zsmalloc: introduce obj_allocated
[linux-2.6-microblaze.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blk-cgroup.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49                                  unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103         if (type >= MAX_SWAPFILES)
104                 return NULL;
105
106         return READ_ONCE(swap_info[type]); /* rcu_dereference() */
107 }
108
109 static inline unsigned char swap_count(unsigned char ent)
110 {
111         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
112 }
113
114 /* Reclaim the swap entry anyway if possible */
115 #define TTRS_ANYWAY             0x1
116 /*
117  * Reclaim the swap entry if there are no more mappings of the
118  * corresponding page
119  */
120 #define TTRS_UNMAPPED           0x2
121 /* Reclaim the swap entry if swap is getting full*/
122 #define TTRS_FULL               0x4
123
124 /* returns 1 if swap entry is freed */
125 static int __try_to_reclaim_swap(struct swap_info_struct *si,
126                                  unsigned long offset, unsigned long flags)
127 {
128         swp_entry_t entry = swp_entry(si->type, offset);
129         struct page *page;
130         int ret = 0;
131
132         page = find_get_page(swap_address_space(entry), offset);
133         if (!page)
134                 return 0;
135         /*
136          * When this function is called from scan_swap_map_slots() and it's
137          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
138          * here. We have to use trylock for avoiding deadlock. This is a special
139          * case and you should use try_to_free_swap() with explicit lock_page()
140          * in usual operations.
141          */
142         if (trylock_page(page)) {
143                 if ((flags & TTRS_ANYWAY) ||
144                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
145                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
146                         ret = try_to_free_swap(page);
147                 unlock_page(page);
148         }
149         put_page(page);
150         return ret;
151 }
152
153 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
154 {
155         struct rb_node *rb = rb_first(&sis->swap_extent_root);
156         return rb_entry(rb, struct swap_extent, rb_node);
157 }
158
159 static inline struct swap_extent *next_se(struct swap_extent *se)
160 {
161         struct rb_node *rb = rb_next(&se->rb_node);
162         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
163 }
164
165 /*
166  * swapon tell device that all the old swap contents can be discarded,
167  * to allow the swap device to optimize its wear-levelling.
168  */
169 static int discard_swap(struct swap_info_struct *si)
170 {
171         struct swap_extent *se;
172         sector_t start_block;
173         sector_t nr_blocks;
174         int err = 0;
175
176         /* Do not discard the swap header page! */
177         se = first_se(si);
178         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
179         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
180         if (nr_blocks) {
181                 err = blkdev_issue_discard(si->bdev, start_block,
182                                 nr_blocks, GFP_KERNEL, 0);
183                 if (err)
184                         return err;
185                 cond_resched();
186         }
187
188         for (se = next_se(se); se; se = next_se(se)) {
189                 start_block = se->start_block << (PAGE_SHIFT - 9);
190                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
191
192                 err = blkdev_issue_discard(si->bdev, start_block,
193                                 nr_blocks, GFP_KERNEL, 0);
194                 if (err)
195                         break;
196
197                 cond_resched();
198         }
199         return err;             /* That will often be -EOPNOTSUPP */
200 }
201
202 static struct swap_extent *
203 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
204 {
205         struct swap_extent *se;
206         struct rb_node *rb;
207
208         rb = sis->swap_extent_root.rb_node;
209         while (rb) {
210                 se = rb_entry(rb, struct swap_extent, rb_node);
211                 if (offset < se->start_page)
212                         rb = rb->rb_left;
213                 else if (offset >= se->start_page + se->nr_pages)
214                         rb = rb->rb_right;
215                 else
216                         return se;
217         }
218         /* It *must* be present */
219         BUG();
220 }
221
222 sector_t swap_page_sector(struct page *page)
223 {
224         struct swap_info_struct *sis = page_swap_info(page);
225         struct swap_extent *se;
226         sector_t sector;
227         pgoff_t offset;
228
229         offset = __page_file_index(page);
230         se = offset_to_swap_extent(sis, offset);
231         sector = se->start_block + (offset - se->start_page);
232         return sector << (PAGE_SHIFT - 9);
233 }
234
235 /*
236  * swap allocation tell device that a cluster of swap can now be discarded,
237  * to allow the swap device to optimize its wear-levelling.
238  */
239 static void discard_swap_cluster(struct swap_info_struct *si,
240                                  pgoff_t start_page, pgoff_t nr_pages)
241 {
242         struct swap_extent *se = offset_to_swap_extent(si, start_page);
243
244         while (nr_pages) {
245                 pgoff_t offset = start_page - se->start_page;
246                 sector_t start_block = se->start_block + offset;
247                 sector_t nr_blocks = se->nr_pages - offset;
248
249                 if (nr_blocks > nr_pages)
250                         nr_blocks = nr_pages;
251                 start_page += nr_blocks;
252                 nr_pages -= nr_blocks;
253
254                 start_block <<= PAGE_SHIFT - 9;
255                 nr_blocks <<= PAGE_SHIFT - 9;
256                 if (blkdev_issue_discard(si->bdev, start_block,
257                                         nr_blocks, GFP_NOIO, 0))
258                         break;
259
260                 se = next_se(se);
261         }
262 }
263
264 #ifdef CONFIG_THP_SWAP
265 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
266
267 #define swap_entry_size(size)   (size)
268 #else
269 #define SWAPFILE_CLUSTER        256
270
271 /*
272  * Define swap_entry_size() as constant to let compiler to optimize
273  * out some code if !CONFIG_THP_SWAP
274  */
275 #define swap_entry_size(size)   1
276 #endif
277 #define LATENCY_LIMIT           256
278
279 static inline void cluster_set_flag(struct swap_cluster_info *info,
280         unsigned int flag)
281 {
282         info->flags = flag;
283 }
284
285 static inline unsigned int cluster_count(struct swap_cluster_info *info)
286 {
287         return info->data;
288 }
289
290 static inline void cluster_set_count(struct swap_cluster_info *info,
291                                      unsigned int c)
292 {
293         info->data = c;
294 }
295
296 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
297                                          unsigned int c, unsigned int f)
298 {
299         info->flags = f;
300         info->data = c;
301 }
302
303 static inline unsigned int cluster_next(struct swap_cluster_info *info)
304 {
305         return info->data;
306 }
307
308 static inline void cluster_set_next(struct swap_cluster_info *info,
309                                     unsigned int n)
310 {
311         info->data = n;
312 }
313
314 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
315                                          unsigned int n, unsigned int f)
316 {
317         info->flags = f;
318         info->data = n;
319 }
320
321 static inline bool cluster_is_free(struct swap_cluster_info *info)
322 {
323         return info->flags & CLUSTER_FLAG_FREE;
324 }
325
326 static inline bool cluster_is_null(struct swap_cluster_info *info)
327 {
328         return info->flags & CLUSTER_FLAG_NEXT_NULL;
329 }
330
331 static inline void cluster_set_null(struct swap_cluster_info *info)
332 {
333         info->flags = CLUSTER_FLAG_NEXT_NULL;
334         info->data = 0;
335 }
336
337 static inline bool cluster_is_huge(struct swap_cluster_info *info)
338 {
339         if (IS_ENABLED(CONFIG_THP_SWAP))
340                 return info->flags & CLUSTER_FLAG_HUGE;
341         return false;
342 }
343
344 static inline void cluster_clear_huge(struct swap_cluster_info *info)
345 {
346         info->flags &= ~CLUSTER_FLAG_HUGE;
347 }
348
349 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
350                                                      unsigned long offset)
351 {
352         struct swap_cluster_info *ci;
353
354         ci = si->cluster_info;
355         if (ci) {
356                 ci += offset / SWAPFILE_CLUSTER;
357                 spin_lock(&ci->lock);
358         }
359         return ci;
360 }
361
362 static inline void unlock_cluster(struct swap_cluster_info *ci)
363 {
364         if (ci)
365                 spin_unlock(&ci->lock);
366 }
367
368 /*
369  * Determine the locking method in use for this device.  Return
370  * swap_cluster_info if SSD-style cluster-based locking is in place.
371  */
372 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
373                 struct swap_info_struct *si, unsigned long offset)
374 {
375         struct swap_cluster_info *ci;
376
377         /* Try to use fine-grained SSD-style locking if available: */
378         ci = lock_cluster(si, offset);
379         /* Otherwise, fall back to traditional, coarse locking: */
380         if (!ci)
381                 spin_lock(&si->lock);
382
383         return ci;
384 }
385
386 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
387                                                struct swap_cluster_info *ci)
388 {
389         if (ci)
390                 unlock_cluster(ci);
391         else
392                 spin_unlock(&si->lock);
393 }
394
395 static inline bool cluster_list_empty(struct swap_cluster_list *list)
396 {
397         return cluster_is_null(&list->head);
398 }
399
400 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
401 {
402         return cluster_next(&list->head);
403 }
404
405 static void cluster_list_init(struct swap_cluster_list *list)
406 {
407         cluster_set_null(&list->head);
408         cluster_set_null(&list->tail);
409 }
410
411 static void cluster_list_add_tail(struct swap_cluster_list *list,
412                                   struct swap_cluster_info *ci,
413                                   unsigned int idx)
414 {
415         if (cluster_list_empty(list)) {
416                 cluster_set_next_flag(&list->head, idx, 0);
417                 cluster_set_next_flag(&list->tail, idx, 0);
418         } else {
419                 struct swap_cluster_info *ci_tail;
420                 unsigned int tail = cluster_next(&list->tail);
421
422                 /*
423                  * Nested cluster lock, but both cluster locks are
424                  * only acquired when we held swap_info_struct->lock
425                  */
426                 ci_tail = ci + tail;
427                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
428                 cluster_set_next(ci_tail, idx);
429                 spin_unlock(&ci_tail->lock);
430                 cluster_set_next_flag(&list->tail, idx, 0);
431         }
432 }
433
434 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
435                                            struct swap_cluster_info *ci)
436 {
437         unsigned int idx;
438
439         idx = cluster_next(&list->head);
440         if (cluster_next(&list->tail) == idx) {
441                 cluster_set_null(&list->head);
442                 cluster_set_null(&list->tail);
443         } else
444                 cluster_set_next_flag(&list->head,
445                                       cluster_next(&ci[idx]), 0);
446
447         return idx;
448 }
449
450 /* Add a cluster to discard list and schedule it to do discard */
451 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
452                 unsigned int idx)
453 {
454         /*
455          * If scan_swap_map_slots() can't find a free cluster, it will check
456          * si->swap_map directly. To make sure the discarding cluster isn't
457          * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
458          * It will be cleared after discard
459          */
460         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
461                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
462
463         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
464
465         schedule_work(&si->discard_work);
466 }
467
468 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
469 {
470         struct swap_cluster_info *ci = si->cluster_info;
471
472         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
473         cluster_list_add_tail(&si->free_clusters, ci, idx);
474 }
475
476 /*
477  * Doing discard actually. After a cluster discard is finished, the cluster
478  * will be added to free cluster list. caller should hold si->lock.
479 */
480 static void swap_do_scheduled_discard(struct swap_info_struct *si)
481 {
482         struct swap_cluster_info *info, *ci;
483         unsigned int idx;
484
485         info = si->cluster_info;
486
487         while (!cluster_list_empty(&si->discard_clusters)) {
488                 idx = cluster_list_del_first(&si->discard_clusters, info);
489                 spin_unlock(&si->lock);
490
491                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
492                                 SWAPFILE_CLUSTER);
493
494                 spin_lock(&si->lock);
495                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
496                 __free_cluster(si, idx);
497                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
498                                 0, SWAPFILE_CLUSTER);
499                 unlock_cluster(ci);
500         }
501 }
502
503 static void swap_discard_work(struct work_struct *work)
504 {
505         struct swap_info_struct *si;
506
507         si = container_of(work, struct swap_info_struct, discard_work);
508
509         spin_lock(&si->lock);
510         swap_do_scheduled_discard(si);
511         spin_unlock(&si->lock);
512 }
513
514 static void swap_users_ref_free(struct percpu_ref *ref)
515 {
516         struct swap_info_struct *si;
517
518         si = container_of(ref, struct swap_info_struct, users);
519         complete(&si->comp);
520 }
521
522 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
523 {
524         struct swap_cluster_info *ci = si->cluster_info;
525
526         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
527         cluster_list_del_first(&si->free_clusters, ci);
528         cluster_set_count_flag(ci + idx, 0, 0);
529 }
530
531 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
532 {
533         struct swap_cluster_info *ci = si->cluster_info + idx;
534
535         VM_BUG_ON(cluster_count(ci) != 0);
536         /*
537          * If the swap is discardable, prepare discard the cluster
538          * instead of free it immediately. The cluster will be freed
539          * after discard.
540          */
541         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
542             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
543                 swap_cluster_schedule_discard(si, idx);
544                 return;
545         }
546
547         __free_cluster(si, idx);
548 }
549
550 /*
551  * The cluster corresponding to page_nr will be used. The cluster will be
552  * removed from free cluster list and its usage counter will be increased.
553  */
554 static void inc_cluster_info_page(struct swap_info_struct *p,
555         struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558
559         if (!cluster_info)
560                 return;
561         if (cluster_is_free(&cluster_info[idx]))
562                 alloc_cluster(p, idx);
563
564         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
565         cluster_set_count(&cluster_info[idx],
566                 cluster_count(&cluster_info[idx]) + 1);
567 }
568
569 /*
570  * The cluster corresponding to page_nr decreases one usage. If the usage
571  * counter becomes 0, which means no page in the cluster is in using, we can
572  * optionally discard the cluster and add it to free cluster list.
573  */
574 static void dec_cluster_info_page(struct swap_info_struct *p,
575         struct swap_cluster_info *cluster_info, unsigned long page_nr)
576 {
577         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
578
579         if (!cluster_info)
580                 return;
581
582         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
583         cluster_set_count(&cluster_info[idx],
584                 cluster_count(&cluster_info[idx]) - 1);
585
586         if (cluster_count(&cluster_info[idx]) == 0)
587                 free_cluster(p, idx);
588 }
589
590 /*
591  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
592  * cluster list. Avoiding such abuse to avoid list corruption.
