Merge tag 'for-5.19/drivers-2022-05-22' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/frontswap.h>
39 #include <linux/swapfile.h>
40 #include <linux/export.h>
41 #include <linux/swap_slots.h>
42 #include <linux/sort.h>
43 #include <linux/completion.h>
44
45 #include <asm/tlbflush.h>
46 #include <linux/swapops.h>
47 #include <linux/swap_cgroup.h>
48
49 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
50                                  unsigned char);
51 static void free_swap_count_continuations(struct swap_info_struct *);
52
53 static DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57  * Some modules use swappable objects and may try to swap them out under
58  * memory pressure (via the shrinker). Before doing so, they may wish to
59  * check to see if any swap space is available.
60  */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70
71 /*
72  * all active swap_info_structs
73  * protected with swap_lock, and ordered by priority.
74  */
75 static PLIST_HEAD(swap_active_head);
76
77 /*
78  * all available (active, not full) swap_info_structs
79  * protected with swap_avail_lock, ordered by priority.
80  * This is used by get_swap_page() instead of swap_active_head
81  * because swap_active_head includes all swap_info_structs,
82  * but get_swap_page() doesn't need to look at full ones.
83  * This uses its own lock instead of swap_lock because when a
84  * swap_info_struct changes between not-full/full, it needs to
85  * add/remove itself to/from this list, but the swap_info_struct->lock
86  * is held and the locking order requires swap_lock to be taken
87  * before any swap_info_struct->lock.
88  */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93
94 static DEFINE_MUTEX(swapon_mutex);
95
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104         if (type >= MAX_SWAPFILES)
105                 return NULL;
106
107         return READ_ONCE(swap_info[type]); /* rcu_dereference() */
108 }
109
110 static inline unsigned char swap_count(unsigned char ent)
111 {
112         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
113 }
114
115 /* Reclaim the swap entry anyway if possible */
116 #define TTRS_ANYWAY             0x1
117 /*
118  * Reclaim the swap entry if there are no more mappings of the
119  * corresponding page
120  */
121 #define TTRS_UNMAPPED           0x2
122 /* Reclaim the swap entry if swap is getting full*/
123 #define TTRS_FULL               0x4
124
125 /* returns 1 if swap entry is freed */
126 static int __try_to_reclaim_swap(struct swap_info_struct *si,
127                                  unsigned long offset, unsigned long flags)
128 {
129         swp_entry_t entry = swp_entry(si->type, offset);
130         struct page *page;
131         int ret = 0;
132
133         page = find_get_page(swap_address_space(entry), offset);
134         if (!page)
135                 return 0;
136         /*
137          * When this function is called from scan_swap_map_slots() and it's
138          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139          * here. We have to use trylock for avoiding deadlock. This is a special
140          * case and you should use try_to_free_swap() with explicit lock_page()
141          * in usual operations.
142          */
143         if (trylock_page(page)) {
144                 if ((flags & TTRS_ANYWAY) ||
145                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147                         ret = try_to_free_swap(page);
148                 unlock_page(page);
149         }
150         put_page(page);
151         return ret;
152 }
153
154 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155 {
156         struct rb_node *rb = rb_first(&sis->swap_extent_root);
157         return rb_entry(rb, struct swap_extent, rb_node);
158 }
159
160 static inline struct swap_extent *next_se(struct swap_extent *se)
161 {
162         struct rb_node *rb = rb_next(&se->rb_node);
163         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164 }
165
166 /*
167  * swapon tell device that all the old swap contents can be discarded,
168  * to allow the swap device to optimize its wear-levelling.
169  */
170 static int discard_swap(struct swap_info_struct *si)
171 {
172         struct swap_extent *se;
173         sector_t start_block;
174         sector_t nr_blocks;
175         int err = 0;
176
177         /* Do not discard the swap header page! */
178         se = first_se(si);
179         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181         if (nr_blocks) {
182                 err = blkdev_issue_discard(si->bdev, start_block,
183                                 nr_blocks, GFP_KERNEL);
184                 if (err)
185                         return err;
186                 cond_resched();
187         }
188
189         for (se = next_se(se); se; se = next_se(se)) {
190                 start_block = se->start_block << (PAGE_SHIFT - 9);
191                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
192
193                 err = blkdev_issue_discard(si->bdev, start_block,
194                                 nr_blocks, GFP_KERNEL);
195                 if (err)
196                         break;
197
198                 cond_resched();
199         }
200         return err;             /* That will often be -EOPNOTSUPP */
201 }
202
203 static struct swap_extent *
204 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205 {
206         struct swap_extent *se;
207         struct rb_node *rb;
208
209         rb = sis->swap_extent_root.rb_node;
210         while (rb) {
211                 se = rb_entry(rb, struct swap_extent, rb_node);
212                 if (offset < se->start_page)
213                         rb = rb->rb_left;
214                 else if (offset >= se->start_page + se->nr_pages)
215                         rb = rb->rb_right;
216                 else
217                         return se;
218         }
219         /* It *must* be present */
220         BUG();
221 }
222
223 sector_t swap_page_sector(struct page *page)
224 {
225         struct swap_info_struct *sis = page_swap_info(page);
226         struct swap_extent *se;
227         sector_t sector;
228         pgoff_t offset;
229
230         offset = __page_file_index(page);
231         se = offset_to_swap_extent(sis, offset);
232         sector = se->start_block + (offset - se->start_page);
233         return sector << (PAGE_SHIFT - 9);
234 }
235
236 /*
237  * swap allocation tell device that a cluster of swap can now be discarded,
238  * to allow the swap device to optimize its wear-levelling.
239  */
240 static void discard_swap_cluster(struct swap_info_struct *si,
241                                  pgoff_t start_page, pgoff_t nr_pages)
242 {
243         struct swap_extent *se = offset_to_swap_extent(si, start_page);
244
245         while (nr_pages) {
246                 pgoff_t offset = start_page - se->start_page;
247                 sector_t start_block = se->start_block + offset;
248                 sector_t nr_blocks = se->nr_pages - offset;
249
250                 if (nr_blocks > nr_pages)
251                         nr_blocks = nr_pages;
252                 start_page += nr_blocks;
253                 nr_pages -= nr_blocks;
254
255                 start_block <<= PAGE_SHIFT - 9;
256                 nr_blocks <<= PAGE_SHIFT - 9;
257                 if (blkdev_issue_discard(si->bdev, start_block,
258                                         nr_blocks, GFP_NOIO))
259                         break;
260
261                 se = next_se(se);
262         }
263 }
264
265 #ifdef CONFIG_THP_SWAP
266 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
267
268 #define swap_entry_size(size)   (size)
269 #else
270 #define SWAPFILE_CLUSTER        256
271
272 /*
273  * Define swap_entry_size() as constant to let compiler to optimize
274  * out some code if !CONFIG_THP_SWAP
275  */
276 #define swap_entry_size(size)   1
277 #endif
278 #define LATENCY_LIMIT           256
279
280 static inline void cluster_set_flag(struct swap_cluster_info *info,
281         unsigned int flag)
282 {
283         info->flags = flag;
284 }
285
286 static inline unsigned int cluster_count(struct swap_cluster_info *info)
287 {
288         return info->data;
289 }
290
291 static inline void cluster_set_count(struct swap_cluster_info *info,
292                                      unsigned int c)
293 {
294         info->data = c;
295 }
296
297 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
298                                          unsigned int c, unsigned int f)
299 {
300         info->flags = f;
301         info->data = c;
302 }
303
304 static inline unsigned int cluster_next(struct swap_cluster_info *info)
305 {
306         return info->data;
307 }
308
309 static inline void cluster_set_next(struct swap_cluster_info *info,
310                                     unsigned int n)
311 {
312         info->data = n;
313 }
314
315 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
316                                          unsigned int n, unsigned int f)
317 {
318         info->flags = f;
319         info->data = n;
320 }
321
322 static inline bool cluster_is_free(struct swap_cluster_info *info)
323 {
324         return info->flags & CLUSTER_FLAG_FREE;
325 }
326
327 static inline bool cluster_is_null(struct swap_cluster_info *info)
328 {
329         return info->flags & CLUSTER_FLAG_NEXT_NULL;
330 }
331
332 static inline void cluster_set_null(struct swap_cluster_info *info)
333 {
334         info->flags = CLUSTER_FLAG_NEXT_NULL;
335         info->data = 0;
336 }
337
338 static inline bool cluster_is_huge(struct swap_cluster_info *info)
339 {
340         if (IS_ENABLED(CONFIG_THP_SWAP))
341                 return info->flags & CLUSTER_FLAG_HUGE;
342         return false;
343 }
344
345 static inline void cluster_clear_huge(struct swap_cluster_info *info)
346 {
347         info->flags &= ~CLUSTER_FLAG_HUGE;
348 }
349
350 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
351                                                      unsigned long offset)
352 {
353         struct swap_cluster_info *ci;
354
355         ci = si->cluster_info;
356         if (ci) {
357                 ci += offset / SWAPFILE_CLUSTER;
358                 spin_lock(&ci->lock);
359         }
360         return ci;
361 }
362
363 static inline void unlock_cluster(struct swap_cluster_info *ci)
364 {
365         if (ci)
366                 spin_unlock(&ci->lock);
367 }
368
369 /*
370  * Determine the locking method in use for this device.  Return
371  * swap_cluster_info if SSD-style cluster-based locking is in place.
372  */
373 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
374                 struct swap_info_struct *si, unsigned long offset)
375 {
376         struct swap_cluster_info *ci;
377
378         /* Try to use fine-grained SSD-style locking if available: */
379         ci = lock_cluster(si, offset);
380         /* Otherwise, fall back to traditional, coarse locking: */
381         if (!ci)
382                 spin_lock(&si->lock);
383
384         return ci;
385 }
386
387 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
388                                                struct swap_cluster_info *ci)
389 {
390         if (ci)
391                 unlock_cluster(ci);
392         else
393                 spin_unlock(&si->lock);
394 }
395
396 static inline bool cluster_list_empty(struct swap_cluster_list *list)
397 {
398         return cluster_is_null(&list->head);
399 }
400
401 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
402 {
403         return cluster_next(&list->head);
404 }
405
406 static void cluster_list_init(struct swap_cluster_list *list)
407 {
408         cluster_set_null(&list->head);
409         cluster_set_null(&list->tail);
410 }
411
412 static void cluster_list_add_tail(struct swap_cluster_list *list,
413                                   struct swap_cluster_info *ci,
414                                   unsigned int idx)
415 {
416         if (cluster_list_empty(list)) {
417                 cluster_set_next_flag(&list->head, idx, 0);
418                 cluster_set_next_flag(&list->tail, idx, 0);
419         } else {
420                 struct swap_cluster_info *ci_tail;
421                 unsigned int tail = cluster_next(&list->tail);
422
423                 /*
424                  * Nested cluster lock, but both cluster locks are
425                  * only acquired when we held swap_info_struct->lock
426                  */
427                 ci_tail = ci + tail;
428                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
429                 cluster_set_next(ci_tail, idx);
430                 spin_unlock(&ci_tail->lock);
431                 cluster_set_next_flag(&list->tail, idx, 0);
432         }
433 }
434
435 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
436                                            struct swap_cluster_info *ci)
437 {
438         unsigned int idx;
439
440         idx = cluster_next(&list->head);
441         if (cluster_next(&list->tail) == idx) {
442                 cluster_set_null(&list->head);
443                 cluster_set_null(&list->tail);
444         } else
445                 cluster_set_next_flag(&list->head,
446                                       cluster_next(&ci[idx]), 0);
447
448         return idx;
449 }
450
451 /* Add a cluster to discard list and schedule it to do discard */
452 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
453                 unsigned int idx)
454 {
455         /*
456          * If scan_swap_map_slots() can't find a free cluster, it will check
457          * si->swap_map directly. To make sure the discarding cluster isn't
458          * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
459          * It will be cleared after discard
460          */
461         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
462                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
463
464         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
465
466         schedule_work(&si->discard_work);
467 }
468
469 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
470 {
471         struct swap_cluster_info *ci = si->cluster_info;
472
473         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
474         cluster_list_add_tail(&si->free_clusters, ci, idx);
475 }
476
477 /*
478  * Doing discard actually. After a cluster discard is finished, the cluster
479  * will be added to free cluster list. caller should hold si->lock.
480 */
481 static void swap_do_scheduled_discard(struct swap_info_struct *si)
482 {
483         struct swap_cluster_info *info, *ci;
484         unsigned int idx;
485
486         info = si->cluster_info;
487
488         while (!cluster_list_empty(&si->discard_clusters)) {
489                 idx = cluster_list_del_first(&si->discard_clusters, info);
490                 spin_unlock(&si->lock);
491
492                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
493                                 SWAPFILE_CLUSTER);
494
495                 spin_lock(&si->lock);
496                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
497                 __free_cluster(si, idx);
498                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
499                                 0, SWAPFILE_CLUSTER);
500                 unlock_cluster(ci);
501         }
502 }
503
504 static void swap_discard_work(struct work_struct *work)
505 {
506         struct swap_info_struct *si;
507
508         si = container_of(work, struct swap_info_struct, discard_work);
509
510         spin_lock(&si->lock);
511         swap_do_scheduled_discard(si);
512         spin_unlock(&si->lock);
513 }
514
515 static void swap_users_ref_free(struct percpu_ref *ref)
516 {
517         struct swap_info_struct *si;
518
519         si = container_of(ref, struct swap_info_struct, users);
520         complete(&si->comp);
521 }
522
523 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
524 {
525         struct swap_cluster_info *ci = si->cluster_info;
526
527         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
528         cluster_list_del_first(&si->free_clusters, ci);
529         cluster_set_count_flag(ci + idx, 0, 0);
530 }
531
532 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
533 {
534         struct swap_cluster_info *ci = si->cluster_info + idx;
535
536         VM_BUG_ON(cluster_count(ci) != 0);
537         /*
538          * If the swap is discardable, prepare discard the cluster
539          * instead of free it immediately. The cluster will be freed
540          * after discard.
