
1174                 if (p != NULL)
1175                         spin_lock(&p->lock);
1176         }
1177         return p;
1178 }
1179
1180 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1181                                               unsigned long offset,
1182                                               unsigned char usage)
1183 {
1184         unsigned char count;
1185         unsigned char has_cache;
1186
1187         count = p->swap_map[offset];
1188
1189         has_cache = count & SWAP_HAS_CACHE;
1190         count &= ~SWAP_HAS_CACHE;
1191
1192         if (usage == SWAP_HAS_CACHE) {
1193                 VM_BUG_ON(!has_cache);
1194                 has_cache = 0;
1195         } else if (count == SWAP_MAP_SHMEM) {
1196                 /*
1197                  * Or we could insist on shmem.c using a special
1198                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1199                  */
1200                 count = 0;
1201         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1202                 if (count == COUNT_CONTINUED) {
1203                         if (swap_count_continued(p, offset, count))
1204                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1205                         else
1206                                 count = SWAP_MAP_MAX;
1207                 } else
1208                         count--;
1209         }
1210
1211         usage = count | has_cache;
1212         if (usage)
1213                 WRITE_ONCE(p->swap_map[offset], usage);
1214         else
1215                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1216
1217         return usage;
1218 }
1219
1220 /*
1221  * Check whether swap entry is valid in the swap device.  If so,
1222  * return pointer to swap_info_struct, and keep the swap entry valid
1223  * via preventing the swap device from being swapoff, until
1224  * put_swap_device() is called.  Otherwise return NULL.
1225  *
1226  * Notice that swapoff or swapoff+swapon can still happen before the
1227  * percpu_ref_tryget_live() in get_swap_device() or after the
1228  * percpu_ref_put() in put_swap_device() if there isn't any other way
1229  * to prevent swapoff, such as page lock, page table lock, etc.  The
1230  * caller must be prepared for that.  For example, the following
1231  * situation is possible.
1232  *
1233  *   CPU1                               CPU2
1234  *   do_swap_page()
1235  *     ...                              swapoff+swapon
1236  *     __read_swap_cache_async()
1237  *       swapcache_prepare()
1238  *         __swap_duplicate()
1239  *           // check swap_map
1240  *     // verify PTE not changed
1241  *
1242  * In __swap_duplicate(), the swap_map need to be checked before
1243  * changing partly because the specified swap entry may be for another
1244  * swap device which has been swapoff.  And in do_swap_page(), after
1245  * the page is read from the swap device, the PTE is verified not
1246  * changed with the page table locked to check whether the swap device
1247  * has been swapoff or swapoff+swapon.
1248  */
1249 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1250 {
1251         struct swap_info_struct *si;
1252         unsigned long offset;
1253
1254         if (!entry.val)
1255                 goto out;
1256         si = swp_swap_info(entry);
1257         if (!si)
1258                 goto bad_nofile;
1259         if (!percpu_ref_tryget_live(&si->users))
1260                 goto out;
1261         /*
1262          * Guarantee the si->users are checked before accessing other
1263          * fields of swap_info_struct.
1264          *
1265          * Paired with the spin_unlock() after setup_swap_info() in
1266          * enable_swap_info().
1267          */
1268         smp_rmb();
1269         offset = swp_offset(entry);
1270         if (offset >= si->max)
1271                 goto put_out;
1272
1273         return si;
1274 bad_nofile:
1275         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1276 out:
1277         return NULL;
1278 put_out:
1279         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1280         percpu_ref_put(&si->users);
1281         return NULL;
1282 }
1283
1284 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1285                                        swp_entry_t entry)
1286 {
1287         struct swap_cluster_info *ci;
1288         unsigned long offset = swp_offset(entry);
1289         unsigned char usage;
1290
1291         ci = lock_cluster_or_swap_info(p, offset);
1292         usage = __swap_entry_free_locked(p, offset, 1);
1293         unlock_cluster_or_swap_info(p, ci);
1294         if (!usage)
1295                 free_swap_slot(entry);
1296
1297         return usage;
1298 }
1299
1300 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1301 {
1302         struct swap_cluster_info *ci;
1303         unsigned long offset = swp_offset(entry);
1304         unsigned char count;
1305
1306         ci = lock_cluster(p, offset);
1307         count = p->swap_map[offset];
1308         VM_BUG_ON(count != SWAP_HAS_CACHE);
1309         p->swap_map[offset] = 0;
1310         dec_cluster_info_page(p, p->cluster_info, offset);
1311         unlock_cluster(ci);
1312
1313         mem_cgroup_uncharge_swap(entry, 1);
1314         swap_range_free(p, offset, 1);
1315 }
1316
1317 /*
1318  * Caller has made sure that the swap device corresponding to entry
1319  * is still around or has not been recycled.
1320  */
1321 void swap_free(swp_entry_t entry)
1322 {
1323         struct swap_info_struct *p;
1324
1325         p = _swap_info_get(entry);
1326         if (p)
1327                 __swap_entry_free(p, entry);
1328 }
1329
1330 /*
1331  * Called after dropping swapcache to decrease refcnt to swap entries.
1332  */
1333 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1334 {
1335         unsigned long offset = swp_offset(entry);
1336         unsigned long idx = offset / SWAPFILE_CLUSTER;
1337         struct swap_cluster_info *ci;
1338         struct swap_info_struct *si;
1339         unsigned char *map;
1340         unsigned int i, free_entries = 0;
1341         unsigned char val;
1342         int size = swap_entry_size(folio_nr_pages(folio));
1343
1344         si = _swap_info_get(entry);
1345         if (!si)
1346                 return;
1347
1348         ci = lock_cluster_or_swap_info(si, offset);
1349         if (size == SWAPFILE_CLUSTER) {
1350                 VM_BUG_ON(!cluster_is_huge(ci));
1351                 map = si->swap_map + offset;
1352                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1353                         val = map[i];
1354                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1355                         if (val == SWAP_HAS_CACHE)
1356                                 free_entries++;
1357                 }
1358                 cluster_clear_huge(ci);
1359                 if (free_entries == SWAPFILE_CLUSTER) {
1360                         unlock_cluster_or_swap_info(si, ci);
1361                         spin_lock(&si->lock);
1362                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1363                         swap_free_cluster(si, idx);
1364                         spin_unlock(&si->lock);
1365                         return;
1366                 }
1367         }
1368         for (i = 0; i < size; i++, entry.val++) {
1369                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1370                         unlock_cluster_or_swap_info(si, ci);
1371                         free_swap_slot(entry);
1372                         if (i == size - 1)
1373                                 return;
1374                         lock_cluster_or_swap_info(si, offset);
1375                 }
1376         }
1377         unlock_cluster_or_swap_info(si, ci);
1378 }
1379
1380 #ifdef CONFIG_THP_SWAP
1381 int split_swap_cluster(swp_entry_t entry)
1382 {
1383         struct swap_info_struct *si;
1384         struct swap_cluster_info *ci;
1385         unsigned long offset = swp_offset(entry);
1386
1387         si = _swap_info_get(entry);
1388         if (!si)
1389                 return -EBUSY;
1390         ci = lock_cluster(si, offset);
1391         cluster_clear_huge(ci);
1392         unlock_cluster(ci);
1393         return 0;
1394 }
1395 #endif
1396
1397 static int swp_entry_cmp(const void *ent1, const void *ent2)
1398 {
1399         const swp_entry_t *e1 = ent1, *e2 = ent2;
1400
1401         return (int)swp_type(*e1) - (int)swp_type(*e2);
1402 }
1403
1404 void swapcache_free_entries(swp_entry_t *entries, int n)
1405 {
1406         struct swap_info_struct *p, *prev;
1407         int i;
1408
1409         if (n <= 0)
1410                 return;
1411
1412         prev = NULL;
1413         p = NULL;
1414
1415         /*
1416          * Sort swap entries by swap device, so each lock is only taken once.
1417          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1418          * so low that it isn't necessary to optimize further.
1419          */
1420         if (nr_swapfiles > 1)
1421                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1422         for (i = 0; i < n; ++i) {
1423                 p = swap_info_get_cont(entries[i], prev);
1424                 if (p)
1425                         swap_entry_free(p, entries[i]);
1426                 prev = p;
1427         }
1428         if (p)
1429                 spin_unlock(&p->lock);
1430 }
1431
1432 int __swap_count(swp_entry_t entry)
1433 {
1434         struct swap_info_struct *si;
1435         pgoff_t offset = swp_offset(entry);
1436         int count = 0;
1437
1438         si = get_swap_device(entry);
1439         if (si) {
1440                 count = swap_count(si->swap_map[offset]);
1441                 put_swap_device(si);
1442         }
1443         return count;
1444 }
1445
1446 /*
1447  * How many references to @entry are currently swapped out?
1448  * This does not give an exact answer when swap count is continued,
1449  * but does include the high COUNT_CONTINUED flag to allow for that.
1450  */
1451 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1452 {
1453         pgoff_t offset = swp_offset(entry);
1454         struct swap_cluster_info *ci;
1455         int count;
1456
1457         ci = lock_cluster_or_swap_info(si, offset);
1458         count = swap_count(si->swap_map[offset]);
1459         unlock_cluster_or_swap_info(si, ci);
1460         return count;
1461 }
1462
1463 /*
1464  * How many references to @entry are currently swapped out?
1465  * This does not give an exact answer when swap count is continued,
1466  * but does include the high COUNT_CONTINUED flag to allow for that.
1467  */
1468 int __swp_swapcount(swp_entry_t entry)
1469 {
1470         int count = 0;
1471         struct swap_info_struct *si;
1472
1473         si = get_swap_device(entry);
1474         if (si) {
1475                 count = swap_swapcount(si, entry);
1476                 put_swap_device(si);
1477         }
1478         return count;
1479 }
1480
1481 /*
1482  * How many references to @entry are currently swapped out?
1483  * This considers COUNT_CONTINUED so it returns exact answer.
