f3b0a2c4972ac6a56e028fab0f050992ad2daf2c
[linux-2.6-microblaze.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/pgtable.h>
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49                                  unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57  * Some modules use swappable objects and may try to swap them out under
58  * memory pressure (via the shrinker). Before doing so, they may wish to
59  * check to see if any swap space is available.
60  */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70
71 /*
72  * all active swap_info_structs
73  * protected with swap_lock, and ordered by priority.
74  */
75 PLIST_HEAD(swap_active_head);
76
77 /*
78  * all available (active, not full) swap_info_structs
79  * protected with swap_avail_lock, ordered by priority.
80  * This is used by get_swap_page() instead of swap_active_head
81  * because swap_active_head includes all swap_info_structs,
82  * but get_swap_page() doesn't need to look at full ones.
83  * This uses its own lock instead of swap_lock because when a
84  * swap_info_struct changes between not-full/full, it needs to
85  * add/remove itself to/from this list, but the swap_info_struct->lock
86  * is held and the locking order requires swap_lock to be taken
87  * before any swap_info_struct->lock.
88  */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93
94 static DEFINE_MUTEX(swapon_mutex);
95
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104         if (type >= READ_ONCE(nr_swapfiles))
105                 return NULL;
106
107         smp_rmb();      /* Pairs with smp_wmb in alloc_swap_info. */
108         return READ_ONCE(swap_info[type]);
109 }
110
111 static inline unsigned char swap_count(unsigned char ent)
112 {
113         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
114 }
115
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY             0x1
118 /*
119  * Reclaim the swap entry if there are no more mappings of the
120  * corresponding page
121  */
122 #define TTRS_UNMAPPED           0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL               0x4
125
126 /* returns 1 if swap entry is freed */
127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128                                  unsigned long offset, unsigned long flags)
129 {
130         swp_entry_t entry = swp_entry(si->type, offset);
131         struct page *page;
132         int ret = 0;
133
134         page = find_get_page(swap_address_space(entry), offset);
135         if (!page)
136                 return 0;
137         /*
138          * When this function is called from scan_swap_map_slots() and it's
139          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140          * here. We have to use trylock for avoiding deadlock. This is a special
141          * case and you should use try_to_free_swap() with explicit lock_page()
142          * in usual operations.
143          */
144         if (trylock_page(page)) {
145                 if ((flags & TTRS_ANYWAY) ||
146                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148                         ret = try_to_free_swap(page);
149                 unlock_page(page);
150         }
151         put_page(page);
152         return ret;
153 }
154
155 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156 {
157         struct rb_node *rb = rb_first(&sis->swap_extent_root);
158         return rb_entry(rb, struct swap_extent, rb_node);
159 }
160
161 static inline struct swap_extent *next_se(struct swap_extent *se)
162 {
163         struct rb_node *rb = rb_next(&se->rb_node);
164         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165 }
166
167 /*
168  * swapon tell device that all the old swap contents can be discarded,
169  * to allow the swap device to optimize its wear-levelling.
170  */
171 static int discard_swap(struct swap_info_struct *si)
172 {
173         struct swap_extent *se;
174         sector_t start_block;
175         sector_t nr_blocks;
176         int err = 0;
177
178         /* Do not discard the swap header page! */
179         se = first_se(si);
180         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182         if (nr_blocks) {
183                 err = blkdev_issue_discard(si->bdev, start_block,
184                                 nr_blocks, GFP_KERNEL, 0);
185                 if (err)
186                         return err;
187                 cond_resched();
188         }
189
190         for (se = next_se(se); se; se = next_se(se)) {
191                 start_block = se->start_block << (PAGE_SHIFT - 9);
192                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
193
194                 err = blkdev_issue_discard(si->bdev, start_block,
195                                 nr_blocks, GFP_KERNEL, 0);
196                 if (err)
197                         break;
198
199                 cond_resched();
200         }
201         return err;             /* That will often be -EOPNOTSUPP */
202 }
203
204 static struct swap_extent *
205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206 {
207         struct swap_extent *se;
208         struct rb_node *rb;
209
210         rb = sis->swap_extent_root.rb_node;
211         while (rb) {
212                 se = rb_entry(rb, struct swap_extent, rb_node);
213                 if (offset < se->start_page)
214                         rb = rb->rb_left;
215                 else if (offset >= se->start_page + se->nr_pages)
216                         rb = rb->rb_right;
217                 else
218                         return se;
219         }
220         /* It *must* be present */
221         BUG();
222 }
223
224 /*
225  * swap allocation tell device that a cluster of swap can now be discarded,
226  * to allow the swap device to optimize its wear-levelling.
227  */
228 static void discard_swap_cluster(struct swap_info_struct *si,
229                                  pgoff_t start_page, pgoff_t nr_pages)
230 {
231         struct swap_extent *se = offset_to_swap_extent(si, start_page);
232
233         while (nr_pages) {
234                 pgoff_t offset = start_page - se->start_page;
235                 sector_t start_block = se->start_block + offset;
236                 sector_t nr_blocks = se->nr_pages - offset;
237
238                 if (nr_blocks > nr_pages)
239                         nr_blocks = nr_pages;
240                 start_page += nr_blocks;
241                 nr_pages -= nr_blocks;
242
243                 start_block <<= PAGE_SHIFT - 9;
244                 nr_blocks <<= PAGE_SHIFT - 9;
245                 if (blkdev_issue_discard(si->bdev, start_block,
246                                         nr_blocks, GFP_NOIO, 0))
247                         break;
248
249                 se = next_se(se);
250         }
251 }
252
253 #ifdef CONFIG_THP_SWAP
254 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
255
256 #define swap_entry_size(size)   (size)
257 #else
258 #define SWAPFILE_CLUSTER        256
259
260 /*
261  * Define swap_entry_size() as constant to let compiler to optimize
262  * out some code if !CONFIG_THP_SWAP
263  */
264 #define swap_entry_size(size)   1
265 #endif
266 #define LATENCY_LIMIT           256
267
268 static inline void cluster_set_flag(struct swap_cluster_info *info,
269         unsigned int flag)
270 {
271         info->flags = flag;
272 }
273
274 static inline unsigned int cluster_count(struct swap_cluster_info *info)
275 {
276         return info->data;
277 }
278
279 static inline void cluster_set_count(struct swap_cluster_info *info,
280                                      unsigned int c)
281 {
282         info->data = c;
283 }
284
285 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
286                                          unsigned int c, unsigned int f)
287 {
288         info->flags = f;
289         info->data = c;
290 }
291
292 static inline unsigned int cluster_next(struct swap_cluster_info *info)
293 {
294         return info->data;
295 }
296
297 static inline void cluster_set_next(struct swap_cluster_info *info,
298                                     unsigned int n)
299 {
300         info->data = n;
301 }
302
303 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
304                                          unsigned int n, unsigned int f)
305 {
306         info->flags = f;
307         info->data = n;
308 }
309
310 static inline bool cluster_is_free(struct swap_cluster_info *info)
311 {
312         return info->flags & CLUSTER_FLAG_FREE;
313 }
314
315 static inline bool cluster_is_null(struct swap_cluster_info *info)
316 {
317         return info->flags & CLUSTER_FLAG_NEXT_NULL;
318 }
319
320 static inline void cluster_set_null(struct swap_cluster_info *info)
321 {
322         info->flags = CLUSTER_FLAG_NEXT_NULL;
323         info->data = 0;
324 }
325
326 static inline bool cluster_is_huge(struct swap_cluster_info *info)
327 {
328         if (IS_ENABLED(CONFIG_THP_SWAP))
329                 return info->flags & CLUSTER_FLAG_HUGE;
330         return false;
331 }
332
333 static inline void cluster_clear_huge(struct swap_cluster_info *info)
334 {
335         info->flags &= ~CLUSTER_FLAG_HUGE;
336 }
337
338 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
339                                                      unsigned long offset)
340 {
341         struct swap_cluster_info *ci;
342
343         ci = si->cluster_info;
344         if (ci) {
345                 ci += offset / SWAPFILE_CLUSTER;
346                 spin_lock(&ci->lock);
347         }
348         return ci;
349 }
350
351 static inline void unlock_cluster(struct swap_cluster_info *ci)
352 {
353         if (ci)
354                 spin_unlock(&ci->lock);
355 }
356
357 /*
358  * Determine the locking method in use for this device.  Return
359  * swap_cluster_info if SSD-style cluster-based locking is in place.
360  */
361 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
362                 struct swap_info_struct *si, unsigned long offset)
363 {
364         struct swap_cluster_info *ci;
365
366         /* Try to use fine-grained SSD-style locking if available: */
367         ci = lock_cluster(si, offset);
368         /* Otherwise, fall back to traditional, coarse locking: */
369         if (!ci)
370                 spin_lock(&si->lock);
371
372         return ci;
373 }
374
375 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
376                                                struct swap_cluster_info *ci)
377 {
378         if (ci)
379                 unlock_cluster(ci);
380         else
381                 spin_unlock(&si->lock);
382 }
383
384 static inline bool cluster_list_empty(struct swap_cluster_list *list)
385 {
386         return cluster_is_null(&list->head);
387 }
388
389 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
390 {
391         return cluster_next(&list->head);
392 }
393
394 static void cluster_list_init(struct swap_cluster_list *list)
395 {
396         cluster_set_null(&list->head);
397         cluster_set_null(&list->tail);
398 }
399
400 static void cluster_list_add_tail(struct swap_cluster_list *list,
401                                   struct swap_cluster_info *ci,
402                                   unsigned int idx)
403 {
404         if (cluster_list_empty(list)) {
405                 cluster_set_next_flag(&list->head, idx, 0);
406                 cluster_set_next_flag(&list->tail, idx, 0);
407         } else {
408                 struct swap_cluster_info *ci_tail;
409                 unsigned int tail = cluster_next(&list->tail);
410
411                 /*
412                  * Nested cluster lock, but both cluster locks are
413                  * only acquired when we held swap_info_struct->lock
414                  */
415                 ci_tail = ci + tail;
416                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
417                 cluster_set_next(ci_tail, idx);
418                 spin_unlock(&ci_tail->lock);
419                 cluster_set_next_flag(&list->tail, idx, 0);
420         }
421 }
422
423 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
424                                            struct swap_cluster_info *ci)
425 {
426         unsigned int idx;
427
428         idx = cluster_next(&list->head);
429         if (cluster_next(&list->tail) == idx) {
430                 cluster_set_null(&list->head);
431                 cluster_set_null(&list->tail);
432         } else
433                 cluster_set_next_flag(&list->head,
434                                       cluster_next(&ci[idx]), 0);
435
436         return idx;
437 }
438
439 /* Add a cluster to discard list and schedule it to do discard */
440 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
441                 unsigned int idx)
442 {
443         /*
444          * If scan_swap_map() can't find a free cluster, it will check
445          * si->swap_map directly. To make sure the discarding cluster isn't
446          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
447          * will be cleared after discard
448          */
449         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
450                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
451
452         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
453
454         schedule_work(&si->discard_work);
455 }
456
457 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
458 {
459         struct swap_cluster_info *ci = si->cluster_info;
460
461         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
462         cluster_list_add_tail(&si->free_clusters, ci, idx);
463 }
464
465 /*
466  * Doing discard actually. After a cluster discard is finished, the cluster
467  * will be added to free cluster list. caller should hold si->lock.
468 */
469 static void swap_do_scheduled_discard(struct swap_info_struct *si)
470 {
471         struct swap_cluster_info *info, *ci;
472         unsigned int idx;
473
474         info = si->cluster_info;
475
476         while (!cluster_list_empty(&si->discard_clusters)) {
477                 idx = cluster_list_del_first(&si->discard_clusters, info);
478                 spin_unlock(&si->lock);
479
480                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
481                                 SWAPFILE_CLUSTER);
482
483                 spin_lock(&si->lock);
484                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
485                 __free_cluster(si, idx);
486                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
487                                 0, SWAPFILE_CLUSTER);
488                 unlock_cluster(ci);
489         }
490 }
491
492 static void swap_discard_work(struct work_struct *work)
493 {
494         struct swap_info_struct *si;
495
496         si = container_of(work, struct swap_info_struct, discard_work);
497
498         spin_lock(&si->lock);
499         swap_do_scheduled_discard(si);
500         spin_unlock(&si->lock);
501 }
502
503 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
504 {
505         struct swap_cluster_info *ci = si->cluster_info;
506
507         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
508         cluster_list_del_first(&si->free_clusters, ci);
509         cluster_set_count_flag(ci + idx, 0, 0);
510 }
511
512 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
513 {
514         struct swap_cluster_info *ci = si->cluster_info + idx;
515
516         VM_BUG_ON(cluster_count(ci) != 0);
517         /*
518          * If the swap is discardable, prepare discard the cluster
519          * instead of free it immediately. The cluster will be freed
520          * after discard.
521          */
522         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
523             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
524                 swap_cluster_schedule_discard(si, idx);
525                 return;
526         }
527
528         __free_cluster(si, idx);
529 }
530
531 /*
532  * The cluster corresponding to page_nr will be used. The cluster will be
533  * removed from free cluster list and its usage counter will be increased.
534  */
535 static void inc_cluster_info_page(struct swap_info_struct *p,
536         struct swap_cluster_info *cluster_info, unsigned long page_nr)
537 {
538         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
539
540         if (!cluster_info)
541                 return;
542         if (cluster_is_free(&cluster_info[idx]))
543                 alloc_cluster(p, idx);
544
545         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
546         cluster_set_count(&cluster_info[idx],
547                 cluster_count(&cluster_info[idx]) + 1);
548 }
549
550 /*
551  * The cluster corresponding to page_nr decreases one usage. If the usage
552  * counter becomes 0, which means no page in the cluster is in using, we can
553  * optionally discard the cluster and add it to free cluster list.
554  */
555 static void dec_cluster_info_page(struct swap_info_struct *p,
556         struct swap_cluster_info *cluster_info, unsigned long page_nr)
557 {
558         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559
560         if (!cluster_info)
561                 return;
562
563         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
564         cluster_set_count(&cluster_info[idx],
565                 cluster_count(&cluster_info[idx]) - 1);
566
567         if (cluster_count(&cluster_info[idx]) == 0)
568                 free_cluster(p, idx);
569 }
570
571 /*
572  * It's possible scan_swap_map() uses a free cluster in the middle of free
573  * cluster list. Avoiding such abuse to avoid list corruption.
