b6e68dcf7a18888548d94801a7f3e5f0dec725f8
[linux-2.6-microblaze.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/pgtable.h>
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49                                  unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57  * Some modules use swappable objects and may try to swap them out under
58  * memory pressure (via the shrinker). Before doing so, they may wish to
59  * check to see if any swap space is available.
60  */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70
71 /*
72  * all active swap_info_structs
73  * protected with swap_lock, and ordered by priority.
74  */
75 PLIST_HEAD(swap_active_head);
76
77 /*
78  * all available (active, not full) swap_info_structs
79  * protected with swap_avail_lock, ordered by priority.
80  * This is used by get_swap_page() instead of swap_active_head
81  * because swap_active_head includes all swap_info_structs,
82  * but get_swap_page() doesn't need to look at full ones.
83  * This uses its own lock instead of swap_lock because when a
84  * swap_info_struct changes between not-full/full, it needs to
85  * add/remove itself to/from this list, but the swap_info_struct->lock
86  * is held and the locking order requires swap_lock to be taken
87  * before any swap_info_struct->lock.
88  */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93
94 static DEFINE_MUTEX(swapon_mutex);
95
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104         if (type >= READ_ONCE(nr_swapfiles))
105                 return NULL;
106
107         smp_rmb();      /* Pairs with smp_wmb in alloc_swap_info. */
108         return READ_ONCE(swap_info[type]);
109 }
110
111 static inline unsigned char swap_count(unsigned char ent)
112 {
113         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
114 }
115
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY             0x1
118 /*
119  * Reclaim the swap entry if there are no more mappings of the
120  * corresponding page
121  */
122 #define TTRS_UNMAPPED           0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL               0x4
125
126 /* returns 1 if swap entry is freed */
127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128                                  unsigned long offset, unsigned long flags)
129 {
130         swp_entry_t entry = swp_entry(si->type, offset);
131         struct page *page;
132         int ret = 0;
133
134         page = find_get_page(swap_address_space(entry), offset);
135         if (!page)
136                 return 0;
137         /*
138          * When this function is called from scan_swap_map_slots() and it's
139          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140          * here. We have to use trylock for avoiding deadlock. This is a special
141          * case and you should use try_to_free_swap() with explicit lock_page()
142          * in usual operations.
143          */
144         if (trylock_page(page)) {
145                 if ((flags & TTRS_ANYWAY) ||
146                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148                         ret = try_to_free_swap(page);
149                 unlock_page(page);
150         }
151         put_page(page);
152         return ret;
153 }
154
155 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156 {
157         struct rb_node *rb = rb_first(&sis->swap_extent_root);
158         return rb_entry(rb, struct swap_extent, rb_node);
159 }
160
161 static inline struct swap_extent *next_se(struct swap_extent *se)
162 {
163         struct rb_node *rb = rb_next(&se->rb_node);
164         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165 }
166
167 /*
168  * swapon tell device that all the old swap contents can be discarded,
169  * to allow the swap device to optimize its wear-levelling.
170  */
171 static int discard_swap(struct swap_info_struct *si)
172 {
173         struct swap_extent *se;
174         sector_t start_block;
175         sector_t nr_blocks;
176         int err = 0;
177
178         /* Do not discard the swap header page! */
179         se = first_se(si);
180         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182         if (nr_blocks) {
183                 err = blkdev_issue_discard(si->bdev, start_block,
184                                 nr_blocks, GFP_KERNEL, 0);
185                 if (err)
186                         return err;
187                 cond_resched();
188         }
189
190         for (se = next_se(se); se; se = next_se(se)) {
191                 start_block = se->start_block << (PAGE_SHIFT - 9);
192                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
193
194                 err = blkdev_issue_discard(si->bdev, start_block,
195                                 nr_blocks, GFP_KERNEL, 0);
196                 if (err)
197                         break;
198
199                 cond_resched();
200         }
201         return err;             /* That will often be -EOPNOTSUPP */
202 }
203
204 static struct swap_extent *
205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206 {
207         struct swap_extent *se;
208         struct rb_node *rb;
209
210         rb = sis->swap_extent_root.rb_node;
211         while (rb) {
212                 se = rb_entry(rb, struct swap_extent, rb_node);
213                 if (offset < se->start_page)
214                         rb = rb->rb_left;
215                 else if (offset >= se->start_page + se->nr_pages)
216                         rb = rb->rb_right;
217                 else
218                         return se;
219         }
220         /* It *must* be present */
221         BUG();
222 }
223
224 /*
225  * swap allocation tell device that a cluster of swap can now be discarded,
226  * to allow the swap device to optimize its wear-levelling.
227  */
228 static void discard_swap_cluster(struct swap_info_struct *si,
229                                  pgoff_t start_page, pgoff_t nr_pages)
230 {
231         struct swap_extent *se = offset_to_swap_extent(si, start_page);
232
233         while (nr_pages) {
234                 pgoff_t offset = start_page - se->start_page;
235                 sector_t start_block = se->start_block + offset;
236                 sector_t nr_blocks = se->nr_pages - offset;
237
238                 if (nr_blocks > nr_pages)
239                         nr_blocks = nr_pages;
240                 start_page += nr_blocks;
241                 nr_pages -= nr_blocks;
242
243                 start_block <<= PAGE_SHIFT - 9;
244                 nr_blocks <<= PAGE_SHIFT - 9;
245                 if (blkdev_issue_discard(si->bdev, start_block,
246                                         nr_blocks, GFP_NOIO, 0))
247                         break;
248
249                 se = next_se(se);
250         }
251 }
252
253 #ifdef CONFIG_THP_SWAP
254 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
255
256 #define swap_entry_size(size)   (size)
257 #else
258 #define SWAPFILE_CLUSTER        256
259
260 /*
261  * Define swap_entry_size() as constant to let compiler to optimize
262  * out some code if !CONFIG_THP_SWAP
263  */
264 #define swap_entry_size(size)   1
265 #endif
266 #define LATENCY_LIMIT           256
267
268 static inline void cluster_set_flag(struct swap_cluster_info *info,
269         unsigned int flag)
270 {
271         info->flags = flag;
272 }
273
274 static inline unsigned int cluster_count(struct swap_cluster_info *info)
275 {
276         return info->data;
277 }
278
279 static inline void cluster_set_count(struct swap_cluster_info *info,
280                                      unsigned int c)
281 {
282         info->data = c;
283 }
284
285 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
286                                          unsigned int c, unsigned int f)
287 {
288         info->flags = f;
289         info->data = c;
290 }
291
292 static inline unsigned int cluster_next(struct swap_cluster_info *info)
293 {
294         return info->data;
295 }
296
297 static inline void cluster_set_next(struct swap_cluster_info *info,
298                                     unsigned int n)
299 {
300         info->data = n;
301 }
302
303 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
304                                          unsigned int n, unsigned int f)
305 {
306         info->flags = f;
307         info->data = n;
308 }
309
310 static inline bool cluster_is_free(struct swap_cluster_info *info)
311 {
312         return info->flags & CLUSTER_FLAG_FREE;
313 }
314
315 static inline bool cluster_is_null(struct swap_cluster_info *info)
316 {
317         return info->flags & CLUSTER_FLAG_NEXT_NULL;
318 }
319
320 static inline void cluster_set_null(struct swap_cluster_info *info)
321 {
322         info->flags = CLUSTER_FLAG_NEXT_NULL;
323         info->data = 0;
324 }
325
326 static inline bool cluster_is_huge(struct swap_cluster_info *info)
327 {
328         if (IS_ENABLED(CONFIG_THP_SWAP))
329                 return info->flags & CLUSTER_FLAG_HUGE;
330         return false;
331 }
332
333 static inline void cluster_clear_huge(struct swap_cluster_info *info)
334 {
335         info->flags &= ~CLUSTER_FLAG_HUGE;
336 }
337
338 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
339                                                      unsigned long offset)
340 {
341         struct swap_cluster_info *ci;
342
343         ci = si->cluster_info;
344         if (ci) {
345                 ci += offset / SWAPFILE_CLUSTER;
346                 spin_lock(&ci->lock);
347         }
348         return ci;
349 }
350
351 static inline void unlock_cluster(struct swap_cluster_info *ci)
352 {
353         if (ci)
354                 spin_unlock(&ci->lock);
355 }
356
357 /*
358  * Determine the locking method in use for this device.  Return
359  * swap_cluster_info if SSD-style cluster-based locking is in place.
360  */
361 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
362                 struct swap_info_struct *si, unsigned long offset)
363 {
364         struct swap_cluster_info *ci;
365
366         /* Try to use fine-grained SSD-style locking if available: */
367         ci = lock_cluster(si, offset);
368         /* Otherwise, fall back to traditional, coarse locking: */
369         if (!ci)
370                 spin_lock(&si->lock);
371
372         return ci;
373 }
374
375 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
376                                                struct swap_cluster_info *ci)
377 {
378         if (ci)
379                 unlock_cluster(ci);
380         else
381                 spin_unlock(&si->lock);
382 }
383
384 static inline bool cluster_list_empty(struct swap_cluster_list *list)
385 {
386         return cluster_is_null(&list->head);
387 }
388
389 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
390 {
391         return cluster_next(&list->head);
392 }
393
394 static void cluster_list_init(struct swap_cluster_list *list)
395 {
396         cluster_set_null(&list->head);
397         cluster_set_null(&list->tail);
398 }
399
400 static void cluster_list_add_tail(struct swap_cluster_list *list,
401                                   struct swap_cluster_info *ci,
402                                   unsigned int idx)
403 {
404         if (cluster_list_empty(list)) {
405                 cluster_set_next_flag(&list->head, idx, 0);
406                 cluster_set_next_flag(&list->tail, idx, 0);
407         } else {
408                 struct swap_cluster_info *ci_tail;
409                 unsigned int tail = cluster_next(&list->tail);
410
411                 /*
412                  * Nested cluster lock, but both cluster locks are
413                  * only acquired when we held swap_info_struct->lock
414                  */
415                 ci_tail = ci + tail;
416                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
417                 cluster_set_next(ci_tail, idx);
418                 spin_unlock(&ci_tail->lock);
419                 cluster_set_next_flag(&list->tail, idx, 0);
420         }
421 }
422
423 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
424                                            struct swap_cluster_info *ci)
425 {
426         unsigned int idx;
427
428         idx = cluster_next(&list->head);
429         if (cluster_next(&list->tail) == idx) {
430                 cluster_set_null(&list->head);
431                 cluster_set_null(&list->tail);
432         } else
433                 cluster_set_next_flag(&list->head,
434                                       cluster_next(&ci[idx]), 0);
435
436         return idx;
437 }
438
439 /* Add a cluster to discard list and schedule it to do discard */
440 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
441                 unsigned int idx)
442 {
443         /*
444          * If scan_swap_map() can't find a free cluster, it will check
445          * si->swap_map directly. To make sure the discarding cluster isn't
446          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
447          * will be cleared after discard
448          */
449         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
450                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
451
452         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
453
454         schedule_work(&si->discard_work);
455 }
456
457 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
458 {
459         struct swap_cluster_info *ci = si->cluster_info;
460
461         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
462         cluster_list_add_tail(&si->free_clusters, ci, idx);
463 }
464
465 /*
466  * Doing discard actually. After a cluster discard is finished, the cluster
467  * will be added to free cluster list. caller should hold si->lock.