1484  */
1485 int swp_swapcount(swp_entry_t entry)
1486 {
1487         int count, tmp_count, n;
1488         struct swap_info_struct *p;
1489         struct swap_cluster_info *ci;
1490         struct page *page;
1491         pgoff_t offset;
1492         unsigned char *map;
1493
1494         p = _swap_info_get(entry);
1495         if (!p)
1496                 return 0;
1497
1498         offset = swp_offset(entry);
1499
1500         ci = lock_cluster_or_swap_info(p, offset);
1501
1502         count = swap_count(p->swap_map[offset]);
1503         if (!(count & COUNT_CONTINUED))
1504                 goto out;
1505
1506         count &= ~COUNT_CONTINUED;
1507         n = SWAP_MAP_MAX + 1;
1508
1509         page = vmalloc_to_page(p->swap_map + offset);
1510         offset &= ~PAGE_MASK;
1511         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1512
1513         do {
1514                 page = list_next_entry(page, lru);
1515                 map = kmap_atomic(page);
1516                 tmp_count = map[offset];
1517                 kunmap_atomic(map);
1518
1519                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1520                 n *= (SWAP_CONT_MAX + 1);
1521         } while (tmp_count & COUNT_CONTINUED);
1522 out:
1523         unlock_cluster_or_swap_info(p, ci);
1524         return count;
1525 }
1526
1527 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1528                                          swp_entry_t entry)
1529 {
1530         struct swap_cluster_info *ci;
1531         unsigned char *map = si->swap_map;
1532         unsigned long roffset = swp_offset(entry);
1533         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1534         int i;
1535         bool ret = false;
1536
1537         ci = lock_cluster_or_swap_info(si, offset);
1538         if (!ci || !cluster_is_huge(ci)) {
1539                 if (swap_count(map[roffset]))
1540                         ret = true;
1541                 goto unlock_out;
1542         }
1543         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1544                 if (swap_count(map[offset + i])) {
1545                         ret = true;
1546                         break;
1547                 }
1548         }
1549 unlock_out:
1550         unlock_cluster_or_swap_info(si, ci);
1551         return ret;
1552 }
1553
1554 static bool folio_swapped(struct folio *folio)
1555 {
1556         swp_entry_t entry = folio_swap_entry(folio);
1557         struct swap_info_struct *si = _swap_info_get(entry);
1558
1559         if (!si)
1560                 return false;
1561
1562         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1563                 return swap_swapcount(si, entry) != 0;
1564
1565         return swap_page_trans_huge_swapped(si, entry);
1566 }
1567
1568 /**
1569  * folio_free_swap() - Free the swap space used for this folio.
1570  * @folio: The folio to remove.
1571  *
1572  * If swap is getting full, or if there are no more mappings of this folio,
1573  * then call folio_free_swap to free its swap space.
1574  *
1575  * Return: true if we were able to release the swap space.
1576  */
1577 bool folio_free_swap(struct folio *folio)
1578 {
1579         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1580
1581         if (!folio_test_swapcache(folio))
1582                 return false;
1583         if (folio_test_writeback(folio))
1584                 return false;
1585         if (folio_swapped(folio))
1586                 return false;
1587
1588         /*
1589          * Once hibernation has begun to create its image of memory,
1590          * there's a danger that one of the calls to folio_free_swap()
1591          * - most probably a call from __try_to_reclaim_swap() while
1592          * hibernation is allocating its own swap pages for the image,
1593          * but conceivably even a call from memory reclaim - will free
1594          * the swap from a folio which has already been recorded in the
1595          * image as a clean swapcache folio, and then reuse its swap for
1596          * another page of the image.  On waking from hibernation, the
1597          * original folio might be freed under memory pressure, then
1598          * later read back in from swap, now with the wrong data.
1599          *
1600          * Hibernation suspends storage while it is writing the image
1601          * to disk so check that here.
1602          */
1603         if (pm_suspended_storage())
1604                 return false;
1605
1606         delete_from_swap_cache(folio);
1607         folio_set_dirty(folio);
1608         return true;
1609 }
1610
1611 /*
1612  * Free the swap entry like above, but also try to
1613  * free the page cache entry if it is the last user.
1614  */
1615 int free_swap_and_cache(swp_entry_t entry)
1616 {
1617         struct swap_info_struct *p;
1618         unsigned char count;
1619
1620         if (non_swap_entry(entry))
1621                 return 1;
1622
1623         p = _swap_info_get(entry);
1624         if (p) {
1625                 count = __swap_entry_free(p, entry);
1626                 if (count == SWAP_HAS_CACHE &&
1627                     !swap_page_trans_huge_swapped(p, entry))
1628                         __try_to_reclaim_swap(p, swp_offset(entry),
1629                                               TTRS_UNMAPPED | TTRS_FULL);
1630         }
1631         return p != NULL;
1632 }
1633
1634 #ifdef CONFIG_HIBERNATION
1635
1636 swp_entry_t get_swap_page_of_type(int type)
1637 {
1638         struct swap_info_struct *si = swap_type_to_swap_info(type);
1639         swp_entry_t entry = {0};
1640
1641         if (!si)
1642                 goto fail;
1643
1644         /* This is called for allocating swap entry, not cache */
1645         spin_lock(&si->lock);
1646         if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1647                 atomic_long_dec(&nr_swap_pages);
1648         spin_unlock(&si->lock);
1649 fail:
1650         return entry;
1651 }
1652
1653 /*
1654  * Find the swap type that corresponds to given device (if any).
1655  *
1656  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1657  * from 0, in which the swap header is expected to be located.
1658  *
1659  * This is needed for the suspend to disk (aka swsusp).
1660  */
1661 int swap_type_of(dev_t device, sector_t offset)
1662 {
1663         int type;
1664
1665         if (!device)
1666                 return -1;
1667
1668         spin_lock(&swap_lock);
1669         for (type = 0; type < nr_swapfiles; type++) {
1670                 struct swap_info_struct *sis = swap_info[type];
1671
1672                 if (!(sis->flags & SWP_WRITEOK))
1673                         continue;
1674
1675                 if (device == sis->bdev->bd_dev) {
1676                         struct swap_extent *se = first_se(sis);
1677
1678                         if (se->start_block == offset) {
1679                                 spin_unlock(&swap_lock);
1680                                 return type;
1681                         }
1682                 }
1683         }
1684         spin_unlock(&swap_lock);
1685         return -ENODEV;
1686 }
1687
1688 int find_first_swap(dev_t *device)
1689 {
1690         int type;
1691
1692         spin_lock(&swap_lock);
1693         for (type = 0; type < nr_swapfiles; type++) {
1694                 struct swap_info_struct *sis = swap_info[type];
1695
1696                 if (!(sis->flags & SWP_WRITEOK))
1697                         continue;
1698                 *device = sis->bdev->bd_dev;
1699                 spin_unlock(&swap_lock);
1700                 return type;
1701         }
1702         spin_unlock(&swap_lock);
1703         return -ENODEV;
1704 }
1705
1706 /*
1707  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1708  * corresponding to given index in swap_info (swap type).
1709  */
1710 sector_t swapdev_block(int type, pgoff_t offset)
1711 {
1712         struct swap_info_struct *si = swap_type_to_swap_info(type);
1713         struct swap_extent *se;
1714
1715         if (!si || !(si->flags & SWP_WRITEOK))
1716                 return 0;
1717         se = offset_to_swap_extent(si, offset);
1718         return se->start_block + (offset - se->start_page);
1719 }
1720
1721 /*
1722  * Return either the total number of swap pages of given type, or the number
1723  * of free pages of that type (depending on @free)
1724  *
1725  * This is needed for software suspend
1726  */
1727 unsigned int count_swap_pages(int type, int free)
1728 {
1729         unsigned int n = 0;
1730
1731         spin_lock(&swap_lock);
1732         if ((unsigned int)type < nr_swapfiles) {
1733                 struct swap_info_struct *sis = swap_info[type];
1734
1735                 spin_lock(&sis->lock);
1736                 if (sis->flags & SWP_WRITEOK) {
1737                         n = sis->pages;
1738                         if (free)
1739                                 n -= sis->inuse_pages;
1740                 }
1741                 spin_unlock(&sis->lock);
1742         }
1743         spin_unlock(&swap_lock);
1744         return n;
1745 }
1746 #endif /* CONFIG_HIBERNATION */
1747
1748 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1749 {
1750         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1751 }
1752
1753 /*
1754  * No need to decide whether this PTE shares the swap entry with others,
1755  * just let do_wp_page work it out if a write is requested later - to
1756  * force COW, vm_page_prot omits write permission from any private vma.
1757  */
1758 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1759                 unsigned long addr, swp_entry_t entry, struct folio *folio)
1760 {
1761         struct page *page = folio_file_page(folio, swp_offset(entry));
1762         struct page *swapcache;
1763         spinlock_t *ptl;
1764         pte_t *pte, new_pte;
1765         bool hwposioned = false;
1766         int ret = 1;
1767
1768         swapcache = page;
1769         page = ksm_might_need_to_copy(page, vma, addr);
1770         if (unlikely(!page))
1771                 return -ENOMEM;
1772         else if (unlikely(PTR_ERR(page) == -EHWPOISON))
1773                 hwposioned = true;
1774
1775         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1776         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1777                 ret = 0;
1778                 goto out;
1779         }
1780
1781         if (unlikely(hwposioned || !PageUptodate(page))) {
1782                 swp_entry_t swp_entry;
1783
1784                 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1785                 if (hwposioned) {
1786                         swp_entry = make_hwpoison_entry(swapcache);
1787                         page = swapcache;
1788                 } else {
1789                         swp_entry = make_swapin_error_entry();
1790                 }
1791                 new_pte = swp_entry_to_pte(swp_entry);
1792                 ret = 0;
1793                 goto setpte;
1794         }
1795
1796         /* See do_swap_page() */
1797         BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1798         BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1799
1800         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1801         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1802         get_page(page);
1803         if (page == swapcache) {
1804                 rmap_t rmap_flags = RMAP_NONE;
1805
1806                 /*
1807                  * See do_swap_page(): PageWriteback() would be problematic.