574  */
575 static bool
576 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
577         unsigned long offset)
578 {
579         struct percpu_cluster *percpu_cluster;
580         bool conflict;
581
582         offset /= SWAPFILE_CLUSTER;
583         conflict = !cluster_list_empty(&si->free_clusters) &&
584                 offset != cluster_list_first(&si->free_clusters) &&
585                 cluster_is_free(&si->cluster_info[offset]);
586
587         if (!conflict)
588                 return false;
589
590         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
591         cluster_set_null(&percpu_cluster->index);
592         return true;
593 }
594
595 /*
596  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
597  * might involve allocating a new cluster for current CPU too.
598  */
599 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
600         unsigned long *offset, unsigned long *scan_base)
601 {
602         struct percpu_cluster *cluster;
603         struct swap_cluster_info *ci;
604         bool found_free;
605         unsigned long tmp, max;
606
607 new_cluster:
608         cluster = this_cpu_ptr(si->percpu_cluster);
609         if (cluster_is_null(&cluster->index)) {
610                 if (!cluster_list_empty(&si->free_clusters)) {
611                         cluster->index = si->free_clusters.head;
612                         cluster->next = cluster_next(&cluster->index) *
613                                         SWAPFILE_CLUSTER;
614                 } else if (!cluster_list_empty(&si->discard_clusters)) {
615                         /*
616                          * we don't have free cluster but have some clusters in
617                          * discarding, do discard now and reclaim them
618                          */
619                         swap_do_scheduled_discard(si);
620                         *scan_base = *offset = si->cluster_next;
621                         goto new_cluster;
622                 } else
623                         return false;
624         }
625
626         found_free = false;
627
628         /*
629          * Other CPUs can use our cluster if they can't find a free cluster,
630          * check if there is still free entry in the cluster
631          */
632         tmp = cluster->next;
633         max = min_t(unsigned long, si->max,
634                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
635         if (tmp >= max) {
636                 cluster_set_null(&cluster->index);
637                 goto new_cluster;
638         }
639         ci = lock_cluster(si, tmp);
640         while (tmp < max) {
641                 if (!si->swap_map[tmp]) {
642                         found_free = true;
643                         break;
644                 }
645                 tmp++;
646         }
647         unlock_cluster(ci);
648         if (!found_free) {
649                 cluster_set_null(&cluster->index);
650                 goto new_cluster;
651         }
652         cluster->next = tmp + 1;
653         *offset = tmp;
654         *scan_base = tmp;
655         return found_free;
656 }
657
658 static void __del_from_avail_list(struct swap_info_struct *p)
659 {
660         int nid;
661
662         for_each_node(nid)
663                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
664 }
665
666 static void del_from_avail_list(struct swap_info_struct *p)
667 {
668         spin_lock(&swap_avail_lock);
669         __del_from_avail_list(p);
670         spin_unlock(&swap_avail_lock);
671 }
672
673 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
674                              unsigned int nr_entries)
675 {
676         unsigned int end = offset + nr_entries - 1;
677
678         if (offset == si->lowest_bit)
679                 si->lowest_bit += nr_entries;
680         if (end == si->highest_bit)
681                 si->highest_bit -= nr_entries;
682         si->inuse_pages += nr_entries;
683         if (si->inuse_pages == si->pages) {
684                 si->lowest_bit = si->max;
685                 si->highest_bit = 0;
686                 del_from_avail_list(si);
687         }
688 }
689
690 static void add_to_avail_list(struct swap_info_struct *p)
691 {
692         int nid;
693
694         spin_lock(&swap_avail_lock);
695         for_each_node(nid) {
696                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
697                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
698         }
699         spin_unlock(&swap_avail_lock);
700 }
701
702 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
703                             unsigned int nr_entries)
704 {
705         unsigned long end = offset + nr_entries - 1;
706         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
707
708         if (offset < si->lowest_bit)
709                 si->lowest_bit = offset;
710         if (end > si->highest_bit) {
711                 bool was_full = !si->highest_bit;
712
713                 si->highest_bit = end;
714                 if (was_full && (si->flags & SWP_WRITEOK))
715                         add_to_avail_list(si);
716         }
717         atomic_long_add(nr_entries, &nr_swap_pages);
718         si->inuse_pages -= nr_entries;
719         if (si->flags & SWP_BLKDEV)
720                 swap_slot_free_notify =
721                         si->bdev->bd_disk->fops->swap_slot_free_notify;
722         else
723                 swap_slot_free_notify = NULL;
724         while (offset <= end) {
725                 frontswap_invalidate_page(si->type, offset);
726                 if (swap_slot_free_notify)
727                         swap_slot_free_notify(si->bdev, offset);
728                 offset++;
729         }
730 }
731
732 static int scan_swap_map_slots(struct swap_info_struct *si,
733                                unsigned char usage, int nr,
734                                swp_entry_t slots[])
735 {
736         struct swap_cluster_info *ci;
737         unsigned long offset;
738         unsigned long scan_base;
739         unsigned long last_in_cluster = 0;
740         int latency_ration = LATENCY_LIMIT;
741         int n_ret = 0;
742
743         if (nr > SWAP_BATCH)
744                 nr = SWAP_BATCH;
745
746         /*
747          * We try to cluster swap pages by allocating them sequentially
748          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
749          * way, however, we resort to first-free allocation, starting
750          * a new cluster.  This prevents us from scattering swap pages
751          * all over the entire swap partition, so that we reduce
752          * overall disk seek times between swap pages.  -- sct
753          * But we do now try to find an empty cluster.  -Andrea
754          * And we let swap pages go all over an SSD partition.  Hugh
755          */
756
757         si->flags += SWP_SCANNING;
758         scan_base = offset = si->cluster_next;
759
760         /* SSD algorithm */
761         if (si->cluster_info) {
762                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
763                         goto scan;
764         } else if (unlikely(!si->cluster_nr--)) {
765                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
766                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
767                         goto checks;
768                 }
769
770                 spin_unlock(&si->lock);
771
772                 /*
773                  * If seek is expensive, start searching for new cluster from
774                  * start of partition, to minimize the span of allocated swap.
775                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
776                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
777                  */
778                 scan_base = offset = si->lowest_bit;
779                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
780
781                 /* Locate the first empty (unaligned) cluster */
782                 for (; last_in_cluster <= si->highest_bit; offset++) {
783                         if (si->swap_map[offset])
784                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
785                         else if (offset == last_in_cluster) {
786                                 spin_lock(&si->lock);
787                                 offset -= SWAPFILE_CLUSTER - 1;
788                                 si->cluster_next = offset;
789                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
790                                 goto checks;
791                         }
792                         if (unlikely(--latency_ration < 0)) {
793                                 cond_resched();
794                                 latency_ration = LATENCY_LIMIT;
795                         }
796                 }
797
798                 offset = scan_base;
799                 spin_lock(&si->lock);
800                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
801         }
802
803 checks:
804         if (si->cluster_info) {
805                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
806                 /* take a break if we already got some slots */
807                         if (n_ret)
808                                 goto done;
809                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
810                                                         &scan_base))
811                                 goto scan;
812                 }
813         }
814         if (!(si->flags & SWP_WRITEOK))
815                 goto no_page;
816         if (!si->highest_bit)
817                 goto no_page;
818         if (offset > si->highest_bit)
819                 scan_base = offset = si->lowest_bit;
820
821         ci = lock_cluster(si, offset);
822         /* reuse swap entry of cache-only swap if not busy. */
823         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
824                 int swap_was_freed;
825                 unlock_cluster(ci);
826                 spin_unlock(&si->lock);
827                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
828                 spin_lock(&si->lock);
829                 /* entry was freed successfully, try to use this again */
830                 if (swap_was_freed)
831                         goto checks;
832                 goto scan; /* check next one */
833         }
834
835         if (si->swap_map[offset]) {
836                 unlock_cluster(ci);
837                 if (!n_ret)
838                         goto scan;
839                 else
840                         goto done;
841         }
842         si->swap_map[offset] = usage;
843         inc_cluster_info_page(si, si->cluster_info, offset);
844         unlock_cluster(ci);
845
846         swap_range_alloc(si, offset, 1);
847         si->cluster_next = offset + 1;
848         slots[n_ret++] = swp_entry(si->type, offset);
849
850         /* got enough slots or reach max slots? */
851         if ((n_ret == nr) || (offset >= si->highest_bit))
852                 goto done;
853
854         /* search for next available slot */
855
856         /* time to take a break? */
857         if (unlikely(--latency_ration < 0)) {
858                 if (n_ret)
859                         goto done;
860                 spin_unlock(&si->lock);
861                 cond_resched();
862                 spin_lock(&si->lock);
863                 latency_ration = LATENCY_LIMIT;
864         }
865
866         /* try to get more slots in cluster */
867         if (si->cluster_info) {
868                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
869                         goto checks;
870         } else if (si->cluster_nr && !si->swap_map[++offset]) {
871                 /* non-ssd case, still more slots in cluster? */
872                 --si->cluster_nr;
873                 goto checks;
874         }
875
876 done:
877         si->flags -= SWP_SCANNING;
878         return n_ret;
879
880 scan:
881         spin_unlock(&si->lock);
882         while (++offset <= si->highest_bit) {
883                 if (!si->swap_map[offset]) {
884                         spin_lock(&si->lock);
885                         goto checks;
886                 }
887                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
888                         spin_lock(&si->lock);
889                         goto checks;
890                 }
891                 if (unlikely(--latency_ration < 0)) {
892                         cond_resched();
893                         latency_ration = LATENCY_LIMIT;
894                 }
895         }
896         offset = si->lowest_bit;
897         while (offset < scan_base) {
898                 if (!si->swap_map[offset]) {
899                         spin_lock(&si->lock);
900                         goto checks;
901                 }
902                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
903                         spin_lock(&si->lock);
904                         goto checks;
905                 }
906                 if (unlikely(--latency_ration < 0)) {
907                         cond_resched();
908                         latency_ration = LATENCY_LIMIT;
909                 }
910                 offset++;
911         }
912         spin_lock(&si->lock);
913
914 no_page:
915         si->flags -= SWP_SCANNING;
916         return n_ret;
917 }
918
919 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
920 {
921         unsigned long idx;
922         struct swap_cluster_info *ci;
923         unsigned long offset, i;
924         unsigned char *map;
925
926         /*
927          * Should not even be attempting cluster allocations when huge
928          * page swap is disabled.  Warn and fail the allocation.
929          */
930         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
931                 VM_WARN_ON_ONCE(1);
932                 return 0;
933         }
934
935         if (cluster_list_empty(&si->free_clusters))
936                 return 0;
937
938         idx = cluster_list_first(&si->free_clusters);
939         offset = idx * SWAPFILE_CLUSTER;
940         ci = lock_cluster(si, offset);
941         alloc_cluster(si, idx);
942         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
943
944         map = si->swap_map + offset;
945         for (i = 0; i < SWAPFILE_CLUSTER; i++)
946                 map[i] = SWAP_HAS_CACHE;
947         unlock_cluster(ci);
948         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
949         *slot = swp_entry(si->type, offset);
950
951         return 1;
952 }
953
954 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
955 {
956         unsigned long offset = idx * SWAPFILE_CLUSTER;
957         struct swap_cluster_info *ci;
958
959         ci = lock_cluster(si, offset);
960         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
961         cluster_set_count_flag(ci, 0, 0);
962         free_cluster(si, idx);
963         unlock_cluster(ci);
964         swap_range_free(si, offset, SWAPFILE_CLUSTER);
965 }
966
967 static unsigned long scan_swap_map(struct swap_info_struct *si,
968                                    unsigned char usage)
969 {
970         swp_entry_t entry;
971         int n_ret;
972
973         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
974
975         if (n_ret)
976                 return swp_offset(entry);
977         else
978                 return 0;
979
980 }
981
982 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
983 {
984         unsigned long size = swap_entry_size(entry_size);
985         struct swap_info_struct *si, *next;
986         long avail_pgs;
987         int n_ret = 0;
988         int node;
989
990         /* Only single cluster request supported */
991         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
992
993         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
994         if (avail_pgs <= 0)
995                 goto noswap;
996
997         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
998
999         atomic_long_sub(n_goal * size, &nr_swap_pages);
1000
1001         spin_lock(&swap_avail_lock);
1002
1003 start_over:
1004         node = numa_node_id();
1005         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1006                 /* requeue si to after same-priority siblings */
1007                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1008                 spin_unlock(&swap_avail_lock);
1009                 spin_lock(&si->lock);
1010                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1011                         spin_lock(&swap_avail_lock);
1012                         if (plist_node_empty(&si->avail_lists[node])) {
1013                                 spin_unlock(&si->lock);
1014                                 goto nextsi;
1015                         }
1016                         WARN(!si->highest_bit,
1017                              "swap_info %d in list but !highest_bit\n",
1018                              si->type);
1019                         WARN(!(si->flags & SWP_WRITEOK),
1020                              "swap_info %d in list but !SWP_WRITEOK\n",
1021                              si->type);
1022                         __del_from_avail_list(si);
1023                         spin_unlock(&si->lock);
1024                         goto nextsi;
1025                 }
1026                 if (size == SWAPFILE_CLUSTER) {
1027                         if (!(si->flags & SWP_FS))
1028                                 n_ret = swap_alloc_cluster(si, swp_entries);
1029                 } else
1030                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1031                                                     n_goal, swp_entries);
1032                 spin_unlock(&si->lock);
1033                 if (n_ret || size == SWAPFILE_CLUSTER)
1034                         goto check_out;
1035                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1036                         si->type);
1037
1038                 spin_lock(&swap_avail_lock);
1039 nextsi:
1040                 /*
1041                  * if we got here, it's likely that si was almost full before,
1042                  * and since scan_swap_map() can drop the si->lock, multiple
1043                  * callers probably all tried to get a page from the same si
1044                  * and it filled up before we could get one; or, the si filled
1045                  * up between us dropping swap_avail_lock and taking si->lock.
