Merge branch 'akpm' (patches from Andrew)
[linux-2.6-microblaze.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blk-cgroup.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49                                  unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51
52 static DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 static PLIST_HEAD(swap_active_head);
75
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103         if (type >= MAX_SWAPFILES)
104                 return NULL;
105
106         return READ_ONCE(swap_info[type]); /* rcu_dereference() */
107 }
108
109 static inline unsigned char swap_count(unsigned char ent)
110 {
111         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
112 }
113
114 /* Reclaim the swap entry anyway if possible */
115 #define TTRS_ANYWAY             0x1
116 /*
117  * Reclaim the swap entry if there are no more mappings of the
118  * corresponding page
119  */
120 #define TTRS_UNMAPPED           0x2
121 /* Reclaim the swap entry if swap is getting full*/
122 #define TTRS_FULL               0x4
123
124 /* returns 1 if swap entry is freed */
125 static int __try_to_reclaim_swap(struct swap_info_struct *si,
126                                  unsigned long offset, unsigned long flags)
127 {
128         swp_entry_t entry = swp_entry(si->type, offset);
129         struct page *page;
130         int ret = 0;
131
132         page = find_get_page(swap_address_space(entry), offset);
133         if (!page)
134                 return 0;
135         /*
136          * When this function is called from scan_swap_map_slots() and it's
137          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
138          * here. We have to use trylock for avoiding deadlock. This is a special
139          * case and you should use try_to_free_swap() with explicit lock_page()
140          * in usual operations.
141          */
142         if (trylock_page(page)) {
143                 if ((flags & TTRS_ANYWAY) ||
144                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
145                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
146                         ret = try_to_free_swap(page);
147                 unlock_page(page);
148         }
149         put_page(page);
150         return ret;
151 }
152
153 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
154 {
155         struct rb_node *rb = rb_first(&sis->swap_extent_root);
156         return rb_entry(rb, struct swap_extent, rb_node);
157 }
158
159 static inline struct swap_extent *next_se(struct swap_extent *se)
160 {
161         struct rb_node *rb = rb_next(&se->rb_node);
162         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
163 }
164
165 /*
166  * swapon tell device that all the old swap contents can be discarded,
167  * to allow the swap device to optimize its wear-levelling.
168  */
169 static int discard_swap(struct swap_info_struct *si)
170 {
171         struct swap_extent *se;
172         sector_t start_block;
173         sector_t nr_blocks;
174         int err = 0;
175
176         /* Do not discard the swap header page! */
177         se = first_se(si);
178         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
179         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
180         if (nr_blocks) {
181                 err = blkdev_issue_discard(si->bdev, start_block,
182                                 nr_blocks, GFP_KERNEL, 0);
183                 if (err)
184                         return err;
185                 cond_resched();
186         }
187
188         for (se = next_se(se); se; se = next_se(se)) {
189                 start_block = se->start_block << (PAGE_SHIFT - 9);
190                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
191
192                 err = blkdev_issue_discard(si->bdev, start_block,
193                                 nr_blocks, GFP_KERNEL, 0);
194                 if (err)
195                         break;
196
197                 cond_resched();
198         }
199         return err;             /* That will often be -EOPNOTSUPP */
200 }
201
202 static struct swap_extent *
203 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
204 {
205         struct swap_extent *se;
206         struct rb_node *rb;
207
208         rb = sis->swap_extent_root.rb_node;
209         while (rb) {
210                 se = rb_entry(rb, struct swap_extent, rb_node);
211                 if (offset < se->start_page)
212                         rb = rb->rb_left;
213                 else if (offset >= se->start_page + se->nr_pages)
214                         rb = rb->rb_right;
215                 else
216                         return se;
217         }
218         /* It *must* be present */
219         BUG();
220 }
221
222 sector_t swap_page_sector(struct page *page)
223 {
224         struct swap_info_struct *sis = page_swap_info(page);
225         struct swap_extent *se;
226         sector_t sector;
227         pgoff_t offset;
228
229         offset = __page_file_index(page);
230         se = offset_to_swap_extent(sis, offset);
231         sector = se->start_block + (offset - se->start_page);
232         return sector << (PAGE_SHIFT - 9);
233 }
234
235 /*
236  * swap allocation tell device that a cluster of swap can now be discarded,
237  * to allow the swap device to optimize its wear-levelling.
238  */
239 static void discard_swap_cluster(struct swap_info_struct *si,
240                                  pgoff_t start_page, pgoff_t nr_pages)
241 {
242         struct swap_extent *se = offset_to_swap_extent(si, start_page);
243
244         while (nr_pages) {
245                 pgoff_t offset = start_page - se->start_page;
246                 sector_t start_block = se->start_block + offset;
247                 sector_t nr_blocks = se->nr_pages - offset;
248
249                 if (nr_blocks > nr_pages)
250                         nr_blocks = nr_pages;
251                 start_page += nr_blocks;
252                 nr_pages -= nr_blocks;
253
254                 start_block <<= PAGE_SHIFT - 9;
255                 nr_blocks <<= PAGE_SHIFT - 9;
256                 if (blkdev_issue_discard(si->bdev, start_block,
257                                         nr_blocks, GFP_NOIO, 0))
258                         break;
259
260                 se = next_se(se);
261         }
262 }
263
264 #ifdef CONFIG_THP_SWAP
265 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
266
267 #define swap_entry_size(size)   (size)
268 #else
269 #define SWAPFILE_CLUSTER        256
270
271 /*
272  * Define swap_entry_size() as constant to let compiler to optimize
273  * out some code if !CONFIG_THP_SWAP
274  */
275 #define swap_entry_size(size)   1
276 #endif
277 #define LATENCY_LIMIT           256
278
279 static inline void cluster_set_flag(struct swap_cluster_info *info,
280         unsigned int flag)
281 {
282         info->flags = flag;
283 }
284
285 static inline unsigned int cluster_count(struct swap_cluster_info *info)
286 {
287         return info->data;
288 }
289
290 static inline void cluster_set_count(struct swap_cluster_info *info,
291                                      unsigned int c)
292 {
293         info->data = c;
294 }
295
296 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
297                                          unsigned int c, unsigned int f)
298 {
299         info->flags = f;
300         info->data = c;
301 }
302
303 static inline unsigned int cluster_next(struct swap_cluster_info *info)
304 {
305         return info->data;
306 }
307
308 static inline void cluster_set_next(struct swap_cluster_info *info,
309                                     unsigned int n)
310 {
311         info->data = n;
312 }
313
314 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
315                                          unsigned int n, unsigned int f)
316 {
317         info->flags = f;
318         info->data = n;
319 }
320
321 static inline bool cluster_is_free(struct swap_cluster_info *info)
322 {
323         return info->flags & CLUSTER_FLAG_FREE;
324 }
325
326 static inline bool cluster_is_null(struct swap_cluster_info *info)
327 {
328         return info->flags & CLUSTER_FLAG_NEXT_NULL;
329 }
330
331 static inline void cluster_set_null(struct swap_cluster_info *info)
332 {
333         info->flags = CLUSTER_FLAG_NEXT_NULL;
334         info->data = 0;
335 }
336
337 static inline bool cluster_is_huge(struct swap_cluster_info *info)
338 {
339         if (IS_ENABLED(CONFIG_THP_SWAP))
340                 return info->flags & CLUSTER_FLAG_HUGE;
341         return false;
342 }
343
344 static inline void cluster_clear_huge(struct swap_cluster_info *info)
345 {
346         info->flags &= ~CLUSTER_FLAG_HUGE;
347 }
348
349 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
350                                                      unsigned long offset)
351 {
352         struct swap_cluster_info *ci;
353
354         ci = si->cluster_info;
355         if (ci) {
356                 ci += offset / SWAPFILE_CLUSTER;
357                 spin_lock(&ci->lock);
358         }
359         return ci;
360 }
361
362 static inline void unlock_cluster(struct swap_cluster_info *ci)
363 {
364         if (ci)
365                 spin_unlock(&ci->lock);
366 }
367
368 /*
369  * Determine the locking method in use for this device.  Return
370  * swap_cluster_info if SSD-style cluster-based locking is in place.
371  */
372 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
373                 struct swap_info_struct *si, unsigned long offset)
374 {
375         struct swap_cluster_info *ci;
376
377         /* Try to use fine-grained SSD-style locking if available: */
378         ci = lock_cluster(si, offset);
379         /* Otherwise, fall back to traditional, coarse locking: */
380         if (!ci)
381                 spin_lock(&si->lock);
382
383         return ci;
384 }
385
386 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
387                                                struct swap_cluster_info *ci)
388 {
389         if (ci)
390                 unlock_cluster(ci);
391         else
392                 spin_unlock(&si->lock);
393 }
394
395 static inline bool cluster_list_empty(struct swap_cluster_list *list)
396 {
397         return cluster_is_null(&list->head);
398 }
399
400 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
401 {
402         return cluster_next(&list->head);
403 }
404
405 static void cluster_list_init(struct swap_cluster_list *list)
406 {
407         cluster_set_null(&list->head);
408         cluster_set_null(&list->tail);
409 }
410
411 static void cluster_list_add_tail(struct swap_cluster_list *list,
412                                   struct swap_cluster_info *ci,
413                                   unsigned int idx)
414 {
415         if (cluster_list_empty(list)) {
416                 cluster_set_next_flag(&list->head, idx, 0);
417                 cluster_set_next_flag(&list->tail, idx, 0);
418         } else {
419                 struct swap_cluster_info *ci_tail;
420                 unsigned int tail = cluster_next(&list->tail);
421
422                 /*
423                  * Nested cluster lock, but both cluster locks are
424                  * only acquired when we held swap_info_struct->lock
425                  */
426                 ci_tail = ci + tail;
427                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
428                 cluster_set_next(ci_tail, idx);
429                 spin_unlock(&ci_tail->lock);
430                 cluster_set_next_flag(&list->tail, idx, 0);
431         }
432 }
433
434 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
435                                            struct swap_cluster_info *ci)
436 {
437         unsigned int idx;
438
439         idx = cluster_next(&list->head);
440         if (cluster_next(&list->tail) == idx) {
441                 cluster_set_null(&list->head);
442                 cluster_set_null(&list->tail);
443         } else
444                 cluster_set_next_flag(&list->head,
445                                       cluster_next(&ci[idx]), 0);
446
447         return idx;
448 }
449
450 /* Add a cluster to discard list and schedule it to do discard */
451 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
452                 unsigned int idx)
453 {
454         /*
455          * If scan_swap_map_slots() can't find a free cluster, it will check
456          * si->swap_map directly. To make sure the discarding cluster isn't
457          * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
458          * It will be cleared after discard
459          */
460         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
461                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
462
463         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
464
465         schedule_work(&si->discard_work);
466 }
467
468 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
469 {
470         struct swap_cluster_info *ci = si->cluster_info;
471
472         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
473         cluster_list_add_tail(&si->free_clusters, ci, idx);
474 }
475
476 /*
477  * Doing discard actually. After a cluster discard is finished, the cluster
478  * will be added to free cluster list. caller should hold si->lock.
479 */
480 static void swap_do_scheduled_discard(struct swap_info_struct *si)
481 {
482         struct swap_cluster_info *info, *ci;
483         unsigned int idx;
484
485         info = si->cluster_info;
486
487         while (!cluster_list_empty(&si->discard_clusters)) {
488                 idx = cluster_list_del_first(&si->discard_clusters, info);
489                 spin_unlock(&si->lock);
490
491                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
492                                 SWAPFILE_CLUSTER);
493
494                 spin_lock(&si->lock);
495                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
496                 __free_cluster(si, idx);
497                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
498                                 0, SWAPFILE_CLUSTER);
499                 unlock_cluster(ci);
500         }
501 }
502
503 static void swap_discard_work(struct work_struct *work)
504 {
505         struct swap_info_struct *si;
506
507         si = container_of(work, struct swap_info_struct, discard_work);
508
509         spin_lock(&si->lock);
510         swap_do_scheduled_discard(si);
511         spin_unlock(&si->lock);
512 }
513
514 static void swap_users_ref_free(struct percpu_ref *ref)
515 {
516         struct swap_info_struct *si;
517
518         si = container_of(ref, struct swap_info_struct, users);
519         complete(&si->comp);
520 }
521
522 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
523 {
524         struct swap_cluster_info *ci = si->cluster_info;
525
526         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
527         cluster_list_del_first(&si->free_clusters, ci);
528         cluster_set_count_flag(ci + idx, 0, 0);
529 }
530
531 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
532 {
533         struct swap_cluster_info *ci = si->cluster_info + idx;
534
535         VM_BUG_ON(cluster_count(ci) != 0);
536         /*
537          * If the swap is discardable, prepare discard the cluster
538          * instead of free it immediately. The cluster will be freed
539          * after discard.
540          */
541         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
542             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
543                 swap_cluster_schedule_discard(si, idx);
544                 return;
545         }
546
547         __free_cluster(si, idx);
548 }
549
550 /*
551  * The cluster corresponding to page_nr will be used. The cluster will be
552  * removed from free cluster list and its usage counter will be increased.
553  */
554 static void inc_cluster_info_page(struct swap_info_struct *p,
555         struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558
559         if (!cluster_info)
560                 return;
561         if (cluster_is_free(&cluster_info[idx]))
562                 alloc_cluster(p, idx);
563
564         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
565         cluster_set_count(&cluster_info[idx],
566                 cluster_count(&cluster_info[idx]) + 1);
567 }
568
569 /*
570  * The cluster corresponding to page_nr decreases one usage. If the usage
571  * counter becomes 0, which means no page in the cluster is in using, we can
572  * optionally discard the cluster and add it to free cluster list.
573  */
574 static void dec_cluster_info_page(struct swap_info_struct *p,
575         struct swap_cluster_info *cluster_info, unsigned long page_nr)
576 {
577         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
578
579         if (!cluster_info)
580                 return;
581
582         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
583         cluster_set_count(&cluster_info[idx],
584                 cluster_count(&cluster_info[idx]) - 1);
585
586         if (cluster_count(&cluster_info[idx]) == 0)
587                 free_cluster(p, idx);
588 }
589
590 /*
591  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
592  * cluster list. Avoiding such abuse to avoid list corruption.