468 */
469 static void swap_do_scheduled_discard(struct swap_info_struct *si)
470 {
471         struct swap_cluster_info *info, *ci;
472         unsigned int idx;
473
474         info = si->cluster_info;
475
476         while (!cluster_list_empty(&si->discard_clusters)) {
477                 idx = cluster_list_del_first(&si->discard_clusters, info);
478                 spin_unlock(&si->lock);
479
480                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
481                                 SWAPFILE_CLUSTER);
482
483                 spin_lock(&si->lock);
484                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
485                 __free_cluster(si, idx);
486                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
487                                 0, SWAPFILE_CLUSTER);
488                 unlock_cluster(ci);
489         }
490 }
491
492 static void swap_discard_work(struct work_struct *work)
493 {
494         struct swap_info_struct *si;
495
496         si = container_of(work, struct swap_info_struct, discard_work);
497
498         spin_lock(&si->lock);
499         swap_do_scheduled_discard(si);
500         spin_unlock(&si->lock);
501 }
502
503 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
504 {
505         struct swap_cluster_info *ci = si->cluster_info;
506
507         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
508         cluster_list_del_first(&si->free_clusters, ci);
509         cluster_set_count_flag(ci + idx, 0, 0);
510 }
511
512 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
513 {
514         struct swap_cluster_info *ci = si->cluster_info + idx;
515
516         VM_BUG_ON(cluster_count(ci) != 0);
517         /*
518          * If the swap is discardable, prepare discard the cluster
519          * instead of free it immediately. The cluster will be freed
520          * after discard.
521          */
522         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
523             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
524                 swap_cluster_schedule_discard(si, idx);
525                 return;
526         }
527
528         __free_cluster(si, idx);
529 }
530
531 /*
532  * The cluster corresponding to page_nr will be used. The cluster will be
533  * removed from free cluster list and its usage counter will be increased.
534  */
535 static void inc_cluster_info_page(struct swap_info_struct *p,
536         struct swap_cluster_info *cluster_info, unsigned long page_nr)
537 {
538         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
539
540         if (!cluster_info)
541                 return;
542         if (cluster_is_free(&cluster_info[idx]))
543                 alloc_cluster(p, idx);
544
545         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
546         cluster_set_count(&cluster_info[idx],
547                 cluster_count(&cluster_info[idx]) + 1);
548 }
549
550 /*
551  * The cluster corresponding to page_nr decreases one usage. If the usage
552  * counter becomes 0, which means no page in the cluster is in using, we can
553  * optionally discard the cluster and add it to free cluster list.
554  */
555 static void dec_cluster_info_page(struct swap_info_struct *p,
556         struct swap_cluster_info *cluster_info, unsigned long page_nr)
557 {
558         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559
560         if (!cluster_info)
561                 return;
562
563         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
564         cluster_set_count(&cluster_info[idx],
565                 cluster_count(&cluster_info[idx]) - 1);
566
567         if (cluster_count(&cluster_info[idx]) == 0)
568                 free_cluster(p, idx);
569 }
570
571 /*
572  * It's possible scan_swap_map() uses a free cluster in the middle of free
573  * cluster list. Avoiding such abuse to avoid list corruption.
574  */
575 static bool
576 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
577         unsigned long offset)
578 {
579         struct percpu_cluster *percpu_cluster;
580         bool conflict;
581
582         offset /= SWAPFILE_CLUSTER;
583         conflict = !cluster_list_empty(&si->free_clusters) &&
584                 offset != cluster_list_first(&si->free_clusters) &&
585                 cluster_is_free(&si->cluster_info[offset]);
586
587         if (!conflict)
588                 return false;
589
590         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
591         cluster_set_null(&percpu_cluster->index);
592         return true;
593 }
594
595 /*
596  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
597  * might involve allocating a new cluster for current CPU too.
598  */
599 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
600         unsigned long *offset, unsigned long *scan_base)
601 {
602         struct percpu_cluster *cluster;
603         struct swap_cluster_info *ci;
604         bool found_free;
605         unsigned long tmp, max;
606
607 new_cluster:
608         cluster = this_cpu_ptr(si->percpu_cluster);
609         if (cluster_is_null(&cluster->index)) {
610                 if (!cluster_list_empty(&si->free_clusters)) {
611                         cluster->index = si->free_clusters.head;
612                         cluster->next = cluster_next(&cluster->index) *
613                                         SWAPFILE_CLUSTER;
614                 } else if (!cluster_list_empty(&si->discard_clusters)) {
615                         /*
616                          * we don't have free cluster but have some clusters in
617                          * discarding, do discard now and reclaim them
618                          */
619                         swap_do_scheduled_discard(si);
620                         *scan_base = *offset = si->cluster_next;
621                         goto new_cluster;
622                 } else
623                         return false;
624         }
625
626         found_free = false;
627
628         /*
629          * Other CPUs can use our cluster if they can't find a free cluster,
630          * check if there is still free entry in the cluster
631          */
632         tmp = cluster->next;
633         max = min_t(unsigned long, si->max,
634                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
635         if (tmp >= max) {
636                 cluster_set_null(&cluster->index);
637                 goto new_cluster;
638         }
639         ci = lock_cluster(si, tmp);
640         while (tmp < max) {
641                 if (!si->swap_map[tmp]) {
642                         found_free = true;
643                         break;
644                 }
645                 tmp++;
646         }
647         unlock_cluster(ci);
648         if (!found_free) {
649                 cluster_set_null(&cluster->index);
650                 goto new_cluster;
651         }
652         cluster->next = tmp + 1;
653         *offset = tmp;
654         *scan_base = tmp;
655         return found_free;
656 }
657
658 static void __del_from_avail_list(struct swap_info_struct *p)
659 {
660         int nid;
661
662         for_each_node(nid)
663                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
664 }
665
666 static void del_from_avail_list(struct swap_info_struct *p)
667 {
668         spin_lock(&swap_avail_lock);
669         __del_from_avail_list(p);
670         spin_unlock(&swap_avail_lock);
671 }
672
673 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
674                              unsigned int nr_entries)
675 {
676         unsigned int end = offset + nr_entries - 1;
677
678         if (offset == si->lowest_bit)
679                 si->lowest_bit += nr_entries;
680         if (end == si->highest_bit)
681                 si->highest_bit -= nr_entries;
682         si->inuse_pages += nr_entries;
683         if (si->inuse_pages == si->pages) {
684                 si->lowest_bit = si->max;
685                 si->highest_bit = 0;
686                 del_from_avail_list(si);
687         }
688 }
689
690 static void add_to_avail_list(struct swap_info_struct *p)
691 {
692         int nid;
693
694         spin_lock(&swap_avail_lock);
695         for_each_node(nid) {
696                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
697                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
698         }
699         spin_unlock(&swap_avail_lock);
700 }
701
702 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
703                             unsigned int nr_entries)
704 {
705         unsigned long end = offset + nr_entries - 1;
706         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
707
708         if (offset < si->lowest_bit)
709                 si->lowest_bit = offset;
710         if (end > si->highest_bit) {
711                 bool was_full = !si->highest_bit;
712
713                 si->highest_bit = end;
714                 if (was_full && (si->flags & SWP_WRITEOK))
715                         add_to_avail_list(si);
716         }
717         atomic_long_add(nr_entries, &nr_swap_pages);
718         si->inuse_pages -= nr_entries;
719         if (si->flags & SWP_BLKDEV)
720                 swap_slot_free_notify =
721                         si->bdev->bd_disk->fops->swap_slot_free_notify;
722         else
723                 swap_slot_free_notify = NULL;
724         while (offset <= end) {
725                 frontswap_invalidate_page(si->type, offset);
726                 if (swap_slot_free_notify)
727                         swap_slot_free_notify(si->bdev, offset);
728                 offset++;
729         }
730 }
731
732 static int scan_swap_map_slots(struct swap_info_struct *si,
733                                unsigned char usage, int nr,
734                                swp_entry_t slots[])
735 {
736         struct swap_cluster_info *ci;
737         unsigned long offset;
738         unsigned long scan_base;
739         unsigned long last_in_cluster = 0;
740         int latency_ration = LATENCY_LIMIT;
741         int n_ret = 0;
742
743         if (nr > SWAP_BATCH)
744                 nr = SWAP_BATCH;
745
746         /*
747          * We try to cluster swap pages by allocating them sequentially
748          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
749          * way, however, we resort to first-free allocation, starting
750          * a new cluster.  This prevents us from scattering swap pages
751          * all over the entire swap partition, so that we reduce
752          * overall disk seek times between swap pages.  -- sct
753          * But we do now try to find an empty cluster.  -Andrea
754          * And we let swap pages go all over an SSD partition.  Hugh
755          */
756
757         si->flags += SWP_SCANNING;
758         scan_base = offset = si->cluster_next;
759
760         /* SSD algorithm */
761         if (si->cluster_info) {
762                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
763                         goto checks;
764                 else
765                         goto scan;
766         }
767
768         if (unlikely(!si->cluster_nr--)) {
769                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
770                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
771                         goto checks;
772                 }
773
774                 spin_unlock(&si->lock);
775
776                 /*
777                  * If seek is expensive, start searching for new cluster from
778                  * start of partition, to minimize the span of allocated swap.