593  */
594 static bool
595 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
596         unsigned long offset)
597 {
598         struct percpu_cluster *percpu_cluster;
599         bool conflict;
600
601         offset /= SWAPFILE_CLUSTER;
602         conflict = !cluster_list_empty(&si->free_clusters) &&
603                 offset != cluster_list_first(&si->free_clusters) &&
604                 cluster_is_free(&si->cluster_info[offset]);
605
606         if (!conflict)
607                 return false;
608
609         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
610         cluster_set_null(&percpu_cluster->index);
611         return true;
612 }
613
614 /*
615  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
616  * might involve allocating a new cluster for current CPU too.
617  */
618 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
619         unsigned long *offset, unsigned long *scan_base)
620 {
621         struct percpu_cluster *cluster;
622         struct swap_cluster_info *ci;
623         unsigned long tmp, max;
624
625 new_cluster:
626         cluster = this_cpu_ptr(si->percpu_cluster);
627         if (cluster_is_null(&cluster->index)) {
628                 if (!cluster_list_empty(&si->free_clusters)) {
629                         cluster->index = si->free_clusters.head;
630                         cluster->next = cluster_next(&cluster->index) *
631                                         SWAPFILE_CLUSTER;
632                 } else if (!cluster_list_empty(&si->discard_clusters)) {
633                         /*
634                          * we don't have free cluster but have some clusters in
635                          * discarding, do discard now and reclaim them, then
636                          * reread cluster_next_cpu since we dropped si->lock
637                          */
638                         swap_do_scheduled_discard(si);
639                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
640                         *offset = *scan_base;
641                         goto new_cluster;
642                 } else
643                         return false;
644         }
645
646         /*
647          * Other CPUs can use our cluster if they can't find a free cluster,
648          * check if there is still free entry in the cluster
649          */
650         tmp = cluster->next;
651         max = min_t(unsigned long, si->max,
652                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
653         if (tmp < max) {
654                 ci = lock_cluster(si, tmp);
655                 while (tmp < max) {
656                         if (!si->swap_map[tmp])
657                                 break;
658                         tmp++;
659                 }
660                 unlock_cluster(ci);
661         }
662         if (tmp >= max) {
663                 cluster_set_null(&cluster->index);
664                 goto new_cluster;
665         }
666         cluster->next = tmp + 1;
667         *offset = tmp;
668         *scan_base = tmp;
669         return true;
670 }
671
672 static void __del_from_avail_list(struct swap_info_struct *p)
673 {
674         int nid;
675
676         for_each_node(nid)
677                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
678 }
679
680 static void del_from_avail_list(struct swap_info_struct *p)
681 {
682         spin_lock(&swap_avail_lock);
683         __del_from_avail_list(p);
684         spin_unlock(&swap_avail_lock);
685 }
686
687 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
688                              unsigned int nr_entries)
689 {
690         unsigned int end = offset + nr_entries - 1;
691
692         if (offset == si->lowest_bit)
693                 si->lowest_bit += nr_entries;
694         if (end == si->highest_bit)
695                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
696         si->inuse_pages += nr_entries;
697         if (si->inuse_pages == si->pages) {
698                 si->lowest_bit = si->max;
699                 si->highest_bit = 0;
700                 del_from_avail_list(si);
701         }
702 }
703
704 static void add_to_avail_list(struct swap_info_struct *p)
705 {
706         int nid;
707
708         spin_lock(&swap_avail_lock);
709         for_each_node(nid) {
710                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
711                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
712         }
713         spin_unlock(&swap_avail_lock);
714 }
715
716 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
717                             unsigned int nr_entries)
718 {
719         unsigned long begin = offset;
720         unsigned long end = offset + nr_entries - 1;
721         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
722
723         if (offset < si->lowest_bit)
724                 si->lowest_bit = offset;
725         if (end > si->highest_bit) {
726                 bool was_full = !si->highest_bit;
727
728                 WRITE_ONCE(si->highest_bit, end);
729                 if (was_full && (si->flags & SWP_WRITEOK))
730                         add_to_avail_list(si);
731         }
732         atomic_long_add(nr_entries, &nr_swap_pages);
733         si->inuse_pages -= nr_entries;
734         if (si->flags & SWP_BLKDEV)
735                 swap_slot_free_notify =
736                         si->bdev->bd_disk->fops->swap_slot_free_notify;
737         else
738                 swap_slot_free_notify = NULL;
739         while (offset <= end) {
740                 arch_swap_invalidate_page(si->type, offset);
741                 frontswap_invalidate_page(si->type, offset);
742                 if (swap_slot_free_notify)
743                         swap_slot_free_notify(si->bdev, offset);
744                 offset++;
745         }
746         clear_shadow_from_swap_cache(si->type, begin, end);
747 }
748
749 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
750 {
751         unsigned long prev;
752
753         if (!(si->flags & SWP_SOLIDSTATE)) {
754                 si->cluster_next = next;
755                 return;
756         }
757
758         prev = this_cpu_read(*si->cluster_next_cpu);
759         /*
760          * Cross the swap address space size aligned trunk, choose
761          * another trunk randomly to avoid lock contention on swap
762          * address space if possible.
763          */
764         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
765             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
766                 /* No free swap slots available */
767                 if (si->highest_bit <= si->lowest_bit)
768                         return;
769                 next = si->lowest_bit +
770                         prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
771                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
772                 next = max_t(unsigned int, next, si->lowest_bit);
773         }
774         this_cpu_write(*si->cluster_next_cpu, next);
775 }
776
777 static int scan_swap_map_slots(struct swap_info_struct *si,
778                                unsigned char usage, int nr,
779                                swp_entry_t slots[])
780 {
781         struct swap_cluster_info *ci;
782         unsigned long offset;
783         unsigned long scan_base;
784         unsigned long last_in_cluster = 0;
785         int latency_ration = LATENCY_LIMIT;
786         int n_ret = 0;
787         bool scanned_many = false;
788
789         /*
790          * We try to cluster swap pages by allocating them sequentially
791          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
792          * way, however, we resort to first-free allocation, starting
793          * a new cluster.  This prevents us from scattering swap pages
794          * all over the entire swap partition, so that we reduce
795          * overall disk seek times between swap pages.  -- sct
796          * But we do now try to find an empty cluster.  -Andrea
797          * And we let swap pages go all over an SSD partition.  Hugh
798          */
799
800         si->flags += SWP_SCANNING;
801         /*
802          * Use percpu scan base for SSD to reduce lock contention on
803          * cluster and swap cache.  For HDD, sequential access is more
804          * important.
805          */
806         if (si->flags & SWP_SOLIDSTATE)
807                 scan_base = this_cpu_read(*si->cluster_next_cpu);
808         else
809                 scan_base = si->cluster_next;
810         offset = scan_base;
811
812         /* SSD algorithm */
813         if (si->cluster_info) {
814                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
815                         goto scan;
816         } else if (unlikely(!si->cluster_nr--)) {
817                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
818                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
819                         goto checks;
820                 }
821
822                 spin_unlock(&si->lock);
823
824                 /*
825                  * If seek is expensive, start searching for new cluster from
826                  * start of partition, to minimize the span of allocated swap.
827                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
828                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
829                  */
830                 scan_base = offset = si->lowest_bit;
831                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
832
833                 /* Locate the first empty (unaligned) cluster */
834                 for (; last_in_cluster <= si->highest_bit; offset++) {
835                         if (si->swap_map[offset])
836                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
837                         else if (offset == last_in_cluster) {
838                                 spin_lock(&si->lock);
839                                 offset -= SWAPFILE_CLUSTER - 1;
840                                 si->cluster_next = offset;
841                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
842                                 goto checks;
843                         }
844                         if (unlikely(--latency_ration < 0)) {
845                                 cond_resched();
846                                 latency_ration = LATENCY_LIMIT;
847                         }
848                 }
849
850                 offset = scan_base;
851                 spin_lock(&si->lock);
852                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
853         }
854
855 checks:
856         if (si->cluster_info) {
857                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
858                 /* take a break if we already got some slots */
859                         if (n_ret)
860                                 goto done;
861                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
862                                                         &scan_base))
863                                 goto scan;
864                 }
865         }
866         if (!(si->flags & SWP_WRITEOK))
867                 goto no_page;
868         if (!si->highest_bit)
869                 goto no_page;
870         if (offset > si->highest_bit)
871                 scan_base = offset = si->lowest_bit;
872
873         ci = lock_cluster(si, offset);
874         /* reuse swap entry of cache-only swap if not busy. */
875         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
876                 int swap_was_freed;
877                 unlock_cluster(ci);
878                 spin_unlock(&si->lock);
879                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
880                 spin_lock(&si->lock);
881                 /* entry was freed successfully, try to use this again */
882                 if (swap_was_freed)
883                         goto checks;
884                 goto scan; /* check next one */
885         }
886
887         if (si->swap_map[offset]) {
888                 unlock_cluster(ci);
889                 if (!n_ret)
890                         goto scan;
891                 else
892                         goto done;
893         }
894         WRITE_ONCE(si->swap_map[offset], usage);
895         inc_cluster_info_page(si, si->cluster_info, offset);
896         unlock_cluster(ci);
897
898         swap_range_alloc(si, offset, 1);
899         slots[n_ret++] = swp_entry(si->type, offset);
900
901         /* got enough slots or reach max slots? */
902         if ((n_ret == nr) || (offset >= si->highest_bit))
903                 goto done;
904
905         /* search for next available slot */
906
907         /* time to take a break? */
908         if (unlikely(--latency_ration < 0)) {
909                 if (n_ret)
910                         goto done;
911                 spin_unlock(&si->lock);
912                 cond_resched();
913                 spin_lock(&si->lock);
914                 latency_ration = LATENCY_LIMIT;
915         }
916
917         /* try to get more slots in cluster */
918         if (si->cluster_info) {
919                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
920                         goto checks;
921         } else if (si->cluster_nr && !si->swap_map[++offset]) {
922                 /* non-ssd case, still more slots in cluster? */
923                 --si->cluster_nr;
924                 goto checks;
925         }
926
927         /*
928          * Even if there's no free clusters available (fragmented),
929          * try to scan a little more quickly with lock held unless we
930          * have scanned too many slots already.
931          */
932         if (!scanned_many) {
933                 unsigned long scan_limit;
934
935                 if (offset < scan_base)
936                         scan_limit = scan_base;
937                 else
938                         scan_limit = si->highest_bit;
939                 for (; offset <= scan_limit && --latency_ration > 0;
940                      offset++) {
941                         if (!si->swap_map[offset])
942                                 goto checks;
943                 }
944         }
945
946 done:
947         set_cluster_next(si, offset + 1);
948         si->flags -= SWP_SCANNING;
949         return n_ret;
950
951 scan:
952         spin_unlock(&si->lock);
953         while (++offset <= READ_ONCE(si->highest_bit)) {
954                 if (data_race(!si->swap_map[offset])) {
955                         spin_lock(&si->lock);
956                         goto checks;
957                 }
958                 if (vm_swap_full() &&
959                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
960                         spin_lock(&si->lock);
961                         goto checks;
962                 }
963                 if (unlikely(--latency_ration < 0)) {
964                         cond_resched();
965                         latency_ration = LATENCY_LIMIT;
966                         scanned_many = true;
967                 }
968         }
969         offset = si->lowest_bit;
970         while (offset < scan_base) {
971                 if (data_race(!si->swap_map[offset])) {
972                         spin_lock(&si->lock);
973                         goto checks;
974                 }
975                 if (vm_swap_full() &&
976                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
977                         spin_lock(&si->lock);
978                         goto checks;
979                 }
980                 if (unlikely(--latency_ration < 0)) {
981                         cond_resched();
982                         latency_ration = LATENCY_LIMIT;
983                         scanned_many = true;
984                 }
985                 offset++;
986         }
987         spin_lock(&si->lock);
988
989 no_page:
990         si->flags -= SWP_SCANNING;
991         return n_ret;
992 }
993
994 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
995 {
996         unsigned long idx;
997         struct swap_cluster_info *ci;
998         unsigned long offset;
999
1000         /*
1001          * Should not even be attempting cluster allocations when huge
1002          * page swap is disabled.  Warn and fail the allocation.
1003          */
1004         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1005                 VM_WARN_ON_ONCE(1);
1006                 return 0;
1007         }
1008
1009         if (cluster_list_empty(&si->free_clusters))
1010                 return 0;
1011
1012         idx = cluster_list_first(&si->free_clusters);
1013         offset = idx * SWAPFILE_CLUSTER;
1014         ci = lock_cluster(si, offset);
1015         alloc_cluster(si, idx);
1016         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1017
1018         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1019         unlock_cluster(ci);
1020         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1021         *slot = swp_entry(si->type, offset);
1022
1023         return 1;
1024 }
1025
1026 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1027 {
1028         unsigned long offset = idx * SWAPFILE_CLUSTER;
1029         struct swap_cluster_info *ci;
1030
1031         ci = lock_cluster(si, offset);
1032         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1033         cluster_set_count_flag(ci, 0, 0);
1034         free_cluster(si, idx);
1035         unlock_cluster(ci);
1036         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1037 }
1038
1039 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1040 {
1041         unsigned long size = swap_entry_size(entry_size);
1042         struct swap_info_struct *si, *next;
1043         long avail_pgs;
1044         int n_ret = 0;
1045         int node;
1046
1047         /* Only single cluster request supported */
1048         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1049
1050         spin_lock(&swap_avail_lock);
1051
1052         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1053         if (avail_pgs <= 0) {
1054                 spin_unlock(&swap_avail_lock);
1055                 goto noswap;
1056         }
1057
1058         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1059
1060         atomic_long_sub(n_goal * size, &nr_swap_pages);
1061
1062 start_over:
1063         node = numa_node_id();
1064         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1065                 /* requeue si to after same-priority siblings */
1066                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1067                 spin_unlock(&swap_avail_lock);
1068                 spin_lock(&si->lock);
1069                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1070                         spin_lock(&swap_avail_lock);
1071                         if (plist_node_empty(&si->avail_lists[node])) {
1072                                 spin_unlock(&si->lock);
1073                                 goto nextsi;
1074                         }
1075                         WARN(!si->highest_bit,
1076                              "swap_info %d in list but !highest_bit\n",
1077                              si->type);
1078                         WARN(!(si->flags & SWP_WRITEOK),
1079                              "swap_info %d in list but !SWP_WRITEOK\n",
1080                              si->type);
1081                         __del_from_avail_list(si);
1082                         spin_unlock(&si->lock);
1083                         goto nextsi;
1084                 }
1085                 if (size == SWAPFILE_CLUSTER) {
1086                         if (si->flags & SWP_BLKDEV)
1087                                 n_ret = swap_alloc_cluster(si, swp_entries);
1088                 } else
1089                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1090                                                     n_goal, swp_entries);
1091                 spin_unlock(&si->lock);
1092                 if (n_ret || size == SWAPFILE_CLUSTER)
1093                         goto check_out;
1094                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1095                         si->type);
1096
1097                 spin_lock(&swap_avail_lock);
1098 nextsi:
1099                 /*
1100                  * if we got here, it's likely that si was almost full before,
1101                  * and since scan_swap_map_slots() can drop the si->lock,
1102                  * multiple callers probably all tried to get a page from the
1103                  * same si and it filled up before we could get one; or, the si
1104                  * filled up between us dropping swap_avail_lock and taking
1105                  * si->lock. Since we dropped the swap_avail_lock, the
1106                  * swap_avail_head list may have been modified; so if next is
1107                  * still in the swap_avail_head list then try it, otherwise
1108                  * start over if we have not gotten any slots.