541          */
542         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
543             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
544                 swap_cluster_schedule_discard(si, idx);
545                 return;
546         }
547
548         __free_cluster(si, idx);
549 }
550
551 /*
552  * The cluster corresponding to page_nr will be used. The cluster will be
553  * removed from free cluster list and its usage counter will be increased.
554  */
555 static void inc_cluster_info_page(struct swap_info_struct *p,
556         struct swap_cluster_info *cluster_info, unsigned long page_nr)
557 {
558         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559
560         if (!cluster_info)
561                 return;
562         if (cluster_is_free(&cluster_info[idx]))
563                 alloc_cluster(p, idx);
564
565         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
566         cluster_set_count(&cluster_info[idx],
567                 cluster_count(&cluster_info[idx]) + 1);
568 }
569
570 /*
571  * The cluster corresponding to page_nr decreases one usage. If the usage
572  * counter becomes 0, which means no page in the cluster is in using, we can
573  * optionally discard the cluster and add it to free cluster list.
574  */
575 static void dec_cluster_info_page(struct swap_info_struct *p,
576         struct swap_cluster_info *cluster_info, unsigned long page_nr)
577 {
578         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
579
580         if (!cluster_info)
581                 return;
582
583         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
584         cluster_set_count(&cluster_info[idx],
585                 cluster_count(&cluster_info[idx]) - 1);
586
587         if (cluster_count(&cluster_info[idx]) == 0)
588                 free_cluster(p, idx);
589 }
590
591 /*
592  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
593  * cluster list. Avoiding such abuse to avoid list corruption.
594  */
595 static bool
596 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
597         unsigned long offset)
598 {
599         struct percpu_cluster *percpu_cluster;
600         bool conflict;
601
602         offset /= SWAPFILE_CLUSTER;
603         conflict = !cluster_list_empty(&si->free_clusters) &&
604                 offset != cluster_list_first(&si->free_clusters) &&
605                 cluster_is_free(&si->cluster_info[offset]);
606
607         if (!conflict)
608                 return false;
609
610         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
611         cluster_set_null(&percpu_cluster->index);
612         return true;
613 }
614
615 /*
616  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
617  * might involve allocating a new cluster for current CPU too.
618  */
619 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
620         unsigned long *offset, unsigned long *scan_base)
621 {
622         struct percpu_cluster *cluster;
623         struct swap_cluster_info *ci;
624         unsigned long tmp, max;
625
626 new_cluster:
627         cluster = this_cpu_ptr(si->percpu_cluster);
628         if (cluster_is_null(&cluster->index)) {
629                 if (!cluster_list_empty(&si->free_clusters)) {
630                         cluster->index = si->free_clusters.head;
631                         cluster->next = cluster_next(&cluster->index) *
632                                         SWAPFILE_CLUSTER;
633                 } else if (!cluster_list_empty(&si->discard_clusters)) {
634                         /*
635                          * we don't have free cluster but have some clusters in
636                          * discarding, do discard now and reclaim them, then
637                          * reread cluster_next_cpu since we dropped si->lock
638                          */
639                         swap_do_scheduled_discard(si);
640                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
641                         *offset = *scan_base;
642                         goto new_cluster;
643                 } else
644                         return false;
645         }
646
647         /*
648          * Other CPUs can use our cluster if they can't find a free cluster,
649          * check if there is still free entry in the cluster
650          */
651         tmp = cluster->next;
652         max = min_t(unsigned long, si->max,
653                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
654         if (tmp < max) {
655                 ci = lock_cluster(si, tmp);
656                 while (tmp < max) {
657                         if (!si->swap_map[tmp])
658                                 break;
659                         tmp++;
660                 }
661                 unlock_cluster(ci);
662         }
663         if (tmp >= max) {
664                 cluster_set_null(&cluster->index);
665                 goto new_cluster;
666         }
667         cluster->next = tmp + 1;
668         *offset = tmp;
669         *scan_base = tmp;
670         return true;
671 }
672
673 static void __del_from_avail_list(struct swap_info_struct *p)
674 {
675         int nid;
676
677         for_each_node(nid)
678                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
679 }
680
681 static void del_from_avail_list(struct swap_info_struct *p)
682 {
683         spin_lock(&swap_avail_lock);
684         __del_from_avail_list(p);
685         spin_unlock(&swap_avail_lock);
686 }
687
688 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
689                              unsigned int nr_entries)
690 {
691         unsigned int end = offset + nr_entries - 1;
692
693         if (offset == si->lowest_bit)
694                 si->lowest_bit += nr_entries;
695         if (end == si->highest_bit)
696                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
697         si->inuse_pages += nr_entries;
698         if (si->inuse_pages == si->pages) {
699                 si->lowest_bit = si->max;
700                 si->highest_bit = 0;
701                 del_from_avail_list(si);
702         }
703 }
704
705 static void add_to_avail_list(struct swap_info_struct *p)
706 {
707         int nid;
708
709         spin_lock(&swap_avail_lock);
710         for_each_node(nid) {
711                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
712                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
713         }
714         spin_unlock(&swap_avail_lock);
715 }
716
717 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
718                             unsigned int nr_entries)
719 {
720         unsigned long begin = offset;
721         unsigned long end = offset + nr_entries - 1;
722         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
723
724         if (offset < si->lowest_bit)
725                 si->lowest_bit = offset;
726         if (end > si->highest_bit) {
727                 bool was_full = !si->highest_bit;
728
729                 WRITE_ONCE(si->highest_bit, end);
730                 if (was_full && (si->flags & SWP_WRITEOK))
731                         add_to_avail_list(si);
732         }
733         atomic_long_add(nr_entries, &nr_swap_pages);
734         si->inuse_pages -= nr_entries;
735         if (si->flags & SWP_BLKDEV)
736                 swap_slot_free_notify =
737                         si->bdev->bd_disk->fops->swap_slot_free_notify;
738         else
739                 swap_slot_free_notify = NULL;
740         while (offset <= end) {
741                 arch_swap_invalidate_page(si->type, offset);
742                 frontswap_invalidate_page(si->type, offset);
743                 if (swap_slot_free_notify)
744                         swap_slot_free_notify(si->bdev, offset);
745                 offset++;
746         }
747         clear_shadow_from_swap_cache(si->type, begin, end);
748 }
749
750 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
751 {
752         unsigned long prev;
753
754         if (!(si->flags & SWP_SOLIDSTATE)) {
755                 si->cluster_next = next;
756                 return;
757         }
758
759         prev = this_cpu_read(*si->cluster_next_cpu);
760         /*
761          * Cross the swap address space size aligned trunk, choose
762          * another trunk randomly to avoid lock contention on swap
763          * address space if possible.
764          */
765         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
766             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
767                 /* No free swap slots available */
768                 if (si->highest_bit <= si->lowest_bit)
769                         return;
770                 next = si->lowest_bit +
771                         prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
772                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
773                 next = max_t(unsigned int, next, si->lowest_bit);
774         }
775         this_cpu_write(*si->cluster_next_cpu, next);
776 }
777
778 static int scan_swap_map_slots(struct swap_info_struct *si,
779                                unsigned char usage, int nr,
780                                swp_entry_t slots[])
781 {
782         struct swap_cluster_info *ci;
783         unsigned long offset;
784         unsigned long scan_base;
785         unsigned long last_in_cluster = 0;
786         int latency_ration = LATENCY_LIMIT;
787         int n_ret = 0;
788         bool scanned_many = false;
789
790         /*
791          * We try to cluster swap pages by allocating them sequentially
792          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
793          * way, however, we resort to first-free allocation, starting
794          * a new cluster.  This prevents us from scattering swap pages
795          * all over the entire swap partition, so that we reduce
796          * overall disk seek times between swap pages.  -- sct
797          * But we do now try to find an empty cluster.  -Andrea
798          * And we let swap pages go all over an SSD partition.  Hugh
799          */
800
801         si->flags += SWP_SCANNING;
802         /*
803          * Use percpu scan base for SSD to reduce lock contention on
804          * cluster and swap cache.  For HDD, sequential access is more
805          * important.
806          */
807         if (si->flags & SWP_SOLIDSTATE)
808                 scan_base = this_cpu_read(*si->cluster_next_cpu);
809         else
810                 scan_base = si->cluster_next;
811         offset = scan_base;
812
813         /* SSD algorithm */
814         if (si->cluster_info) {
815                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
816                         goto scan;
817         } else if (unlikely(!si->cluster_nr--)) {
818                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
819                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
820                         goto checks;
821                 }
822
823                 spin_unlock(&si->lock);
824
825                 /*
826                  * If seek is expensive, start searching for new cluster from
827                  * start of partition, to minimize the span of allocated swap.
828                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
829                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
830                  */
831                 scan_base = offset = si->lowest_bit;
832                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
833
834                 /* Locate the first empty (unaligned) cluster */
835                 for (; last_in_cluster <= si->highest_bit; offset++) {
836                         if (si->swap_map[offset])
837                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
838                         else if (offset == last_in_cluster) {
839                                 spin_lock(&si->lock);
840                                 offset -= SWAPFILE_CLUSTER - 1;
841                                 si->cluster_next = offset;
842                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
843                                 goto checks;
844                         }
845                         if (unlikely(--latency_ration < 0)) {
846                                 cond_resched();
847                                 latency_ration = LATENCY_LIMIT;
848                         }
849                 }
850
851                 offset = scan_base;
852                 spin_lock(&si->lock);
853                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
854         }
855
856 checks:
857         if (si->cluster_info) {
858                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
859                 /* take a break if we already got some slots */
860                         if (n_ret)
861                                 goto done;
862                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
863                                                         &scan_base))
864                                 goto scan;
865                 }
866         }
867         if (!(si->flags & SWP_WRITEOK))
868                 goto no_page;
869         if (!si->highest_bit)
870                 goto no_page;
871         if (offset > si->highest_bit)
872                 scan_base = offset = si->lowest_bit;
873
874         ci = lock_cluster(si, offset);
875         /* reuse swap entry of cache-only swap if not busy. */
876         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
877                 int swap_was_freed;
878                 unlock_cluster(ci);
879                 spin_unlock(&si->lock);
880                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
881                 spin_lock(&si->lock);
882                 /* entry was freed successfully, try to use this again */
883                 if (swap_was_freed)
884                         goto checks;
885                 goto scan; /* check next one */
886         }
887
888         if (si->swap_map[offset]) {
889                 unlock_cluster(ci);
890                 if (!n_ret)
891                         goto scan;
892                 else
893                         goto done;
894         }
895         WRITE_ONCE(si->swap_map[offset], usage);
896         inc_cluster_info_page(si, si->cluster_info, offset);
897         unlock_cluster(ci);
898
899         swap_range_alloc(si, offset, 1);
900         slots[n_ret++] = swp_entry(si->type, offset);
901
902         /* got enough slots or reach max slots? */
903         if ((n_ret == nr) || (offset >= si->highest_bit))
904                 goto done;
905
906         /* search for next available slot */
907
908         /* time to take a break? */
909         if (unlikely(--latency_ration < 0)) {
910                 if (n_ret)
911                         goto done;
912                 spin_unlock(&si->lock);
913                 cond_resched();
914                 spin_lock(&si->lock);
915                 latency_ration = LATENCY_LIMIT;
916         }
917
918         /* try to get more slots in cluster */
919         if (si->cluster_info) {
920                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
921                         goto checks;
922         } else if (si->cluster_nr && !si->swap_map[++offset]) {
923                 /* non-ssd case, still more slots in cluster? */
924                 --si->cluster_nr;
925                 goto checks;
926         }
927
928         /*
929          * Even if there's no free clusters available (fragmented),
930          * try to scan a little more quickly with lock held unless we
931          * have scanned too many slots already.
932          */
933         if (!scanned_many) {
934                 unsigned long scan_limit;
935
936                 if (offset < scan_base)
937                         scan_limit = scan_base;
938                 else
939                         scan_limit = si->highest_bit;
940                 for (; offset <= scan_limit && --latency_ration > 0;
941                      offset++) {
942                         if (!si->swap_map[offset])
943                                 goto checks;
944                 }
945         }
946
947 done:
948         set_cluster_next(si, offset + 1);
949         si->flags -= SWP_SCANNING;
950         return n_ret;
951
952 scan:
953         spin_unlock(&si->lock);
954         while (++offset <= READ_ONCE(si->highest_bit)) {
955                 if (data_race(!si->swap_map[offset])) {
956                         spin_lock(&si->lock);
957                         goto checks;
958                 }
959                 if (vm_swap_full() &&
960                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
961                         spin_lock(&si->lock);
962                         goto checks;
963                 }
964                 if (unlikely(--latency_ration < 0)) {
965                         cond_resched();
966                         latency_ration = LATENCY_LIMIT;
967                         scanned_many = true;
968                 }
969         }
970         offset = si->lowest_bit;
971         while (offset < scan_base) {
972                 if (data_race(!si->swap_map[offset])) {
973                         spin_lock(&si->lock);
974                         goto checks;
975                 }
976                 if (vm_swap_full() &&
977                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
978                         spin_lock(&si->lock);
979                         goto checks;
980                 }
981                 if (unlikely(--latency_ration < 0)) {
982                         cond_resched();
983                         latency_ration = LATENCY_LIMIT;
984                         scanned_many = true;
985                 }
986                 offset++;
987         }
988         spin_lock(&si->lock);
989
990 no_page:
991         si->flags -= SWP_SCANNING;
992         return n_ret;
993 }
994
995 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
996 {
997         unsigned long idx;
998         struct swap_cluster_info *ci;
999         unsigned long offset;
1000
1001         /*
1002          * Should not even be attempting cluster allocations when huge
1003          * page swap is disabled.  Warn and fail the allocation.