1808                  * However, we do a wait_on_page_writeback() just before this
1809                  * call and have the page locked.
1810                  */
1811                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1812                 if (pte_swp_exclusive(*pte))
1813                         rmap_flags |= RMAP_EXCLUSIVE;
1814
1815                 page_add_anon_rmap(page, vma, addr, rmap_flags);
1816         } else { /* ksm created a completely new copy */
1817                 page_add_new_anon_rmap(page, vma, addr);
1818                 lru_cache_add_inactive_or_unevictable(page, vma);
1819         }
1820         new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1821         if (pte_swp_soft_dirty(*pte))
1822                 new_pte = pte_mksoft_dirty(new_pte);
1823         if (pte_swp_uffd_wp(*pte))
1824                 new_pte = pte_mkuffd_wp(new_pte);
1825 setpte:
1826         set_pte_at(vma->vm_mm, addr, pte, new_pte);
1827         swap_free(entry);
1828 out:
1829         pte_unmap_unlock(pte, ptl);
1830         if (page != swapcache) {
1831                 unlock_page(page);
1832                 put_page(page);
1833         }
1834         return ret;
1835 }
1836
1837 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1838                         unsigned long addr, unsigned long end,
1839                         unsigned int type)
1840 {
1841         swp_entry_t entry;
1842         pte_t *pte;
1843         struct swap_info_struct *si;
1844         int ret = 0;
1845
1846         si = swap_info[type];
1847         pte = pte_offset_map(pmd, addr);
1848         do {
1849                 struct folio *folio;
1850                 unsigned long offset;
1851                 unsigned char swp_count;
1852
1853                 if (!is_swap_pte(*pte))
1854                         continue;
1855
1856                 entry = pte_to_swp_entry(*pte);
1857                 if (swp_type(entry) != type)
1858                         continue;
1859
1860                 offset = swp_offset(entry);
1861                 pte_unmap(pte);
1862                 folio = swap_cache_get_folio(entry, vma, addr);
1863                 if (!folio) {
1864                         struct page *page;
1865                         struct vm_fault vmf = {
1866                                 .vma = vma,
1867                                 .address = addr,
1868                                 .real_address = addr,
1869                                 .pmd = pmd,
1870                         };
1871
1872                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1873                                                 &vmf);
1874                         if (page)
1875                                 folio = page_folio(page);
1876                 }
1877                 if (!folio) {
1878                         swp_count = READ_ONCE(si->swap_map[offset]);
1879                         if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1880                                 goto try_next;
1881
1882                         return -ENOMEM;
1883                 }
1884
1885                 folio_lock(folio);
1886                 folio_wait_writeback(folio);
1887                 ret = unuse_pte(vma, pmd, addr, entry, folio);
1888                 if (ret < 0) {
1889                         folio_unlock(folio);
1890                         folio_put(folio);
1891                         goto out;
1892                 }
1893
1894                 folio_free_swap(folio);
1895                 folio_unlock(folio);
1896                 folio_put(folio);
1897 try_next:
1898                 pte = pte_offset_map(pmd, addr);
1899         } while (pte++, addr += PAGE_SIZE, addr != end);
1900         pte_unmap(pte - 1);
1901
1902         ret = 0;
1903 out:
1904         return ret;
1905 }
1906
1907 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1908                                 unsigned long addr, unsigned long end,
1909                                 unsigned int type)
1910 {
1911         pmd_t *pmd;
1912         unsigned long next;
1913         int ret;
1914
1915         pmd = pmd_offset(pud, addr);
1916         do {
1917                 cond_resched();
1918                 next = pmd_addr_end(addr, end);
1919                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1920                         continue;
1921                 ret = unuse_pte_range(vma, pmd, addr, next, type);
1922                 if (ret)
1923                         return ret;
1924         } while (pmd++, addr = next, addr != end);
1925         return 0;
1926 }
1927
1928 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1929                                 unsigned long addr, unsigned long end,
1930                                 unsigned int type)
1931 {
1932         pud_t *pud;
1933         unsigned long next;
1934         int ret;
1935
1936         pud = pud_offset(p4d, addr);
1937         do {
1938                 next = pud_addr_end(addr, end);
1939                 if (pud_none_or_clear_bad(pud))
1940                         continue;
1941                 ret = unuse_pmd_range(vma, pud, addr, next, type);
1942                 if (ret)
1943                         return ret;
1944         } while (pud++, addr = next, addr != end);
1945         return 0;
1946 }
1947
1948 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1949                                 unsigned long addr, unsigned long end,
1950                                 unsigned int type)
1951 {
1952         p4d_t *p4d;
1953         unsigned long next;
1954         int ret;
1955
1956         p4d = p4d_offset(pgd, addr);
1957         do {
1958                 next = p4d_addr_end(addr, end);
1959                 if (p4d_none_or_clear_bad(p4d))
1960                         continue;
1961                 ret = unuse_pud_range(vma, p4d, addr, next, type);
1962                 if (ret)
1963                         return ret;
1964         } while (p4d++, addr = next, addr != end);
1965         return 0;
1966 }
1967
1968 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1969 {
1970         pgd_t *pgd;
1971         unsigned long addr, end, next;
1972         int ret;
1973
1974         addr = vma->vm_start;
1975         end = vma->vm_end;
1976
1977         pgd = pgd_offset(vma->vm_mm, addr);
1978         do {
1979                 next = pgd_addr_end(addr, end);
1980                 if (pgd_none_or_clear_bad(pgd))
1981                         continue;
1982                 ret = unuse_p4d_range(vma, pgd, addr, next, type);
1983                 if (ret)
1984                         return ret;
1985         } while (pgd++, addr = next, addr != end);
1986         return 0;
1987 }
1988
1989 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1990 {
1991         struct vm_area_struct *vma;
1992         int ret = 0;
1993         VMA_ITERATOR(vmi, mm, 0);
1994
1995         mmap_read_lock(mm);
1996         for_each_vma(vmi, vma) {
1997                 if (vma->anon_vma) {
1998                         ret = unuse_vma(vma, type);
1999                         if (ret)
2000                                 break;
2001                 }
2002
2003                 cond_resched();
2004         }
2005         mmap_read_unlock(mm);
2006         return ret;
2007 }
2008
2009 /*
2010  * Scan swap_map from current position to next entry still in use.
2011  * Return 0 if there are no inuse entries after prev till end of
2012  * the map.
2013  */
2014 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2015                                         unsigned int prev)
2016 {
2017         unsigned int i;
2018         unsigned char count;
2019
2020         /*
2021          * No need for swap_lock here: we're just looking
2022          * for whether an entry is in use, not modifying it; false
2023          * hits are okay, and sys_swapoff() has already prevented new
2024          * allocations from this area (while holding swap_lock).
2025          */
2026         for (i = prev + 1; i < si->max; i++) {
2027                 count = READ_ONCE(si->swap_map[i]);
2028                 if (count && swap_count(count) != SWAP_MAP_BAD)
2029                         break;
2030                 if ((i % LATENCY_LIMIT) == 0)
2031                         cond_resched();
2032         }
2033
2034         if (i == si->max)
2035                 i = 0;
2036
2037         return i;
2038 }
2039
2040 static int try_to_unuse(unsigned int type)
2041 {
2042         struct mm_struct *prev_mm;
2043         struct mm_struct *mm;
2044         struct list_head *p;
2045         int retval = 0;
2046         struct swap_info_struct *si = swap_info[type];
2047         struct folio *folio;
2048         swp_entry_t entry;
2049         unsigned int i;
2050
2051         if (!READ_ONCE(si->inuse_pages))
2052                 return 0;
2053
2054 retry:
2055         retval = shmem_unuse(type);
2056         if (retval)
2057                 return retval;
2058
2059         prev_mm = &init_mm;
2060         mmget(prev_mm);
2061
2062         spin_lock(&mmlist_lock);
2063         p = &init_mm.mmlist;
2064         while (READ_ONCE(si->inuse_pages) &&
2065                !signal_pending(current) &&
2066                (p = p->next) != &init_mm.mmlist) {
2067
2068                 mm = list_entry(p, struct mm_struct, mmlist);
2069                 if (!mmget_not_zero(mm))
2070                         continue;
2071                 spin_unlock(&mmlist_lock);
2072                 mmput(prev_mm);
2073                 prev_mm = mm;
2074                 retval = unuse_mm(mm, type);
2075                 if (retval) {
2076                         mmput(prev_mm);
2077                         return retval;
2078                 }
2079
2080                 /*
2081                  * Make sure that we aren't completely killing
2082                  * interactive performance.
2083                  */
2084                 cond_resched();
2085                 spin_lock(&mmlist_lock);
2086         }
2087         spin_unlock(&mmlist_lock);
2088
2089         mmput(prev_mm);
2090
2091         i = 0;
2092         while (READ_ONCE(si->inuse_pages) &&
2093                !signal_pending(current) &&
2094                (i = find_next_to_unuse(si, i)) != 0) {
2095
2096                 entry = swp_entry(type, i);
2097                 folio = filemap_get_folio(swap_address_space(entry), i);
2098                 if (!folio)
2099                         continue;
2100
2101                 /*
2102                  * It is conceivable that a racing task removed this folio from
2103                  * swap cache just before we acquired the page lock. The folio
2104                  * might even be back in swap cache on another swap area. But
2105                  * that is okay, folio_free_swap() only removes stale folios.
2106                  */
2107                 folio_lock(folio);
2108                 folio_wait_writeback(folio);
2109                 folio_free_swap(folio);
2110                 folio_unlock(folio);
2111                 folio_put(folio);
2112         }
2113
2114         /*
2115          * Lets check again to see if there are still swap entries in the map.
2116          * If yes, we would need to do retry the unuse logic again.
2117          * Under global memory pressure, swap entries can be reinserted back
2118          * into process space after the mmlist loop above passes over them.