1046                  * Since we dropped the swap_avail_lock, the swap_avail_head
1047                  * list may have been modified; so if next is still in the
1048                  * swap_avail_head list then try it, otherwise start over
1049                  * if we have not gotten any slots.
1050                  */
1051                 if (plist_node_empty(&next->avail_lists[node]))
1052                         goto start_over;
1053         }
1054
1055         spin_unlock(&swap_avail_lock);
1056
1057 check_out:
1058         if (n_ret < n_goal)
1059                 atomic_long_add((long)(n_goal - n_ret) * size,
1060                                 &nr_swap_pages);
1061 noswap:
1062         return n_ret;
1063 }
1064
1065 /* The only caller of this function is now suspend routine */
1066 swp_entry_t get_swap_page_of_type(int type)
1067 {
1068         struct swap_info_struct *si = swap_type_to_swap_info(type);
1069         pgoff_t offset;
1070
1071         if (!si)
1072                 goto fail;
1073
1074         spin_lock(&si->lock);
1075         if (si->flags & SWP_WRITEOK) {
1076                 atomic_long_dec(&nr_swap_pages);
1077                 /* This is called for allocating swap entry, not cache */
1078                 offset = scan_swap_map(si, 1);
1079                 if (offset) {
1080                         spin_unlock(&si->lock);
1081                         return swp_entry(type, offset);
1082                 }
1083                 atomic_long_inc(&nr_swap_pages);
1084         }
1085         spin_unlock(&si->lock);
1086 fail:
1087         return (swp_entry_t) {0};
1088 }
1089
1090 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1091 {
1092         struct swap_info_struct *p;
1093         unsigned long offset;
1094
1095         if (!entry.val)
1096                 goto out;
1097         p = swp_swap_info(entry);
1098         if (!p)
1099                 goto bad_nofile;
1100         if (!(p->flags & SWP_USED))
1101                 goto bad_device;
1102         offset = swp_offset(entry);
1103         if (offset >= p->max)
1104                 goto bad_offset;
1105         return p;
1106
1107 bad_offset:
1108         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1109         goto out;
1110 bad_device:
1111         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1112         goto out;
1113 bad_nofile:
1114         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1115 out:
1116         return NULL;
1117 }
1118
1119 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1120 {
1121         struct swap_info_struct *p;
1122
1123         p = __swap_info_get(entry);
1124         if (!p)
1125                 goto out;
1126         if (!p->swap_map[swp_offset(entry)])
1127                 goto bad_free;
1128         return p;
1129
1130 bad_free:
1131         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1132         goto out;
1133 out:
1134         return NULL;
1135 }
1136
1137 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1138 {
1139         struct swap_info_struct *p;
1140
1141         p = _swap_info_get(entry);
1142         if (p)
1143                 spin_lock(&p->lock);
1144         return p;
1145 }
1146
1147 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1148                                         struct swap_info_struct *q)
1149 {
1150         struct swap_info_struct *p;
1151
1152         p = _swap_info_get(entry);
1153
1154         if (p != q) {
1155                 if (q != NULL)
1156                         spin_unlock(&q->lock);
1157                 if (p != NULL)
1158                         spin_lock(&p->lock);
1159         }
1160         return p;
1161 }
1162
1163 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1164                                               unsigned long offset,
1165                                               unsigned char usage)
1166 {
1167         unsigned char count;
1168         unsigned char has_cache;
1169
1170         count = p->swap_map[offset];
1171
1172         has_cache = count & SWAP_HAS_CACHE;
1173         count &= ~SWAP_HAS_CACHE;
1174
1175         if (usage == SWAP_HAS_CACHE) {
1176                 VM_BUG_ON(!has_cache);
1177                 has_cache = 0;
1178         } else if (count == SWAP_MAP_SHMEM) {
1179                 /*
1180                  * Or we could insist on shmem.c using a special
1181                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1182                  */
1183                 count = 0;
1184         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1185                 if (count == COUNT_CONTINUED) {
1186                         if (swap_count_continued(p, offset, count))
1187                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1188                         else
1189                                 count = SWAP_MAP_MAX;
1190                 } else
1191                         count--;
1192         }
1193
1194         usage = count | has_cache;
1195         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1196
1197         return usage;
1198 }
1199
1200 /*
1201  * Check whether swap entry is valid in the swap device.  If so,
1202  * return pointer to swap_info_struct, and keep the swap entry valid
1203  * via preventing the swap device from being swapoff, until
1204  * put_swap_device() is called.  Otherwise return NULL.
1205  *
1206  * The entirety of the RCU read critical section must come before the
1207  * return from or after the call to synchronize_rcu() in
1208  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1209  * true, the si->map, si->cluster_info, etc. must be valid in the
1210  * critical section.
1211  *
1212  * Notice that swapoff or swapoff+swapon can still happen before the
1213  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1214  * in put_swap_device() if there isn't any other way to prevent
1215  * swapoff, such as page lock, page table lock, etc.  The caller must
1216  * be prepared for that.  For example, the following situation is
1217  * possible.
1218  *
1219  *   CPU1                               CPU2
1220  *   do_swap_page()
1221  *     ...                              swapoff+swapon
1222  *     __read_swap_cache_async()
1223  *       swapcache_prepare()
1224  *         __swap_duplicate()
1225  *           // check swap_map
1226  *     // verify PTE not changed
1227  *
1228  * In __swap_duplicate(), the swap_map need to be checked before
1229  * changing partly because the specified swap entry may be for another
1230  * swap device which has been swapoff.  And in do_swap_page(), after
1231  * the page is read from the swap device, the PTE is verified not
1232  * changed with the page table locked to check whether the swap device
1233  * has been swapoff or swapoff+swapon.
1234  */
1235 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1236 {
1237         struct swap_info_struct *si;
1238         unsigned long offset;
1239
1240         if (!entry.val)
1241                 goto out;
1242         si = swp_swap_info(entry);
1243         if (!si)
1244                 goto bad_nofile;
1245
1246         rcu_read_lock();
1247         if (!(si->flags & SWP_VALID))
1248                 goto unlock_out;
1249         offset = swp_offset(entry);
1250         if (offset >= si->max)
1251                 goto unlock_out;
1252
1253         return si;
1254 bad_nofile:
1255         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1256 out:
1257         return NULL;
1258 unlock_out:
1259         rcu_read_unlock();
1260         return NULL;
1261 }
1262
1263 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1264                                        swp_entry_t entry, unsigned char usage)
1265 {
1266         struct swap_cluster_info *ci;
1267         unsigned long offset = swp_offset(entry);
1268
1269         ci = lock_cluster_or_swap_info(p, offset);
1270         usage = __swap_entry_free_locked(p, offset, usage);
1271         unlock_cluster_or_swap_info(p, ci);
1272         if (!usage)
1273                 free_swap_slot(entry);
1274
1275         return usage;
1276 }
1277
1278 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1279 {
1280         struct swap_cluster_info *ci;
1281         unsigned long offset = swp_offset(entry);
1282         unsigned char count;
1283
1284         ci = lock_cluster(p, offset);
1285         count = p->swap_map[offset];
1286         VM_BUG_ON(count != SWAP_HAS_CACHE);
1287         p->swap_map[offset] = 0;
1288         dec_cluster_info_page(p, p->cluster_info, offset);
1289         unlock_cluster(ci);
1290
1291         mem_cgroup_uncharge_swap(entry, 1);
1292         swap_range_free(p, offset, 1);
1293 }
1294
1295 /*
1296  * Caller has made sure that the swap device corresponding to entry
1297  * is still around or has not been recycled.
1298  */
1299 void swap_free(swp_entry_t entry)
1300 {
1301         struct swap_info_struct *p;
1302
1303         p = _swap_info_get(entry);
1304         if (p)
1305                 __swap_entry_free(p, entry, 1);
1306 }
1307
1308 /*
1309  * Called after dropping swapcache to decrease refcnt to swap entries.
1310  */
1311 void put_swap_page(struct page *page, swp_entry_t entry)
1312 {
1313         unsigned long offset = swp_offset(entry);
1314         unsigned long idx = offset / SWAPFILE_CLUSTER;
1315         struct swap_cluster_info *ci;
1316         struct swap_info_struct *si;
1317         unsigned char *map;
1318         unsigned int i, free_entries = 0;
1319         unsigned char val;
1320         int size = swap_entry_size(hpage_nr_pages(page));
1321
1322         si = _swap_info_get(entry);
1323         if (!si)
1324                 return;
1325
1326         ci = lock_cluster_or_swap_info(si, offset);
1327         if (size == SWAPFILE_CLUSTER) {
1328                 VM_BUG_ON(!cluster_is_huge(ci));
1329                 map = si->swap_map + offset;
1330                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1331                         val = map[i];
1332                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1333                         if (val == SWAP_HAS_CACHE)
1334                                 free_entries++;
1335                 }
1336                 cluster_clear_huge(ci);
1337                 if (free_entries == SWAPFILE_CLUSTER) {
1338                         unlock_cluster_or_swap_info(si, ci);
1339                         spin_lock(&si->lock);
1340                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1341                         swap_free_cluster(si, idx);
1342                         spin_unlock(&si->lock);
1343                         return;
1344                 }
1345         }
1346         for (i = 0; i < size; i++, entry.val++) {
1347                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1348                         unlock_cluster_or_swap_info(si, ci);
1349                         free_swap_slot(entry);
1350                         if (i == size - 1)
1351                                 return;
1352                         lock_cluster_or_swap_info(si, offset);
1353                 }
1354         }
1355         unlock_cluster_or_swap_info(si, ci);
1356 }
1357
1358 #ifdef CONFIG_THP_SWAP
1359 int split_swap_cluster(swp_entry_t entry)
1360 {
1361         struct swap_info_struct *si;
1362         struct swap_cluster_info *ci;
1363         unsigned long offset = swp_offset(entry);
1364
1365         si = _swap_info_get(entry);
1366         if (!si)
1367                 return -EBUSY;
1368         ci = lock_cluster(si, offset);
1369         cluster_clear_huge(ci);
1370         unlock_cluster(ci);
1371         return 0;
1372 }
1373 #endif
1374
1375 static int swp_entry_cmp(const void *ent1, const void *ent2)
1376 {
1377         const swp_entry_t *e1 = ent1, *e2 = ent2;
1378
1379         return (int)swp_type(*e1) - (int)swp_type(*e2);
1380 }
1381
1382 void swapcache_free_entries(swp_entry_t *entries, int n)
1383 {
1384         struct swap_info_struct *p, *prev;
1385         int i;
1386
1387         if (n <= 0)
1388                 return;
1389
1390         prev = NULL;
1391         p = NULL;
1392
1393         /*
1394          * Sort swap entries by swap device, so each lock is only taken once.
1395          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1396          * so low that it isn't necessary to optimize further.
1397          */
1398         if (nr_swapfiles > 1)
1399                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1400         for (i = 0; i < n; ++i) {
1401                 p = swap_info_get_cont(entries[i], prev);
1402                 if (p)
1403                         swap_entry_free(p, entries[i]);
1404                 prev = p;
1405         }
1406         if (p)
1407                 spin_unlock(&p->lock);
1408 }
1409
1410 /*
1411  * How many references to page are currently swapped out?
1412  * This does not give an exact answer when swap count is continued,
1413  * but does include the high COUNT_CONTINUED flag to allow for that.
1414  */
1415 int page_swapcount(struct page *page)
1416 {
1417         int count = 0;
1418         struct swap_info_struct *p;
1419         struct swap_cluster_info *ci;
1420         swp_entry_t entry;
1421         unsigned long offset;
1422
1423         entry.val = page_private(page);
1424         p = _swap_info_get(entry);
1425         if (p) {
1426                 offset = swp_offset(entry);
1427                 ci = lock_cluster_or_swap_info(p, offset);
1428                 count = swap_count(p->swap_map[offset]);
1429                 unlock_cluster_or_swap_info(p, ci);
1430         }
1431         return count;
1432 }
1433
1434 int __swap_count(swp_entry_t entry)
1435 {
1436         struct swap_info_struct *si;
1437         pgoff_t offset = swp_offset(entry);
1438         int count = 0;
1439
1440         si = get_swap_device(entry);
1441         if (si) {
1442                 count = swap_count(si->swap_map[offset]);
1443                 put_swap_device(si);
1444         }
1445         return count;
1446 }
1447
1448 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1449 {
1450         int count = 0;
1451         pgoff_t offset = swp_offset(entry);
1452         struct swap_cluster_info *ci;
1453
1454         ci = lock_cluster_or_swap_info(si, offset);
1455         count = swap_count(si->swap_map[offset]);
1456         unlock_cluster_or_swap_info(si, ci);
1457         return count;
1458 }
1459
1460 /*
1461  * How many references to @entry are currently swapped out?
1462  * This does not give an exact answer when swap count is continued,
1463  * but does include the high COUNT_CONTINUED flag to allow for that.
1464  */
1465 int __swp_swapcount(swp_entry_t entry)
1466 {
1467         int count = 0;
1468         struct swap_info_struct *si;
1469
1470         si = get_swap_device(entry);
1471         if (si) {
1472                 count = swap_swapcount(si, entry);
1473                 put_swap_device(si);
1474         }
1475         return count;
1476 }
1477
1478 /*
1479  * How many references to @entry are currently swapped out?
1480  * This considers COUNT_CONTINUED so it returns exact answer.