1004          */
1005         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1006                 VM_WARN_ON_ONCE(1);
1007                 return 0;
1008         }
1009
1010         if (cluster_list_empty(&si->free_clusters))
1011                 return 0;
1012
1013         idx = cluster_list_first(&si->free_clusters);
1014         offset = idx * SWAPFILE_CLUSTER;
1015         ci = lock_cluster(si, offset);
1016         alloc_cluster(si, idx);
1017         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1018
1019         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1020         unlock_cluster(ci);
1021         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1022         *slot = swp_entry(si->type, offset);
1023
1024         return 1;
1025 }
1026
1027 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1028 {
1029         unsigned long offset = idx * SWAPFILE_CLUSTER;
1030         struct swap_cluster_info *ci;
1031
1032         ci = lock_cluster(si, offset);
1033         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1034         cluster_set_count_flag(ci, 0, 0);
1035         free_cluster(si, idx);
1036         unlock_cluster(ci);
1037         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1038 }
1039
1040 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1041 {
1042         unsigned long size = swap_entry_size(entry_size);
1043         struct swap_info_struct *si, *next;
1044         long avail_pgs;
1045         int n_ret = 0;
1046         int node;
1047
1048         /* Only single cluster request supported */
1049         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1050
1051         spin_lock(&swap_avail_lock);
1052
1053         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1054         if (avail_pgs <= 0) {
1055                 spin_unlock(&swap_avail_lock);
1056                 goto noswap;
1057         }
1058
1059         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1060
1061         atomic_long_sub(n_goal * size, &nr_swap_pages);
1062
1063 start_over:
1064         node = numa_node_id();
1065         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1066                 /* requeue si to after same-priority siblings */
1067                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1068                 spin_unlock(&swap_avail_lock);
1069                 spin_lock(&si->lock);
1070                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1071                         spin_lock(&swap_avail_lock);
1072                         if (plist_node_empty(&si->avail_lists[node])) {
1073                                 spin_unlock(&si->lock);
1074                                 goto nextsi;
1075                         }
1076                         WARN(!si->highest_bit,
1077                              "swap_info %d in list but !highest_bit\n",
1078                              si->type);
1079                         WARN(!(si->flags & SWP_WRITEOK),
1080                              "swap_info %d in list but !SWP_WRITEOK\n",
1081                              si->type);
1082                         __del_from_avail_list(si);
1083                         spin_unlock(&si->lock);
1084                         goto nextsi;
1085                 }
1086                 if (size == SWAPFILE_CLUSTER) {
1087                         if (si->flags & SWP_BLKDEV)
1088                                 n_ret = swap_alloc_cluster(si, swp_entries);
1089                 } else
1090                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1091                                                     n_goal, swp_entries);
1092                 spin_unlock(&si->lock);
1093                 if (n_ret || size == SWAPFILE_CLUSTER)
1094                         goto check_out;
1095                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1096                         si->type);
1097
1098                 spin_lock(&swap_avail_lock);
1099 nextsi:
1100                 /*
1101                  * if we got here, it's likely that si was almost full before,
1102                  * and since scan_swap_map_slots() can drop the si->lock,
1103                  * multiple callers probably all tried to get a page from the
1104                  * same si and it filled up before we could get one; or, the si
1105                  * filled up between us dropping swap_avail_lock and taking
1106                  * si->lock. Since we dropped the swap_avail_lock, the
1107                  * swap_avail_head list may have been modified; so if next is
1108                  * still in the swap_avail_head list then try it, otherwise
1109                  * start over if we have not gotten any slots.
1110                  */
1111                 if (plist_node_empty(&next->avail_lists[node]))
1112                         goto start_over;
1113         }
1114
1115         spin_unlock(&swap_avail_lock);
1116
1117 check_out:
1118         if (n_ret < n_goal)
1119                 atomic_long_add((long)(n_goal - n_ret) * size,
1120                                 &nr_swap_pages);
1121 noswap:
1122         return n_ret;
1123 }
1124
1125 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1126 {
1127         struct swap_info_struct *p;
1128         unsigned long offset;
1129
1130         if (!entry.val)
1131                 goto out;
1132         p = swp_swap_info(entry);
1133         if (!p)
1134                 goto bad_nofile;
1135         if (data_race(!(p->flags & SWP_USED)))
1136                 goto bad_device;
1137         offset = swp_offset(entry);
1138         if (offset >= p->max)
1139                 goto bad_offset;
1140         return p;
1141
1142 bad_offset:
1143         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1144         goto out;
1145 bad_device:
1146         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1147         goto out;
1148 bad_nofile:
1149         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1150 out:
1151         return NULL;
1152 }
1153
1154 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1155 {
1156         struct swap_info_struct *p;
1157
1158         p = __swap_info_get(entry);
1159         if (!p)
1160                 goto out;
1161         if (data_race(!p->swap_map[swp_offset(entry)]))
1162                 goto bad_free;
1163         return p;
1164
1165 bad_free:
1166         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1167 out:
1168         return NULL;
1169 }
1170
1171 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1172                                         struct swap_info_struct *q)
1173 {
1174         struct swap_info_struct *p;
1175
1176         p = _swap_info_get(entry);
1177
1178         if (p != q) {
1179                 if (q != NULL)
1180                         spin_unlock(&q->lock);
1181                 if (p != NULL)
1182                         spin_lock(&p->lock);
1183         }
1184         return p;
1185 }
1186
1187 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1188                                               unsigned long offset,
1189                                               unsigned char usage)
1190 {
1191         unsigned char count;
1192         unsigned char has_cache;
1193
1194         count = p->swap_map[offset];
1195
1196         has_cache = count & SWAP_HAS_CACHE;
1197         count &= ~SWAP_HAS_CACHE;
1198
1199         if (usage == SWAP_HAS_CACHE) {
1200                 VM_BUG_ON(!has_cache);
1201                 has_cache = 0;
1202         } else if (count == SWAP_MAP_SHMEM) {
1203                 /*
1204                  * Or we could insist on shmem.c using a special
1205                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1206                  */
1207                 count = 0;
1208         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1209                 if (count == COUNT_CONTINUED) {
1210                         if (swap_count_continued(p, offset, count))
1211                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1212                         else
1213                                 count = SWAP_MAP_MAX;
1214                 } else
1215                         count--;
1216         }
1217
1218         usage = count | has_cache;
1219         if (usage)
1220                 WRITE_ONCE(p->swap_map[offset], usage);
1221         else
1222                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1223
1224         return usage;
1225 }
1226
1227 /*
1228  * Check whether swap entry is valid in the swap device.  If so,
1229  * return pointer to swap_info_struct, and keep the swap entry valid
1230  * via preventing the swap device from being swapoff, until
1231  * put_swap_device() is called.  Otherwise return NULL.
1232  *
1233  * Notice that swapoff or swapoff+swapon can still happen before the
1234  * percpu_ref_tryget_live() in get_swap_device() or after the
1235  * percpu_ref_put() in put_swap_device() if there isn't any other way
1236  * to prevent swapoff, such as page lock, page table lock, etc.  The
1237  * caller must be prepared for that.  For example, the following
1238  * situation is possible.
1239  *
1240  *   CPU1                               CPU2
1241  *   do_swap_page()
1242  *     ...                              swapoff+swapon
1243  *     __read_swap_cache_async()
1244  *       swapcache_prepare()
1245  *         __swap_duplicate()
1246  *           // check swap_map
1247  *     // verify PTE not changed
1248  *
1249  * In __swap_duplicate(), the swap_map need to be checked before
1250  * changing partly because the specified swap entry may be for another
1251  * swap device which has been swapoff.  And in do_swap_page(), after
1252  * the page is read from the swap device, the PTE is verified not
1253  * changed with the page table locked to check whether the swap device
1254  * has been swapoff or swapoff+swapon.
1255  */
1256 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1257 {
1258         struct swap_info_struct *si;
1259         unsigned long offset;
1260
1261         if (!entry.val)
1262                 goto out;
1263         si = swp_swap_info(entry);
1264         if (!si)
1265                 goto bad_nofile;
1266         if (!percpu_ref_tryget_live(&si->users))
1267                 goto out;
1268         /*
1269          * Guarantee the si->users are checked before accessing other
1270          * fields of swap_info_struct.
1271          *
1272          * Paired with the spin_unlock() after setup_swap_info() in
1273          * enable_swap_info().
1274          */
1275         smp_rmb();
1276         offset = swp_offset(entry);
1277         if (offset >= si->max)
1278                 goto put_out;
1279
1280         return si;
1281 bad_nofile:
1282         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1283 out:
1284         return NULL;
1285 put_out:
1286         percpu_ref_put(&si->users);
1287         return NULL;
1288 }
1289
1290 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1291                                        swp_entry_t entry)
1292 {
1293         struct swap_cluster_info *ci;
1294         unsigned long offset = swp_offset(entry);
1295         unsigned char usage;
1296
1297         ci = lock_cluster_or_swap_info(p, offset);
1298         usage = __swap_entry_free_locked(p, offset, 1);
1299         unlock_cluster_or_swap_info(p, ci);
1300         if (!usage)
1301                 free_swap_slot(entry);
1302
1303         return usage;
1304 }
1305
1306 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1307 {
1308         struct swap_cluster_info *ci;
1309         unsigned long offset = swp_offset(entry);
1310         unsigned char count;
1311
1312         ci = lock_cluster(p, offset);
1313         count = p->swap_map[offset];
1314         VM_BUG_ON(count != SWAP_HAS_CACHE);
1315         p->swap_map[offset] = 0;
1316         dec_cluster_info_page(p, p->cluster_info, offset);
1317         unlock_cluster(ci);
1318
1319         mem_cgroup_uncharge_swap(entry, 1);
1320         swap_range_free(p, offset, 1);
1321 }
1322
1323 /*
1324  * Caller has made sure that the swap device corresponding to entry
1325  * is still around or has not been recycled.
1326  */
1327 void swap_free(swp_entry_t entry)
1328 {
1329         struct swap_info_struct *p;
1330
1331         p = _swap_info_get(entry);
1332         if (p)
1333                 __swap_entry_free(p, entry);
1334 }
1335
1336 /*
1337  * Called after dropping swapcache to decrease refcnt to swap entries.
1338  */
1339 void put_swap_page(struct page *page, swp_entry_t entry)
1340 {
1341         unsigned long offset = swp_offset(entry);
1342         unsigned long idx = offset / SWAPFILE_CLUSTER;
1343         struct swap_cluster_info *ci;
1344         struct swap_info_struct *si;
1345         unsigned char *map;
1346         unsigned int i, free_entries = 0;
1347         unsigned char val;
1348         int size = swap_entry_size(thp_nr_pages(page));
1349
1350         si = _swap_info_get(entry);
1351         if (!si)
1352                 return;
1353
1354         ci = lock_cluster_or_swap_info(si, offset);
1355         if (size == SWAPFILE_CLUSTER) {
1356                 VM_BUG_ON(!cluster_is_huge(ci));
1357                 map = si->swap_map + offset;
1358                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1359                         val = map[i];
1360                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1361                         if (val == SWAP_HAS_CACHE)
1362                                 free_entries++;
1363                 }
1364                 cluster_clear_huge(ci);
1365                 if (free_entries == SWAPFILE_CLUSTER) {
1366                         unlock_cluster_or_swap_info(si, ci);
1367                         spin_lock(&si->lock);
1368                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1369                         swap_free_cluster(si, idx);
1370                         spin_unlock(&si->lock);
1371                         return;
1372                 }
1373         }
1374         for (i = 0; i < size; i++, entry.val++) {
1375                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1376                         unlock_cluster_or_swap_info(si, ci);
1377                         free_swap_slot(entry);
1378                         if (i == size - 1)
1379                                 return;
1380                         lock_cluster_or_swap_info(si, offset);
1381                 }
1382         }
1383         unlock_cluster_or_swap_info(si, ci);
1384 }
1385
1386 #ifdef CONFIG_THP_SWAP
1387 int split_swap_cluster(swp_entry_t entry)
1388 {
1389         struct swap_info_struct *si;
1390         struct swap_cluster_info *ci;
1391         unsigned long offset = swp_offset(entry);
1392
1393         si = _swap_info_get(entry);
1394         if (!si)
1395                 return -EBUSY;
1396         ci = lock_cluster(si, offset);
1397         cluster_clear_huge(ci);
1398         unlock_cluster(ci);
1399         return 0;
1400 }
1401 #endif
1402
1403 static int swp_entry_cmp(const void *ent1, const void *ent2)
1404 {
1405         const swp_entry_t *e1 = ent1, *e2 = ent2;
1406
1407         return (int)swp_type(*e1) - (int)swp_type(*e2);
1408 }
1409
1410 void swapcache_free_entries(swp_entry_t *entries, int n)
1411 {
1412         struct swap_info_struct *p, *prev;
1413         int i;
1414
1415         if (n <= 0)
1416                 return;
1417
1418         prev = NULL;
1419         p = NULL;
1420
1421         /*
1422          * Sort swap entries by swap device, so each lock is only taken once.
1423          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1424          * so low that it isn't necessary to optimize further.
1425          */
1426         if (nr_swapfiles > 1)
1427                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1428         for (i = 0; i < n; ++i) {
1429                 p = swap_info_get_cont(entries[i], prev);
1430                 if (p)
1431                         swap_entry_free(p, entries[i]);
1432                 prev = p;
1433         }
1434         if (p)
1435                 spin_unlock(&p->lock);
1436 }
1437
1438 /*
1439  * How many references to page are currently swapped out?
1440  * This does not give an exact answer when swap count is continued,
1441  * but does include the high COUNT_CONTINUED flag to allow for that.
