Merge tag 'microblaze-v5.10' of git://git.monstr.eu/linux-2.6-microblaze
[linux-2.6-microblaze.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48                                  unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103         if (type >= READ_ONCE(nr_swapfiles))
104                 return NULL;
105
106         smp_rmb();      /* Pairs with smp_wmb in alloc_swap_info. */
107         return READ_ONCE(swap_info[type]);
108 }
109
110 static inline unsigned char swap_count(unsigned char ent)
111 {
112         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
113 }
114
115 /* Reclaim the swap entry anyway if possible */
116 #define TTRS_ANYWAY             0x1
117 /*
118  * Reclaim the swap entry if there are no more mappings of the
119  * corresponding page
120  */
121 #define TTRS_UNMAPPED           0x2
122 /* Reclaim the swap entry if swap is getting full*/
123 #define TTRS_FULL               0x4
124
125 /* returns 1 if swap entry is freed */
126 static int __try_to_reclaim_swap(struct swap_info_struct *si,
127                                  unsigned long offset, unsigned long flags)
128 {
129         swp_entry_t entry = swp_entry(si->type, offset);
130         struct page *page;
131         int ret = 0;
132
133         page = find_get_page(swap_address_space(entry), offset);
134         if (!page)
135                 return 0;
136         /*
137          * When this function is called from scan_swap_map_slots() and it's
138          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139          * here. We have to use trylock for avoiding deadlock. This is a special
140          * case and you should use try_to_free_swap() with explicit lock_page()
141          * in usual operations.
142          */
143         if (trylock_page(page)) {
144                 if ((flags & TTRS_ANYWAY) ||
145                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147                         ret = try_to_free_swap(page);
148                 unlock_page(page);
149         }
150         put_page(page);
151         return ret;
152 }
153
154 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155 {
156         struct rb_node *rb = rb_first(&sis->swap_extent_root);
157         return rb_entry(rb, struct swap_extent, rb_node);
158 }
159
160 static inline struct swap_extent *next_se(struct swap_extent *se)
161 {
162         struct rb_node *rb = rb_next(&se->rb_node);
163         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164 }
165
166 /*
167  * swapon tell device that all the old swap contents can be discarded,
168  * to allow the swap device to optimize its wear-levelling.
169  */
170 static int discard_swap(struct swap_info_struct *si)
171 {
172         struct swap_extent *se;
173         sector_t start_block;
174         sector_t nr_blocks;
175         int err = 0;
176
177         /* Do not discard the swap header page! */
178         se = first_se(si);
179         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181         if (nr_blocks) {
182                 err = blkdev_issue_discard(si->bdev, start_block,
183                                 nr_blocks, GFP_KERNEL, 0);
184                 if (err)
185                         return err;
186                 cond_resched();
187         }
188
189         for (se = next_se(se); se; se = next_se(se)) {
190                 start_block = se->start_block << (PAGE_SHIFT - 9);
191                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
192
193                 err = blkdev_issue_discard(si->bdev, start_block,
194                                 nr_blocks, GFP_KERNEL, 0);
195                 if (err)
196                         break;
197
198                 cond_resched();
199         }
200         return err;             /* That will often be -EOPNOTSUPP */
201 }
202
203 static struct swap_extent *
204 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205 {
206         struct swap_extent *se;
207         struct rb_node *rb;
208
209         rb = sis->swap_extent_root.rb_node;
210         while (rb) {
211                 se = rb_entry(rb, struct swap_extent, rb_node);
212                 if (offset < se->start_page)
213                         rb = rb->rb_left;
214                 else if (offset >= se->start_page + se->nr_pages)
215                         rb = rb->rb_right;
216                 else
217                         return se;
218         }
219         /* It *must* be present */
220         BUG();
221 }
222
223 /*
224  * swap allocation tell device that a cluster of swap can now be discarded,
225  * to allow the swap device to optimize its wear-levelling.
226  */
227 static void discard_swap_cluster(struct swap_info_struct *si,
228                                  pgoff_t start_page, pgoff_t nr_pages)
229 {
230         struct swap_extent *se = offset_to_swap_extent(si, start_page);
231
232         while (nr_pages) {
233                 pgoff_t offset = start_page - se->start_page;
234                 sector_t start_block = se->start_block + offset;
235                 sector_t nr_blocks = se->nr_pages - offset;
236
237                 if (nr_blocks > nr_pages)
238                         nr_blocks = nr_pages;
239                 start_page += nr_blocks;
240                 nr_pages -= nr_blocks;
241
242                 start_block <<= PAGE_SHIFT - 9;
243                 nr_blocks <<= PAGE_SHIFT - 9;
244                 if (blkdev_issue_discard(si->bdev, start_block,
245                                         nr_blocks, GFP_NOIO, 0))
246                         break;
247
248                 se = next_se(se);
249         }
250 }
251
252 #ifdef CONFIG_THP_SWAP
253 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
254
255 #define swap_entry_size(size)   (size)
256 #else
257 #define SWAPFILE_CLUSTER        256
258
259 /*
260  * Define swap_entry_size() as constant to let compiler to optimize
261  * out some code if !CONFIG_THP_SWAP
262  */
263 #define swap_entry_size(size)   1
264 #endif
265 #define LATENCY_LIMIT           256
266
267 static inline void cluster_set_flag(struct swap_cluster_info *info,
268         unsigned int flag)
269 {
270         info->flags = flag;
271 }
272
273 static inline unsigned int cluster_count(struct swap_cluster_info *info)
274 {
275         return info->data;
276 }
277
278 static inline void cluster_set_count(struct swap_cluster_info *info,
279                                      unsigned int c)
280 {
281         info->data = c;
282 }
283
284 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
285                                          unsigned int c, unsigned int f)
286 {
287         info->flags = f;
288         info->data = c;
289 }
290
291 static inline unsigned int cluster_next(struct swap_cluster_info *info)
292 {
293         return info->data;
294 }
295
296 static inline void cluster_set_next(struct swap_cluster_info *info,
297                                     unsigned int n)
298 {
299         info->data = n;
300 }
301
302 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
303                                          unsigned int n, unsigned int f)
304 {
305         info->flags = f;
306         info->data = n;
307 }
308
309 static inline bool cluster_is_free(struct swap_cluster_info *info)
310 {
311         return info->flags & CLUSTER_FLAG_FREE;
312 }
313
314 static inline bool cluster_is_null(struct swap_cluster_info *info)
315 {
316         return info->flags & CLUSTER_FLAG_NEXT_NULL;
317 }
318
319 static inline void cluster_set_null(struct swap_cluster_info *info)
320 {
321         info->flags = CLUSTER_FLAG_NEXT_NULL;
322         info->data = 0;
323 }
324
325 static inline bool cluster_is_huge(struct swap_cluster_info *info)
326 {
327         if (IS_ENABLED(CONFIG_THP_SWAP))
328                 return info->flags & CLUSTER_FLAG_HUGE;
329         return false;
330 }
331
332 static inline void cluster_clear_huge(struct swap_cluster_info *info)
333 {
334         info->flags &= ~CLUSTER_FLAG_HUGE;
335 }
336
337 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
338                                                      unsigned long offset)
339 {
340         struct swap_cluster_info *ci;
341
342         ci = si->cluster_info;
343         if (ci) {
344                 ci += offset / SWAPFILE_CLUSTER;
345                 spin_lock(&ci->lock);
346         }
347         return ci;
348 }
349
350 static inline void unlock_cluster(struct swap_cluster_info *ci)
351 {
352         if (ci)
353                 spin_unlock(&ci->lock);
354 }
355
356 /*
357  * Determine the locking method in use for this device.  Return
358  * swap_cluster_info if SSD-style cluster-based locking is in place.
359  */
360 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
361                 struct swap_info_struct *si, unsigned long offset)
362 {
363         struct swap_cluster_info *ci;
364
365         /* Try to use fine-grained SSD-style locking if available: */
366         ci = lock_cluster(si, offset);
367         /* Otherwise, fall back to traditional, coarse locking: */
368         if (!ci)
369                 spin_lock(&si->lock);
370
371         return ci;
372 }
373
374 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
375                                                struct swap_cluster_info *ci)
376 {
377         if (ci)
378                 unlock_cluster(ci);
379         else
380                 spin_unlock(&si->lock);
381 }
382
383 static inline bool cluster_list_empty(struct swap_cluster_list *list)
384 {
385         return cluster_is_null(&list->head);
386 }
387
388 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
389 {
390         return cluster_next(&list->head);
391 }
392
393 static void cluster_list_init(struct swap_cluster_list *list)
394 {
395         cluster_set_null(&list->head);
396         cluster_set_null(&list->tail);
397 }
398
399 static void cluster_list_add_tail(struct swap_cluster_list *list,
400                                   struct swap_cluster_info *ci,
401                                   unsigned int idx)
402 {
403         if (cluster_list_empty(list)) {
404                 cluster_set_next_flag(&list->head, idx, 0);
405                 cluster_set_next_flag(&list->tail, idx, 0);
406         } else {
407                 struct swap_cluster_info *ci_tail;
408                 unsigned int tail = cluster_next(&list->tail);
409
410                 /*
411                  * Nested cluster lock, but both cluster locks are
412                  * only acquired when we held swap_info_struct->lock
413                  */
414                 ci_tail = ci + tail;
415                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
416                 cluster_set_next(ci_tail, idx);
417                 spin_unlock(&ci_tail->lock);
418                 cluster_set_next_flag(&list->tail, idx, 0);
419         }
420 }
421
422 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
423                                            struct swap_cluster_info *ci)
424 {
425         unsigned int idx;
426
427         idx = cluster_next(&list->head);
428         if (cluster_next(&list->tail) == idx) {
429                 cluster_set_null(&list->head);
430                 cluster_set_null(&list->tail);
431         } else
432                 cluster_set_next_flag(&list->head,
433                                       cluster_next(&ci[idx]), 0);
434
435         return idx;
436 }
437
438 /* Add a cluster to discard list and schedule it to do discard */
439 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
440                 unsigned int idx)
441 {
442         /*
443          * If scan_swap_map() can't find a free cluster, it will check
444          * si->swap_map directly. To make sure the discarding cluster isn't
445          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
446          * will be cleared after discard
447          */
448         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
449                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
450
451         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
452
453         schedule_work(&si->discard_work);
454 }
455
456 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
457 {
458         struct swap_cluster_info *ci = si->cluster_info;
459
460         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
461         cluster_list_add_tail(&si->free_clusters, ci, idx);
462 }
463
464 /*
465  * Doing discard actually. After a cluster discard is finished, the cluster
466  * will be added to free cluster list. caller should hold si->lock.
467 */
468 static void swap_do_scheduled_discard(struct swap_info_struct *si)
469 {
470         struct swap_cluster_info *info, *ci;
471         unsigned int idx;
472
473         info = si->cluster_info;
474
475         while (!cluster_list_empty(&si->discard_clusters)) {
476                 idx = cluster_list_del_first(&si->discard_clusters, info);
477                 spin_unlock(&si->lock);
478
479                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
480                                 SWAPFILE_CLUSTER);
481
482                 spin_lock(&si->lock);
483                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
484                 __free_cluster(si, idx);
485                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
486                                 0, SWAPFILE_CLUSTER);
487                 unlock_cluster(ci);
488         }
489 }
490
491 static void swap_discard_work(struct work_struct *work)
492 {
493         struct swap_info_struct *si;
494
495         si = container_of(work, struct swap_info_struct, discard_work);
496
497         spin_lock(&si->lock);
498         swap_do_scheduled_discard(si);
499         spin_unlock(&si->lock);
500 }
501
502 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
503 {
504         struct swap_cluster_info *ci = si->cluster_info;
505
506         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
507         cluster_list_del_first(&si->free_clusters, ci);
508         cluster_set_count_flag(ci + idx, 0, 0);
509 }
510
511 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
512 {
513         struct swap_cluster_info *ci = si->cluster_info + idx;
514
515         VM_BUG_ON(cluster_count(ci) != 0);
516         /*
517          * If the swap is discardable, prepare discard the cluster
518          * instead of free it immediately. The cluster will be freed
519          * after discard.
520          */
521         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
522             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
523                 swap_cluster_schedule_discard(si, idx);
524                 return;
525         }
526
527         __free_cluster(si, idx);
528 }
529
530 /*
531  * The cluster corresponding to page_nr will be used. The cluster will be
532  * removed from free cluster list and its usage counter will be increased.
533  */
534 static void inc_cluster_info_page(struct swap_info_struct *p,
535         struct swap_cluster_info *cluster_info, unsigned long page_nr)
536 {
537         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
538
539         if (!cluster_info)
540                 return;
541         if (cluster_is_free(&cluster_info[idx]))
542                 alloc_cluster(p, idx);
543
544         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
545         cluster_set_count(&cluster_info[idx],
546                 cluster_count(&cluster_info[idx]) + 1);
547 }
548
549 /*
550  * The cluster corresponding to page_nr decreases one usage. If the usage
551  * counter becomes 0, which means no page in the cluster is in using, we can
552  * optionally discard the cluster and add it to free cluster list.
553  */
554 static void dec_cluster_info_page(struct swap_info_struct *p,
555         struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558
559         if (!cluster_info)
560                 return;
561
562         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
563         cluster_set_count(&cluster_info[idx],
564                 cluster_count(&cluster_info[idx]) - 1);
565
566         if (cluster_count(&cluster_info[idx]) == 0)
567                 free_cluster(p, idx);
568 }
569
570 /*
571  * It's possible scan_swap_map() uses a free cluster in the middle of free
572  * cluster list. Avoiding such abuse to avoid list corruption.
573  */
574 static bool
575 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
576         unsigned long offset)
577 {
578         struct percpu_cluster *percpu_cluster;
579         bool conflict;
580
581         offset /= SWAPFILE_CLUSTER;
582         conflict = !cluster_list_empty(&si->free_clusters) &&
583                 offset != cluster_list_first(&si->free_clusters) &&
584                 cluster_is_free(&si->cluster_info[offset]);
585
586         if (!conflict)
587                 return false;
588
589         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
590         cluster_set_null(&percpu_cluster->index);
591         return true;
592 }
593
594 /*
595  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
596  * might involve allocating a new cluster for current CPU too.