1481  */
1482 int swp_swapcount(swp_entry_t entry)
1483 {
1484         int count, tmp_count, n;
1485         struct swap_info_struct *p;
1486         struct swap_cluster_info *ci;
1487         struct page *page;
1488         pgoff_t offset;
1489         unsigned char *map;
1490
1491         p = _swap_info_get(entry);
1492         if (!p)
1493                 return 0;
1494
1495         offset = swp_offset(entry);
1496
1497         ci = lock_cluster_or_swap_info(p, offset);
1498
1499         count = swap_count(p->swap_map[offset]);
1500         if (!(count & COUNT_CONTINUED))
1501                 goto out;
1502
1503         count &= ~COUNT_CONTINUED;
1504         n = SWAP_MAP_MAX + 1;
1505
1506         page = vmalloc_to_page(p->swap_map + offset);
1507         offset &= ~PAGE_MASK;
1508         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1509
1510         do {
1511                 page = list_next_entry(page, lru);
1512                 map = kmap_atomic(page);
1513                 tmp_count = map[offset];
1514                 kunmap_atomic(map);
1515
1516                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1517                 n *= (SWAP_CONT_MAX + 1);
1518         } while (tmp_count & COUNT_CONTINUED);
1519 out:
1520         unlock_cluster_or_swap_info(p, ci);
1521         return count;
1522 }
1523
1524 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1525                                          swp_entry_t entry)
1526 {
1527         struct swap_cluster_info *ci;
1528         unsigned char *map = si->swap_map;
1529         unsigned long roffset = swp_offset(entry);
1530         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1531         int i;
1532         bool ret = false;
1533
1534         ci = lock_cluster_or_swap_info(si, offset);
1535         if (!ci || !cluster_is_huge(ci)) {
1536                 if (swap_count(map[roffset]))
1537                         ret = true;
1538                 goto unlock_out;
1539         }
1540         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1541                 if (swap_count(map[offset + i])) {
1542                         ret = true;
1543                         break;
1544                 }
1545         }
1546 unlock_out:
1547         unlock_cluster_or_swap_info(si, ci);
1548         return ret;
1549 }
1550
1551 static bool page_swapped(struct page *page)
1552 {
1553         swp_entry_t entry;
1554         struct swap_info_struct *si;
1555
1556         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1557                 return page_swapcount(page) != 0;
1558
1559         page = compound_head(page);
1560         entry.val = page_private(page);
1561         si = _swap_info_get(entry);
1562         if (si)
1563                 return swap_page_trans_huge_swapped(si, entry);
1564         return false;
1565 }
1566
1567 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1568                                          int *total_swapcount)
1569 {
1570         int i, map_swapcount, _total_mapcount, _total_swapcount;
1571         unsigned long offset = 0;
1572         struct swap_info_struct *si;
1573         struct swap_cluster_info *ci = NULL;
1574         unsigned char *map = NULL;
1575         int mapcount, swapcount = 0;
1576
1577         /* hugetlbfs shouldn't call it */
1578         VM_BUG_ON_PAGE(PageHuge(page), page);
1579
1580         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1581                 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1582                 if (PageSwapCache(page))
1583                         swapcount = page_swapcount(page);
1584                 if (total_swapcount)
1585                         *total_swapcount = swapcount;
1586                 return mapcount + swapcount;
1587         }
1588
1589         page = compound_head(page);
1590
1591         _total_mapcount = _total_swapcount = map_swapcount = 0;
1592         if (PageSwapCache(page)) {
1593                 swp_entry_t entry;
1594
1595                 entry.val = page_private(page);
1596                 si = _swap_info_get(entry);
1597                 if (si) {
1598                         map = si->swap_map;
1599                         offset = swp_offset(entry);
1600                 }
1601         }
1602         if (map)
1603                 ci = lock_cluster(si, offset);
1604         for (i = 0; i < HPAGE_PMD_NR; i++) {
1605                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1606                 _total_mapcount += mapcount;
1607                 if (map) {
1608                         swapcount = swap_count(map[offset + i]);
1609                         _total_swapcount += swapcount;
1610                 }
1611                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1612         }
1613         unlock_cluster(ci);
1614         if (PageDoubleMap(page)) {
1615                 map_swapcount -= 1;
1616                 _total_mapcount -= HPAGE_PMD_NR;
1617         }
1618         mapcount = compound_mapcount(page);
1619         map_swapcount += mapcount;
1620         _total_mapcount += mapcount;
1621         if (total_mapcount)
1622                 *total_mapcount = _total_mapcount;
1623         if (total_swapcount)
1624                 *total_swapcount = _total_swapcount;
1625
1626         return map_swapcount;
1627 }
1628
1629 /*
1630  * We can write to an anon page without COW if there are no other references
1631  * to it.  And as a side-effect, free up its swap: because the old content
1632  * on disk will never be read, and seeking back there to write new content
1633  * later would only waste time away from clustering.
1634  *
1635  * NOTE: total_map_swapcount should not be relied upon by the caller if
1636  * reuse_swap_page() returns false, but it may be always overwritten
1637  * (see the other implementation for CONFIG_SWAP=n).
1638  */
1639 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1640 {
1641         int count, total_mapcount, total_swapcount;
1642
1643         VM_BUG_ON_PAGE(!PageLocked(page), page);
1644         if (unlikely(PageKsm(page)))
1645                 return false;
1646         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1647                                               &total_swapcount);
1648         if (total_map_swapcount)
1649                 *total_map_swapcount = total_mapcount + total_swapcount;
1650         if (count == 1 && PageSwapCache(page) &&
1651             (likely(!PageTransCompound(page)) ||
1652              /* The remaining swap count will be freed soon */
1653              total_swapcount == page_swapcount(page))) {
1654                 if (!PageWriteback(page)) {
1655                         page = compound_head(page);
1656                         delete_from_swap_cache(page);
1657                         SetPageDirty(page);
1658                 } else {
1659                         swp_entry_t entry;
1660                         struct swap_info_struct *p;
1661
1662                         entry.val = page_private(page);
1663                         p = swap_info_get(entry);
1664                         if (p->flags & SWP_STABLE_WRITES) {
1665                                 spin_unlock(&p->lock);
1666                                 return false;
1667                         }
1668                         spin_unlock(&p->lock);
1669                 }
1670         }
1671
1672         return count <= 1;
1673 }
1674
1675 /*
1676  * If swap is getting full, or if there are no more mappings of this page,
1677  * then try_to_free_swap is called to free its swap space.
1678  */
1679 int try_to_free_swap(struct page *page)
1680 {
1681         VM_BUG_ON_PAGE(!PageLocked(page), page);
1682
1683         if (!PageSwapCache(page))
1684                 return 0;
1685         if (PageWriteback(page))
1686                 return 0;
1687         if (page_swapped(page))
1688                 return 0;
1689
1690         /*
1691          * Once hibernation has begun to create its image of memory,
1692          * there's a danger that one of the calls to try_to_free_swap()
1693          * - most probably a call from __try_to_reclaim_swap() while
1694          * hibernation is allocating its own swap pages for the image,
1695          * but conceivably even a call from memory reclaim - will free
1696          * the swap from a page which has already been recorded in the
1697          * image as a clean swapcache page, and then reuse its swap for
1698          * another page of the image.  On waking from hibernation, the
1699          * original page might be freed under memory pressure, then
1700          * later read back in from swap, now with the wrong data.
1701          *
1702          * Hibernation suspends storage while it is writing the image
1703          * to disk so check that here.
1704          */
1705         if (pm_suspended_storage())
1706                 return 0;
1707
1708         page = compound_head(page);
1709         delete_from_swap_cache(page);
1710         SetPageDirty(page);
1711         return 1;
1712 }
1713
1714 /*
1715  * Free the swap entry like above, but also try to
1716  * free the page cache entry if it is the last user.
1717  */
1718 int free_swap_and_cache(swp_entry_t entry)
1719 {
1720         struct swap_info_struct *p;
1721         unsigned char count;
1722
1723         if (non_swap_entry(entry))
1724                 return 1;
1725
1726         p = _swap_info_get(entry);
1727         if (p) {
1728                 count = __swap_entry_free(p, entry, 1);
1729                 if (count == SWAP_HAS_CACHE &&
1730                     !swap_page_trans_huge_swapped(p, entry))
1731                         __try_to_reclaim_swap(p, swp_offset(entry),
1732                                               TTRS_UNMAPPED | TTRS_FULL);
1733         }
1734         return p != NULL;
1735 }
1736
1737 #ifdef CONFIG_HIBERNATION
1738 /*
1739  * Find the swap type that corresponds to given device (if any).
1740  *
1741  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1742  * from 0, in which the swap header is expected to be located.
1743  *
1744  * This is needed for the suspend to disk (aka swsusp).
1745  */
1746 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1747 {
1748         struct block_device *bdev = NULL;
1749         int type;
1750
1751         if (device)
1752                 bdev = bdget(device);
1753
1754         spin_lock(&swap_lock);
1755         for (type = 0; type < nr_swapfiles; type++) {
1756                 struct swap_info_struct *sis = swap_info[type];
1757
1758                 if (!(sis->flags & SWP_WRITEOK))
1759                         continue;
1760
1761                 if (!bdev) {
1762                         if (bdev_p)
1763                                 *bdev_p = bdgrab(sis->bdev);
1764
1765                         spin_unlock(&swap_lock);
1766                         return type;
1767                 }
1768                 if (bdev == sis->bdev) {
1769                         struct swap_extent *se = first_se(sis);
1770
1771                         if (se->start_block == offset) {
1772                                 if (bdev_p)
1773                                         *bdev_p = bdgrab(sis->bdev);
1774
1775                                 spin_unlock(&swap_lock);
1776                                 bdput(bdev);
1777                                 return type;
1778                         }
1779                 }
1780         }
1781         spin_unlock(&swap_lock);
1782         if (bdev)
1783                 bdput(bdev);
1784
1785         return -ENODEV;
1786 }
1787
1788 /*
1789  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1790  * corresponding to given index in swap_info (swap type).
1791  */
1792 sector_t swapdev_block(int type, pgoff_t offset)
1793 {
1794         struct block_device *bdev;
1795         struct swap_info_struct *si = swap_type_to_swap_info(type);
1796
1797         if (!si || !(si->flags & SWP_WRITEOK))
1798                 return 0;
1799         return map_swap_entry(swp_entry(type, offset), &bdev);
1800 }
1801
1802 /*
1803  * Return either the total number of swap pages of given type, or the number
1804  * of free pages of that type (depending on @free)
1805  *
1806  * This is needed for software suspend
1807  */
1808 unsigned int count_swap_pages(int type, int free)
1809 {
1810         unsigned int n = 0;
1811
1812         spin_lock(&swap_lock);
1813         if ((unsigned int)type < nr_swapfiles) {
1814                 struct swap_info_struct *sis = swap_info[type];
1815
1816                 spin_lock(&sis->lock);
1817                 if (sis->flags & SWP_WRITEOK) {
1818                         n = sis->pages;
1819                         if (free)
1820                                 n -= sis->inuse_pages;
1821                 }
1822                 spin_unlock(&sis->lock);
1823         }
1824         spin_unlock(&swap_lock);
1825         return n;
1826 }
1827 #endif /* CONFIG_HIBERNATION */
1828
1829 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1830 {
1831         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1832 }
1833
1834 /*
1835  * No need to decide whether this PTE shares the swap entry with others,
1836  * just let do_wp_page work it out if a write is requested later - to
1837  * force COW, vm_page_prot omits write permission from any private vma.
1838  */
1839 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1840                 unsigned long addr, swp_entry_t entry, struct page *page)
1841 {
1842         struct page *swapcache;
1843         struct mem_cgroup *memcg;
1844         spinlock_t *ptl;
1845         pte_t *pte;
1846         int ret = 1;
1847
1848         swapcache = page;
1849         page = ksm_might_need_to_copy(page, vma, addr);
1850         if (unlikely(!page))
1851                 return -ENOMEM;
1852
1853         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1854                                 &memcg, false)) {
1855                 ret = -ENOMEM;
1856                 goto out_nolock;
1857         }
1858
1859         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1860         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1861                 mem_cgroup_cancel_charge(page, memcg, false);
1862                 ret = 0;
1863                 goto out;
1864         }
1865
1866         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1867         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1868         get_page(page);
1869         set_pte_at(vma->vm_mm, addr, pte,
1870                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1871         if (page == swapcache) {
1872                 page_add_anon_rmap(page, vma, addr, false);
1873                 mem_cgroup_commit_charge(page, memcg, true, false);
1874         } else { /* ksm created a completely new copy */
1875                 page_add_new_anon_rmap(page, vma, addr, false);
1876                 mem_cgroup_commit_charge(page, memcg, false, false);
1877                 lru_cache_add_active_or_unevictable(page, vma);
1878         }
1879         swap_free(entry);
1880         /*
1881          * Move the page to the active list so it is not
1882          * immediately swapped out again after swapon.