1442  */
1443 int page_swapcount(struct page *page)
1444 {
1445         int count = 0;
1446         struct swap_info_struct *p;
1447         struct swap_cluster_info *ci;
1448         swp_entry_t entry;
1449         unsigned long offset;
1450
1451         entry.val = page_private(page);
1452         p = _swap_info_get(entry);
1453         if (p) {
1454                 offset = swp_offset(entry);
1455                 ci = lock_cluster_or_swap_info(p, offset);
1456                 count = swap_count(p->swap_map[offset]);
1457                 unlock_cluster_or_swap_info(p, ci);
1458         }
1459         return count;
1460 }
1461
1462 int __swap_count(swp_entry_t entry)
1463 {
1464         struct swap_info_struct *si;
1465         pgoff_t offset = swp_offset(entry);
1466         int count = 0;
1467
1468         si = get_swap_device(entry);
1469         if (si) {
1470                 count = swap_count(si->swap_map[offset]);
1471                 put_swap_device(si);
1472         }
1473         return count;
1474 }
1475
1476 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1477 {
1478         int count = 0;
1479         pgoff_t offset = swp_offset(entry);
1480         struct swap_cluster_info *ci;
1481
1482         ci = lock_cluster_or_swap_info(si, offset);
1483         count = swap_count(si->swap_map[offset]);
1484         unlock_cluster_or_swap_info(si, ci);
1485         return count;
1486 }
1487
1488 /*
1489  * How many references to @entry are currently swapped out?
1490  * This does not give an exact answer when swap count is continued,
1491  * but does include the high COUNT_CONTINUED flag to allow for that.
1492  */
1493 int __swp_swapcount(swp_entry_t entry)
1494 {
1495         int count = 0;
1496         struct swap_info_struct *si;
1497
1498         si = get_swap_device(entry);
1499         if (si) {
1500                 count = swap_swapcount(si, entry);
1501                 put_swap_device(si);
1502         }
1503         return count;
1504 }
1505
1506 /*
1507  * How many references to @entry are currently swapped out?
1508  * This considers COUNT_CONTINUED so it returns exact answer.
1509  */
1510 int swp_swapcount(swp_entry_t entry)
1511 {
1512         int count, tmp_count, n;
1513         struct swap_info_struct *p;
1514         struct swap_cluster_info *ci;
1515         struct page *page;
1516         pgoff_t offset;
1517         unsigned char *map;
1518
1519         p = _swap_info_get(entry);
1520         if (!p)
1521                 return 0;
1522
1523         offset = swp_offset(entry);
1524
1525         ci = lock_cluster_or_swap_info(p, offset);
1526
1527         count = swap_count(p->swap_map[offset]);
1528         if (!(count & COUNT_CONTINUED))
1529                 goto out;
1530
1531         count &= ~COUNT_CONTINUED;
1532         n = SWAP_MAP_MAX + 1;
1533
1534         page = vmalloc_to_page(p->swap_map + offset);
1535         offset &= ~PAGE_MASK;
1536         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1537
1538         do {
1539                 page = list_next_entry(page, lru);
1540                 map = kmap_atomic(page);
1541                 tmp_count = map[offset];
1542                 kunmap_atomic(map);
1543
1544                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1545                 n *= (SWAP_CONT_MAX + 1);
1546         } while (tmp_count & COUNT_CONTINUED);
1547 out:
1548         unlock_cluster_or_swap_info(p, ci);
1549         return count;
1550 }
1551
1552 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1553                                          swp_entry_t entry)
1554 {
1555         struct swap_cluster_info *ci;
1556         unsigned char *map = si->swap_map;
1557         unsigned long roffset = swp_offset(entry);
1558         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1559         int i;
1560         bool ret = false;
1561
1562         ci = lock_cluster_or_swap_info(si, offset);
1563         if (!ci || !cluster_is_huge(ci)) {
1564                 if (swap_count(map[roffset]))
1565                         ret = true;
1566                 goto unlock_out;
1567         }
1568         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1569                 if (swap_count(map[offset + i])) {
1570                         ret = true;
1571                         break;
1572                 }
1573         }
1574 unlock_out:
1575         unlock_cluster_or_swap_info(si, ci);
1576         return ret;
1577 }
1578
1579 static bool page_swapped(struct page *page)
1580 {
1581         swp_entry_t entry;
1582         struct swap_info_struct *si;
1583
1584         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1585                 return page_swapcount(page) != 0;
1586
1587         page = compound_head(page);
1588         entry.val = page_private(page);
1589         si = _swap_info_get(entry);
1590         if (si)
1591                 return swap_page_trans_huge_swapped(si, entry);
1592         return false;
1593 }
1594
1595 /*
1596  * If swap is getting full, or if there are no more mappings of this page,
1597  * then try_to_free_swap is called to free its swap space.
1598  */
1599 int try_to_free_swap(struct page *page)
1600 {
1601         VM_BUG_ON_PAGE(!PageLocked(page), page);
1602
1603         if (!PageSwapCache(page))
1604                 return 0;
1605         if (PageWriteback(page))
1606                 return 0;
1607         if (page_swapped(page))
1608                 return 0;
1609
1610         /*
1611          * Once hibernation has begun to create its image of memory,
1612          * there's a danger that one of the calls to try_to_free_swap()
1613          * - most probably a call from __try_to_reclaim_swap() while
1614          * hibernation is allocating its own swap pages for the image,
1615          * but conceivably even a call from memory reclaim - will free
1616          * the swap from a page which has already been recorded in the
1617          * image as a clean swapcache page, and then reuse its swap for
1618          * another page of the image.  On waking from hibernation, the
1619          * original page might be freed under memory pressure, then
1620          * later read back in from swap, now with the wrong data.
1621          *
1622          * Hibernation suspends storage while it is writing the image
1623          * to disk so check that here.
1624          */
1625         if (pm_suspended_storage())
1626                 return 0;
1627
1628         page = compound_head(page);
1629         delete_from_swap_cache(page);
1630         SetPageDirty(page);
1631         return 1;
1632 }
1633
1634 /*
1635  * Free the swap entry like above, but also try to
1636  * free the page cache entry if it is the last user.
1637  */
1638 int free_swap_and_cache(swp_entry_t entry)
1639 {
1640         struct swap_info_struct *p;
1641         unsigned char count;
1642
1643         if (non_swap_entry(entry))
1644                 return 1;
1645
1646         p = _swap_info_get(entry);
1647         if (p) {
1648                 count = __swap_entry_free(p, entry);
1649                 if (count == SWAP_HAS_CACHE &&
1650                     !swap_page_trans_huge_swapped(p, entry))
1651                         __try_to_reclaim_swap(p, swp_offset(entry),
1652                                               TTRS_UNMAPPED | TTRS_FULL);
1653         }
1654         return p != NULL;
1655 }
1656
1657 #ifdef CONFIG_HIBERNATION
1658
1659 swp_entry_t get_swap_page_of_type(int type)
1660 {
1661         struct swap_info_struct *si = swap_type_to_swap_info(type);
1662         swp_entry_t entry = {0};
1663
1664         if (!si)
1665                 goto fail;
1666
1667         /* This is called for allocating swap entry, not cache */
1668         spin_lock(&si->lock);
1669         if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1670                 atomic_long_dec(&nr_swap_pages);
1671         spin_unlock(&si->lock);
1672 fail:
1673         return entry;
1674 }
1675
1676 /*
1677  * Find the swap type that corresponds to given device (if any).
1678  *
1679  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1680  * from 0, in which the swap header is expected to be located.
1681  *
1682  * This is needed for the suspend to disk (aka swsusp).
1683  */
1684 int swap_type_of(dev_t device, sector_t offset)
1685 {
1686         int type;
1687
1688         if (!device)
1689                 return -1;
1690
1691         spin_lock(&swap_lock);
1692         for (type = 0; type < nr_swapfiles; type++) {
1693                 struct swap_info_struct *sis = swap_info[type];
1694
1695                 if (!(sis->flags & SWP_WRITEOK))
1696                         continue;
1697
1698                 if (device == sis->bdev->bd_dev) {
1699                         struct swap_extent *se = first_se(sis);
1700
1701                         if (se->start_block == offset) {
1702                                 spin_unlock(&swap_lock);
1703                                 return type;
1704                         }
1705                 }
1706         }
1707         spin_unlock(&swap_lock);
1708         return -ENODEV;
1709 }
1710
1711 int find_first_swap(dev_t *device)
1712 {
1713         int type;
1714
1715         spin_lock(&swap_lock);
1716         for (type = 0; type < nr_swapfiles; type++) {
1717                 struct swap_info_struct *sis = swap_info[type];
1718
1719                 if (!(sis->flags & SWP_WRITEOK))
1720                         continue;
1721                 *device = sis->bdev->bd_dev;
1722                 spin_unlock(&swap_lock);
1723                 return type;
1724         }
1725         spin_unlock(&swap_lock);
1726         return -ENODEV;
1727 }
1728
1729 /*
1730  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1731  * corresponding to given index in swap_info (swap type).
1732  */
1733 sector_t swapdev_block(int type, pgoff_t offset)
1734 {
1735         struct swap_info_struct *si = swap_type_to_swap_info(type);
1736         struct swap_extent *se;
1737
1738         if (!si || !(si->flags & SWP_WRITEOK))
1739                 return 0;
1740         se = offset_to_swap_extent(si, offset);
1741         return se->start_block + (offset - se->start_page);
1742 }
1743
1744 /*
1745  * Return either the total number of swap pages of given type, or the number
1746  * of free pages of that type (depending on @free)
1747  *
1748  * This is needed for software suspend
1749  */
1750 unsigned int count_swap_pages(int type, int free)
1751 {
1752         unsigned int n = 0;
1753
1754         spin_lock(&swap_lock);
1755         if ((unsigned int)type < nr_swapfiles) {
1756                 struct swap_info_struct *sis = swap_info[type];
1757
1758                 spin_lock(&sis->lock);
1759                 if (sis->flags & SWP_WRITEOK) {
1760                         n = sis->pages;
1761                         if (free)
1762                                 n -= sis->inuse_pages;
1763                 }
1764                 spin_unlock(&sis->lock);
1765         }
1766         spin_unlock(&swap_lock);
1767         return n;
1768 }
1769 #endif /* CONFIG_HIBERNATION */
1770
1771 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1772 {
1773         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1774 }
1775
1776 /*
1777  * No need to decide whether this PTE shares the swap entry with others,
1778  * just let do_wp_page work it out if a write is requested later - to
1779  * force COW, vm_page_prot omits write permission from any private vma.
1780  */
1781 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1782                 unsigned long addr, swp_entry_t entry, struct page *page)
1783 {
1784         struct page *swapcache;
1785         spinlock_t *ptl;
1786         pte_t *pte;
1787         int ret = 1;
1788
1789         swapcache = page;
1790         page = ksm_might_need_to_copy(page, vma, addr);
1791         if (unlikely(!page))
1792                 return -ENOMEM;
1793
1794         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1795         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1796                 ret = 0;
1797                 goto out;
1798         }
1799
1800         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1801         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1802         get_page(page);
1803         if (page == swapcache) {
1804                 page_add_anon_rmap(page, vma, addr, false);
1805         } else { /* ksm created a completely new copy */
1806                 page_add_new_anon_rmap(page, vma, addr, false);
1807                 lru_cache_add_inactive_or_unevictable(page, vma);
1808         }
1809         set_pte_at(vma->vm_mm, addr, pte,
1810                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1811         swap_free(entry);
1812 out:
1813         pte_unmap_unlock(pte, ptl);
1814         if (page != swapcache) {
1815                 unlock_page(page);
1816                 put_page(page);
1817         }
1818         return ret;
1819 }
1820
1821 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1822                         unsigned long addr, unsigned long end,
1823                         unsigned int type)
1824 {
1825         struct page *page;
1826         swp_entry_t entry;
1827         pte_t *pte;
1828         struct swap_info_struct *si;
1829         unsigned long offset;
1830         int ret = 0;
1831         volatile unsigned char *swap_map;
1832
1833         si = swap_info[type];
1834         pte = pte_offset_map(pmd, addr);
1835         do {
1836                 if (!is_swap_pte(*pte))
1837                         continue;
1838
1839                 entry = pte_to_swp_entry(*pte);
1840                 if (swp_type(entry) != type)
1841                         continue;
1842
1843                 offset = swp_offset(entry);
1844                 pte_unmap(pte);
1845                 swap_map = &si->swap_map[offset];
1846                 page = lookup_swap_cache(entry, vma, addr);
1847                 if (!page) {
1848                         struct vm_fault vmf = {
1849                                 .vma = vma,
1850                                 .address = addr,
1851                                 .real_address = addr,
1852                                 .pmd = pmd,
1853                         };
1854
1855                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1856                                                 &vmf);
1857                 }
1858                 if (!page) {
1859                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1860                                 goto try_next;
1861                         return -ENOMEM;
1862                 }
1863
1864                 lock_page(page);
1865                 wait_on_page_writeback(page);
1866                 ret = unuse_pte(vma, pmd, addr, entry, page);
1867                 if (ret < 0) {
1868                         unlock_page(page);
1869                         put_page(page);
1870                         goto out;
1871                 }
1872
1873                 try_to_free_swap(page);
1874                 unlock_page(page);
1875                 put_page(page);
1876 try_next:
1877                 pte = pte_offset_map(pmd, addr);
1878         } while (pte++, addr += PAGE_SIZE, addr != end);
1879         pte_unmap(pte - 1);
1880
1881         ret = 0;
1882 out:
1883         return ret;
1884 }
1885
1886 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1887                                 unsigned long addr, unsigned long end,
1888                                 unsigned int type)
1889 {
1890         pmd_t *pmd;
1891         unsigned long next;
1892         int ret;
1893
1894         pmd = pmd_offset(pud, addr);
1895         do {
1896                 cond_resched();
1897                 next = pmd_addr_end(addr, end);
1898                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1899                         continue;
1900                 ret = unuse_pte_range(vma, pmd, addr, next, type);
1901                 if (ret)
1902                         return ret;
1903         } while (pmd++, addr = next, addr != end);
1904         return 0;
1905 }
1906
1907 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1908                                 unsigned long addr, unsigned long end,
1909                                 unsigned int type)
1910 {
1911         pud_t *pud;
1912         unsigned long next;
1913         int ret;
1914
1915         pud = pud_offset(p4d, addr);
1916         do {
1917                 next = pud_addr_end(addr, end);
1918                 if (pud_none_or_clear_bad(pud))
1919                         continue;
1920                 ret = unuse_pmd_range(vma, pud, addr, next, type);
1921                 if (ret)
1922                         return ret;
1923         } while (pud++, addr = next, addr != end);
1924         return 0;
1925 }
1926
1927 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1928                                 unsigned long addr, unsigned long end,
1929                                 unsigned int type)
1930 {
1931         p4d_t *p4d;
1932         unsigned long next;
1933         int ret;
1934
1935         p4d = p4d_offset(pgd, addr);
1936         do {
1937                 next = p4d_addr_end(addr, end);
1938                 if (p4d_none_or_clear_bad(p4d))
1939                         continue;
1940                 ret = unuse_pud_range(vma, p4d, addr, next, type);
1941                 if (ret)
1942                         return ret;
1943         } while (p4d++, addr = next, addr != end);
1944         return 0;
1945 }
1946
1947 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1948 {
1949         pgd_t *pgd;
1950         unsigned long addr, end, next;
1951         int ret;
1952
1953         addr = vma->vm_start;
1954         end = vma->vm_end;
1955
1956         pgd = pgd_offset(vma->vm_mm, addr);
1957         do {
1958                 next = pgd_addr_end(addr, end);
1959                 if (pgd_none_or_clear_bad(pgd))
1960                         continue;
1961                 ret = unuse_p4d_range(vma, pgd, addr, next, type);
1962                 if (ret)
1963                         return ret;
1964         } while (pgd++, addr = next, addr != end);
1965         return 0;
1966 }
1967
1968 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1969 {
1970         struct vm_area_struct *vma;
1971         int ret = 0;
1972
1973         mmap_read_lock(mm);
1974         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1975                 if (vma->anon_vma) {
1976                         ret = unuse_vma(vma, type);
1977                         if (ret)
1978                                 break;
1979                 }
1980                 cond_resched();
1981         }
1982         mmap_read_unlock(mm);
1983         return ret;
1984 }
1985
1986 /*
1987  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1988  * from current position to next entry still in use. Return 0
1989  * if there are no inuse entries after prev till end of the map.