779                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
780                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
781                  */
782                 scan_base = offset = si->lowest_bit;
783                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
784
785                 /* Locate the first empty (unaligned) cluster */
786                 for (; last_in_cluster <= si->highest_bit; offset++) {
787                         if (si->swap_map[offset])
788                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
789                         else if (offset == last_in_cluster) {
790                                 spin_lock(&si->lock);
791                                 offset -= SWAPFILE_CLUSTER - 1;
792                                 si->cluster_next = offset;
793                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
794                                 goto checks;
795                         }
796                         if (unlikely(--latency_ration < 0)) {
797                                 cond_resched();
798                                 latency_ration = LATENCY_LIMIT;
799                         }
800                 }
801
802                 offset = scan_base;
803                 spin_lock(&si->lock);
804                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
805         }
806
807 checks:
808         if (si->cluster_info) {
809                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
810                 /* take a break if we already got some slots */
811                         if (n_ret)
812                                 goto done;
813                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
814                                                         &scan_base))
815                                 goto scan;
816                 }
817         }
818         if (!(si->flags & SWP_WRITEOK))
819                 goto no_page;
820         if (!si->highest_bit)
821                 goto no_page;
822         if (offset > si->highest_bit)
823                 scan_base = offset = si->lowest_bit;
824
825         ci = lock_cluster(si, offset);
826         /* reuse swap entry of cache-only swap if not busy. */
827         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
828                 int swap_was_freed;
829                 unlock_cluster(ci);
830                 spin_unlock(&si->lock);
831                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
832                 spin_lock(&si->lock);
833                 /* entry was freed successfully, try to use this again */
834                 if (swap_was_freed)
835                         goto checks;
836                 goto scan; /* check next one */
837         }
838
839         if (si->swap_map[offset]) {
840                 unlock_cluster(ci);
841                 if (!n_ret)
842                         goto scan;
843                 else
844                         goto done;
845         }
846         si->swap_map[offset] = usage;
847         inc_cluster_info_page(si, si->cluster_info, offset);
848         unlock_cluster(ci);
849
850         swap_range_alloc(si, offset, 1);
851         si->cluster_next = offset + 1;
852         slots[n_ret++] = swp_entry(si->type, offset);
853
854         /* got enough slots or reach max slots? */
855         if ((n_ret == nr) || (offset >= si->highest_bit))
856                 goto done;
857
858         /* search for next available slot */
859
860         /* time to take a break? */
861         if (unlikely(--latency_ration < 0)) {
862                 if (n_ret)
863                         goto done;
864                 spin_unlock(&si->lock);
865                 cond_resched();
866                 spin_lock(&si->lock);
867                 latency_ration = LATENCY_LIMIT;
868         }
869
870         /* try to get more slots in cluster */
871         if (si->cluster_info) {
872                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
873                         goto checks;
874                 else
875                         goto done;
876         }
877
878         /* non-ssd case, still more slots in cluster? */
879         if (si->cluster_nr && !si->swap_map[++offset]) {
880                 --si->cluster_nr;
881                 goto checks;
882         }
883
884 done:
885         si->flags -= SWP_SCANNING;
886         return n_ret;
887
888 scan:
889         spin_unlock(&si->lock);
890         while (++offset <= si->highest_bit) {
891                 if (!si->swap_map[offset]) {
892                         spin_lock(&si->lock);
893                         goto checks;
894                 }
895                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
896                         spin_lock(&si->lock);
897                         goto checks;
898                 }
899                 if (unlikely(--latency_ration < 0)) {
900                         cond_resched();
901                         latency_ration = LATENCY_LIMIT;
902                 }
903         }
904         offset = si->lowest_bit;
905         while (offset < scan_base) {
906                 if (!si->swap_map[offset]) {
907                         spin_lock(&si->lock);
908                         goto checks;
909                 }
910                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
911                         spin_lock(&si->lock);
912                         goto checks;
913                 }
914                 if (unlikely(--latency_ration < 0)) {
915                         cond_resched();
916                         latency_ration = LATENCY_LIMIT;
917                 }
918                 offset++;
919         }
920         spin_lock(&si->lock);
921
922 no_page:
923         si->flags -= SWP_SCANNING;
924         return n_ret;
925 }
926
927 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
928 {
929         unsigned long idx;
930         struct swap_cluster_info *ci;
931         unsigned long offset, i;
932         unsigned char *map;
933
934         /*
935          * Should not even be attempting cluster allocations when huge
936          * page swap is disabled.  Warn and fail the allocation.
937          */
938         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
939                 VM_WARN_ON_ONCE(1);
940                 return 0;
941         }
942
943         if (cluster_list_empty(&si->free_clusters))
944                 return 0;
945
946         idx = cluster_list_first(&si->free_clusters);
947         offset = idx * SWAPFILE_CLUSTER;
948         ci = lock_cluster(si, offset);
949         alloc_cluster(si, idx);
950         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
951
952         map = si->swap_map + offset;
953         for (i = 0; i < SWAPFILE_CLUSTER; i++)
954                 map[i] = SWAP_HAS_CACHE;
955         unlock_cluster(ci);
956         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
957         *slot = swp_entry(si->type, offset);
958
959         return 1;
960 }
961
962 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
963 {
964         unsigned long offset = idx * SWAPFILE_CLUSTER;
965         struct swap_cluster_info *ci;
966
967         ci = lock_cluster(si, offset);
968         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
969         cluster_set_count_flag(ci, 0, 0);
970         free_cluster(si, idx);
971         unlock_cluster(ci);
972         swap_range_free(si, offset, SWAPFILE_CLUSTER);
973 }
974
975 static unsigned long scan_swap_map(struct swap_info_struct *si,
976                                    unsigned char usage)
977 {
978         swp_entry_t entry;
979         int n_ret;
980
981         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
982
983         if (n_ret)
984                 return swp_offset(entry);
985         else
986                 return 0;
987
988 }
989
990 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
991 {
992         unsigned long size = swap_entry_size(entry_size);
993         struct swap_info_struct *si, *next;
994         long avail_pgs;
995         int n_ret = 0;
996         int node;
997
998         /* Only single cluster request supported */
999         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1000
1001         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1002         if (avail_pgs <= 0)
1003                 goto noswap;
1004
1005         if (n_goal > SWAP_BATCH)
1006                 n_goal = SWAP_BATCH;
1007
1008         if (n_goal > avail_pgs)
1009                 n_goal = avail_pgs;
1010
1011         atomic_long_sub(n_goal * size, &nr_swap_pages);
1012
1013         spin_lock(&swap_avail_lock);
1014
1015 start_over:
1016         node = numa_node_id();
1017         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1018                 /* requeue si to after same-priority siblings */
1019                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1020                 spin_unlock(&swap_avail_lock);
1021                 spin_lock(&si->lock);
1022                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1023                         spin_lock(&swap_avail_lock);
1024                         if (plist_node_empty(&si->avail_lists[node])) {
1025                                 spin_unlock(&si->lock);
1026                                 goto nextsi;
1027                         }
1028                         WARN(!si->highest_bit,
1029                              "swap_info %d in list but !highest_bit\n",
1030                              si->type);
1031                         WARN(!(si->flags & SWP_WRITEOK),
1032                              "swap_info %d in list but !SWP_WRITEOK\n",
1033                              si->type);
1034                         __del_from_avail_list(si);
1035                         spin_unlock(&si->lock);
1036                         goto nextsi;
1037                 }
1038                 if (size == SWAPFILE_CLUSTER) {
1039                         if (!(si->flags & SWP_FS))
1040                                 n_ret = swap_alloc_cluster(si, swp_entries);
1041                 } else
1042                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1043                                                     n_goal, swp_entries);
1044                 spin_unlock(&si->lock);
1045                 if (n_ret || size == SWAPFILE_CLUSTER)
1046                         goto check_out;
1047                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1048                         si->type);
1049
1050                 spin_lock(&swap_avail_lock);
1051 nextsi:
1052                 /*
1053                  * if we got here, it's likely that si was almost full before,
1054                  * and since scan_swap_map() can drop the si->lock, multiple
1055                  * callers probably all tried to get a page from the same si
1056                  * and it filled up before we could get one; or, the si filled
1057                  * up between us dropping swap_avail_lock and taking si->lock.
1058                  * Since we dropped the swap_avail_lock, the swap_avail_head
1059                  * list may have been modified; so if next is still in the
1060                  * swap_avail_head list then try it, otherwise start over
1061                  * if we have not gotten any slots.
1062                  */
1063                 if (plist_node_empty(&next->avail_lists[node]))
1064                         goto start_over;
1065         }
1066
1067         spin_unlock(&swap_avail_lock);
1068
1069 check_out:
1070         if (n_ret < n_goal)
1071                 atomic_long_add((long)(n_goal - n_ret) * size,
1072                                 &nr_swap_pages);
1073 noswap:
1074         return n_ret;
1075 }
1076
1077 /* The only caller of this function is now suspend routine */
1078 swp_entry_t get_swap_page_of_type(int type)
1079 {
1080         struct swap_info_struct *si = swap_type_to_swap_info(type);
1081         pgoff_t offset;
1082
1083         if (!si)
1084                 goto fail;
1085
1086         spin_lock(&si->lock);
1087         if (si->flags & SWP_WRITEOK) {
1088                 atomic_long_dec(&nr_swap_pages);
1089                 /* This is called for allocating swap entry, not cache */
1090                 offset = scan_swap_map(si, 1);
1091                 if (offset) {
1092                         spin_unlock(&si->lock);
1093                         return swp_entry(type, offset);
1094                 }
1095                 atomic_long_inc(&nr_swap_pages);
1096         }
1097         spin_unlock(&si->lock);
1098 fail:
1099         return (swp_entry_t) {0};
1100 }
1101
1102 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1103 {
1104         struct swap_info_struct *p;
1105         unsigned long offset;
1106
1107         if (!entry.val)
1108                 goto out;
1109         p = swp_swap_info(entry);
1110         if (!p)
1111                 goto bad_nofile;
1112         if (!(p->flags & SWP_USED))
1113                 goto bad_device;
1114         offset = swp_offset(entry);
1115         if (offset >= p->max)
1116                 goto bad_offset;
1117         return p;
1118
1119 bad_offset:
1120         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1121         goto out;
1122 bad_device:
1123         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1124         goto out;
1125 bad_nofile:
1126         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1127 out:
1128         return NULL;
1129 }
1130
1131 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1132 {
1133         struct swap_info_struct *p;
1134
1135         p = __swap_info_get(entry);
1136         if (!p)
1137                 goto out;
1138         if (!p->swap_map[swp_offset(entry)])
1139                 goto bad_free;
1140         return p;
1141
1142 bad_free:
1143         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1144         goto out;
1145 out:
1146         return NULL;
1147 }
1148
1149 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1150 {
1151         struct swap_info_struct *p;
1152
1153         p = _swap_info_get(entry);
1154         if (p)
1155                 spin_lock(&p->lock);
1156         return p;
1157 }
1158
1159 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1160                                         struct swap_info_struct *q)
1161 {
1162         struct swap_info_struct *p;
1163
1164         p = _swap_info_get(entry);
1165
1166         if (p != q) {
1167                 if (q != NULL)
1168                         spin_unlock(&q->lock);
1169                 if (p != NULL)
1170                         spin_lock(&p->lock);
1171         }
1172         return p;
1173 }
1174
1175 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1176                                               unsigned long offset,
1177                                               unsigned char usage)
1178 {
1179         unsigned char count;
1180         unsigned char has_cache;
1181
1182         count = p->swap_map[offset];
1183
1184         has_cache = count & SWAP_HAS_CACHE;
1185         count &= ~SWAP_HAS_CACHE;
1186
1187         if (usage == SWAP_HAS_CACHE) {
1188                 VM_BUG_ON(!has_cache);
1189                 has_cache = 0;
1190         } else if (count == SWAP_MAP_SHMEM) {
1191                 /*
1192                  * Or we could insist on shmem.c using a special
1193                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1194                  */
1195                 count = 0;
1196         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1197                 if (count == COUNT_CONTINUED) {
1198                         if (swap_count_continued(p, offset, count))
1199                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1200                         else
1201                                 count = SWAP_MAP_MAX;
1202                 } else
1203                         count--;
1204         }
1205
1206         usage = count | has_cache;
1207         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1208
1209         return usage;
1210 }
1211
1212 /*
1213  * Check whether swap entry is valid in the swap device.  If so,
1214  * return pointer to swap_info_struct, and keep the swap entry valid
1215  * via preventing the swap device from being swapoff, until
1216  * put_swap_device() is called.  Otherwise return NULL.
1217  *
1218  * The entirety of the RCU read critical section must come before the
1219  * return from or after the call to synchronize_rcu() in
1220  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1221  * true, the si->map, si->cluster_info, etc. must be valid in the
1222  * critical section.
1223  *
1224  * Notice that swapoff or swapoff+swapon can still happen before the
1225  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1226  * in put_swap_device() if there isn't any other way to prevent
1227  * swapoff, such as page lock, page table lock, etc.  The caller must
1228  * be prepared for that.  For example, the following situation is
1229  * possible.