1109                  */
1110                 if (plist_node_empty(&next->avail_lists[node]))
1111                         goto start_over;
1112         }
1113
1114         spin_unlock(&swap_avail_lock);
1115
1116 check_out:
1117         if (n_ret < n_goal)
1118                 atomic_long_add((long)(n_goal - n_ret) * size,
1119                                 &nr_swap_pages);
1120 noswap:
1121         return n_ret;
1122 }
1123
1124 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1125 {
1126         struct swap_info_struct *p;
1127         unsigned long offset;
1128
1129         if (!entry.val)
1130                 goto out;
1131         p = swp_swap_info(entry);
1132         if (!p)
1133                 goto bad_nofile;
1134         if (data_race(!(p->flags & SWP_USED)))
1135                 goto bad_device;
1136         offset = swp_offset(entry);
1137         if (offset >= p->max)
1138                 goto bad_offset;
1139         return p;
1140
1141 bad_offset:
1142         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1143         goto out;
1144 bad_device:
1145         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1146         goto out;
1147 bad_nofile:
1148         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1149 out:
1150         return NULL;
1151 }
1152
1153 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1154 {
1155         struct swap_info_struct *p;
1156
1157         p = __swap_info_get(entry);
1158         if (!p)
1159                 goto out;
1160         if (data_race(!p->swap_map[swp_offset(entry)]))
1161                 goto bad_free;
1162         return p;
1163
1164 bad_free:
1165         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1166 out:
1167         return NULL;
1168 }
1169
1170 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1171 {
1172         struct swap_info_struct *p;
1173
1174         p = _swap_info_get(entry);
1175         if (p)
1176                 spin_lock(&p->lock);
1177         return p;
1178 }
1179
1180 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1181                                         struct swap_info_struct *q)
1182 {
1183         struct swap_info_struct *p;
1184
1185         p = _swap_info_get(entry);
1186
1187         if (p != q) {
1188                 if (q != NULL)
1189                         spin_unlock(&q->lock);
1190                 if (p != NULL)
1191                         spin_lock(&p->lock);
1192         }
1193         return p;
1194 }
1195
1196 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1197                                               unsigned long offset,
1198                                               unsigned char usage)
1199 {
1200         unsigned char count;
1201         unsigned char has_cache;
1202
1203         count = p->swap_map[offset];
1204
1205         has_cache = count & SWAP_HAS_CACHE;
1206         count &= ~SWAP_HAS_CACHE;
1207
1208         if (usage == SWAP_HAS_CACHE) {
1209                 VM_BUG_ON(!has_cache);
1210                 has_cache = 0;
1211         } else if (count == SWAP_MAP_SHMEM) {
1212                 /*
1213                  * Or we could insist on shmem.c using a special
1214                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1215                  */
1216                 count = 0;
1217         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1218                 if (count == COUNT_CONTINUED) {
1219                         if (swap_count_continued(p, offset, count))
1220                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1221                         else
1222                                 count = SWAP_MAP_MAX;
1223                 } else
1224                         count--;
1225         }
1226
1227         usage = count | has_cache;
1228         if (usage)
1229                 WRITE_ONCE(p->swap_map[offset], usage);
1230         else
1231                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1232
1233         return usage;
1234 }
1235
1236 /*
1237  * Check whether swap entry is valid in the swap device.  If so,
1238  * return pointer to swap_info_struct, and keep the swap entry valid
1239  * via preventing the swap device from being swapoff, until
1240  * put_swap_device() is called.  Otherwise return NULL.
1241  *
1242  * Notice that swapoff or swapoff+swapon can still happen before the
1243  * percpu_ref_tryget_live() in get_swap_device() or after the
1244  * percpu_ref_put() in put_swap_device() if there isn't any other way
1245  * to prevent swapoff, such as page lock, page table lock, etc.  The
1246  * caller must be prepared for that.  For example, the following
1247  * situation is possible.
1248  *
1249  *   CPU1                               CPU2
1250  *   do_swap_page()
1251  *     ...                              swapoff+swapon
1252  *     __read_swap_cache_async()
1253  *       swapcache_prepare()
1254  *         __swap_duplicate()
1255  *           // check swap_map
1256  *     // verify PTE not changed
1257  *
1258  * In __swap_duplicate(), the swap_map need to be checked before
1259  * changing partly because the specified swap entry may be for another
1260  * swap device which has been swapoff.  And in do_swap_page(), after
1261  * the page is read from the swap device, the PTE is verified not
1262  * changed with the page table locked to check whether the swap device
1263  * has been swapoff or swapoff+swapon.
1264  */
1265 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1266 {
1267         struct swap_info_struct *si;
1268         unsigned long offset;
1269
1270         if (!entry.val)
1271                 goto out;
1272         si = swp_swap_info(entry);
1273         if (!si)
1274                 goto bad_nofile;
1275         if (!percpu_ref_tryget_live(&si->users))
1276                 goto out;
1277         /*
1278          * Guarantee the si->users are checked before accessing other
1279          * fields of swap_info_struct.
1280          *
1281          * Paired with the spin_unlock() after setup_swap_info() in
1282          * enable_swap_info().
1283          */
1284         smp_rmb();
1285         offset = swp_offset(entry);
1286         if (offset >= si->max)
1287                 goto put_out;
1288
1289         return si;
1290 bad_nofile:
1291         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1292 out:
1293         return NULL;
1294 put_out:
1295         percpu_ref_put(&si->users);
1296         return NULL;
1297 }
1298
1299 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1300                                        swp_entry_t entry)
1301 {
1302         struct swap_cluster_info *ci;
1303         unsigned long offset = swp_offset(entry);
1304         unsigned char usage;
1305
1306         ci = lock_cluster_or_swap_info(p, offset);
1307         usage = __swap_entry_free_locked(p, offset, 1);
1308         unlock_cluster_or_swap_info(p, ci);
1309         if (!usage)
1310                 free_swap_slot(entry);
1311
1312         return usage;
1313 }
1314
1315 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1316 {
1317         struct swap_cluster_info *ci;
1318         unsigned long offset = swp_offset(entry);
1319         unsigned char count;
1320
1321         ci = lock_cluster(p, offset);
1322         count = p->swap_map[offset];
1323         VM_BUG_ON(count != SWAP_HAS_CACHE);
1324         p->swap_map[offset] = 0;
1325         dec_cluster_info_page(p, p->cluster_info, offset);
1326         unlock_cluster(ci);
1327
1328         mem_cgroup_uncharge_swap(entry, 1);
1329         swap_range_free(p, offset, 1);
1330 }
1331
1332 /*
1333  * Caller has made sure that the swap device corresponding to entry
1334  * is still around or has not been recycled.
1335  */
1336 void swap_free(swp_entry_t entry)
1337 {
1338         struct swap_info_struct *p;
1339
1340         p = _swap_info_get(entry);
1341         if (p)
1342                 __swap_entry_free(p, entry);
1343 }
1344
1345 /*
1346  * Called after dropping swapcache to decrease refcnt to swap entries.
1347  */
1348 void put_swap_page(struct page *page, swp_entry_t entry)
1349 {
1350         unsigned long offset = swp_offset(entry);
1351         unsigned long idx = offset / SWAPFILE_CLUSTER;
1352         struct swap_cluster_info *ci;
1353         struct swap_info_struct *si;
1354         unsigned char *map;
1355         unsigned int i, free_entries = 0;
1356         unsigned char val;
1357         int size = swap_entry_size(thp_nr_pages(page));
1358
1359         si = _swap_info_get(entry);
1360         if (!si)
1361                 return;
1362
1363         ci = lock_cluster_or_swap_info(si, offset);
1364         if (size == SWAPFILE_CLUSTER) {
1365                 VM_BUG_ON(!cluster_is_huge(ci));
1366                 map = si->swap_map + offset;
1367                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1368                         val = map[i];
1369                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1370                         if (val == SWAP_HAS_CACHE)
1371                                 free_entries++;
1372                 }
1373                 cluster_clear_huge(ci);
1374                 if (free_entries == SWAPFILE_CLUSTER) {
1375                         unlock_cluster_or_swap_info(si, ci);
1376                         spin_lock(&si->lock);
1377                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1378                         swap_free_cluster(si, idx);
1379                         spin_unlock(&si->lock);
1380                         return;
1381                 }
1382         }
1383         for (i = 0; i < size; i++, entry.val++) {
1384                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1385                         unlock_cluster_or_swap_info(si, ci);
1386                         free_swap_slot(entry);
1387                         if (i == size - 1)
1388                                 return;
1389                         lock_cluster_or_swap_info(si, offset);
1390                 }
1391         }
1392         unlock_cluster_or_swap_info(si, ci);
1393 }
1394
1395 #ifdef CONFIG_THP_SWAP
1396 int split_swap_cluster(swp_entry_t entry)
1397 {
1398         struct swap_info_struct *si;
1399         struct swap_cluster_info *ci;
1400         unsigned long offset = swp_offset(entry);
1401
1402         si = _swap_info_get(entry);
1403         if (!si)
1404                 return -EBUSY;
1405         ci = lock_cluster(si, offset);
1406         cluster_clear_huge(ci);
1407         unlock_cluster(ci);
1408         return 0;
1409 }
1410 #endif
1411
1412 static int swp_entry_cmp(const void *ent1, const void *ent2)
1413 {
1414         const swp_entry_t *e1 = ent1, *e2 = ent2;
1415
1416         return (int)swp_type(*e1) - (int)swp_type(*e2);
1417 }
1418
1419 void swapcache_free_entries(swp_entry_t *entries, int n)
1420 {
1421         struct swap_info_struct *p, *prev;
1422         int i;
1423
1424         if (n <= 0)
1425                 return;
1426
1427         prev = NULL;
1428         p = NULL;
1429
1430         /*
1431          * Sort swap entries by swap device, so each lock is only taken once.
1432          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1433          * so low that it isn't necessary to optimize further.
1434          */
1435         if (nr_swapfiles > 1)
1436                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1437         for (i = 0; i < n; ++i) {
1438                 p = swap_info_get_cont(entries[i], prev);
1439                 if (p)
1440                         swap_entry_free(p, entries[i]);
1441                 prev = p;
1442         }
1443         if (p)
1444                 spin_unlock(&p->lock);
1445 }
1446
1447 /*
1448  * How many references to page are currently swapped out?
1449  * This does not give an exact answer when swap count is continued,
1450  * but does include the high COUNT_CONTINUED flag to allow for that.
1451  */
1452 int page_swapcount(struct page *page)
1453 {
1454         int count = 0;
1455         struct swap_info_struct *p;
1456         struct swap_cluster_info *ci;
1457         swp_entry_t entry;
1458         unsigned long offset;
1459
1460         entry.val = page_private(page);
1461         p = _swap_info_get(entry);
1462         if (p) {
1463                 offset = swp_offset(entry);
1464                 ci = lock_cluster_or_swap_info(p, offset);
1465                 count = swap_count(p->swap_map[offset]);
1466                 unlock_cluster_or_swap_info(p, ci);
1467         }
1468         return count;
1469 }
1470
1471 int __swap_count(swp_entry_t entry)
1472 {
1473         struct swap_info_struct *si;
1474         pgoff_t offset = swp_offset(entry);
1475         int count = 0;
1476
1477         si = get_swap_device(entry);
1478         if (si) {
1479                 count = swap_count(si->swap_map[offset]);
1480                 put_swap_device(si);
1481         }
1482         return count;
1483 }
1484
1485 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1486 {
1487         int count = 0;
1488         pgoff_t offset = swp_offset(entry);
1489         struct swap_cluster_info *ci;
1490
1491         ci = lock_cluster_or_swap_info(si, offset);
1492         count = swap_count(si->swap_map[offset]);
1493         unlock_cluster_or_swap_info(si, ci);
1494         return count;
1495 }
1496
1497 /*
1498  * How many references to @entry are currently swapped out?
1499  * This does not give an exact answer when swap count is continued,
1500  * but does include the high COUNT_CONTINUED flag to allow for that.
1501  */
1502 int __swp_swapcount(swp_entry_t entry)
1503 {
1504         int count = 0;
1505         struct swap_info_struct *si;
1506
1507         si = get_swap_device(entry);
1508         if (si) {
1509                 count = swap_swapcount(si, entry);
1510                 put_swap_device(si);
1511         }
1512         return count;
1513 }
1514
1515 /*
1516  * How many references to @entry are currently swapped out?
1517  * This considers COUNT_CONTINUED so it returns exact answer.