1990  */
1991 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1992                                         unsigned int prev)
1993 {
1994         unsigned int i;
1995         unsigned char count;
1996
1997         /*
1998          * No need for swap_lock here: we're just looking
1999          * for whether an entry is in use, not modifying it; false
2000          * hits are okay, and sys_swapoff() has already prevented new
2001          * allocations from this area (while holding swap_lock).
2002          */
2003         for (i = prev + 1; i < si->max; i++) {
2004                 count = READ_ONCE(si->swap_map[i]);
2005                 if (count && swap_count(count) != SWAP_MAP_BAD)
2006                         break;
2007                 if ((i % LATENCY_LIMIT) == 0)
2008                         cond_resched();
2009         }
2010
2011         if (i == si->max)
2012                 i = 0;
2013
2014         return i;
2015 }
2016
2017 static int try_to_unuse(unsigned int type)
2018 {
2019         struct mm_struct *prev_mm;
2020         struct mm_struct *mm;
2021         struct list_head *p;
2022         int retval = 0;
2023         struct swap_info_struct *si = swap_info[type];
2024         struct page *page;
2025         swp_entry_t entry;
2026         unsigned int i;
2027
2028         if (!READ_ONCE(si->inuse_pages))
2029                 return 0;
2030
2031 retry:
2032         retval = shmem_unuse(type);
2033         if (retval)
2034                 return retval;
2035
2036         prev_mm = &init_mm;
2037         mmget(prev_mm);
2038
2039         spin_lock(&mmlist_lock);
2040         p = &init_mm.mmlist;
2041         while (READ_ONCE(si->inuse_pages) &&
2042                !signal_pending(current) &&
2043                (p = p->next) != &init_mm.mmlist) {
2044
2045                 mm = list_entry(p, struct mm_struct, mmlist);
2046                 if (!mmget_not_zero(mm))
2047                         continue;
2048                 spin_unlock(&mmlist_lock);
2049                 mmput(prev_mm);
2050                 prev_mm = mm;
2051                 retval = unuse_mm(mm, type);
2052                 if (retval) {
2053                         mmput(prev_mm);
2054                         return retval;
2055                 }
2056
2057                 /*
2058                  * Make sure that we aren't completely killing
2059                  * interactive performance.
2060                  */
2061                 cond_resched();
2062                 spin_lock(&mmlist_lock);
2063         }
2064         spin_unlock(&mmlist_lock);
2065
2066         mmput(prev_mm);
2067
2068         i = 0;
2069         while (READ_ONCE(si->inuse_pages) &&
2070                !signal_pending(current) &&
2071                (i = find_next_to_unuse(si, i)) != 0) {
2072
2073                 entry = swp_entry(type, i);
2074                 page = find_get_page(swap_address_space(entry), i);
2075                 if (!page)
2076                         continue;
2077
2078                 /*
2079                  * It is conceivable that a racing task removed this page from
2080                  * swap cache just before we acquired the page lock. The page
2081                  * might even be back in swap cache on another swap area. But
2082                  * that is okay, try_to_free_swap() only removes stale pages.
2083                  */
2084                 lock_page(page);
2085                 wait_on_page_writeback(page);
2086                 try_to_free_swap(page);
2087                 unlock_page(page);
2088                 put_page(page);
2089         }
2090
2091         /*
2092          * Lets check again to see if there are still swap entries in the map.
2093          * If yes, we would need to do retry the unuse logic again.
2094          * Under global memory pressure, swap entries can be reinserted back
2095          * into process space after the mmlist loop above passes over them.
2096          *
2097          * Limit the number of retries? No: when mmget_not_zero() above fails,
2098          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2099          * at its own independent pace; and even shmem_writepage() could have
2100          * been preempted after get_swap_page(), temporarily hiding that swap.
2101          * It's easy and robust (though cpu-intensive) just to keep retrying.
2102          */
2103         if (READ_ONCE(si->inuse_pages)) {
2104                 if (!signal_pending(current))
2105                         goto retry;
2106                 return -EINTR;
2107         }
2108
2109         return 0;
2110 }
2111
2112 /*
2113  * After a successful try_to_unuse, if no swap is now in use, we know
2114  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2115  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2116  * added to the mmlist just after page_duplicate - before would be racy.
2117  */
2118 static void drain_mmlist(void)
2119 {
2120         struct list_head *p, *next;
2121         unsigned int type;
2122
2123         for (type = 0; type < nr_swapfiles; type++)
2124                 if (swap_info[type]->inuse_pages)
2125                         return;
2126         spin_lock(&mmlist_lock);
2127         list_for_each_safe(p, next, &init_mm.mmlist)
2128                 list_del_init(p);
2129         spin_unlock(&mmlist_lock);
2130 }
2131
2132 /*
2133  * Free all of a swapdev's extent information
2134  */
2135 static void destroy_swap_extents(struct swap_info_struct *sis)
2136 {
2137         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2138                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2139                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2140
2141                 rb_erase(rb, &sis->swap_extent_root);
2142                 kfree(se);
2143         }
2144
2145         if (sis->flags & SWP_ACTIVATED) {
2146                 struct file *swap_file = sis->swap_file;
2147                 struct address_space *mapping = swap_file->f_mapping;
2148
2149                 sis->flags &= ~SWP_ACTIVATED;
2150                 if (mapping->a_ops->swap_deactivate)
2151                         mapping->a_ops->swap_deactivate(swap_file);
2152         }
2153 }
2154
2155 /*
2156  * Add a block range (and the corresponding page range) into this swapdev's
2157  * extent tree.
2158  *
2159  * This function rather assumes that it is called in ascending page order.
2160  */
2161 int
2162 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2163                 unsigned long nr_pages, sector_t start_block)
2164 {
2165         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2166         struct swap_extent *se;
2167         struct swap_extent *new_se;
2168
2169         /*
2170          * place the new node at the right most since the
2171          * function is called in ascending page order.
2172          */
2173         while (*link) {
2174                 parent = *link;
2175                 link = &parent->rb_right;
2176         }
2177
2178         if (parent) {
2179                 se = rb_entry(parent, struct swap_extent, rb_node);
2180                 BUG_ON(se->start_page + se->nr_pages != start_page);
2181                 if (se->start_block + se->nr_pages == start_block) {
2182                         /* Merge it */
2183                         se->nr_pages += nr_pages;
2184                         return 0;
2185                 }
2186         }
2187
2188         /* No merge, insert a new extent. */
2189         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2190         if (new_se == NULL)
2191                 return -ENOMEM;
2192         new_se->start_page = start_page;
2193         new_se->nr_pages = nr_pages;
2194         new_se->start_block = start_block;
2195
2196         rb_link_node(&new_se->rb_node, parent, link);
2197         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2198         return 1;
2199 }
2200 EXPORT_SYMBOL_GPL(add_swap_extent);
2201
2202 /*
2203  * A `swap extent' is a simple thing which maps a contiguous range of pages
2204  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2205  * is built at swapon time and is then used at swap_writepage/swap_readpage
2206  * time for locating where on disk a page belongs.
2207  *
2208  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2209  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2210  * swap files identically.
2211  *
2212  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2213  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2214  * swapfiles are handled *identically* after swapon time.
2215  *
2216  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2217  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2218  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2219  * requirements, they are simply tossed out - we will never use those blocks
2220  * for swapping.
2221  *
2222  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2223  * prevents users from writing to the swap device, which will corrupt memory.
2224  *
2225  * The amount of disk space which a single swap extent represents varies.
2226  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2227  * extents in the list.  To avoid much list walking, we cache the previous
2228  * search location in `curr_swap_extent', and start new searches from there.
2229  * This is extremely effective.  The average number of iterations in
2230  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2231  */
2232 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2233 {
2234         struct file *swap_file = sis->swap_file;
2235         struct address_space *mapping = swap_file->f_mapping;
2236         struct inode *inode = mapping->host;
2237         int ret;
2238
2239         if (S_ISBLK(inode->i_mode)) {
2240                 ret = add_swap_extent(sis, 0, sis->max, 0);
2241                 *span = sis->pages;
2242                 return ret;
2243         }
2244
2245         if (mapping->a_ops->swap_activate) {
2246                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2247                 if (ret >= 0)
2248                         sis->flags |= SWP_ACTIVATED;
2249                 if (!ret) {
2250                         sis->flags |= SWP_FS_OPS;
2251                         ret = add_swap_extent(sis, 0, sis->max, 0);
2252                         *span = sis->pages;
2253                 }
2254                 return ret;
2255         }
2256
2257         return generic_swapfile_activate(sis, swap_file, span);
2258 }
2259
2260 static int swap_node(struct swap_info_struct *p)
2261 {
2262         struct block_device *bdev;
2263
2264         if (p->bdev)
2265                 bdev = p->bdev;
2266         else
2267                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2268
2269         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2270 }
2271
2272 static void setup_swap_info(struct swap_info_struct *p, int prio,
2273                             unsigned char *swap_map,
2274                             struct swap_cluster_info *cluster_info)
2275 {
2276         int i;
2277
2278         if (prio >= 0)
2279                 p->prio = prio;
2280         else
2281                 p->prio = --least_priority;
2282         /*
2283          * the plist prio is negated because plist ordering is
2284          * low-to-high, while swap ordering is high-to-low
2285          */
2286         p->list.prio = -p->prio;
2287         for_each_node(i) {
2288                 if (p->prio >= 0)
2289                         p->avail_lists[i].prio = -p->prio;
2290                 else {
2291                         if (swap_node(p) == i)
2292                                 p->avail_lists[i].prio = 1;
2293                         else
2294                                 p->avail_lists[i].prio = -p->prio;
2295                 }
2296         }
2297         p->swap_map = swap_map;
2298         p->cluster_info = cluster_info;
2299 }
2300
2301 static void _enable_swap_info(struct swap_info_struct *p)
2302 {
2303         p->flags |= SWP_WRITEOK;
2304         atomic_long_add(p->pages, &nr_swap_pages);
2305         total_swap_pages += p->pages;
2306
2307         assert_spin_locked(&swap_lock);
2308         /*
2309          * both lists are plists, and thus priority ordered.
2310          * swap_active_head needs to be priority ordered for swapoff(),
2311          * which on removal of any swap_info_struct with an auto-assigned
2312          * (i.e. negative) priority increments the auto-assigned priority
2313          * of any lower-priority swap_info_structs.
2314          * swap_avail_head needs to be priority ordered for get_swap_page(),
2315          * which allocates swap pages from the highest available priority
2316          * swap_info_struct.
2317          */
2318         plist_add(&p->list, &swap_active_head);
2319         add_to_avail_list(p);
2320 }
2321
2322 static void enable_swap_info(struct swap_info_struct *p, int prio,
2323                                 unsigned char *swap_map,
2324                                 struct swap_cluster_info *cluster_info,
2325                                 unsigned long *frontswap_map)
2326 {
2327         if (IS_ENABLED(CONFIG_FRONTSWAP))
2328                 frontswap_init(p->type, frontswap_map);
2329         spin_lock(&swap_lock);
2330         spin_lock(&p->lock);
2331         setup_swap_info(p, prio, swap_map, cluster_info);
2332         spin_unlock(&p->lock);
2333         spin_unlock(&swap_lock);
2334         /*
2335          * Finished initializing swap device, now it's safe to reference it.