1230  *
1231  *   CPU1                               CPU2
1232  *   do_swap_page()
1233  *     ...                              swapoff+swapon
1234  *     __read_swap_cache_async()
1235  *       swapcache_prepare()
1236  *         __swap_duplicate()
1237  *           // check swap_map
1238  *     // verify PTE not changed
1239  *
1240  * In __swap_duplicate(), the swap_map need to be checked before
1241  * changing partly because the specified swap entry may be for another
1242  * swap device which has been swapoff.  And in do_swap_page(), after
1243  * the page is read from the swap device, the PTE is verified not
1244  * changed with the page table locked to check whether the swap device
1245  * has been swapoff or swapoff+swapon.
1246  */
1247 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1248 {
1249         struct swap_info_struct *si;
1250         unsigned long offset;
1251
1252         if (!entry.val)
1253                 goto out;
1254         si = swp_swap_info(entry);
1255         if (!si)
1256                 goto bad_nofile;
1257
1258         rcu_read_lock();
1259         if (!(si->flags & SWP_VALID))
1260                 goto unlock_out;
1261         offset = swp_offset(entry);
1262         if (offset >= si->max)
1263                 goto unlock_out;
1264
1265         return si;
1266 bad_nofile:
1267         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1268 out:
1269         return NULL;
1270 unlock_out:
1271         rcu_read_unlock();
1272         return NULL;
1273 }
1274
1275 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1276                                        swp_entry_t entry, unsigned char usage)
1277 {
1278         struct swap_cluster_info *ci;
1279         unsigned long offset = swp_offset(entry);
1280
1281         ci = lock_cluster_or_swap_info(p, offset);
1282         usage = __swap_entry_free_locked(p, offset, usage);
1283         unlock_cluster_or_swap_info(p, ci);
1284         if (!usage)
1285                 free_swap_slot(entry);
1286
1287         return usage;
1288 }
1289
1290 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1291 {
1292         struct swap_cluster_info *ci;
1293         unsigned long offset = swp_offset(entry);
1294         unsigned char count;
1295
1296         ci = lock_cluster(p, offset);
1297         count = p->swap_map[offset];
1298         VM_BUG_ON(count != SWAP_HAS_CACHE);
1299         p->swap_map[offset] = 0;
1300         dec_cluster_info_page(p, p->cluster_info, offset);
1301         unlock_cluster(ci);
1302
1303         mem_cgroup_uncharge_swap(entry, 1);
1304         swap_range_free(p, offset, 1);
1305 }
1306
1307 /*
1308  * Caller has made sure that the swap device corresponding to entry
1309  * is still around or has not been recycled.
1310  */
1311 void swap_free(swp_entry_t entry)
1312 {
1313         struct swap_info_struct *p;
1314
1315         p = _swap_info_get(entry);
1316         if (p)
1317                 __swap_entry_free(p, entry, 1);
1318 }
1319
1320 /*
1321  * Called after dropping swapcache to decrease refcnt to swap entries.
1322  */
1323 void put_swap_page(struct page *page, swp_entry_t entry)
1324 {
1325         unsigned long offset = swp_offset(entry);
1326         unsigned long idx = offset / SWAPFILE_CLUSTER;
1327         struct swap_cluster_info *ci;
1328         struct swap_info_struct *si;
1329         unsigned char *map;
1330         unsigned int i, free_entries = 0;
1331         unsigned char val;
1332         int size = swap_entry_size(hpage_nr_pages(page));
1333
1334         si = _swap_info_get(entry);
1335         if (!si)
1336                 return;
1337
1338         ci = lock_cluster_or_swap_info(si, offset);
1339         if (size == SWAPFILE_CLUSTER) {
1340                 VM_BUG_ON(!cluster_is_huge(ci));
1341                 map = si->swap_map + offset;
1342                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1343                         val = map[i];
1344                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1345                         if (val == SWAP_HAS_CACHE)
1346                                 free_entries++;
1347                 }
1348                 cluster_clear_huge(ci);
1349                 if (free_entries == SWAPFILE_CLUSTER) {
1350                         unlock_cluster_or_swap_info(si, ci);
1351                         spin_lock(&si->lock);
1352                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1353                         swap_free_cluster(si, idx);
1354                         spin_unlock(&si->lock);
1355                         return;
1356                 }
1357         }
1358         for (i = 0; i < size; i++, entry.val++) {
1359                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1360                         unlock_cluster_or_swap_info(si, ci);
1361                         free_swap_slot(entry);
1362                         if (i == size - 1)
1363                                 return;
1364                         lock_cluster_or_swap_info(si, offset);
1365                 }
1366         }
1367         unlock_cluster_or_swap_info(si, ci);
1368 }
1369
1370 #ifdef CONFIG_THP_SWAP
1371 int split_swap_cluster(swp_entry_t entry)
1372 {
1373         struct swap_info_struct *si;
1374         struct swap_cluster_info *ci;
1375         unsigned long offset = swp_offset(entry);
1376
1377         si = _swap_info_get(entry);
1378         if (!si)
1379                 return -EBUSY;
1380         ci = lock_cluster(si, offset);
1381         cluster_clear_huge(ci);
1382         unlock_cluster(ci);
1383         return 0;
1384 }
1385 #endif
1386
1387 static int swp_entry_cmp(const void *ent1, const void *ent2)
1388 {
1389         const swp_entry_t *e1 = ent1, *e2 = ent2;
1390
1391         return (int)swp_type(*e1) - (int)swp_type(*e2);
1392 }
1393
1394 void swapcache_free_entries(swp_entry_t *entries, int n)
1395 {
1396         struct swap_info_struct *p, *prev;
1397         int i;
1398
1399         if (n <= 0)
1400                 return;
1401
1402         prev = NULL;
1403         p = NULL;
1404
1405         /*
1406          * Sort swap entries by swap device, so each lock is only taken once.
1407          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1408          * so low that it isn't necessary to optimize further.
1409          */
1410         if (nr_swapfiles > 1)
1411                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1412         for (i = 0; i < n; ++i) {
1413                 p = swap_info_get_cont(entries[i], prev);
1414                 if (p)
1415                         swap_entry_free(p, entries[i]);
1416                 prev = p;
1417         }
1418         if (p)
1419                 spin_unlock(&p->lock);
1420 }
1421
1422 /*
1423  * How many references to page are currently swapped out?
1424  * This does not give an exact answer when swap count is continued,
1425  * but does include the high COUNT_CONTINUED flag to allow for that.
1426  */
1427 int page_swapcount(struct page *page)
1428 {
1429         int count = 0;
1430         struct swap_info_struct *p;
1431         struct swap_cluster_info *ci;
1432         swp_entry_t entry;
1433         unsigned long offset;
1434
1435         entry.val = page_private(page);
1436         p = _swap_info_get(entry);
1437         if (p) {
1438                 offset = swp_offset(entry);
1439                 ci = lock_cluster_or_swap_info(p, offset);
1440                 count = swap_count(p->swap_map[offset]);
1441                 unlock_cluster_or_swap_info(p, ci);
1442         }
1443         return count;
1444 }
1445
1446 int __swap_count(swp_entry_t entry)
1447 {
1448         struct swap_info_struct *si;
1449         pgoff_t offset = swp_offset(entry);
1450         int count = 0;
1451
1452         si = get_swap_device(entry);
1453         if (si) {
1454                 count = swap_count(si->swap_map[offset]);
1455                 put_swap_device(si);
1456         }
1457         return count;
1458 }
1459
1460 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1461 {
1462         int count = 0;
1463         pgoff_t offset = swp_offset(entry);
1464         struct swap_cluster_info *ci;
1465
1466         ci = lock_cluster_or_swap_info(si, offset);
1467         count = swap_count(si->swap_map[offset]);
1468         unlock_cluster_or_swap_info(si, ci);
1469         return count;
1470 }
1471
1472 /*
1473  * How many references to @entry are currently swapped out?
1474  * This does not give an exact answer when swap count is continued,
1475  * but does include the high COUNT_CONTINUED flag to allow for that.
1476  */
1477 int __swp_swapcount(swp_entry_t entry)
1478 {
1479         int count = 0;
1480         struct swap_info_struct *si;
1481
1482         si = get_swap_device(entry);
1483         if (si) {
1484                 count = swap_swapcount(si, entry);
1485                 put_swap_device(si);
1486         }
1487         return count;
1488 }
1489
1490 /*
1491  * How many references to @entry are currently swapped out?
1492  * This considers COUNT_CONTINUED so it returns exact answer.
1493  */
1494 int swp_swapcount(swp_entry_t entry)
1495 {
1496         int count, tmp_count, n;
1497         struct swap_info_struct *p;
1498         struct swap_cluster_info *ci;
1499         struct page *page;
1500         pgoff_t offset;
1501         unsigned char *map;
1502
1503         p = _swap_info_get(entry);
1504         if (!p)
1505                 return 0;
1506
1507         offset = swp_offset(entry);
1508
1509         ci = lock_cluster_or_swap_info(p, offset);
1510
1511         count = swap_count(p->swap_map[offset]);
1512         if (!(count & COUNT_CONTINUED))
1513                 goto out;
1514
1515         count &= ~COUNT_CONTINUED;
1516         n = SWAP_MAP_MAX + 1;
1517
1518         page = vmalloc_to_page(p->swap_map + offset);
1519         offset &= ~PAGE_MASK;
1520         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1521
1522         do {
1523                 page = list_next_entry(page, lru);
1524                 map = kmap_atomic(page);
1525                 tmp_count = map[offset];
1526                 kunmap_atomic(map);
1527
1528                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1529                 n *= (SWAP_CONT_MAX + 1);
1530         } while (tmp_count & COUNT_CONTINUED);
1531 out:
1532         unlock_cluster_or_swap_info(p, ci);
1533         return count;
1534 }
1535
1536 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1537                                          swp_entry_t entry)
1538 {
1539         struct swap_cluster_info *ci;
1540         unsigned char *map = si->swap_map;
1541         unsigned long roffset = swp_offset(entry);
1542         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1543         int i;
1544         bool ret = false;
1545
1546         ci = lock_cluster_or_swap_info(si, offset);
1547         if (!ci || !cluster_is_huge(ci)) {
1548                 if (swap_count(map[roffset]))
1549                         ret = true;
1550                 goto unlock_out;
1551         }
1552         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1553                 if (swap_count(map[offset + i])) {
1554                         ret = true;
1555                         break;
1556                 }
1557         }
1558 unlock_out:
1559         unlock_cluster_or_swap_info(si, ci);
1560         return ret;
1561 }
1562
1563 static bool page_swapped(struct page *page)
1564 {
1565         swp_entry_t entry;
1566         struct swap_info_struct *si;
1567
1568         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1569                 return page_swapcount(page) != 0;
1570
1571         page = compound_head(page);
1572         entry.val = page_private(page);
1573         si = _swap_info_get(entry);
1574         if (si)
1575                 return swap_page_trans_huge_swapped(si, entry);
1576         return false;
1577 }
1578
1579 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1580                                          int *total_swapcount)
1581 {
1582         int i, map_swapcount, _total_mapcount, _total_swapcount;
1583         unsigned long offset = 0;
1584         struct swap_info_struct *si;
1585         struct swap_cluster_info *ci = NULL;
1586         unsigned char *map = NULL;
1587         int mapcount, swapcount = 0;
1588
1589         /* hugetlbfs shouldn't call it */
1590         VM_BUG_ON_PAGE(PageHuge(page), page);
1591
1592         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1593                 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1594                 if (PageSwapCache(page))
1595                         swapcount = page_swapcount(page);
1596                 if (total_swapcount)
1597                         *total_swapcount = swapcount;
1598                 return mapcount + swapcount;
1599         }
1600
1601         page = compound_head(page);
1602
1603         _total_mapcount = _total_swapcount = map_swapcount = 0;
1604         if (PageSwapCache(page)) {
1605                 swp_entry_t entry;
1606
1607                 entry.val = page_private(page);
1608                 si = _swap_info_get(entry);
1609                 if (si) {
1610                         map = si->swap_map;
1611                         offset = swp_offset(entry);
1612                 }
1613         }
1614         if (map)
1615                 ci = lock_cluster(si, offset);
1616         for (i = 0; i < HPAGE_PMD_NR; i++) {
1617                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1618                 _total_mapcount += mapcount;
1619                 if (map) {
1620                         swapcount = swap_count(map[offset + i]);
1621                         _total_swapcount += swapcount;
1622                 }
1623                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1624         }
1625         unlock_cluster(ci);
1626         if (PageDoubleMap(page)) {
1627                 map_swapcount -= 1;
1628                 _total_mapcount -= HPAGE_PMD_NR;
1629         }
1630         mapcount = compound_mapcount(page);
1631         map_swapcount += mapcount;
1632         _total_mapcount += mapcount;
1633         if (total_mapcount)
1634                 *total_mapcount = _total_mapcount;
1635         if (total_swapcount)
1636                 *total_swapcount = _total_swapcount;
1637
1638         return map_swapcount;
1639 }
1640
1641 /*
1642  * We can write to an anon page without COW if there are no other references
1643  * to it.  And as a side-effect, free up its swap: because the old content
1644  * on disk will never be read, and seeking back there to write new content
1645  * later would only waste time away from clustering.