1518  */
1519 int swp_swapcount(swp_entry_t entry)
1520 {
1521         int count, tmp_count, n;
1522         struct swap_info_struct *p;
1523         struct swap_cluster_info *ci;
1524         struct page *page;
1525         pgoff_t offset;
1526         unsigned char *map;
1527
1528         p = _swap_info_get(entry);
1529         if (!p)
1530                 return 0;
1531
1532         offset = swp_offset(entry);
1533
1534         ci = lock_cluster_or_swap_info(p, offset);
1535
1536         count = swap_count(p->swap_map[offset]);
1537         if (!(count & COUNT_CONTINUED))
1538                 goto out;
1539
1540         count &= ~COUNT_CONTINUED;
1541         n = SWAP_MAP_MAX + 1;
1542
1543         page = vmalloc_to_page(p->swap_map + offset);
1544         offset &= ~PAGE_MASK;
1545         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1546
1547         do {
1548                 page = list_next_entry(page, lru);
1549                 map = kmap_atomic(page);
1550                 tmp_count = map[offset];
1551                 kunmap_atomic(map);
1552
1553                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1554                 n *= (SWAP_CONT_MAX + 1);
1555         } while (tmp_count & COUNT_CONTINUED);
1556 out:
1557         unlock_cluster_or_swap_info(p, ci);
1558         return count;
1559 }
1560
1561 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1562                                          swp_entry_t entry)
1563 {
1564         struct swap_cluster_info *ci;
1565         unsigned char *map = si->swap_map;
1566         unsigned long roffset = swp_offset(entry);
1567         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1568         int i;
1569         bool ret = false;
1570
1571         ci = lock_cluster_or_swap_info(si, offset);
1572         if (!ci || !cluster_is_huge(ci)) {
1573                 if (swap_count(map[roffset]))
1574                         ret = true;
1575                 goto unlock_out;
1576         }
1577         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1578                 if (swap_count(map[offset + i])) {
1579                         ret = true;
1580                         break;
1581                 }
1582         }
1583 unlock_out:
1584         unlock_cluster_or_swap_info(si, ci);
1585         return ret;
1586 }
1587
1588 static bool page_swapped(struct page *page)
1589 {
1590         swp_entry_t entry;
1591         struct swap_info_struct *si;
1592
1593         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1594                 return page_swapcount(page) != 0;
1595
1596         page = compound_head(page);
1597         entry.val = page_private(page);
1598         si = _swap_info_get(entry);
1599         if (si)
1600                 return swap_page_trans_huge_swapped(si, entry);
1601         return false;
1602 }
1603
1604 static int page_trans_huge_map_swapcount(struct page *page,
1605                                          int *total_swapcount)
1606 {
1607         int i, map_swapcount, _total_swapcount;
1608         unsigned long offset = 0;
1609         struct swap_info_struct *si;
1610         struct swap_cluster_info *ci = NULL;
1611         unsigned char *map = NULL;
1612         int swapcount = 0;
1613
1614         /* hugetlbfs shouldn't call it */
1615         VM_BUG_ON_PAGE(PageHuge(page), page);
1616
1617         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1618                 if (PageSwapCache(page))
1619                         swapcount = page_swapcount(page);
1620                 if (total_swapcount)
1621                         *total_swapcount = swapcount;
1622                 return swapcount + page_trans_huge_mapcount(page);
1623         }
1624
1625         page = compound_head(page);
1626
1627         _total_swapcount = map_swapcount = 0;
1628         if (PageSwapCache(page)) {
1629                 swp_entry_t entry;
1630
1631                 entry.val = page_private(page);
1632                 si = _swap_info_get(entry);
1633                 if (si) {
1634                         map = si->swap_map;
1635                         offset = swp_offset(entry);
1636                 }
1637         }
1638         if (map)
1639                 ci = lock_cluster(si, offset);
1640         for (i = 0; i < HPAGE_PMD_NR; i++) {
1641                 int mapcount = atomic_read(&page[i]._mapcount) + 1;
1642                 if (map) {
1643                         swapcount = swap_count(map[offset + i]);
1644                         _total_swapcount += swapcount;
1645                 }
1646                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1647         }
1648         unlock_cluster(ci);
1649
1650         if (PageDoubleMap(page))
1651                 map_swapcount -= 1;
1652
1653         if (total_swapcount)
1654                 *total_swapcount = _total_swapcount;
1655
1656         return map_swapcount + compound_mapcount(page);
1657 }
1658
1659 /*
1660  * We can write to an anon page without COW if there are no other references
1661  * to it.  And as a side-effect, free up its swap: because the old content
1662  * on disk will never be read, and seeking back there to write new content
1663  * later would only waste time away from clustering.
1664  */
1665 bool reuse_swap_page(struct page *page)
1666 {
1667         int count, total_swapcount;
1668
1669         VM_BUG_ON_PAGE(!PageLocked(page), page);
1670         if (unlikely(PageKsm(page)))
1671                 return false;
1672         count = page_trans_huge_map_swapcount(page, &total_swapcount);
1673         if (count == 1 && PageSwapCache(page) &&
1674             (likely(!PageTransCompound(page)) ||
1675              /* The remaining swap count will be freed soon */
1676              total_swapcount == page_swapcount(page))) {
1677                 if (!PageWriteback(page)) {
1678                         page = compound_head(page);
1679                         delete_from_swap_cache(page);
1680                         SetPageDirty(page);
1681                 } else {
1682                         swp_entry_t entry;
1683                         struct swap_info_struct *p;
1684
1685                         entry.val = page_private(page);
1686                         p = swap_info_get(entry);
1687                         if (p->flags & SWP_STABLE_WRITES) {
1688                                 spin_unlock(&p->lock);
1689                                 return false;
1690                         }
1691                         spin_unlock(&p->lock);
1692                 }
1693         }
1694
1695         return count <= 1;
1696 }
1697
1698 /*
1699  * If swap is getting full, or if there are no more mappings of this page,
1700  * then try_to_free_swap is called to free its swap space.
1701  */
1702 int try_to_free_swap(struct page *page)
1703 {
1704         VM_BUG_ON_PAGE(!PageLocked(page), page);
1705
1706         if (!PageSwapCache(page))
1707                 return 0;
1708         if (PageWriteback(page))
1709                 return 0;
1710         if (page_swapped(page))
1711                 return 0;
1712
1713         /*
1714          * Once hibernation has begun to create its image of memory,
1715          * there's a danger that one of the calls to try_to_free_swap()
1716          * - most probably a call from __try_to_reclaim_swap() while
1717          * hibernation is allocating its own swap pages for the image,
1718          * but conceivably even a call from memory reclaim - will free
1719          * the swap from a page which has already been recorded in the
1720          * image as a clean swapcache page, and then reuse its swap for
1721          * another page of the image.  On waking from hibernation, the
1722          * original page might be freed under memory pressure, then
1723          * later read back in from swap, now with the wrong data.
1724          *
1725          * Hibernation suspends storage while it is writing the image
1726          * to disk so check that here.
1727          */
1728         if (pm_suspended_storage())
1729                 return 0;
1730
1731         page = compound_head(page);
1732         delete_from_swap_cache(page);
1733         SetPageDirty(page);
1734         return 1;
1735 }
1736
1737 /*
1738  * Free the swap entry like above, but also try to
1739  * free the page cache entry if it is the last user.
1740  */
1741 int free_swap_and_cache(swp_entry_t entry)
1742 {
1743         struct swap_info_struct *p;
1744         unsigned char count;
1745
1746         if (non_swap_entry(entry))
1747                 return 1;
1748
1749         p = _swap_info_get(entry);
1750         if (p) {
1751                 count = __swap_entry_free(p, entry);
1752                 if (count == SWAP_HAS_CACHE &&
1753                     !swap_page_trans_huge_swapped(p, entry))
1754                         __try_to_reclaim_swap(p, swp_offset(entry),
1755                                               TTRS_UNMAPPED | TTRS_FULL);
1756         }
1757         return p != NULL;
1758 }
1759
1760 #ifdef CONFIG_HIBERNATION
1761
1762 swp_entry_t get_swap_page_of_type(int type)
1763 {
1764         struct swap_info_struct *si = swap_type_to_swap_info(type);
1765         swp_entry_t entry = {0};
1766
1767         if (!si)
1768                 goto fail;
1769
1770         /* This is called for allocating swap entry, not cache */
1771         spin_lock(&si->lock);
1772         if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1773                 atomic_long_dec(&nr_swap_pages);
1774         spin_unlock(&si->lock);
1775 fail:
1776         return entry;
1777 }
1778
1779 /*
1780  * Find the swap type that corresponds to given device (if any).
1781  *
1782  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1783  * from 0, in which the swap header is expected to be located.
1784  *
1785  * This is needed for the suspend to disk (aka swsusp).
1786  */
1787 int swap_type_of(dev_t device, sector_t offset)
1788 {
1789         int type;
1790
1791         if (!device)
1792                 return -1;
1793
1794         spin_lock(&swap_lock);
1795         for (type = 0; type < nr_swapfiles; type++) {
1796                 struct swap_info_struct *sis = swap_info[type];
1797
1798                 if (!(sis->flags & SWP_WRITEOK))
1799                         continue;
1800
1801                 if (device == sis->bdev->bd_dev) {
1802                         struct swap_extent *se = first_se(sis);
1803
1804                         if (se->start_block == offset) {
1805                                 spin_unlock(&swap_lock);
1806                                 return type;
1807                         }
1808                 }
1809         }
1810         spin_unlock(&swap_lock);
1811         return -ENODEV;
1812 }
1813
1814 int find_first_swap(dev_t *device)
1815 {
1816         int type;
1817
1818         spin_lock(&swap_lock);
1819         for (type = 0; type < nr_swapfiles; type++) {
1820                 struct swap_info_struct *sis = swap_info[type];
1821
1822                 if (!(sis->flags & SWP_WRITEOK))
1823                         continue;
1824                 *device = sis->bdev->bd_dev;
1825                 spin_unlock(&swap_lock);
1826                 return type;
1827         }
1828         spin_unlock(&swap_lock);
1829         return -ENODEV;
1830 }
1831
1832 /*
1833  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1834  * corresponding to given index in swap_info (swap type).
1835  */
1836 sector_t swapdev_block(int type, pgoff_t offset)
1837 {
1838         struct swap_info_struct *si = swap_type_to_swap_info(type);
1839         struct swap_extent *se;
1840
1841         if (!si || !(si->flags & SWP_WRITEOK))
1842                 return 0;
1843         se = offset_to_swap_extent(si, offset);
1844         return se->start_block + (offset - se->start_page);
1845 }
1846
1847 /*
1848  * Return either the total number of swap pages of given type, or the number
1849  * of free pages of that type (depending on @free)
1850  *
1851  * This is needed for software suspend
1852  */
1853 unsigned int count_swap_pages(int type, int free)
1854 {
1855         unsigned int n = 0;
1856
1857         spin_lock(&swap_lock);
1858         if ((unsigned int)type < nr_swapfiles) {
1859                 struct swap_info_struct *sis = swap_info[type];
1860
1861                 spin_lock(&sis->lock);
1862                 if (sis->flags & SWP_WRITEOK) {
1863                         n = sis->pages;
1864                         if (free)
1865                                 n -= sis->inuse_pages;
1866                 }
1867                 spin_unlock(&sis->lock);
1868         }
1869         spin_unlock(&swap_lock);
1870         return n;
1871 }
1872 #endif /* CONFIG_HIBERNATION */
1873
1874 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1875 {
1876         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1877 }
1878
1879 /*
1880  * No need to decide whether this PTE shares the swap entry with others,
1881  * just let do_wp_page work it out if a write is requested later - to
1882  * force COW, vm_page_prot omits write permission from any private vma.