593  */
594 static bool
595 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
596         unsigned long offset)
597 {
598         struct percpu_cluster *percpu_cluster;
599         bool conflict;
600
601         offset /= SWAPFILE_CLUSTER;
602         conflict = !cluster_list_empty(&si->free_clusters) &&
603                 offset != cluster_list_first(&si->free_clusters) &&
604                 cluster_is_free(&si->cluster_info[offset]);
605
606         if (!conflict)
607                 return false;
608
609         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
610         cluster_set_null(&percpu_cluster->index);
611         return true;
612 }
613
614 /*
615  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
616  * might involve allocating a new cluster for current CPU too.
617  */
618 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
619         unsigned long *offset, unsigned long *scan_base)
620 {
621         struct percpu_cluster *cluster;
622         struct swap_cluster_info *ci;
623         unsigned long tmp, max;
624
625 new_cluster:
626         cluster = this_cpu_ptr(si->percpu_cluster);
627         if (cluster_is_null(&cluster->index)) {
628                 if (!cluster_list_empty(&si->free_clusters)) {
629                         cluster->index = si->free_clusters.head;
630                         cluster->next = cluster_next(&cluster->index) *
631                                         SWAPFILE_CLUSTER;
632                 } else if (!cluster_list_empty(&si->discard_clusters)) {
633                         /*
634                          * we don't have free cluster but have some clusters in
635                          * discarding, do discard now and reclaim them, then
636                          * reread cluster_next_cpu since we dropped si->lock
637                          */
638                         swap_do_scheduled_discard(si);
639                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
640                         *offset = *scan_base;
641                         goto new_cluster;
642                 } else
643                         return false;
644         }
645
646         /*
647          * Other CPUs can use our cluster if they can't find a free cluster,
648          * check if there is still free entry in the cluster
649          */
650         tmp = cluster->next;
651         max = min_t(unsigned long, si->max,
652                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
653         if (tmp < max) {
654                 ci = lock_cluster(si, tmp);
655                 while (tmp < max) {
656                         if (!si->swap_map[tmp])
657                                 break;
658                         tmp++;
659                 }
660                 unlock_cluster(ci);
661         }
662         if (tmp >= max) {
663                 cluster_set_null(&cluster->index);
664                 goto new_cluster;
665         }
666         cluster->next = tmp + 1;
667         *offset = tmp;
668         *scan_base = tmp;
669         return true;
670 }
671
672 static void __del_from_avail_list(struct swap_info_struct *p)
673 {
674         int nid;
675
676         for_each_node(nid)
677                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
678 }
679
680 static void del_from_avail_list(struct swap_info_struct *p)
681 {
682         spin_lock(&swap_avail_lock);
683         __del_from_avail_list(p);
684         spin_unlock(&swap_avail_lock);
685 }
686
687 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
688                              unsigned int nr_entries)
689 {
690         unsigned int end = offset + nr_entries - 1;
691
692         if (offset == si->lowest_bit)
693                 si->lowest_bit += nr_entries;
694         if (end == si->highest_bit)
695                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
696         si->inuse_pages += nr_entries;
697         if (si->inuse_pages == si->pages) {
698                 si->lowest_bit = si->max;
699                 si->highest_bit = 0;
700                 del_from_avail_list(si);
701         }
702 }
703
704 static void add_to_avail_list(struct swap_info_struct *p)
705 {
706         int nid;
707
708         spin_lock(&swap_avail_lock);
709         for_each_node(nid) {
710                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
711                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
712         }
713         spin_unlock(&swap_avail_lock);
714 }
715
716 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
717                             unsigned int nr_entries)
718 {
719         unsigned long begin = offset;
720         unsigned long end = offset + nr_entries - 1;
721         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
722
723         if (offset < si->lowest_bit)
724                 si->lowest_bit = offset;
725         if (end > si->highest_bit) {
726                 bool was_full = !si->highest_bit;
727
728                 WRITE_ONCE(si->highest_bit, end);
729                 if (was_full && (si->flags & SWP_WRITEOK))
730                         add_to_avail_list(si);
731         }
732         atomic_long_add(nr_entries, &nr_swap_pages);
733         si->inuse_pages -= nr_entries;
734         if (si->flags & SWP_BLKDEV)
735                 swap_slot_free_notify =
736                         si->bdev->bd_disk->fops->swap_slot_free_notify;
737         else
738                 swap_slot_free_notify = NULL;
739         while (offset <= end) {
740                 arch_swap_invalidate_page(si->type, offset);
741                 frontswap_invalidate_page(si->type, offset);
742                 if (swap_slot_free_notify)
743                         swap_slot_free_notify(si->bdev, offset);
744                 offset++;
745         }
746         clear_shadow_from_swap_cache(si->type, begin, end);
747 }
748
749 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
750 {
751         unsigned long prev;
752
753         if (!(si->flags & SWP_SOLIDSTATE)) {
754                 si->cluster_next = next;
755                 return;
756         }
757
758         prev = this_cpu_read(*si->cluster_next_cpu);
759         /*
760          * Cross the swap address space size aligned trunk, choose
761          * another trunk randomly to avoid lock contention on swap
762          * address space if possible.
763          */
764         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
765             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
766                 /* No free swap slots available */
767                 if (si->highest_bit <= si->lowest_bit)
768                         return;
769                 next = si->lowest_bit +
770                         prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
771                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
772                 next = max_t(unsigned int, next, si->lowest_bit);
773         }
774         this_cpu_write(*si->cluster_next_cpu, next);
775 }
776
777 static int scan_swap_map_slots(struct swap_info_struct *si,
778                                unsigned char usage, int nr,
779                                swp_entry_t slots[])
780 {
781         struct swap_cluster_info *ci;
782         unsigned long offset;
783         unsigned long scan_base;
784         unsigned long last_in_cluster = 0;
785         int latency_ration = LATENCY_LIMIT;
786         int n_ret = 0;
787         bool scanned_many = false;
788
789         /*
790          * We try to cluster swap pages by allocating them sequentially
791          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
792          * way, however, we resort to first-free allocation, starting
793          * a new cluster.  This prevents us from scattering swap pages
794          * all over the entire swap partition, so that we reduce
795          * overall disk seek times between swap pages.  -- sct
796          * But we do now try to find an empty cluster.  -Andrea
797          * And we let swap pages go all over an SSD partition.  Hugh
798          */
799
800         si->flags += SWP_SCANNING;
801         /*
802          * Use percpu scan base for SSD to reduce lock contention on
803          * cluster and swap cache.  For HDD, sequential access is more
804          * important.
805          */
806         if (si->flags & SWP_SOLIDSTATE)
807                 scan_base = this_cpu_read(*si->cluster_next_cpu);
808         else
809                 scan_base = si->cluster_next;
810         offset = scan_base;
811
812         /* SSD algorithm */
813         if (si->cluster_info) {
814                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
815                         goto scan;
816         } else if (unlikely(!si->cluster_nr--)) {
817                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
818                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
819                         goto checks;
820                 }
821
822                 spin_unlock(&si->lock);
823
824                 /*
825                  * If seek is expensive, start searching for new cluster from
826                  * start of partition, to minimize the span of allocated swap.
827                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
828                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
829                  */
830                 scan_base = offset = si->lowest_bit;
831                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
832
833                 /* Locate the first empty (unaligned) cluster */
834                 for (; last_in_cluster <= si->highest_bit; offset++) {
835                         if (si->swap_map[offset])
836                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
837                         else if (offset == last_in_cluster) {
838                                 spin_lock(&si->lock);
839                                 offset -= SWAPFILE_CLUSTER - 1;
840                                 si->cluster_next = offset;
841                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
842                                 goto checks;
843                         }
844                         if (unlikely(--latency_ration < 0)) {
845                                 cond_resched();
846                                 latency_ration = LATENCY_LIMIT;
847                         }
848                 }
849
850                 offset = scan_base;
851                 spin_lock(&si->lock);
852                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
853         }
854
855 checks:
856         if (si->cluster_info) {
857                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
858                 /* take a break if we already got some slots */
859                         if (n_ret)
860                                 goto done;
861                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
862                                                         &scan_base))
863                                 goto scan;
864                 }
865         }
866         if (!(si->flags & SWP_WRITEOK))
867                 goto no_page;
868         if (!si->highest_bit)
869                 goto no_page;
870         if (offset > si->highest_bit)
871                 scan_base = offset = si->lowest_bit;
872
873         ci = lock_cluster(si, offset);
874         /* reuse swap entry of cache-only swap if not busy. */
875         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
876                 int swap_was_freed;
877                 unlock_cluster(ci);
878                 spin_unlock(&si->lock);
879                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
880                 spin_lock(&si->lock);
881                 /* entry was freed successfully, try to use this again */
882                 if (swap_was_freed)
883                         goto checks;
884                 goto scan; /* check next one */
885         }
886
887         if (si->swap_map[offset]) {
888                 unlock_cluster(ci);
889                 if (!n_ret)
890                         goto scan;
891                 else
892                         goto done;
893         }
894         WRITE_ONCE(si->swap_map[offset], usage);
895         inc_cluster_info_page(si, si->cluster_info, offset);
896         unlock_cluster(ci);
897
898         swap_range_alloc(si, offset, 1);
899         slots[n_ret++] = swp_entry(si->type, offset);
900
901         /* got enough slots or reach max slots? */
902         if ((n_ret == nr) || (offset >= si->highest_bit))
903                 goto done;
904
905         /* search for next available slot */
906
907         /* time to take a break? */
908         if (unlikely(--latency_ration < 0)) {
909                 if (n_ret)
910                         goto done;
911                 spin_unlock(&si->lock);
912                 cond_resched();
913                 spin_lock(&si->lock);
914                 latency_ration = LATENCY_LIMIT;
915         }
916
917         /* try to get more slots in cluster */
918         if (si->cluster_info) {
919                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
920                         goto checks;
921         } else if (si->cluster_nr && !si->swap_map[++offset]) {
922                 /* non-ssd case, still more slots in cluster? */
923                 --si->cluster_nr;
924                 goto checks;
925         }
926
927         /*
928          * Even if there's no free clusters available (fragmented),
929          * try to scan a little more quickly with lock held unless we
930          * have scanned too many slots already.
931          */
932         if (!scanned_many) {
933                 unsigned long scan_limit;
934
935                 if (offset < scan_base)
936                         scan_limit = scan_base;
937                 else
938                         scan_limit = si->highest_bit;
939                 for (; offset <= scan_limit && --latency_ration > 0;
940                      offset++) {
941                         if (!si->swap_map[offset])
942                                 goto checks;
943                 }
944         }
945
946 done:
947         set_cluster_next(si, offset + 1);
948         si->flags -= SWP_SCANNING;
949         return n_ret;
950
951 scan:
952         spin_unlock(&si->lock);
953         while (++offset <= READ_ONCE(si->highest_bit)) {
954                 if (data_race(!si->swap_map[offset])) {
955                         spin_lock(&si->lock);
956                         goto checks;
957                 }
958                 if (vm_swap_full() &&
959                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
960                         spin_lock(&si->lock);
961                         goto checks;
962                 }
963                 if (unlikely(--latency_ration < 0)) {
964                         cond_resched();
965                         latency_ration = LATENCY_LIMIT;
966                         scanned_many = true;
967                 }
968         }
969         offset = si->lowest_bit;
970         while (offset < scan_base) {
971                 if (data_race(!si->swap_map[offset])) {
972                         spin_lock(&si->lock);
973                         goto checks;
974                 }
975                 if (vm_swap_full() &&
976                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
977                         spin_lock(&si->lock);
978                         goto checks;
979                 }
980                 if (unlikely(--latency_ration < 0)) {
981                         cond_resched();
982                         latency_ration = LATENCY_LIMIT;
983                         scanned_many = true;
984                 }
985                 offset++;
986         }
987         spin_lock(&si->lock);
988
989 no_page:
990         si->flags -= SWP_SCANNING;
991         return n_ret;
992 }
993
994 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
995 {
996         unsigned long idx;
997         struct swap_cluster_info *ci;
998         unsigned long offset;
999
1000         /*
1001          * Should not even be attempting cluster allocations when huge
1002          * page swap is disabled.  Warn and fail the allocation.
1003          */
1004         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1005                 VM_WARN_ON_ONCE(1);
1006                 return 0;
1007         }
1008
1009         if (cluster_list_empty(&si->free_clusters))
1010                 return 0;
1011
1012         idx = cluster_list_first(&si->free_clusters);
1013         offset = idx * SWAPFILE_CLUSTER;
1014         ci = lock_cluster(si, offset);
1015         alloc_cluster(si, idx);
1016         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1017
1018         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1019         unlock_cluster(ci);
1020         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1021         *slot = swp_entry(si->type, offset);
1022
1023         return 1;
1024 }
1025
1026 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1027 {
1028         unsigned long offset = idx * SWAPFILE_CLUSTER;
1029         struct swap_cluster_info *ci;
1030
1031         ci = lock_cluster(si, offset);
1032         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1033         cluster_set_count_flag(ci, 0, 0);
1034         free_cluster(si, idx);
1035         unlock_cluster(ci);
1036         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1037 }
1038
1039 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1040 {
1041         unsigned long size = swap_entry_size(entry_size);
1042         struct swap_info_struct *si, *next;
1043         long avail_pgs;
1044         int n_ret = 0;
1045         int node;
1046
1047         /* Only single cluster request supported */
1048         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1049
1050         spin_lock(&swap_avail_lock);
1051
1052         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1053         if (avail_pgs <= 0) {
1054                 spin_unlock(&swap_avail_lock);
1055                 goto noswap;
1056         }
1057
1058         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1059
1060         atomic_long_sub(n_goal * size, &nr_swap_pages);
1061
1062 start_over:
1063         node = numa_node_id();
1064         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1065                 /* requeue si to after same-priority siblings */
1066                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1067                 spin_unlock(&swap_avail_lock);
1068                 spin_lock(&si->lock);
1069                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1070                         spin_lock(&swap_avail_lock);
1071                         if (plist_node_empty(&si->avail_lists[node])) {
1072                                 spin_unlock(&si->lock);
1073                                 goto nextsi;
1074                         }
1075                         WARN(!si->highest_bit,
1076                              "swap_info %d in list but !highest_bit\n",
1077                              si->type);
1078                         WARN(!(si->flags & SWP_WRITEOK),
1079                              "swap_info %d in list but !SWP_WRITEOK\n",
1080                              si->type);
1081                         __del_from_avail_list(si);
1082                         spin_unlock(&si->lock);
1083                         goto nextsi;
1084                 }
1085                 if (size == SWAPFILE_CLUSTER) {
1086                         if (si->flags & SWP_BLKDEV)
1087                                 n_ret = swap_alloc_cluster(si, swp_entries);
1088                 } else
1089                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1090                                                     n_goal, swp_entries);
1091                 spin_unlock(&si->lock);
1092                 if (n_ret || size == SWAPFILE_CLUSTER)
1093                         goto check_out;
1094                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1095                         si->type);
1096
1097                 spin_lock(&swap_avail_lock);
1098 nextsi:
1099                 /*
1100                  * if we got here, it's likely that si was almost full before,
1101                  * and since scan_swap_map_slots() can drop the si->lock,
1102                  * multiple callers probably all tried to get a page from the
1103                  * same si and it filled up before we could get one; or, the si
1104                  * filled up between us dropping swap_avail_lock and taking
1105                  * si->lock. Since we dropped the swap_avail_lock, the
1106                  * swap_avail_head list may have been modified; so if next is
1107                  * still in the swap_avail_head list then try it, otherwise
1108                  * start over if we have not gotten any slots.