2336          */
2337         percpu_ref_resurrect(&p->users);
2338         spin_lock(&swap_lock);
2339         spin_lock(&p->lock);
2340         _enable_swap_info(p);
2341         spin_unlock(&p->lock);
2342         spin_unlock(&swap_lock);
2343 }
2344
2345 static void reinsert_swap_info(struct swap_info_struct *p)
2346 {
2347         spin_lock(&swap_lock);
2348         spin_lock(&p->lock);
2349         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2350         _enable_swap_info(p);
2351         spin_unlock(&p->lock);
2352         spin_unlock(&swap_lock);
2353 }
2354
2355 bool has_usable_swap(void)
2356 {
2357         bool ret = true;
2358
2359         spin_lock(&swap_lock);
2360         if (plist_head_empty(&swap_active_head))
2361                 ret = false;
2362         spin_unlock(&swap_lock);
2363         return ret;
2364 }
2365
2366 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2367 {
2368         struct swap_info_struct *p = NULL;
2369         unsigned char *swap_map;
2370         struct swap_cluster_info *cluster_info;
2371         unsigned long *frontswap_map;
2372         struct file *swap_file, *victim;
2373         struct address_space *mapping;
2374         struct inode *inode;
2375         struct filename *pathname;
2376         int err, found = 0;
2377         unsigned int old_block_size;
2378
2379         if (!capable(CAP_SYS_ADMIN))
2380                 return -EPERM;
2381
2382         BUG_ON(!current->mm);
2383
2384         pathname = getname(specialfile);
2385         if (IS_ERR(pathname))
2386                 return PTR_ERR(pathname);
2387
2388         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2389         err = PTR_ERR(victim);
2390         if (IS_ERR(victim))
2391                 goto out;
2392
2393         mapping = victim->f_mapping;
2394         spin_lock(&swap_lock);
2395         plist_for_each_entry(p, &swap_active_head, list) {
2396                 if (p->flags & SWP_WRITEOK) {
2397                         if (p->swap_file->f_mapping == mapping) {
2398                                 found = 1;
2399                                 break;
2400                         }
2401                 }
2402         }
2403         if (!found) {
2404                 err = -EINVAL;
2405                 spin_unlock(&swap_lock);
2406                 goto out_dput;
2407         }
2408         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2409                 vm_unacct_memory(p->pages);
2410         else {
2411                 err = -ENOMEM;
2412                 spin_unlock(&swap_lock);
2413                 goto out_dput;
2414         }
2415         del_from_avail_list(p);
2416         spin_lock(&p->lock);
2417         if (p->prio < 0) {
2418                 struct swap_info_struct *si = p;
2419                 int nid;
2420
2421                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2422                         si->prio++;
2423                         si->list.prio--;
2424                         for_each_node(nid) {
2425                                 if (si->avail_lists[nid].prio != 1)
2426                                         si->avail_lists[nid].prio--;
2427                         }
2428                 }
2429                 least_priority++;
2430         }
2431         plist_del(&p->list, &swap_active_head);
2432         atomic_long_sub(p->pages, &nr_swap_pages);
2433         total_swap_pages -= p->pages;
2434         p->flags &= ~SWP_WRITEOK;
2435         spin_unlock(&p->lock);
2436         spin_unlock(&swap_lock);
2437
2438         disable_swap_slots_cache_lock();
2439
2440         set_current_oom_origin();
2441         err = try_to_unuse(p->type);
2442         clear_current_oom_origin();
2443
2444         if (err) {
2445                 /* re-insert swap space back into swap_list */
2446                 reinsert_swap_info(p);
2447                 reenable_swap_slots_cache_unlock();
2448                 goto out_dput;
2449         }
2450
2451         reenable_swap_slots_cache_unlock();
2452
2453         /*
2454          * Wait for swap operations protected by get/put_swap_device()
2455          * to complete.
2456          *
2457          * We need synchronize_rcu() here to protect the accessing to
2458          * the swap cache data structure.
2459          */
2460         percpu_ref_kill(&p->users);
2461         synchronize_rcu();
2462         wait_for_completion(&p->comp);
2463
2464         flush_work(&p->discard_work);
2465
2466         destroy_swap_extents(p);
2467         if (p->flags & SWP_CONTINUED)
2468                 free_swap_count_continuations(p);
2469
2470         if (!p->bdev || !bdev_nonrot(p->bdev))
2471                 atomic_dec(&nr_rotate_swap);
2472
2473         mutex_lock(&swapon_mutex);
2474         spin_lock(&swap_lock);
2475         spin_lock(&p->lock);
2476         drain_mmlist();
2477
2478         /* wait for anyone still in scan_swap_map_slots */
2479         p->highest_bit = 0;             /* cuts scans short */
2480         while (p->flags >= SWP_SCANNING) {
2481                 spin_unlock(&p->lock);
2482                 spin_unlock(&swap_lock);
2483                 schedule_timeout_uninterruptible(1);
2484                 spin_lock(&swap_lock);
2485                 spin_lock(&p->lock);
2486         }
2487
2488         swap_file = p->swap_file;
2489         old_block_size = p->old_block_size;
2490         p->swap_file = NULL;
2491         p->max = 0;
2492         swap_map = p->swap_map;
2493         p->swap_map = NULL;
2494         cluster_info = p->cluster_info;
2495         p->cluster_info = NULL;
2496         frontswap_map = frontswap_map_get(p);
2497         spin_unlock(&p->lock);
2498         spin_unlock(&swap_lock);
2499         arch_swap_invalidate_area(p->type);
2500         frontswap_invalidate_area(p->type);
2501         frontswap_map_set(p, NULL);
2502         mutex_unlock(&swapon_mutex);
2503         free_percpu(p->percpu_cluster);
2504         p->percpu_cluster = NULL;
2505         free_percpu(p->cluster_next_cpu);
2506         p->cluster_next_cpu = NULL;
2507         vfree(swap_map);
2508         kvfree(cluster_info);
2509         kvfree(frontswap_map);
2510         /* Destroy swap account information */
2511         swap_cgroup_swapoff(p->type);
2512         exit_swap_address_space(p->type);
2513
2514         inode = mapping->host;
2515         if (S_ISBLK(inode->i_mode)) {
2516                 struct block_device *bdev = I_BDEV(inode);
2517
2518                 set_blocksize(bdev, old_block_size);
2519                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2520         }
2521
2522         inode_lock(inode);
2523         inode->i_flags &= ~S_SWAPFILE;
2524         inode_unlock(inode);
2525         filp_close(swap_file, NULL);
2526
2527         /*
2528          * Clear the SWP_USED flag after all resources are freed so that swapon
2529          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2530          * not hold p->lock after we cleared its SWP_WRITEOK.
2531          */
2532         spin_lock(&swap_lock);
2533         p->flags = 0;
2534         spin_unlock(&swap_lock);
2535
2536         err = 0;
2537         atomic_inc(&proc_poll_event);
2538         wake_up_interruptible(&proc_poll_wait);
2539
2540 out_dput:
2541         filp_close(victim, NULL);
2542 out:
2543         putname(pathname);
2544         return err;
2545 }
2546
2547 #ifdef CONFIG_PROC_FS
2548 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2549 {
2550         struct seq_file *seq = file->private_data;
2551
2552         poll_wait(file, &proc_poll_wait, wait);
2553
2554         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2555                 seq->poll_event = atomic_read(&proc_poll_event);
2556                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2557         }
2558
2559         return EPOLLIN | EPOLLRDNORM;
2560 }
2561
2562 /* iterator */
2563 static void *swap_start(struct seq_file *swap, loff_t *pos)
2564 {
2565         struct swap_info_struct *si;
2566         int type;
2567         loff_t l = *pos;
2568
2569         mutex_lock(&swapon_mutex);
2570
2571         if (!l)
2572                 return SEQ_START_TOKEN;
2573
2574         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2575                 if (!(si->flags & SWP_USED) || !si->swap_map)
2576                         continue;
2577                 if (!--l)
2578                         return si;
2579         }
2580
2581         return NULL;
2582 }
2583
2584 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2585 {
2586         struct swap_info_struct *si = v;
2587         int type;
2588
2589         if (v == SEQ_START_TOKEN)
2590                 type = 0;
2591         else
2592                 type = si->type + 1;
2593
2594         ++(*pos);
2595         for (; (si = swap_type_to_swap_info(type)); type++) {
2596                 if (!(si->flags & SWP_USED) || !si->swap_map)
2597                         continue;
2598                 return si;
2599         }
2600
2601         return NULL;
2602 }
2603
2604 static void swap_stop(struct seq_file *swap, void *v)
2605 {
2606         mutex_unlock(&swapon_mutex);
2607 }
2608
2609 static int swap_show(struct seq_file *swap, void *v)
2610 {
2611         struct swap_info_struct *si = v;
2612         struct file *file;
2613         int len;
2614         unsigned long bytes, inuse;
2615
2616         if (si == SEQ_START_TOKEN) {
2617                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2618                 return 0;
2619         }
2620
2621         bytes = si->pages << (PAGE_SHIFT - 10);
2622         inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2623
2624         file = si->swap_file;
2625         len = seq_file_path(swap, file, " \t\n\\");
2626         seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2627                         len < 40 ? 40 - len : 1, " ",
2628                         S_ISBLK(file_inode(file)->i_mode) ?
2629                                 "partition" : "file\t",
2630                         bytes, bytes < 10000000 ? "\t" : "",
2631                         inuse, inuse < 10000000 ? "\t" : "",
2632                         si->prio);
2633         return 0;
2634 }
2635
2636 static const struct seq_operations swaps_op = {
2637         .start =        swap_start,
2638         .next =         swap_next,
2639         .stop =         swap_stop,
2640         .show =         swap_show
2641 };
2642
2643 static int swaps_open(struct inode *inode, struct file *file)
2644 {
2645         struct seq_file *seq;
2646         int ret;
2647
2648         ret = seq_open(file, &swaps_op);
2649         if (ret)
2650                 return ret;
2651
2652         seq = file->private_data;
2653         seq->poll_event = atomic_read(&proc_poll_event);
2654         return 0;
2655 }
2656
2657 static const struct proc_ops swaps_proc_ops = {
2658         .proc_flags     = PROC_ENTRY_PERMANENT,
2659         .proc_open      = swaps_open,
2660         .proc_read      = seq_read,
2661         .proc_lseek     = seq_lseek,
2662         .proc_release   = seq_release,
2663         .proc_poll      = swaps_poll,
2664 };
2665
2666 static int __init procswaps_init(void)
2667 {
2668         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2669         return 0;
2670 }
2671 __initcall(procswaps_init);
2672 #endif /* CONFIG_PROC_FS */
2673
2674 #ifdef MAX_SWAPFILES_CHECK
2675 static int __init max_swapfiles_check(void)
2676 {
2677         MAX_SWAPFILES_CHECK();
2678         return 0;
2679 }
2680 late_initcall(max_swapfiles_check);
2681 #endif
2682
2683 static struct swap_info_struct *alloc_swap_info(void)
2684 {
2685         struct swap_info_struct *p;
2686         struct swap_info_struct *defer = NULL;
2687         unsigned int type;
2688         int i;
2689
2690         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2691         if (!p)
2692                 return ERR_PTR(-ENOMEM);
2693
2694         if (percpu_ref_init(&p->users, swap_users_ref_free,
2695                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2696                 kvfree(p);
2697                 return ERR_PTR(-ENOMEM);
2698         }
2699
2700         spin_lock(&swap_lock);
2701         for (type = 0; type < nr_swapfiles; type++) {
2702                 if (!(swap_info[type]->flags & SWP_USED))
2703                         break;
2704         }
2705         if (type >= MAX_SWAPFILES) {
2706                 spin_unlock(&swap_lock);
2707                 percpu_ref_exit(&p->users);
2708                 kvfree(p);
2709                 return ERR_PTR(-EPERM);
2710         }
2711         if (type >= nr_swapfiles) {
2712                 p->type = type;
2713                 /*
2714                  * Publish the swap_info_struct after initializing it.
2715                  * Note that kvzalloc() above zeroes all its fields.
2716                  */
2717                 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2718                 nr_swapfiles++;
2719         } else {
2720                 defer = p;
2721                 p = swap_info[type];
2722                 /*
2723                  * Do not memset this entry: a racing procfs swap_next()
2724                  * would be relying on p->type to remain valid.
2725                  */
2726         }
2727         p->swap_extent_root = RB_ROOT;
2728         plist_node_init(&p->list, 0);
2729         for_each_node(i)
2730                 plist_node_init(&p->avail_lists[i], 0);
2731         p->flags = SWP_USED;
2732         spin_unlock(&swap_lock);
2733         if (defer) {
2734                 percpu_ref_exit(&defer->users);
2735                 kvfree(defer);
2736         }
2737         spin_lock_init(&p->lock);
2738         spin_lock_init(&p->cont_lock);
2739         init_completion(&p->comp);
2740
2741         return p;
2742 }
2743
2744 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2745 {
2746         int error;
2747
2748         if (S_ISBLK(inode->i_mode)) {
2749                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2750                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2751                 if (IS_ERR(p->bdev)) {
2752                         error = PTR_ERR(p->bdev);
2753                         p->bdev = NULL;
2754                         return error;
2755                 }
2756                 p->old_block_size = block_size(p->bdev);
2757                 error = set_blocksize(p->bdev, PAGE_SIZE);
2758                 if (error < 0)
2759                         return error;
2760                 /*
2761                  * Zoned block devices contain zones that have a sequential
2762                  * write only restriction.  Hence zoned block devices are not
2763                  * suitable for swapping.  Disallow them here.