1883  */
1884 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1885                 unsigned long addr, swp_entry_t entry, struct page *page)
1886 {
1887         struct page *swapcache;
1888         spinlock_t *ptl;
1889         pte_t *pte;
1890         int ret = 1;
1891
1892         swapcache = page;
1893         page = ksm_might_need_to_copy(page, vma, addr);
1894         if (unlikely(!page))
1895                 return -ENOMEM;
1896
1897         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1898         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1899                 ret = 0;
1900                 goto out;
1901         }
1902
1903         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1904         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1905         get_page(page);
1906         if (page == swapcache) {
1907                 page_add_anon_rmap(page, vma, addr, false);
1908         } else { /* ksm created a completely new copy */
1909                 page_add_new_anon_rmap(page, vma, addr, false);
1910                 lru_cache_add_inactive_or_unevictable(page, vma);
1911         }
1912         set_pte_at(vma->vm_mm, addr, pte,
1913                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1914         swap_free(entry);
1915 out:
1916         pte_unmap_unlock(pte, ptl);
1917         if (page != swapcache) {
1918                 unlock_page(page);
1919                 put_page(page);
1920         }
1921         return ret;
1922 }
1923
1924 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1925                         unsigned long addr, unsigned long end,
1926                         unsigned int type, bool frontswap,
1927                         unsigned long *fs_pages_to_unuse)
1928 {
1929         struct page *page;
1930         swp_entry_t entry;
1931         pte_t *pte;
1932         struct swap_info_struct *si;
1933         unsigned long offset;
1934         int ret = 0;
1935         volatile unsigned char *swap_map;
1936
1937         si = swap_info[type];
1938         pte = pte_offset_map(pmd, addr);
1939         do {
1940                 if (!is_swap_pte(*pte))
1941                         continue;
1942
1943                 entry = pte_to_swp_entry(*pte);
1944                 if (swp_type(entry) != type)
1945                         continue;
1946
1947                 offset = swp_offset(entry);
1948                 if (frontswap && !frontswap_test(si, offset))
1949                         continue;
1950
1951                 pte_unmap(pte);
1952                 swap_map = &si->swap_map[offset];
1953                 page = lookup_swap_cache(entry, vma, addr);
1954                 if (!page) {
1955                         struct vm_fault vmf = {
1956                                 .vma = vma,
1957                                 .address = addr,
1958                                 .pmd = pmd,
1959                         };
1960
1961                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1962                                                 &vmf);
1963                 }
1964                 if (!page) {
1965                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1966                                 goto try_next;
1967                         return -ENOMEM;
1968                 }
1969
1970                 lock_page(page);
1971                 wait_on_page_writeback(page);
1972                 ret = unuse_pte(vma, pmd, addr, entry, page);
1973                 if (ret < 0) {
1974                         unlock_page(page);
1975                         put_page(page);
1976                         goto out;
1977                 }
1978
1979                 try_to_free_swap(page);
1980                 unlock_page(page);
1981                 put_page(page);
1982
1983                 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1984                         ret = FRONTSWAP_PAGES_UNUSED;
1985                         goto out;
1986                 }
1987 try_next:
1988                 pte = pte_offset_map(pmd, addr);
1989         } while (pte++, addr += PAGE_SIZE, addr != end);
1990         pte_unmap(pte - 1);
1991
1992         ret = 0;
1993 out:
1994         return ret;
1995 }
1996
1997 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1998                                 unsigned long addr, unsigned long end,
1999                                 unsigned int type, bool frontswap,
2000                                 unsigned long *fs_pages_to_unuse)
2001 {
2002         pmd_t *pmd;
2003         unsigned long next;
2004         int ret;
2005
2006         pmd = pmd_offset(pud, addr);
2007         do {
2008                 cond_resched();
2009                 next = pmd_addr_end(addr, end);
2010                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2011                         continue;
2012                 ret = unuse_pte_range(vma, pmd, addr, next, type,
2013                                       frontswap, fs_pages_to_unuse);
2014                 if (ret)
2015                         return ret;
2016         } while (pmd++, addr = next, addr != end);
2017         return 0;
2018 }
2019
2020 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2021                                 unsigned long addr, unsigned long end,
2022                                 unsigned int type, bool frontswap,
2023                                 unsigned long *fs_pages_to_unuse)
2024 {
2025         pud_t *pud;
2026         unsigned long next;
2027         int ret;
2028
2029         pud = pud_offset(p4d, addr);
2030         do {
2031                 next = pud_addr_end(addr, end);
2032                 if (pud_none_or_clear_bad(pud))
2033                         continue;
2034                 ret = unuse_pmd_range(vma, pud, addr, next, type,
2035                                       frontswap, fs_pages_to_unuse);
2036                 if (ret)
2037                         return ret;
2038         } while (pud++, addr = next, addr != end);
2039         return 0;
2040 }
2041
2042 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2043                                 unsigned long addr, unsigned long end,
2044                                 unsigned int type, bool frontswap,
2045                                 unsigned long *fs_pages_to_unuse)
2046 {
2047         p4d_t *p4d;
2048         unsigned long next;
2049         int ret;
2050
2051         p4d = p4d_offset(pgd, addr);
2052         do {
2053                 next = p4d_addr_end(addr, end);
2054                 if (p4d_none_or_clear_bad(p4d))
2055                         continue;
2056                 ret = unuse_pud_range(vma, p4d, addr, next, type,
2057                                       frontswap, fs_pages_to_unuse);
2058                 if (ret)
2059                         return ret;
2060         } while (p4d++, addr = next, addr != end);
2061         return 0;
2062 }
2063
2064 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2065                      bool frontswap, unsigned long *fs_pages_to_unuse)
2066 {
2067         pgd_t *pgd;
2068         unsigned long addr, end, next;
2069         int ret;
2070
2071         addr = vma->vm_start;
2072         end = vma->vm_end;
2073
2074         pgd = pgd_offset(vma->vm_mm, addr);
2075         do {
2076                 next = pgd_addr_end(addr, end);
2077                 if (pgd_none_or_clear_bad(pgd))
2078                         continue;
2079                 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2080                                       frontswap, fs_pages_to_unuse);
2081                 if (ret)
2082                         return ret;
2083         } while (pgd++, addr = next, addr != end);
2084         return 0;
2085 }
2086
2087 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2088                     bool frontswap, unsigned long *fs_pages_to_unuse)
2089 {
2090         struct vm_area_struct *vma;
2091         int ret = 0;
2092
2093         mmap_read_lock(mm);
2094         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2095                 if (vma->anon_vma) {
2096                         ret = unuse_vma(vma, type, frontswap,
2097                                         fs_pages_to_unuse);
2098                         if (ret)
2099                                 break;
2100                 }
2101                 cond_resched();
2102         }
2103         mmap_read_unlock(mm);
2104         return ret;
2105 }
2106
2107 /*
2108  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2109  * from current position to next entry still in use. Return 0
2110  * if there are no inuse entries after prev till end of the map.
2111  */
2112 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2113                                         unsigned int prev, bool frontswap)
2114 {
2115         unsigned int i;
2116         unsigned char count;
2117
2118         /*
2119          * No need for swap_lock here: we're just looking
2120          * for whether an entry is in use, not modifying it; false
2121          * hits are okay, and sys_swapoff() has already prevented new
2122          * allocations from this area (while holding swap_lock).
2123          */
2124         for (i = prev + 1; i < si->max; i++) {
2125                 count = READ_ONCE(si->swap_map[i]);
2126                 if (count && swap_count(count) != SWAP_MAP_BAD)
2127                         if (!frontswap || frontswap_test(si, i))
2128                                 break;
2129                 if ((i % LATENCY_LIMIT) == 0)
2130                         cond_resched();
2131         }
2132
2133         if (i == si->max)
2134                 i = 0;
2135
2136         return i;
2137 }
2138
2139 /*
2140  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2141  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2142  */
2143 int try_to_unuse(unsigned int type, bool frontswap,
2144                  unsigned long pages_to_unuse)
2145 {
2146         struct mm_struct *prev_mm;
2147         struct mm_struct *mm;
2148         struct list_head *p;
2149         int retval = 0;
2150         struct swap_info_struct *si = swap_info[type];
2151         struct page *page;
2152         swp_entry_t entry;
2153         unsigned int i;
2154
2155         if (!READ_ONCE(si->inuse_pages))
2156                 return 0;
2157
2158         if (!frontswap)
2159                 pages_to_unuse = 0;
2160
2161 retry:
2162         retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2163         if (retval)
2164                 goto out;
2165
2166         prev_mm = &init_mm;
2167         mmget(prev_mm);
2168
2169         spin_lock(&mmlist_lock);
2170         p = &init_mm.mmlist;
2171         while (READ_ONCE(si->inuse_pages) &&
2172                !signal_pending(current) &&
2173                (p = p->next) != &init_mm.mmlist) {
2174
2175                 mm = list_entry(p, struct mm_struct, mmlist);
2176                 if (!mmget_not_zero(mm))
2177                         continue;
2178                 spin_unlock(&mmlist_lock);
2179                 mmput(prev_mm);
2180                 prev_mm = mm;
2181                 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2182
2183                 if (retval) {
2184                         mmput(prev_mm);
2185                         goto out;
2186                 }
2187
2188                 /*
2189                  * Make sure that we aren't completely killing
2190                  * interactive performance.
2191                  */
2192                 cond_resched();
2193                 spin_lock(&mmlist_lock);
2194         }
2195         spin_unlock(&mmlist_lock);
2196
2197         mmput(prev_mm);
2198
2199         i = 0;
2200         while (READ_ONCE(si->inuse_pages) &&
2201                !signal_pending(current) &&
2202                (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2203
2204                 entry = swp_entry(type, i);
2205                 page = find_get_page(swap_address_space(entry), i);
2206                 if (!page)
2207                         continue;
2208
2209                 /*
2210                  * It is conceivable that a racing task removed this page from
2211                  * swap cache just before we acquired the page lock. The page
2212                  * might even be back in swap cache on another swap area. But
2213                  * that is okay, try_to_free_swap() only removes stale pages.
2214                  */
2215                 lock_page(page);
2216                 wait_on_page_writeback(page);
2217                 try_to_free_swap(page);
2218                 unlock_page(page);
2219                 put_page(page);
2220
2221                 /*
2222                  * For frontswap, we just need to unuse pages_to_unuse, if
2223                  * it was specified. Need not check frontswap again here as
2224                  * we already zeroed out pages_to_unuse if not frontswap.
2225                  */
2226                 if (pages_to_unuse && --pages_to_unuse == 0)
2227                         goto out;
2228         }
2229
2230         /*
2231          * Lets check again to see if there are still swap entries in the map.
2232          * If yes, we would need to do retry the unuse logic again.
2233          * Under global memory pressure, swap entries can be reinserted back
2234          * into process space after the mmlist loop above passes over them.
2235          *
2236          * Limit the number of retries? No: when mmget_not_zero() above fails,
2237          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2238          * at its own independent pace; and even shmem_writepage() could have
2239          * been preempted after get_swap_page(), temporarily hiding that swap.
2240          * It's easy and robust (though cpu-intensive) just to keep retrying.
2241          */
2242         if (READ_ONCE(si->inuse_pages)) {
2243                 if (!signal_pending(current))
2244                         goto retry;
2245                 retval = -EINTR;
2246         }
2247 out:
2248         return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2249 }
2250
2251 /*
2252  * After a successful try_to_unuse, if no swap is now in use, we know
2253  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2254  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2255  * added to the mmlist just after page_duplicate - before would be racy.
2256  */
2257 static void drain_mmlist(void)
2258 {
2259         struct list_head *p, *next;
2260         unsigned int type;
2261
2262         for (type = 0; type < nr_swapfiles; type++)
2263                 if (swap_info[type]->inuse_pages)
2264                         return;
2265         spin_lock(&mmlist_lock);
2266         list_for_each_safe(p, next, &init_mm.mmlist)
2267                 list_del_init(p);
2268         spin_unlock(&mmlist_lock);
2269 }
2270
2271 /*
2272  * Free all of a swapdev's extent information
2273  */
2274 static void destroy_swap_extents(struct swap_info_struct *sis)
2275 {
2276         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2277                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2278                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2279
2280                 rb_erase(rb, &sis->swap_extent_root);
2281                 kfree(se);
2282         }
2283
2284         if (sis->flags & SWP_ACTIVATED) {
2285                 struct file *swap_file = sis->swap_file;
2286                 struct address_space *mapping = swap_file->f_mapping;
2287
2288                 sis->flags &= ~SWP_ACTIVATED;
2289                 if (mapping->a_ops->swap_deactivate)
2290                         mapping->a_ops->swap_deactivate(swap_file);
2291         }
2292 }
2293
2294 /*
2295  * Add a block range (and the corresponding page range) into this swapdev's
2296  * extent tree.
2297  *
2298  * This function rather assumes that it is called in ascending page order.
2299  */
2300 int
2301 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2302                 unsigned long nr_pages, sector_t start_block)
2303 {
2304         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2305         struct swap_extent *se;
2306         struct swap_extent *new_se;
2307
2308         /*
2309          * place the new node at the right most since the
2310          * function is called in ascending page order.
2311          */
2312         while (*link) {
2313                 parent = *link;
2314                 link = &parent->rb_right;
2315         }
2316
2317         if (parent) {
2318                 se = rb_entry(parent, struct swap_extent, rb_node);
2319                 BUG_ON(se->start_page + se->nr_pages != start_page);
2320                 if (se->start_block + se->nr_pages == start_block) {
2321                         /* Merge it */
2322                         se->nr_pages += nr_pages;
2323                         return 0;
2324                 }
2325         }
2326
2327         /* No merge, insert a new extent. */
2328         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2329         if (new_se == NULL)
2330                 return -ENOMEM;
2331         new_se->start_page = start_page;
2332         new_se->nr_pages = nr_pages;
2333         new_se->start_block = start_block;
2334
2335         rb_link_node(&new_se->rb_node, parent, link);
2336         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2337         return 1;
2338 }
2339 EXPORT_SYMBOL_GPL(add_swap_extent);
2340
2341 /*
2342  * A `swap extent' is a simple thing which maps a contiguous range of pages
2343  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2344  * is built at swapon time and is then used at swap_writepage/swap_readpage
2345  * time for locating where on disk a page belongs.
2346  *
2347  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2348  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2349  * swap files identically.
2350  *
2351  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2352  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2353  * swapfiles are handled *identically* after swapon time.
2354  *
2355  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2356  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2357  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2358  * requirements, they are simply tossed out - we will never use those blocks
2359  * for swapping.
2360  *
2361  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2362  * prevents users from writing to the swap device, which will corrupt memory.
2363  *
2364  * The amount of disk space which a single swap extent represents varies.
2365  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2366  * extents in the list.  To avoid much list walking, we cache the previous
2367  * search location in `curr_swap_extent', and start new searches from there.
2368  * This is extremely effective.  The average number of iterations in
2369  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2370  */
2371 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2372 {
2373         struct file *swap_file = sis->swap_file;
2374         struct address_space *mapping = swap_file->f_mapping;
2375         struct inode *inode = mapping->host;
2376         int ret;
2377
2378         if (S_ISBLK(inode->i_mode)) {
2379                 ret = add_swap_extent(sis, 0, sis->max, 0);
2380                 *span = sis->pages;
2381                 return ret;
2382         }
2383
2384         if (mapping->a_ops->swap_activate) {
2385                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2386                 if (ret >= 0)
2387                         sis->flags |= SWP_ACTIVATED;
2388                 if (!ret) {
2389                         sis->flags |= SWP_FS_OPS;
2390                         ret = add_swap_extent(sis, 0, sis->max, 0);
2391                         *span = sis->pages;
2392                 }
2393                 return ret;
2394         }
2395
2396         return generic_swapfile_activate(sis, swap_file, span);
2397 }
2398
2399 static int swap_node(struct swap_info_struct *p)
2400 {
2401         struct block_device *bdev;
2402
2403         if (p->bdev)
2404                 bdev = p->bdev;
2405         else
2406                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2407
2408         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2409 }
2410
2411 static void setup_swap_info(struct swap_info_struct *p, int prio,
2412                             unsigned char *swap_map,
2413                             struct swap_cluster_info *cluster_info)
2414 {
2415         int i;
2416
2417         if (prio >= 0)
2418                 p->prio = prio;
2419         else
2420                 p->prio = --least_priority;
2421         /*
2422          * the plist prio is negated because plist ordering is
2423          * low-to-high, while swap ordering is high-to-low
2424          */
2425         p->list.prio = -p->prio;
2426         for_each_node(i) {
2427                 if (p->prio >= 0)
2428                         p->avail_lists[i].prio = -p->prio;
2429                 else {
2430                         if (swap_node(p) == i)
2431                                 p->avail_lists[i].prio = 1;
2432                         else
2433                                 p->avail_lists[i].prio = -p->prio;
2434                 }
2435         }
2436         p->swap_map = swap_map;
2437         p->cluster_info = cluster_info;
2438 }
2439
2440 static void _enable_swap_info(struct swap_info_struct *p)
2441 {
2442         p->flags |= SWP_WRITEOK;
2443         atomic_long_add(p->pages, &nr_swap_pages);
2444         total_swap_pages += p->pages;
2445
2446         assert_spin_locked(&swap_lock);
2447         /*
2448          * both lists are plists, and thus priority ordered.