1109                  */
1110                 if (plist_node_empty(&next->avail_lists[node]))
1111                         goto start_over;
1112         }
1113
1114         spin_unlock(&swap_avail_lock);
1115
1116 check_out:
1117         if (n_ret < n_goal)
1118                 atomic_long_add((long)(n_goal - n_ret) * size,
1119                                 &nr_swap_pages);
1120 noswap:
1121         return n_ret;
1122 }
1123
1124 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1125 {
1126         struct swap_info_struct *p;
1127         unsigned long offset;
1128
1129         if (!entry.val)
1130                 goto out;
1131         p = swp_swap_info(entry);
1132         if (!p)
1133                 goto bad_nofile;
1134         if (data_race(!(p->flags & SWP_USED)))
1135                 goto bad_device;
1136         offset = swp_offset(entry);
1137         if (offset >= p->max)
1138                 goto bad_offset;
1139         return p;
1140
1141 bad_offset:
1142         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1143         goto out;
1144 bad_device:
1145         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1146         goto out;
1147 bad_nofile:
1148         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1149 out:
1150         return NULL;
1151 }
1152
1153 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1154 {
1155         struct swap_info_struct *p;
1156
1157         p = __swap_info_get(entry);
1158         if (!p)
1159                 goto out;
1160         if (data_race(!p->swap_map[swp_offset(entry)]))
1161                 goto bad_free;
1162         return p;
1163
1164 bad_free:
1165         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1166 out:
1167         return NULL;
1168 }
1169
1170 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1171 {
1172         struct swap_info_struct *p;
1173
1174         p = _swap_info_get(entry);
1175         if (p)
1176                 spin_lock(&p->lock);
1177         return p;
1178 }
1179
1180 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1181                                         struct swap_info_struct *q)
1182 {
1183         struct swap_info_struct *p;
1184
1185         p = _swap_info_get(entry);
1186
1187         if (p != q) {
1188                 if (q != NULL)
1189                         spin_unlock(&q->lock);
1190                 if (p != NULL)
1191                         spin_lock(&p->lock);
1192         }
1193         return p;
1194 }
1195
1196 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1197                                               unsigned long offset,
1198                                               unsigned char usage)
1199 {
1200         unsigned char count;
1201         unsigned char has_cache;
1202
1203         count = p->swap_map[offset];
1204
1205         has_cache = count & SWAP_HAS_CACHE;
1206         count &= ~SWAP_HAS_CACHE;
1207
1208         if (usage == SWAP_HAS_CACHE) {
1209                 VM_BUG_ON(!has_cache);
1210                 has_cache = 0;
1211         } else if (count == SWAP_MAP_SHMEM) {
1212                 /*
1213                  * Or we could insist on shmem.c using a special
1214                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1215                  */
1216                 count = 0;
1217         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1218                 if (count == COUNT_CONTINUED) {
1219                         if (swap_count_continued(p, offset, count))
1220                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1221                         else
1222                                 count = SWAP_MAP_MAX;
1223                 } else
1224                         count--;
1225         }
1226
1227         usage = count | has_cache;
1228         if (usage)
1229                 WRITE_ONCE(p->swap_map[offset], usage);
1230         else
1231                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1232
1233         return usage;
1234 }
1235
1236 /*
1237  * Check whether swap entry is valid in the swap device.  If so,
1238  * return pointer to swap_info_struct, and keep the swap entry valid
1239  * via preventing the swap device from being swapoff, until
1240  * put_swap_device() is called.  Otherwise return NULL.
1241  *
1242  * Notice that swapoff or swapoff+swapon can still happen before the
1243  * percpu_ref_tryget_live() in get_swap_device() or after the
1244  * percpu_ref_put() in put_swap_device() if there isn't any other way
1245  * to prevent swapoff, such as page lock, page table lock, etc.  The
1246  * caller must be prepared for that.  For example, the following
1247  * situation is possible.
1248  *
1249  *   CPU1                               CPU2
1250  *   do_swap_page()
1251  *     ...                              swapoff+swapon
1252  *     __read_swap_cache_async()
1253  *       swapcache_prepare()
1254  *         __swap_duplicate()
1255  *           // check swap_map
1256  *     // verify PTE not changed
1257  *
1258  * In __swap_duplicate(), the swap_map need to be checked before
1259  * changing partly because the specified swap entry may be for another
1260  * swap device which has been swapoff.  And in do_swap_page(), after
1261  * the page is read from the swap device, the PTE is verified not
1262  * changed with the page table locked to check whether the swap device
1263  * has been swapoff or swapoff+swapon.
1264  */
1265 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1266 {
1267         struct swap_info_struct *si;
1268         unsigned long offset;
1269
1270         if (!entry.val)
1271                 goto out;
1272         si = swp_swap_info(entry);
1273         if (!si)
1274                 goto bad_nofile;
1275         if (!percpu_ref_tryget_live(&si->users))
1276                 goto out;
1277         /*
1278          * Guarantee the si->users are checked before accessing other
1279          * fields of swap_info_struct.
1280          *
1281          * Paired with the spin_unlock() after setup_swap_info() in
1282          * enable_swap_info().
1283          */
1284         smp_rmb();
1285         offset = swp_offset(entry);
1286         if (offset >= si->max)
1287                 goto put_out;
1288
1289         return si;
1290 bad_nofile:
1291         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1292 out:
1293         return NULL;
1294 put_out:
1295         percpu_ref_put(&si->users);
1296         return NULL;
1297 }
1298
1299 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1300                                        swp_entry_t entry)
1301 {
1302         struct swap_cluster_info *ci;
1303         unsigned long offset = swp_offset(entry);
1304         unsigned char usage;
1305
1306         ci = lock_cluster_or_swap_info(p, offset);
1307         usage = __swap_entry_free_locked(p, offset, 1);
1308         unlock_cluster_or_swap_info(p, ci);
1309         if (!usage)
1310                 free_swap_slot(entry);
1311
1312         return usage;
1313 }
1314
1315 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1316 {
1317         struct swap_cluster_info *ci;
1318         unsigned long offset = swp_offset(entry);
1319         unsigned char count;
1320
1321         ci = lock_cluster(p, offset);
1322         count = p->swap_map[offset];
1323         VM_BUG_ON(count != SWAP_HAS_CACHE);
1324         p->swap_map[offset] = 0;
1325         dec_cluster_info_page(p, p->cluster_info, offset);
1326         unlock_cluster(ci);
1327
1328         mem_cgroup_uncharge_swap(entry, 1);
1329         swap_range_free(p, offset, 1);
1330 }
1331
1332 /*
1333  * Caller has made sure that the swap device corresponding to entry
1334  * is still around or has not been recycled.
1335  */
1336 void swap_free(swp_entry_t entry)
1337 {
1338         struct swap_info_struct *p;
1339
1340         p = _swap_info_get(entry);
1341         if (p)
1342                 __swap_entry_free(p, entry);
1343 }
1344
1345 /*
1346  * Called after dropping swapcache to decrease refcnt to swap entries.
1347  */
1348 void put_swap_page(struct page *page, swp_entry_t entry)
1349 {
1350         unsigned long offset = swp_offset(entry);
1351         unsigned long idx = offset / SWAPFILE_CLUSTER;
1352         struct swap_cluster_info *ci;
1353         struct swap_info_struct *si;
1354         unsigned char *map;
1355         unsigned int i, free_entries = 0;
1356         unsigned char val;
1357         int size = swap_entry_size(thp_nr_pages(page));
1358
1359         si = _swap_info_get(entry);
1360         if (!si)
1361                 return;
1362
1363         ci = lock_cluster_or_swap_info(si, offset);
1364         if (size == SWAPFILE_CLUSTER) {
1365                 VM_BUG_ON(!cluster_is_huge(ci));
1366                 map = si->swap_map + offset;
1367                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1368                         val = map[i];
1369                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1370                         if (val == SWAP_HAS_CACHE)
1371                                 free_entries++;
1372                 }
1373                 cluster_clear_huge(ci);
1374                 if (free_entries == SWAPFILE_CLUSTER) {
1375                         unlock_cluster_or_swap_info(si, ci);
1376                         spin_lock(&si->lock);
1377                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1378                         swap_free_cluster(si, idx);
1379                         spin_unlock(&si->lock);
1380                         return;
1381                 }
1382         }
1383         for (i = 0; i < size; i++, entry.val++) {
1384                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1385                         unlock_cluster_or_swap_info(si, ci);
1386                         free_swap_slot(entry);
1387                         if (i == size - 1)
1388                                 return;
1389                         lock_cluster_or_swap_info(si, offset);
1390                 }
1391         }
1392         unlock_cluster_or_swap_info(si, ci);
1393 }
1394
1395 #ifdef CONFIG_THP_SWAP
1396 int split_swap_cluster(swp_entry_t entry)
1397 {
1398         struct swap_info_struct *si;
1399         struct swap_cluster_info *ci;
1400         unsigned long offset = swp_offset(entry);
1401
1402         si = _swap_info_get(entry);
1403         if (!si)
1404                 return -EBUSY;
1405         ci = lock_cluster(si, offset);
1406         cluster_clear_huge(ci);
1407         unlock_cluster(ci);
1408         return 0;
1409 }
1410 #endif
1411
1412 static int swp_entry_cmp(const void *ent1, const void *ent2)
1413 {
1414         const swp_entry_t *e1 = ent1, *e2 = ent2;
1415
1416         return (int)swp_type(*e1) - (int)swp_type(*e2);
1417 }
1418
1419 void swapcache_free_entries(swp_entry_t *entries, int n)
1420 {
1421         struct swap_info_struct *p, *prev;
1422         int i;
1423
1424         if (n <= 0)
1425                 return;
1426
1427         prev = NULL;
1428         p = NULL;
1429
1430         /*
1431          * Sort swap entries by swap device, so each lock is only taken once.
1432          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1433          * so low that it isn't necessary to optimize further.
1434          */
1435         if (nr_swapfiles > 1)
1436                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1437         for (i = 0; i < n; ++i) {
1438                 p = swap_info_get_cont(entries[i], prev);
1439                 if (p)
1440                         swap_entry_free(p, entries[i]);
1441                 prev = p;
1442         }
1443         if (p)
1444                 spin_unlock(&p->lock);
1445 }
1446
1447 /*
1448  * How many references to page are currently swapped out?
1449  * This does not give an exact answer when swap count is continued,
1450  * but does include the high COUNT_CONTINUED flag to allow for that.
1451  */
1452 int page_swapcount(struct page *page)
1453 {
1454         int count = 0;
1455         struct swap_info_struct *p;
1456         struct swap_cluster_info *ci;
1457         swp_entry_t entry;
1458         unsigned long offset;
1459
1460         entry.val = page_private(page);
1461         p = _swap_info_get(entry);
1462         if (p) {
1463                 offset = swp_offset(entry);
1464                 ci = lock_cluster_or_swap_info(p, offset);
1465                 count = swap_count(p->swap_map[offset]);
1466                 unlock_cluster_or_swap_info(p, ci);
1467         }
1468         return count;
1469 }
1470
1471 int __swap_count(swp_entry_t entry)
1472 {
1473         struct swap_info_struct *si;
1474         pgoff_t offset = swp_offset(entry);
1475         int count = 0;
1476
1477         si = get_swap_device(entry);
1478         if (si) {
1479                 count = swap_count(si->swap_map[offset]);
1480                 put_swap_device(si);
1481         }
1482         return count;
1483 }
1484
1485 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1486 {
1487         int count = 0;
1488         pgoff_t offset = swp_offset(entry);
1489         struct swap_cluster_info *ci;
1490
1491         ci = lock_cluster_or_swap_info(si, offset);
1492         count = swap_count(si->swap_map[offset]);
1493         unlock_cluster_or_swap_info(si, ci);
1494         return count;
1495 }
1496
1497 /*
1498  * How many references to @entry are currently swapped out?
1499  * This does not give an exact answer when swap count is continued,
1500  * but does include the high COUNT_CONTINUED flag to allow for that.
1501  */
1502 int __swp_swapcount(swp_entry_t entry)
1503 {
1504         int count = 0;
1505         struct swap_info_struct *si;
1506
1507         si = get_swap_device(entry);
1508         if (si) {
1509                 count = swap_swapcount(si, entry);
1510                 put_swap_device(si);
1511         }
1512         return count;
1513 }
1514
1515 /*
1516  * How many references to @entry are currently swapped out?