2764                  */
2765                 if (bdev_is_zoned(p->bdev))
2766                         return -EINVAL;
2767                 p->flags |= SWP_BLKDEV;
2768         } else if (S_ISREG(inode->i_mode)) {
2769                 p->bdev = inode->i_sb->s_bdev;
2770         }
2771
2772         return 0;
2773 }
2774
2775
2776 /*
2777  * Find out how many pages are allowed for a single swap device. There
2778  * are two limiting factors:
2779  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2780  * 2) the number of bits in the swap pte, as defined by the different
2781  * architectures.
2782  *
2783  * In order to find the largest possible bit mask, a swap entry with
2784  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2785  * decoded to a swp_entry_t again, and finally the swap offset is
2786  * extracted.
2787  *
2788  * This will mask all the bits from the initial ~0UL mask that can't
2789  * be encoded in either the swp_entry_t or the architecture definition
2790  * of a swap pte.
2791  */
2792 unsigned long generic_max_swapfile_size(void)
2793 {
2794         return swp_offset(pte_to_swp_entry(
2795                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2796 }
2797
2798 /* Can be overridden by an architecture for additional checks. */
2799 __weak unsigned long max_swapfile_size(void)
2800 {
2801         return generic_max_swapfile_size();
2802 }
2803
2804 static unsigned long read_swap_header(struct swap_info_struct *p,
2805                                         union swap_header *swap_header,
2806                                         struct inode *inode)
2807 {
2808         int i;
2809         unsigned long maxpages;
2810         unsigned long swapfilepages;
2811         unsigned long last_page;
2812
2813         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2814                 pr_err("Unable to find swap-space signature\n");
2815                 return 0;
2816         }
2817
2818         /* swap partition endianness hack... */
2819         if (swab32(swap_header->info.version) == 1) {
2820                 swab32s(&swap_header->info.version);
2821                 swab32s(&swap_header->info.last_page);
2822                 swab32s(&swap_header->info.nr_badpages);
2823                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2824                         return 0;
2825                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2826                         swab32s(&swap_header->info.badpages[i]);
2827         }
2828         /* Check the swap header's sub-version */
2829         if (swap_header->info.version != 1) {
2830                 pr_warn("Unable to handle swap header version %d\n",
2831                         swap_header->info.version);
2832                 return 0;
2833         }
2834
2835         p->lowest_bit  = 1;
2836         p->cluster_next = 1;
2837         p->cluster_nr = 0;
2838
2839         maxpages = max_swapfile_size();
2840         last_page = swap_header->info.last_page;
2841         if (!last_page) {
2842                 pr_warn("Empty swap-file\n");
2843                 return 0;
2844         }
2845         if (last_page > maxpages) {
2846                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2847                         maxpages << (PAGE_SHIFT - 10),
2848                         last_page << (PAGE_SHIFT - 10));
2849         }
2850         if (maxpages > last_page) {
2851                 maxpages = last_page + 1;
2852                 /* p->max is an unsigned int: don't overflow it */
2853                 if ((unsigned int)maxpages == 0)
2854                         maxpages = UINT_MAX;
2855         }
2856         p->highest_bit = maxpages - 1;
2857
2858         if (!maxpages)
2859                 return 0;
2860         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2861         if (swapfilepages && maxpages > swapfilepages) {
2862                 pr_warn("Swap area shorter than signature indicates\n");
2863                 return 0;
2864         }
2865         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2866                 return 0;
2867         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2868                 return 0;
2869
2870         return maxpages;
2871 }
2872
2873 #define SWAP_CLUSTER_INFO_COLS                                          \
2874         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2875 #define SWAP_CLUSTER_SPACE_COLS                                         \
2876         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2877 #define SWAP_CLUSTER_COLS                                               \
2878         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2879
2880 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2881                                         union swap_header *swap_header,
2882                                         unsigned char *swap_map,
2883                                         struct swap_cluster_info *cluster_info,
2884                                         unsigned long maxpages,
2885                                         sector_t *span)
2886 {
2887         unsigned int j, k;
2888         unsigned int nr_good_pages;
2889         int nr_extents;
2890         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2891         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2892         unsigned long i, idx;
2893
2894         nr_good_pages = maxpages - 1;   /* omit header page */
2895
2896         cluster_list_init(&p->free_clusters);
2897         cluster_list_init(&p->discard_clusters);
2898
2899         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2900                 unsigned int page_nr = swap_header->info.badpages[i];
2901                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2902                         return -EINVAL;
2903                 if (page_nr < maxpages) {
2904                         swap_map[page_nr] = SWAP_MAP_BAD;
2905                         nr_good_pages--;
2906                         /*
2907                          * Haven't marked the cluster free yet, no list
2908                          * operation involved
2909                          */
2910                         inc_cluster_info_page(p, cluster_info, page_nr);
2911                 }
2912         }
2913
2914         /* Haven't marked the cluster free yet, no list operation involved */
2915         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2916                 inc_cluster_info_page(p, cluster_info, i);
2917
2918         if (nr_good_pages) {
2919                 swap_map[0] = SWAP_MAP_BAD;
2920                 /*
2921                  * Not mark the cluster free yet, no list
2922                  * operation involved
2923                  */
2924                 inc_cluster_info_page(p, cluster_info, 0);
2925                 p->max = maxpages;
2926                 p->pages = nr_good_pages;
2927                 nr_extents = setup_swap_extents(p, span);
2928                 if (nr_extents < 0)
2929                         return nr_extents;
2930                 nr_good_pages = p->pages;
2931         }
2932         if (!nr_good_pages) {
2933                 pr_warn("Empty swap-file\n");
2934                 return -EINVAL;
2935         }
2936
2937         if (!cluster_info)
2938                 return nr_extents;
2939
2940
2941         /*
2942          * Reduce false cache line sharing between cluster_info and
2943          * sharing same address space.
2944          */
2945         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2946                 j = (k + col) % SWAP_CLUSTER_COLS;
2947                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2948                         idx = i * SWAP_CLUSTER_COLS + j;
2949                         if (idx >= nr_clusters)
2950                                 continue;
2951                         if (cluster_count(&cluster_info[idx]))
2952                                 continue;
2953                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2954                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2955                                               idx);
2956                 }
2957         }
2958         return nr_extents;
2959 }
2960
2961 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2962 {
2963         struct swap_info_struct *p;
2964         struct filename *name;
2965         struct file *swap_file = NULL;
2966         struct address_space *mapping;
2967         struct dentry *dentry;
2968         int prio;
2969         int error;
2970         union swap_header *swap_header;
2971         int nr_extents;
2972         sector_t span;
2973         unsigned long maxpages;
2974         unsigned char *swap_map = NULL;
2975         struct swap_cluster_info *cluster_info = NULL;
2976         unsigned long *frontswap_map = NULL;
2977         struct page *page = NULL;
2978         struct inode *inode = NULL;
2979         bool inced_nr_rotate_swap = false;
2980
2981         if (swap_flags & ~SWAP_FLAGS_VALID)
2982                 return -EINVAL;
2983
2984         if (!capable(CAP_SYS_ADMIN))
2985                 return -EPERM;
2986
2987         if (!swap_avail_heads)
2988                 return -ENOMEM;
2989
2990         p = alloc_swap_info();
2991         if (IS_ERR(p))
2992                 return PTR_ERR(p);
2993
2994         INIT_WORK(&p->discard_work, swap_discard_work);
2995
2996         name = getname(specialfile);
2997         if (IS_ERR(name)) {
2998                 error = PTR_ERR(name);
2999                 name = NULL;
3000                 goto bad_swap;
3001         }
3002         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3003         if (IS_ERR(swap_file)) {
3004                 error = PTR_ERR(swap_file);
3005                 swap_file = NULL;
3006                 goto bad_swap;
3007         }
3008
3009         p->swap_file = swap_file;
3010         mapping = swap_file->f_mapping;
3011         dentry = swap_file->f_path.dentry;
3012         inode = mapping->host;
3013
3014         error = claim_swapfile(p, inode);
3015         if (unlikely(error))
3016                 goto bad_swap;
3017
3018         inode_lock(inode);
3019         if (d_unlinked(dentry) || cant_mount(dentry)) {
3020                 error = -ENOENT;
3021                 goto bad_swap_unlock_inode;
3022         }
3023         if (IS_SWAPFILE(inode)) {
3024                 error = -EBUSY;
3025                 goto bad_swap_unlock_inode;
3026         }
3027
3028         /*
3029          * Read the swap header.
3030          */
3031         if (!mapping->a_ops->readpage) {
3032                 error = -EINVAL;
3033                 goto bad_swap_unlock_inode;
3034         }
3035         page = read_mapping_page(mapping, 0, swap_file);
3036         if (IS_ERR(page)) {
3037                 error = PTR_ERR(page);
3038                 goto bad_swap_unlock_inode;
3039         }
3040         swap_header = kmap(page);
3041
3042         maxpages = read_swap_header(p, swap_header, inode);
3043         if (unlikely(!maxpages)) {
3044                 error = -EINVAL;
3045                 goto bad_swap_unlock_inode;
3046         }
3047
3048         /* OK, set up the swap map and apply the bad block list */
3049         swap_map = vzalloc(maxpages);
3050         if (!swap_map) {
3051                 error = -ENOMEM;
3052                 goto bad_swap_unlock_inode;
3053         }
3054
3055         if (p->bdev && bdev_stable_writes(p->bdev))
3056                 p->flags |= SWP_STABLE_WRITES;
3057
3058         if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3059                 p->flags |= SWP_SYNCHRONOUS_IO;
3060
3061         if (p->bdev && bdev_nonrot(p->bdev)) {
3062                 int cpu;
3063                 unsigned long ci, nr_cluster;
3064
3065                 p->flags |= SWP_SOLIDSTATE;
3066                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3067                 if (!p->cluster_next_cpu) {
3068                         error = -ENOMEM;
3069                         goto bad_swap_unlock_inode;
3070                 }
3071                 /*
3072                  * select a random position to start with to help wear leveling
3073                  * SSD
3074                  */
3075                 for_each_possible_cpu(cpu) {
3076                         per_cpu(*p->cluster_next_cpu, cpu) =
3077                                 1 + prandom_u32_max(p->highest_bit);
3078                 }
3079                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3080
3081                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3082                                         GFP_KERNEL);
3083                 if (!cluster_info) {
3084                         error = -ENOMEM;
3085                         goto bad_swap_unlock_inode;
3086                 }
3087
3088                 for (ci = 0; ci < nr_cluster; ci++)
3089                         spin_lock_init(&((cluster_info + ci)->lock));
3090
3091                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3092                 if (!p->percpu_cluster) {
3093                         error = -ENOMEM;
3094                         goto bad_swap_unlock_inode;
3095                 }
3096                 for_each_possible_cpu(cpu) {
3097                         struct percpu_cluster *cluster;
3098                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3099                         cluster_set_null(&cluster->index);
3100                 }
3101         } else {
3102                 atomic_inc(&nr_rotate_swap);
3103                 inced_nr_rotate_swap = true;
3104         }
3105
3106         error = swap_cgroup_swapon(p->type, maxpages);
3107         if (error)
3108                 goto bad_swap_unlock_inode;
3109
3110         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3111                 cluster_info, maxpages, &span);
3112         if (unlikely(nr_extents < 0)) {
3113                 error = nr_extents;
3114                 goto bad_swap_unlock_inode;
3115         }
3116         /* frontswap enabled? set up bit-per-page map for frontswap */
3117         if (IS_ENABLED(CONFIG_FRONTSWAP))
3118                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3119                                          sizeof(long),
3120                                          GFP_KERNEL);
3121
3122         if ((swap_flags & SWAP_FLAG_DISCARD) &&
3123             p->bdev && bdev_max_discard_sectors(p->bdev)) {
3124                 /*
3125                  * When discard is enabled for swap with no particular
3126                  * policy flagged, we set all swap discard flags here in
3127                  * order to sustain backward compatibility with older
3128                  * swapon(8) releases.
3129                  */
3130                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3131                              SWP_PAGE_DISCARD);
3132
3133                 /*
3134                  * By flagging sys_swapon, a sysadmin can tell us to
3135                  * either do single-time area discards only, or to just
3136                  * perform discards for released swap page-clusters.
3137                  * Now it's time to adjust the p->flags accordingly.
3138                  */
3139                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3140                         p->flags &= ~SWP_PAGE_DISCARD;
3141                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3142                         p->flags &= ~SWP_AREA_DISCARD;
3143
3144                 /* issue a swapon-time discard if it's still required */
3145                 if (p->flags & SWP_AREA_DISCARD) {
3146                         int err = discard_swap(p);
3147                         if (unlikely(err))
3148                                 pr_err("swapon: discard_swap(%p): %d\n",
3149                                         p, err);
3150                 }
3151         }
3152
3153         error = init_swap_address_space(p->type, maxpages);
3154         if (error)
3155                 goto bad_swap_unlock_inode;
3156
3157         /*
3158          * Flush any pending IO and dirty mappings before we start using this
3159          * swap device.