1883          */
1884         activate_page(page);
1885 out:
1886         pte_unmap_unlock(pte, ptl);
1887 out_nolock:
1888         if (page != swapcache) {
1889                 unlock_page(page);
1890                 put_page(page);
1891         }
1892         return ret;
1893 }
1894
1895 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1896                         unsigned long addr, unsigned long end,
1897                         unsigned int type, bool frontswap,
1898                         unsigned long *fs_pages_to_unuse)
1899 {
1900         struct page *page;
1901         swp_entry_t entry;
1902         pte_t *pte;
1903         struct swap_info_struct *si;
1904         unsigned long offset;
1905         int ret = 0;
1906         volatile unsigned char *swap_map;
1907
1908         si = swap_info[type];
1909         pte = pte_offset_map(pmd, addr);
1910         do {
1911                 struct vm_fault vmf;
1912
1913                 if (!is_swap_pte(*pte))
1914                         continue;
1915
1916                 entry = pte_to_swp_entry(*pte);
1917                 if (swp_type(entry) != type)
1918                         continue;
1919
1920                 offset = swp_offset(entry);
1921                 if (frontswap && !frontswap_test(si, offset))
1922                         continue;
1923
1924                 pte_unmap(pte);
1925                 swap_map = &si->swap_map[offset];
1926                 page = lookup_swap_cache(entry, vma, addr);
1927                 if (!page) {
1928                         vmf.vma = vma;
1929                         vmf.address = addr;
1930                         vmf.pmd = pmd;
1931                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1932                                                 &vmf);
1933                 }
1934                 if (!page) {
1935                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1936                                 goto try_next;
1937                         return -ENOMEM;
1938                 }
1939
1940                 lock_page(page);
1941                 wait_on_page_writeback(page);
1942                 ret = unuse_pte(vma, pmd, addr, entry, page);
1943                 if (ret < 0) {
1944                         unlock_page(page);
1945                         put_page(page);
1946                         goto out;
1947                 }
1948
1949                 try_to_free_swap(page);
1950                 unlock_page(page);
1951                 put_page(page);
1952
1953                 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1954                         ret = FRONTSWAP_PAGES_UNUSED;
1955                         goto out;
1956                 }
1957 try_next:
1958                 pte = pte_offset_map(pmd, addr);
1959         } while (pte++, addr += PAGE_SIZE, addr != end);
1960         pte_unmap(pte - 1);
1961
1962         ret = 0;
1963 out:
1964         return ret;
1965 }
1966
1967 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1968                                 unsigned long addr, unsigned long end,
1969                                 unsigned int type, bool frontswap,
1970                                 unsigned long *fs_pages_to_unuse)
1971 {
1972         pmd_t *pmd;
1973         unsigned long next;
1974         int ret;
1975
1976         pmd = pmd_offset(pud, addr);
1977         do {
1978                 cond_resched();
1979                 next = pmd_addr_end(addr, end);
1980                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1981                         continue;
1982                 ret = unuse_pte_range(vma, pmd, addr, next, type,
1983                                       frontswap, fs_pages_to_unuse);
1984                 if (ret)
1985                         return ret;
1986         } while (pmd++, addr = next, addr != end);
1987         return 0;
1988 }
1989
1990 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1991                                 unsigned long addr, unsigned long end,
1992                                 unsigned int type, bool frontswap,
1993                                 unsigned long *fs_pages_to_unuse)
1994 {
1995         pud_t *pud;
1996         unsigned long next;
1997         int ret;
1998
1999         pud = pud_offset(p4d, addr);
2000         do {
2001                 next = pud_addr_end(addr, end);
2002                 if (pud_none_or_clear_bad(pud))
2003                         continue;
2004                 ret = unuse_pmd_range(vma, pud, addr, next, type,
2005                                       frontswap, fs_pages_to_unuse);
2006                 if (ret)
2007                         return ret;
2008         } while (pud++, addr = next, addr != end);
2009         return 0;
2010 }
2011
2012 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2013                                 unsigned long addr, unsigned long end,
2014                                 unsigned int type, bool frontswap,
2015                                 unsigned long *fs_pages_to_unuse)
2016 {
2017         p4d_t *p4d;
2018         unsigned long next;
2019         int ret;
2020
2021         p4d = p4d_offset(pgd, addr);
2022         do {
2023                 next = p4d_addr_end(addr, end);
2024                 if (p4d_none_or_clear_bad(p4d))
2025                         continue;
2026                 ret = unuse_pud_range(vma, p4d, addr, next, type,
2027                                       frontswap, fs_pages_to_unuse);
2028                 if (ret)
2029                         return ret;
2030         } while (p4d++, addr = next, addr != end);
2031         return 0;
2032 }
2033
2034 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2035                      bool frontswap, unsigned long *fs_pages_to_unuse)
2036 {
2037         pgd_t *pgd;
2038         unsigned long addr, end, next;
2039         int ret;
2040
2041         addr = vma->vm_start;
2042         end = vma->vm_end;
2043
2044         pgd = pgd_offset(vma->vm_mm, addr);
2045         do {
2046                 next = pgd_addr_end(addr, end);
2047                 if (pgd_none_or_clear_bad(pgd))
2048                         continue;
2049                 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2050                                       frontswap, fs_pages_to_unuse);
2051                 if (ret)
2052                         return ret;
2053         } while (pgd++, addr = next, addr != end);
2054         return 0;
2055 }
2056
2057 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2058                     bool frontswap, unsigned long *fs_pages_to_unuse)
2059 {
2060         struct vm_area_struct *vma;
2061         int ret = 0;
2062
2063         down_read(&mm->mmap_sem);
2064         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2065                 if (vma->anon_vma) {
2066                         ret = unuse_vma(vma, type, frontswap,
2067                                         fs_pages_to_unuse);
2068                         if (ret)
2069                                 break;
2070                 }
2071                 cond_resched();
2072         }
2073         up_read(&mm->mmap_sem);
2074         return ret;
2075 }
2076
2077 /*
2078  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2079  * from current position to next entry still in use. Return 0
2080  * if there are no inuse entries after prev till end of the map.
2081  */
2082 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2083                                         unsigned int prev, bool frontswap)
2084 {
2085         unsigned int i;
2086         unsigned char count;
2087
2088         /*
2089          * No need for swap_lock here: we're just looking
2090          * for whether an entry is in use, not modifying it; false
2091          * hits are okay, and sys_swapoff() has already prevented new
2092          * allocations from this area (while holding swap_lock).
2093          */
2094         for (i = prev + 1; i < si->max; i++) {
2095                 count = READ_ONCE(si->swap_map[i]);
2096                 if (count && swap_count(count) != SWAP_MAP_BAD)
2097                         if (!frontswap || frontswap_test(si, i))
2098                                 break;
2099                 if ((i % LATENCY_LIMIT) == 0)
2100                         cond_resched();
2101         }
2102
2103         if (i == si->max)
2104                 i = 0;
2105
2106         return i;
2107 }
2108
2109 /*
2110  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2111  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2112  */
2113 int try_to_unuse(unsigned int type, bool frontswap,
2114                  unsigned long pages_to_unuse)
2115 {
2116         struct mm_struct *prev_mm;
2117         struct mm_struct *mm;
2118         struct list_head *p;
2119         int retval = 0;
2120         struct swap_info_struct *si = swap_info[type];
2121         struct page *page;
2122         swp_entry_t entry;
2123         unsigned int i;
2124
2125         if (!READ_ONCE(si->inuse_pages))
2126                 return 0;
2127
2128         if (!frontswap)
2129                 pages_to_unuse = 0;
2130
2131 retry:
2132         retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2133         if (retval)
2134                 goto out;
2135
2136         prev_mm = &init_mm;
2137         mmget(prev_mm);
2138
2139         spin_lock(&mmlist_lock);
2140         p = &init_mm.mmlist;
2141         while (READ_ONCE(si->inuse_pages) &&
2142                !signal_pending(current) &&
2143                (p = p->next) != &init_mm.mmlist) {
2144
2145                 mm = list_entry(p, struct mm_struct, mmlist);
2146                 if (!mmget_not_zero(mm))
2147                         continue;
2148                 spin_unlock(&mmlist_lock);
2149                 mmput(prev_mm);
2150                 prev_mm = mm;
2151                 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2152
2153                 if (retval) {
2154                         mmput(prev_mm);
2155                         goto out;
2156                 }
2157
2158                 /*
2159                  * Make sure that we aren't completely killing
2160                  * interactive performance.
2161                  */
2162                 cond_resched();
2163                 spin_lock(&mmlist_lock);
2164         }
2165         spin_unlock(&mmlist_lock);
2166
2167         mmput(prev_mm);
2168
2169         i = 0;
2170         while (READ_ONCE(si->inuse_pages) &&
2171                !signal_pending(current) &&
2172                (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2173
2174                 entry = swp_entry(type, i);
2175                 page = find_get_page(swap_address_space(entry), i);
2176                 if (!page)
2177                         continue;
2178
2179                 /*
2180                  * It is conceivable that a racing task removed this page from
2181                  * swap cache just before we acquired the page lock. The page
2182                  * might even be back in swap cache on another swap area. But
2183                  * that is okay, try_to_free_swap() only removes stale pages.
2184                  */
2185                 lock_page(page);
2186                 wait_on_page_writeback(page);
2187                 try_to_free_swap(page);
2188                 unlock_page(page);
2189                 put_page(page);
2190
2191                 /*
2192                  * For frontswap, we just need to unuse pages_to_unuse, if
2193                  * it was specified. Need not check frontswap again here as
2194                  * we already zeroed out pages_to_unuse if not frontswap.
2195                  */
2196                 if (pages_to_unuse && --pages_to_unuse == 0)
2197                         goto out;
2198         }
2199
2200         /*
2201          * Lets check again to see if there are still swap entries in the map.
2202          * If yes, we would need to do retry the unuse logic again.
2203          * Under global memory pressure, swap entries can be reinserted back
2204          * into process space after the mmlist loop above passes over them.
2205          *
2206          * Limit the number of retries? No: when mmget_not_zero() above fails,
2207          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2208          * at its own independent pace; and even shmem_writepage() could have
2209          * been preempted after get_swap_page(), temporarily hiding that swap.
2210          * It's easy and robust (though cpu-intensive) just to keep retrying.
2211          */
2212         if (READ_ONCE(si->inuse_pages)) {
2213                 if (!signal_pending(current))
2214                         goto retry;
2215                 retval = -EINTR;
2216         }
2217 out:
2218         return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2219 }
2220
2221 /*
2222  * After a successful try_to_unuse, if no swap is now in use, we know
2223  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2224  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2225  * added to the mmlist just after page_duplicate - before would be racy.
2226  */
2227 static void drain_mmlist(void)
2228 {
2229         struct list_head *p, *next;
2230         unsigned int type;
2231
2232         for (type = 0; type < nr_swapfiles; type++)
2233                 if (swap_info[type]->inuse_pages)
2234                         return;
2235         spin_lock(&mmlist_lock);
2236         list_for_each_safe(p, next, &init_mm.mmlist)
2237                 list_del_init(p);
2238         spin_unlock(&mmlist_lock);
2239 }
2240
2241 /*
2242  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2243  * corresponds to page offset for the specified swap entry.
2244  * Note that the type of this function is sector_t, but it returns page offset
2245  * into the bdev, not sector offset.
2246  */
2247 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2248 {
2249         struct swap_info_struct *sis;
2250         struct swap_extent *se;
2251         pgoff_t offset;
2252
2253         sis = swp_swap_info(entry);
2254         *bdev = sis->bdev;
2255
2256         offset = swp_offset(entry);
2257         se = offset_to_swap_extent(sis, offset);
2258         return se->start_block + (offset - se->start_page);
2259 }
2260
2261 /*
2262  * Returns the page offset into bdev for the specified page's swap entry.
2263  */
2264 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2265 {
2266         swp_entry_t entry;
2267         entry.val = page_private(page);
2268         return map_swap_entry(entry, bdev);
2269 }
2270
2271 /*
2272  * Free all of a swapdev's extent information
2273  */
2274 static void destroy_swap_extents(struct swap_info_struct *sis)
2275 {
2276         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2277                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2278                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2279
2280                 rb_erase(rb, &sis->swap_extent_root);
2281                 kfree(se);
2282         }
2283
2284         if (sis->flags & SWP_ACTIVATED) {
2285                 struct file *swap_file = sis->swap_file;
2286                 struct address_space *mapping = swap_file->f_mapping;
2287
2288                 sis->flags &= ~SWP_ACTIVATED;
2289                 if (mapping->a_ops->swap_deactivate)
2290                         mapping->a_ops->swap_deactivate(swap_file);
2291         }
2292 }
2293
2294 /*
2295  * Add a block range (and the corresponding page range) into this swapdev's
2296  * extent tree.
2297  *
2298  * This function rather assumes that it is called in ascending page order.
2299  */
2300 int
2301 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2302                 unsigned long nr_pages, sector_t start_block)
2303 {
2304         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2305         struct swap_extent *se;
2306         struct swap_extent *new_se;
2307
2308         /*
2309          * place the new node at the right most since the
2310          * function is called in ascending page order.
2311          */
2312         while (*link) {
2313                 parent = *link;
2314                 link = &parent->rb_right;
2315         }
2316
2317         if (parent) {
2318                 se = rb_entry(parent, struct swap_extent, rb_node);
2319                 BUG_ON(se->start_page + se->nr_pages != start_page);
2320                 if (se->start_block + se->nr_pages == start_block) {
2321                         /* Merge it */
2322                         se->nr_pages += nr_pages;
2323                         return 0;
2324                 }
2325         }
2326
2327         /* No merge, insert a new extent. */
2328         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2329         if (new_se == NULL)
2330                 return -ENOMEM;
2331         new_se->start_page = start_page;
2332         new_se->nr_pages = nr_pages;
2333         new_se->start_block = start_block;
2334
2335         rb_link_node(&new_se->rb_node, parent, link);
2336         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2337         return 1;
2338 }
2339 EXPORT_SYMBOL_GPL(add_swap_extent);
2340
2341 /*
2342  * A `swap extent' is a simple thing which maps a contiguous range of pages
2343  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2344  * is built at swapon time and is then used at swap_writepage/swap_readpage
2345  * time for locating where on disk a page belongs.
2346  *
2347  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2348  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2349  * swap files identically.
2350  *
2351  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2352  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2353  * swapfiles are handled *identically* after swapon time.
2354  *
2355  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2356  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2357  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2358  * requirements, they are simply tossed out - we will never use those blocks
2359  * for swapping.
2360  *
2361  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2362  * prevents users from writing to the swap device, which will corrupt memory.
2363  *
2364  * The amount of disk space which a single swap extent represents varies.
2365  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2366  * extents in the list.  To avoid much list walking, we cache the previous
2367  * search location in `curr_swap_extent', and start new searches from there.
2368  * This is extremely effective.  The average number of iterations in
2369  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2370  */
2371 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2372 {
2373         struct file *swap_file = sis->swap_file;
2374         struct address_space *mapping = swap_file->f_mapping;
2375         struct inode *inode = mapping->host;
2376         int ret;
2377
2378         if (S_ISBLK(inode->i_mode)) {
2379                 ret = add_swap_extent(sis, 0, sis->max, 0);
2380                 *span = sis->pages;
2381                 return ret;
2382         }
2383
2384         if (mapping->a_ops->swap_activate) {
2385                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2386                 if (ret >= 0)
2387                         sis->flags |= SWP_ACTIVATED;
2388                 if (!ret) {
2389                         sis->flags |= SWP_FS;
2390                         ret = add_swap_extent(sis, 0, sis->max, 0);
2391                         *span = sis->pages;
2392                 }
2393                 return ret;
2394         }
2395
2396         return generic_swapfile_activate(sis, swap_file, span);
2397 }
2398
2399 static int swap_node(struct swap_info_struct *p)
2400 {
2401         struct block_device *bdev;
2402
2403         if (p->bdev)
2404                 bdev = p->bdev;
2405         else
2406                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2407
2408         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2409 }
2410
2411 static void setup_swap_info(struct swap_info_struct *p, int prio,
2412                             unsigned char *swap_map,
2413                             struct swap_cluster_info *cluster_info)
2414 {
2415         int i;
2416
2417         if (prio >= 0)
2418                 p->prio = prio;
2419         else
2420                 p->prio = --least_priority;
2421         /*
2422          * the plist prio is negated because plist ordering is
2423          * low-to-high, while swap ordering is high-to-low
2424          */
2425         p->list.prio = -p->prio;
2426         for_each_node(i) {
2427                 if (p->prio >= 0)
2428                         p->avail_lists[i].prio = -p->prio;
2429                 else {
2430                         if (swap_node(p) == i)
2431                                 p->avail_lists[i].prio = 1;
2432                         else
2433                                 p->avail_lists[i].prio = -p->prio;
2434                 }
2435         }
2436         p->swap_map = swap_map;
2437         p->cluster_info = cluster_info;
2438 }
2439
2440 static void _enable_swap_info(struct swap_info_struct *p)
2441 {
2442         p->flags |= SWP_WRITEOK | SWP_VALID;
2443         atomic_long_add(p->pages, &nr_swap_pages);
2444         total_swap_pages += p->pages;
2445
2446         assert_spin_locked(&swap_lock);
2447         /*
2448          * both lists are plists, and thus priority ordered.