1517  * This considers COUNT_CONTINUED so it returns exact answer.
1518  */
1519 int swp_swapcount(swp_entry_t entry)
1520 {
1521         int count, tmp_count, n;
1522         struct swap_info_struct *p;
1523         struct swap_cluster_info *ci;
1524         struct page *page;
1525         pgoff_t offset;
1526         unsigned char *map;
1527
1528         p = _swap_info_get(entry);
1529         if (!p)
1530                 return 0;
1531
1532         offset = swp_offset(entry);
1533
1534         ci = lock_cluster_or_swap_info(p, offset);
1535
1536         count = swap_count(p->swap_map[offset]);
1537         if (!(count & COUNT_CONTINUED))
1538                 goto out;
1539
1540         count &= ~COUNT_CONTINUED;
1541         n = SWAP_MAP_MAX + 1;
1542
1543         page = vmalloc_to_page(p->swap_map + offset);
1544         offset &= ~PAGE_MASK;
1545         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1546
1547         do {
1548                 page = list_next_entry(page, lru);
1549                 map = kmap_atomic(page);
1550                 tmp_count = map[offset];
1551                 kunmap_atomic(map);
1552
1553                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1554                 n *= (SWAP_CONT_MAX + 1);
1555         } while (tmp_count & COUNT_CONTINUED);
1556 out:
1557         unlock_cluster_or_swap_info(p, ci);
1558         return count;
1559 }
1560
1561 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1562                                          swp_entry_t entry)
1563 {
1564         struct swap_cluster_info *ci;
1565         unsigned char *map = si->swap_map;
1566         unsigned long roffset = swp_offset(entry);
1567         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1568         int i;
1569         bool ret = false;
1570
1571         ci = lock_cluster_or_swap_info(si, offset);
1572         if (!ci || !cluster_is_huge(ci)) {
1573                 if (swap_count(map[roffset]))
1574                         ret = true;
1575                 goto unlock_out;
1576         }
1577         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1578                 if (swap_count(map[offset + i])) {
1579                         ret = true;
1580                         break;
1581                 }
1582         }
1583 unlock_out:
1584         unlock_cluster_or_swap_info(si, ci);
1585         return ret;
1586 }
1587
1588 static bool page_swapped(struct page *page)
1589 {
1590         swp_entry_t entry;
1591         struct swap_info_struct *si;
1592
1593         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1594                 return page_swapcount(page) != 0;
1595
1596         page = compound_head(page);
1597         entry.val = page_private(page);
1598         si = _swap_info_get(entry);
1599         if (si)
1600                 return swap_page_trans_huge_swapped(si, entry);
1601         return false;
1602 }
1603
1604 static int page_trans_huge_map_swapcount(struct page *page,
1605                                          int *total_swapcount)
1606 {
1607         int i, map_swapcount, _total_swapcount;
1608         unsigned long offset = 0;
1609         struct swap_info_struct *si;
1610         struct swap_cluster_info *ci = NULL;
1611         unsigned char *map = NULL;
1612         int swapcount = 0;
1613
1614         /* hugetlbfs shouldn't call it */
1615         VM_BUG_ON_PAGE(PageHuge(page), page);
1616
1617         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1618                 if (PageSwapCache(page))
1619                         swapcount = page_swapcount(page);
1620                 if (total_swapcount)
1621                         *total_swapcount = swapcount;
1622                 return swapcount + page_trans_huge_mapcount(page);
1623         }
1624
1625         page = compound_head(page);
1626
1627         _total_swapcount = map_swapcount = 0;
1628         if (PageSwapCache(page)) {
1629                 swp_entry_t entry;
1630
1631                 entry.val = page_private(page);
1632                 si = _swap_info_get(entry);
1633                 if (si) {
1634                         map = si->swap_map;
1635                         offset = swp_offset(entry);
1636                 }
1637         }
1638         if (map)
1639                 ci = lock_cluster(si, offset);
1640         for (i = 0; i < HPAGE_PMD_NR; i++) {
1641                 int mapcount = atomic_read(&page[i]._mapcount) + 1;
1642                 if (map) {
1643                         swapcount = swap_count(map[offset + i]);
1644                         _total_swapcount += swapcount;
1645                 }
1646                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1647         }
1648         unlock_cluster(ci);
1649
1650         if (PageDoubleMap(page))
1651                 map_swapcount -= 1;
1652
1653         if (total_swapcount)
1654                 *total_swapcount = _total_swapcount;
1655
1656         return map_swapcount + compound_mapcount(page);
1657 }
1658
1659 /*
1660  * We can write to an anon page without COW if there are no other references
1661  * to it.  And as a side-effect, free up its swap: because the old content
1662  * on disk will never be read, and seeking back there to write new content
1663  * later would only waste time away from clustering.
1664  */
1665 bool reuse_swap_page(struct page *page)
1666 {
1667         int count, total_swapcount;
1668
1669         VM_BUG_ON_PAGE(!PageLocked(page), page);
1670         if (unlikely(PageKsm(page)))
1671                 return false;
1672         count = page_trans_huge_map_swapcount(page, &total_swapcount);
1673         if (count == 1 && PageSwapCache(page) &&
1674             (likely(!PageTransCompound(page)) ||
1675              /* The remaining swap count will be freed soon */
1676              total_swapcount == page_swapcount(page))) {
1677                 if (!PageWriteback(page)) {
1678                         page = compound_head(page);
1679                         delete_from_swap_cache(page);
1680                         SetPageDirty(page);
1681                 } else {
1682                         swp_entry_t entry;
1683                         struct swap_info_struct *p;
1684
1685                         entry.val = page_private(page);
1686                         p = swap_info_get(entry);
1687                         if (p->flags & SWP_STABLE_WRITES) {
1688                                 spin_unlock(&p->lock);
1689                                 return false;
1690                         }
1691                         spin_unlock(&p->lock);
1692                 }
1693         }
1694
1695         return count <= 1;
1696 }
1697
1698 /*
1699  * If swap is getting full, or if there are no more mappings of this page,
1700  * then try_to_free_swap is called to free its swap space.
1701  */
1702 int try_to_free_swap(struct page *page)
1703 {
1704         VM_BUG_ON_PAGE(!PageLocked(page), page);
1705
1706         if (!PageSwapCache(page))
1707                 return 0;
1708         if (PageWriteback(page))
1709                 return 0;
1710         if (page_swapped(page))
1711                 return 0;
1712
1713         /*
1714          * Once hibernation has begun to create its image of memory,
1715          * there's a danger that one of the calls to try_to_free_swap()
1716          * - most probably a call from __try_to_reclaim_swap() while
1717          * hibernation is allocating its own swap pages for the image,
1718          * but conceivably even a call from memory reclaim - will free
1719          * the swap from a page which has already been recorded in the
1720          * image as a clean swapcache page, and then reuse its swap for
1721          * another page of the image.  On waking from hibernation, the
1722          * original page might be freed under memory pressure, then
1723          * later read back in from swap, now with the wrong data.
1724          *
1725          * Hibernation suspends storage while it is writing the image
1726          * to disk so check that here.
1727          */
1728         if (pm_suspended_storage())
1729                 return 0;
1730
1731         page = compound_head(page);
1732         delete_from_swap_cache(page);
1733         SetPageDirty(page);
1734         return 1;
1735 }
1736
1737 /*
1738  * Free the swap entry like above, but also try to
1739  * free the page cache entry if it is the last user.
1740  */
1741 int free_swap_and_cache(swp_entry_t entry)
1742 {
1743         struct swap_info_struct *p;
1744         unsigned char count;
1745
1746         if (non_swap_entry(entry))
1747                 return 1;
1748
1749         p = _swap_info_get(entry);
1750         if (p) {
1751                 count = __swap_entry_free(p, entry);
1752                 if (count == SWAP_HAS_CACHE &&
1753                     !swap_page_trans_huge_swapped(p, entry))
1754                         __try_to_reclaim_swap(p, swp_offset(entry),
1755                                               TTRS_UNMAPPED | TTRS_FULL);
1756         }
1757         return p != NULL;
1758 }
1759
1760 #ifdef CONFIG_HIBERNATION
1761
1762 swp_entry_t get_swap_page_of_type(int type)
1763 {
1764         struct swap_info_struct *si = swap_type_to_swap_info(type);
1765         swp_entry_t entry = {0};
1766
1767         if (!si)
1768                 goto fail;
1769
1770         /* This is called for allocating swap entry, not cache */
1771         spin_lock(&si->lock);
1772         if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1773                 atomic_long_dec(&nr_swap_pages);
1774         spin_unlock(&si->lock);
1775 fail:
1776         return entry;
1777 }
1778
1779 /*
1780  * Find the swap type that corresponds to given device (if any).
1781  *
1782  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1783  * from 0, in which the swap header is expected to be located.
1784  *
1785  * This is needed for the suspend to disk (aka swsusp).
1786  */
1787 int swap_type_of(dev_t device, sector_t offset)
1788 {
1789         int type;
1790
1791         if (!device)
1792                 return -1;
1793
1794         spin_lock(&swap_lock);
1795         for (type = 0; type < nr_swapfiles; type++) {
1796                 struct swap_info_struct *sis = swap_info[type];
1797
1798                 if (!(sis->flags & SWP_WRITEOK))
1799                         continue;
1800
1801                 if (device == sis->bdev->bd_dev) {
1802                         struct swap_extent *se = first_se(sis);
1803
1804                         if (se->start_block == offset) {
1805                                 spin_unlock(&swap_lock);
1806                                 return type;
1807                         }
1808                 }
1809         }
1810         spin_unlock(&swap_lock);
1811         return -ENODEV;
1812 }
1813
1814 int find_first_swap(dev_t *device)
1815 {
1816         int type;
1817
1818         spin_lock(&swap_lock);
1819         for (type = 0; type < nr_swapfiles; type++) {
1820                 struct swap_info_struct *sis = swap_info[type];
1821
1822                 if (!(sis->flags & SWP_WRITEOK))
1823                         continue;
1824                 *device = sis->bdev->bd_dev;
1825                 spin_unlock(&swap_lock);
1826                 return type;
1827         }
1828         spin_unlock(&swap_lock);
1829         return -ENODEV;
1830 }
1831
1832 /*
1833  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1834  * corresponding to given index in swap_info (swap type).
1835  */
1836 sector_t swapdev_block(int type, pgoff_t offset)
1837 {
1838         struct swap_info_struct *si = swap_type_to_swap_info(type);
1839         struct swap_extent *se;
1840
1841         if (!si || !(si->flags & SWP_WRITEOK))
1842                 return 0;
1843         se = offset_to_swap_extent(si, offset);
1844         return se->start_block + (offset - se->start_page);
1845 }
1846
1847 /*
1848  * Return either the total number of swap pages of given type, or the number
1849  * of free pages of that type (depending on @free)
1850  *
1851  * This is needed for software suspend
1852  */
1853 unsigned int count_swap_pages(int type, int free)
1854 {
1855         unsigned int n = 0;
1856
1857         spin_lock(&swap_lock);
1858         if ((unsigned int)type < nr_swapfiles) {
1859                 struct swap_info_struct *sis = swap_info[type];
1860
1861                 spin_lock(&sis->lock);
1862                 if (sis->flags & SWP_WRITEOK) {
1863                         n = sis->pages;
1864                         if (free)
1865                                 n -= sis->inuse_pages;
1866                 }
1867                 spin_unlock(&sis->lock);
1868         }
1869         spin_unlock(&swap_lock);
1870         return n;
1871 }
1872 #endif /* CONFIG_HIBERNATION */
1873
1874 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1875 {
1876         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1877 }
1878
1879 /*
1880  * No need to decide whether this PTE shares the swap entry with others,
1881  * just let do_wp_page work it out if a write is requested later - to
1882  * force COW, vm_page_prot omits write permission from any private vma.