597  */
598 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
599         unsigned long *offset, unsigned long *scan_base)
600 {
601         struct percpu_cluster *cluster;
602         struct swap_cluster_info *ci;
603         unsigned long tmp, max;
604
605 new_cluster:
606         cluster = this_cpu_ptr(si->percpu_cluster);
607         if (cluster_is_null(&cluster->index)) {
608                 if (!cluster_list_empty(&si->free_clusters)) {
609                         cluster->index = si->free_clusters.head;
610                         cluster->next = cluster_next(&cluster->index) *
611                                         SWAPFILE_CLUSTER;
612                 } else if (!cluster_list_empty(&si->discard_clusters)) {
613                         /*
614                          * we don't have free cluster but have some clusters in
615                          * discarding, do discard now and reclaim them, then
616                          * reread cluster_next_cpu since we dropped si->lock
617                          */
618                         swap_do_scheduled_discard(si);
619                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
620                         *offset = *scan_base;
621                         goto new_cluster;
622                 } else
623                         return false;
624         }
625
626         /*
627          * Other CPUs can use our cluster if they can't find a free cluster,
628          * check if there is still free entry in the cluster
629          */
630         tmp = cluster->next;
631         max = min_t(unsigned long, si->max,
632                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
633         if (tmp < max) {
634                 ci = lock_cluster(si, tmp);
635                 while (tmp < max) {
636                         if (!si->swap_map[tmp])
637                                 break;
638                         tmp++;
639                 }
640                 unlock_cluster(ci);
641         }
642         if (tmp >= max) {
643                 cluster_set_null(&cluster->index);
644                 goto new_cluster;
645         }
646         cluster->next = tmp + 1;
647         *offset = tmp;
648         *scan_base = tmp;
649         return true;
650 }
651
652 static void __del_from_avail_list(struct swap_info_struct *p)
653 {
654         int nid;
655
656         for_each_node(nid)
657                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
658 }
659
660 static void del_from_avail_list(struct swap_info_struct *p)
661 {
662         spin_lock(&swap_avail_lock);
663         __del_from_avail_list(p);
664         spin_unlock(&swap_avail_lock);
665 }
666
667 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
668                              unsigned int nr_entries)
669 {
670         unsigned int end = offset + nr_entries - 1;
671
672         if (offset == si->lowest_bit)
673                 si->lowest_bit += nr_entries;
674         if (end == si->highest_bit)
675                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
676         si->inuse_pages += nr_entries;
677         if (si->inuse_pages == si->pages) {
678                 si->lowest_bit = si->max;
679                 si->highest_bit = 0;
680                 del_from_avail_list(si);
681         }
682 }
683
684 static void add_to_avail_list(struct swap_info_struct *p)
685 {
686         int nid;
687
688         spin_lock(&swap_avail_lock);
689         for_each_node(nid) {
690                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
691                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
692         }
693         spin_unlock(&swap_avail_lock);
694 }
695
696 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
697                             unsigned int nr_entries)
698 {
699         unsigned long begin = offset;
700         unsigned long end = offset + nr_entries - 1;
701         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
702
703         if (offset < si->lowest_bit)
704                 si->lowest_bit = offset;
705         if (end > si->highest_bit) {
706                 bool was_full = !si->highest_bit;
707
708                 WRITE_ONCE(si->highest_bit, end);
709                 if (was_full && (si->flags & SWP_WRITEOK))
710                         add_to_avail_list(si);
711         }
712         atomic_long_add(nr_entries, &nr_swap_pages);
713         si->inuse_pages -= nr_entries;
714         if (si->flags & SWP_BLKDEV)
715                 swap_slot_free_notify =
716                         si->bdev->bd_disk->fops->swap_slot_free_notify;
717         else
718                 swap_slot_free_notify = NULL;
719         while (offset <= end) {
720                 arch_swap_invalidate_page(si->type, offset);
721                 frontswap_invalidate_page(si->type, offset);
722                 if (swap_slot_free_notify)
723                         swap_slot_free_notify(si->bdev, offset);
724                 offset++;
725         }
726         clear_shadow_from_swap_cache(si->type, begin, end);
727 }
728
729 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
730 {
731         unsigned long prev;
732
733         if (!(si->flags & SWP_SOLIDSTATE)) {
734                 si->cluster_next = next;
735                 return;
736         }
737
738         prev = this_cpu_read(*si->cluster_next_cpu);
739         /*
740          * Cross the swap address space size aligned trunk, choose
741          * another trunk randomly to avoid lock contention on swap
742          * address space if possible.
743          */
744         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
745             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
746                 /* No free swap slots available */
747                 if (si->highest_bit <= si->lowest_bit)
748                         return;
749                 next = si->lowest_bit +
750                         prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
751                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
752                 next = max_t(unsigned int, next, si->lowest_bit);
753         }
754         this_cpu_write(*si->cluster_next_cpu, next);
755 }
756
757 static int scan_swap_map_slots(struct swap_info_struct *si,
758                                unsigned char usage, int nr,
759                                swp_entry_t slots[])
760 {
761         struct swap_cluster_info *ci;
762         unsigned long offset;
763         unsigned long scan_base;
764         unsigned long last_in_cluster = 0;
765         int latency_ration = LATENCY_LIMIT;
766         int n_ret = 0;
767         bool scanned_many = false;
768
769         /*
770          * We try to cluster swap pages by allocating them sequentially
771          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
772          * way, however, we resort to first-free allocation, starting
773          * a new cluster.  This prevents us from scattering swap pages
774          * all over the entire swap partition, so that we reduce
775          * overall disk seek times between swap pages.  -- sct
776          * But we do now try to find an empty cluster.  -Andrea
777          * And we let swap pages go all over an SSD partition.  Hugh
778          */
779
780         si->flags += SWP_SCANNING;
781         /*
782          * Use percpu scan base for SSD to reduce lock contention on
783          * cluster and swap cache.  For HDD, sequential access is more
784          * important.
785          */
786         if (si->flags & SWP_SOLIDSTATE)
787                 scan_base = this_cpu_read(*si->cluster_next_cpu);
788         else
789                 scan_base = si->cluster_next;
790         offset = scan_base;
791
792         /* SSD algorithm */
793         if (si->cluster_info) {
794                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
795                         goto scan;
796         } else if (unlikely(!si->cluster_nr--)) {
797                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
798                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
799                         goto checks;
800                 }
801
802                 spin_unlock(&si->lock);
803
804                 /*
805                  * If seek is expensive, start searching for new cluster from
806                  * start of partition, to minimize the span of allocated swap.
807                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
808                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
809                  */
810                 scan_base = offset = si->lowest_bit;
811                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
812
813                 /* Locate the first empty (unaligned) cluster */
814                 for (; last_in_cluster <= si->highest_bit; offset++) {
815                         if (si->swap_map[offset])
816                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
817                         else if (offset == last_in_cluster) {
818                                 spin_lock(&si->lock);
819                                 offset -= SWAPFILE_CLUSTER - 1;
820                                 si->cluster_next = offset;
821                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
822                                 goto checks;
823                         }
824                         if (unlikely(--latency_ration < 0)) {
825                                 cond_resched();
826                                 latency_ration = LATENCY_LIMIT;
827                         }
828                 }
829
830                 offset = scan_base;
831                 spin_lock(&si->lock);
832                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
833         }
834
835 checks:
836         if (si->cluster_info) {
837                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
838                 /* take a break if we already got some slots */
839                         if (n_ret)
840                                 goto done;
841                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
842                                                         &scan_base))
843                                 goto scan;
844                 }
845         }
846         if (!(si->flags & SWP_WRITEOK))
847                 goto no_page;
848         if (!si->highest_bit)
849                 goto no_page;
850         if (offset > si->highest_bit)
851                 scan_base = offset = si->lowest_bit;
852
853         ci = lock_cluster(si, offset);
854         /* reuse swap entry of cache-only swap if not busy. */
855         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
856                 int swap_was_freed;
857                 unlock_cluster(ci);
858                 spin_unlock(&si->lock);
859                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
860                 spin_lock(&si->lock);
861                 /* entry was freed successfully, try to use this again */
862                 if (swap_was_freed)
863                         goto checks;
864                 goto scan; /* check next one */
865         }
866
867         if (si->swap_map[offset]) {
868                 unlock_cluster(ci);
869                 if (!n_ret)
870                         goto scan;
871                 else
872                         goto done;
873         }
874         WRITE_ONCE(si->swap_map[offset], usage);
875         inc_cluster_info_page(si, si->cluster_info, offset);
876         unlock_cluster(ci);
877
878         swap_range_alloc(si, offset, 1);
879         slots[n_ret++] = swp_entry(si->type, offset);
880
881         /* got enough slots or reach max slots? */
882         if ((n_ret == nr) || (offset >= si->highest_bit))
883                 goto done;
884
885         /* search for next available slot */
886
887         /* time to take a break? */
888         if (unlikely(--latency_ration < 0)) {
889                 if (n_ret)
890                         goto done;
891                 spin_unlock(&si->lock);
892                 cond_resched();
893                 spin_lock(&si->lock);
894                 latency_ration = LATENCY_LIMIT;
895         }
896
897         /* try to get more slots in cluster */
898         if (si->cluster_info) {
899                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
900                         goto checks;
901         } else if (si->cluster_nr && !si->swap_map[++offset]) {
902                 /* non-ssd case, still more slots in cluster? */
903                 --si->cluster_nr;
904                 goto checks;
905         }
906
907         /*
908          * Even if there's no free clusters available (fragmented),
909          * try to scan a little more quickly with lock held unless we
910          * have scanned too many slots already.
911          */
912         if (!scanned_many) {
913                 unsigned long scan_limit;
914
915                 if (offset < scan_base)
916                         scan_limit = scan_base;
917                 else
918                         scan_limit = si->highest_bit;
919                 for (; offset <= scan_limit && --latency_ration > 0;
920                      offset++) {
921                         if (!si->swap_map[offset])
922                                 goto checks;
923                 }
924         }
925
926 done:
927         set_cluster_next(si, offset + 1);
928         si->flags -= SWP_SCANNING;
929         return n_ret;
930
931 scan:
932         spin_unlock(&si->lock);
933         while (++offset <= READ_ONCE(si->highest_bit)) {
934                 if (data_race(!si->swap_map[offset])) {
935                         spin_lock(&si->lock);
936                         goto checks;
937                 }
938                 if (vm_swap_full() &&
939                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
940                         spin_lock(&si->lock);
941                         goto checks;
942                 }
943                 if (unlikely(--latency_ration < 0)) {
944                         cond_resched();
945                         latency_ration = LATENCY_LIMIT;
946                         scanned_many = true;
947                 }
948         }
949         offset = si->lowest_bit;
950         while (offset < scan_base) {
951                 if (data_race(!si->swap_map[offset])) {
952                         spin_lock(&si->lock);
953                         goto checks;
954                 }
955                 if (vm_swap_full() &&
956                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
957                         spin_lock(&si->lock);
958                         goto checks;
959                 }
960                 if (unlikely(--latency_ration < 0)) {
961                         cond_resched();
962                         latency_ration = LATENCY_LIMIT;
963                         scanned_many = true;
964                 }
965                 offset++;
966         }
967         spin_lock(&si->lock);
968
969 no_page:
970         si->flags -= SWP_SCANNING;
971         return n_ret;
972 }
973
974 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
975 {
976         unsigned long idx;
977         struct swap_cluster_info *ci;
978         unsigned long offset, i;
979         unsigned char *map;
980
981         /*
982          * Should not even be attempting cluster allocations when huge
983          * page swap is disabled.  Warn and fail the allocation.
984          */
985         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
986                 VM_WARN_ON_ONCE(1);
987                 return 0;
988         }
989
990         if (cluster_list_empty(&si->free_clusters))
991                 return 0;
992
993         idx = cluster_list_first(&si->free_clusters);
994         offset = idx * SWAPFILE_CLUSTER;
995         ci = lock_cluster(si, offset);
996         alloc_cluster(si, idx);
997         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
998
999         map = si->swap_map + offset;
1000         for (i = 0; i < SWAPFILE_CLUSTER; i++)
1001                 map[i] = SWAP_HAS_CACHE;
1002         unlock_cluster(ci);
1003         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1004         *slot = swp_entry(si->type, offset);
1005
1006         return 1;
1007 }
1008
1009 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1010 {
1011         unsigned long offset = idx * SWAPFILE_CLUSTER;
1012         struct swap_cluster_info *ci;
1013
1014         ci = lock_cluster(si, offset);
1015         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1016         cluster_set_count_flag(ci, 0, 0);
1017         free_cluster(si, idx);
1018         unlock_cluster(ci);
1019         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1020 }
1021
1022 static unsigned long scan_swap_map(struct swap_info_struct *si,
1023                                    unsigned char usage)
1024 {
1025         swp_entry_t entry;
1026         int n_ret;
1027
1028         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1029
1030         if (n_ret)
1031                 return swp_offset(entry);
1032         else
1033                 return 0;
1034
1035 }
1036
1037 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1038 {
1039         unsigned long size = swap_entry_size(entry_size);
1040         struct swap_info_struct *si, *next;
1041         long avail_pgs;
1042         int n_ret = 0;
1043         int node;
1044
1045         /* Only single cluster request supported */
1046         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1047
1048         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1049         if (avail_pgs <= 0)
1050                 goto noswap;
1051
1052         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1053
1054         atomic_long_sub(n_goal * size, &nr_swap_pages);
1055
1056         spin_lock(&swap_avail_lock);
1057
1058 start_over:
1059         node = numa_node_id();
1060         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1061                 /* requeue si to after same-priority siblings */
1062                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1063                 spin_unlock(&swap_avail_lock);
1064                 spin_lock(&si->lock);
1065                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1066                         spin_lock(&swap_avail_lock);
1067                         if (plist_node_empty(&si->avail_lists[node])) {
1068                                 spin_unlock(&si->lock);
1069                                 goto nextsi;
1070                         }
1071                         WARN(!si->highest_bit,
1072                              "swap_info %d in list but !highest_bit\n",
1073                              si->type);
1074                         WARN(!(si->flags & SWP_WRITEOK),
1075                              "swap_info %d in list but !SWP_WRITEOK\n",
1076                              si->type);
1077                         __del_from_avail_list(si);
1078                         spin_unlock(&si->lock);
1079                         goto nextsi;
1080                 }
1081                 if (size == SWAPFILE_CLUSTER) {
1082                         if (si->flags & SWP_BLKDEV)
1083                                 n_ret = swap_alloc_cluster(si, swp_entries);
1084                 } else
1085                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1086                                                     n_goal, swp_entries);
1087                 spin_unlock(&si->lock);
1088                 if (n_ret || size == SWAPFILE_CLUSTER)
1089                         goto check_out;
1090                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1091                         si->type);
1092
1093                 spin_lock(&swap_avail_lock);
1094 nextsi:
1095                 /*
1096                  * if we got here, it's likely that si was almost full before,
1097                  * and since scan_swap_map() can drop the si->lock, multiple
1098                  * callers probably all tried to get a page from the same si
1099                  * and it filled up before we could get one; or, the si filled
1100                  * up between us dropping swap_avail_lock and taking si->lock.