2449          * swap_active_head needs to be priority ordered for swapoff(),
2450          * which on removal of any swap_info_struct with an auto-assigned
2451          * (i.e. negative) priority increments the auto-assigned priority
2452          * of any lower-priority swap_info_structs.
2453          * swap_avail_head needs to be priority ordered for get_swap_page(),
2454          * which allocates swap pages from the highest available priority
2455          * swap_info_struct.
2456          */
2457         plist_add(&p->list, &swap_active_head);
2458         add_to_avail_list(p);
2459 }
2460
2461 static void enable_swap_info(struct swap_info_struct *p, int prio,
2462                                 unsigned char *swap_map,
2463                                 struct swap_cluster_info *cluster_info,
2464                                 unsigned long *frontswap_map)
2465 {
2466         frontswap_init(p->type, frontswap_map);
2467         spin_lock(&swap_lock);
2468         spin_lock(&p->lock);
2469         setup_swap_info(p, prio, swap_map, cluster_info);
2470         spin_unlock(&p->lock);
2471         spin_unlock(&swap_lock);
2472         /*
2473          * Finished initializing swap device, now it's safe to reference it.
2474          */
2475         percpu_ref_resurrect(&p->users);
2476         spin_lock(&swap_lock);
2477         spin_lock(&p->lock);
2478         _enable_swap_info(p);
2479         spin_unlock(&p->lock);
2480         spin_unlock(&swap_lock);
2481 }
2482
2483 static void reinsert_swap_info(struct swap_info_struct *p)
2484 {
2485         spin_lock(&swap_lock);
2486         spin_lock(&p->lock);
2487         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2488         _enable_swap_info(p);
2489         spin_unlock(&p->lock);
2490         spin_unlock(&swap_lock);
2491 }
2492
2493 bool has_usable_swap(void)
2494 {
2495         bool ret = true;
2496
2497         spin_lock(&swap_lock);
2498         if (plist_head_empty(&swap_active_head))
2499                 ret = false;
2500         spin_unlock(&swap_lock);
2501         return ret;
2502 }
2503
2504 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2505 {
2506         struct swap_info_struct *p = NULL;
2507         unsigned char *swap_map;
2508         struct swap_cluster_info *cluster_info;
2509         unsigned long *frontswap_map;
2510         struct file *swap_file, *victim;
2511         struct address_space *mapping;
2512         struct inode *inode;
2513         struct filename *pathname;
2514         int err, found = 0;
2515         unsigned int old_block_size;
2516
2517         if (!capable(CAP_SYS_ADMIN))
2518                 return -EPERM;
2519
2520         BUG_ON(!current->mm);
2521
2522         pathname = getname(specialfile);
2523         if (IS_ERR(pathname))
2524                 return PTR_ERR(pathname);
2525
2526         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2527         err = PTR_ERR(victim);
2528         if (IS_ERR(victim))
2529                 goto out;
2530
2531         mapping = victim->f_mapping;
2532         spin_lock(&swap_lock);
2533         plist_for_each_entry(p, &swap_active_head, list) {
2534                 if (p->flags & SWP_WRITEOK) {
2535                         if (p->swap_file->f_mapping == mapping) {
2536                                 found = 1;
2537                                 break;
2538                         }
2539                 }
2540         }
2541         if (!found) {
2542                 err = -EINVAL;
2543                 spin_unlock(&swap_lock);
2544                 goto out_dput;
2545         }
2546         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2547                 vm_unacct_memory(p->pages);
2548         else {
2549                 err = -ENOMEM;
2550                 spin_unlock(&swap_lock);
2551                 goto out_dput;
2552         }
2553         del_from_avail_list(p);
2554         spin_lock(&p->lock);
2555         if (p->prio < 0) {
2556                 struct swap_info_struct *si = p;
2557                 int nid;
2558
2559                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2560                         si->prio++;
2561                         si->list.prio--;
2562                         for_each_node(nid) {
2563                                 if (si->avail_lists[nid].prio != 1)
2564                                         si->avail_lists[nid].prio--;
2565                         }
2566                 }
2567                 least_priority++;
2568         }
2569         plist_del(&p->list, &swap_active_head);
2570         atomic_long_sub(p->pages, &nr_swap_pages);
2571         total_swap_pages -= p->pages;
2572         p->flags &= ~SWP_WRITEOK;
2573         spin_unlock(&p->lock);
2574         spin_unlock(&swap_lock);
2575
2576         disable_swap_slots_cache_lock();
2577
2578         set_current_oom_origin();
2579         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2580         clear_current_oom_origin();
2581
2582         if (err) {
2583                 /* re-insert swap space back into swap_list */
2584                 reinsert_swap_info(p);
2585                 reenable_swap_slots_cache_unlock();
2586                 goto out_dput;
2587         }
2588
2589         reenable_swap_slots_cache_unlock();
2590
2591         /*
2592          * Wait for swap operations protected by get/put_swap_device()
2593          * to complete.
2594          *
2595          * We need synchronize_rcu() here to protect the accessing to
2596          * the swap cache data structure.
2597          */
2598         percpu_ref_kill(&p->users);
2599         synchronize_rcu();
2600         wait_for_completion(&p->comp);
2601
2602         flush_work(&p->discard_work);
2603
2604         destroy_swap_extents(p);
2605         if (p->flags & SWP_CONTINUED)
2606                 free_swap_count_continuations(p);
2607
2608         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2609                 atomic_dec(&nr_rotate_swap);
2610
2611         mutex_lock(&swapon_mutex);
2612         spin_lock(&swap_lock);
2613         spin_lock(&p->lock);
2614         drain_mmlist();
2615
2616         /* wait for anyone still in scan_swap_map_slots */
2617         p->highest_bit = 0;             /* cuts scans short */
2618         while (p->flags >= SWP_SCANNING) {
2619                 spin_unlock(&p->lock);
2620                 spin_unlock(&swap_lock);
2621                 schedule_timeout_uninterruptible(1);
2622                 spin_lock(&swap_lock);
2623                 spin_lock(&p->lock);
2624         }
2625
2626         swap_file = p->swap_file;
2627         old_block_size = p->old_block_size;
2628         p->swap_file = NULL;
2629         p->max = 0;
2630         swap_map = p->swap_map;
2631         p->swap_map = NULL;
2632         cluster_info = p->cluster_info;
2633         p->cluster_info = NULL;
2634         frontswap_map = frontswap_map_get(p);
2635         spin_unlock(&p->lock);
2636         spin_unlock(&swap_lock);
2637         arch_swap_invalidate_area(p->type);
2638         frontswap_invalidate_area(p->type);
2639         frontswap_map_set(p, NULL);
2640         mutex_unlock(&swapon_mutex);
2641         free_percpu(p->percpu_cluster);
2642         p->percpu_cluster = NULL;
2643         free_percpu(p->cluster_next_cpu);
2644         p->cluster_next_cpu = NULL;
2645         vfree(swap_map);
2646         kvfree(cluster_info);
2647         kvfree(frontswap_map);
2648         /* Destroy swap account information */
2649         swap_cgroup_swapoff(p->type);
2650         exit_swap_address_space(p->type);
2651
2652         inode = mapping->host;
2653         if (S_ISBLK(inode->i_mode)) {
2654                 struct block_device *bdev = I_BDEV(inode);
2655
2656                 set_blocksize(bdev, old_block_size);
2657                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2658         }
2659
2660         inode_lock(inode);
2661         inode->i_flags &= ~S_SWAPFILE;
2662         inode_unlock(inode);
2663         filp_close(swap_file, NULL);
2664
2665         /*
2666          * Clear the SWP_USED flag after all resources are freed so that swapon
2667          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2668          * not hold p->lock after we cleared its SWP_WRITEOK.
2669          */
2670         spin_lock(&swap_lock);
2671         p->flags = 0;
2672         spin_unlock(&swap_lock);
2673
2674         err = 0;
2675         atomic_inc(&proc_poll_event);
2676         wake_up_interruptible(&proc_poll_wait);
2677
2678 out_dput:
2679         filp_close(victim, NULL);
2680 out:
2681         putname(pathname);
2682         return err;
2683 }
2684
2685 #ifdef CONFIG_PROC_FS
2686 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2687 {
2688         struct seq_file *seq = file->private_data;
2689
2690         poll_wait(file, &proc_poll_wait, wait);
2691
2692         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2693                 seq->poll_event = atomic_read(&proc_poll_event);
2694                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2695         }
2696
2697         return EPOLLIN | EPOLLRDNORM;
2698 }
2699
2700 /* iterator */
2701 static void *swap_start(struct seq_file *swap, loff_t *pos)
2702 {
2703         struct swap_info_struct *si;
2704         int type;
2705         loff_t l = *pos;
2706
2707         mutex_lock(&swapon_mutex);
2708
2709         if (!l)
2710                 return SEQ_START_TOKEN;
2711
2712         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2713                 if (!(si->flags & SWP_USED) || !si->swap_map)
2714                         continue;
2715                 if (!--l)
2716                         return si;
2717         }
2718
2719         return NULL;
2720 }
2721
2722 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2723 {
2724         struct swap_info_struct *si = v;
2725         int type;
2726
2727         if (v == SEQ_START_TOKEN)
2728                 type = 0;
2729         else
2730                 type = si->type + 1;
2731
2732         ++(*pos);
2733         for (; (si = swap_type_to_swap_info(type)); type++) {
2734                 if (!(si->flags & SWP_USED) || !si->swap_map)
2735                         continue;
2736                 return si;
2737         }
2738
2739         return NULL;
2740 }
2741
2742 static void swap_stop(struct seq_file *swap, void *v)
2743 {
2744         mutex_unlock(&swapon_mutex);
2745 }
2746
2747 static int swap_show(struct seq_file *swap, void *v)
2748 {
2749         struct swap_info_struct *si = v;
2750         struct file *file;
2751         int len;
2752         unsigned long bytes, inuse;
2753
2754         if (si == SEQ_START_TOKEN) {
2755                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2756                 return 0;
2757         }
2758
2759         bytes = si->pages << (PAGE_SHIFT - 10);
2760         inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2761
2762         file = si->swap_file;
2763         len = seq_file_path(swap, file, " \t\n\\");
2764         seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2765                         len < 40 ? 40 - len : 1, " ",
2766                         S_ISBLK(file_inode(file)->i_mode) ?
2767                                 "partition" : "file\t",
2768                         bytes, bytes < 10000000 ? "\t" : "",
2769                         inuse, inuse < 10000000 ? "\t" : "",
2770                         si->prio);
2771         return 0;
2772 }
2773
2774 static const struct seq_operations swaps_op = {
2775         .start =        swap_start,
2776         .next =         swap_next,
2777         .stop =         swap_stop,
2778         .show =         swap_show
2779 };
2780
2781 static int swaps_open(struct inode *inode, struct file *file)
2782 {
2783         struct seq_file *seq;
2784         int ret;
2785
2786         ret = seq_open(file, &swaps_op);
2787         if (ret)
2788                 return ret;
2789
2790         seq = file->private_data;
2791         seq->poll_event = atomic_read(&proc_poll_event);
2792         return 0;
2793 }
2794
2795 static const struct proc_ops swaps_proc_ops = {
2796         .proc_flags     = PROC_ENTRY_PERMANENT,
2797         .proc_open      = swaps_open,
2798         .proc_read      = seq_read,
2799         .proc_lseek     = seq_lseek,
2800         .proc_release   = seq_release,
2801         .proc_poll      = swaps_poll,
2802 };
2803
2804 static int __init procswaps_init(void)
2805 {
2806         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2807         return 0;
2808 }
2809 __initcall(procswaps_init);
2810 #endif /* CONFIG_PROC_FS */
2811
2812 #ifdef MAX_SWAPFILES_CHECK
2813 static int __init max_swapfiles_check(void)
2814 {
2815         MAX_SWAPFILES_CHECK();
2816         return 0;
2817 }
2818 late_initcall(max_swapfiles_check);
2819 #endif
2820
2821 static struct swap_info_struct *alloc_swap_info(void)
2822 {
2823         struct swap_info_struct *p;
2824         struct swap_info_struct *defer = NULL;
2825         unsigned int type;
2826         int i;
2827
2828         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2829         if (!p)
2830                 return ERR_PTR(-ENOMEM);
2831
2832         if (percpu_ref_init(&p->users, swap_users_ref_free,
2833                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2834                 kvfree(p);
2835                 return ERR_PTR(-ENOMEM);
2836         }
2837
2838         spin_lock(&swap_lock);
2839         for (type = 0; type < nr_swapfiles; type++) {
2840                 if (!(swap_info[type]->flags & SWP_USED))
2841                         break;
2842         }
2843         if (type >= MAX_SWAPFILES) {
2844                 spin_unlock(&swap_lock);
2845                 percpu_ref_exit(&p->users);
2846                 kvfree(p);
2847                 return ERR_PTR(-EPERM);
2848         }
2849         if (type >= nr_swapfiles) {
2850                 p->type = type;
2851                 /*
2852                  * Publish the swap_info_struct after initializing it.
2853                  * Note that kvzalloc() above zeroes all its fields.
2854                  */
2855                 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2856                 nr_swapfiles++;
2857         } else {
2858                 defer = p;
2859                 p = swap_info[type];
2860                 /*
2861                  * Do not memset this entry: a racing procfs swap_next()
2862                  * would be relying on p->type to remain valid.
2863                  */
2864         }
2865         p->swap_extent_root = RB_ROOT;
2866         plist_node_init(&p->list, 0);
2867         for_each_node(i)
2868                 plist_node_init(&p->avail_lists[i], 0);
2869         p->flags = SWP_USED;
2870         spin_unlock(&swap_lock);
2871         if (defer) {
2872                 percpu_ref_exit(&defer->users);
2873                 kvfree(defer);
2874         }
2875         spin_lock_init(&p->lock);
2876         spin_lock_init(&p->cont_lock);
2877         init_completion(&p->comp);
2878
2879         return p;
2880 }
2881
2882 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2883 {
2884         int error;
2885
2886         if (S_ISBLK(inode->i_mode)) {
2887                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2888                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2889                 if (IS_ERR(p->bdev)) {
2890                         error = PTR_ERR(p->bdev);
2891                         p->bdev = NULL;
2892                         return error;
2893                 }
2894                 p->old_block_size = block_size(p->bdev);
2895                 error = set_blocksize(p->bdev, PAGE_SIZE);
2896                 if (error < 0)
2897                         return error;
2898                 /*
2899                  * Zoned block devices contain zones that have a sequential
2900                  * write only restriction.  Hence zoned block devices are not
2901                  * suitable for swapping.  Disallow them here.