1883  */
1884 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1885                 unsigned long addr, swp_entry_t entry, struct page *page)
1886 {
1887         struct page *swapcache;
1888         spinlock_t *ptl;
1889         pte_t *pte;
1890         int ret = 1;
1891
1892         swapcache = page;
1893         page = ksm_might_need_to_copy(page, vma, addr);
1894         if (unlikely(!page))
1895                 return -ENOMEM;
1896
1897         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1898         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1899                 ret = 0;
1900                 goto out;
1901         }
1902
1903         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1904         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1905         get_page(page);
1906         if (page == swapcache) {
1907                 page_add_anon_rmap(page, vma, addr, false);
1908         } else { /* ksm created a completely new copy */
1909                 page_add_new_anon_rmap(page, vma, addr, false);
1910                 lru_cache_add_inactive_or_unevictable(page, vma);
1911         }
1912         set_pte_at(vma->vm_mm, addr, pte,
1913                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1914         swap_free(entry);
1915 out:
1916         pte_unmap_unlock(pte, ptl);
1917         if (page != swapcache) {
1918                 unlock_page(page);
1919                 put_page(page);
1920         }
1921         return ret;
1922 }
1923
1924 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1925                         unsigned long addr, unsigned long end,
1926                         unsigned int type)
1927 {
1928         struct page *page;
1929         swp_entry_t entry;
1930         pte_t *pte;
1931         struct swap_info_struct *si;
1932         unsigned long offset;
1933         int ret = 0;
1934         volatile unsigned char *swap_map;
1935
1936         si = swap_info[type];
1937         pte = pte_offset_map(pmd, addr);
1938         do {
1939                 if (!is_swap_pte(*pte))
1940                         continue;
1941
1942                 entry = pte_to_swp_entry(*pte);
1943                 if (swp_type(entry) != type)
1944                         continue;
1945
1946                 offset = swp_offset(entry);
1947                 pte_unmap(pte);
1948                 swap_map = &si->swap_map[offset];
1949                 page = lookup_swap_cache(entry, vma, addr);
1950                 if (!page) {
1951                         struct vm_fault vmf = {
1952                                 .vma = vma,
1953                                 .address = addr,
1954                                 .pmd = pmd,
1955                         };
1956
1957                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1958                                                 &vmf);
1959                 }
1960                 if (!page) {
1961                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1962                                 goto try_next;
1963                         return -ENOMEM;
1964                 }
1965
1966                 lock_page(page);
1967                 wait_on_page_writeback(page);
1968                 ret = unuse_pte(vma, pmd, addr, entry, page);
1969                 if (ret < 0) {
1970                         unlock_page(page);
1971                         put_page(page);
1972                         goto out;
1973                 }
1974
1975                 try_to_free_swap(page);
1976                 unlock_page(page);
1977                 put_page(page);
1978 try_next:
1979                 pte = pte_offset_map(pmd, addr);
1980         } while (pte++, addr += PAGE_SIZE, addr != end);
1981         pte_unmap(pte - 1);
1982
1983         ret = 0;
1984 out:
1985         return ret;
1986 }
1987
1988 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1989                                 unsigned long addr, unsigned long end,
1990                                 unsigned int type)
1991 {
1992         pmd_t *pmd;
1993         unsigned long next;
1994         int ret;
1995
1996         pmd = pmd_offset(pud, addr);
1997         do {
1998                 cond_resched();
1999                 next = pmd_addr_end(addr, end);
2000                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2001                         continue;
2002                 ret = unuse_pte_range(vma, pmd, addr, next, type);
2003                 if (ret)
2004                         return ret;
2005         } while (pmd++, addr = next, addr != end);
2006         return 0;
2007 }
2008
2009 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2010                                 unsigned long addr, unsigned long end,
2011                                 unsigned int type)
2012 {
2013         pud_t *pud;
2014         unsigned long next;
2015         int ret;
2016
2017         pud = pud_offset(p4d, addr);
2018         do {
2019                 next = pud_addr_end(addr, end);
2020                 if (pud_none_or_clear_bad(pud))
2021                         continue;
2022                 ret = unuse_pmd_range(vma, pud, addr, next, type);
2023                 if (ret)
2024                         return ret;
2025         } while (pud++, addr = next, addr != end);
2026         return 0;
2027 }
2028
2029 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2030                                 unsigned long addr, unsigned long end,
2031                                 unsigned int type)
2032 {
2033         p4d_t *p4d;
2034         unsigned long next;
2035         int ret;
2036
2037         p4d = p4d_offset(pgd, addr);
2038         do {
2039                 next = p4d_addr_end(addr, end);
2040                 if (p4d_none_or_clear_bad(p4d))
2041                         continue;
2042                 ret = unuse_pud_range(vma, p4d, addr, next, type);
2043                 if (ret)
2044                         return ret;
2045         } while (p4d++, addr = next, addr != end);
2046         return 0;
2047 }
2048
2049 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2050 {
2051         pgd_t *pgd;
2052         unsigned long addr, end, next;
2053         int ret;
2054
2055         addr = vma->vm_start;
2056         end = vma->vm_end;
2057
2058         pgd = pgd_offset(vma->vm_mm, addr);
2059         do {
2060                 next = pgd_addr_end(addr, end);
2061                 if (pgd_none_or_clear_bad(pgd))
2062                         continue;
2063                 ret = unuse_p4d_range(vma, pgd, addr, next, type);
2064                 if (ret)
2065                         return ret;
2066         } while (pgd++, addr = next, addr != end);
2067         return 0;
2068 }
2069
2070 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2071 {
2072         struct vm_area_struct *vma;
2073         int ret = 0;
2074
2075         mmap_read_lock(mm);
2076         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2077                 if (vma->anon_vma) {
2078                         ret = unuse_vma(vma, type);
2079                         if (ret)
2080                                 break;
2081                 }
2082                 cond_resched();
2083         }
2084         mmap_read_unlock(mm);
2085         return ret;
2086 }
2087
2088 /*
2089  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2090  * from current position to next entry still in use. Return 0
2091  * if there are no inuse entries after prev till end of the map.
2092  */
2093 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2094                                         unsigned int prev)
2095 {
2096         unsigned int i;
2097         unsigned char count;
2098
2099         /*
2100          * No need for swap_lock here: we're just looking
2101          * for whether an entry is in use, not modifying it; false
2102          * hits are okay, and sys_swapoff() has already prevented new
2103          * allocations from this area (while holding swap_lock).
2104          */
2105         for (i = prev + 1; i < si->max; i++) {
2106                 count = READ_ONCE(si->swap_map[i]);
2107                 if (count && swap_count(count) != SWAP_MAP_BAD)
2108                         break;
2109                 if ((i % LATENCY_LIMIT) == 0)
2110                         cond_resched();
2111         }
2112
2113         if (i == si->max)
2114                 i = 0;
2115
2116         return i;
2117 }
2118
2119 static int try_to_unuse(unsigned int type)
2120 {
2121         struct mm_struct *prev_mm;
2122         struct mm_struct *mm;
2123         struct list_head *p;
2124         int retval = 0;
2125         struct swap_info_struct *si = swap_info[type];
2126         struct page *page;
2127         swp_entry_t entry;
2128         unsigned int i;
2129
2130         if (!READ_ONCE(si->inuse_pages))
2131                 return 0;
2132
2133 retry:
2134         retval = shmem_unuse(type);
2135         if (retval)
2136                 return retval;
2137
2138         prev_mm = &init_mm;
2139         mmget(prev_mm);
2140
2141         spin_lock(&mmlist_lock);
2142         p = &init_mm.mmlist;
2143         while (READ_ONCE(si->inuse_pages) &&
2144                !signal_pending(current) &&
2145                (p = p->next) != &init_mm.mmlist) {
2146
2147                 mm = list_entry(p, struct mm_struct, mmlist);
2148                 if (!mmget_not_zero(mm))
2149                         continue;
2150                 spin_unlock(&mmlist_lock);
2151                 mmput(prev_mm);
2152                 prev_mm = mm;
2153                 retval = unuse_mm(mm, type);
2154                 if (retval) {
2155                         mmput(prev_mm);
2156                         return retval;
2157                 }
2158
2159                 /*
2160                  * Make sure that we aren't completely killing
2161                  * interactive performance.
2162                  */
2163                 cond_resched();
2164                 spin_lock(&mmlist_lock);
2165         }
2166         spin_unlock(&mmlist_lock);
2167
2168         mmput(prev_mm);
2169
2170         i = 0;
2171         while (READ_ONCE(si->inuse_pages) &&
2172                !signal_pending(current) &&
2173                (i = find_next_to_unuse(si, i)) != 0) {
2174
2175                 entry = swp_entry(type, i);
2176                 page = find_get_page(swap_address_space(entry), i);
2177                 if (!page)
2178                         continue;
2179
2180                 /*
2181                  * It is conceivable that a racing task removed this page from
2182                  * swap cache just before we acquired the page lock. The page
2183                  * might even be back in swap cache on another swap area. But
2184                  * that is okay, try_to_free_swap() only removes stale pages.
2185                  */
2186                 lock_page(page);
2187                 wait_on_page_writeback(page);
2188                 try_to_free_swap(page);
2189                 unlock_page(page);
2190                 put_page(page);
2191         }
2192
2193         /*
2194          * Lets check again to see if there are still swap entries in the map.
2195          * If yes, we would need to do retry the unuse logic again.
2196          * Under global memory pressure, swap entries can be reinserted back
2197          * into process space after the mmlist loop above passes over them.
2198          *
2199          * Limit the number of retries? No: when mmget_not_zero() above fails,
2200          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2201          * at its own independent pace; and even shmem_writepage() could have
2202          * been preempted after get_swap_page(), temporarily hiding that swap.
2203          * It's easy and robust (though cpu-intensive) just to keep retrying.
2204          */
2205         if (READ_ONCE(si->inuse_pages)) {
2206                 if (!signal_pending(current))
2207                         goto retry;
2208                 return -EINTR;
2209         }
2210
2211         return 0;
2212 }
2213
2214 /*
2215  * After a successful try_to_unuse, if no swap is now in use, we know
2216  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2217  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2218  * added to the mmlist just after page_duplicate - before would be racy.
2219  */
2220 static void drain_mmlist(void)
2221 {
2222         struct list_head *p, *next;
2223         unsigned int type;
2224
2225         for (type = 0; type < nr_swapfiles; type++)
2226                 if (swap_info[type]->inuse_pages)
2227                         return;
2228         spin_lock(&mmlist_lock);
2229         list_for_each_safe(p, next, &init_mm.mmlist)
2230                 list_del_init(p);
2231         spin_unlock(&mmlist_lock);
2232 }
2233
2234 /*
2235  * Free all of a swapdev's extent information
2236  */
2237 static void destroy_swap_extents(struct swap_info_struct *sis)
2238 {
2239         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2240                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2241                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2242
2243                 rb_erase(rb, &sis->swap_extent_root);
2244                 kfree(se);
2245         }
2246
2247         if (sis->flags & SWP_ACTIVATED) {
2248                 struct file *swap_file = sis->swap_file;
2249                 struct address_space *mapping = swap_file->f_mapping;
2250
2251                 sis->flags &= ~SWP_ACTIVATED;
2252                 if (mapping->a_ops->swap_deactivate)
2253                         mapping->a_ops->swap_deactivate(swap_file);
2254         }
2255 }
2256
2257 /*
2258  * Add a block range (and the corresponding page range) into this swapdev's
2259  * extent tree.
2260  *
2261  * This function rather assumes that it is called in ascending page order.
2262  */
2263 int
2264 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2265                 unsigned long nr_pages, sector_t start_block)
2266 {
2267         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2268         struct swap_extent *se;
2269         struct swap_extent *new_se;
2270
2271         /*
2272          * place the new node at the right most since the
2273          * function is called in ascending page order.
2274          */
2275         while (*link) {
2276                 parent = *link;
2277                 link = &parent->rb_right;
2278         }
2279
2280         if (parent) {
2281                 se = rb_entry(parent, struct swap_extent, rb_node);
2282                 BUG_ON(se->start_page + se->nr_pages != start_page);
2283                 if (se->start_block + se->nr_pages == start_block) {
2284                         /* Merge it */
2285                         se->nr_pages += nr_pages;
2286                         return 0;
2287                 }
2288         }
2289
2290         /* No merge, insert a new extent. */
2291         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2292         if (new_se == NULL)
2293                 return -ENOMEM;
2294         new_se->start_page = start_page;
2295         new_se->nr_pages = nr_pages;
2296         new_se->start_block = start_block;
2297
2298         rb_link_node(&new_se->rb_node, parent, link);
2299         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2300         return 1;
2301 }
2302 EXPORT_SYMBOL_GPL(add_swap_extent);
2303
2304 /*
2305  * A `swap extent' is a simple thing which maps a contiguous range of pages
2306  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2307  * is built at swapon time and is then used at swap_writepage/swap_readpage
2308  * time for locating where on disk a page belongs.
2309  *
2310  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2311  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2312  * swap files identically.
2313  *
2314  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2315  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2316  * swapfiles are handled *identically* after swapon time.
2317  *
2318  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2319  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2320  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2321  * requirements, they are simply tossed out - we will never use those blocks
2322  * for swapping.
2323  *
2324  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2325  * prevents users from writing to the swap device, which will corrupt memory.
2326  *
2327  * The amount of disk space which a single swap extent represents varies.
2328  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2329  * extents in the list.  To avoid much list walking, we cache the previous
2330  * search location in `curr_swap_extent', and start new searches from there.
2331  * This is extremely effective.  The average number of iterations in
2332  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2333  */
2334 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2335 {
2336         struct file *swap_file = sis->swap_file;
2337         struct address_space *mapping = swap_file->f_mapping;
2338         struct inode *inode = mapping->host;
2339         int ret;
2340
2341         if (S_ISBLK(inode->i_mode)) {
2342                 ret = add_swap_extent(sis, 0, sis->max, 0);
2343                 *span = sis->pages;
2344                 return ret;
2345         }
2346
2347         if (mapping->a_ops->swap_activate) {
2348                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2349                 if (ret >= 0)
2350                         sis->flags |= SWP_ACTIVATED;
2351                 if (!ret) {
2352                         sis->flags |= SWP_FS_OPS;
2353                         ret = add_swap_extent(sis, 0, sis->max, 0);
2354                         *span = sis->pages;
2355                 }
2356                 return ret;
2357         }
2358
2359         return generic_swapfile_activate(sis, swap_file, span);
2360 }
2361
2362 static int swap_node(struct swap_info_struct *p)
2363 {
2364         struct block_device *bdev;
2365
2366         if (p->bdev)
2367                 bdev = p->bdev;
2368         else
2369                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2370
2371         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2372 }
2373
2374 static void setup_swap_info(struct swap_info_struct *p, int prio,
2375                             unsigned char *swap_map,
2376                             struct swap_cluster_info *cluster_info)
2377 {
2378         int i;
2379
2380         if (prio >= 0)
2381                 p->prio = prio;
2382         else
2383                 p->prio = --least_priority;
2384         /*
2385          * the plist prio is negated because plist ordering is
2386          * low-to-high, while swap ordering is high-to-low
2387          */
2388         p->list.prio = -p->prio;
2389         for_each_node(i) {
2390                 if (p->prio >= 0)
2391                         p->avail_lists[i].prio = -p->prio;
2392                 else {
2393                         if (swap_node(p) == i)
2394                                 p->avail_lists[i].prio = 1;
2395                         else
2396                                 p->avail_lists[i].prio = -p->prio;
2397                 }
2398         }
2399         p->swap_map = swap_map;
2400         p->cluster_info = cluster_info;
2401 }
2402
2403 static void _enable_swap_info(struct swap_info_struct *p)
2404 {
2405         p->flags |= SWP_WRITEOK;
2406         atomic_long_add(p->pages, &nr_swap_pages);
2407         total_swap_pages += p->pages;
2408
2409         assert_spin_locked(&swap_lock);
2410         /*
2411          * both lists are plists, and thus priority ordered.
2412          * swap_active_head needs to be priority ordered for swapoff(),
2413          * which on removal of any swap_info_struct with an auto-assigned
2414          * (i.e. negative) priority increments the auto-assigned priority
2415          * of any lower-priority swap_info_structs.
2416          * swap_avail_head needs to be priority ordered for get_swap_page(),
2417          * which allocates swap pages from the highest available priority
2418          * swap_info_struct.