1101                  * Since we dropped the swap_avail_lock, the swap_avail_head
1102                  * list may have been modified; so if next is still in the
1103                  * swap_avail_head list then try it, otherwise start over
1104                  * if we have not gotten any slots.
1105                  */
1106                 if (plist_node_empty(&next->avail_lists[node]))
1107                         goto start_over;
1108         }
1109
1110         spin_unlock(&swap_avail_lock);
1111
1112 check_out:
1113         if (n_ret < n_goal)
1114                 atomic_long_add((long)(n_goal - n_ret) * size,
1115                                 &nr_swap_pages);
1116 noswap:
1117         return n_ret;
1118 }
1119
1120 /* The only caller of this function is now suspend routine */
1121 swp_entry_t get_swap_page_of_type(int type)
1122 {
1123         struct swap_info_struct *si = swap_type_to_swap_info(type);
1124         pgoff_t offset;
1125
1126         if (!si)
1127                 goto fail;
1128
1129         spin_lock(&si->lock);
1130         if (si->flags & SWP_WRITEOK) {
1131                 atomic_long_dec(&nr_swap_pages);
1132                 /* This is called for allocating swap entry, not cache */
1133                 offset = scan_swap_map(si, 1);
1134                 if (offset) {
1135                         spin_unlock(&si->lock);
1136                         return swp_entry(type, offset);
1137                 }
1138                 atomic_long_inc(&nr_swap_pages);
1139         }
1140         spin_unlock(&si->lock);
1141 fail:
1142         return (swp_entry_t) {0};
1143 }
1144
1145 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1146 {
1147         struct swap_info_struct *p;
1148         unsigned long offset;
1149
1150         if (!entry.val)
1151                 goto out;
1152         p = swp_swap_info(entry);
1153         if (!p)
1154                 goto bad_nofile;
1155         if (data_race(!(p->flags & SWP_USED)))
1156                 goto bad_device;
1157         offset = swp_offset(entry);
1158         if (offset >= p->max)
1159                 goto bad_offset;
1160         return p;
1161
1162 bad_offset:
1163         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1164         goto out;
1165 bad_device:
1166         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1167         goto out;
1168 bad_nofile:
1169         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1170 out:
1171         return NULL;
1172 }
1173
1174 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1175 {
1176         struct swap_info_struct *p;
1177
1178         p = __swap_info_get(entry);
1179         if (!p)
1180                 goto out;
1181         if (data_race(!p->swap_map[swp_offset(entry)]))
1182                 goto bad_free;
1183         return p;
1184
1185 bad_free:
1186         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1187         goto out;
1188 out:
1189         return NULL;
1190 }
1191
1192 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1193 {
1194         struct swap_info_struct *p;
1195
1196         p = _swap_info_get(entry);
1197         if (p)
1198                 spin_lock(&p->lock);
1199         return p;
1200 }
1201
1202 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1203                                         struct swap_info_struct *q)
1204 {
1205         struct swap_info_struct *p;
1206
1207         p = _swap_info_get(entry);
1208
1209         if (p != q) {
1210                 if (q != NULL)
1211                         spin_unlock(&q->lock);
1212                 if (p != NULL)
1213                         spin_lock(&p->lock);
1214         }
1215         return p;
1216 }
1217
1218 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1219                                               unsigned long offset,
1220                                               unsigned char usage)
1221 {
1222         unsigned char count;
1223         unsigned char has_cache;
1224
1225         count = p->swap_map[offset];
1226
1227         has_cache = count & SWAP_HAS_CACHE;
1228         count &= ~SWAP_HAS_CACHE;
1229
1230         if (usage == SWAP_HAS_CACHE) {
1231                 VM_BUG_ON(!has_cache);
1232                 has_cache = 0;
1233         } else if (count == SWAP_MAP_SHMEM) {
1234                 /*
1235                  * Or we could insist on shmem.c using a special
1236                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1237                  */
1238                 count = 0;
1239         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1240                 if (count == COUNT_CONTINUED) {
1241                         if (swap_count_continued(p, offset, count))
1242                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1243                         else
1244                                 count = SWAP_MAP_MAX;
1245                 } else
1246                         count--;
1247         }
1248
1249         usage = count | has_cache;
1250         if (usage)
1251                 WRITE_ONCE(p->swap_map[offset], usage);
1252         else
1253                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1254
1255         return usage;
1256 }
1257
1258 /*
1259  * Check whether swap entry is valid in the swap device.  If so,
1260  * return pointer to swap_info_struct, and keep the swap entry valid
1261  * via preventing the swap device from being swapoff, until
1262  * put_swap_device() is called.  Otherwise return NULL.
1263  *
1264  * The entirety of the RCU read critical section must come before the
1265  * return from or after the call to synchronize_rcu() in
1266  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1267  * true, the si->map, si->cluster_info, etc. must be valid in the
1268  * critical section.
1269  *
1270  * Notice that swapoff or swapoff+swapon can still happen before the
1271  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1272  * in put_swap_device() if there isn't any other way to prevent
1273  * swapoff, such as page lock, page table lock, etc.  The caller must
1274  * be prepared for that.  For example, the following situation is
1275  * possible.
1276  *
1277  *   CPU1                               CPU2
1278  *   do_swap_page()
1279  *     ...                              swapoff+swapon
1280  *     __read_swap_cache_async()
1281  *       swapcache_prepare()
1282  *         __swap_duplicate()
1283  *           // check swap_map
1284  *     // verify PTE not changed
1285  *
1286  * In __swap_duplicate(), the swap_map need to be checked before
1287  * changing partly because the specified swap entry may be for another
1288  * swap device which has been swapoff.  And in do_swap_page(), after
1289  * the page is read from the swap device, the PTE is verified not
1290  * changed with the page table locked to check whether the swap device
1291  * has been swapoff or swapoff+swapon.
1292  */
1293 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1294 {
1295         struct swap_info_struct *si;
1296         unsigned long offset;
1297
1298         if (!entry.val)
1299                 goto out;
1300         si = swp_swap_info(entry);
1301         if (!si)
1302                 goto bad_nofile;
1303
1304         rcu_read_lock();
1305         if (data_race(!(si->flags & SWP_VALID)))
1306                 goto unlock_out;
1307         offset = swp_offset(entry);
1308         if (offset >= si->max)
1309                 goto unlock_out;
1310
1311         return si;
1312 bad_nofile:
1313         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1314 out:
1315         return NULL;
1316 unlock_out:
1317         rcu_read_unlock();
1318         return NULL;
1319 }
1320
1321 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1322                                        swp_entry_t entry)
1323 {
1324         struct swap_cluster_info *ci;
1325         unsigned long offset = swp_offset(entry);
1326         unsigned char usage;
1327
1328         ci = lock_cluster_or_swap_info(p, offset);
1329         usage = __swap_entry_free_locked(p, offset, 1);
1330         unlock_cluster_or_swap_info(p, ci);
1331         if (!usage)
1332                 free_swap_slot(entry);
1333
1334         return usage;
1335 }
1336
1337 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1338 {
1339         struct swap_cluster_info *ci;
1340         unsigned long offset = swp_offset(entry);
1341         unsigned char count;
1342
1343         ci = lock_cluster(p, offset);
1344         count = p->swap_map[offset];
1345         VM_BUG_ON(count != SWAP_HAS_CACHE);
1346         p->swap_map[offset] = 0;
1347         dec_cluster_info_page(p, p->cluster_info, offset);
1348         unlock_cluster(ci);
1349
1350         mem_cgroup_uncharge_swap(entry, 1);
1351         swap_range_free(p, offset, 1);
1352 }
1353
1354 /*
1355  * Caller has made sure that the swap device corresponding to entry
1356  * is still around or has not been recycled.
1357  */
1358 void swap_free(swp_entry_t entry)
1359 {
1360         struct swap_info_struct *p;
1361
1362         p = _swap_info_get(entry);
1363         if (p)
1364                 __swap_entry_free(p, entry);
1365 }
1366
1367 /*
1368  * Called after dropping swapcache to decrease refcnt to swap entries.
1369  */
1370 void put_swap_page(struct page *page, swp_entry_t entry)
1371 {
1372         unsigned long offset = swp_offset(entry);
1373         unsigned long idx = offset / SWAPFILE_CLUSTER;
1374         struct swap_cluster_info *ci;
1375         struct swap_info_struct *si;
1376         unsigned char *map;
1377         unsigned int i, free_entries = 0;
1378         unsigned char val;
1379         int size = swap_entry_size(thp_nr_pages(page));
1380
1381         si = _swap_info_get(entry);
1382         if (!si)
1383                 return;
1384
1385         ci = lock_cluster_or_swap_info(si, offset);
1386         if (size == SWAPFILE_CLUSTER) {
1387                 VM_BUG_ON(!cluster_is_huge(ci));
1388                 map = si->swap_map + offset;
1389                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1390                         val = map[i];
1391                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1392                         if (val == SWAP_HAS_CACHE)
1393                                 free_entries++;
1394                 }
1395                 cluster_clear_huge(ci);
1396                 if (free_entries == SWAPFILE_CLUSTER) {
1397                         unlock_cluster_or_swap_info(si, ci);
1398                         spin_lock(&si->lock);
1399                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1400                         swap_free_cluster(si, idx);
1401                         spin_unlock(&si->lock);
1402                         return;
1403                 }
1404         }
1405         for (i = 0; i < size; i++, entry.val++) {
1406                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1407                         unlock_cluster_or_swap_info(si, ci);
1408                         free_swap_slot(entry);
1409                         if (i == size - 1)
1410                                 return;
1411                         lock_cluster_or_swap_info(si, offset);
1412                 }
1413         }
1414         unlock_cluster_or_swap_info(si, ci);
1415 }
1416
1417 #ifdef CONFIG_THP_SWAP
1418 int split_swap_cluster(swp_entry_t entry)
1419 {
1420         struct swap_info_struct *si;
1421         struct swap_cluster_info *ci;
1422         unsigned long offset = swp_offset(entry);
1423
1424         si = _swap_info_get(entry);
1425         if (!si)
1426                 return -EBUSY;
1427         ci = lock_cluster(si, offset);
1428         cluster_clear_huge(ci);
1429         unlock_cluster(ci);
1430         return 0;
1431 }
1432 #endif
1433
1434 static int swp_entry_cmp(const void *ent1, const void *ent2)
1435 {
1436         const swp_entry_t *e1 = ent1, *e2 = ent2;
1437
1438         return (int)swp_type(*e1) - (int)swp_type(*e2);
1439 }
1440
1441 void swapcache_free_entries(swp_entry_t *entries, int n)
1442 {
1443         struct swap_info_struct *p, *prev;
1444         int i;
1445
1446         if (n <= 0)
1447                 return;
1448
1449         prev = NULL;
1450         p = NULL;
1451
1452         /*
1453          * Sort swap entries by swap device, so each lock is only taken once.
1454          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1455          * so low that it isn't necessary to optimize further.
1456          */
1457         if (nr_swapfiles > 1)
1458                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1459         for (i = 0; i < n; ++i) {
1460                 p = swap_info_get_cont(entries[i], prev);
1461                 if (p)
1462                         swap_entry_free(p, entries[i]);
1463                 prev = p;
1464         }
1465         if (p)
1466                 spin_unlock(&p->lock);
1467 }
1468
1469 /*
1470  * How many references to page are currently swapped out?
1471  * This does not give an exact answer when swap count is continued,
1472  * but does include the high COUNT_CONTINUED flag to allow for that.
1473  */
1474 int page_swapcount(struct page *page)
1475 {
1476         int count = 0;
1477         struct swap_info_struct *p;
1478         struct swap_cluster_info *ci;
1479         swp_entry_t entry;
1480         unsigned long offset;
1481
1482         entry.val = page_private(page);
1483         p = _swap_info_get(entry);
1484         if (p) {
1485                 offset = swp_offset(entry);
1486                 ci = lock_cluster_or_swap_info(p, offset);
1487                 count = swap_count(p->swap_map[offset]);
1488                 unlock_cluster_or_swap_info(p, ci);
1489         }
1490         return count;
1491 }
1492
1493 int __swap_count(swp_entry_t entry)
1494 {
1495         struct swap_info_struct *si;
1496         pgoff_t offset = swp_offset(entry);
1497         int count = 0;
1498
1499         si = get_swap_device(entry);
1500         if (si) {
1501                 count = swap_count(si->swap_map[offset]);
1502                 put_swap_device(si);
1503         }
1504         return count;
1505 }
1506
1507 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1508 {
1509         int count = 0;
1510         pgoff_t offset = swp_offset(entry);
1511         struct swap_cluster_info *ci;
1512
1513         ci = lock_cluster_or_swap_info(si, offset);
1514         count = swap_count(si->swap_map[offset]);
1515         unlock_cluster_or_swap_info(si, ci);
1516         return count;
1517 }
1518
1519 /*
1520  * How many references to @entry are currently swapped out?
1521  * This does not give an exact answer when swap count is continued,
1522  * but does include the high COUNT_CONTINUED flag to allow for that.
1523  */
1524 int __swp_swapcount(swp_entry_t entry)
1525 {
1526         int count = 0;
1527         struct swap_info_struct *si;
1528
1529         si = get_swap_device(entry);
1530         if (si) {
1531                 count = swap_swapcount(si, entry);
1532                 put_swap_device(si);
1533         }
1534         return count;
1535 }
1536
1537 /*
1538  * How many references to @entry are currently swapped out?
1539  * This considers COUNT_CONTINUED so it returns exact answer.