1646  *
1647  * NOTE: total_map_swapcount should not be relied upon by the caller if
1648  * reuse_swap_page() returns false, but it may be always overwritten
1649  * (see the other implementation for CONFIG_SWAP=n).
1650  */
1651 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1652 {
1653         int count, total_mapcount, total_swapcount;
1654
1655         VM_BUG_ON_PAGE(!PageLocked(page), page);
1656         if (unlikely(PageKsm(page)))
1657                 return false;
1658         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1659                                               &total_swapcount);
1660         if (total_map_swapcount)
1661                 *total_map_swapcount = total_mapcount + total_swapcount;
1662         if (count == 1 && PageSwapCache(page) &&
1663             (likely(!PageTransCompound(page)) ||
1664              /* The remaining swap count will be freed soon */
1665              total_swapcount == page_swapcount(page))) {
1666                 if (!PageWriteback(page)) {
1667                         page = compound_head(page);
1668                         delete_from_swap_cache(page);
1669                         SetPageDirty(page);
1670                 } else {
1671                         swp_entry_t entry;
1672                         struct swap_info_struct *p;
1673
1674                         entry.val = page_private(page);
1675                         p = swap_info_get(entry);
1676                         if (p->flags & SWP_STABLE_WRITES) {
1677                                 spin_unlock(&p->lock);
1678                                 return false;
1679                         }
1680                         spin_unlock(&p->lock);
1681                 }
1682         }
1683
1684         return count <= 1;
1685 }
1686
1687 /*
1688  * If swap is getting full, or if there are no more mappings of this page,
1689  * then try_to_free_swap is called to free its swap space.
1690  */
1691 int try_to_free_swap(struct page *page)
1692 {
1693         VM_BUG_ON_PAGE(!PageLocked(page), page);
1694
1695         if (!PageSwapCache(page))
1696                 return 0;
1697         if (PageWriteback(page))
1698                 return 0;
1699         if (page_swapped(page))
1700                 return 0;
1701
1702         /*
1703          * Once hibernation has begun to create its image of memory,
1704          * there's a danger that one of the calls to try_to_free_swap()
1705          * - most probably a call from __try_to_reclaim_swap() while
1706          * hibernation is allocating its own swap pages for the image,
1707          * but conceivably even a call from memory reclaim - will free
1708          * the swap from a page which has already been recorded in the
1709          * image as a clean swapcache page, and then reuse its swap for
1710          * another page of the image.  On waking from hibernation, the
1711          * original page might be freed under memory pressure, then
1712          * later read back in from swap, now with the wrong data.
1713          *
1714          * Hibernation suspends storage while it is writing the image
1715          * to disk so check that here.
1716          */
1717         if (pm_suspended_storage())
1718                 return 0;
1719
1720         page = compound_head(page);
1721         delete_from_swap_cache(page);
1722         SetPageDirty(page);
1723         return 1;
1724 }
1725
1726 /*
1727  * Free the swap entry like above, but also try to
1728  * free the page cache entry if it is the last user.
1729  */
1730 int free_swap_and_cache(swp_entry_t entry)
1731 {
1732         struct swap_info_struct *p;
1733         unsigned char count;
1734
1735         if (non_swap_entry(entry))
1736                 return 1;
1737
1738         p = _swap_info_get(entry);
1739         if (p) {
1740                 count = __swap_entry_free(p, entry, 1);
1741                 if (count == SWAP_HAS_CACHE &&
1742                     !swap_page_trans_huge_swapped(p, entry))
1743                         __try_to_reclaim_swap(p, swp_offset(entry),
1744                                               TTRS_UNMAPPED | TTRS_FULL);
1745         }
1746         return p != NULL;
1747 }
1748
1749 #ifdef CONFIG_HIBERNATION
1750 /*
1751  * Find the swap type that corresponds to given device (if any).
1752  *
1753  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1754  * from 0, in which the swap header is expected to be located.
1755  *
1756  * This is needed for the suspend to disk (aka swsusp).
1757  */
1758 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1759 {
1760         struct block_device *bdev = NULL;
1761         int type;
1762
1763         if (device)
1764                 bdev = bdget(device);
1765
1766         spin_lock(&swap_lock);
1767         for (type = 0; type < nr_swapfiles; type++) {
1768                 struct swap_info_struct *sis = swap_info[type];
1769
1770                 if (!(sis->flags & SWP_WRITEOK))
1771                         continue;
1772
1773                 if (!bdev) {
1774                         if (bdev_p)
1775                                 *bdev_p = bdgrab(sis->bdev);
1776
1777                         spin_unlock(&swap_lock);
1778                         return type;
1779                 }
1780                 if (bdev == sis->bdev) {
1781                         struct swap_extent *se = first_se(sis);
1782
1783                         if (se->start_block == offset) {
1784                                 if (bdev_p)
1785                                         *bdev_p = bdgrab(sis->bdev);
1786
1787                                 spin_unlock(&swap_lock);
1788                                 bdput(bdev);
1789                                 return type;
1790                         }
1791                 }
1792         }
1793         spin_unlock(&swap_lock);
1794         if (bdev)
1795                 bdput(bdev);
1796
1797         return -ENODEV;
1798 }
1799
1800 /*
1801  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1802  * corresponding to given index in swap_info (swap type).
1803  */
1804 sector_t swapdev_block(int type, pgoff_t offset)
1805 {
1806         struct block_device *bdev;
1807         struct swap_info_struct *si = swap_type_to_swap_info(type);
1808
1809         if (!si || !(si->flags & SWP_WRITEOK))
1810                 return 0;
1811         return map_swap_entry(swp_entry(type, offset), &bdev);
1812 }
1813
1814 /*
1815  * Return either the total number of swap pages of given type, or the number
1816  * of free pages of that type (depending on @free)
1817  *
1818  * This is needed for software suspend
1819  */
1820 unsigned int count_swap_pages(int type, int free)
1821 {
1822         unsigned int n = 0;
1823
1824         spin_lock(&swap_lock);
1825         if ((unsigned int)type < nr_swapfiles) {
1826                 struct swap_info_struct *sis = swap_info[type];
1827
1828                 spin_lock(&sis->lock);
1829                 if (sis->flags & SWP_WRITEOK) {
1830                         n = sis->pages;
1831                         if (free)
1832                                 n -= sis->inuse_pages;
1833                 }
1834                 spin_unlock(&sis->lock);
1835         }
1836         spin_unlock(&swap_lock);
1837         return n;
1838 }
1839 #endif /* CONFIG_HIBERNATION */
1840
1841 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1842 {
1843         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1844 }
1845
1846 /*
1847  * No need to decide whether this PTE shares the swap entry with others,
1848  * just let do_wp_page work it out if a write is requested later - to
1849  * force COW, vm_page_prot omits write permission from any private vma.
1850  */
1851 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1852                 unsigned long addr, swp_entry_t entry, struct page *page)
1853 {
1854         struct page *swapcache;
1855         struct mem_cgroup *memcg;
1856         spinlock_t *ptl;
1857         pte_t *pte;
1858         int ret = 1;
1859
1860         swapcache = page;
1861         page = ksm_might_need_to_copy(page, vma, addr);
1862         if (unlikely(!page))
1863                 return -ENOMEM;
1864
1865         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1866                                 &memcg, false)) {
1867                 ret = -ENOMEM;
1868                 goto out_nolock;
1869         }
1870
1871         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1872         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1873                 mem_cgroup_cancel_charge(page, memcg, false);
1874                 ret = 0;
1875                 goto out;
1876         }
1877
1878         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1879         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1880         get_page(page);
1881         set_pte_at(vma->vm_mm, addr, pte,
1882                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1883         if (page == swapcache) {
1884                 page_add_anon_rmap(page, vma, addr, false);
1885                 mem_cgroup_commit_charge(page, memcg, true, false);
1886         } else { /* ksm created a completely new copy */
1887                 page_add_new_anon_rmap(page, vma, addr, false);
1888                 mem_cgroup_commit_charge(page, memcg, false, false);
1889                 lru_cache_add_active_or_unevictable(page, vma);
1890         }
1891         swap_free(entry);
1892         /*
1893          * Move the page to the active list so it is not
1894          * immediately swapped out again after swapon.