2449          * swap_active_head needs to be priority ordered for swapoff(),
2450          * which on removal of any swap_info_struct with an auto-assigned
2451          * (i.e. negative) priority increments the auto-assigned priority
2452          * of any lower-priority swap_info_structs.
2453          * swap_avail_head needs to be priority ordered for get_swap_page(),
2454          * which allocates swap pages from the highest available priority
2455          * swap_info_struct.
2456          */
2457         plist_add(&p->list, &swap_active_head);
2458         add_to_avail_list(p);
2459 }
2460
2461 static void enable_swap_info(struct swap_info_struct *p, int prio,
2462                                 unsigned char *swap_map,
2463                                 struct swap_cluster_info *cluster_info,
2464                                 unsigned long *frontswap_map)
2465 {
2466         frontswap_init(p->type, frontswap_map);
2467         spin_lock(&swap_lock);
2468         spin_lock(&p->lock);
2469         setup_swap_info(p, prio, swap_map, cluster_info);
2470         spin_unlock(&p->lock);
2471         spin_unlock(&swap_lock);
2472         /*
2473          * Guarantee swap_map, cluster_info, etc. fields are valid
2474          * between get/put_swap_device() if SWP_VALID bit is set
2475          */
2476         synchronize_rcu();
2477         spin_lock(&swap_lock);
2478         spin_lock(&p->lock);
2479         _enable_swap_info(p);
2480         spin_unlock(&p->lock);
2481         spin_unlock(&swap_lock);
2482 }
2483
2484 static void reinsert_swap_info(struct swap_info_struct *p)
2485 {
2486         spin_lock(&swap_lock);
2487         spin_lock(&p->lock);
2488         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2489         _enable_swap_info(p);
2490         spin_unlock(&p->lock);
2491         spin_unlock(&swap_lock);
2492 }
2493
2494 bool has_usable_swap(void)
2495 {
2496         bool ret = true;
2497
2498         spin_lock(&swap_lock);
2499         if (plist_head_empty(&swap_active_head))
2500                 ret = false;
2501         spin_unlock(&swap_lock);
2502         return ret;
2503 }
2504
2505 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2506 {
2507         struct swap_info_struct *p = NULL;
2508         unsigned char *swap_map;
2509         struct swap_cluster_info *cluster_info;
2510         unsigned long *frontswap_map;
2511         struct file *swap_file, *victim;
2512         struct address_space *mapping;
2513         struct inode *inode;
2514         struct filename *pathname;
2515         int err, found = 0;
2516         unsigned int old_block_size;
2517
2518         if (!capable(CAP_SYS_ADMIN))
2519                 return -EPERM;
2520
2521         BUG_ON(!current->mm);
2522
2523         pathname = getname(specialfile);
2524         if (IS_ERR(pathname))
2525                 return PTR_ERR(pathname);
2526
2527         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2528         err = PTR_ERR(victim);
2529         if (IS_ERR(victim))
2530                 goto out;
2531
2532         mapping = victim->f_mapping;
2533         spin_lock(&swap_lock);
2534         plist_for_each_entry(p, &swap_active_head, list) {
2535                 if (p->flags & SWP_WRITEOK) {
2536                         if (p->swap_file->f_mapping == mapping) {
2537                                 found = 1;
2538                                 break;
2539                         }
2540                 }
2541         }
2542         if (!found) {
2543                 err = -EINVAL;
2544                 spin_unlock(&swap_lock);
2545                 goto out_dput;
2546         }
2547         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2548                 vm_unacct_memory(p->pages);
2549         else {
2550                 err = -ENOMEM;
2551                 spin_unlock(&swap_lock);
2552                 goto out_dput;
2553         }
2554         del_from_avail_list(p);
2555         spin_lock(&p->lock);
2556         if (p->prio < 0) {
2557                 struct swap_info_struct *si = p;
2558                 int nid;
2559
2560                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2561                         si->prio++;
2562                         si->list.prio--;
2563                         for_each_node(nid) {
2564                                 if (si->avail_lists[nid].prio != 1)
2565                                         si->avail_lists[nid].prio--;
2566                         }
2567                 }
2568                 least_priority++;
2569         }
2570         plist_del(&p->list, &swap_active_head);
2571         atomic_long_sub(p->pages, &nr_swap_pages);
2572         total_swap_pages -= p->pages;
2573         p->flags &= ~SWP_WRITEOK;
2574         spin_unlock(&p->lock);
2575         spin_unlock(&swap_lock);
2576
2577         disable_swap_slots_cache_lock();
2578
2579         set_current_oom_origin();
2580         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2581         clear_current_oom_origin();
2582
2583         if (err) {
2584                 /* re-insert swap space back into swap_list */
2585                 reinsert_swap_info(p);
2586                 reenable_swap_slots_cache_unlock();
2587                 goto out_dput;
2588         }
2589
2590         reenable_swap_slots_cache_unlock();
2591
2592         spin_lock(&swap_lock);
2593         spin_lock(&p->lock);
2594         p->flags &= ~SWP_VALID;         /* mark swap device as invalid */
2595         spin_unlock(&p->lock);
2596         spin_unlock(&swap_lock);
2597         /*
2598          * wait for swap operations protected by get/put_swap_device()
2599          * to complete
2600          */
2601         synchronize_rcu();
2602
2603         flush_work(&p->discard_work);
2604
2605         destroy_swap_extents(p);
2606         if (p->flags & SWP_CONTINUED)
2607                 free_swap_count_continuations(p);
2608
2609         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2610                 atomic_dec(&nr_rotate_swap);
2611
2612         mutex_lock(&swapon_mutex);
2613         spin_lock(&swap_lock);
2614         spin_lock(&p->lock);
2615         drain_mmlist();
2616
2617         /* wait for anyone still in scan_swap_map */
2618         p->highest_bit = 0;             /* cuts scans short */
2619         while (p->flags >= SWP_SCANNING) {
2620                 spin_unlock(&p->lock);
2621                 spin_unlock(&swap_lock);
2622                 schedule_timeout_uninterruptible(1);
2623                 spin_lock(&swap_lock);
2624                 spin_lock(&p->lock);
2625         }
2626
2627         swap_file = p->swap_file;
2628         old_block_size = p->old_block_size;
2629         p->swap_file = NULL;
2630         p->max = 0;
2631         swap_map = p->swap_map;
2632         p->swap_map = NULL;
2633         cluster_info = p->cluster_info;
2634         p->cluster_info = NULL;
2635         frontswap_map = frontswap_map_get(p);
2636         spin_unlock(&p->lock);
2637         spin_unlock(&swap_lock);
2638         frontswap_invalidate_area(p->type);
2639         frontswap_map_set(p, NULL);
2640         mutex_unlock(&swapon_mutex);
2641         free_percpu(p->percpu_cluster);
2642         p->percpu_cluster = NULL;
2643         vfree(swap_map);
2644         kvfree(cluster_info);
2645         kvfree(frontswap_map);
2646         /* Destroy swap account information */
2647         swap_cgroup_swapoff(p->type);
2648         exit_swap_address_space(p->type);
2649
2650         inode = mapping->host;
2651         if (S_ISBLK(inode->i_mode)) {
2652                 struct block_device *bdev = I_BDEV(inode);
2653
2654                 set_blocksize(bdev, old_block_size);
2655                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2656         }
2657
2658         inode_lock(inode);
2659         inode->i_flags &= ~S_SWAPFILE;
2660         inode_unlock(inode);
2661         filp_close(swap_file, NULL);
2662
2663         /*
2664          * Clear the SWP_USED flag after all resources are freed so that swapon
2665          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2666          * not hold p->lock after we cleared its SWP_WRITEOK.
2667          */
2668         spin_lock(&swap_lock);
2669         p->flags = 0;
2670         spin_unlock(&swap_lock);
2671
2672         err = 0;
2673         atomic_inc(&proc_poll_event);
2674         wake_up_interruptible(&proc_poll_wait);
2675
2676 out_dput:
2677         filp_close(victim, NULL);
2678 out:
2679         putname(pathname);
2680         return err;
2681 }
2682
2683 #ifdef CONFIG_PROC_FS
2684 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2685 {
2686         struct seq_file *seq = file->private_data;
2687
2688         poll_wait(file, &proc_poll_wait, wait);
2689
2690         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2691                 seq->poll_event = atomic_read(&proc_poll_event);
2692                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2693         }
2694
2695         return EPOLLIN | EPOLLRDNORM;
2696 }
2697
2698 /* iterator */
2699 static void *swap_start(struct seq_file *swap, loff_t *pos)
2700 {
2701         struct swap_info_struct *si;
2702         int type;
2703         loff_t l = *pos;
2704
2705         mutex_lock(&swapon_mutex);
2706
2707         if (!l)
2708                 return SEQ_START_TOKEN;
2709
2710         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2711                 if (!(si->flags & SWP_USED) || !si->swap_map)
2712                         continue;
2713                 if (!--l)
2714                         return si;
2715         }
2716
2717         return NULL;
2718 }
2719
2720 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2721 {
2722         struct swap_info_struct *si = v;
2723         int type;
2724
2725         if (v == SEQ_START_TOKEN)
2726                 type = 0;
2727         else
2728                 type = si->type + 1;
2729
2730         ++(*pos);
2731         for (; (si = swap_type_to_swap_info(type)); type++) {
2732                 if (!(si->flags & SWP_USED) || !si->swap_map)
2733                         continue;
2734                 return si;
2735         }
2736
2737         return NULL;
2738 }
2739
2740 static void swap_stop(struct seq_file *swap, void *v)
2741 {
2742         mutex_unlock(&swapon_mutex);
2743 }
2744
2745 static int swap_show(struct seq_file *swap, void *v)
2746 {
2747         struct swap_info_struct *si = v;
2748         struct file *file;
2749         int len;
2750
2751         if (si == SEQ_START_TOKEN) {
2752                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2753                 return 0;
2754         }
2755
2756         file = si->swap_file;
2757         len = seq_file_path(swap, file, " \t\n\\");
2758         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2759                         len < 40 ? 40 - len : 1, " ",
2760                         S_ISBLK(file_inode(file)->i_mode) ?
2761                                 "partition" : "file\t",
2762                         si->pages << (PAGE_SHIFT - 10),
2763                         si->inuse_pages << (PAGE_SHIFT - 10),
2764                         si->prio);
2765         return 0;
2766 }
2767
2768 static const struct seq_operations swaps_op = {
2769         .start =        swap_start,
2770         .next =         swap_next,
2771         .stop =         swap_stop,
2772         .show =         swap_show
2773 };
2774
2775 static int swaps_open(struct inode *inode, struct file *file)
2776 {
2777         struct seq_file *seq;
2778         int ret;
2779
2780         ret = seq_open(file, &swaps_op);
2781         if (ret)
2782                 return ret;
2783
2784         seq = file->private_data;
2785         seq->poll_event = atomic_read(&proc_poll_event);
2786         return 0;
2787 }
2788
2789 static const struct proc_ops swaps_proc_ops = {
2790         .proc_flags     = PROC_ENTRY_PERMANENT,
2791         .proc_open      = swaps_open,
2792         .proc_read      = seq_read,
2793         .proc_lseek     = seq_lseek,
2794         .proc_release   = seq_release,
2795         .proc_poll      = swaps_poll,
2796 };
2797
2798 static int __init procswaps_init(void)
2799 {
2800         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2801         return 0;
2802 }
2803 __initcall(procswaps_init);
2804 #endif /* CONFIG_PROC_FS */
2805
2806 #ifdef MAX_SWAPFILES_CHECK
2807 static int __init max_swapfiles_check(void)
2808 {
2809         MAX_SWAPFILES_CHECK();
2810         return 0;
2811 }
2812 late_initcall(max_swapfiles_check);
2813 #endif
2814
2815 static struct swap_info_struct *alloc_swap_info(void)
2816 {
2817         struct swap_info_struct *p;
2818         unsigned int type;
2819         int i;
2820
2821         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2822         if (!p)
2823                 return ERR_PTR(-ENOMEM);
2824
2825         spin_lock(&swap_lock);
2826         for (type = 0; type < nr_swapfiles; type++) {
2827                 if (!(swap_info[type]->flags & SWP_USED))
2828                         break;
2829         }
2830         if (type >= MAX_SWAPFILES) {
2831                 spin_unlock(&swap_lock);
2832                 kvfree(p);
2833                 return ERR_PTR(-EPERM);
2834         }
2835         if (type >= nr_swapfiles) {
2836                 p->type = type;
2837                 WRITE_ONCE(swap_info[type], p);
2838                 /*
2839                  * Write swap_info[type] before nr_swapfiles, in case a
2840                  * racing procfs swap_start() or swap_next() is reading them.
2841                  * (We never shrink nr_swapfiles, we never free this entry.)
2842                  */
2843                 smp_wmb();
2844                 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2845         } else {
2846                 kvfree(p);
2847                 p = swap_info[type];
2848                 /*
2849                  * Do not memset this entry: a racing procfs swap_next()
2850                  * would be relying on p->type to remain valid.