1540  */
1541 int swp_swapcount(swp_entry_t entry)
1542 {
1543         int count, tmp_count, n;
1544         struct swap_info_struct *p;
1545         struct swap_cluster_info *ci;
1546         struct page *page;
1547         pgoff_t offset;
1548         unsigned char *map;
1549
1550         p = _swap_info_get(entry);
1551         if (!p)
1552                 return 0;
1553
1554         offset = swp_offset(entry);
1555
1556         ci = lock_cluster_or_swap_info(p, offset);
1557
1558         count = swap_count(p->swap_map[offset]);
1559         if (!(count & COUNT_CONTINUED))
1560                 goto out;
1561
1562         count &= ~COUNT_CONTINUED;
1563         n = SWAP_MAP_MAX + 1;
1564
1565         page = vmalloc_to_page(p->swap_map + offset);
1566         offset &= ~PAGE_MASK;
1567         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1568
1569         do {
1570                 page = list_next_entry(page, lru);
1571                 map = kmap_atomic(page);
1572                 tmp_count = map[offset];
1573                 kunmap_atomic(map);
1574
1575                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1576                 n *= (SWAP_CONT_MAX + 1);
1577         } while (tmp_count & COUNT_CONTINUED);
1578 out:
1579         unlock_cluster_or_swap_info(p, ci);
1580         return count;
1581 }
1582
1583 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1584                                          swp_entry_t entry)
1585 {
1586         struct swap_cluster_info *ci;
1587         unsigned char *map = si->swap_map;
1588         unsigned long roffset = swp_offset(entry);
1589         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1590         int i;
1591         bool ret = false;
1592
1593         ci = lock_cluster_or_swap_info(si, offset);
1594         if (!ci || !cluster_is_huge(ci)) {
1595                 if (swap_count(map[roffset]))
1596                         ret = true;
1597                 goto unlock_out;
1598         }
1599         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1600                 if (swap_count(map[offset + i])) {
1601                         ret = true;
1602                         break;
1603                 }
1604         }
1605 unlock_out:
1606         unlock_cluster_or_swap_info(si, ci);
1607         return ret;
1608 }
1609
1610 static bool page_swapped(struct page *page)
1611 {
1612         swp_entry_t entry;
1613         struct swap_info_struct *si;
1614
1615         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1616                 return page_swapcount(page) != 0;
1617
1618         page = compound_head(page);
1619         entry.val = page_private(page);
1620         si = _swap_info_get(entry);
1621         if (si)
1622                 return swap_page_trans_huge_swapped(si, entry);
1623         return false;
1624 }
1625
1626 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1627                                          int *total_swapcount)
1628 {
1629         int i, map_swapcount, _total_mapcount, _total_swapcount;
1630         unsigned long offset = 0;
1631         struct swap_info_struct *si;
1632         struct swap_cluster_info *ci = NULL;
1633         unsigned char *map = NULL;
1634         int mapcount, swapcount = 0;
1635
1636         /* hugetlbfs shouldn't call it */
1637         VM_BUG_ON_PAGE(PageHuge(page), page);
1638
1639         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1640                 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1641                 if (PageSwapCache(page))
1642                         swapcount = page_swapcount(page);
1643                 if (total_swapcount)
1644                         *total_swapcount = swapcount;
1645                 return mapcount + swapcount;
1646         }
1647
1648         page = compound_head(page);
1649
1650         _total_mapcount = _total_swapcount = map_swapcount = 0;
1651         if (PageSwapCache(page)) {
1652                 swp_entry_t entry;
1653
1654                 entry.val = page_private(page);
1655                 si = _swap_info_get(entry);
1656                 if (si) {
1657                         map = si->swap_map;
1658                         offset = swp_offset(entry);
1659                 }
1660         }
1661         if (map)
1662                 ci = lock_cluster(si, offset);
1663         for (i = 0; i < HPAGE_PMD_NR; i++) {
1664                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1665                 _total_mapcount += mapcount;
1666                 if (map) {
1667                         swapcount = swap_count(map[offset + i]);
1668                         _total_swapcount += swapcount;
1669                 }
1670                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1671         }
1672         unlock_cluster(ci);
1673         if (PageDoubleMap(page)) {
1674                 map_swapcount -= 1;
1675                 _total_mapcount -= HPAGE_PMD_NR;
1676         }
1677         mapcount = compound_mapcount(page);
1678         map_swapcount += mapcount;
1679         _total_mapcount += mapcount;
1680         if (total_mapcount)
1681                 *total_mapcount = _total_mapcount;
1682         if (total_swapcount)
1683                 *total_swapcount = _total_swapcount;
1684
1685         return map_swapcount;
1686 }
1687
1688 /*
1689  * We can write to an anon page without COW if there are no other references
1690  * to it.  And as a side-effect, free up its swap: because the old content
1691  * on disk will never be read, and seeking back there to write new content
1692  * later would only waste time away from clustering.
1693  *
1694  * NOTE: total_map_swapcount should not be relied upon by the caller if
1695  * reuse_swap_page() returns false, but it may be always overwritten
1696  * (see the other implementation for CONFIG_SWAP=n).
1697  */
1698 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1699 {
1700         int count, total_mapcount, total_swapcount;
1701
1702         VM_BUG_ON_PAGE(!PageLocked(page), page);
1703         if (unlikely(PageKsm(page)))
1704                 return false;
1705         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1706                                               &total_swapcount);
1707         if (total_map_swapcount)
1708                 *total_map_swapcount = total_mapcount + total_swapcount;
1709         if (count == 1 && PageSwapCache(page) &&
1710             (likely(!PageTransCompound(page)) ||
1711              /* The remaining swap count will be freed soon */
1712              total_swapcount == page_swapcount(page))) {
1713                 if (!PageWriteback(page)) {
1714                         page = compound_head(page);
1715                         delete_from_swap_cache(page);
1716                         SetPageDirty(page);
1717                 } else {
1718                         swp_entry_t entry;
1719                         struct swap_info_struct *p;
1720
1721                         entry.val = page_private(page);
1722                         p = swap_info_get(entry);
1723                         if (p->flags & SWP_STABLE_WRITES) {
1724                                 spin_unlock(&p->lock);
1725                                 return false;
1726                         }
1727                         spin_unlock(&p->lock);
1728                 }
1729         }
1730
1731         return count <= 1;
1732 }
1733
1734 /*
1735  * If swap is getting full, or if there are no more mappings of this page,
1736  * then try_to_free_swap is called to free its swap space.
1737  */
1738 int try_to_free_swap(struct page *page)
1739 {
1740         VM_BUG_ON_PAGE(!PageLocked(page), page);
1741
1742         if (!PageSwapCache(page))
1743                 return 0;
1744         if (PageWriteback(page))
1745                 return 0;
1746         if (page_swapped(page))
1747                 return 0;
1748
1749         /*
1750          * Once hibernation has begun to create its image of memory,
1751          * there's a danger that one of the calls to try_to_free_swap()
1752          * - most probably a call from __try_to_reclaim_swap() while
1753          * hibernation is allocating its own swap pages for the image,
1754          * but conceivably even a call from memory reclaim - will free
1755          * the swap from a page which has already been recorded in the
1756          * image as a clean swapcache page, and then reuse its swap for
1757          * another page of the image.  On waking from hibernation, the
1758          * original page might be freed under memory pressure, then
1759          * later read back in from swap, now with the wrong data.
1760          *
1761          * Hibernation suspends storage while it is writing the image
1762          * to disk so check that here.
1763          */
1764         if (pm_suspended_storage())
1765                 return 0;
1766
1767         page = compound_head(page);
1768         delete_from_swap_cache(page);
1769         SetPageDirty(page);
1770         return 1;
1771 }
1772
1773 /*
1774  * Free the swap entry like above, but also try to
1775  * free the page cache entry if it is the last user.
1776  */
1777 int free_swap_and_cache(swp_entry_t entry)
1778 {
1779         struct swap_info_struct *p;
1780         unsigned char count;
1781
1782         if (non_swap_entry(entry))
1783                 return 1;
1784
1785         p = _swap_info_get(entry);
1786         if (p) {
1787                 count = __swap_entry_free(p, entry);
1788                 if (count == SWAP_HAS_CACHE &&
1789                     !swap_page_trans_huge_swapped(p, entry))
1790                         __try_to_reclaim_swap(p, swp_offset(entry),
1791                                               TTRS_UNMAPPED | TTRS_FULL);
1792         }
1793         return p != NULL;
1794 }
1795
1796 #ifdef CONFIG_HIBERNATION
1797 /*
1798  * Find the swap type that corresponds to given device (if any).
1799  *
1800  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1801  * from 0, in which the swap header is expected to be located.
1802  *
1803  * This is needed for the suspend to disk (aka swsusp).
1804  */
1805 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1806 {
1807         struct block_device *bdev = NULL;
1808         int type;
1809
1810         if (device)
1811                 bdev = bdget(device);
1812
1813         spin_lock(&swap_lock);
1814         for (type = 0; type < nr_swapfiles; type++) {
1815                 struct swap_info_struct *sis = swap_info[type];
1816
1817                 if (!(sis->flags & SWP_WRITEOK))
1818                         continue;
1819
1820                 if (!bdev) {
1821                         if (bdev_p)
1822                                 *bdev_p = bdgrab(sis->bdev);
1823
1824                         spin_unlock(&swap_lock);
1825                         return type;
1826                 }
1827                 if (bdev == sis->bdev) {
1828                         struct swap_extent *se = first_se(sis);
1829
1830                         if (se->start_block == offset) {
1831                                 if (bdev_p)
1832                                         *bdev_p = bdgrab(sis->bdev);
1833
1834                                 spin_unlock(&swap_lock);
1835                                 bdput(bdev);
1836                                 return type;
1837                         }
1838                 }
1839         }
1840         spin_unlock(&swap_lock);
1841         if (bdev)
1842                 bdput(bdev);
1843
1844         return -ENODEV;
1845 }
1846
1847 /*
1848  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1849  * corresponding to given index in swap_info (swap type).
1850  */
1851 sector_t swapdev_block(int type, pgoff_t offset)
1852 {
1853         struct block_device *bdev;
1854         struct swap_info_struct *si = swap_type_to_swap_info(type);
1855
1856         if (!si || !(si->flags & SWP_WRITEOK))
1857                 return 0;
1858         return map_swap_entry(swp_entry(type, offset), &bdev);
1859 }
1860
1861 /*
1862  * Return either the total number of swap pages of given type, or the number
1863  * of free pages of that type (depending on @free)
1864  *
1865  * This is needed for software suspend
1866  */
1867 unsigned int count_swap_pages(int type, int free)
1868 {
1869         unsigned int n = 0;
1870
1871         spin_lock(&swap_lock);
1872         if ((unsigned int)type < nr_swapfiles) {
1873                 struct swap_info_struct *sis = swap_info[type];
1874
1875                 spin_lock(&sis->lock);
1876                 if (sis->flags & SWP_WRITEOK) {
1877                         n = sis->pages;
1878                         if (free)
1879                                 n -= sis->inuse_pages;
1880                 }
1881                 spin_unlock(&sis->lock);
1882         }
1883         spin_unlock(&swap_lock);
1884         return n;
1885 }
1886 #endif /* CONFIG_HIBERNATION */
1887
1888 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1889 {
1890         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1891 }
1892
1893 /*
1894  * No need to decide whether this PTE shares the swap entry with others,
1895  * just let do_wp_page work it out if a write is requested later - to
1896  * force COW, vm_page_prot omits write permission from any private vma.
1897  */
1898 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1899                 unsigned long addr, swp_entry_t entry, struct page *page)
1900 {
1901         struct page *swapcache;
1902         spinlock_t *ptl;
1903         pte_t *pte;
1904         int ret = 1;
1905
1906         swapcache = page;
1907         page = ksm_might_need_to_copy(page, vma, addr);
1908         if (unlikely(!page))
1909                 return -ENOMEM;
1910
1911         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1912         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1913                 ret = 0;
1914                 goto out;
1915         }
1916
1917         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1918         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1919         get_page(page);
1920         set_pte_at(vma->vm_mm, addr, pte,
1921                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1922         if (page == swapcache) {
1923                 page_add_anon_rmap(page, vma, addr, false);
1924         } else { /* ksm created a completely new copy */
1925                 page_add_new_anon_rmap(page, vma, addr, false);
1926                 lru_cache_add_inactive_or_unevictable(page, vma);
1927         }
1928         swap_free(entry);
1929         /*
1930          * Move the page to the active list so it is not
1931          * immediately swapped out again after swapon.