2119          *
2120          * Limit the number of retries? No: when mmget_not_zero()
2121          * above fails, that mm is likely to be freeing swap from
2122          * exit_mmap(), which proceeds at its own independent pace;
2123          * and even shmem_writepage() could have been preempted after
2124          * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2125          * and robust (though cpu-intensive) just to keep retrying.
2126          */
2127         if (READ_ONCE(si->inuse_pages)) {
2128                 if (!signal_pending(current))
2129                         goto retry;
2130                 return -EINTR;
2131         }
2132
2133         return 0;
2134 }
2135
2136 /*
2137  * After a successful try_to_unuse, if no swap is now in use, we know
2138  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2139  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2140  * added to the mmlist just after page_duplicate - before would be racy.
2141  */
2142 static void drain_mmlist(void)
2143 {
2144         struct list_head *p, *next;
2145         unsigned int type;
2146
2147         for (type = 0; type < nr_swapfiles; type++)
2148                 if (swap_info[type]->inuse_pages)
2149                         return;
2150         spin_lock(&mmlist_lock);
2151         list_for_each_safe(p, next, &init_mm.mmlist)
2152                 list_del_init(p);
2153         spin_unlock(&mmlist_lock);
2154 }
2155
2156 /*
2157  * Free all of a swapdev's extent information
2158  */
2159 static void destroy_swap_extents(struct swap_info_struct *sis)
2160 {
2161         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2162                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2163                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2164
2165                 rb_erase(rb, &sis->swap_extent_root);
2166                 kfree(se);
2167         }
2168
2169         if (sis->flags & SWP_ACTIVATED) {
2170                 struct file *swap_file = sis->swap_file;
2171                 struct address_space *mapping = swap_file->f_mapping;
2172
2173                 sis->flags &= ~SWP_ACTIVATED;
2174                 if (mapping->a_ops->swap_deactivate)
2175                         mapping->a_ops->swap_deactivate(swap_file);
2176         }
2177 }
2178
2179 /*
2180  * Add a block range (and the corresponding page range) into this swapdev's
2181  * extent tree.
2182  *
2183  * This function rather assumes that it is called in ascending page order.
2184  */
2185 int
2186 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2187                 unsigned long nr_pages, sector_t start_block)
2188 {
2189         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2190         struct swap_extent *se;
2191         struct swap_extent *new_se;
2192
2193         /*
2194          * place the new node at the right most since the
2195          * function is called in ascending page order.
2196          */
2197         while (*link) {
2198                 parent = *link;
2199                 link = &parent->rb_right;
2200         }
2201
2202         if (parent) {
2203                 se = rb_entry(parent, struct swap_extent, rb_node);
2204                 BUG_ON(se->start_page + se->nr_pages != start_page);
2205                 if (se->start_block + se->nr_pages == start_block) {
2206                         /* Merge it */
2207                         se->nr_pages += nr_pages;
2208                         return 0;
2209                 }
2210         }
2211
2212         /* No merge, insert a new extent. */
2213         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2214         if (new_se == NULL)
2215                 return -ENOMEM;
2216         new_se->start_page = start_page;
2217         new_se->nr_pages = nr_pages;
2218         new_se->start_block = start_block;
2219
2220         rb_link_node(&new_se->rb_node, parent, link);
2221         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2222         return 1;
2223 }
2224 EXPORT_SYMBOL_GPL(add_swap_extent);
2225
2226 /*
2227  * A `swap extent' is a simple thing which maps a contiguous range of pages
2228  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2229  * built at swapon time and is then used at swap_writepage/swap_readpage
2230  * time for locating where on disk a page belongs.
2231  *
2232  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2233  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2234  * swap files identically.
2235  *
2236  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2237  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2238  * swapfiles are handled *identically* after swapon time.
2239  *
2240  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2241  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2242  * blocks are found which do not fall within the PAGE_SIZE alignment
2243  * requirements, they are simply tossed out - we will never use those blocks
2244  * for swapping.
2245  *
2246  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2247  * prevents users from writing to the swap device, which will corrupt memory.
2248  *
2249  * The amount of disk space which a single swap extent represents varies.
2250  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2251  * extents in the rbtree. - akpm.
2252  */
2253 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2254 {
2255         struct file *swap_file = sis->swap_file;
2256         struct address_space *mapping = swap_file->f_mapping;
2257         struct inode *inode = mapping->host;
2258         int ret;
2259
2260         if (S_ISBLK(inode->i_mode)) {
2261                 ret = add_swap_extent(sis, 0, sis->max, 0);
2262                 *span = sis->pages;
2263                 return ret;
2264         }
2265
2266         if (mapping->a_ops->swap_activate) {
2267                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2268                 if (ret < 0)
2269                         return ret;
2270                 sis->flags |= SWP_ACTIVATED;
2271                 if ((sis->flags & SWP_FS_OPS) &&
2272                     sio_pool_init() != 0) {
2273                         destroy_swap_extents(sis);
2274                         return -ENOMEM;
2275                 }
2276                 return ret;
2277         }
2278
2279         return generic_swapfile_activate(sis, swap_file, span);
2280 }
2281
2282 static int swap_node(struct swap_info_struct *p)
2283 {
2284         struct block_device *bdev;
2285
2286         if (p->bdev)
2287                 bdev = p->bdev;
2288         else
2289                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2290
2291         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2292 }
2293
2294 static void setup_swap_info(struct swap_info_struct *p, int prio,
2295                             unsigned char *swap_map,
2296                             struct swap_cluster_info *cluster_info)
2297 {
2298         int i;
2299
2300         if (prio >= 0)
2301                 p->prio = prio;
2302         else
2303                 p->prio = --least_priority;
2304         /*
2305          * the plist prio is negated because plist ordering is
2306          * low-to-high, while swap ordering is high-to-low
2307          */
2308         p->list.prio = -p->prio;
2309         for_each_node(i) {
2310                 if (p->prio >= 0)
2311                         p->avail_lists[i].prio = -p->prio;
2312                 else {
2313                         if (swap_node(p) == i)
2314                                 p->avail_lists[i].prio = 1;
2315                         else
2316                                 p->avail_lists[i].prio = -p->prio;
2317                 }
2318         }
2319         p->swap_map = swap_map;
2320         p->cluster_info = cluster_info;
2321 }
2322
2323 static void _enable_swap_info(struct swap_info_struct *p)
2324 {
2325         p->flags |= SWP_WRITEOK;
2326         atomic_long_add(p->pages, &nr_swap_pages);
2327         total_swap_pages += p->pages;
2328
2329         assert_spin_locked(&swap_lock);
2330         /*
2331          * both lists are plists, and thus priority ordered.
2332          * swap_active_head needs to be priority ordered for swapoff(),
2333          * which on removal of any swap_info_struct with an auto-assigned
2334          * (i.e. negative) priority increments the auto-assigned priority
2335          * of any lower-priority swap_info_structs.
2336          * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2337          * which allocates swap pages from the highest available priority
2338          * swap_info_struct.
2339          */
2340         plist_add(&p->list, &swap_active_head);
2341         add_to_avail_list(p);
2342 }
2343
2344 static void enable_swap_info(struct swap_info_struct *p, int prio,
2345                                 unsigned char *swap_map,
2346                                 struct swap_cluster_info *cluster_info,
2347                                 unsigned long *frontswap_map)
2348 {
2349         if (IS_ENABLED(CONFIG_FRONTSWAP))
2350                 frontswap_init(p->type, frontswap_map);
2351         spin_lock(&swap_lock);
2352         spin_lock(&p->lock);
2353         setup_swap_info(p, prio, swap_map, cluster_info);
2354         spin_unlock(&p->lock);
2355         spin_unlock(&swap_lock);
2356         /*
2357          * Finished initializing swap device, now it's safe to reference it.
2358          */
2359         percpu_ref_resurrect(&p->users);
2360         spin_lock(&swap_lock);
2361         spin_lock(&p->lock);
2362         _enable_swap_info(p);
2363         spin_unlock(&p->lock);
2364         spin_unlock(&swap_lock);
2365 }
2366
2367 static void reinsert_swap_info(struct swap_info_struct *p)
2368 {
2369         spin_lock(&swap_lock);
2370         spin_lock(&p->lock);
2371         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2372         _enable_swap_info(p);
2373         spin_unlock(&p->lock);
2374         spin_unlock(&swap_lock);
2375 }
2376
2377 bool has_usable_swap(void)
2378 {
2379         bool ret = true;
2380
2381         spin_lock(&swap_lock);
2382         if (plist_head_empty(&swap_active_head))
2383                 ret = false;
2384         spin_unlock(&swap_lock);
2385         return ret;
2386 }
2387
2388 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2389 {
2390         struct swap_info_struct *p = NULL;
2391         unsigned char *swap_map;
2392         struct swap_cluster_info *cluster_info;
2393         unsigned long *frontswap_map;
2394         struct file *swap_file, *victim;
2395         struct address_space *mapping;
2396         struct inode *inode;
2397         struct filename *pathname;
2398         int err, found = 0;
2399         unsigned int old_block_size;
2400
2401         if (!capable(CAP_SYS_ADMIN))
2402                 return -EPERM;
2403
2404         BUG_ON(!current->mm);
2405
2406         pathname = getname(specialfile);
2407         if (IS_ERR(pathname))
2408                 return PTR_ERR(pathname);
2409
2410         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2411         err = PTR_ERR(victim);
2412         if (IS_ERR(victim))
2413                 goto out;
2414
2415         mapping = victim->f_mapping;
2416         spin_lock(&swap_lock);
2417         plist_for_each_entry(p, &swap_active_head, list) {
2418                 if (p->flags & SWP_WRITEOK) {
2419                         if (p->swap_file->f_mapping == mapping) {
2420                                 found = 1;
2421                                 break;
2422                         }
2423                 }
2424         }
2425         if (!found) {
2426                 err = -EINVAL;
2427                 spin_unlock(&swap_lock);
2428                 goto out_dput;
2429         }
2430         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2431                 vm_unacct_memory(p->pages);
2432         else {
2433                 err = -ENOMEM;
2434                 spin_unlock(&swap_lock);
2435                 goto out_dput;
2436         }
2437         del_from_avail_list(p);
2438         spin_lock(&p->lock);
2439         if (p->prio < 0) {
2440                 struct swap_info_struct *si = p;
2441                 int nid;
2442
2443                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2444                         si->prio++;
2445                         si->list.prio--;
2446                         for_each_node(nid) {
2447                                 if (si->avail_lists[nid].prio != 1)
2448                                         si->avail_lists[nid].prio--;
2449                         }
2450                 }
2451                 least_priority++;
2452         }
2453         plist_del(&p->list, &swap_active_head);
2454         atomic_long_sub(p->pages, &nr_swap_pages);
2455         total_swap_pages -= p->pages;
2456         p->flags &= ~SWP_WRITEOK;
2457         spin_unlock(&p->lock);
2458         spin_unlock(&swap_lock);
2459
2460         disable_swap_slots_cache_lock();
2461
2462         set_current_oom_origin();
2463         err = try_to_unuse(p->type);
2464         clear_current_oom_origin();
2465
2466         if (err) {
2467                 /* re-insert swap space back into swap_list */
2468                 reinsert_swap_info(p);
2469                 reenable_swap_slots_cache_unlock();
2470                 goto out_dput;
2471         }
2472
2473         reenable_swap_slots_cache_unlock();
2474
2475         /*
2476          * Wait for swap operations protected by get/put_swap_device()
2477          * to complete.