3160          */
3161         inode->i_flags |= S_SWAPFILE;
3162         error = inode_drain_writes(inode);
3163         if (error) {
3164                 inode->i_flags &= ~S_SWAPFILE;
3165                 goto free_swap_address_space;
3166         }
3167
3168         mutex_lock(&swapon_mutex);
3169         prio = -1;
3170         if (swap_flags & SWAP_FLAG_PREFER)
3171                 prio =
3172                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3173         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3174
3175         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3176                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3177                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3178                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3179                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3180                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3181                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3182                 (frontswap_map) ? "FS" : "");
3183
3184         mutex_unlock(&swapon_mutex);
3185         atomic_inc(&proc_poll_event);
3186         wake_up_interruptible(&proc_poll_wait);
3187
3188         error = 0;
3189         goto out;
3190 free_swap_address_space:
3191         exit_swap_address_space(p->type);
3192 bad_swap_unlock_inode:
3193         inode_unlock(inode);
3194 bad_swap:
3195         free_percpu(p->percpu_cluster);
3196         p->percpu_cluster = NULL;
3197         free_percpu(p->cluster_next_cpu);
3198         p->cluster_next_cpu = NULL;
3199         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3200                 set_blocksize(p->bdev, p->old_block_size);
3201                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3202         }
3203         inode = NULL;
3204         destroy_swap_extents(p);
3205         swap_cgroup_swapoff(p->type);
3206         spin_lock(&swap_lock);
3207         p->swap_file = NULL;
3208         p->flags = 0;
3209         spin_unlock(&swap_lock);
3210         vfree(swap_map);
3211         kvfree(cluster_info);
3212         kvfree(frontswap_map);
3213         if (inced_nr_rotate_swap)
3214                 atomic_dec(&nr_rotate_swap);
3215         if (swap_file)
3216                 filp_close(swap_file, NULL);
3217 out:
3218         if (page && !IS_ERR(page)) {
3219                 kunmap(page);
3220                 put_page(page);
3221         }
3222         if (name)
3223                 putname(name);
3224         if (inode)
3225                 inode_unlock(inode);
3226         if (!error)
3227                 enable_swap_slots_cache();
3228         return error;
3229 }
3230
3231 void si_swapinfo(struct sysinfo *val)
3232 {
3233         unsigned int type;
3234         unsigned long nr_to_be_unused = 0;
3235
3236         spin_lock(&swap_lock);
3237         for (type = 0; type < nr_swapfiles; type++) {
3238                 struct swap_info_struct *si = swap_info[type];
3239
3240                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3241                         nr_to_be_unused += si->inuse_pages;
3242         }
3243         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3244         val->totalswap = total_swap_pages + nr_to_be_unused;
3245         spin_unlock(&swap_lock);
3246 }
3247
3248 /*
3249  * Verify that a swap entry is valid and increment its swap map count.
3250  *
3251  * Returns error code in following case.
3252  * - success -> 0
3253  * - swp_entry is invalid -> EINVAL
3254  * - swp_entry is migration entry -> EINVAL
3255  * - swap-cache reference is requested but there is already one. -> EEXIST
3256  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3257  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3258  */
3259 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3260 {
3261         struct swap_info_struct *p;
3262         struct swap_cluster_info *ci;
3263         unsigned long offset;
3264         unsigned char count;
3265         unsigned char has_cache;
3266         int err;
3267
3268         p = get_swap_device(entry);
3269         if (!p)
3270                 return -EINVAL;
3271
3272         offset = swp_offset(entry);
3273         ci = lock_cluster_or_swap_info(p, offset);
3274
3275         count = p->swap_map[offset];
3276
3277         /*
3278          * swapin_readahead() doesn't check if a swap entry is valid, so the
3279          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3280          */
3281         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3282                 err = -ENOENT;
3283                 goto unlock_out;
3284         }
3285
3286         has_cache = count & SWAP_HAS_CACHE;
3287         count &= ~SWAP_HAS_CACHE;
3288         err = 0;
3289
3290         if (usage == SWAP_HAS_CACHE) {
3291
3292                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3293                 if (!has_cache && count)
3294                         has_cache = SWAP_HAS_CACHE;
3295                 else if (has_cache)             /* someone else added cache */
3296                         err = -EEXIST;
3297                 else                            /* no users remaining */
3298                         err = -ENOENT;
3299
3300         } else if (count || has_cache) {
3301
3302                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3303                         count += usage;
3304                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3305                         err = -EINVAL;
3306                 else if (swap_count_continued(p, offset, count))
3307                         count = COUNT_CONTINUED;
3308                 else
3309                         err = -ENOMEM;
3310         } else
3311                 err = -ENOENT;                  /* unused swap entry */
3312
3313         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3314
3315 unlock_out:
3316         unlock_cluster_or_swap_info(p, ci);
3317         if (p)
3318                 put_swap_device(p);
3319         return err;
3320 }
3321
3322 /*
3323  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3324  * (in which case its reference count is never incremented).
3325  */
3326 void swap_shmem_alloc(swp_entry_t entry)
3327 {
3328         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3329 }
3330
3331 /*
3332  * Increase reference count of swap entry by 1.
3333  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3334  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3335  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3336  * might occur if a page table entry has got corrupted.
3337  */
3338 int swap_duplicate(swp_entry_t entry)
3339 {
3340         int err = 0;
3341
3342         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3343                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3344         return err;
3345 }
3346
3347 /*
3348  * @entry: swap entry for which we allocate swap cache.
3349  *
3350  * Called when allocating swap cache for existing swap entry,
3351  * This can return error codes. Returns 0 at success.
3352  * -EEXIST means there is a swap cache.
3353  * Note: return code is different from swap_duplicate().
3354  */
3355 int swapcache_prepare(swp_entry_t entry)
3356 {
3357         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3358 }
3359
3360 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3361 {
3362         return swap_type_to_swap_info(swp_type(entry));
3363 }
3364
3365 struct swap_info_struct *page_swap_info(struct page *page)
3366 {
3367         swp_entry_t entry = { .val = page_private(page) };
3368         return swp_swap_info(entry);
3369 }
3370
3371 /*
3372  * out-of-line methods to avoid include hell.
3373  */
3374 struct address_space *swapcache_mapping(struct folio *folio)
3375 {
3376         return page_swap_info(&folio->page)->swap_file->f_mapping;
3377 }
3378 EXPORT_SYMBOL_GPL(swapcache_mapping);
3379
3380 pgoff_t __page_file_index(struct page *page)
3381 {
3382         swp_entry_t swap = { .val = page_private(page) };
3383         return swp_offset(swap);
3384 }
3385 EXPORT_SYMBOL_GPL(__page_file_index);
3386
3387 /*
3388  * add_swap_count_continuation - called when a swap count is duplicated
3389  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3390  * page of the original vmalloc'ed swap_map, to hold the continuation count
3391  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3392  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3393  *
3394  * These continuation pages are seldom referenced: the common paths all work
3395  * on the original swap_map, only referring to a continuation page when the
3396  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3397  *
3398  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3399  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3400  * can be called after dropping locks.
3401  */
3402 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3403 {
3404         struct swap_info_struct *si;
3405         struct swap_cluster_info *ci;
3406         struct page *head;
3407         struct page *page;
3408         struct page *list_page;
3409         pgoff_t offset;
3410         unsigned char count;
3411         int ret = 0;
3412
3413         /*
3414          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3415          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3416          */
3417         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3418
3419         si = get_swap_device(entry);
3420         if (!si) {
3421                 /*
3422                  * An acceptable race has occurred since the failing
3423                  * __swap_duplicate(): the swap device may be swapoff
3424                  */
3425                 goto outer;
3426         }
3427         spin_lock(&si->lock);
3428
3429         offset = swp_offset(entry);
3430
3431         ci = lock_cluster(si, offset);
3432
3433         count = swap_count(si->swap_map[offset]);
3434
3435         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3436                 /*
3437                  * The higher the swap count, the more likely it is that tasks
3438                  * will race to add swap count continuation: we need to avoid
3439                  * over-provisioning.
3440                  */
3441                 goto out;
3442         }
3443
3444         if (!page) {
3445                 ret = -ENOMEM;
3446                 goto out;
3447         }
3448
3449         /*
3450          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3451          * no architecture is using highmem pages for kernel page tables: so it
3452          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3453          */
3454         head = vmalloc_to_page(si->swap_map + offset);
3455         offset &= ~PAGE_MASK;
3456
3457         spin_lock(&si->cont_lock);
3458         /*
3459          * Page allocation does not initialize the page's lru field,
3460          * but it does always reset its private field.
3461          */
3462         if (!page_private(head)) {
3463                 BUG_ON(count & COUNT_CONTINUED);
3464                 INIT_LIST_HEAD(&head->lru);
3465                 set_page_private(head, SWP_CONTINUED);
3466                 si->flags |= SWP_CONTINUED;
3467         }
3468
3469         list_for_each_entry(list_page, &head->lru, lru) {
3470                 unsigned char *map;
3471
3472                 /*
3473                  * If the previous map said no continuation, but we've found
3474                  * a continuation page, free our allocation and use this one.
3475                  */
3476                 if (!(count & COUNT_CONTINUED))
3477                         goto out_unlock_cont;
3478
3479                 map = kmap_atomic(list_page) + offset;
3480                 count = *map;
3481                 kunmap_atomic(map);
3482
3483                 /*
3484                  * If this continuation count now has some space in it,
3485                  * free our allocation and use this one.
3486                  */
3487                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3488                         goto out_unlock_cont;
3489         }
3490
3491         list_add_tail(&page->lru, &head->lru);
3492         page = NULL;                    /* now it's attached, don't free it */
3493 out_unlock_cont:
3494         spin_unlock(&si->cont_lock);
3495 out:
3496         unlock_cluster(ci);
3497         spin_unlock(&si->lock);
3498         put_swap_device(si);
3499 outer:
3500         if (page)
3501                 __free_page(page);
3502         return ret;
3503 }
3504
3505 /*
3506  * swap_count_continued - when the original swap_map count is incremented
3507  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3508  * into, carry if so, or else fail until a new continuation page is allocated;
3509  * when the original swap_map count is decremented from 0 with continuation,
3510  * borrow from the continuation and report whether it still holds more.
3511  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3512  * lock.
3513  */
3514 static bool swap_count_continued(struct swap_info_struct *si,
3515                                  pgoff_t offset, unsigned char count)
3516 {
3517         struct page *head;
3518         struct page *page;
3519         unsigned char *map;
3520         bool ret;
3521
3522         head = vmalloc_to_page(si->swap_map + offset);
3523         if (page_private(head) != SWP_CONTINUED) {
3524                 BUG_ON(count & COUNT_CONTINUED);
3525                 return false;           /* need to add count continuation */
3526         }
3527
3528         spin_lock(&si->cont_lock);
3529         offset &= ~PAGE_MASK;
3530         page = list_next_entry(head, lru);
3531         map = kmap_atomic(page) + offset;
3532
3533         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3534                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3535
3536         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3537                 /*
3538                  * Think of how you add 1 to 999
3539                  */
3540                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3541                         kunmap_atomic(map);
3542                         page = list_next_entry(page, lru);
3543                         BUG_ON(page == head);
3544                         map = kmap_atomic(page) + offset;
3545                 }
3546                 if (*map == SWAP_CONT_MAX) {
3547                         kunmap_atomic(map);
3548                         page = list_next_entry(page, lru);
3549                         if (page == head) {
3550                                 ret = false;    /* add count continuation */
3551                                 goto out;
3552                         }
3553                         map = kmap_atomic(page) + offset;
3554 init_map:               *map = 0;               /* we didn't zero the page */
3555                 }
3556                 *map += 1;
3557                 kunmap_atomic(map);
3558                 while ((page = list_prev_entry(page, lru)) != head) {
3559                         map = kmap_atomic(page) + offset;
3560                         *map = COUNT_CONTINUED;
3561                         kunmap_atomic(map);
3562                 }
3563                 ret = true;                     /* incremented */
3564
3565         } else {                                /* decrementing */
3566                 /*
3567                  * Think of how you subtract 1 from 1000
3568                  */
3569                 BUG_ON(count != COUNT_CONTINUED);
3570                 while (*map == COUNT_CONTINUED) {
3571                         kunmap_atomic(map);
3572                         page = list_next_entry(page, lru);
3573                         BUG_ON(page == head);
3574                         map = kmap_atomic(page) + offset;
3575                 }
3576                 BUG_ON(*map == 0);
3577                 *map -= 1;
3578                 if (*map == 0)
3579                         count = 0;
3580                 kunmap_atomic(map);
3581                 while ((page = list_prev_entry(page, lru)) != head) {
3582                         map = kmap_atomic(page) + offset;
3583                         *map = SWAP_CONT_MAX | count;
3584                         count = COUNT_CONTINUED;
3585                         kunmap_atomic(map);
3586                 }
3587                 ret = count == COUNT_CONTINUED;
3588         }
3589 out:
3590         spin_unlock(&si->cont_lock);
3591         return ret;
3592 }
3593
3594 /*
3595  * free_swap_count_continuations - swapoff free all the continuation pages
3596  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3597  */
3598 static void free_swap_count_continuations(struct swap_info_struct *si)
3599 {
3600         pgoff_t offset;
3601
3602         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3603                 struct page *head;
3604                 head = vmalloc_to_page(si->swap_map + offset);
3605                 if (page_private(head)) {
3606                         struct page *page, *next;
3607
3608                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3609                                 list_del(&page->lru);
3610                                 __free_page(page);
3611                         }
3612                 }
3613         }
3614 }
3615
3616 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3617 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3618 {
3619         struct swap_info_struct *si, *next;
3620         int nid = page_to_nid(page);
3621
3622         if (!(gfp_mask & __GFP_IO))
3623                 return;
3624
3625         if (!blk_cgroup_congested())
3626                 return;
3627
3628         /*
3629          * We've already scheduled a throttle, avoid taking the global swap
3630          * lock.
3631          */
3632         if (current->throttle_queue)
3633                 return;
3634
3635         spin_lock(&swap_avail_lock);
3636         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3637                                   avail_lists[nid]) {
3638                 if (si->bdev) {
3639                         blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3640                         break;
3641                 }
3642         }
3643         spin_unlock(&swap_avail_lock);
3644 }
3645 #endif
3646
3647 static int __init swapfile_init(void)
3648 {
3649         int nid;
3650
3651         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3652                                          GFP_KERNEL);
3653         if (!swap_avail_heads) {
3654                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3655                 return -ENOMEM;
3656         }
3657
3658         for_each_node(nid)
3659                 plist_head_init(&swap_avail_heads[nid]);
3660
3661         return 0;
3662 }
3663 subsys_initcall(swapfile_init);