1932          */
1933         activate_page(page);
1934 out:
1935         pte_unmap_unlock(pte, ptl);
1936         if (page != swapcache) {
1937                 unlock_page(page);
1938                 put_page(page);
1939         }
1940         return ret;
1941 }
1942
1943 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1944                         unsigned long addr, unsigned long end,
1945                         unsigned int type, bool frontswap,
1946                         unsigned long *fs_pages_to_unuse)
1947 {
1948         struct page *page;
1949         swp_entry_t entry;
1950         pte_t *pte;
1951         struct swap_info_struct *si;
1952         unsigned long offset;
1953         int ret = 0;
1954         volatile unsigned char *swap_map;
1955
1956         si = swap_info[type];
1957         pte = pte_offset_map(pmd, addr);
1958         do {
1959                 struct vm_fault vmf;
1960
1961                 if (!is_swap_pte(*pte))
1962                         continue;
1963
1964                 entry = pte_to_swp_entry(*pte);
1965                 if (swp_type(entry) != type)
1966                         continue;
1967
1968                 offset = swp_offset(entry);
1969                 if (frontswap && !frontswap_test(si, offset))
1970                         continue;
1971
1972                 pte_unmap(pte);
1973                 swap_map = &si->swap_map[offset];
1974                 page = lookup_swap_cache(entry, vma, addr);
1975                 if (!page) {
1976                         vmf.vma = vma;
1977                         vmf.address = addr;
1978                         vmf.pmd = pmd;
1979                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1980                                                 &vmf);
1981                 }
1982                 if (!page) {
1983                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1984                                 goto try_next;
1985                         return -ENOMEM;
1986                 }
1987
1988                 lock_page(page);
1989                 wait_on_page_writeback(page);
1990                 ret = unuse_pte(vma, pmd, addr, entry, page);
1991                 if (ret < 0) {
1992                         unlock_page(page);
1993                         put_page(page);
1994                         goto out;
1995                 }
1996
1997                 try_to_free_swap(page);
1998                 unlock_page(page);
1999                 put_page(page);
2000
2001                 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2002                         ret = FRONTSWAP_PAGES_UNUSED;
2003                         goto out;
2004                 }
2005 try_next:
2006                 pte = pte_offset_map(pmd, addr);
2007         } while (pte++, addr += PAGE_SIZE, addr != end);
2008         pte_unmap(pte - 1);
2009
2010         ret = 0;
2011 out:
2012         return ret;
2013 }
2014
2015 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2016                                 unsigned long addr, unsigned long end,
2017                                 unsigned int type, bool frontswap,
2018                                 unsigned long *fs_pages_to_unuse)
2019 {
2020         pmd_t *pmd;
2021         unsigned long next;
2022         int ret;
2023
2024         pmd = pmd_offset(pud, addr);
2025         do {
2026                 cond_resched();
2027                 next = pmd_addr_end(addr, end);
2028                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2029                         continue;
2030                 ret = unuse_pte_range(vma, pmd, addr, next, type,
2031                                       frontswap, fs_pages_to_unuse);
2032                 if (ret)
2033                         return ret;
2034         } while (pmd++, addr = next, addr != end);
2035         return 0;
2036 }
2037
2038 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2039                                 unsigned long addr, unsigned long end,
2040                                 unsigned int type, bool frontswap,
2041                                 unsigned long *fs_pages_to_unuse)
2042 {
2043         pud_t *pud;
2044         unsigned long next;
2045         int ret;
2046
2047         pud = pud_offset(p4d, addr);
2048         do {
2049                 next = pud_addr_end(addr, end);
2050                 if (pud_none_or_clear_bad(pud))
2051                         continue;
2052                 ret = unuse_pmd_range(vma, pud, addr, next, type,
2053                                       frontswap, fs_pages_to_unuse);
2054                 if (ret)
2055                         return ret;
2056         } while (pud++, addr = next, addr != end);
2057         return 0;
2058 }
2059
2060 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2061                                 unsigned long addr, unsigned long end,
2062                                 unsigned int type, bool frontswap,
2063                                 unsigned long *fs_pages_to_unuse)
2064 {
2065         p4d_t *p4d;
2066         unsigned long next;
2067         int ret;
2068
2069         p4d = p4d_offset(pgd, addr);
2070         do {
2071                 next = p4d_addr_end(addr, end);
2072                 if (p4d_none_or_clear_bad(p4d))
2073                         continue;
2074                 ret = unuse_pud_range(vma, p4d, addr, next, type,
2075                                       frontswap, fs_pages_to_unuse);
2076                 if (ret)
2077                         return ret;
2078         } while (p4d++, addr = next, addr != end);
2079         return 0;
2080 }
2081
2082 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2083                      bool frontswap, unsigned long *fs_pages_to_unuse)
2084 {
2085         pgd_t *pgd;
2086         unsigned long addr, end, next;
2087         int ret;
2088
2089         addr = vma->vm_start;
2090         end = vma->vm_end;
2091
2092         pgd = pgd_offset(vma->vm_mm, addr);
2093         do {
2094                 next = pgd_addr_end(addr, end);
2095                 if (pgd_none_or_clear_bad(pgd))
2096                         continue;
2097                 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2098                                       frontswap, fs_pages_to_unuse);
2099                 if (ret)
2100                         return ret;
2101         } while (pgd++, addr = next, addr != end);
2102         return 0;
2103 }
2104
2105 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2106                     bool frontswap, unsigned long *fs_pages_to_unuse)
2107 {
2108         struct vm_area_struct *vma;
2109         int ret = 0;
2110
2111         mmap_read_lock(mm);
2112         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2113                 if (vma->anon_vma) {
2114                         ret = unuse_vma(vma, type, frontswap,
2115                                         fs_pages_to_unuse);
2116                         if (ret)
2117                                 break;
2118                 }
2119                 cond_resched();
2120         }
2121         mmap_read_unlock(mm);
2122         return ret;
2123 }
2124
2125 /*
2126  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2127  * from current position to next entry still in use. Return 0
2128  * if there are no inuse entries after prev till end of the map.
2129  */
2130 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2131                                         unsigned int prev, bool frontswap)
2132 {
2133         unsigned int i;
2134         unsigned char count;
2135
2136         /*
2137          * No need for swap_lock here: we're just looking
2138          * for whether an entry is in use, not modifying it; false
2139          * hits are okay, and sys_swapoff() has already prevented new
2140          * allocations from this area (while holding swap_lock).
2141          */
2142         for (i = prev + 1; i < si->max; i++) {
2143                 count = READ_ONCE(si->swap_map[i]);
2144                 if (count && swap_count(count) != SWAP_MAP_BAD)
2145                         if (!frontswap || frontswap_test(si, i))
2146                                 break;
2147                 if ((i % LATENCY_LIMIT) == 0)
2148                         cond_resched();
2149         }
2150
2151         if (i == si->max)
2152                 i = 0;
2153
2154         return i;
2155 }
2156
2157 /*
2158  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2159  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2160  */
2161 int try_to_unuse(unsigned int type, bool frontswap,
2162                  unsigned long pages_to_unuse)
2163 {
2164         struct mm_struct *prev_mm;
2165         struct mm_struct *mm;
2166         struct list_head *p;
2167         int retval = 0;
2168         struct swap_info_struct *si = swap_info[type];
2169         struct page *page;
2170         swp_entry_t entry;
2171         unsigned int i;
2172
2173         if (!READ_ONCE(si->inuse_pages))
2174                 return 0;
2175
2176         if (!frontswap)
2177                 pages_to_unuse = 0;
2178
2179 retry:
2180         retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2181         if (retval)
2182                 goto out;
2183
2184         prev_mm = &init_mm;
2185         mmget(prev_mm);
2186
2187         spin_lock(&mmlist_lock);
2188         p = &init_mm.mmlist;
2189         while (READ_ONCE(si->inuse_pages) &&
2190                !signal_pending(current) &&
2191                (p = p->next) != &init_mm.mmlist) {
2192
2193                 mm = list_entry(p, struct mm_struct, mmlist);
2194                 if (!mmget_not_zero(mm))
2195                         continue;
2196                 spin_unlock(&mmlist_lock);
2197                 mmput(prev_mm);
2198                 prev_mm = mm;
2199                 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2200
2201                 if (retval) {
2202                         mmput(prev_mm);
2203                         goto out;
2204                 }
2205
2206                 /*
2207                  * Make sure that we aren't completely killing
2208                  * interactive performance.
2209                  */
2210                 cond_resched();
2211                 spin_lock(&mmlist_lock);
2212         }
2213         spin_unlock(&mmlist_lock);
2214
2215         mmput(prev_mm);
2216
2217         i = 0;
2218         while (READ_ONCE(si->inuse_pages) &&
2219                !signal_pending(current) &&
2220                (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2221
2222                 entry = swp_entry(type, i);
2223                 page = find_get_page(swap_address_space(entry), i);
2224                 if (!page)
2225                         continue;
2226
2227                 /*
2228                  * It is conceivable that a racing task removed this page from
2229                  * swap cache just before we acquired the page lock. The page
2230                  * might even be back in swap cache on another swap area. But
2231                  * that is okay, try_to_free_swap() only removes stale pages.
2232                  */
2233                 lock_page(page);
2234                 wait_on_page_writeback(page);
2235                 try_to_free_swap(page);
2236                 unlock_page(page);
2237                 put_page(page);
2238
2239                 /*
2240                  * For frontswap, we just need to unuse pages_to_unuse, if
2241                  * it was specified. Need not check frontswap again here as
2242                  * we already zeroed out pages_to_unuse if not frontswap.
2243                  */
2244                 if (pages_to_unuse && --pages_to_unuse == 0)
2245                         goto out;
2246         }
2247
2248         /*
2249          * Lets check again to see if there are still swap entries in the map.
2250          * If yes, we would need to do retry the unuse logic again.
2251          * Under global memory pressure, swap entries can be reinserted back
2252          * into process space after the mmlist loop above passes over them.
2253          *
2254          * Limit the number of retries? No: when mmget_not_zero() above fails,
2255          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2256          * at its own independent pace; and even shmem_writepage() could have
2257          * been preempted after get_swap_page(), temporarily hiding that swap.
2258          * It's easy and robust (though cpu-intensive) just to keep retrying.
2259          */
2260         if (READ_ONCE(si->inuse_pages)) {
2261                 if (!signal_pending(current))
2262                         goto retry;
2263                 retval = -EINTR;
2264         }
2265 out:
2266         return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2267 }
2268
2269 /*
2270  * After a successful try_to_unuse, if no swap is now in use, we know
2271  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2272  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2273  * added to the mmlist just after page_duplicate - before would be racy.
2274  */
2275 static void drain_mmlist(void)
2276 {
2277         struct list_head *p, *next;
2278         unsigned int type;
2279
2280         for (type = 0; type < nr_swapfiles; type++)
2281                 if (swap_info[type]->inuse_pages)
2282                         return;
2283         spin_lock(&mmlist_lock);
2284         list_for_each_safe(p, next, &init_mm.mmlist)
2285                 list_del_init(p);
2286         spin_unlock(&mmlist_lock);
2287 }
2288
2289 /*
2290  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2291  * corresponds to page offset for the specified swap entry.
2292  * Note that the type of this function is sector_t, but it returns page offset
2293  * into the bdev, not sector offset.
2294  */
2295 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2296 {
2297         struct swap_info_struct *sis;
2298         struct swap_extent *se;
2299         pgoff_t offset;
2300
2301         sis = swp_swap_info(entry);
2302         *bdev = sis->bdev;
2303
2304         offset = swp_offset(entry);
2305         se = offset_to_swap_extent(sis, offset);
2306         return se->start_block + (offset - se->start_page);
2307 }
2308
2309 /*
2310  * Returns the page offset into bdev for the specified page's swap entry.
2311  */
2312 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2313 {
2314         swp_entry_t entry;
2315         entry.val = page_private(page);
2316         return map_swap_entry(entry, bdev);
2317 }
2318
2319 /*
2320  * Free all of a swapdev's extent information
2321  */
2322 static void destroy_swap_extents(struct swap_info_struct *sis)
2323 {
2324         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2325                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2326                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2327
2328                 rb_erase(rb, &sis->swap_extent_root);
2329                 kfree(se);
2330         }
2331
2332         if (sis->flags & SWP_ACTIVATED) {
2333                 struct file *swap_file = sis->swap_file;
2334                 struct address_space *mapping = swap_file->f_mapping;
2335
2336                 sis->flags &= ~SWP_ACTIVATED;
2337                 if (mapping->a_ops->swap_deactivate)
2338                         mapping->a_ops->swap_deactivate(swap_file);
2339         }
2340 }
2341
2342 /*
2343  * Add a block range (and the corresponding page range) into this swapdev's
2344  * extent tree.
2345  *
2346  * This function rather assumes that it is called in ascending page order.
2347  */
2348 int
2349 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2350                 unsigned long nr_pages, sector_t start_block)
2351 {
2352         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2353         struct swap_extent *se;
2354         struct swap_extent *new_se;
2355
2356         /*
2357          * place the new node at the right most since the
2358          * function is called in ascending page order.
2359          */
2360         while (*link) {
2361                 parent = *link;
2362                 link = &parent->rb_right;
2363         }
2364
2365         if (parent) {
2366                 se = rb_entry(parent, struct swap_extent, rb_node);
2367                 BUG_ON(se->start_page + se->nr_pages != start_page);
2368                 if (se->start_block + se->nr_pages == start_block) {
2369                         /* Merge it */
2370                         se->nr_pages += nr_pages;
2371                         return 0;
2372                 }
2373         }
2374
2375         /* No merge, insert a new extent. */
2376         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2377         if (new_se == NULL)
2378                 return -ENOMEM;
2379         new_se->start_page = start_page;
2380         new_se->nr_pages = nr_pages;
2381         new_se->start_block = start_block;
2382
2383         rb_link_node(&new_se->rb_node, parent, link);
2384         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2385         return 1;
2386 }
2387 EXPORT_SYMBOL_GPL(add_swap_extent);
2388
2389 /*
2390  * A `swap extent' is a simple thing which maps a contiguous range of pages
2391  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2392  * is built at swapon time and is then used at swap_writepage/swap_readpage
2393  * time for locating where on disk a page belongs.
2394  *
2395  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2396  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2397  * swap files identically.
2398  *
2399  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2400  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2401  * swapfiles are handled *identically* after swapon time.
2402  *
2403  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2404  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2405  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2406  * requirements, they are simply tossed out - we will never use those blocks
2407  * for swapping.
2408  *
2409  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2410  * prevents users from writing to the swap device, which will corrupt memory.
2411  *
2412  * The amount of disk space which a single swap extent represents varies.
2413  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2414  * extents in the list.  To avoid much list walking, we cache the previous
2415  * search location in `curr_swap_extent', and start new searches from there.
2416  * This is extremely effective.  The average number of iterations in
2417  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2418  */
2419 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2420 {
2421         struct file *swap_file = sis->swap_file;
2422         struct address_space *mapping = swap_file->f_mapping;
2423         struct inode *inode = mapping->host;
2424         int ret;
2425
2426         if (S_ISBLK(inode->i_mode)) {
2427                 ret = add_swap_extent(sis, 0, sis->max, 0);
2428                 *span = sis->pages;
2429                 return ret;
2430         }
2431
2432         if (mapping->a_ops->swap_activate) {
2433                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2434                 if (ret >= 0)
2435                         sis->flags |= SWP_ACTIVATED;
2436                 if (!ret) {
2437                         sis->flags |= SWP_FS;
2438                         ret = add_swap_extent(sis, 0, sis->max, 0);
2439                         *span = sis->pages;
2440                 }
2441                 return ret;
2442         }
2443
2444         return generic_swapfile_activate(sis, swap_file, span);
2445 }
2446
2447 static int swap_node(struct swap_info_struct *p)
2448 {
2449         struct block_device *bdev;
2450
2451         if (p->bdev)
2452                 bdev = p->bdev;
2453         else
2454                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2455
2456         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2457 }
2458
2459 static void setup_swap_info(struct swap_info_struct *p, int prio,
2460                             unsigned char *swap_map,
2461                             struct swap_cluster_info *cluster_info)
2462 {
2463         int i;
2464
2465         if (prio >= 0)
2466                 p->prio = prio;
2467         else
2468                 p->prio = --least_priority;
2469         /*
2470          * the plist prio is negated because plist ordering is
2471          * low-to-high, while swap ordering is high-to-low
2472          */
2473         p->list.prio = -p->prio;
2474         for_each_node(i) {
2475                 if (p->prio >= 0)
2476                         p->avail_lists[i].prio = -p->prio;
2477                 else {
2478                         if (swap_node(p) == i)
2479                                 p->avail_lists[i].prio = 1;
2480                         else
2481                                 p->avail_lists[i].prio = -p->prio;
2482                 }
2483         }
2484         p->swap_map = swap_map;
2485         p->cluster_info = cluster_info;
2486 }
2487
2488 static void _enable_swap_info(struct swap_info_struct *p)
2489 {
2490         p->flags |= SWP_WRITEOK | SWP_VALID;
2491         atomic_long_add(p->pages, &nr_swap_pages);
2492         total_swap_pages += p->pages;
2493
2494         assert_spin_locked(&swap_lock);
2495         /*
2496          * both lists are plists, and thus priority ordered.