2902                  */
2903                 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2904                         return -EINVAL;
2905                 p->flags |= SWP_BLKDEV;
2906         } else if (S_ISREG(inode->i_mode)) {
2907                 p->bdev = inode->i_sb->s_bdev;
2908         }
2909
2910         return 0;
2911 }
2912
2913
2914 /*
2915  * Find out how many pages are allowed for a single swap device. There
2916  * are two limiting factors:
2917  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2918  * 2) the number of bits in the swap pte, as defined by the different
2919  * architectures.
2920  *
2921  * In order to find the largest possible bit mask, a swap entry with
2922  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2923  * decoded to a swp_entry_t again, and finally the swap offset is
2924  * extracted.
2925  *
2926  * This will mask all the bits from the initial ~0UL mask that can't
2927  * be encoded in either the swp_entry_t or the architecture definition
2928  * of a swap pte.
2929  */
2930 unsigned long generic_max_swapfile_size(void)
2931 {
2932         return swp_offset(pte_to_swp_entry(
2933                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2934 }
2935
2936 /* Can be overridden by an architecture for additional checks. */
2937 __weak unsigned long max_swapfile_size(void)
2938 {
2939         return generic_max_swapfile_size();
2940 }
2941
2942 static unsigned long read_swap_header(struct swap_info_struct *p,
2943                                         union swap_header *swap_header,
2944                                         struct inode *inode)
2945 {
2946         int i;
2947         unsigned long maxpages;
2948         unsigned long swapfilepages;
2949         unsigned long last_page;
2950
2951         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2952                 pr_err("Unable to find swap-space signature\n");
2953                 return 0;
2954         }
2955
2956         /* swap partition endianness hack... */
2957         if (swab32(swap_header->info.version) == 1) {
2958                 swab32s(&swap_header->info.version);
2959                 swab32s(&swap_header->info.last_page);
2960                 swab32s(&swap_header->info.nr_badpages);
2961                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2962                         return 0;
2963                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2964                         swab32s(&swap_header->info.badpages[i]);
2965         }
2966         /* Check the swap header's sub-version */
2967         if (swap_header->info.version != 1) {
2968                 pr_warn("Unable to handle swap header version %d\n",
2969                         swap_header->info.version);
2970                 return 0;
2971         }
2972
2973         p->lowest_bit  = 1;
2974         p->cluster_next = 1;
2975         p->cluster_nr = 0;
2976
2977         maxpages = max_swapfile_size();
2978         last_page = swap_header->info.last_page;
2979         if (!last_page) {
2980                 pr_warn("Empty swap-file\n");
2981                 return 0;
2982         }
2983         if (last_page > maxpages) {
2984                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2985                         maxpages << (PAGE_SHIFT - 10),
2986                         last_page << (PAGE_SHIFT - 10));
2987         }
2988         if (maxpages > last_page) {
2989                 maxpages = last_page + 1;
2990                 /* p->max is an unsigned int: don't overflow it */
2991                 if ((unsigned int)maxpages == 0)
2992                         maxpages = UINT_MAX;
2993         }
2994         p->highest_bit = maxpages - 1;
2995
2996         if (!maxpages)
2997                 return 0;
2998         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2999         if (swapfilepages && maxpages > swapfilepages) {
3000                 pr_warn("Swap area shorter than signature indicates\n");
3001                 return 0;
3002         }
3003         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3004                 return 0;
3005         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3006                 return 0;
3007
3008         return maxpages;
3009 }
3010
3011 #define SWAP_CLUSTER_INFO_COLS                                          \
3012         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3013 #define SWAP_CLUSTER_SPACE_COLS                                         \
3014         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3015 #define SWAP_CLUSTER_COLS                                               \
3016         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3017
3018 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3019                                         union swap_header *swap_header,
3020                                         unsigned char *swap_map,
3021                                         struct swap_cluster_info *cluster_info,
3022                                         unsigned long maxpages,
3023                                         sector_t *span)
3024 {
3025         unsigned int j, k;
3026         unsigned int nr_good_pages;
3027         int nr_extents;
3028         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3029         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3030         unsigned long i, idx;
3031
3032         nr_good_pages = maxpages - 1;   /* omit header page */
3033
3034         cluster_list_init(&p->free_clusters);
3035         cluster_list_init(&p->discard_clusters);
3036
3037         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3038                 unsigned int page_nr = swap_header->info.badpages[i];
3039                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3040                         return -EINVAL;
3041                 if (page_nr < maxpages) {
3042                         swap_map[page_nr] = SWAP_MAP_BAD;
3043                         nr_good_pages--;
3044                         /*
3045                          * Haven't marked the cluster free yet, no list
3046                          * operation involved
3047                          */
3048                         inc_cluster_info_page(p, cluster_info, page_nr);
3049                 }
3050         }
3051
3052         /* Haven't marked the cluster free yet, no list operation involved */
3053         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3054                 inc_cluster_info_page(p, cluster_info, i);
3055
3056         if (nr_good_pages) {
3057                 swap_map[0] = SWAP_MAP_BAD;
3058                 /*
3059                  * Not mark the cluster free yet, no list
3060                  * operation involved
3061                  */
3062                 inc_cluster_info_page(p, cluster_info, 0);
3063                 p->max = maxpages;
3064                 p->pages = nr_good_pages;
3065                 nr_extents = setup_swap_extents(p, span);
3066                 if (nr_extents < 0)
3067                         return nr_extents;
3068                 nr_good_pages = p->pages;
3069         }
3070         if (!nr_good_pages) {
3071                 pr_warn("Empty swap-file\n");
3072                 return -EINVAL;
3073         }
3074
3075         if (!cluster_info)
3076                 return nr_extents;
3077
3078
3079         /*
3080          * Reduce false cache line sharing between cluster_info and
3081          * sharing same address space.
3082          */
3083         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3084                 j = (k + col) % SWAP_CLUSTER_COLS;
3085                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3086                         idx = i * SWAP_CLUSTER_COLS + j;
3087                         if (idx >= nr_clusters)
3088                                 continue;
3089                         if (cluster_count(&cluster_info[idx]))
3090                                 continue;
3091                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3092                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3093                                               idx);
3094                 }
3095         }
3096         return nr_extents;
3097 }
3098
3099 /*
3100  * Helper to sys_swapon determining if a given swap
3101  * backing device queue supports DISCARD operations.
3102  */
3103 static bool swap_discardable(struct swap_info_struct *si)
3104 {
3105         struct request_queue *q = bdev_get_queue(si->bdev);
3106
3107         if (!blk_queue_discard(q))
3108                 return false;
3109
3110         return true;
3111 }
3112
3113 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3114 {
3115         struct swap_info_struct *p;
3116         struct filename *name;
3117         struct file *swap_file = NULL;
3118         struct address_space *mapping;
3119         struct dentry *dentry;
3120         int prio;
3121         int error;
3122         union swap_header *swap_header;
3123         int nr_extents;
3124         sector_t span;
3125         unsigned long maxpages;
3126         unsigned char *swap_map = NULL;
3127         struct swap_cluster_info *cluster_info = NULL;
3128         unsigned long *frontswap_map = NULL;
3129         struct page *page = NULL;
3130         struct inode *inode = NULL;
3131         bool inced_nr_rotate_swap = false;
3132
3133         if (swap_flags & ~SWAP_FLAGS_VALID)
3134                 return -EINVAL;
3135
3136         if (!capable(CAP_SYS_ADMIN))
3137                 return -EPERM;
3138
3139         if (!swap_avail_heads)
3140                 return -ENOMEM;
3141
3142         p = alloc_swap_info();
3143         if (IS_ERR(p))
3144                 return PTR_ERR(p);
3145
3146         INIT_WORK(&p->discard_work, swap_discard_work);
3147
3148         name = getname(specialfile);
3149         if (IS_ERR(name)) {
3150                 error = PTR_ERR(name);
3151                 name = NULL;
3152                 goto bad_swap;
3153         }
3154         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3155         if (IS_ERR(swap_file)) {
3156                 error = PTR_ERR(swap_file);
3157                 swap_file = NULL;
3158                 goto bad_swap;
3159         }
3160
3161         p->swap_file = swap_file;
3162         mapping = swap_file->f_mapping;
3163         dentry = swap_file->f_path.dentry;
3164         inode = mapping->host;
3165
3166         error = claim_swapfile(p, inode);
3167         if (unlikely(error))
3168                 goto bad_swap;
3169
3170         inode_lock(inode);
3171         if (d_unlinked(dentry) || cant_mount(dentry)) {
3172                 error = -ENOENT;
3173                 goto bad_swap_unlock_inode;
3174         }
3175         if (IS_SWAPFILE(inode)) {
3176                 error = -EBUSY;
3177                 goto bad_swap_unlock_inode;
3178         }
3179
3180         /*
3181          * Read the swap header.
3182          */
3183         if (!mapping->a_ops->readpage) {
3184                 error = -EINVAL;
3185                 goto bad_swap_unlock_inode;
3186         }
3187         page = read_mapping_page(mapping, 0, swap_file);
3188         if (IS_ERR(page)) {
3189                 error = PTR_ERR(page);
3190                 goto bad_swap_unlock_inode;
3191         }
3192         swap_header = kmap(page);
3193
3194         maxpages = read_swap_header(p, swap_header, inode);
3195         if (unlikely(!maxpages)) {
3196                 error = -EINVAL;
3197                 goto bad_swap_unlock_inode;
3198         }
3199
3200         /* OK, set up the swap map and apply the bad block list */
3201         swap_map = vzalloc(maxpages);
3202         if (!swap_map) {
3203                 error = -ENOMEM;
3204                 goto bad_swap_unlock_inode;
3205         }
3206
3207         if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3208                 p->flags |= SWP_STABLE_WRITES;
3209
3210         if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3211                 p->flags |= SWP_SYNCHRONOUS_IO;
3212
3213         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3214                 int cpu;
3215                 unsigned long ci, nr_cluster;
3216
3217                 p->flags |= SWP_SOLIDSTATE;
3218                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3219                 if (!p->cluster_next_cpu) {
3220                         error = -ENOMEM;
3221                         goto bad_swap_unlock_inode;
3222                 }
3223                 /*
3224                  * select a random position to start with to help wear leveling
3225                  * SSD
3226                  */
3227                 for_each_possible_cpu(cpu) {
3228                         per_cpu(*p->cluster_next_cpu, cpu) =
3229                                 1 + prandom_u32_max(p->highest_bit);
3230                 }
3231                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3232
3233                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3234                                         GFP_KERNEL);
3235                 if (!cluster_info) {
3236                         error = -ENOMEM;
3237                         goto bad_swap_unlock_inode;
3238                 }
3239
3240                 for (ci = 0; ci < nr_cluster; ci++)
3241                         spin_lock_init(&((cluster_info + ci)->lock));
3242
3243                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3244                 if (!p->percpu_cluster) {
3245                         error = -ENOMEM;
3246                         goto bad_swap_unlock_inode;
3247                 }
3248                 for_each_possible_cpu(cpu) {
3249                         struct percpu_cluster *cluster;
3250                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3251                         cluster_set_null(&cluster->index);
3252                 }
3253         } else {
3254                 atomic_inc(&nr_rotate_swap);
3255                 inced_nr_rotate_swap = true;
3256         }
3257
3258         error = swap_cgroup_swapon(p->type, maxpages);
3259         if (error)
3260                 goto bad_swap_unlock_inode;
3261
3262         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3263                 cluster_info, maxpages, &span);
3264         if (unlikely(nr_extents < 0)) {
3265                 error = nr_extents;
3266                 goto bad_swap_unlock_inode;
3267         }
3268         /* frontswap enabled? set up bit-per-page map for frontswap */
3269         if (IS_ENABLED(CONFIG_FRONTSWAP))
3270                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3271                                          sizeof(long),
3272                                          GFP_KERNEL);
3273
3274         if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3275                 /*
3276                  * When discard is enabled for swap with no particular
3277                  * policy flagged, we set all swap discard flags here in
3278                  * order to sustain backward compatibility with older
3279                  * swapon(8) releases.
3280                  */
3281                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3282                              SWP_PAGE_DISCARD);
3283
3284                 /*
3285                  * By flagging sys_swapon, a sysadmin can tell us to
3286                  * either do single-time area discards only, or to just
3287                  * perform discards for released swap page-clusters.
3288                  * Now it's time to adjust the p->flags accordingly.
3289                  */
3290                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3291                         p->flags &= ~SWP_PAGE_DISCARD;
3292                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3293                         p->flags &= ~SWP_AREA_DISCARD;
3294
3295                 /* issue a swapon-time discard if it's still required */
3296                 if (p->flags & SWP_AREA_DISCARD) {
3297                         int err = discard_swap(p);
3298                         if (unlikely(err))
3299                                 pr_err("swapon: discard_swap(%p): %d\n",
3300                                         p, err);
3301                 }
3302         }
3303
3304         error = init_swap_address_space(p->type, maxpages);
3305         if (error)
3306                 goto bad_swap_unlock_inode;
3307
3308         /*
3309          * Flush any pending IO and dirty mappings before we start using this
3310          * swap device.