1895          */
1896         activate_page(page);
1897 out:
1898         pte_unmap_unlock(pte, ptl);
1899 out_nolock:
1900         if (page != swapcache) {
1901                 unlock_page(page);
1902                 put_page(page);
1903         }
1904         return ret;
1905 }
1906
1907 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1908                         unsigned long addr, unsigned long end,
1909                         unsigned int type, bool frontswap,
1910                         unsigned long *fs_pages_to_unuse)
1911 {
1912         struct page *page;
1913         swp_entry_t entry;
1914         pte_t *pte;
1915         struct swap_info_struct *si;
1916         unsigned long offset;
1917         int ret = 0;
1918         volatile unsigned char *swap_map;
1919
1920         si = swap_info[type];
1921         pte = pte_offset_map(pmd, addr);
1922         do {
1923                 struct vm_fault vmf;
1924
1925                 if (!is_swap_pte(*pte))
1926                         continue;
1927
1928                 entry = pte_to_swp_entry(*pte);
1929                 if (swp_type(entry) != type)
1930                         continue;
1931
1932                 offset = swp_offset(entry);
1933                 if (frontswap && !frontswap_test(si, offset))
1934                         continue;
1935
1936                 pte_unmap(pte);
1937                 swap_map = &si->swap_map[offset];
1938                 page = lookup_swap_cache(entry, vma, addr);
1939                 if (!page) {
1940                         vmf.vma = vma;
1941                         vmf.address = addr;
1942                         vmf.pmd = pmd;
1943                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1944                                                 &vmf);
1945                 }
1946                 if (!page) {
1947                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1948                                 goto try_next;
1949                         return -ENOMEM;
1950                 }
1951
1952                 lock_page(page);
1953                 wait_on_page_writeback(page);
1954                 ret = unuse_pte(vma, pmd, addr, entry, page);
1955                 if (ret < 0) {
1956                         unlock_page(page);
1957                         put_page(page);
1958                         goto out;
1959                 }
1960
1961                 try_to_free_swap(page);
1962                 unlock_page(page);
1963                 put_page(page);
1964
1965                 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1966                         ret = FRONTSWAP_PAGES_UNUSED;
1967                         goto out;
1968                 }
1969 try_next:
1970                 pte = pte_offset_map(pmd, addr);
1971         } while (pte++, addr += PAGE_SIZE, addr != end);
1972         pte_unmap(pte - 1);
1973
1974         ret = 0;
1975 out:
1976         return ret;
1977 }
1978
1979 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1980                                 unsigned long addr, unsigned long end,
1981                                 unsigned int type, bool frontswap,
1982                                 unsigned long *fs_pages_to_unuse)
1983 {
1984         pmd_t *pmd;
1985         unsigned long next;
1986         int ret;
1987
1988         pmd = pmd_offset(pud, addr);
1989         do {
1990                 cond_resched();
1991                 next = pmd_addr_end(addr, end);
1992                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1993                         continue;
1994                 ret = unuse_pte_range(vma, pmd, addr, next, type,
1995                                       frontswap, fs_pages_to_unuse);
1996                 if (ret)
1997                         return ret;
1998         } while (pmd++, addr = next, addr != end);
1999         return 0;
2000 }
2001
2002 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2003                                 unsigned long addr, unsigned long end,
2004                                 unsigned int type, bool frontswap,
2005                                 unsigned long *fs_pages_to_unuse)
2006 {
2007         pud_t *pud;
2008         unsigned long next;
2009         int ret;
2010
2011         pud = pud_offset(p4d, addr);
2012         do {
2013                 next = pud_addr_end(addr, end);
2014                 if (pud_none_or_clear_bad(pud))
2015                         continue;
2016                 ret = unuse_pmd_range(vma, pud, addr, next, type,
2017                                       frontswap, fs_pages_to_unuse);
2018                 if (ret)
2019                         return ret;
2020         } while (pud++, addr = next, addr != end);
2021         return 0;
2022 }
2023
2024 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2025                                 unsigned long addr, unsigned long end,
2026                                 unsigned int type, bool frontswap,
2027                                 unsigned long *fs_pages_to_unuse)
2028 {
2029         p4d_t *p4d;
2030         unsigned long next;
2031         int ret;
2032
2033         p4d = p4d_offset(pgd, addr);
2034         do {
2035                 next = p4d_addr_end(addr, end);
2036                 if (p4d_none_or_clear_bad(p4d))
2037                         continue;
2038                 ret = unuse_pud_range(vma, p4d, addr, next, type,
2039                                       frontswap, fs_pages_to_unuse);
2040                 if (ret)
2041                         return ret;
2042         } while (p4d++, addr = next, addr != end);
2043         return 0;
2044 }
2045
2046 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2047                      bool frontswap, unsigned long *fs_pages_to_unuse)
2048 {
2049         pgd_t *pgd;
2050         unsigned long addr, end, next;
2051         int ret;
2052
2053         addr = vma->vm_start;
2054         end = vma->vm_end;
2055
2056         pgd = pgd_offset(vma->vm_mm, addr);
2057         do {
2058                 next = pgd_addr_end(addr, end);
2059                 if (pgd_none_or_clear_bad(pgd))
2060                         continue;
2061                 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2062                                       frontswap, fs_pages_to_unuse);
2063                 if (ret)
2064                         return ret;
2065         } while (pgd++, addr = next, addr != end);
2066         return 0;
2067 }
2068
2069 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2070                     bool frontswap, unsigned long *fs_pages_to_unuse)
2071 {
2072         struct vm_area_struct *vma;
2073         int ret = 0;
2074
2075         down_read(&mm->mmap_sem);
2076         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2077                 if (vma->anon_vma) {
2078                         ret = unuse_vma(vma, type, frontswap,
2079                                         fs_pages_to_unuse);
2080                         if (ret)
2081                                 break;
2082                 }
2083                 cond_resched();
2084         }
2085         up_read(&mm->mmap_sem);
2086         return ret;
2087 }
2088
2089 /*
2090  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2091  * from current position to next entry still in use. Return 0
2092  * if there are no inuse entries after prev till end of the map.
2093  */
2094 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2095                                         unsigned int prev, bool frontswap)
2096 {
2097         unsigned int i;
2098         unsigned char count;
2099
2100         /*
2101          * No need for swap_lock here: we're just looking
2102          * for whether an entry is in use, not modifying it; false
2103          * hits are okay, and sys_swapoff() has already prevented new
2104          * allocations from this area (while holding swap_lock).
2105          */
2106         for (i = prev + 1; i < si->max; i++) {
2107                 count = READ_ONCE(si->swap_map[i]);
2108                 if (count && swap_count(count) != SWAP_MAP_BAD)
2109                         if (!frontswap || frontswap_test(si, i))
2110                                 break;
2111                 if ((i % LATENCY_LIMIT) == 0)
2112                         cond_resched();
2113         }
2114
2115         if (i == si->max)
2116                 i = 0;
2117
2118         return i;
2119 }
2120
2121 /*
2122  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2123  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2124  */
2125 int try_to_unuse(unsigned int type, bool frontswap,
2126                  unsigned long pages_to_unuse)
2127 {
2128         struct mm_struct *prev_mm;
2129         struct mm_struct *mm;
2130         struct list_head *p;
2131         int retval = 0;
2132         struct swap_info_struct *si = swap_info[type];
2133         struct page *page;
2134         swp_entry_t entry;
2135         unsigned int i;
2136
2137         if (!READ_ONCE(si->inuse_pages))
2138                 return 0;
2139
2140         if (!frontswap)
2141                 pages_to_unuse = 0;
2142
2143 retry:
2144         retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2145         if (retval)
2146                 goto out;
2147
2148         prev_mm = &init_mm;
2149         mmget(prev_mm);
2150
2151         spin_lock(&mmlist_lock);
2152         p = &init_mm.mmlist;
2153         while (READ_ONCE(si->inuse_pages) &&
2154                !signal_pending(current) &&
2155                (p = p->next) != &init_mm.mmlist) {
2156
2157                 mm = list_entry(p, struct mm_struct, mmlist);
2158                 if (!mmget_not_zero(mm))
2159                         continue;
2160                 spin_unlock(&mmlist_lock);
2161                 mmput(prev_mm);
2162                 prev_mm = mm;
2163                 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2164
2165                 if (retval) {
2166                         mmput(prev_mm);
2167                         goto out;
2168                 }
2169
2170                 /*
2171                  * Make sure that we aren't completely killing
2172                  * interactive performance.
2173                  */
2174                 cond_resched();
2175                 spin_lock(&mmlist_lock);
2176         }
2177         spin_unlock(&mmlist_lock);
2178
2179         mmput(prev_mm);
2180
2181         i = 0;
2182         while (READ_ONCE(si->inuse_pages) &&
2183                !signal_pending(current) &&
2184                (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2185
2186                 entry = swp_entry(type, i);
2187                 page = find_get_page(swap_address_space(entry), i);
2188                 if (!page)
2189                         continue;
2190
2191                 /*
2192                  * It is conceivable that a racing task removed this page from
2193                  * swap cache just before we acquired the page lock. The page
2194                  * might even be back in swap cache on another swap area. But
2195                  * that is okay, try_to_free_swap() only removes stale pages.
2196                  */
2197                 lock_page(page);
2198                 wait_on_page_writeback(page);
2199                 try_to_free_swap(page);
2200                 unlock_page(page);
2201                 put_page(page);
2202
2203                 /*
2204                  * For frontswap, we just need to unuse pages_to_unuse, if
2205                  * it was specified. Need not check frontswap again here as
2206                  * we already zeroed out pages_to_unuse if not frontswap.
2207                  */
2208                 if (pages_to_unuse && --pages_to_unuse == 0)
2209                         goto out;
2210         }
2211
2212         /*
2213          * Lets check again to see if there are still swap entries in the map.
2214          * If yes, we would need to do retry the unuse logic again.
2215          * Under global memory pressure, swap entries can be reinserted back
2216          * into process space after the mmlist loop above passes over them.
2217          *
2218          * Limit the number of retries? No: when mmget_not_zero() above fails,
2219          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2220          * at its own independent pace; and even shmem_writepage() could have
2221          * been preempted after get_swap_page(), temporarily hiding that swap.
2222          * It's easy and robust (though cpu-intensive) just to keep retrying.
2223          */
2224         if (READ_ONCE(si->inuse_pages)) {
2225                 if (!signal_pending(current))
2226                         goto retry;
2227                 retval = -EINTR;
2228         }
2229 out:
2230         return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2231 }
2232
2233 /*
2234  * After a successful try_to_unuse, if no swap is now in use, we know
2235  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2236  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2237  * added to the mmlist just after page_duplicate - before would be racy.
2238  */
2239 static void drain_mmlist(void)
2240 {
2241         struct list_head *p, *next;
2242         unsigned int type;
2243
2244         for (type = 0; type < nr_swapfiles; type++)
2245                 if (swap_info[type]->inuse_pages)
2246                         return;
2247         spin_lock(&mmlist_lock);
2248         list_for_each_safe(p, next, &init_mm.mmlist)
2249                 list_del_init(p);
2250         spin_unlock(&mmlist_lock);
2251 }
2252
2253 /*
2254  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2255  * corresponds to page offset for the specified swap entry.
2256  * Note that the type of this function is sector_t, but it returns page offset
2257  * into the bdev, not sector offset.
2258  */
2259 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2260 {
2261         struct swap_info_struct *sis;
2262         struct swap_extent *se;
2263         pgoff_t offset;
2264
2265         sis = swp_swap_info(entry);
2266         *bdev = sis->bdev;
2267
2268         offset = swp_offset(entry);
2269         se = offset_to_swap_extent(sis, offset);
2270         return se->start_block + (offset - se->start_page);
2271 }
2272
2273 /*
2274  * Returns the page offset into bdev for the specified page's swap entry.
2275  */
2276 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2277 {
2278         swp_entry_t entry;
2279         entry.val = page_private(page);
2280         return map_swap_entry(entry, bdev);
2281 }
2282
2283 /*
2284  * Free all of a swapdev's extent information
2285  */
2286 static void destroy_swap_extents(struct swap_info_struct *sis)
2287 {
2288         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2289                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2290                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2291
2292                 rb_erase(rb, &sis->swap_extent_root);
2293                 kfree(se);
2294         }
2295
2296         if (sis->flags & SWP_ACTIVATED) {
2297                 struct file *swap_file = sis->swap_file;
2298                 struct address_space *mapping = swap_file->f_mapping;
2299
2300                 sis->flags &= ~SWP_ACTIVATED;
2301                 if (mapping->a_ops->swap_deactivate)
2302                         mapping->a_ops->swap_deactivate(swap_file);
2303         }
2304 }
2305
2306 /*
2307  * Add a block range (and the corresponding page range) into this swapdev's
2308  * extent tree.