2419          */
2420         plist_add(&p->list, &swap_active_head);
2421         add_to_avail_list(p);
2422 }
2423
2424 static void enable_swap_info(struct swap_info_struct *p, int prio,
2425                                 unsigned char *swap_map,
2426                                 struct swap_cluster_info *cluster_info,
2427                                 unsigned long *frontswap_map)
2428 {
2429         if (IS_ENABLED(CONFIG_FRONTSWAP))
2430                 frontswap_init(p->type, frontswap_map);
2431         spin_lock(&swap_lock);
2432         spin_lock(&p->lock);
2433         setup_swap_info(p, prio, swap_map, cluster_info);
2434         spin_unlock(&p->lock);
2435         spin_unlock(&swap_lock);
2436         /*
2437          * Finished initializing swap device, now it's safe to reference it.
2438          */
2439         percpu_ref_resurrect(&p->users);
2440         spin_lock(&swap_lock);
2441         spin_lock(&p->lock);
2442         _enable_swap_info(p);
2443         spin_unlock(&p->lock);
2444         spin_unlock(&swap_lock);
2445 }
2446
2447 static void reinsert_swap_info(struct swap_info_struct *p)
2448 {
2449         spin_lock(&swap_lock);
2450         spin_lock(&p->lock);
2451         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2452         _enable_swap_info(p);
2453         spin_unlock(&p->lock);
2454         spin_unlock(&swap_lock);
2455 }
2456
2457 bool has_usable_swap(void)
2458 {
2459         bool ret = true;
2460
2461         spin_lock(&swap_lock);
2462         if (plist_head_empty(&swap_active_head))
2463                 ret = false;
2464         spin_unlock(&swap_lock);
2465         return ret;
2466 }
2467
2468 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2469 {
2470         struct swap_info_struct *p = NULL;
2471         unsigned char *swap_map;
2472         struct swap_cluster_info *cluster_info;
2473         unsigned long *frontswap_map;
2474         struct file *swap_file, *victim;
2475         struct address_space *mapping;
2476         struct inode *inode;
2477         struct filename *pathname;
2478         int err, found = 0;
2479         unsigned int old_block_size;
2480
2481         if (!capable(CAP_SYS_ADMIN))
2482                 return -EPERM;
2483
2484         BUG_ON(!current->mm);
2485
2486         pathname = getname(specialfile);
2487         if (IS_ERR(pathname))
2488                 return PTR_ERR(pathname);
2489
2490         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2491         err = PTR_ERR(victim);
2492         if (IS_ERR(victim))
2493                 goto out;
2494
2495         mapping = victim->f_mapping;
2496         spin_lock(&swap_lock);
2497         plist_for_each_entry(p, &swap_active_head, list) {
2498                 if (p->flags & SWP_WRITEOK) {
2499                         if (p->swap_file->f_mapping == mapping) {
2500                                 found = 1;
2501                                 break;
2502                         }
2503                 }
2504         }
2505         if (!found) {
2506                 err = -EINVAL;
2507                 spin_unlock(&swap_lock);
2508                 goto out_dput;
2509         }
2510         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2511                 vm_unacct_memory(p->pages);
2512         else {
2513                 err = -ENOMEM;
2514                 spin_unlock(&swap_lock);
2515                 goto out_dput;
2516         }
2517         del_from_avail_list(p);
2518         spin_lock(&p->lock);
2519         if (p->prio < 0) {
2520                 struct swap_info_struct *si = p;
2521                 int nid;
2522
2523                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2524                         si->prio++;
2525                         si->list.prio--;
2526                         for_each_node(nid) {
2527                                 if (si->avail_lists[nid].prio != 1)
2528                                         si->avail_lists[nid].prio--;
2529                         }
2530                 }
2531                 least_priority++;
2532         }
2533         plist_del(&p->list, &swap_active_head);
2534         atomic_long_sub(p->pages, &nr_swap_pages);
2535         total_swap_pages -= p->pages;
2536         p->flags &= ~SWP_WRITEOK;
2537         spin_unlock(&p->lock);
2538         spin_unlock(&swap_lock);
2539
2540         disable_swap_slots_cache_lock();
2541
2542         set_current_oom_origin();
2543         err = try_to_unuse(p->type);
2544         clear_current_oom_origin();
2545
2546         if (err) {
2547                 /* re-insert swap space back into swap_list */
2548                 reinsert_swap_info(p);
2549                 reenable_swap_slots_cache_unlock();
2550                 goto out_dput;
2551         }
2552
2553         reenable_swap_slots_cache_unlock();
2554
2555         /*
2556          * Wait for swap operations protected by get/put_swap_device()
2557          * to complete.
2558          *
2559          * We need synchronize_rcu() here to protect the accessing to
2560          * the swap cache data structure.
2561          */
2562         percpu_ref_kill(&p->users);
2563         synchronize_rcu();
2564         wait_for_completion(&p->comp);
2565
2566         flush_work(&p->discard_work);
2567
2568         destroy_swap_extents(p);
2569         if (p->flags & SWP_CONTINUED)
2570                 free_swap_count_continuations(p);
2571
2572         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2573                 atomic_dec(&nr_rotate_swap);
2574
2575         mutex_lock(&swapon_mutex);
2576         spin_lock(&swap_lock);
2577         spin_lock(&p->lock);
2578         drain_mmlist();
2579
2580         /* wait for anyone still in scan_swap_map_slots */
2581         p->highest_bit = 0;             /* cuts scans short */
2582         while (p->flags >= SWP_SCANNING) {
2583                 spin_unlock(&p->lock);
2584                 spin_unlock(&swap_lock);
2585                 schedule_timeout_uninterruptible(1);
2586                 spin_lock(&swap_lock);
2587                 spin_lock(&p->lock);
2588         }
2589
2590         swap_file = p->swap_file;
2591         old_block_size = p->old_block_size;
2592         p->swap_file = NULL;
2593         p->max = 0;
2594         swap_map = p->swap_map;
2595         p->swap_map = NULL;
2596         cluster_info = p->cluster_info;
2597         p->cluster_info = NULL;
2598         frontswap_map = frontswap_map_get(p);
2599         spin_unlock(&p->lock);
2600         spin_unlock(&swap_lock);
2601         arch_swap_invalidate_area(p->type);
2602         frontswap_invalidate_area(p->type);
2603         frontswap_map_set(p, NULL);
2604         mutex_unlock(&swapon_mutex);
2605         free_percpu(p->percpu_cluster);
2606         p->percpu_cluster = NULL;
2607         free_percpu(p->cluster_next_cpu);
2608         p->cluster_next_cpu = NULL;
2609         vfree(swap_map);
2610         kvfree(cluster_info);
2611         kvfree(frontswap_map);
2612         /* Destroy swap account information */
2613         swap_cgroup_swapoff(p->type);
2614         exit_swap_address_space(p->type);
2615
2616         inode = mapping->host;
2617         if (S_ISBLK(inode->i_mode)) {
2618                 struct block_device *bdev = I_BDEV(inode);
2619
2620                 set_blocksize(bdev, old_block_size);
2621                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2622         }
2623
2624         inode_lock(inode);
2625         inode->i_flags &= ~S_SWAPFILE;
2626         inode_unlock(inode);
2627         filp_close(swap_file, NULL);
2628
2629         /*
2630          * Clear the SWP_USED flag after all resources are freed so that swapon
2631          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2632          * not hold p->lock after we cleared its SWP_WRITEOK.
2633          */
2634         spin_lock(&swap_lock);
2635         p->flags = 0;
2636         spin_unlock(&swap_lock);
2637
2638         err = 0;
2639         atomic_inc(&proc_poll_event);
2640         wake_up_interruptible(&proc_poll_wait);
2641
2642 out_dput:
2643         filp_close(victim, NULL);
2644 out:
2645         putname(pathname);
2646         return err;
2647 }
2648
2649 #ifdef CONFIG_PROC_FS
2650 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2651 {
2652         struct seq_file *seq = file->private_data;
2653
2654         poll_wait(file, &proc_poll_wait, wait);
2655
2656         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2657                 seq->poll_event = atomic_read(&proc_poll_event);
2658                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2659         }
2660
2661         return EPOLLIN | EPOLLRDNORM;
2662 }
2663
2664 /* iterator */
2665 static void *swap_start(struct seq_file *swap, loff_t *pos)
2666 {
2667         struct swap_info_struct *si;
2668         int type;
2669         loff_t l = *pos;
2670
2671         mutex_lock(&swapon_mutex);
2672
2673         if (!l)
2674                 return SEQ_START_TOKEN;
2675
2676         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2677                 if (!(si->flags & SWP_USED) || !si->swap_map)
2678                         continue;
2679                 if (!--l)
2680                         return si;
2681         }
2682
2683         return NULL;
2684 }
2685
2686 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2687 {
2688         struct swap_info_struct *si = v;
2689         int type;
2690
2691         if (v == SEQ_START_TOKEN)
2692                 type = 0;
2693         else
2694                 type = si->type + 1;
2695
2696         ++(*pos);
2697         for (; (si = swap_type_to_swap_info(type)); type++) {
2698                 if (!(si->flags & SWP_USED) || !si->swap_map)
2699                         continue;
2700                 return si;
2701         }
2702
2703         return NULL;
2704 }
2705
2706 static void swap_stop(struct seq_file *swap, void *v)
2707 {
2708         mutex_unlock(&swapon_mutex);
2709 }
2710
2711 static int swap_show(struct seq_file *swap, void *v)
2712 {
2713         struct swap_info_struct *si = v;
2714         struct file *file;
2715         int len;
2716         unsigned long bytes, inuse;
2717
2718         if (si == SEQ_START_TOKEN) {
2719                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2720                 return 0;
2721         }
2722
2723         bytes = si->pages << (PAGE_SHIFT - 10);
2724         inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2725
2726         file = si->swap_file;
2727         len = seq_file_path(swap, file, " \t\n\\");
2728         seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2729                         len < 40 ? 40 - len : 1, " ",
2730                         S_ISBLK(file_inode(file)->i_mode) ?
2731                                 "partition" : "file\t",
2732                         bytes, bytes < 10000000 ? "\t" : "",
2733                         inuse, inuse < 10000000 ? "\t" : "",
2734                         si->prio);
2735         return 0;
2736 }
2737
2738 static const struct seq_operations swaps_op = {
2739         .start =        swap_start,
2740         .next =         swap_next,
2741         .stop =         swap_stop,
2742         .show =         swap_show
2743 };
2744
2745 static int swaps_open(struct inode *inode, struct file *file)
2746 {
2747         struct seq_file *seq;
2748         int ret;
2749
2750         ret = seq_open(file, &swaps_op);
2751         if (ret)
2752                 return ret;
2753
2754         seq = file->private_data;
2755         seq->poll_event = atomic_read(&proc_poll_event);
2756         return 0;
2757 }
2758
2759 static const struct proc_ops swaps_proc_ops = {
2760         .proc_flags     = PROC_ENTRY_PERMANENT,
2761         .proc_open      = swaps_open,
2762         .proc_read      = seq_read,
2763         .proc_lseek     = seq_lseek,
2764         .proc_release   = seq_release,
2765         .proc_poll      = swaps_poll,
2766 };
2767
2768 static int __init procswaps_init(void)
2769 {
2770         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2771         return 0;
2772 }
2773 __initcall(procswaps_init);
2774 #endif /* CONFIG_PROC_FS */
2775
2776 #ifdef MAX_SWAPFILES_CHECK
2777 static int __init max_swapfiles_check(void)
2778 {
2779         MAX_SWAPFILES_CHECK();
2780         return 0;
2781 }
2782 late_initcall(max_swapfiles_check);
2783 #endif
2784
2785 static struct swap_info_struct *alloc_swap_info(void)
2786 {
2787         struct swap_info_struct *p;
2788         struct swap_info_struct *defer = NULL;
2789         unsigned int type;
2790         int i;
2791
2792         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2793         if (!p)
2794                 return ERR_PTR(-ENOMEM);
2795
2796         if (percpu_ref_init(&p->users, swap_users_ref_free,
2797                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2798                 kvfree(p);
2799                 return ERR_PTR(-ENOMEM);
2800         }
2801
2802         spin_lock(&swap_lock);
2803         for (type = 0; type < nr_swapfiles; type++) {
2804                 if (!(swap_info[type]->flags & SWP_USED))
2805                         break;
2806         }
2807         if (type >= MAX_SWAPFILES) {
2808                 spin_unlock(&swap_lock);
2809                 percpu_ref_exit(&p->users);
2810                 kvfree(p);
2811                 return ERR_PTR(-EPERM);
2812         }
2813         if (type >= nr_swapfiles) {
2814                 p->type = type;
2815                 /*
2816                  * Publish the swap_info_struct after initializing it.
2817                  * Note that kvzalloc() above zeroes all its fields.
2818                  */
2819                 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2820                 nr_swapfiles++;
2821         } else {
2822                 defer = p;
2823                 p = swap_info[type];
2824                 /*
2825                  * Do not memset this entry: a racing procfs swap_next()
2826                  * would be relying on p->type to remain valid.
2827                  */
2828         }
2829         p->swap_extent_root = RB_ROOT;
2830         plist_node_init(&p->list, 0);
2831         for_each_node(i)
2832                 plist_node_init(&p->avail_lists[i], 0);
2833         p->flags = SWP_USED;
2834         spin_unlock(&swap_lock);
2835         if (defer) {
2836                 percpu_ref_exit(&defer->users);
2837                 kvfree(defer);
2838         }
2839         spin_lock_init(&p->lock);
2840         spin_lock_init(&p->cont_lock);
2841         init_completion(&p->comp);
2842
2843         return p;
2844 }
2845
2846 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2847 {
2848         int error;
2849
2850         if (S_ISBLK(inode->i_mode)) {
2851                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2852                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2853                 if (IS_ERR(p->bdev)) {
2854                         error = PTR_ERR(p->bdev);
2855                         p->bdev = NULL;
2856                         return error;
2857                 }
2858                 p->old_block_size = block_size(p->bdev);
2859                 error = set_blocksize(p->bdev, PAGE_SIZE);
2860                 if (error < 0)
2861                         return error;
2862                 /*
2863                  * Zoned block devices contain zones that have a sequential
2864                  * write only restriction.  Hence zoned block devices are not
2865                  * suitable for swapping.  Disallow them here.