3311          */
3312         inode->i_flags |= S_SWAPFILE;
3313         error = inode_drain_writes(inode);
3314         if (error) {
3315                 inode->i_flags &= ~S_SWAPFILE;
3316                 goto free_swap_address_space;
3317         }
3318
3319         mutex_lock(&swapon_mutex);
3320         prio = -1;
3321         if (swap_flags & SWAP_FLAG_PREFER)
3322                 prio =
3323                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3324         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3325
3326         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3327                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3328                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3329                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3330                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3331                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3332                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3333                 (frontswap_map) ? "FS" : "");
3334
3335         mutex_unlock(&swapon_mutex);
3336         atomic_inc(&proc_poll_event);
3337         wake_up_interruptible(&proc_poll_wait);
3338
3339         error = 0;
3340         goto out;
3341 free_swap_address_space:
3342         exit_swap_address_space(p->type);
3343 bad_swap_unlock_inode:
3344         inode_unlock(inode);
3345 bad_swap:
3346         free_percpu(p->percpu_cluster);
3347         p->percpu_cluster = NULL;
3348         free_percpu(p->cluster_next_cpu);
3349         p->cluster_next_cpu = NULL;
3350         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3351                 set_blocksize(p->bdev, p->old_block_size);
3352                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3353         }
3354         inode = NULL;
3355         destroy_swap_extents(p);
3356         swap_cgroup_swapoff(p->type);
3357         spin_lock(&swap_lock);
3358         p->swap_file = NULL;
3359         p->flags = 0;
3360         spin_unlock(&swap_lock);
3361         vfree(swap_map);
3362         kvfree(cluster_info);
3363         kvfree(frontswap_map);
3364         if (inced_nr_rotate_swap)
3365                 atomic_dec(&nr_rotate_swap);
3366         if (swap_file)
3367                 filp_close(swap_file, NULL);
3368 out:
3369         if (page && !IS_ERR(page)) {
3370                 kunmap(page);
3371                 put_page(page);
3372         }
3373         if (name)
3374                 putname(name);
3375         if (inode)
3376                 inode_unlock(inode);
3377         if (!error)
3378                 enable_swap_slots_cache();
3379         return error;
3380 }
3381
3382 void si_swapinfo(struct sysinfo *val)
3383 {
3384         unsigned int type;
3385         unsigned long nr_to_be_unused = 0;
3386
3387         spin_lock(&swap_lock);
3388         for (type = 0; type < nr_swapfiles; type++) {
3389                 struct swap_info_struct *si = swap_info[type];
3390
3391                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3392                         nr_to_be_unused += si->inuse_pages;
3393         }
3394         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3395         val->totalswap = total_swap_pages + nr_to_be_unused;
3396         spin_unlock(&swap_lock);
3397 }
3398
3399 /*
3400  * Verify that a swap entry is valid and increment its swap map count.
3401  *
3402  * Returns error code in following case.
3403  * - success -> 0
3404  * - swp_entry is invalid -> EINVAL
3405  * - swp_entry is migration entry -> EINVAL
3406  * - swap-cache reference is requested but there is already one. -> EEXIST
3407  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3408  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3409  */
3410 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3411 {
3412         struct swap_info_struct *p;
3413         struct swap_cluster_info *ci;
3414         unsigned long offset;
3415         unsigned char count;
3416         unsigned char has_cache;
3417         int err;
3418
3419         p = get_swap_device(entry);
3420         if (!p)
3421                 return -EINVAL;
3422
3423         offset = swp_offset(entry);
3424         ci = lock_cluster_or_swap_info(p, offset);
3425
3426         count = p->swap_map[offset];
3427
3428         /*
3429          * swapin_readahead() doesn't check if a swap entry is valid, so the
3430          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3431          */
3432         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3433                 err = -ENOENT;
3434                 goto unlock_out;
3435         }
3436
3437         has_cache = count & SWAP_HAS_CACHE;
3438         count &= ~SWAP_HAS_CACHE;
3439         err = 0;
3440
3441         if (usage == SWAP_HAS_CACHE) {
3442
3443                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3444                 if (!has_cache && count)
3445                         has_cache = SWAP_HAS_CACHE;
3446                 else if (has_cache)             /* someone else added cache */
3447                         err = -EEXIST;
3448                 else                            /* no users remaining */
3449                         err = -ENOENT;
3450
3451         } else if (count || has_cache) {
3452
3453                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3454                         count += usage;
3455                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3456                         err = -EINVAL;
3457                 else if (swap_count_continued(p, offset, count))
3458                         count = COUNT_CONTINUED;
3459                 else
3460                         err = -ENOMEM;
3461         } else
3462                 err = -ENOENT;                  /* unused swap entry */
3463
3464         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3465
3466 unlock_out:
3467         unlock_cluster_or_swap_info(p, ci);
3468         if (p)
3469                 put_swap_device(p);
3470         return err;
3471 }
3472
3473 /*
3474  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3475  * (in which case its reference count is never incremented).
3476  */
3477 void swap_shmem_alloc(swp_entry_t entry)
3478 {
3479         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3480 }
3481
3482 /*
3483  * Increase reference count of swap entry by 1.
3484  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3485  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3486  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3487  * might occur if a page table entry has got corrupted.
3488  */
3489 int swap_duplicate(swp_entry_t entry)
3490 {
3491         int err = 0;
3492
3493         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3494                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3495         return err;
3496 }
3497
3498 /*
3499  * @entry: swap entry for which we allocate swap cache.
3500  *
3501  * Called when allocating swap cache for existing swap entry,
3502  * This can return error codes. Returns 0 at success.
3503  * -EEXIST means there is a swap cache.
3504  * Note: return code is different from swap_duplicate().
3505  */
3506 int swapcache_prepare(swp_entry_t entry)
3507 {
3508         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3509 }
3510
3511 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3512 {
3513         return swap_type_to_swap_info(swp_type(entry));
3514 }
3515
3516 struct swap_info_struct *page_swap_info(struct page *page)
3517 {
3518         swp_entry_t entry = { .val = page_private(page) };
3519         return swp_swap_info(entry);
3520 }
3521
3522 /*
3523  * out-of-line methods to avoid include hell.
3524  */
3525 struct address_space *swapcache_mapping(struct folio *folio)
3526 {
3527         return page_swap_info(&folio->page)->swap_file->f_mapping;
3528 }
3529 EXPORT_SYMBOL_GPL(swapcache_mapping);
3530
3531 pgoff_t __page_file_index(struct page *page)
3532 {
3533         swp_entry_t swap = { .val = page_private(page) };
3534         return swp_offset(swap);
3535 }
3536 EXPORT_SYMBOL_GPL(__page_file_index);
3537
3538 /*
3539  * add_swap_count_continuation - called when a swap count is duplicated
3540  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3541  * page of the original vmalloc'ed swap_map, to hold the continuation count
3542  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3543  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3544  *
3545  * These continuation pages are seldom referenced: the common paths all work
3546  * on the original swap_map, only referring to a continuation page when the
3547  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3548  *
3549  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3550  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3551  * can be called after dropping locks.
3552  */
3553 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3554 {
3555         struct swap_info_struct *si;
3556         struct swap_cluster_info *ci;
3557         struct page *head;
3558         struct page *page;
3559         struct page *list_page;
3560         pgoff_t offset;
3561         unsigned char count;
3562         int ret = 0;
3563
3564         /*
3565          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3566          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3567          */
3568         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3569
3570         si = get_swap_device(entry);
3571         if (!si) {
3572                 /*
3573                  * An acceptable race has occurred since the failing
3574                  * __swap_duplicate(): the swap device may be swapoff
3575                  */
3576                 goto outer;
3577         }
3578         spin_lock(&si->lock);
3579
3580         offset = swp_offset(entry);
3581
3582         ci = lock_cluster(si, offset);
3583
3584         count = swap_count(si->swap_map[offset]);
3585
3586         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3587                 /*
3588                  * The higher the swap count, the more likely it is that tasks
3589                  * will race to add swap count continuation: we need to avoid
3590                  * over-provisioning.
3591                  */
3592                 goto out;
3593         }
3594
3595         if (!page) {
3596                 ret = -ENOMEM;
3597                 goto out;
3598         }
3599
3600         /*
3601          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3602          * no architecture is using highmem pages for kernel page tables: so it
3603          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3604          */
3605         head = vmalloc_to_page(si->swap_map + offset);
3606         offset &= ~PAGE_MASK;
3607
3608         spin_lock(&si->cont_lock);
3609         /*
3610          * Page allocation does not initialize the page's lru field,
3611          * but it does always reset its private field.
3612          */
3613         if (!page_private(head)) {
3614                 BUG_ON(count & COUNT_CONTINUED);
3615                 INIT_LIST_HEAD(&head->lru);
3616                 set_page_private(head, SWP_CONTINUED);
3617                 si->flags |= SWP_CONTINUED;
3618         }
3619
3620         list_for_each_entry(list_page, &head->lru, lru) {
3621                 unsigned char *map;
3622
3623                 /*
3624                  * If the previous map said no continuation, but we've found
3625                  * a continuation page, free our allocation and use this one.
3626                  */
3627                 if (!(count & COUNT_CONTINUED))
3628                         goto out_unlock_cont;
3629
3630                 map = kmap_atomic(list_page) + offset;
3631                 count = *map;
3632                 kunmap_atomic(map);
3633
3634                 /*
3635                  * If this continuation count now has some space in it,
3636                  * free our allocation and use this one.
3637                  */
3638                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3639                         goto out_unlock_cont;
3640         }
3641
3642         list_add_tail(&page->lru, &head->lru);
3643         page = NULL;                    /* now it's attached, don't free it */
3644 out_unlock_cont:
3645         spin_unlock(&si->cont_lock);
3646 out:
3647         unlock_cluster(ci);
3648         spin_unlock(&si->lock);
3649         put_swap_device(si);
3650 outer:
3651         if (page)
3652                 __free_page(page);
3653         return ret;
3654 }
3655
3656 /*
3657  * swap_count_continued - when the original swap_map count is incremented
3658  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3659  * into, carry if so, or else fail until a new continuation page is allocated;
3660  * when the original swap_map count is decremented from 0 with continuation,
3661  * borrow from the continuation and report whether it still holds more.
3662  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3663  * lock.
3664  */
3665 static bool swap_count_continued(struct swap_info_struct *si,
3666                                  pgoff_t offset, unsigned char count)
3667 {
3668         struct page *head;
3669         struct page *page;
3670         unsigned char *map;
3671         bool ret;
3672
3673         head = vmalloc_to_page(si->swap_map + offset);
3674         if (page_private(head) != SWP_CONTINUED) {
3675                 BUG_ON(count & COUNT_CONTINUED);
3676                 return false;           /* need to add count continuation */
3677         }
3678
3679         spin_lock(&si->cont_lock);
3680         offset &= ~PAGE_MASK;
3681         page = list_next_entry(head, lru);
3682         map = kmap_atomic(page) + offset;
3683
3684         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3685                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3686
3687         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3688                 /*
3689                  * Think of how you add 1 to 999
3690                  */
3691                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3692                         kunmap_atomic(map);
3693                         page = list_next_entry(page, lru);
3694                         BUG_ON(page == head);
3695                         map = kmap_atomic(page) + offset;
3696                 }
3697                 if (*map == SWAP_CONT_MAX) {
3698                         kunmap_atomic(map);
3699                         page = list_next_entry(page, lru);
3700                         if (page == head) {
3701                                 ret = false;    /* add count continuation */
3702                                 goto out;
3703                         }
3704                         map = kmap_atomic(page) + offset;
3705 init_map:               *map = 0;               /* we didn't zero the page */
3706                 }
3707                 *map += 1;
3708                 kunmap_atomic(map);
3709                 while ((page = list_prev_entry(page, lru)) != head) {
3710                         map = kmap_atomic(page) + offset;
3711                         *map = COUNT_CONTINUED;
3712                         kunmap_atomic(map);
3713                 }
3714                 ret = true;                     /* incremented */
3715
3716         } else {                                /* decrementing */
3717                 /*
3718                  * Think of how you subtract 1 from 1000
3719                  */
3720                 BUG_ON(count != COUNT_CONTINUED);
3721                 while (*map == COUNT_CONTINUED) {
3722                         kunmap_atomic(map);
3723                         page = list_next_entry(page, lru);
3724                         BUG_ON(page == head);
3725                         map = kmap_atomic(page) + offset;
3726                 }
3727                 BUG_ON(*map == 0);
3728                 *map -= 1;
3729                 if (*map == 0)
3730                         count = 0;
3731                 kunmap_atomic(map);
3732                 while ((page = list_prev_entry(page, lru)) != head) {
3733                         map = kmap_atomic(page) + offset;
3734                         *map = SWAP_CONT_MAX | count;
3735                         count = COUNT_CONTINUED;
3736                         kunmap_atomic(map);
3737                 }
3738                 ret = count == COUNT_CONTINUED;
3739         }
3740 out:
3741         spin_unlock(&si->cont_lock);
3742         return ret;
3743 }
3744
3745 /*
3746  * free_swap_count_continuations - swapoff free all the continuation pages
3747  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3748  */
3749 static void free_swap_count_continuations(struct swap_info_struct *si)
3750 {
3751         pgoff_t offset;
3752
3753         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3754                 struct page *head;
3755                 head = vmalloc_to_page(si->swap_map + offset);
3756                 if (page_private(head)) {
3757                         struct page *page, *next;
3758
3759                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3760                                 list_del(&page->lru);
3761                                 __free_page(page);
3762                         }
3763                 }
3764         }
3765 }
3766
3767 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3768 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3769 {
3770         struct swap_info_struct *si, *next;
3771         int nid = page_to_nid(page);
3772
3773         if (!(gfp_mask & __GFP_IO))
3774                 return;
3775
3776         if (!blk_cgroup_congested())
3777                 return;
3778
3779         /*
3780          * We've already scheduled a throttle, avoid taking the global swap
3781          * lock.
3782          */
3783         if (current->throttle_queue)
3784                 return;
3785
3786         spin_lock(&swap_avail_lock);
3787         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3788                                   avail_lists[nid]) {
3789                 if (si->bdev) {
3790                         blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3791                         break;
3792                 }
3793         }
3794         spin_unlock(&swap_avail_lock);
3795 }
3796 #endif
3797
3798 static int __init swapfile_init(void)
3799 {
3800         int nid;
3801
3802         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3803                                          GFP_KERNEL);
3804         if (!swap_avail_heads) {
3805                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3806                 return -ENOMEM;
3807         }
3808
3809         for_each_node(nid)
3810                 plist_head_init(&swap_avail_heads[nid]);
3811
3812         return 0;
3813 }
3814 subsys_initcall(swapfile_init);