2309  *
2310  * This function rather assumes that it is called in ascending page order.
2311  */
2312 int
2313 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2314                 unsigned long nr_pages, sector_t start_block)
2315 {
2316         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2317         struct swap_extent *se;
2318         struct swap_extent *new_se;
2319
2320         /*
2321          * place the new node at the right most since the
2322          * function is called in ascending page order.
2323          */
2324         while (*link) {
2325                 parent = *link;
2326                 link = &parent->rb_right;
2327         }
2328
2329         if (parent) {
2330                 se = rb_entry(parent, struct swap_extent, rb_node);
2331                 BUG_ON(se->start_page + se->nr_pages != start_page);
2332                 if (se->start_block + se->nr_pages == start_block) {
2333                         /* Merge it */
2334                         se->nr_pages += nr_pages;
2335                         return 0;
2336                 }
2337         }
2338
2339         /* No merge, insert a new extent. */
2340         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2341         if (new_se == NULL)
2342                 return -ENOMEM;
2343         new_se->start_page = start_page;
2344         new_se->nr_pages = nr_pages;
2345         new_se->start_block = start_block;
2346
2347         rb_link_node(&new_se->rb_node, parent, link);
2348         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2349         return 1;
2350 }
2351 EXPORT_SYMBOL_GPL(add_swap_extent);
2352
2353 /*
2354  * A `swap extent' is a simple thing which maps a contiguous range of pages
2355  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2356  * is built at swapon time and is then used at swap_writepage/swap_readpage
2357  * time for locating where on disk a page belongs.
2358  *
2359  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2360  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2361  * swap files identically.
2362  *
2363  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2364  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2365  * swapfiles are handled *identically* after swapon time.
2366  *
2367  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2368  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2369  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2370  * requirements, they are simply tossed out - we will never use those blocks
2371  * for swapping.
2372  *
2373  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2374  * prevents users from writing to the swap device, which will corrupt memory.
2375  *
2376  * The amount of disk space which a single swap extent represents varies.
2377  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2378  * extents in the list.  To avoid much list walking, we cache the previous
2379  * search location in `curr_swap_extent', and start new searches from there.
2380  * This is extremely effective.  The average number of iterations in
2381  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2382  */
2383 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2384 {
2385         struct file *swap_file = sis->swap_file;
2386         struct address_space *mapping = swap_file->f_mapping;
2387         struct inode *inode = mapping->host;
2388         int ret;
2389
2390         if (S_ISBLK(inode->i_mode)) {
2391                 ret = add_swap_extent(sis, 0, sis->max, 0);
2392                 *span = sis->pages;
2393                 return ret;
2394         }
2395
2396         if (mapping->a_ops->swap_activate) {
2397                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2398                 if (ret >= 0)
2399                         sis->flags |= SWP_ACTIVATED;
2400                 if (!ret) {
2401                         sis->flags |= SWP_FS;
2402                         ret = add_swap_extent(sis, 0, sis->max, 0);
2403                         *span = sis->pages;
2404                 }
2405                 return ret;
2406         }
2407
2408         return generic_swapfile_activate(sis, swap_file, span);
2409 }
2410
2411 static int swap_node(struct swap_info_struct *p)
2412 {
2413         struct block_device *bdev;
2414
2415         if (p->bdev)
2416                 bdev = p->bdev;
2417         else
2418                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2419
2420         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2421 }
2422
2423 static void setup_swap_info(struct swap_info_struct *p, int prio,
2424                             unsigned char *swap_map,
2425                             struct swap_cluster_info *cluster_info)
2426 {
2427         int i;
2428
2429         if (prio >= 0)
2430                 p->prio = prio;
2431         else
2432                 p->prio = --least_priority;
2433         /*
2434          * the plist prio is negated because plist ordering is
2435          * low-to-high, while swap ordering is high-to-low
2436          */
2437         p->list.prio = -p->prio;
2438         for_each_node(i) {
2439                 if (p->prio >= 0)
2440                         p->avail_lists[i].prio = -p->prio;
2441                 else {
2442                         if (swap_node(p) == i)
2443                                 p->avail_lists[i].prio = 1;
2444                         else
2445                                 p->avail_lists[i].prio = -p->prio;
2446                 }
2447         }
2448         p->swap_map = swap_map;
2449         p->cluster_info = cluster_info;
2450 }
2451
2452 static void _enable_swap_info(struct swap_info_struct *p)
2453 {
2454         p->flags |= SWP_WRITEOK | SWP_VALID;
2455         atomic_long_add(p->pages, &nr_swap_pages);
2456         total_swap_pages += p->pages;
2457
2458         assert_spin_locked(&swap_lock);
2459         /*
2460          * both lists are plists, and thus priority ordered.
2461          * swap_active_head needs to be priority ordered for swapoff(),
2462          * which on removal of any swap_info_struct with an auto-assigned
2463          * (i.e. negative) priority increments the auto-assigned priority
2464          * of any lower-priority swap_info_structs.
2465          * swap_avail_head needs to be priority ordered for get_swap_page(),
2466          * which allocates swap pages from the highest available priority
2467          * swap_info_struct.
2468          */
2469         plist_add(&p->list, &swap_active_head);
2470         add_to_avail_list(p);
2471 }
2472
2473 static void enable_swap_info(struct swap_info_struct *p, int prio,
2474                                 unsigned char *swap_map,
2475                                 struct swap_cluster_info *cluster_info,
2476                                 unsigned long *frontswap_map)
2477 {
2478         frontswap_init(p->type, frontswap_map);
2479         spin_lock(&swap_lock);
2480         spin_lock(&p->lock);
2481         setup_swap_info(p, prio, swap_map, cluster_info);
2482         spin_unlock(&p->lock);
2483         spin_unlock(&swap_lock);
2484         /*
2485          * Guarantee swap_map, cluster_info, etc. fields are valid
2486          * between get/put_swap_device() if SWP_VALID bit is set
2487          */
2488         synchronize_rcu();
2489         spin_lock(&swap_lock);
2490         spin_lock(&p->lock);
2491         _enable_swap_info(p);
2492         spin_unlock(&p->lock);
2493         spin_unlock(&swap_lock);
2494 }
2495
2496 static void reinsert_swap_info(struct swap_info_struct *p)
2497 {
2498         spin_lock(&swap_lock);
2499         spin_lock(&p->lock);
2500         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2501         _enable_swap_info(p);
2502         spin_unlock(&p->lock);
2503         spin_unlock(&swap_lock);
2504 }
2505
2506 bool has_usable_swap(void)
2507 {
2508         bool ret = true;
2509
2510         spin_lock(&swap_lock);
2511         if (plist_head_empty(&swap_active_head))
2512                 ret = false;
2513         spin_unlock(&swap_lock);
2514         return ret;
2515 }
2516
2517 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2518 {
2519         struct swap_info_struct *p = NULL;
2520         unsigned char *swap_map;
2521         struct swap_cluster_info *cluster_info;
2522         unsigned long *frontswap_map;
2523         struct file *swap_file, *victim;
2524         struct address_space *mapping;
2525         struct inode *inode;
2526         struct filename *pathname;
2527         int err, found = 0;
2528         unsigned int old_block_size;
2529
2530         if (!capable(CAP_SYS_ADMIN))
2531                 return -EPERM;
2532
2533         BUG_ON(!current->mm);
2534
2535         pathname = getname(specialfile);
2536         if (IS_ERR(pathname))
2537                 return PTR_ERR(pathname);
2538
2539         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2540         err = PTR_ERR(victim);
2541         if (IS_ERR(victim))
2542                 goto out;
2543
2544         mapping = victim->f_mapping;
2545         spin_lock(&swap_lock);
2546         plist_for_each_entry(p, &swap_active_head, list) {
2547                 if (p->flags & SWP_WRITEOK) {
2548                         if (p->swap_file->f_mapping == mapping) {
2549                                 found = 1;
2550                                 break;
2551                         }
2552                 }
2553         }
2554         if (!found) {
2555                 err = -EINVAL;
2556                 spin_unlock(&swap_lock);
2557                 goto out_dput;
2558         }
2559         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2560                 vm_unacct_memory(p->pages);
2561         else {
2562                 err = -ENOMEM;
2563                 spin_unlock(&swap_lock);
2564                 goto out_dput;
2565         }
2566         del_from_avail_list(p);
2567         spin_lock(&p->lock);
2568         if (p->prio < 0) {
2569                 struct swap_info_struct *si = p;
2570                 int nid;
2571
2572                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2573                         si->prio++;
2574                         si->list.prio--;
2575                         for_each_node(nid) {
2576                                 if (si->avail_lists[nid].prio != 1)
2577                                         si->avail_lists[nid].prio--;
2578                         }
2579                 }
2580                 least_priority++;
2581         }
2582         plist_del(&p->list, &swap_active_head);
2583         atomic_long_sub(p->pages, &nr_swap_pages);
2584         total_swap_pages -= p->pages;
2585         p->flags &= ~SWP_WRITEOK;
2586         spin_unlock(&p->lock);
2587         spin_unlock(&swap_lock);
2588
2589         disable_swap_slots_cache_lock();
2590
2591         set_current_oom_origin();
2592         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2593         clear_current_oom_origin();
2594
2595         if (err) {
2596                 /* re-insert swap space back into swap_list */
2597                 reinsert_swap_info(p);
2598                 reenable_swap_slots_cache_unlock();
2599                 goto out_dput;
2600         }
2601
2602         reenable_swap_slots_cache_unlock();
2603
2604         spin_lock(&swap_lock);
2605         spin_lock(&p->lock);
2606         p->flags &= ~SWP_VALID;         /* mark swap device as invalid */
2607         spin_unlock(&p->lock);
2608         spin_unlock(&swap_lock);
2609         /*
2610          * wait for swap operations protected by get/put_swap_device()
2611          * to complete
2612          */
2613         synchronize_rcu();
2614
2615         flush_work(&p->discard_work);
2616
2617         destroy_swap_extents(p);
2618         if (p->flags & SWP_CONTINUED)
2619                 free_swap_count_continuations(p);
2620
2621         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2622                 atomic_dec(&nr_rotate_swap);
2623
2624         mutex_lock(&swapon_mutex);
2625         spin_lock(&swap_lock);
2626         spin_lock(&p->lock);
2627         drain_mmlist();
2628
2629         /* wait for anyone still in scan_swap_map */
2630         p->highest_bit = 0;             /* cuts scans short */
2631         while (p->flags >= SWP_SCANNING) {
2632                 spin_unlock(&p->lock);
2633                 spin_unlock(&swap_lock);
2634                 schedule_timeout_uninterruptible(1);
2635                 spin_lock(&swap_lock);
2636                 spin_lock(&p->lock);
2637         }
2638
2639         swap_file = p->swap_file;
2640         old_block_size = p->old_block_size;
2641         p->swap_file = NULL;
2642         p->max = 0;
2643         swap_map = p->swap_map;
2644         p->swap_map = NULL;
2645         cluster_info = p->cluster_info;
2646         p->cluster_info = NULL;
2647         frontswap_map = frontswap_map_get(p);
2648         spin_unlock(&p->lock);
2649         spin_unlock(&swap_lock);
2650         frontswap_invalidate_area(p->type);
2651         frontswap_map_set(p, NULL);
2652         mutex_unlock(&swapon_mutex);
2653         free_percpu(p->percpu_cluster);
2654         p->percpu_cluster = NULL;
2655         vfree(swap_map);
2656         kvfree(cluster_info);
2657         kvfree(frontswap_map);
2658         /* Destroy swap account information */
2659         swap_cgroup_swapoff(p->type);
2660         exit_swap_address_space(p->type);
2661
2662         inode = mapping->host;
2663         if (S_ISBLK(inode->i_mode)) {
2664                 struct block_device *bdev = I_BDEV(inode);
2665
2666                 set_blocksize(bdev, old_block_size);
2667                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2668         }
2669
2670         inode_lock(inode);
2671         inode->i_flags &= ~S_SWAPFILE;
2672         inode_unlock(inode);
2673         filp_close(swap_file, NULL);
2674
2675         /*
2676          * Clear the SWP_USED flag after all resources are freed so that swapon
2677          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2678          * not hold p->lock after we cleared its SWP_WRITEOK.