2851                  */
2852         }
2853         p->swap_extent_root = RB_ROOT;
2854         plist_node_init(&p->list, 0);
2855         for_each_node(i)
2856                 plist_node_init(&p->avail_lists[i], 0);
2857         p->flags = SWP_USED;
2858         spin_unlock(&swap_lock);
2859         spin_lock_init(&p->lock);
2860         spin_lock_init(&p->cont_lock);
2861
2862         return p;
2863 }
2864
2865 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2866 {
2867         int error;
2868
2869         if (S_ISBLK(inode->i_mode)) {
2870                 p->bdev = bdgrab(I_BDEV(inode));
2871                 error = blkdev_get(p->bdev,
2872                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2873                 if (error < 0) {
2874                         p->bdev = NULL;
2875                         return error;
2876                 }
2877                 p->old_block_size = block_size(p->bdev);
2878                 error = set_blocksize(p->bdev, PAGE_SIZE);
2879                 if (error < 0)
2880                         return error;
2881                 /*
2882                  * Zoned block devices contain zones that have a sequential
2883                  * write only restriction.  Hence zoned block devices are not
2884                  * suitable for swapping.  Disallow them here.
2885                  */
2886                 if (blk_queue_is_zoned(p->bdev->bd_queue))
2887                         return -EINVAL;
2888                 p->flags |= SWP_BLKDEV;
2889         } else if (S_ISREG(inode->i_mode)) {
2890                 p->bdev = inode->i_sb->s_bdev;
2891         }
2892
2893         return 0;
2894 }
2895
2896
2897 /*
2898  * Find out how many pages are allowed for a single swap device. There
2899  * are two limiting factors:
2900  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2901  * 2) the number of bits in the swap pte, as defined by the different
2902  * architectures.
2903  *
2904  * In order to find the largest possible bit mask, a swap entry with
2905  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2906  * decoded to a swp_entry_t again, and finally the swap offset is
2907  * extracted.
2908  *
2909  * This will mask all the bits from the initial ~0UL mask that can't
2910  * be encoded in either the swp_entry_t or the architecture definition
2911  * of a swap pte.
2912  */
2913 unsigned long generic_max_swapfile_size(void)
2914 {
2915         return swp_offset(pte_to_swp_entry(
2916                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2917 }
2918
2919 /* Can be overridden by an architecture for additional checks. */
2920 __weak unsigned long max_swapfile_size(void)
2921 {
2922         return generic_max_swapfile_size();
2923 }
2924
2925 static unsigned long read_swap_header(struct swap_info_struct *p,
2926                                         union swap_header *swap_header,
2927                                         struct inode *inode)
2928 {
2929         int i;
2930         unsigned long maxpages;
2931         unsigned long swapfilepages;
2932         unsigned long last_page;
2933
2934         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2935                 pr_err("Unable to find swap-space signature\n");
2936                 return 0;
2937         }
2938
2939         /* swap partition endianess hack... */
2940         if (swab32(swap_header->info.version) == 1) {
2941                 swab32s(&swap_header->info.version);
2942                 swab32s(&swap_header->info.last_page);
2943                 swab32s(&swap_header->info.nr_badpages);
2944                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2945                         return 0;
2946                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2947                         swab32s(&swap_header->info.badpages[i]);
2948         }
2949         /* Check the swap header's sub-version */
2950         if (swap_header->info.version != 1) {
2951                 pr_warn("Unable to handle swap header version %d\n",
2952                         swap_header->info.version);
2953                 return 0;
2954         }
2955
2956         p->lowest_bit  = 1;
2957         p->cluster_next = 1;
2958         p->cluster_nr = 0;
2959
2960         maxpages = max_swapfile_size();
2961         last_page = swap_header->info.last_page;
2962         if (!last_page) {
2963                 pr_warn("Empty swap-file\n");
2964                 return 0;
2965         }
2966         if (last_page > maxpages) {
2967                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2968                         maxpages << (PAGE_SHIFT - 10),
2969                         last_page << (PAGE_SHIFT - 10));
2970         }
2971         if (maxpages > last_page) {
2972                 maxpages = last_page + 1;
2973                 /* p->max is an unsigned int: don't overflow it */
2974                 if ((unsigned int)maxpages == 0)
2975                         maxpages = UINT_MAX;
2976         }
2977         p->highest_bit = maxpages - 1;
2978
2979         if (!maxpages)
2980                 return 0;
2981         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2982         if (swapfilepages && maxpages > swapfilepages) {
2983                 pr_warn("Swap area shorter than signature indicates\n");
2984                 return 0;
2985         }
2986         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2987                 return 0;
2988         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2989                 return 0;
2990
2991         return maxpages;
2992 }
2993
2994 #define SWAP_CLUSTER_INFO_COLS                                          \
2995         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2996 #define SWAP_CLUSTER_SPACE_COLS                                         \
2997         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2998 #define SWAP_CLUSTER_COLS                                               \
2999         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3000
3001 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3002                                         union swap_header *swap_header,
3003                                         unsigned char *swap_map,
3004                                         struct swap_cluster_info *cluster_info,
3005                                         unsigned long maxpages,
3006                                         sector_t *span)
3007 {
3008         unsigned int j, k;
3009         unsigned int nr_good_pages;
3010         int nr_extents;
3011         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3012         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3013         unsigned long i, idx;
3014
3015         nr_good_pages = maxpages - 1;   /* omit header page */
3016
3017         cluster_list_init(&p->free_clusters);
3018         cluster_list_init(&p->discard_clusters);
3019
3020         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3021                 unsigned int page_nr = swap_header->info.badpages[i];
3022                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3023                         return -EINVAL;
3024                 if (page_nr < maxpages) {
3025                         swap_map[page_nr] = SWAP_MAP_BAD;
3026                         nr_good_pages--;
3027                         /*
3028                          * Haven't marked the cluster free yet, no list
3029                          * operation involved
3030                          */
3031                         inc_cluster_info_page(p, cluster_info, page_nr);
3032                 }
3033         }
3034
3035         /* Haven't marked the cluster free yet, no list operation involved */
3036         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3037                 inc_cluster_info_page(p, cluster_info, i);
3038
3039         if (nr_good_pages) {
3040                 swap_map[0] = SWAP_MAP_BAD;
3041                 /*
3042                  * Not mark the cluster free yet, no list
3043                  * operation involved
3044                  */
3045                 inc_cluster_info_page(p, cluster_info, 0);
3046                 p->max = maxpages;
3047                 p->pages = nr_good_pages;
3048                 nr_extents = setup_swap_extents(p, span);
3049                 if (nr_extents < 0)
3050                         return nr_extents;
3051                 nr_good_pages = p->pages;
3052         }
3053         if (!nr_good_pages) {
3054                 pr_warn("Empty swap-file\n");
3055                 return -EINVAL;
3056         }
3057
3058         if (!cluster_info)
3059                 return nr_extents;
3060
3061
3062         /*
3063          * Reduce false cache line sharing between cluster_info and
3064          * sharing same address space.
3065          */
3066         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3067                 j = (k + col) % SWAP_CLUSTER_COLS;
3068                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3069                         idx = i * SWAP_CLUSTER_COLS + j;
3070                         if (idx >= nr_clusters)
3071                                 continue;
3072                         if (cluster_count(&cluster_info[idx]))
3073                                 continue;
3074                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3075                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3076                                               idx);
3077                 }
3078         }
3079         return nr_extents;
3080 }
3081
3082 /*
3083  * Helper to sys_swapon determining if a given swap
3084  * backing device queue supports DISCARD operations.
3085  */
3086 static bool swap_discardable(struct swap_info_struct *si)
3087 {
3088         struct request_queue *q = bdev_get_queue(si->bdev);
3089
3090         if (!q || !blk_queue_discard(q))
3091                 return false;
3092
3093         return true;
3094 }
3095
3096 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3097 {
3098         struct swap_info_struct *p;
3099         struct filename *name;
3100         struct file *swap_file = NULL;
3101         struct address_space *mapping;
3102         int prio;
3103         int error;
3104         union swap_header *swap_header;
3105         int nr_extents;
3106         sector_t span;
3107         unsigned long maxpages;
3108         unsigned char *swap_map = NULL;
3109         struct swap_cluster_info *cluster_info = NULL;
3110         unsigned long *frontswap_map = NULL;
3111         struct page *page = NULL;
3112         struct inode *inode = NULL;
3113         bool inced_nr_rotate_swap = false;
3114
3115         if (swap_flags & ~SWAP_FLAGS_VALID)
3116                 return -EINVAL;
3117
3118         if (!capable(CAP_SYS_ADMIN))
3119                 return -EPERM;
3120
3121         if (!swap_avail_heads)
3122                 return -ENOMEM;
3123
3124         p = alloc_swap_info();
3125         if (IS_ERR(p))
3126                 return PTR_ERR(p);
3127
3128         INIT_WORK(&p->discard_work, swap_discard_work);
3129
3130         name = getname(specialfile);
3131         if (IS_ERR(name)) {
3132                 error = PTR_ERR(name);
3133                 name = NULL;
3134                 goto bad_swap;
3135         }
3136         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3137         if (IS_ERR(swap_file)) {
3138                 error = PTR_ERR(swap_file);
3139                 swap_file = NULL;
3140                 goto bad_swap;
3141         }
3142
3143         p->swap_file = swap_file;
3144         mapping = swap_file->f_mapping;
3145         inode = mapping->host;
3146
3147         error = claim_swapfile(p, inode);
3148         if (unlikely(error))
3149                 goto bad_swap;
3150
3151         inode_lock(inode);
3152         if (IS_SWAPFILE(inode)) {
3153                 error = -EBUSY;
3154                 goto bad_swap_unlock_inode;
3155         }
3156
3157         /*
3158          * Read the swap header.
3159          */
3160         if (!mapping->a_ops->readpage) {
3161                 error = -EINVAL;
3162                 goto bad_swap_unlock_inode;
3163         }
3164         page = read_mapping_page(mapping, 0, swap_file);
3165         if (IS_ERR(page)) {
3166                 error = PTR_ERR(page);
3167                 goto bad_swap_unlock_inode;
3168         }
3169         swap_header = kmap(page);
3170
3171         maxpages = read_swap_header(p, swap_header, inode);
3172         if (unlikely(!maxpages)) {
3173                 error = -EINVAL;
3174                 goto bad_swap_unlock_inode;
3175         }
3176
3177         /* OK, set up the swap map and apply the bad block list */
3178         swap_map = vzalloc(maxpages);
3179         if (!swap_map) {
3180                 error = -ENOMEM;
3181                 goto bad_swap_unlock_inode;
3182         }
3183
3184         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3185                 p->flags |= SWP_STABLE_WRITES;
3186
3187         if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3188                 p->flags |= SWP_SYNCHRONOUS_IO;
3189
3190         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3191                 int cpu;
3192                 unsigned long ci, nr_cluster;
3193
3194                 p->flags |= SWP_SOLIDSTATE;
3195                 /*
3196                  * select a random position to start with to help wear leveling
3197                  * SSD
3198                  */
3199                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3200                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3201
3202                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3203                                         GFP_KERNEL);
3204                 if (!cluster_info) {
3205                         error = -ENOMEM;
3206                         goto bad_swap_unlock_inode;
3207                 }
3208
3209                 for (ci = 0; ci < nr_cluster; ci++)
3210                         spin_lock_init(&((cluster_info + ci)->lock));
3211
3212                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3213                 if (!p->percpu_cluster) {
3214                         error = -ENOMEM;
3215                         goto bad_swap_unlock_inode;
3216                 }
3217                 for_each_possible_cpu(cpu) {
3218                         struct percpu_cluster *cluster;
3219                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3220                         cluster_set_null(&cluster->index);
3221                 }
3222         } else {
3223                 atomic_inc(&nr_rotate_swap);
3224                 inced_nr_rotate_swap = true;
3225         }
3226
3227         error = swap_cgroup_swapon(p->type, maxpages);
3228         if (error)
3229                 goto bad_swap_unlock_inode;
3230
3231         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3232                 cluster_info, maxpages, &span);
3233         if (unlikely(nr_extents < 0)) {
3234                 error = nr_extents;
3235                 goto bad_swap_unlock_inode;
3236         }
3237         /* frontswap enabled? set up bit-per-page map for frontswap */
3238         if (IS_ENABLED(CONFIG_FRONTSWAP))
3239                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3240                                          sizeof(long),
3241                                          GFP_KERNEL);
3242
3243         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3244                 /*
3245                  * When discard is enabled for swap with no particular
3246                  * policy flagged, we set all swap discard flags here in
3247                  * order to sustain backward compatibility with older
3248                  * swapon(8) releases.
3249                  */
3250                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3251                              SWP_PAGE_DISCARD);
3252
3253                 /*
3254                  * By flagging sys_swapon, a sysadmin can tell us to
3255                  * either do single-time area discards only, or to just
3256                  * perform discards for released swap page-clusters.
3257                  * Now it's time to adjust the p->flags accordingly.
3258                  */
3259                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3260                         p->flags &= ~SWP_PAGE_DISCARD;
3261                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3262                         p->flags &= ~SWP_AREA_DISCARD;
3263
3264                 /* issue a swapon-time discard if it's still required */
3265                 if (p->flags & SWP_AREA_DISCARD) {
3266                         int err = discard_swap(p);
3267                         if (unlikely(err))
3268                                 pr_err("swapon: discard_swap(%p): %d\n",
3269                                         p, err);
3270                 }
3271         }
3272
3273         error = init_swap_address_space(p->type, maxpages);
3274         if (error)
3275                 goto bad_swap_unlock_inode;
3276
3277         /*
3278          * Flush any pending IO and dirty mappings before we start using this
3279          * swap device.