2497          * swap_active_head needs to be priority ordered for swapoff(),
2498          * which on removal of any swap_info_struct with an auto-assigned
2499          * (i.e. negative) priority increments the auto-assigned priority
2500          * of any lower-priority swap_info_structs.
2501          * swap_avail_head needs to be priority ordered for get_swap_page(),
2502          * which allocates swap pages from the highest available priority
2503          * swap_info_struct.
2504          */
2505         plist_add(&p->list, &swap_active_head);
2506         add_to_avail_list(p);
2507 }
2508
2509 static void enable_swap_info(struct swap_info_struct *p, int prio,
2510                                 unsigned char *swap_map,
2511                                 struct swap_cluster_info *cluster_info,
2512                                 unsigned long *frontswap_map)
2513 {
2514         frontswap_init(p->type, frontswap_map);
2515         spin_lock(&swap_lock);
2516         spin_lock(&p->lock);
2517         setup_swap_info(p, prio, swap_map, cluster_info);
2518         spin_unlock(&p->lock);
2519         spin_unlock(&swap_lock);
2520         /*
2521          * Guarantee swap_map, cluster_info, etc. fields are valid
2522          * between get/put_swap_device() if SWP_VALID bit is set
2523          */
2524         synchronize_rcu();
2525         spin_lock(&swap_lock);
2526         spin_lock(&p->lock);
2527         _enable_swap_info(p);
2528         spin_unlock(&p->lock);
2529         spin_unlock(&swap_lock);
2530 }
2531
2532 static void reinsert_swap_info(struct swap_info_struct *p)
2533 {
2534         spin_lock(&swap_lock);
2535         spin_lock(&p->lock);
2536         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2537         _enable_swap_info(p);
2538         spin_unlock(&p->lock);
2539         spin_unlock(&swap_lock);
2540 }
2541
2542 bool has_usable_swap(void)
2543 {
2544         bool ret = true;
2545
2546         spin_lock(&swap_lock);
2547         if (plist_head_empty(&swap_active_head))
2548                 ret = false;
2549         spin_unlock(&swap_lock);
2550         return ret;
2551 }
2552
2553 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2554 {
2555         struct swap_info_struct *p = NULL;
2556         unsigned char *swap_map;
2557         struct swap_cluster_info *cluster_info;
2558         unsigned long *frontswap_map;
2559         struct file *swap_file, *victim;
2560         struct address_space *mapping;
2561         struct inode *inode;
2562         struct filename *pathname;
2563         int err, found = 0;
2564         unsigned int old_block_size;
2565
2566         if (!capable(CAP_SYS_ADMIN))
2567                 return -EPERM;
2568
2569         BUG_ON(!current->mm);
2570
2571         pathname = getname(specialfile);
2572         if (IS_ERR(pathname))
2573                 return PTR_ERR(pathname);
2574
2575         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2576         err = PTR_ERR(victim);
2577         if (IS_ERR(victim))
2578                 goto out;
2579
2580         mapping = victim->f_mapping;
2581         spin_lock(&swap_lock);
2582         plist_for_each_entry(p, &swap_active_head, list) {
2583                 if (p->flags & SWP_WRITEOK) {
2584                         if (p->swap_file->f_mapping == mapping) {
2585                                 found = 1;
2586                                 break;
2587                         }
2588                 }
2589         }
2590         if (!found) {
2591                 err = -EINVAL;
2592                 spin_unlock(&swap_lock);
2593                 goto out_dput;
2594         }
2595         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2596                 vm_unacct_memory(p->pages);
2597         else {
2598                 err = -ENOMEM;
2599                 spin_unlock(&swap_lock);
2600                 goto out_dput;
2601         }
2602         del_from_avail_list(p);
2603         spin_lock(&p->lock);
2604         if (p->prio < 0) {
2605                 struct swap_info_struct *si = p;
2606                 int nid;
2607
2608                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2609                         si->prio++;
2610                         si->list.prio--;
2611                         for_each_node(nid) {
2612                                 if (si->avail_lists[nid].prio != 1)
2613                                         si->avail_lists[nid].prio--;
2614                         }
2615                 }
2616                 least_priority++;
2617         }
2618         plist_del(&p->list, &swap_active_head);
2619         atomic_long_sub(p->pages, &nr_swap_pages);
2620         total_swap_pages -= p->pages;
2621         p->flags &= ~SWP_WRITEOK;
2622         spin_unlock(&p->lock);
2623         spin_unlock(&swap_lock);
2624
2625         disable_swap_slots_cache_lock();
2626
2627         set_current_oom_origin();
2628         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2629         clear_current_oom_origin();
2630
2631         if (err) {
2632                 /* re-insert swap space back into swap_list */
2633                 reinsert_swap_info(p);
2634                 reenable_swap_slots_cache_unlock();
2635                 goto out_dput;
2636         }
2637
2638         reenable_swap_slots_cache_unlock();
2639
2640         spin_lock(&swap_lock);
2641         spin_lock(&p->lock);
2642         p->flags &= ~SWP_VALID;         /* mark swap device as invalid */
2643         spin_unlock(&p->lock);
2644         spin_unlock(&swap_lock);
2645         /*
2646          * wait for swap operations protected by get/put_swap_device()
2647          * to complete
2648          */
2649         synchronize_rcu();
2650
2651         flush_work(&p->discard_work);
2652
2653         destroy_swap_extents(p);
2654         if (p->flags & SWP_CONTINUED)
2655                 free_swap_count_continuations(p);
2656
2657         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2658                 atomic_dec(&nr_rotate_swap);
2659
2660         mutex_lock(&swapon_mutex);
2661         spin_lock(&swap_lock);
2662         spin_lock(&p->lock);
2663         drain_mmlist();
2664
2665         /* wait for anyone still in scan_swap_map */
2666         p->highest_bit = 0;             /* cuts scans short */
2667         while (p->flags >= SWP_SCANNING) {
2668                 spin_unlock(&p->lock);
2669                 spin_unlock(&swap_lock);
2670                 schedule_timeout_uninterruptible(1);
2671                 spin_lock(&swap_lock);
2672                 spin_lock(&p->lock);
2673         }
2674
2675         swap_file = p->swap_file;
2676         old_block_size = p->old_block_size;
2677         p->swap_file = NULL;
2678         p->max = 0;
2679         swap_map = p->swap_map;
2680         p->swap_map = NULL;
2681         cluster_info = p->cluster_info;
2682         p->cluster_info = NULL;
2683         frontswap_map = frontswap_map_get(p);
2684         spin_unlock(&p->lock);
2685         spin_unlock(&swap_lock);
2686         arch_swap_invalidate_area(p->type);
2687         frontswap_invalidate_area(p->type);
2688         frontswap_map_set(p, NULL);
2689         mutex_unlock(&swapon_mutex);
2690         free_percpu(p->percpu_cluster);
2691         p->percpu_cluster = NULL;
2692         free_percpu(p->cluster_next_cpu);
2693         p->cluster_next_cpu = NULL;
2694         vfree(swap_map);
2695         kvfree(cluster_info);
2696         kvfree(frontswap_map);
2697         /* Destroy swap account information */
2698         swap_cgroup_swapoff(p->type);
2699         exit_swap_address_space(p->type);
2700
2701         inode = mapping->host;
2702         if (S_ISBLK(inode->i_mode)) {
2703                 struct block_device *bdev = I_BDEV(inode);
2704
2705                 set_blocksize(bdev, old_block_size);
2706                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2707         }
2708
2709         inode_lock(inode);
2710         inode->i_flags &= ~S_SWAPFILE;
2711         inode_unlock(inode);
2712         filp_close(swap_file, NULL);
2713
2714         /*
2715          * Clear the SWP_USED flag after all resources are freed so that swapon
2716          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2717          * not hold p->lock after we cleared its SWP_WRITEOK.
2718          */
2719         spin_lock(&swap_lock);
2720         p->flags = 0;
2721         spin_unlock(&swap_lock);
2722
2723         err = 0;
2724         atomic_inc(&proc_poll_event);
2725         wake_up_interruptible(&proc_poll_wait);
2726
2727 out_dput:
2728         filp_close(victim, NULL);
2729 out:
2730         putname(pathname);
2731         return err;
2732 }
2733
2734 #ifdef CONFIG_PROC_FS
2735 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2736 {
2737         struct seq_file *seq = file->private_data;
2738
2739         poll_wait(file, &proc_poll_wait, wait);
2740
2741         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2742                 seq->poll_event = atomic_read(&proc_poll_event);
2743                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2744         }
2745
2746         return EPOLLIN | EPOLLRDNORM;
2747 }
2748
2749 /* iterator */
2750 static void *swap_start(struct seq_file *swap, loff_t *pos)
2751 {
2752         struct swap_info_struct *si;
2753         int type;
2754         loff_t l = *pos;
2755
2756         mutex_lock(&swapon_mutex);
2757
2758         if (!l)
2759                 return SEQ_START_TOKEN;
2760
2761         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2762                 if (!(si->flags & SWP_USED) || !si->swap_map)
2763                         continue;
2764                 if (!--l)
2765                         return si;
2766         }
2767
2768         return NULL;
2769 }
2770
2771 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2772 {
2773         struct swap_info_struct *si = v;
2774         int type;
2775
2776         if (v == SEQ_START_TOKEN)
2777                 type = 0;
2778         else
2779                 type = si->type + 1;
2780
2781         ++(*pos);
2782         for (; (si = swap_type_to_swap_info(type)); type++) {
2783                 if (!(si->flags & SWP_USED) || !si->swap_map)
2784                         continue;
2785                 return si;
2786         }
2787
2788         return NULL;
2789 }
2790
2791 static void swap_stop(struct seq_file *swap, void *v)
2792 {
2793         mutex_unlock(&swapon_mutex);
2794 }
2795
2796 static int swap_show(struct seq_file *swap, void *v)
2797 {
2798         struct swap_info_struct *si = v;
2799         struct file *file;
2800         int len;
2801         unsigned int bytes, inuse;
2802
2803         if (si == SEQ_START_TOKEN) {
2804                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2805                 return 0;
2806         }
2807
2808         bytes = si->pages << (PAGE_SHIFT - 10);
2809         inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2810
2811         file = si->swap_file;
2812         len = seq_file_path(swap, file, " \t\n\\");
2813         seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2814                         len < 40 ? 40 - len : 1, " ",
2815                         S_ISBLK(file_inode(file)->i_mode) ?
2816                                 "partition" : "file\t",
2817                         bytes, bytes < 10000000 ? "\t" : "",
2818                         inuse, inuse < 10000000 ? "\t" : "",
2819                         si->prio);
2820         return 0;
2821 }
2822
2823 static const struct seq_operations swaps_op = {
2824         .start =        swap_start,
2825         .next =         swap_next,
2826         .stop =         swap_stop,
2827         .show =         swap_show
2828 };
2829
2830 static int swaps_open(struct inode *inode, struct file *file)
2831 {
2832         struct seq_file *seq;
2833         int ret;
2834
2835         ret = seq_open(file, &swaps_op);
2836         if (ret)
2837                 return ret;
2838
2839         seq = file->private_data;
2840         seq->poll_event = atomic_read(&proc_poll_event);
2841         return 0;
2842 }
2843
2844 static const struct proc_ops swaps_proc_ops = {
2845         .proc_flags     = PROC_ENTRY_PERMANENT,
2846         .proc_open      = swaps_open,
2847         .proc_read      = seq_read,
2848         .proc_lseek     = seq_lseek,
2849         .proc_release   = seq_release,
2850         .proc_poll      = swaps_poll,
2851 };
2852
2853 static int __init procswaps_init(void)
2854 {
2855         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2856         return 0;
2857 }
2858 __initcall(procswaps_init);
2859 #endif /* CONFIG_PROC_FS */
2860
2861 #ifdef MAX_SWAPFILES_CHECK
2862 static int __init max_swapfiles_check(void)
2863 {
2864         MAX_SWAPFILES_CHECK();
2865         return 0;
2866 }
2867 late_initcall(max_swapfiles_check);
2868 #endif
2869
2870 static struct swap_info_struct *alloc_swap_info(void)
2871 {
2872         struct swap_info_struct *p;
2873         unsigned int type;
2874         int i;
2875
2876         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2877         if (!p)
2878                 return ERR_PTR(-ENOMEM);
2879
2880         spin_lock(&swap_lock);
2881         for (type = 0; type < nr_swapfiles; type++) {
2882                 if (!(swap_info[type]->flags & SWP_USED))
2883                         break;
2884         }
2885         if (type >= MAX_SWAPFILES) {
2886                 spin_unlock(&swap_lock);
2887                 kvfree(p);
2888                 return ERR_PTR(-EPERM);
2889         }
2890         if (type >= nr_swapfiles) {
2891                 p->type = type;
2892                 WRITE_ONCE(swap_info[type], p);
2893                 /*
2894                  * Write swap_info[type] before nr_swapfiles, in case a
2895                  * racing procfs swap_start() or swap_next() is reading them.
2896                  * (We never shrink nr_swapfiles, we never free this entry.)
2897                  */
2898                 smp_wmb();
2899                 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2900         } else {
2901                 kvfree(p);
2902                 p = swap_info[type];
2903                 /*
2904                  * Do not memset this entry: a racing procfs swap_next()
2905                  * would be relying on p->type to remain valid.