2478          *
2479          * We need synchronize_rcu() here to protect the accessing to
2480          * the swap cache data structure.
2481          */
2482         percpu_ref_kill(&p->users);
2483         synchronize_rcu();
2484         wait_for_completion(&p->comp);
2485
2486         flush_work(&p->discard_work);
2487
2488         destroy_swap_extents(p);
2489         if (p->flags & SWP_CONTINUED)
2490                 free_swap_count_continuations(p);
2491
2492         if (!p->bdev || !bdev_nonrot(p->bdev))
2493                 atomic_dec(&nr_rotate_swap);
2494
2495         mutex_lock(&swapon_mutex);
2496         spin_lock(&swap_lock);
2497         spin_lock(&p->lock);
2498         drain_mmlist();
2499
2500         /* wait for anyone still in scan_swap_map_slots */
2501         p->highest_bit = 0;             /* cuts scans short */
2502         while (p->flags >= SWP_SCANNING) {
2503                 spin_unlock(&p->lock);
2504                 spin_unlock(&swap_lock);
2505                 schedule_timeout_uninterruptible(1);
2506                 spin_lock(&swap_lock);
2507                 spin_lock(&p->lock);
2508         }
2509
2510         swap_file = p->swap_file;
2511         old_block_size = p->old_block_size;
2512         p->swap_file = NULL;
2513         p->max = 0;
2514         swap_map = p->swap_map;
2515         p->swap_map = NULL;
2516         cluster_info = p->cluster_info;
2517         p->cluster_info = NULL;
2518         frontswap_map = frontswap_map_get(p);
2519         spin_unlock(&p->lock);
2520         spin_unlock(&swap_lock);
2521         arch_swap_invalidate_area(p->type);
2522         frontswap_invalidate_area(p->type);
2523         frontswap_map_set(p, NULL);
2524         mutex_unlock(&swapon_mutex);
2525         free_percpu(p->percpu_cluster);
2526         p->percpu_cluster = NULL;
2527         free_percpu(p->cluster_next_cpu);
2528         p->cluster_next_cpu = NULL;
2529         vfree(swap_map);
2530         kvfree(cluster_info);
2531         kvfree(frontswap_map);
2532         /* Destroy swap account information */
2533         swap_cgroup_swapoff(p->type);
2534         exit_swap_address_space(p->type);
2535
2536         inode = mapping->host;
2537         if (S_ISBLK(inode->i_mode)) {
2538                 struct block_device *bdev = I_BDEV(inode);
2539
2540                 set_blocksize(bdev, old_block_size);
2541                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2542         }
2543
2544         inode_lock(inode);
2545         inode->i_flags &= ~S_SWAPFILE;
2546         inode_unlock(inode);
2547         filp_close(swap_file, NULL);
2548
2549         /*
2550          * Clear the SWP_USED flag after all resources are freed so that swapon
2551          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2552          * not hold p->lock after we cleared its SWP_WRITEOK.
2553          */
2554         spin_lock(&swap_lock);
2555         p->flags = 0;
2556         spin_unlock(&swap_lock);
2557
2558         err = 0;
2559         atomic_inc(&proc_poll_event);
2560         wake_up_interruptible(&proc_poll_wait);
2561
2562 out_dput:
2563         filp_close(victim, NULL);
2564 out:
2565         putname(pathname);
2566         return err;
2567 }
2568
2569 #ifdef CONFIG_PROC_FS
2570 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2571 {
2572         struct seq_file *seq = file->private_data;
2573
2574         poll_wait(file, &proc_poll_wait, wait);
2575
2576         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2577                 seq->poll_event = atomic_read(&proc_poll_event);
2578                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2579         }
2580
2581         return EPOLLIN | EPOLLRDNORM;
2582 }
2583
2584 /* iterator */
2585 static void *swap_start(struct seq_file *swap, loff_t *pos)
2586 {
2587         struct swap_info_struct *si;
2588         int type;
2589         loff_t l = *pos;
2590
2591         mutex_lock(&swapon_mutex);
2592
2593         if (!l)
2594                 return SEQ_START_TOKEN;
2595
2596         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2597                 if (!(si->flags & SWP_USED) || !si->swap_map)
2598                         continue;
2599                 if (!--l)
2600                         return si;
2601         }
2602
2603         return NULL;
2604 }
2605
2606 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2607 {
2608         struct swap_info_struct *si = v;
2609         int type;
2610
2611         if (v == SEQ_START_TOKEN)
2612                 type = 0;
2613         else
2614                 type = si->type + 1;
2615
2616         ++(*pos);
2617         for (; (si = swap_type_to_swap_info(type)); type++) {
2618                 if (!(si->flags & SWP_USED) || !si->swap_map)
2619                         continue;
2620                 return si;
2621         }
2622
2623         return NULL;
2624 }
2625
2626 static void swap_stop(struct seq_file *swap, void *v)
2627 {
2628         mutex_unlock(&swapon_mutex);
2629 }
2630
2631 static int swap_show(struct seq_file *swap, void *v)
2632 {
2633         struct swap_info_struct *si = v;
2634         struct file *file;
2635         int len;
2636         unsigned long bytes, inuse;
2637
2638         if (si == SEQ_START_TOKEN) {
2639                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2640                 return 0;
2641         }
2642
2643         bytes = si->pages << (PAGE_SHIFT - 10);
2644         inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10);
2645
2646         file = si->swap_file;
2647         len = seq_file_path(swap, file, " \t\n\\");
2648         seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2649                         len < 40 ? 40 - len : 1, " ",
2650                         S_ISBLK(file_inode(file)->i_mode) ?
2651                                 "partition" : "file\t",
2652                         bytes, bytes < 10000000 ? "\t" : "",
2653                         inuse, inuse < 10000000 ? "\t" : "",
2654                         si->prio);
2655         return 0;
2656 }
2657
2658 static const struct seq_operations swaps_op = {
2659         .start =        swap_start,
2660         .next =         swap_next,
2661         .stop =         swap_stop,
2662         .show =         swap_show
2663 };
2664
2665 static int swaps_open(struct inode *inode, struct file *file)
2666 {
2667         struct seq_file *seq;
2668         int ret;
2669
2670         ret = seq_open(file, &swaps_op);
2671         if (ret)
2672                 return ret;
2673
2674         seq = file->private_data;
2675         seq->poll_event = atomic_read(&proc_poll_event);
2676         return 0;
2677 }
2678
2679 static const struct proc_ops swaps_proc_ops = {
2680         .proc_flags     = PROC_ENTRY_PERMANENT,
2681         .proc_open      = swaps_open,
2682         .proc_read      = seq_read,
2683         .proc_lseek     = seq_lseek,
2684         .proc_release   = seq_release,
2685         .proc_poll      = swaps_poll,
2686 };
2687
2688 static int __init procswaps_init(void)
2689 {
2690         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2691         return 0;
2692 }
2693 __initcall(procswaps_init);
2694 #endif /* CONFIG_PROC_FS */
2695
2696 #ifdef MAX_SWAPFILES_CHECK
2697 static int __init max_swapfiles_check(void)
2698 {
2699         MAX_SWAPFILES_CHECK();
2700         return 0;
2701 }
2702 late_initcall(max_swapfiles_check);
2703 #endif
2704
2705 static struct swap_info_struct *alloc_swap_info(void)
2706 {
2707         struct swap_info_struct *p;
2708         struct swap_info_struct *defer = NULL;
2709         unsigned int type;
2710         int i;
2711
2712         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2713         if (!p)
2714                 return ERR_PTR(-ENOMEM);
2715
2716         if (percpu_ref_init(&p->users, swap_users_ref_free,
2717                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2718                 kvfree(p);
2719                 return ERR_PTR(-ENOMEM);
2720         }
2721
2722         spin_lock(&swap_lock);
2723         for (type = 0; type < nr_swapfiles; type++) {
2724                 if (!(swap_info[type]->flags & SWP_USED))
2725                         break;
2726         }
2727         if (type >= MAX_SWAPFILES) {
2728                 spin_unlock(&swap_lock);
2729                 percpu_ref_exit(&p->users);
2730                 kvfree(p);
2731                 return ERR_PTR(-EPERM);
2732         }
2733         if (type >= nr_swapfiles) {
2734                 p->type = type;
2735                 /*
2736                  * Publish the swap_info_struct after initializing it.
2737                  * Note that kvzalloc() above zeroes all its fields.