3280          */
3281         inode->i_flags |= S_SWAPFILE;
3282         error = inode_drain_writes(inode);
3283         if (error) {
3284                 inode->i_flags &= ~S_SWAPFILE;
3285                 goto bad_swap_unlock_inode;
3286         }
3287
3288         mutex_lock(&swapon_mutex);
3289         prio = -1;
3290         if (swap_flags & SWAP_FLAG_PREFER)
3291                 prio =
3292                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3293         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3294
3295         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3296                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3297                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3298                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3299                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3300                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3301                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3302                 (frontswap_map) ? "FS" : "");
3303
3304         mutex_unlock(&swapon_mutex);
3305         atomic_inc(&proc_poll_event);
3306         wake_up_interruptible(&proc_poll_wait);
3307
3308         error = 0;
3309         goto out;
3310 bad_swap_unlock_inode:
3311         inode_unlock(inode);
3312 bad_swap:
3313         free_percpu(p->percpu_cluster);
3314         p->percpu_cluster = NULL;
3315         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3316                 set_blocksize(p->bdev, p->old_block_size);
3317                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3318         }
3319         inode = NULL;
3320         destroy_swap_extents(p);
3321         swap_cgroup_swapoff(p->type);
3322         spin_lock(&swap_lock);
3323         p->swap_file = NULL;
3324         p->flags = 0;
3325         spin_unlock(&swap_lock);
3326         vfree(swap_map);
3327         kvfree(cluster_info);
3328         kvfree(frontswap_map);
3329         if (inced_nr_rotate_swap)
3330                 atomic_dec(&nr_rotate_swap);
3331         if (swap_file)
3332                 filp_close(swap_file, NULL);
3333 out:
3334         if (page && !IS_ERR(page)) {
3335                 kunmap(page);
3336                 put_page(page);
3337         }
3338         if (name)
3339                 putname(name);
3340         if (inode)
3341                 inode_unlock(inode);
3342         if (!error)
3343                 enable_swap_slots_cache();
3344         return error;
3345 }
3346
3347 void si_swapinfo(struct sysinfo *val)
3348 {
3349         unsigned int type;
3350         unsigned long nr_to_be_unused = 0;
3351
3352         spin_lock(&swap_lock);
3353         for (type = 0; type < nr_swapfiles; type++) {
3354                 struct swap_info_struct *si = swap_info[type];
3355
3356                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3357                         nr_to_be_unused += si->inuse_pages;
3358         }
3359         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3360         val->totalswap = total_swap_pages + nr_to_be_unused;
3361         spin_unlock(&swap_lock);
3362 }
3363
3364 /*
3365  * Verify that a swap entry is valid and increment its swap map count.
3366  *
3367  * Returns error code in following case.
3368  * - success -> 0
3369  * - swp_entry is invalid -> EINVAL
3370  * - swp_entry is migration entry -> EINVAL
3371  * - swap-cache reference is requested but there is already one. -> EEXIST
3372  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3373  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3374  */
3375 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3376 {
3377         struct swap_info_struct *p;
3378         struct swap_cluster_info *ci;
3379         unsigned long offset;
3380         unsigned char count;
3381         unsigned char has_cache;
3382         int err = -EINVAL;
3383
3384         p = get_swap_device(entry);
3385         if (!p)
3386                 goto out;
3387
3388         offset = swp_offset(entry);
3389         ci = lock_cluster_or_swap_info(p, offset);
3390
3391         count = p->swap_map[offset];
3392
3393         /*
3394          * swapin_readahead() doesn't check if a swap entry is valid, so the
3395          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3396          */
3397         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3398                 err = -ENOENT;
3399                 goto unlock_out;
3400         }
3401
3402         has_cache = count & SWAP_HAS_CACHE;
3403         count &= ~SWAP_HAS_CACHE;
3404         err = 0;
3405
3406         if (usage == SWAP_HAS_CACHE) {
3407
3408                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3409                 if (!has_cache && count)
3410                         has_cache = SWAP_HAS_CACHE;
3411                 else if (has_cache)             /* someone else added cache */
3412                         err = -EEXIST;
3413                 else                            /* no users remaining */
3414                         err = -ENOENT;
3415
3416         } else if (count || has_cache) {
3417
3418                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3419                         count += usage;
3420                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3421                         err = -EINVAL;
3422                 else if (swap_count_continued(p, offset, count))
3423                         count = COUNT_CONTINUED;
3424                 else
3425                         err = -ENOMEM;
3426         } else
3427                 err = -ENOENT;                  /* unused swap entry */
3428
3429         p->swap_map[offset] = count | has_cache;
3430
3431 unlock_out:
3432         unlock_cluster_or_swap_info(p, ci);
3433 out:
3434         if (p)
3435                 put_swap_device(p);
3436         return err;
3437 }
3438
3439 /*
3440  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3441  * (in which case its reference count is never incremented).
3442  */
3443 void swap_shmem_alloc(swp_entry_t entry)
3444 {
3445         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3446 }
3447
3448 /*
3449  * Increase reference count of swap entry by 1.
3450  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3451  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3452  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3453  * might occur if a page table entry has got corrupted.
3454  */
3455 int swap_duplicate(swp_entry_t entry)
3456 {
3457         int err = 0;
3458
3459         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3460                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3461         return err;
3462 }
3463
3464 /*
3465  * @entry: swap entry for which we allocate swap cache.
3466  *
3467  * Called when allocating swap cache for existing swap entry,
3468  * This can return error codes. Returns 0 at success.
3469  * -EEXIST means there is a swap cache.
3470  * Note: return code is different from swap_duplicate().
3471  */
3472 int swapcache_prepare(swp_entry_t entry)
3473 {
3474         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3475 }
3476
3477 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3478 {
3479         return swap_type_to_swap_info(swp_type(entry));
3480 }
3481
3482 struct swap_info_struct *page_swap_info(struct page *page)
3483 {
3484         swp_entry_t entry = { .val = page_private(page) };
3485         return swp_swap_info(entry);
3486 }
3487
3488 /*
3489  * out-of-line __page_file_ methods to avoid include hell.
3490  */
3491 struct address_space *__page_file_mapping(struct page *page)
3492 {
3493         return page_swap_info(page)->swap_file->f_mapping;
3494 }
3495 EXPORT_SYMBOL_GPL(__page_file_mapping);
3496
3497 pgoff_t __page_file_index(struct page *page)
3498 {
3499         swp_entry_t swap = { .val = page_private(page) };
3500         return swp_offset(swap);
3501 }
3502 EXPORT_SYMBOL_GPL(__page_file_index);
3503
3504 /*
3505  * add_swap_count_continuation - called when a swap count is duplicated
3506  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3507  * page of the original vmalloc'ed swap_map, to hold the continuation count
3508  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3509  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3510  *
3511  * These continuation pages are seldom referenced: the common paths all work
3512  * on the original swap_map, only referring to a continuation page when the
3513  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3514  *
3515  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3516  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3517  * can be called after dropping locks.
3518  */
3519 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3520 {
3521         struct swap_info_struct *si;
3522         struct swap_cluster_info *ci;
3523         struct page *head;
3524         struct page *page;
3525         struct page *list_page;
3526         pgoff_t offset;
3527         unsigned char count;
3528         int ret = 0;
3529
3530         /*
3531          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3532          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3533          */
3534         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3535
3536         si = get_swap_device(entry);
3537         if (!si) {
3538                 /*
3539                  * An acceptable race has occurred since the failing
3540                  * __swap_duplicate(): the swap device may be swapoff
3541                  */
3542                 goto outer;
3543         }
3544         spin_lock(&si->lock);
3545
3546         offset = swp_offset(entry);
3547
3548         ci = lock_cluster(si, offset);
3549
3550         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3551
3552         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3553                 /*
3554                  * The higher the swap count, the more likely it is that tasks
3555                  * will race to add swap count continuation: we need to avoid
3556                  * over-provisioning.
3557                  */
3558                 goto out;
3559         }
3560
3561         if (!page) {
3562                 ret = -ENOMEM;
3563                 goto out;
3564         }
3565
3566         /*
3567          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3568          * no architecture is using highmem pages for kernel page tables: so it
3569          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3570          */
3571         head = vmalloc_to_page(si->swap_map + offset);
3572         offset &= ~PAGE_MASK;
3573
3574         spin_lock(&si->cont_lock);
3575         /*
3576          * Page allocation does not initialize the page's lru field,
3577          * but it does always reset its private field.
3578          */
3579         if (!page_private(head)) {
3580                 BUG_ON(count & COUNT_CONTINUED);
3581                 INIT_LIST_HEAD(&head->lru);
3582                 set_page_private(head, SWP_CONTINUED);
3583                 si->flags |= SWP_CONTINUED;
3584         }
3585
3586         list_for_each_entry(list_page, &head->lru, lru) {
3587                 unsigned char *map;
3588
3589                 /*
3590                  * If the previous map said no continuation, but we've found
3591                  * a continuation page, free our allocation and use this one.
3592                  */
3593                 if (!(count & COUNT_CONTINUED))
3594                         goto out_unlock_cont;
3595
3596                 map = kmap_atomic(list_page) + offset;
3597                 count = *map;
3598                 kunmap_atomic(map);
3599
3600                 /*
3601                  * If this continuation count now has some space in it,
3602                  * free our allocation and use this one.
3603                  */
3604                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3605                         goto out_unlock_cont;
3606         }
3607
3608         list_add_tail(&page->lru, &head->lru);
3609         page = NULL;                    /* now it's attached, don't free it */
3610 out_unlock_cont:
3611         spin_unlock(&si->cont_lock);
3612 out:
3613         unlock_cluster(ci);
3614         spin_unlock(&si->lock);
3615         put_swap_device(si);
3616 outer:
3617         if (page)
3618                 __free_page(page);
3619         return ret;
3620 }
3621
3622 /*
3623  * swap_count_continued - when the original swap_map count is incremented
3624  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3625  * into, carry if so, or else fail until a new continuation page is allocated;
3626  * when the original swap_map count is decremented from 0 with continuation,
3627  * borrow from the continuation and report whether it still holds more.
3628  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3629  * lock.
3630  */
3631 static bool swap_count_continued(struct swap_info_struct *si,
3632                                  pgoff_t offset, unsigned char count)
3633 {
3634         struct page *head;
3635         struct page *page;
3636         unsigned char *map;
3637         bool ret;
3638
3639         head = vmalloc_to_page(si->swap_map + offset);
3640         if (page_private(head) != SWP_CONTINUED) {
3641                 BUG_ON(count & COUNT_CONTINUED);
3642                 return false;           /* need to add count continuation */
3643         }
3644
3645         spin_lock(&si->cont_lock);
3646         offset &= ~PAGE_MASK;
3647         page = list_next_entry(head, lru);
3648         map = kmap_atomic(page) + offset;
3649
3650         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3651                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3652
3653         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3654                 /*
3655                  * Think of how you add 1 to 999
3656                  */
3657                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3658                         kunmap_atomic(map);
3659                         page = list_next_entry(page, lru);
3660                         BUG_ON(page == head);
3661                         map = kmap_atomic(page) + offset;
3662                 }
3663                 if (*map == SWAP_CONT_MAX) {
3664                         kunmap_atomic(map);
3665                         page = list_next_entry(page, lru);
3666                         if (page == head) {
3667                                 ret = false;    /* add count continuation */
3668                                 goto out;
3669                         }
3670                         map = kmap_atomic(page) + offset;
3671 init_map:               *map = 0;               /* we didn't zero the page */
3672                 }
3673                 *map += 1;
3674                 kunmap_atomic(map);
3675                 while ((page = list_prev_entry(page, lru)) != head) {
3676                         map = kmap_atomic(page) + offset;
3677                         *map = COUNT_CONTINUED;
3678                         kunmap_atomic(map);
3679                 }
3680                 ret = true;                     /* incremented */
3681
3682         } else {                                /* decrementing */
3683                 /*
3684                  * Think of how you subtract 1 from 1000
3685                  */
3686                 BUG_ON(count != COUNT_CONTINUED);
3687                 while (*map == COUNT_CONTINUED) {
3688                         kunmap_atomic(map);
3689                         page = list_next_entry(page, lru);
3690                         BUG_ON(page == head);
3691                         map = kmap_atomic(page) + offset;
3692                 }
3693                 BUG_ON(*map == 0);
3694                 *map -= 1;
3695                 if (*map == 0)
3696                         count = 0;
3697                 kunmap_atomic(map);
3698                 while ((page = list_prev_entry(page, lru)) != head) {
3699                         map = kmap_atomic(page) + offset;
3700                         *map = SWAP_CONT_MAX | count;
3701                         count = COUNT_CONTINUED;
3702                         kunmap_atomic(map);
3703                 }
3704                 ret = count == COUNT_CONTINUED;
3705         }
3706 out:
3707         spin_unlock(&si->cont_lock);
3708         return ret;
3709 }
3710
3711 /*
3712  * free_swap_count_continuations - swapoff free all the continuation pages
3713  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3714  */
3715 static void free_swap_count_continuations(struct swap_info_struct *si)
3716 {
3717         pgoff_t offset;
3718
3719         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3720                 struct page *head;
3721                 head = vmalloc_to_page(si->swap_map + offset);
3722                 if (page_private(head)) {
3723                         struct page *page, *next;
3724
3725                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3726                                 list_del(&page->lru);
3727                                 __free_page(page);
3728                         }
3729                 }
3730         }
3731 }
3732
3733 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3734 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3735                                   gfp_t gfp_mask)
3736 {
3737         struct swap_info_struct *si, *next;
3738         if (!(gfp_mask & __GFP_IO) || !memcg)
3739                 return;
3740
3741         if (!blk_cgroup_congested())
3742                 return;
3743
3744         /*
3745          * We've already scheduled a throttle, avoid taking the global swap
3746          * lock.
3747          */
3748         if (current->throttle_queue)
3749                 return;
3750
3751         spin_lock(&swap_avail_lock);
3752         plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3753                                   avail_lists[node]) {
3754                 if (si->bdev) {
3755                         blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3756                                                 true);
3757                         break;
3758                 }
3759         }
3760         spin_unlock(&swap_avail_lock);
3761 }
3762 #endif
3763
3764 static int __init swapfile_init(void)
3765 {
3766         int nid;
3767
3768         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3769                                          GFP_KERNEL);
3770         if (!swap_avail_heads) {
3771                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3772                 return -ENOMEM;
3773         }
3774
3775         for_each_node(nid)
3776                 plist_head_init(&swap_avail_heads[nid]);
3777
3778         return 0;
3779 }
3780 subsys_initcall(swapfile_init);