2906                  */
2907         }
2908         p->swap_extent_root = RB_ROOT;
2909         plist_node_init(&p->list, 0);
2910         for_each_node(i)
2911                 plist_node_init(&p->avail_lists[i], 0);
2912         p->flags = SWP_USED;
2913         spin_unlock(&swap_lock);
2914         spin_lock_init(&p->lock);
2915         spin_lock_init(&p->cont_lock);
2916
2917         return p;
2918 }
2919
2920 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2921 {
2922         int error;
2923
2924         if (S_ISBLK(inode->i_mode)) {
2925                 p->bdev = bdgrab(I_BDEV(inode));
2926                 error = blkdev_get(p->bdev,
2927                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2928                 if (error < 0) {
2929                         p->bdev = NULL;
2930                         return error;
2931                 }
2932                 p->old_block_size = block_size(p->bdev);
2933                 error = set_blocksize(p->bdev, PAGE_SIZE);
2934                 if (error < 0)
2935                         return error;
2936                 /*
2937                  * Zoned block devices contain zones that have a sequential
2938                  * write only restriction.  Hence zoned block devices are not
2939                  * suitable for swapping.  Disallow them here.
2940                  */
2941                 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2942                         return -EINVAL;
2943                 p->flags |= SWP_BLKDEV;
2944         } else if (S_ISREG(inode->i_mode)) {
2945                 p->bdev = inode->i_sb->s_bdev;
2946         }
2947
2948         return 0;
2949 }
2950
2951
2952 /*
2953  * Find out how many pages are allowed for a single swap device. There
2954  * are two limiting factors:
2955  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2956  * 2) the number of bits in the swap pte, as defined by the different
2957  * architectures.
2958  *
2959  * In order to find the largest possible bit mask, a swap entry with
2960  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2961  * decoded to a swp_entry_t again, and finally the swap offset is
2962  * extracted.
2963  *
2964  * This will mask all the bits from the initial ~0UL mask that can't
2965  * be encoded in either the swp_entry_t or the architecture definition
2966  * of a swap pte.
2967  */
2968 unsigned long generic_max_swapfile_size(void)
2969 {
2970         return swp_offset(pte_to_swp_entry(
2971                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2972 }
2973
2974 /* Can be overridden by an architecture for additional checks. */
2975 __weak unsigned long max_swapfile_size(void)
2976 {
2977         return generic_max_swapfile_size();
2978 }
2979
2980 static unsigned long read_swap_header(struct swap_info_struct *p,
2981                                         union swap_header *swap_header,
2982                                         struct inode *inode)
2983 {
2984         int i;
2985         unsigned long maxpages;
2986         unsigned long swapfilepages;
2987         unsigned long last_page;
2988
2989         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2990                 pr_err("Unable to find swap-space signature\n");
2991                 return 0;
2992         }
2993
2994         /* swap partition endianess hack... */
2995         if (swab32(swap_header->info.version) == 1) {
2996                 swab32s(&swap_header->info.version);
2997                 swab32s(&swap_header->info.last_page);
2998                 swab32s(&swap_header->info.nr_badpages);
2999                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3000                         return 0;
3001                 for (i = 0; i < swap_header->info.nr_badpages; i++)
3002                         swab32s(&swap_header->info.badpages[i]);
3003         }
3004         /* Check the swap header's sub-version */
3005         if (swap_header->info.version != 1) {
3006                 pr_warn("Unable to handle swap header version %d\n",
3007                         swap_header->info.version);
3008                 return 0;
3009         }
3010
3011         p->lowest_bit  = 1;
3012         p->cluster_next = 1;
3013         p->cluster_nr = 0;
3014
3015         maxpages = max_swapfile_size();
3016         last_page = swap_header->info.last_page;
3017         if (!last_page) {
3018                 pr_warn("Empty swap-file\n");
3019                 return 0;
3020         }
3021         if (last_page > maxpages) {
3022                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3023                         maxpages << (PAGE_SHIFT - 10),
3024                         last_page << (PAGE_SHIFT - 10));
3025         }
3026         if (maxpages > last_page) {
3027                 maxpages = last_page + 1;
3028                 /* p->max is an unsigned int: don't overflow it */
3029                 if ((unsigned int)maxpages == 0)
3030                         maxpages = UINT_MAX;
3031         }
3032         p->highest_bit = maxpages - 1;
3033
3034         if (!maxpages)
3035                 return 0;
3036         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3037         if (swapfilepages && maxpages > swapfilepages) {
3038                 pr_warn("Swap area shorter than signature indicates\n");
3039                 return 0;
3040         }
3041         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3042                 return 0;
3043         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3044                 return 0;
3045
3046         return maxpages;
3047 }
3048
3049 #define SWAP_CLUSTER_INFO_COLS                                          \
3050         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3051 #define SWAP_CLUSTER_SPACE_COLS                                         \
3052         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3053 #define SWAP_CLUSTER_COLS                                               \
3054         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3055
3056 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3057                                         union swap_header *swap_header,
3058                                         unsigned char *swap_map,
3059                                         struct swap_cluster_info *cluster_info,
3060                                         unsigned long maxpages,
3061                                         sector_t *span)
3062 {
3063         unsigned int j, k;
3064         unsigned int nr_good_pages;
3065         int nr_extents;
3066         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3067         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3068         unsigned long i, idx;
3069
3070         nr_good_pages = maxpages - 1;   /* omit header page */
3071
3072         cluster_list_init(&p->free_clusters);
3073         cluster_list_init(&p->discard_clusters);
3074
3075         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3076                 unsigned int page_nr = swap_header->info.badpages[i];
3077                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3078                         return -EINVAL;
3079                 if (page_nr < maxpages) {
3080                         swap_map[page_nr] = SWAP_MAP_BAD;
3081                         nr_good_pages--;
3082                         /*
3083                          * Haven't marked the cluster free yet, no list
3084                          * operation involved
3085                          */
3086                         inc_cluster_info_page(p, cluster_info, page_nr);
3087                 }
3088         }
3089
3090         /* Haven't marked the cluster free yet, no list operation involved */
3091         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3092                 inc_cluster_info_page(p, cluster_info, i);
3093
3094         if (nr_good_pages) {
3095                 swap_map[0] = SWAP_MAP_BAD;
3096                 /*
3097                  * Not mark the cluster free yet, no list
3098                  * operation involved
3099                  */
3100                 inc_cluster_info_page(p, cluster_info, 0);
3101                 p->max = maxpages;
3102                 p->pages = nr_good_pages;
3103                 nr_extents = setup_swap_extents(p, span);
3104                 if (nr_extents < 0)
3105                         return nr_extents;
3106                 nr_good_pages = p->pages;
3107         }
3108         if (!nr_good_pages) {
3109                 pr_warn("Empty swap-file\n");
3110                 return -EINVAL;
3111         }
3112
3113         if (!cluster_info)
3114                 return nr_extents;
3115
3116
3117         /*
3118          * Reduce false cache line sharing between cluster_info and
3119          * sharing same address space.
3120          */
3121         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3122                 j = (k + col) % SWAP_CLUSTER_COLS;
3123                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3124                         idx = i * SWAP_CLUSTER_COLS + j;
3125                         if (idx >= nr_clusters)
3126                                 continue;
3127                         if (cluster_count(&cluster_info[idx]))
3128                                 continue;
3129                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3130                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3131                                               idx);
3132                 }
3133         }
3134         return nr_extents;
3135 }
3136
3137 /*
3138  * Helper to sys_swapon determining if a given swap
3139  * backing device queue supports DISCARD operations.
3140  */
3141 static bool swap_discardable(struct swap_info_struct *si)
3142 {
3143         struct request_queue *q = bdev_get_queue(si->bdev);
3144
3145         if (!q || !blk_queue_discard(q))
3146                 return false;
3147
3148         return true;
3149 }
3150
3151 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3152 {
3153         struct swap_info_struct *p;
3154         struct filename *name;
3155         struct file *swap_file = NULL;
3156         struct address_space *mapping;
3157         int prio;
3158         int error;
3159         union swap_header *swap_header;
3160         int nr_extents;
3161         sector_t span;
3162         unsigned long maxpages;
3163         unsigned char *swap_map = NULL;
3164         struct swap_cluster_info *cluster_info = NULL;
3165         unsigned long *frontswap_map = NULL;
3166         struct page *page = NULL;
3167         struct inode *inode = NULL;
3168         bool inced_nr_rotate_swap = false;
3169
3170         if (swap_flags & ~SWAP_FLAGS_VALID)
3171                 return -EINVAL;
3172
3173         if (!capable(CAP_SYS_ADMIN))
3174                 return -EPERM;
3175
3176         if (!swap_avail_heads)
3177                 return -ENOMEM;
3178
3179         p = alloc_swap_info();
3180         if (IS_ERR(p))
3181                 return PTR_ERR(p);
3182
3183         INIT_WORK(&p->discard_work, swap_discard_work);
3184
3185         name = getname(specialfile);
3186         if (IS_ERR(name)) {
3187                 error = PTR_ERR(name);
3188                 name = NULL;
3189                 goto bad_swap;
3190         }
3191         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3192         if (IS_ERR(swap_file)) {
3193                 error = PTR_ERR(swap_file);
3194                 swap_file = NULL;
3195                 goto bad_swap;
3196         }
3197
3198         p->swap_file = swap_file;
3199         mapping = swap_file->f_mapping;
3200         inode = mapping->host;
3201
3202         error = claim_swapfile(p, inode);
3203         if (unlikely(error))
3204                 goto bad_swap;
3205
3206         inode_lock(inode);
3207         if (IS_SWAPFILE(inode)) {
3208                 error = -EBUSY;
3209                 goto bad_swap_unlock_inode;
3210         }
3211
3212         /*
3213          * Read the swap header.
3214          */
3215         if (!mapping->a_ops->readpage) {
3216                 error = -EINVAL;
3217                 goto bad_swap_unlock_inode;
3218         }
3219         page = read_mapping_page(mapping, 0, swap_file);
3220         if (IS_ERR(page)) {
3221                 error = PTR_ERR(page);
3222                 goto bad_swap_unlock_inode;
3223         }
3224         swap_header = kmap(page);
3225
3226         maxpages = read_swap_header(p, swap_header, inode);
3227         if (unlikely(!maxpages)) {
3228                 error = -EINVAL;
3229                 goto bad_swap_unlock_inode;
3230         }
3231
3232         /* OK, set up the swap map and apply the bad block list */
3233         swap_map = vzalloc(maxpages);
3234         if (!swap_map) {
3235                 error = -ENOMEM;
3236                 goto bad_swap_unlock_inode;
3237         }
3238
3239         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3240                 p->flags |= SWP_STABLE_WRITES;
3241
3242         if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3243                 p->flags |= SWP_SYNCHRONOUS_IO;
3244
3245         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3246                 int cpu;
3247                 unsigned long ci, nr_cluster;
3248
3249                 p->flags |= SWP_SOLIDSTATE;
3250                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3251                 if (!p->cluster_next_cpu) {
3252                         error = -ENOMEM;
3253                         goto bad_swap_unlock_inode;
3254                 }
3255                 /*
3256                  * select a random position to start with to help wear leveling
3257                  * SSD
3258                  */
3259                 for_each_possible_cpu(cpu) {
3260                         per_cpu(*p->cluster_next_cpu, cpu) =
3261                                 1 + prandom_u32_max(p->highest_bit);
3262                 }
3263                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3264
3265                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3266                                         GFP_KERNEL);
3267                 if (!cluster_info) {
3268                         error = -ENOMEM;
3269                         goto bad_swap_unlock_inode;
3270                 }
3271
3272                 for (ci = 0; ci < nr_cluster; ci++)
3273                         spin_lock_init(&((cluster_info + ci)->lock));
3274
3275                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3276                 if (!p->percpu_cluster) {
3277                         error = -ENOMEM;
3278                         goto bad_swap_unlock_inode;
3279                 }
3280                 for_each_possible_cpu(cpu) {
3281                         struct percpu_cluster *cluster;
3282                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3283                         cluster_set_null(&cluster->index);
3284                 }
3285         } else {
3286                 atomic_inc(&nr_rotate_swap);
3287                 inced_nr_rotate_swap = true;
3288         }
3289
3290         error = swap_cgroup_swapon(p->type, maxpages);
3291         if (error)
3292                 goto bad_swap_unlock_inode;
3293
3294         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3295                 cluster_info, maxpages, &span);
3296         if (unlikely(nr_extents < 0)) {
3297                 error = nr_extents;
3298                 goto bad_swap_unlock_inode;
3299         }
3300         /* frontswap enabled? set up bit-per-page map for frontswap */
3301         if (IS_ENABLED(CONFIG_FRONTSWAP))
3302                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3303                                          sizeof(long),
3304                                          GFP_KERNEL);
3305
3306         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3307                 /*
3308                  * When discard is enabled for swap with no particular
3309                  * policy flagged, we set all swap discard flags here in
3310                  * order to sustain backward compatibility with older
3311                  * swapon(8) releases.
3312                  */
3313                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3314                              SWP_PAGE_DISCARD);
3315
3316                 /*
3317                  * By flagging sys_swapon, a sysadmin can tell us to
3318                  * either do single-time area discards only, or to just
3319                  * perform discards for released swap page-clusters.
3320                  * Now it's time to adjust the p->flags accordingly.
3321                  */
3322                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3323                         p->flags &= ~SWP_PAGE_DISCARD;
3324                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3325                         p->flags &= ~SWP_AREA_DISCARD;
3326
3327                 /* issue a swapon-time discard if it's still required */
3328                 if (p->flags & SWP_AREA_DISCARD) {
3329                         int err = discard_swap(p);
3330                         if (unlikely(err))
3331                                 pr_err("swapon: discard_swap(%p): %d\n",
3332                                         p, err);
3333                 }
3334         }
3335
3336         error = init_swap_address_space(p->type, maxpages);
3337         if (error)
3338                 goto bad_swap_unlock_inode;
3339
3340         /*
3341          * Flush any pending IO and dirty mappings before we start using this
3342          * swap device.