2738                  */
2739                 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2740                 nr_swapfiles++;
2741         } else {
2742                 defer = p;
2743                 p = swap_info[type];
2744                 /*
2745                  * Do not memset this entry: a racing procfs swap_next()
2746                  * would be relying on p->type to remain valid.
2747                  */
2748         }
2749         p->swap_extent_root = RB_ROOT;
2750         plist_node_init(&p->list, 0);
2751         for_each_node(i)
2752                 plist_node_init(&p->avail_lists[i], 0);
2753         p->flags = SWP_USED;
2754         spin_unlock(&swap_lock);
2755         if (defer) {
2756                 percpu_ref_exit(&defer->users);
2757                 kvfree(defer);
2758         }
2759         spin_lock_init(&p->lock);
2760         spin_lock_init(&p->cont_lock);
2761         init_completion(&p->comp);
2762
2763         return p;
2764 }
2765
2766 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2767 {
2768         int error;
2769
2770         if (S_ISBLK(inode->i_mode)) {
2771                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2772                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2773                 if (IS_ERR(p->bdev)) {
2774                         error = PTR_ERR(p->bdev);
2775                         p->bdev = NULL;
2776                         return error;
2777                 }
2778                 p->old_block_size = block_size(p->bdev);
2779                 error = set_blocksize(p->bdev, PAGE_SIZE);
2780                 if (error < 0)
2781                         return error;
2782                 /*
2783                  * Zoned block devices contain zones that have a sequential
2784                  * write only restriction.  Hence zoned block devices are not
2785                  * suitable for swapping.  Disallow them here.
2786                  */
2787                 if (bdev_is_zoned(p->bdev))
2788                         return -EINVAL;
2789                 p->flags |= SWP_BLKDEV;
2790         } else if (S_ISREG(inode->i_mode)) {
2791                 p->bdev = inode->i_sb->s_bdev;
2792         }
2793
2794         return 0;
2795 }
2796
2797
2798 /*
2799  * Find out how many pages are allowed for a single swap device. There
2800  * are two limiting factors:
2801  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2802  * 2) the number of bits in the swap pte, as defined by the different
2803  * architectures.
2804  *
2805  * In order to find the largest possible bit mask, a swap entry with
2806  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2807  * decoded to a swp_entry_t again, and finally the swap offset is
2808  * extracted.
2809  *
2810  * This will mask all the bits from the initial ~0UL mask that can't
2811  * be encoded in either the swp_entry_t or the architecture definition
2812  * of a swap pte.
2813  */
2814 unsigned long generic_max_swapfile_size(void)
2815 {
2816         return swp_offset(pte_to_swp_entry(
2817                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2818 }
2819
2820 /* Can be overridden by an architecture for additional checks. */
2821 __weak unsigned long arch_max_swapfile_size(void)
2822 {
2823         return generic_max_swapfile_size();
2824 }
2825
2826 static unsigned long read_swap_header(struct swap_info_struct *p,
2827                                         union swap_header *swap_header,
2828                                         struct inode *inode)
2829 {
2830         int i;
2831         unsigned long maxpages;
2832         unsigned long swapfilepages;
2833         unsigned long last_page;
2834
2835         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2836                 pr_err("Unable to find swap-space signature\n");
2837                 return 0;
2838         }
2839
2840         /* swap partition endianness hack... */
2841         if (swab32(swap_header->info.version) == 1) {
2842                 swab32s(&swap_header->info.version);
2843                 swab32s(&swap_header->info.last_page);
2844                 swab32s(&swap_header->info.nr_badpages);
2845                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2846                         return 0;
2847                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2848                         swab32s(&swap_header->info.badpages[i]);
2849         }
2850         /* Check the swap header's sub-version */
2851         if (swap_header->info.version != 1) {
2852                 pr_warn("Unable to handle swap header version %d\n",
2853                         swap_header->info.version);
2854                 return 0;
2855         }
2856
2857         p->lowest_bit  = 1;
2858         p->cluster_next = 1;
2859         p->cluster_nr = 0;
2860
2861         maxpages = swapfile_maximum_size;
2862         last_page = swap_header->info.last_page;
2863         if (!last_page) {
2864                 pr_warn("Empty swap-file\n");
2865                 return 0;
2866         }
2867         if (last_page > maxpages) {
2868                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2869                         maxpages << (PAGE_SHIFT - 10),
2870                         last_page << (PAGE_SHIFT - 10));
2871         }
2872         if (maxpages > last_page) {
2873                 maxpages = last_page + 1;
2874                 /* p->max is an unsigned int: don't overflow it */
2875                 if ((unsigned int)maxpages == 0)
2876                         maxpages = UINT_MAX;
2877         }
2878         p->highest_bit = maxpages - 1;
2879
2880         if (!maxpages)
2881                 return 0;
2882         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2883         if (swapfilepages && maxpages > swapfilepages) {
2884                 pr_warn("Swap area shorter than signature indicates\n");
2885                 return 0;
2886         }
2887         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2888                 return 0;
2889         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2890                 return 0;
2891
2892         return maxpages;
2893 }
2894
2895 #define SWAP_CLUSTER_INFO_COLS                                          \
2896         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2897 #define SWAP_CLUSTER_SPACE_COLS                                         \
2898         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2899 #define SWAP_CLUSTER_COLS                                               \
2900         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2901
2902 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2903                                         union swap_header *swap_header,
2904                                         unsigned char *swap_map,
2905                                         struct swap_cluster_info *cluster_info,
2906                                         unsigned long maxpages,
2907                                         sector_t *span)
2908 {
2909         unsigned int j, k;
2910         unsigned int nr_good_pages;
2911         int nr_extents;
2912         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2913         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2914         unsigned long i, idx;
2915
2916         nr_good_pages = maxpages - 1;   /* omit header page */
2917
2918         cluster_list_init(&p->free_clusters);
2919         cluster_list_init(&p->discard_clusters);
2920
2921         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2922                 unsigned int page_nr = swap_header->info.badpages[i];
2923                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2924                         return -EINVAL;
2925                 if (page_nr < maxpages) {
2926                         swap_map[page_nr] = SWAP_MAP_BAD;
2927                         nr_good_pages--;
2928                         /*
2929                          * Haven't marked the cluster free yet, no list
2930                          * operation involved
2931                          */
2932                         inc_cluster_info_page(p, cluster_info, page_nr);
2933                 }
2934         }
2935
2936         /* Haven't marked the cluster free yet, no list operation involved */
2937         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2938                 inc_cluster_info_page(p, cluster_info, i);
2939
2940         if (nr_good_pages) {
2941                 swap_map[0] = SWAP_MAP_BAD;
2942                 /*
2943                  * Not mark the cluster free yet, no list
2944                  * operation involved
2945                  */
2946                 inc_cluster_info_page(p, cluster_info, 0);
2947                 p->max = maxpages;
2948                 p->pages = nr_good_pages;
2949                 nr_extents = setup_swap_extents(p, span);
2950                 if (nr_extents < 0)
2951                         return nr_extents;
2952                 nr_good_pages = p->pages;
2953         }
2954         if (!nr_good_pages) {
2955                 pr_warn("Empty swap-file\n");
2956                 return -EINVAL;
2957         }
2958
2959         if (!cluster_info)
2960                 return nr_extents;
2961
2962
2963         /*
2964          * Reduce false cache line sharing between cluster_info and
2965          * sharing same address space.
2966          */
2967         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2968                 j = (k + col) % SWAP_CLUSTER_COLS;
2969                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2970                         idx = i * SWAP_CLUSTER_COLS + j;
2971                         if (idx >= nr_clusters)
2972                                 continue;
2973                         if (cluster_count(&cluster_info[idx]))
2974                                 continue;
2975                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2976                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2977                                               idx);
2978                 }
2979         }
2980         return nr_extents;
2981 }
2982
2983 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2984 {
2985         struct swap_info_struct *p;
2986         struct filename *name;
2987         struct file *swap_file = NULL;
2988         struct address_space *mapping;
2989         struct dentry *dentry;
2990         int prio;
2991         int error;
2992         union swap_header *swap_header;
2993         int nr_extents;
2994         sector_t span;
2995         unsigned long maxpages;
2996         unsigned char *swap_map = NULL;
2997         struct swap_cluster_info *cluster_info = NULL;
2998         unsigned long *frontswap_map = NULL;
2999         struct page *page = NULL;
3000         struct inode *inode = NULL;
3001         bool inced_nr_rotate_swap = false;
3002
3003         if (swap_flags & ~SWAP_FLAGS_VALID)
3004                 return -EINVAL;
3005
3006         if (!capable(CAP_SYS_ADMIN))
3007                 return -EPERM;
3008
3009         if (!swap_avail_heads)
3010                 return -ENOMEM;
3011
3012         p = alloc_swap_info();
3013         if (IS_ERR(p))
3014                 return PTR_ERR(p);
3015
3016         INIT_WORK(&p->discard_work, swap_discard_work);
3017
3018         name = getname(specialfile);
3019         if (IS_ERR(name)) {
3020                 error = PTR_ERR(name);
3021                 name = NULL;
3022                 goto bad_swap;
3023         }
3024         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3025         if (IS_ERR(swap_file)) {
3026                 error = PTR_ERR(swap_file);
3027                 swap_file = NULL;
3028                 goto bad_swap;
3029         }
3030
3031         p->swap_file = swap_file;
3032         mapping = swap_file->f_mapping;
3033         dentry = swap_file->f_path.dentry;
3034         inode = mapping->host;
3035
3036         error = claim_swapfile(p, inode);
3037         if (unlikely(error))
3038                 goto bad_swap;
3039
3040         inode_lock(inode);
3041         if (d_unlinked(dentry) || cant_mount(dentry)) {
3042                 error = -ENOENT;
3043                 goto bad_swap_unlock_inode;
3044         }
3045         if (IS_SWAPFILE(inode)) {
3046                 error = -EBUSY;
3047                 goto bad_swap_unlock_inode;
3048         }
3049
3050         /*
3051          * Read the swap header.