2866                  */
2867                 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2868                         return -EINVAL;
2869                 p->flags |= SWP_BLKDEV;
2870         } else if (S_ISREG(inode->i_mode)) {
2871                 p->bdev = inode->i_sb->s_bdev;
2872         }
2873
2874         return 0;
2875 }
2876
2877
2878 /*
2879  * Find out how many pages are allowed for a single swap device. There
2880  * are two limiting factors:
2881  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2882  * 2) the number of bits in the swap pte, as defined by the different
2883  * architectures.
2884  *
2885  * In order to find the largest possible bit mask, a swap entry with
2886  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2887  * decoded to a swp_entry_t again, and finally the swap offset is
2888  * extracted.
2889  *
2890  * This will mask all the bits from the initial ~0UL mask that can't
2891  * be encoded in either the swp_entry_t or the architecture definition
2892  * of a swap pte.
2893  */
2894 unsigned long generic_max_swapfile_size(void)
2895 {
2896         return swp_offset(pte_to_swp_entry(
2897                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2898 }
2899
2900 /* Can be overridden by an architecture for additional checks. */
2901 __weak unsigned long max_swapfile_size(void)
2902 {
2903         return generic_max_swapfile_size();
2904 }
2905
2906 static unsigned long read_swap_header(struct swap_info_struct *p,
2907                                         union swap_header *swap_header,
2908                                         struct inode *inode)
2909 {
2910         int i;
2911         unsigned long maxpages;
2912         unsigned long swapfilepages;
2913         unsigned long last_page;
2914
2915         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2916                 pr_err("Unable to find swap-space signature\n");
2917                 return 0;
2918         }
2919
2920         /* swap partition endianness hack... */
2921         if (swab32(swap_header->info.version) == 1) {
2922                 swab32s(&swap_header->info.version);
2923                 swab32s(&swap_header->info.last_page);
2924                 swab32s(&swap_header->info.nr_badpages);
2925                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2926                         return 0;
2927                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2928                         swab32s(&swap_header->info.badpages[i]);
2929         }
2930         /* Check the swap header's sub-version */
2931         if (swap_header->info.version != 1) {
2932                 pr_warn("Unable to handle swap header version %d\n",
2933                         swap_header->info.version);
2934                 return 0;
2935         }
2936
2937         p->lowest_bit  = 1;
2938         p->cluster_next = 1;
2939         p->cluster_nr = 0;
2940
2941         maxpages = max_swapfile_size();
2942         last_page = swap_header->info.last_page;
2943         if (!last_page) {
2944                 pr_warn("Empty swap-file\n");
2945                 return 0;
2946         }
2947         if (last_page > maxpages) {
2948                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2949                         maxpages << (PAGE_SHIFT - 10),
2950                         last_page << (PAGE_SHIFT - 10));
2951         }
2952         if (maxpages > last_page) {
2953                 maxpages = last_page + 1;
2954                 /* p->max is an unsigned int: don't overflow it */
2955                 if ((unsigned int)maxpages == 0)
2956                         maxpages = UINT_MAX;
2957         }
2958         p->highest_bit = maxpages - 1;
2959
2960         if (!maxpages)
2961                 return 0;
2962         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2963         if (swapfilepages && maxpages > swapfilepages) {
2964                 pr_warn("Swap area shorter than signature indicates\n");
2965                 return 0;
2966         }
2967         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2968                 return 0;
2969         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2970                 return 0;
2971
2972         return maxpages;
2973 }
2974
2975 #define SWAP_CLUSTER_INFO_COLS                                          \
2976         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2977 #define SWAP_CLUSTER_SPACE_COLS                                         \
2978         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2979 #define SWAP_CLUSTER_COLS                                               \
2980         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2981
2982 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2983                                         union swap_header *swap_header,
2984                                         unsigned char *swap_map,
2985                                         struct swap_cluster_info *cluster_info,
2986                                         unsigned long maxpages,
2987                                         sector_t *span)
2988 {
2989         unsigned int j, k;
2990         unsigned int nr_good_pages;
2991         int nr_extents;
2992         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2993         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2994         unsigned long i, idx;
2995
2996         nr_good_pages = maxpages - 1;   /* omit header page */
2997
2998         cluster_list_init(&p->free_clusters);
2999         cluster_list_init(&p->discard_clusters);
3000
3001         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3002                 unsigned int page_nr = swap_header->info.badpages[i];
3003                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3004                         return -EINVAL;
3005                 if (page_nr < maxpages) {
3006                         swap_map[page_nr] = SWAP_MAP_BAD;
3007                         nr_good_pages--;
3008                         /*
3009                          * Haven't marked the cluster free yet, no list
3010                          * operation involved
3011                          */
3012                         inc_cluster_info_page(p, cluster_info, page_nr);
3013                 }
3014         }
3015
3016         /* Haven't marked the cluster free yet, no list operation involved */
3017         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3018                 inc_cluster_info_page(p, cluster_info, i);
3019
3020         if (nr_good_pages) {
3021                 swap_map[0] = SWAP_MAP_BAD;
3022                 /*
3023                  * Not mark the cluster free yet, no list
3024                  * operation involved
3025                  */
3026                 inc_cluster_info_page(p, cluster_info, 0);
3027                 p->max = maxpages;
3028                 p->pages = nr_good_pages;
3029                 nr_extents = setup_swap_extents(p, span);
3030                 if (nr_extents < 0)
3031                         return nr_extents;
3032                 nr_good_pages = p->pages;
3033         }
3034         if (!nr_good_pages) {
3035                 pr_warn("Empty swap-file\n");
3036                 return -EINVAL;
3037         }
3038
3039         if (!cluster_info)
3040                 return nr_extents;
3041
3042
3043         /*
3044          * Reduce false cache line sharing between cluster_info and
3045          * sharing same address space.
3046          */
3047         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3048                 j = (k + col) % SWAP_CLUSTER_COLS;
3049                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3050                         idx = i * SWAP_CLUSTER_COLS + j;
3051                         if (idx >= nr_clusters)
3052                                 continue;
3053                         if (cluster_count(&cluster_info[idx]))
3054                                 continue;
3055                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3056                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3057                                               idx);
3058                 }
3059         }
3060         return nr_extents;
3061 }
3062
3063 /*
3064  * Helper to sys_swapon determining if a given swap
3065  * backing device queue supports DISCARD operations.
3066  */
3067 static bool swap_discardable(struct swap_info_struct *si)
3068 {
3069         struct request_queue *q = bdev_get_queue(si->bdev);
3070
3071         if (!blk_queue_discard(q))
3072                 return false;
3073
3074         return true;
3075 }
3076
3077 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3078 {
3079         struct swap_info_struct *p;
3080         struct filename *name;
3081         struct file *swap_file = NULL;
3082         struct address_space *mapping;
3083         struct dentry *dentry;
3084         int prio;
3085         int error;
3086         union swap_header *swap_header;
3087         int nr_extents;
3088         sector_t span;
3089         unsigned long maxpages;
3090         unsigned char *swap_map = NULL;
3091         struct swap_cluster_info *cluster_info = NULL;
3092         unsigned long *frontswap_map = NULL;
3093         struct page *page = NULL;
3094         struct inode *inode = NULL;
3095         bool inced_nr_rotate_swap = false;
3096
3097         if (swap_flags & ~SWAP_FLAGS_VALID)
3098                 return -EINVAL;
3099
3100         if (!capable(CAP_SYS_ADMIN))
3101                 return -EPERM;
3102
3103         if (!swap_avail_heads)
3104                 return -ENOMEM;
3105
3106         p = alloc_swap_info();
3107         if (IS_ERR(p))
3108                 return PTR_ERR(p);
3109
3110         INIT_WORK(&p->discard_work, swap_discard_work);
3111
3112         name = getname(specialfile);
3113         if (IS_ERR(name)) {
3114                 error = PTR_ERR(name);
3115                 name = NULL;
3116                 goto bad_swap;
3117         }
3118         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3119         if (IS_ERR(swap_file)) {
3120                 error = PTR_ERR(swap_file);
3121                 swap_file = NULL;
3122                 goto bad_swap;
3123         }
3124
3125         p->swap_file = swap_file;
3126         mapping = swap_file->f_mapping;
3127         dentry = swap_file->f_path.dentry;
3128         inode = mapping->host;
3129
3130         error = claim_swapfile(p, inode);
3131         if (unlikely(error))
3132                 goto bad_swap;
3133
3134         inode_lock(inode);
3135         if (d_unlinked(dentry) || cant_mount(dentry)) {
3136                 error = -ENOENT;
3137                 goto bad_swap_unlock_inode;
3138         }
3139         if (IS_SWAPFILE(inode)) {
3140                 error = -EBUSY;
3141                 goto bad_swap_unlock_inode;
3142         }
3143
3144         /*
3145          * Read the swap header.
3146          */
3147         if (!mapping->a_ops->readpage) {
3148                 error = -EINVAL;
3149                 goto bad_swap_unlock_inode;
3150         }
3151         page = read_mapping_page(mapping, 0, swap_file);
3152         if (IS_ERR(page)) {
3153                 error = PTR_ERR(page);
3154                 goto bad_swap_unlock_inode;
3155         }
3156         swap_header = kmap(page);
3157
3158         maxpages = read_swap_header(p, swap_header, inode);
3159         if (unlikely(!maxpages)) {
3160                 error = -EINVAL;
3161                 goto bad_swap_unlock_inode;
3162         }
3163
3164         /* OK, set up the swap map and apply the bad block list */
3165         swap_map = vzalloc(maxpages);
3166         if (!swap_map) {
3167                 error = -ENOMEM;
3168                 goto bad_swap_unlock_inode;
3169         }
3170
3171         if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3172                 p->flags |= SWP_STABLE_WRITES;
3173
3174         if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3175                 p->flags |= SWP_SYNCHRONOUS_IO;
3176
3177         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3178                 int cpu;
3179                 unsigned long ci, nr_cluster;
3180
3181                 p->flags |= SWP_SOLIDSTATE;
3182                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3183                 if (!p->cluster_next_cpu) {
3184                         error = -ENOMEM;
3185                         goto bad_swap_unlock_inode;
3186                 }
3187                 /*
3188                  * select a random position to start with to help wear leveling
3189                  * SSD
3190                  */
3191                 for_each_possible_cpu(cpu) {
3192                         per_cpu(*p->cluster_next_cpu, cpu) =
3193                                 1 + prandom_u32_max(p->highest_bit);
3194                 }
3195                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3196
3197                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3198                                         GFP_KERNEL);
3199                 if (!cluster_info) {
3200                         error = -ENOMEM;
3201                         goto bad_swap_unlock_inode;
3202                 }
3203
3204                 for (ci = 0; ci < nr_cluster; ci++)
3205                         spin_lock_init(&((cluster_info + ci)->lock));
3206
3207                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3208                 if (!p->percpu_cluster) {
3209                         error = -ENOMEM;
3210                         goto bad_swap_unlock_inode;
3211                 }
3212                 for_each_possible_cpu(cpu) {
3213                         struct percpu_cluster *cluster;
3214                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3215                         cluster_set_null(&cluster->index);
3216                 }
3217         } else {
3218                 atomic_inc(&nr_rotate_swap);
3219                 inced_nr_rotate_swap = true;
3220         }
3221
3222         error = swap_cgroup_swapon(p->type, maxpages);
3223         if (error)
3224                 goto bad_swap_unlock_inode;
3225
3226         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3227                 cluster_info, maxpages, &span);
3228         if (unlikely(nr_extents < 0)) {
3229                 error = nr_extents;
3230                 goto bad_swap_unlock_inode;
3231         }
3232         /* frontswap enabled? set up bit-per-page map for frontswap */
3233         if (IS_ENABLED(CONFIG_FRONTSWAP))
3234                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3235                                          sizeof(long),
3236                                          GFP_KERNEL);
3237
3238         if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3239                 /*
3240                  * When discard is enabled for swap with no particular
3241                  * policy flagged, we set all swap discard flags here in
3242                  * order to sustain backward compatibility with older
3243                  * swapon(8) releases.
3244                  */
3245                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3246                              SWP_PAGE_DISCARD);
3247
3248                 /*
3249                  * By flagging sys_swapon, a sysadmin can tell us to
3250                  * either do single-time area discards only, or to just
3251                  * perform discards for released swap page-clusters.
3252                  * Now it's time to adjust the p->flags accordingly.
3253                  */
3254                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3255                         p->flags &= ~SWP_PAGE_DISCARD;
3256                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3257                         p->flags &= ~SWP_AREA_DISCARD;
3258
3259                 /* issue a swapon-time discard if it's still required */
3260                 if (p->flags & SWP_AREA_DISCARD) {
3261                         int err = discard_swap(p);
3262                         if (unlikely(err))
3263                                 pr_err("swapon: discard_swap(%p): %d\n",
3264                                         p, err);
3265                 }
3266         }
3267
3268         error = init_swap_address_space(p->type, maxpages);
3269         if (error)
3270                 goto bad_swap_unlock_inode;
3271
3272         /*
3273          * Flush any pending IO and dirty mappings before we start using this
3274          * swap device.