3343          */
3344         inode->i_flags |= S_SWAPFILE;
3345         error = inode_drain_writes(inode);
3346         if (error) {
3347                 inode->i_flags &= ~S_SWAPFILE;
3348                 goto bad_swap_unlock_inode;
3349         }
3350
3351         mutex_lock(&swapon_mutex);
3352         prio = -1;
3353         if (swap_flags & SWAP_FLAG_PREFER)
3354                 prio =
3355                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3356         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3357
3358         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3359                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3360                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3361                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3362                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3363                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3364                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3365                 (frontswap_map) ? "FS" : "");
3366
3367         mutex_unlock(&swapon_mutex);
3368         atomic_inc(&proc_poll_event);
3369         wake_up_interruptible(&proc_poll_wait);
3370
3371         error = 0;
3372         goto out;
3373 bad_swap_unlock_inode:
3374         inode_unlock(inode);
3375 bad_swap:
3376         free_percpu(p->percpu_cluster);
3377         p->percpu_cluster = NULL;
3378         free_percpu(p->cluster_next_cpu);
3379         p->cluster_next_cpu = NULL;
3380         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3381                 set_blocksize(p->bdev, p->old_block_size);
3382                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3383         }
3384         inode = NULL;
3385         destroy_swap_extents(p);
3386         swap_cgroup_swapoff(p->type);
3387         spin_lock(&swap_lock);
3388         p->swap_file = NULL;
3389         p->flags = 0;
3390         spin_unlock(&swap_lock);
3391         vfree(swap_map);
3392         kvfree(cluster_info);
3393         kvfree(frontswap_map);
3394         if (inced_nr_rotate_swap)
3395                 atomic_dec(&nr_rotate_swap);
3396         if (swap_file)
3397                 filp_close(swap_file, NULL);
3398 out:
3399         if (page && !IS_ERR(page)) {
3400                 kunmap(page);
3401                 put_page(page);
3402         }
3403         if (name)
3404                 putname(name);
3405         if (inode)
3406                 inode_unlock(inode);
3407         if (!error)
3408                 enable_swap_slots_cache();
3409         return error;
3410 }
3411
3412 void si_swapinfo(struct sysinfo *val)
3413 {
3414         unsigned int type;
3415         unsigned long nr_to_be_unused = 0;
3416
3417         spin_lock(&swap_lock);
3418         for (type = 0; type < nr_swapfiles; type++) {
3419                 struct swap_info_struct *si = swap_info[type];
3420
3421                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3422                         nr_to_be_unused += si->inuse_pages;
3423         }
3424         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3425         val->totalswap = total_swap_pages + nr_to_be_unused;
3426         spin_unlock(&swap_lock);
3427 }
3428
3429 /*
3430  * Verify that a swap entry is valid and increment its swap map count.
3431  *
3432  * Returns error code in following case.
3433  * - success -> 0
3434  * - swp_entry is invalid -> EINVAL
3435  * - swp_entry is migration entry -> EINVAL
3436  * - swap-cache reference is requested but there is already one. -> EEXIST
3437  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3438  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3439  */
3440 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3441 {
3442         struct swap_info_struct *p;
3443         struct swap_cluster_info *ci;
3444         unsigned long offset;
3445         unsigned char count;
3446         unsigned char has_cache;
3447         int err = -EINVAL;
3448
3449         p = get_swap_device(entry);
3450         if (!p)
3451                 goto out;
3452
3453         offset = swp_offset(entry);
3454         ci = lock_cluster_or_swap_info(p, offset);
3455
3456         count = p->swap_map[offset];
3457
3458         /*
3459          * swapin_readahead() doesn't check if a swap entry is valid, so the
3460          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3461          */
3462         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3463                 err = -ENOENT;
3464                 goto unlock_out;
3465         }
3466
3467         has_cache = count & SWAP_HAS_CACHE;
3468         count &= ~SWAP_HAS_CACHE;
3469         err = 0;
3470
3471         if (usage == SWAP_HAS_CACHE) {
3472
3473                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3474                 if (!has_cache && count)
3475                         has_cache = SWAP_HAS_CACHE;
3476                 else if (has_cache)             /* someone else added cache */
3477                         err = -EEXIST;
3478                 else                            /* no users remaining */
3479                         err = -ENOENT;
3480
3481         } else if (count || has_cache) {
3482
3483                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3484                         count += usage;
3485                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3486                         err = -EINVAL;
3487                 else if (swap_count_continued(p, offset, count))
3488                         count = COUNT_CONTINUED;
3489                 else
3490                         err = -ENOMEM;
3491         } else
3492                 err = -ENOENT;                  /* unused swap entry */
3493
3494         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3495
3496 unlock_out:
3497         unlock_cluster_or_swap_info(p, ci);
3498 out:
3499         if (p)
3500                 put_swap_device(p);
3501         return err;
3502 }
3503
3504 /*
3505  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3506  * (in which case its reference count is never incremented).
3507  */
3508 void swap_shmem_alloc(swp_entry_t entry)
3509 {
3510         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3511 }
3512
3513 /*
3514  * Increase reference count of swap entry by 1.
3515  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3516  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3517  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3518  * might occur if a page table entry has got corrupted.
3519  */
3520 int swap_duplicate(swp_entry_t entry)
3521 {
3522         int err = 0;
3523
3524         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3525                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3526         return err;
3527 }
3528
3529 /*
3530  * @entry: swap entry for which we allocate swap cache.
3531  *
3532  * Called when allocating swap cache for existing swap entry,
3533  * This can return error codes. Returns 0 at success.
3534  * -EEXIST means there is a swap cache.
3535  * Note: return code is different from swap_duplicate().
3536  */
3537 int swapcache_prepare(swp_entry_t entry)
3538 {
3539         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3540 }
3541
3542 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3543 {
3544         return swap_type_to_swap_info(swp_type(entry));
3545 }
3546
3547 struct swap_info_struct *page_swap_info(struct page *page)
3548 {
3549         swp_entry_t entry = { .val = page_private(page) };
3550         return swp_swap_info(entry);
3551 }
3552
3553 /*
3554  * out-of-line __page_file_ methods to avoid include hell.
3555  */
3556 struct address_space *__page_file_mapping(struct page *page)
3557 {
3558         return page_swap_info(page)->swap_file->f_mapping;
3559 }
3560 EXPORT_SYMBOL_GPL(__page_file_mapping);
3561
3562 pgoff_t __page_file_index(struct page *page)
3563 {
3564         swp_entry_t swap = { .val = page_private(page) };
3565         return swp_offset(swap);
3566 }
3567 EXPORT_SYMBOL_GPL(__page_file_index);
3568
3569 /*
3570  * add_swap_count_continuation - called when a swap count is duplicated
3571  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3572  * page of the original vmalloc'ed swap_map, to hold the continuation count
3573  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3574  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3575  *
3576  * These continuation pages are seldom referenced: the common paths all work
3577  * on the original swap_map, only referring to a continuation page when the
3578  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3579  *
3580  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3581  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3582  * can be called after dropping locks.
3583  */
3584 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3585 {
3586         struct swap_info_struct *si;
3587         struct swap_cluster_info *ci;
3588         struct page *head;
3589         struct page *page;
3590         struct page *list_page;
3591         pgoff_t offset;
3592         unsigned char count;
3593         int ret = 0;
3594
3595         /*
3596          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3597          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3598          */
3599         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3600
3601         si = get_swap_device(entry);
3602         if (!si) {
3603                 /*
3604                  * An acceptable race has occurred since the failing
3605                  * __swap_duplicate(): the swap device may be swapoff
3606                  */
3607                 goto outer;
3608         }
3609         spin_lock(&si->lock);
3610
3611         offset = swp_offset(entry);
3612
3613         ci = lock_cluster(si, offset);
3614
3615         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3616
3617         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3618                 /*
3619                  * The higher the swap count, the more likely it is that tasks
3620                  * will race to add swap count continuation: we need to avoid
3621                  * over-provisioning.
3622                  */
3623                 goto out;
3624         }
3625
3626         if (!page) {
3627                 ret = -ENOMEM;
3628                 goto out;
3629         }
3630
3631         /*
3632          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3633          * no architecture is using highmem pages for kernel page tables: so it
3634          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3635          */
3636         head = vmalloc_to_page(si->swap_map + offset);
3637         offset &= ~PAGE_MASK;
3638
3639         spin_lock(&si->cont_lock);
3640         /*
3641          * Page allocation does not initialize the page's lru field,
3642          * but it does always reset its private field.
3643          */
3644         if (!page_private(head)) {
3645                 BUG_ON(count & COUNT_CONTINUED);
3646                 INIT_LIST_HEAD(&head->lru);
3647                 set_page_private(head, SWP_CONTINUED);
3648                 si->flags |= SWP_CONTINUED;
3649         }
3650
3651         list_for_each_entry(list_page, &head->lru, lru) {
3652                 unsigned char *map;
3653
3654                 /*
3655                  * If the previous map said no continuation, but we've found
3656                  * a continuation page, free our allocation and use this one.
3657                  */
3658                 if (!(count & COUNT_CONTINUED))
3659                         goto out_unlock_cont;
3660
3661                 map = kmap_atomic(list_page) + offset;
3662                 count = *map;
3663                 kunmap_atomic(map);
3664
3665                 /*
3666                  * If this continuation count now has some space in it,
3667                  * free our allocation and use this one.
3668                  */
3669                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3670                         goto out_unlock_cont;
3671         }
3672
3673         list_add_tail(&page->lru, &head->lru);
3674         page = NULL;                    /* now it's attached, don't free it */
3675 out_unlock_cont:
3676         spin_unlock(&si->cont_lock);
3677 out:
3678         unlock_cluster(ci);
3679         spin_unlock(&si->lock);
3680         put_swap_device(si);
3681 outer:
3682         if (page)
3683                 __free_page(page);
3684         return ret;
3685 }
3686
3687 /*
3688  * swap_count_continued - when the original swap_map count is incremented
3689  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3690  * into, carry if so, or else fail until a new continuation page is allocated;
3691  * when the original swap_map count is decremented from 0 with continuation,
3692  * borrow from the continuation and report whether it still holds more.
3693  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3694  * lock.
3695  */
3696 static bool swap_count_continued(struct swap_info_struct *si,
3697                                  pgoff_t offset, unsigned char count)
3698 {
3699         struct page *head;
3700         struct page *page;
3701         unsigned char *map;
3702         bool ret;
3703
3704         head = vmalloc_to_page(si->swap_map + offset);
3705         if (page_private(head) != SWP_CONTINUED) {
3706                 BUG_ON(count & COUNT_CONTINUED);
3707                 return false;           /* need to add count continuation */
3708         }
3709
3710         spin_lock(&si->cont_lock);
3711         offset &= ~PAGE_MASK;
3712         page = list_next_entry(head, lru);
3713         map = kmap_atomic(page) + offset;
3714
3715         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3716                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3717
3718         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3719                 /*
3720                  * Think of how you add 1 to 999
3721                  */
3722                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3723                         kunmap_atomic(map);
3724                         page = list_next_entry(page, lru);
3725                         BUG_ON(page == head);
3726                         map = kmap_atomic(page) + offset;
3727                 }
3728                 if (*map == SWAP_CONT_MAX) {
3729                         kunmap_atomic(map);
3730                         page = list_next_entry(page, lru);
3731                         if (page == head) {
3732                                 ret = false;    /* add count continuation */
3733                                 goto out;
3734                         }
3735                         map = kmap_atomic(page) + offset;
3736 init_map:               *map = 0;               /* we didn't zero the page */
3737                 }
3738                 *map += 1;
3739                 kunmap_atomic(map);
3740                 while ((page = list_prev_entry(page, lru)) != head) {
3741                         map = kmap_atomic(page) + offset;
3742                         *map = COUNT_CONTINUED;
3743                         kunmap_atomic(map);
3744                 }
3745                 ret = true;                     /* incremented */
3746
3747         } else {                                /* decrementing */
3748                 /*
3749                  * Think of how you subtract 1 from 1000
3750                  */
3751                 BUG_ON(count != COUNT_CONTINUED);
3752                 while (*map == COUNT_CONTINUED) {
3753                         kunmap_atomic(map);
3754                         page = list_next_entry(page, lru);
3755                         BUG_ON(page == head);
3756                         map = kmap_atomic(page) + offset;
3757                 }
3758                 BUG_ON(*map == 0);
3759                 *map -= 1;
3760                 if (*map == 0)
3761                         count = 0;
3762                 kunmap_atomic(map);
3763                 while ((page = list_prev_entry(page, lru)) != head) {
3764                         map = kmap_atomic(page) + offset;
3765                         *map = SWAP_CONT_MAX | count;
3766                         count = COUNT_CONTINUED;
3767                         kunmap_atomic(map);
3768                 }
3769                 ret = count == COUNT_CONTINUED;
3770         }
3771 out:
3772         spin_unlock(&si->cont_lock);
3773         return ret;
3774 }
3775
3776 /*
3777  * free_swap_count_continuations - swapoff free all the continuation pages
3778  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3779  */
3780 static void free_swap_count_continuations(struct swap_info_struct *si)
3781 {
3782         pgoff_t offset;
3783
3784         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3785                 struct page *head;
3786                 head = vmalloc_to_page(si->swap_map + offset);
3787                 if (page_private(head)) {
3788                         struct page *page, *next;
3789
3790                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3791                                 list_del(&page->lru);
3792                                 __free_page(page);
3793                         }
3794                 }
3795         }
3796 }
3797
3798 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3799 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3800 {
3801         struct swap_info_struct *si, *next;
3802         int nid = page_to_nid(page);
3803
3804         if (!(gfp_mask & __GFP_IO))
3805                 return;
3806
3807         if (!blk_cgroup_congested())
3808                 return;
3809
3810         /*
3811          * We've already scheduled a throttle, avoid taking the global swap
3812          * lock.
3813          */
3814         if (current->throttle_queue)
3815                 return;
3816
3817         spin_lock(&swap_avail_lock);
3818         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3819                                   avail_lists[nid]) {
3820                 if (si->bdev) {
3821                         blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3822                         break;
3823                 }
3824         }
3825         spin_unlock(&swap_avail_lock);
3826 }
3827 #endif
3828
3829 static int __init swapfile_init(void)
3830 {
3831         int nid;
3832
3833         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3834                                          GFP_KERNEL);
3835         if (!swap_avail_heads) {
3836                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3837                 return -ENOMEM;
3838         }
3839
3840         for_each_node(nid)
3841                 plist_head_init(&swap_avail_heads[nid]);
3842
3843         return 0;
3844 }
3845 subsys_initcall(swapfile_init);