3052          */
3053         if (!mapping->a_ops->read_folio) {
3054                 error = -EINVAL;
3055                 goto bad_swap_unlock_inode;
3056         }
3057         page = read_mapping_page(mapping, 0, swap_file);
3058         if (IS_ERR(page)) {
3059                 error = PTR_ERR(page);
3060                 goto bad_swap_unlock_inode;
3061         }
3062         swap_header = kmap(page);
3063
3064         maxpages = read_swap_header(p, swap_header, inode);
3065         if (unlikely(!maxpages)) {
3066                 error = -EINVAL;
3067                 goto bad_swap_unlock_inode;
3068         }
3069
3070         /* OK, set up the swap map and apply the bad block list */
3071         swap_map = vzalloc(maxpages);
3072         if (!swap_map) {
3073                 error = -ENOMEM;
3074                 goto bad_swap_unlock_inode;
3075         }
3076
3077         if (p->bdev && bdev_stable_writes(p->bdev))
3078                 p->flags |= SWP_STABLE_WRITES;
3079
3080         if (p->bdev && bdev_synchronous(p->bdev))
3081                 p->flags |= SWP_SYNCHRONOUS_IO;
3082
3083         if (p->bdev && bdev_nonrot(p->bdev)) {
3084                 int cpu;
3085                 unsigned long ci, nr_cluster;
3086
3087                 p->flags |= SWP_SOLIDSTATE;
3088                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3089                 if (!p->cluster_next_cpu) {
3090                         error = -ENOMEM;
3091                         goto bad_swap_unlock_inode;
3092                 }
3093                 /*
3094                  * select a random position to start with to help wear leveling
3095                  * SSD
3096                  */
3097                 for_each_possible_cpu(cpu) {
3098                         per_cpu(*p->cluster_next_cpu, cpu) =
3099                                 get_random_u32_inclusive(1, p->highest_bit);
3100                 }
3101                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3102
3103                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3104                                         GFP_KERNEL);
3105                 if (!cluster_info) {
3106                         error = -ENOMEM;
3107                         goto bad_swap_unlock_inode;
3108                 }
3109
3110                 for (ci = 0; ci < nr_cluster; ci++)
3111                         spin_lock_init(&((cluster_info + ci)->lock));
3112
3113                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3114                 if (!p->percpu_cluster) {
3115                         error = -ENOMEM;
3116                         goto bad_swap_unlock_inode;
3117                 }
3118                 for_each_possible_cpu(cpu) {
3119                         struct percpu_cluster *cluster;
3120                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3121                         cluster_set_null(&cluster->index);
3122                 }
3123         } else {
3124                 atomic_inc(&nr_rotate_swap);
3125                 inced_nr_rotate_swap = true;
3126         }
3127
3128         error = swap_cgroup_swapon(p->type, maxpages);
3129         if (error)
3130                 goto bad_swap_unlock_inode;
3131
3132         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3133                 cluster_info, maxpages, &span);
3134         if (unlikely(nr_extents < 0)) {
3135                 error = nr_extents;
3136                 goto bad_swap_unlock_inode;
3137         }
3138         /* frontswap enabled? set up bit-per-page map for frontswap */
3139         if (IS_ENABLED(CONFIG_FRONTSWAP))
3140                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3141                                          sizeof(long),
3142                                          GFP_KERNEL);
3143
3144         if ((swap_flags & SWAP_FLAG_DISCARD) &&
3145             p->bdev && bdev_max_discard_sectors(p->bdev)) {
3146                 /*
3147                  * When discard is enabled for swap with no particular
3148                  * policy flagged, we set all swap discard flags here in
3149                  * order to sustain backward compatibility with older
3150                  * swapon(8) releases.
3151                  */
3152                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3153                              SWP_PAGE_DISCARD);
3154
3155                 /*
3156                  * By flagging sys_swapon, a sysadmin can tell us to
3157                  * either do single-time area discards only, or to just
3158                  * perform discards for released swap page-clusters.
3159                  * Now it's time to adjust the p->flags accordingly.
3160                  */
3161                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3162                         p->flags &= ~SWP_PAGE_DISCARD;
3163                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3164                         p->flags &= ~SWP_AREA_DISCARD;
3165
3166                 /* issue a swapon-time discard if it's still required */
3167                 if (p->flags & SWP_AREA_DISCARD) {
3168                         int err = discard_swap(p);
3169                         if (unlikely(err))
3170                                 pr_err("swapon: discard_swap(%p): %d\n",
3171                                         p, err);
3172                 }
3173         }
3174
3175         error = init_swap_address_space(p->type, maxpages);
3176         if (error)
3177                 goto bad_swap_unlock_inode;
3178
3179         /*
3180          * Flush any pending IO and dirty mappings before we start using this
3181          * swap device.
3182          */
3183         inode->i_flags |= S_SWAPFILE;
3184         error = inode_drain_writes(inode);
3185         if (error) {
3186                 inode->i_flags &= ~S_SWAPFILE;
3187                 goto free_swap_address_space;
3188         }
3189
3190         mutex_lock(&swapon_mutex);
3191         prio = -1;
3192         if (swap_flags & SWAP_FLAG_PREFER)
3193                 prio =
3194                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3195         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3196
3197         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3198                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3199                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3200                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3201                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3202                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3203                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3204                 (frontswap_map) ? "FS" : "");
3205
3206         mutex_unlock(&swapon_mutex);
3207         atomic_inc(&proc_poll_event);
3208         wake_up_interruptible(&proc_poll_wait);
3209
3210         error = 0;
3211         goto out;
3212 free_swap_address_space:
3213         exit_swap_address_space(p->type);
3214 bad_swap_unlock_inode:
3215         inode_unlock(inode);
3216 bad_swap:
3217         free_percpu(p->percpu_cluster);
3218         p->percpu_cluster = NULL;
3219         free_percpu(p->cluster_next_cpu);
3220         p->cluster_next_cpu = NULL;
3221         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3222                 set_blocksize(p->bdev, p->old_block_size);
3223                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3224         }
3225         inode = NULL;
3226         destroy_swap_extents(p);
3227         swap_cgroup_swapoff(p->type);
3228         spin_lock(&swap_lock);
3229         p->swap_file = NULL;
3230         p->flags = 0;
3231         spin_unlock(&swap_lock);
3232         vfree(swap_map);
3233         kvfree(cluster_info);
3234         kvfree(frontswap_map);
3235         if (inced_nr_rotate_swap)
3236                 atomic_dec(&nr_rotate_swap);
3237         if (swap_file)
3238                 filp_close(swap_file, NULL);
3239 out:
3240         if (page && !IS_ERR(page)) {
3241                 kunmap(page);
3242                 put_page(page);
3243         }
3244         if (name)
3245                 putname(name);
3246         if (inode)
3247                 inode_unlock(inode);
3248         if (!error)
3249                 enable_swap_slots_cache();
3250         return error;
3251 }
3252
3253 void si_swapinfo(struct sysinfo *val)
3254 {
3255         unsigned int type;
3256         unsigned long nr_to_be_unused = 0;
3257
3258         spin_lock(&swap_lock);
3259         for (type = 0; type < nr_swapfiles; type++) {
3260                 struct swap_info_struct *si = swap_info[type];
3261
3262                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3263                         nr_to_be_unused += READ_ONCE(si->inuse_pages);
3264         }
3265         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3266         val->totalswap = total_swap_pages + nr_to_be_unused;
3267         spin_unlock(&swap_lock);
3268 }
3269
3270 /*
3271  * Verify that a swap entry is valid and increment its swap map count.
3272  *
3273  * Returns error code in following case.
3274  * - success -> 0
3275  * - swp_entry is invalid -> EINVAL
3276  * - swp_entry is migration entry -> EINVAL
3277  * - swap-cache reference is requested but there is already one. -> EEXIST
3278  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3279  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3280  */
3281 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3282 {
3283         struct swap_info_struct *p;
3284         struct swap_cluster_info *ci;
3285         unsigned long offset;
3286         unsigned char count;
3287         unsigned char has_cache;
3288         int err;
3289
3290         p = get_swap_device(entry);
3291         if (!p)
3292                 return -EINVAL;
3293
3294         offset = swp_offset(entry);
3295         ci = lock_cluster_or_swap_info(p, offset);
3296
3297         count = p->swap_map[offset];
3298
3299         /*
3300          * swapin_readahead() doesn't check if a swap entry is valid, so the
3301          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3302          */
3303         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3304                 err = -ENOENT;
3305                 goto unlock_out;
3306         }
3307
3308         has_cache = count & SWAP_HAS_CACHE;
3309         count &= ~SWAP_HAS_CACHE;
3310         err = 0;
3311
3312         if (usage == SWAP_HAS_CACHE) {
3313
3314                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3315                 if (!has_cache && count)
3316                         has_cache = SWAP_HAS_CACHE;
3317                 else if (has_cache)             /* someone else added cache */
3318                         err = -EEXIST;
3319                 else                            /* no users remaining */
3320                         err = -ENOENT;
3321
3322         } else if (count || has_cache) {
3323
3324                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3325                         count += usage;
3326                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3327                         err = -EINVAL;
3328                 else if (swap_count_continued(p, offset, count))
3329                         count = COUNT_CONTINUED;
3330                 else
3331                         err = -ENOMEM;
3332         } else
3333                 err = -ENOENT;                  /* unused swap entry */
3334
3335         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3336
3337 unlock_out:
3338         unlock_cluster_or_swap_info(p, ci);
3339         put_swap_device(p);
3340         return err;
3341 }
3342
3343 /*
3344  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3345  * (in which case its reference count is never incremented).
3346  */
3347 void swap_shmem_alloc(swp_entry_t entry)
3348 {
3349         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3350 }
3351
3352 /*
3353  * Increase reference count of swap entry by 1.
3354  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3355  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3356  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3357  * might occur if a page table entry has got corrupted.