3275          */
3276         inode->i_flags |= S_SWAPFILE;
3277         error = inode_drain_writes(inode);
3278         if (error) {
3279                 inode->i_flags &= ~S_SWAPFILE;
3280                 goto free_swap_address_space;
3281         }
3282
3283         mutex_lock(&swapon_mutex);
3284         prio = -1;
3285         if (swap_flags & SWAP_FLAG_PREFER)
3286                 prio =
3287                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3288         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3289
3290         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3291                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3292                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3293                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3294                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3295                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3296                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3297                 (frontswap_map) ? "FS" : "");
3298
3299         mutex_unlock(&swapon_mutex);
3300         atomic_inc(&proc_poll_event);
3301         wake_up_interruptible(&proc_poll_wait);
3302
3303         error = 0;
3304         goto out;
3305 free_swap_address_space:
3306         exit_swap_address_space(p->type);
3307 bad_swap_unlock_inode:
3308         inode_unlock(inode);
3309 bad_swap:
3310         free_percpu(p->percpu_cluster);
3311         p->percpu_cluster = NULL;
3312         free_percpu(p->cluster_next_cpu);
3313         p->cluster_next_cpu = NULL;
3314         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3315                 set_blocksize(p->bdev, p->old_block_size);
3316                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3317         }
3318         inode = NULL;
3319         destroy_swap_extents(p);
3320         swap_cgroup_swapoff(p->type);
3321         spin_lock(&swap_lock);
3322         p->swap_file = NULL;
3323         p->flags = 0;
3324         spin_unlock(&swap_lock);
3325         vfree(swap_map);
3326         kvfree(cluster_info);
3327         kvfree(frontswap_map);
3328         if (inced_nr_rotate_swap)
3329                 atomic_dec(&nr_rotate_swap);
3330         if (swap_file)
3331                 filp_close(swap_file, NULL);
3332 out:
3333         if (page && !IS_ERR(page)) {
3334                 kunmap(page);
3335                 put_page(page);
3336         }
3337         if (name)
3338                 putname(name);
3339         if (inode)
3340                 inode_unlock(inode);
3341         if (!error)
3342                 enable_swap_slots_cache();
3343         return error;
3344 }
3345
3346 void si_swapinfo(struct sysinfo *val)
3347 {
3348         unsigned int type;
3349         unsigned long nr_to_be_unused = 0;
3350
3351         spin_lock(&swap_lock);
3352         for (type = 0; type < nr_swapfiles; type++) {
3353                 struct swap_info_struct *si = swap_info[type];
3354
3355                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3356                         nr_to_be_unused += si->inuse_pages;
3357         }
3358         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3359         val->totalswap = total_swap_pages + nr_to_be_unused;
3360         spin_unlock(&swap_lock);
3361 }
3362
3363 /*
3364  * Verify that a swap entry is valid and increment its swap map count.
3365  *
3366  * Returns error code in following case.
3367  * - success -> 0
3368  * - swp_entry is invalid -> EINVAL
3369  * - swp_entry is migration entry -> EINVAL
3370  * - swap-cache reference is requested but there is already one. -> EEXIST
3371  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3372  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3373  */
3374 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3375 {
3376         struct swap_info_struct *p;
3377         struct swap_cluster_info *ci;
3378         unsigned long offset;
3379         unsigned char count;
3380         unsigned char has_cache;
3381         int err;
3382
3383         p = get_swap_device(entry);
3384         if (!p)
3385                 return -EINVAL;
3386
3387         offset = swp_offset(entry);
3388         ci = lock_cluster_or_swap_info(p, offset);
3389
3390         count = p->swap_map[offset];
3391
3392         /*
3393          * swapin_readahead() doesn't check if a swap entry is valid, so the
3394          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3395          */
3396         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3397                 err = -ENOENT;
3398                 goto unlock_out;
3399         }
3400
3401         has_cache = count & SWAP_HAS_CACHE;
3402         count &= ~SWAP_HAS_CACHE;
3403         err = 0;
3404
3405         if (usage == SWAP_HAS_CACHE) {
3406
3407                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3408                 if (!has_cache && count)
3409                         has_cache = SWAP_HAS_CACHE;
3410                 else if (has_cache)             /* someone else added cache */
3411                         err = -EEXIST;
3412                 else                            /* no users remaining */
3413                         err = -ENOENT;
3414
3415         } else if (count || has_cache) {
3416
3417                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3418                         count += usage;
3419                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3420                         err = -EINVAL;
3421                 else if (swap_count_continued(p, offset, count))
3422                         count = COUNT_CONTINUED;
3423                 else
3424                         err = -ENOMEM;
3425         } else
3426                 err = -ENOENT;                  /* unused swap entry */
3427
3428         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3429
3430 unlock_out:
3431         unlock_cluster_or_swap_info(p, ci);
3432         if (p)
3433                 put_swap_device(p);
3434         return err;
3435 }
3436
3437 /*
3438  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3439  * (in which case its reference count is never incremented).
3440  */
3441 void swap_shmem_alloc(swp_entry_t entry)
3442 {
3443         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3444 }
3445
3446 /*
3447  * Increase reference count of swap entry by 1.
3448  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3449  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3450  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3451  * might occur if a page table entry has got corrupted.
3452  */
3453 int swap_duplicate(swp_entry_t entry)
3454 {
3455         int err = 0;
3456
3457         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3458                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3459         return err;
3460 }
3461
3462 /*
3463  * @entry: swap entry for which we allocate swap cache.
3464  *
3465  * Called when allocating swap cache for existing swap entry,
3466  * This can return error codes. Returns 0 at success.
3467  * -EEXIST means there is a swap cache.
3468  * Note: return code is different from swap_duplicate().
3469  */
3470 int swapcache_prepare(swp_entry_t entry)
3471 {
3472         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3473 }
3474
3475 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3476 {
3477         return swap_type_to_swap_info(swp_type(entry));
3478 }
3479
3480 struct swap_info_struct *page_swap_info(struct page *page)
3481 {
3482         swp_entry_t entry = { .val = page_private(page) };
3483         return swp_swap_info(entry);
3484 }
3485
3486 /*
3487  * out-of-line methods to avoid include hell.
3488  */
3489 struct address_space *swapcache_mapping(struct folio *folio)
3490 {
3491         return page_swap_info(&folio->page)->swap_file->f_mapping;
3492 }
3493 EXPORT_SYMBOL_GPL(swapcache_mapping);
3494
3495 pgoff_t __page_file_index(struct page *page)
3496 {
3497         swp_entry_t swap = { .val = page_private(page) };
3498         return swp_offset(swap);
3499 }
3500 EXPORT_SYMBOL_GPL(__page_file_index);
3501
3502 /*
3503  * add_swap_count_continuation - called when a swap count is duplicated
3504  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3505  * page of the original vmalloc'ed swap_map, to hold the continuation count
3506  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3507  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3508  *
3509  * These continuation pages are seldom referenced: the common paths all work
3510  * on the original swap_map, only referring to a continuation page when the
3511  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3512  *
3513  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3514  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3515  * can be called after dropping locks.
3516  */
3517 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3518 {
3519         struct swap_info_struct *si;
3520         struct swap_cluster_info *ci;
3521         struct page *head;
3522         struct page *page;
3523         struct page *list_page;
3524         pgoff_t offset;
3525         unsigned char count;
3526         int ret = 0;
3527
3528         /*
3529          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3530          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3531          */
3532         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3533
3534         si = get_swap_device(entry);
3535         if (!si) {
3536                 /*
3537                  * An acceptable race has occurred since the failing
3538                  * __swap_duplicate(): the swap device may be swapoff
3539                  */
3540                 goto outer;
3541         }
3542         spin_lock(&si->lock);
3543
3544         offset = swp_offset(entry);
3545
3546         ci = lock_cluster(si, offset);
3547
3548         count = swap_count(si->swap_map[offset]);
3549
3550         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3551                 /*
3552                  * The higher the swap count, the more likely it is that tasks
3553                  * will race to add swap count continuation: we need to avoid
3554                  * over-provisioning.
3555                  */
3556                 goto out;
3557         }
3558
3559         if (!page) {
3560                 ret = -ENOMEM;
3561                 goto out;
3562         }
3563
3564         /*
3565          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3566          * no architecture is using highmem pages for kernel page tables: so it
3567          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3568          */
3569         head = vmalloc_to_page(si->swap_map + offset);
3570         offset &= ~PAGE_MASK;
3571
3572         spin_lock(&si->cont_lock);
3573         /*
3574          * Page allocation does not initialize the page's lru field,
3575          * but it does always reset its private field.
3576          */
3577         if (!page_private(head)) {
3578                 BUG_ON(count & COUNT_CONTINUED);
3579                 INIT_LIST_HEAD(&head->lru);
3580                 set_page_private(head, SWP_CONTINUED);
3581                 si->flags |= SWP_CONTINUED;
3582         }
3583
3584         list_for_each_entry(list_page, &head->lru, lru) {
3585                 unsigned char *map;
3586
3587                 /*
3588                  * If the previous map said no continuation, but we've found
3589                  * a continuation page, free our allocation and use this one.
3590                  */
3591                 if (!(count & COUNT_CONTINUED))
3592                         goto out_unlock_cont;
3593
3594                 map = kmap_atomic(list_page) + offset;
3595                 count = *map;
3596                 kunmap_atomic(map);
3597
3598                 /*
3599                  * If this continuation count now has some space in it,
3600                  * free our allocation and use this one.
3601                  */
3602                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3603                         goto out_unlock_cont;
3604         }
3605
3606         list_add_tail(&page->lru, &head->lru);
3607         page = NULL;                    /* now it's attached, don't free it */
3608 out_unlock_cont:
3609         spin_unlock(&si->cont_lock);
3610 out:
3611         unlock_cluster(ci);
3612         spin_unlock(&si->lock);
3613         put_swap_device(si);
3614 outer:
3615         if (page)
3616                 __free_page(page);
3617         return ret;
3618 }
3619
3620 /*
3621  * swap_count_continued - when the original swap_map count is incremented
3622  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3623  * into, carry if so, or else fail until a new continuation page is allocated;
3624  * when the original swap_map count is decremented from 0 with continuation,
3625  * borrow from the continuation and report whether it still holds more.
3626  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3627  * lock.
3628  */
3629 static bool swap_count_continued(struct swap_info_struct *si,
3630                                  pgoff_t offset, unsigned char count)
3631 {
3632         struct page *head;
3633         struct page *page;
3634         unsigned char *map;
3635         bool ret;
3636
3637         head = vmalloc_to_page(si->swap_map + offset);
3638         if (page_private(head) != SWP_CONTINUED) {
3639                 BUG_ON(count & COUNT_CONTINUED);
3640                 return false;           /* need to add count continuation */
3641         }
3642
3643         spin_lock(&si->cont_lock);
3644         offset &= ~PAGE_MASK;
3645         page = list_next_entry(head, lru);
3646         map = kmap_atomic(page) + offset;
3647
3648         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3649                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3650
3651         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3652                 /*
3653                  * Think of how you add 1 to 999
3654                  */
3655                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3656                         kunmap_atomic(map);
3657                         page = list_next_entry(page, lru);
3658                         BUG_ON(page == head);
3659                         map = kmap_atomic(page) + offset;
3660                 }
3661                 if (*map == SWAP_CONT_MAX) {
3662                         kunmap_atomic(map);
3663                         page = list_next_entry(page, lru);
3664                         if (page == head) {
3665                                 ret = false;    /* add count continuation */
3666                                 goto out;
3667                         }
3668                         map = kmap_atomic(page) + offset;
3669 init_map:               *map = 0;               /* we didn't zero the page */
3670                 }
3671                 *map += 1;
3672                 kunmap_atomic(map);
3673                 while ((page = list_prev_entry(page, lru)) != head) {
3674                         map = kmap_atomic(page) + offset;
3675                         *map = COUNT_CONTINUED;
3676                         kunmap_atomic(map);
3677                 }
3678                 ret = true;                     /* incremented */
3679
3680         } else {                                /* decrementing */
3681                 /*
3682                  * Think of how you subtract 1 from 1000
3683                  */
3684                 BUG_ON(count != COUNT_CONTINUED);
3685                 while (*map == COUNT_CONTINUED) {
3686                         kunmap_atomic(map);
3687                         page = list_next_entry(page, lru);
3688                         BUG_ON(page == head);
3689                         map = kmap_atomic(page) + offset;
3690                 }
3691                 BUG_ON(*map == 0);
3692                 *map -= 1;
3693                 if (*map == 0)
3694                         count = 0;
3695                 kunmap_atomic(map);
3696                 while ((page = list_prev_entry(page, lru)) != head) {
3697                         map = kmap_atomic(page) + offset;
3698                         *map = SWAP_CONT_MAX | count;
3699                         count = COUNT_CONTINUED;
3700                         kunmap_atomic(map);
3701                 }
3702                 ret = count == COUNT_CONTINUED;
3703         }
3704 out:
3705         spin_unlock(&si->cont_lock);
3706         return ret;
3707 }
3708
3709 /*
3710  * free_swap_count_continuations - swapoff free all the continuation pages
3711  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3712  */
3713 static void free_swap_count_continuations(struct swap_info_struct *si)
3714 {
3715         pgoff_t offset;
3716
3717         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3718                 struct page *head;
3719                 head = vmalloc_to_page(si->swap_map + offset);
3720                 if (page_private(head)) {
3721                         struct page *page, *next;
3722
3723                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3724                                 list_del(&page->lru);
3725                                 __free_page(page);
3726                         }
3727                 }
3728         }
3729 }
3730
3731 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3732 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3733 {
3734         struct swap_info_struct *si, *next;
3735         int nid = page_to_nid(page);
3736
3737         if (!(gfp_mask & __GFP_IO))
3738                 return;
3739
3740         if (!blk_cgroup_congested())
3741                 return;
3742
3743         /*
3744          * We've already scheduled a throttle, avoid taking the global swap
3745          * lock.
3746          */
3747         if (current->throttle_queue)
3748                 return;
3749
3750         spin_lock(&swap_avail_lock);
3751         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3752                                   avail_lists[nid]) {
3753                 if (si->bdev) {
3754                         blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3755                         break;
3756                 }
3757         }
3758         spin_unlock(&swap_avail_lock);
3759 }
3760 #endif
3761
3762 static int __init swapfile_init(void)
3763 {
3764         int nid;
3765
3766         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3767                                          GFP_KERNEL);
3768         if (!swap_avail_heads) {
3769                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3770                 return -ENOMEM;
3771         }
3772
3773         for_each_node(nid)
3774                 plist_head_init(&swap_avail_heads[nid]);
3775
3776         return 0;
3777 }
3778 subsys_initcall(swapfile_init);