3358  */
3359 int swap_duplicate(swp_entry_t entry)
3360 {
3361         int err = 0;
3362
3363         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3364                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3365         return err;
3366 }
3367
3368 /*
3369  * @entry: swap entry for which we allocate swap cache.
3370  *
3371  * Called when allocating swap cache for existing swap entry,
3372  * This can return error codes. Returns 0 at success.
3373  * -EEXIST means there is a swap cache.
3374  * Note: return code is different from swap_duplicate().
3375  */
3376 int swapcache_prepare(swp_entry_t entry)
3377 {
3378         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3379 }
3380
3381 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3382 {
3383         return swap_type_to_swap_info(swp_type(entry));
3384 }
3385
3386 struct swap_info_struct *page_swap_info(struct page *page)
3387 {
3388         swp_entry_t entry = { .val = page_private(page) };
3389         return swp_swap_info(entry);
3390 }
3391
3392 /*
3393  * out-of-line methods to avoid include hell.
3394  */
3395 struct address_space *swapcache_mapping(struct folio *folio)
3396 {
3397         return page_swap_info(&folio->page)->swap_file->f_mapping;
3398 }
3399 EXPORT_SYMBOL_GPL(swapcache_mapping);
3400
3401 pgoff_t __page_file_index(struct page *page)
3402 {
3403         swp_entry_t swap = { .val = page_private(page) };
3404         return swp_offset(swap);
3405 }
3406 EXPORT_SYMBOL_GPL(__page_file_index);
3407
3408 /*
3409  * add_swap_count_continuation - called when a swap count is duplicated
3410  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3411  * page of the original vmalloc'ed swap_map, to hold the continuation count
3412  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3413  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3414  *
3415  * These continuation pages are seldom referenced: the common paths all work
3416  * on the original swap_map, only referring to a continuation page when the
3417  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3418  *
3419  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3420  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3421  * can be called after dropping locks.
3422  */
3423 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3424 {
3425         struct swap_info_struct *si;
3426         struct swap_cluster_info *ci;
3427         struct page *head;
3428         struct page *page;
3429         struct page *list_page;
3430         pgoff_t offset;
3431         unsigned char count;
3432         int ret = 0;
3433
3434         /*
3435          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3436          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3437          */
3438         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3439
3440         si = get_swap_device(entry);
3441         if (!si) {
3442                 /*
3443                  * An acceptable race has occurred since the failing
3444                  * __swap_duplicate(): the swap device may be swapoff
3445                  */
3446                 goto outer;
3447         }
3448         spin_lock(&si->lock);
3449
3450         offset = swp_offset(entry);
3451
3452         ci = lock_cluster(si, offset);
3453
3454         count = swap_count(si->swap_map[offset]);
3455
3456         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3457                 /*
3458                  * The higher the swap count, the more likely it is that tasks
3459                  * will race to add swap count continuation: we need to avoid
3460                  * over-provisioning.
3461                  */
3462                 goto out;
3463         }
3464
3465         if (!page) {
3466                 ret = -ENOMEM;
3467                 goto out;
3468         }
3469
3470         /*
3471          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3472          * no architecture is using highmem pages for kernel page tables: so it
3473          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3474          */
3475         head = vmalloc_to_page(si->swap_map + offset);
3476         offset &= ~PAGE_MASK;
3477
3478         spin_lock(&si->cont_lock);
3479         /*
3480          * Page allocation does not initialize the page's lru field,
3481          * but it does always reset its private field.
3482          */
3483         if (!page_private(head)) {
3484                 BUG_ON(count & COUNT_CONTINUED);
3485                 INIT_LIST_HEAD(&head->lru);
3486                 set_page_private(head, SWP_CONTINUED);
3487                 si->flags |= SWP_CONTINUED;
3488         }
3489
3490         list_for_each_entry(list_page, &head->lru, lru) {
3491                 unsigned char *map;
3492
3493                 /*
3494                  * If the previous map said no continuation, but we've found
3495                  * a continuation page, free our allocation and use this one.
3496                  */
3497                 if (!(count & COUNT_CONTINUED))
3498                         goto out_unlock_cont;
3499
3500                 map = kmap_atomic(list_page) + offset;
3501                 count = *map;
3502                 kunmap_atomic(map);
3503
3504                 /*
3505                  * If this continuation count now has some space in it,
3506                  * free our allocation and use this one.
3507                  */
3508                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3509                         goto out_unlock_cont;
3510         }
3511
3512         list_add_tail(&page->lru, &head->lru);
3513         page = NULL;                    /* now it's attached, don't free it */
3514 out_unlock_cont:
3515         spin_unlock(&si->cont_lock);
3516 out:
3517         unlock_cluster(ci);
3518         spin_unlock(&si->lock);
3519         put_swap_device(si);
3520 outer:
3521         if (page)
3522                 __free_page(page);
3523         return ret;
3524 }
3525
3526 /*
3527  * swap_count_continued - when the original swap_map count is incremented
3528  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3529  * into, carry if so, or else fail until a new continuation page is allocated;
3530  * when the original swap_map count is decremented from 0 with continuation,
3531  * borrow from the continuation and report whether it still holds more.
3532  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3533  * lock.
3534  */
3535 static bool swap_count_continued(struct swap_info_struct *si,
3536                                  pgoff_t offset, unsigned char count)
3537 {
3538         struct page *head;
3539         struct page *page;
3540         unsigned char *map;
3541         bool ret;
3542
3543         head = vmalloc_to_page(si->swap_map + offset);
3544         if (page_private(head) != SWP_CONTINUED) {
3545                 BUG_ON(count & COUNT_CONTINUED);
3546                 return false;           /* need to add count continuation */
3547         }
3548
3549         spin_lock(&si->cont_lock);
3550         offset &= ~PAGE_MASK;
3551         page = list_next_entry(head, lru);
3552         map = kmap_atomic(page) + offset;
3553
3554         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3555                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3556
3557         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3558                 /*
3559                  * Think of how you add 1 to 999
3560                  */
3561                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3562                         kunmap_atomic(map);
3563                         page = list_next_entry(page, lru);
3564                         BUG_ON(page == head);
3565                         map = kmap_atomic(page) + offset;
3566                 }
3567                 if (*map == SWAP_CONT_MAX) {
3568                         kunmap_atomic(map);
3569                         page = list_next_entry(page, lru);
3570                         if (page == head) {
3571                                 ret = false;    /* add count continuation */
3572                                 goto out;
3573                         }
3574                         map = kmap_atomic(page) + offset;
3575 init_map:               *map = 0;               /* we didn't zero the page */
3576                 }
3577                 *map += 1;
3578                 kunmap_atomic(map);
3579                 while ((page = list_prev_entry(page, lru)) != head) {
3580                         map = kmap_atomic(page) + offset;
3581                         *map = COUNT_CONTINUED;
3582                         kunmap_atomic(map);
3583                 }
3584                 ret = true;                     /* incremented */
3585
3586         } else {                                /* decrementing */
3587                 /*
3588                  * Think of how you subtract 1 from 1000
3589                  */
3590                 BUG_ON(count != COUNT_CONTINUED);
3591                 while (*map == COUNT_CONTINUED) {
3592                         kunmap_atomic(map);
3593                         page = list_next_entry(page, lru);
3594                         BUG_ON(page == head);
3595                         map = kmap_atomic(page) + offset;
3596                 }
3597                 BUG_ON(*map == 0);
3598                 *map -= 1;
3599                 if (*map == 0)
3600                         count = 0;
3601                 kunmap_atomic(map);
3602                 while ((page = list_prev_entry(page, lru)) != head) {
3603                         map = kmap_atomic(page) + offset;
3604                         *map = SWAP_CONT_MAX | count;
3605                         count = COUNT_CONTINUED;
3606                         kunmap_atomic(map);
3607                 }
3608                 ret = count == COUNT_CONTINUED;
3609         }
3610 out:
3611         spin_unlock(&si->cont_lock);
3612         return ret;
3613 }
3614
3615 /*
3616  * free_swap_count_continuations - swapoff free all the continuation pages
3617  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3618  */
3619 static void free_swap_count_continuations(struct swap_info_struct *si)
3620 {
3621         pgoff_t offset;
3622
3623         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3624                 struct page *head;
3625                 head = vmalloc_to_page(si->swap_map + offset);
3626                 if (page_private(head)) {
3627                         struct page *page, *next;
3628
3629                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3630                                 list_del(&page->lru);
3631                                 __free_page(page);
3632                         }
3633                 }
3634         }
3635 }
3636
3637 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3638 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3639 {
3640         struct swap_info_struct *si, *next;
3641         int nid = page_to_nid(page);
3642
3643         if (!(gfp_mask & __GFP_IO))
3644                 return;
3645
3646         if (!blk_cgroup_congested())
3647                 return;
3648
3649         /*
3650          * We've already scheduled a throttle, avoid taking the global swap
3651          * lock.
3652          */
3653         if (current->throttle_disk)
3654                 return;
3655
3656         spin_lock(&swap_avail_lock);
3657         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3658                                   avail_lists[nid]) {
3659                 if (si->bdev) {
3660                         blkcg_schedule_throttle(si->bdev->bd_disk, true);
3661                         break;
3662                 }
3663         }
3664         spin_unlock(&swap_avail_lock);
3665 }
3666 #endif
3667
3668 static int __init swapfile_init(void)
3669 {
3670         int nid;
3671
3672         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3673                                          GFP_KERNEL);
3674         if (!swap_avail_heads) {
3675                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3676                 return -ENOMEM;
3677         }
3678
3679         for_each_node(nid)
3680                 plist_head_init(&swap_avail_heads[nid]);
3681
3682         swapfile_maximum_size = arch_max_swapfile_size();
3683
3684 #ifdef CONFIG_MIGRATION
3685         if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3686                 swap_migration_ad_supported = true;
3687 #endif  /* CONFIG_MIGRATION */
3688
3689         return 0;
3690 }
3691 subsys_initcall(swapfile_init);