2679          */
2680         spin_lock(&swap_lock);
2681         p->flags = 0;
2682         spin_unlock(&swap_lock);
2683
2684         err = 0;
2685         atomic_inc(&proc_poll_event);
2686         wake_up_interruptible(&proc_poll_wait);
2687
2688 out_dput:
2689         filp_close(victim, NULL);
2690 out:
2691         putname(pathname);
2692         return err;
2693 }
2694
2695 #ifdef CONFIG_PROC_FS
2696 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2697 {
2698         struct seq_file *seq = file->private_data;
2699
2700         poll_wait(file, &proc_poll_wait, wait);
2701
2702         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2703                 seq->poll_event = atomic_read(&proc_poll_event);
2704                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2705         }
2706
2707         return EPOLLIN | EPOLLRDNORM;
2708 }
2709
2710 /* iterator */
2711 static void *swap_start(struct seq_file *swap, loff_t *pos)
2712 {
2713         struct swap_info_struct *si;
2714         int type;
2715         loff_t l = *pos;
2716
2717         mutex_lock(&swapon_mutex);
2718
2719         if (!l)
2720                 return SEQ_START_TOKEN;
2721
2722         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2723                 if (!(si->flags & SWP_USED) || !si->swap_map)
2724                         continue;
2725                 if (!--l)
2726                         return si;
2727         }
2728
2729         return NULL;
2730 }
2731
2732 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2733 {
2734         struct swap_info_struct *si = v;
2735         int type;
2736
2737         if (v == SEQ_START_TOKEN)
2738                 type = 0;
2739         else
2740                 type = si->type + 1;
2741
2742         ++(*pos);
2743         for (; (si = swap_type_to_swap_info(type)); type++) {
2744                 if (!(si->flags & SWP_USED) || !si->swap_map)
2745                         continue;
2746                 return si;
2747         }
2748
2749         return NULL;
2750 }
2751
2752 static void swap_stop(struct seq_file *swap, void *v)
2753 {
2754         mutex_unlock(&swapon_mutex);
2755 }
2756
2757 static int swap_show(struct seq_file *swap, void *v)
2758 {
2759         struct swap_info_struct *si = v;
2760         struct file *file;
2761         int len;
2762
2763         if (si == SEQ_START_TOKEN) {
2764                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2765                 return 0;
2766         }
2767
2768         file = si->swap_file;
2769         len = seq_file_path(swap, file, " \t\n\\");
2770         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2771                         len < 40 ? 40 - len : 1, " ",
2772                         S_ISBLK(file_inode(file)->i_mode) ?
2773                                 "partition" : "file\t",
2774                         si->pages << (PAGE_SHIFT - 10),
2775                         si->inuse_pages << (PAGE_SHIFT - 10),
2776                         si->prio);
2777         return 0;
2778 }
2779
2780 static const struct seq_operations swaps_op = {
2781         .start =        swap_start,
2782         .next =         swap_next,
2783         .stop =         swap_stop,
2784         .show =         swap_show
2785 };
2786
2787 static int swaps_open(struct inode *inode, struct file *file)
2788 {
2789         struct seq_file *seq;
2790         int ret;
2791
2792         ret = seq_open(file, &swaps_op);
2793         if (ret)
2794                 return ret;
2795
2796         seq = file->private_data;
2797         seq->poll_event = atomic_read(&proc_poll_event);
2798         return 0;
2799 }
2800
2801 static const struct proc_ops swaps_proc_ops = {
2802         .proc_flags     = PROC_ENTRY_PERMANENT,
2803         .proc_open      = swaps_open,
2804         .proc_read      = seq_read,
2805         .proc_lseek     = seq_lseek,
2806         .proc_release   = seq_release,
2807         .proc_poll      = swaps_poll,
2808 };
2809
2810 static int __init procswaps_init(void)
2811 {
2812         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2813         return 0;
2814 }
2815 __initcall(procswaps_init);
2816 #endif /* CONFIG_PROC_FS */
2817
2818 #ifdef MAX_SWAPFILES_CHECK
2819 static int __init max_swapfiles_check(void)
2820 {
2821         MAX_SWAPFILES_CHECK();
2822         return 0;
2823 }
2824 late_initcall(max_swapfiles_check);
2825 #endif
2826
2827 static struct swap_info_struct *alloc_swap_info(void)
2828 {
2829         struct swap_info_struct *p;
2830         unsigned int type;
2831         int i;
2832
2833         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2834         if (!p)
2835                 return ERR_PTR(-ENOMEM);
2836
2837         spin_lock(&swap_lock);
2838         for (type = 0; type < nr_swapfiles; type++) {
2839                 if (!(swap_info[type]->flags & SWP_USED))
2840                         break;
2841         }
2842         if (type >= MAX_SWAPFILES) {
2843                 spin_unlock(&swap_lock);
2844                 kvfree(p);
2845                 return ERR_PTR(-EPERM);
2846         }
2847         if (type >= nr_swapfiles) {
2848                 p->type = type;
2849                 WRITE_ONCE(swap_info[type], p);
2850                 /*
2851                  * Write swap_info[type] before nr_swapfiles, in case a
2852                  * racing procfs swap_start() or swap_next() is reading them.
2853                  * (We never shrink nr_swapfiles, we never free this entry.)
2854                  */
2855                 smp_wmb();
2856                 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2857         } else {
2858                 kvfree(p);
2859                 p = swap_info[type];
2860                 /*
2861                  * Do not memset this entry: a racing procfs swap_next()
2862                  * would be relying on p->type to remain valid.
2863                  */
2864         }
2865         p->swap_extent_root = RB_ROOT;
2866         plist_node_init(&p->list, 0);
2867         for_each_node(i)
2868                 plist_node_init(&p->avail_lists[i], 0);
2869         p->flags = SWP_USED;
2870         spin_unlock(&swap_lock);
2871         spin_lock_init(&p->lock);
2872         spin_lock_init(&p->cont_lock);
2873
2874         return p;
2875 }
2876
2877 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2878 {
2879         int error;
2880
2881         if (S_ISBLK(inode->i_mode)) {
2882                 p->bdev = bdgrab(I_BDEV(inode));
2883                 error = blkdev_get(p->bdev,
2884                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2885                 if (error < 0) {
2886                         p->bdev = NULL;
2887                         return error;
2888                 }
2889                 p->old_block_size = block_size(p->bdev);
2890                 error = set_blocksize(p->bdev, PAGE_SIZE);
2891                 if (error < 0)
2892                         return error;
2893                 /*
2894                  * Zoned block devices contain zones that have a sequential
2895                  * write only restriction.  Hence zoned block devices are not
2896                  * suitable for swapping.  Disallow them here.
2897                  */
2898                 if (blk_queue_is_zoned(p->bdev->bd_queue))
2899                         return -EINVAL;
2900                 p->flags |= SWP_BLKDEV;
2901         } else if (S_ISREG(inode->i_mode)) {
2902                 p->bdev = inode->i_sb->s_bdev;
2903         }
2904
2905         return 0;
2906 }
2907
2908
2909 /*
2910  * Find out how many pages are allowed for a single swap device. There
2911  * are two limiting factors:
2912  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2913  * 2) the number of bits in the swap pte, as defined by the different
2914  * architectures.
2915  *
2916  * In order to find the largest possible bit mask, a swap entry with
2917  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2918  * decoded to a swp_entry_t again, and finally the swap offset is
2919  * extracted.
2920  *
2921  * This will mask all the bits from the initial ~0UL mask that can't
2922  * be encoded in either the swp_entry_t or the architecture definition
2923  * of a swap pte.
2924  */
2925 unsigned long generic_max_swapfile_size(void)
2926 {
2927         return swp_offset(pte_to_swp_entry(
2928                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2929 }
2930
2931 /* Can be overridden by an architecture for additional checks. */
2932 __weak unsigned long max_swapfile_size(void)
2933 {
2934         return generic_max_swapfile_size();
2935 }
2936
2937 static unsigned long read_swap_header(struct swap_info_struct *p,
2938                                         union swap_header *swap_header,
2939                                         struct inode *inode)
2940 {
2941         int i;
2942         unsigned long maxpages;
2943         unsigned long swapfilepages;
2944         unsigned long last_page;
2945
2946         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2947                 pr_err("Unable to find swap-space signature\n");
2948                 return 0;
2949         }
2950
2951         /* swap partition endianess hack... */
2952         if (swab32(swap_header->info.version) == 1) {
2953                 swab32s(&swap_header->info.version);
2954                 swab32s(&swap_header->info.last_page);
2955                 swab32s(&swap_header->info.nr_badpages);
2956                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2957                         return 0;
2958                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2959                         swab32s(&swap_header->info.badpages[i]);
2960         }
2961         /* Check the swap header's sub-version */
2962         if (swap_header->info.version != 1) {
2963                 pr_warn("Unable to handle swap header version %d\n",
2964                         swap_header->info.version);
2965                 return 0;
2966         }
2967
2968         p->lowest_bit  = 1;
2969         p->cluster_next = 1;
2970         p->cluster_nr = 0;
2971
2972         maxpages = max_swapfile_size();
2973         last_page = swap_header->info.last_page;
2974         if (!last_page) {
2975                 pr_warn("Empty swap-file\n");
2976                 return 0;
2977         }
2978         if (last_page > maxpages) {
2979                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2980                         maxpages << (PAGE_SHIFT - 10),
2981                         last_page << (PAGE_SHIFT - 10));
2982         }
2983         if (maxpages > last_page) {
2984                 maxpages = last_page + 1;
2985                 /* p->max is an unsigned int: don't overflow it */
2986                 if ((unsigned int)maxpages == 0)
2987                         maxpages = UINT_MAX;
2988         }
2989         p->highest_bit = maxpages - 1;
2990
2991         if (!maxpages)
2992                 return 0;
2993         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2994         if (swapfilepages && maxpages > swapfilepages) {
2995                 pr_warn("Swap area shorter than signature indicates\n");
2996                 return 0;
2997         }
2998         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2999                 return 0;
3000         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3001                 return 0;
3002
3003         return maxpages;
3004 }
3005
3006 #define SWAP_CLUSTER_INFO_COLS                                          \
3007         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3008 #define SWAP_CLUSTER_SPACE_COLS                                         \
3009         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3010 #define SWAP_CLUSTER_COLS                                               \
3011         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3012
3013 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3014                                         union swap_header *swap_header,
3015                                         unsigned char *swap_map,
3016                                         struct swap_cluster_info *cluster_info,
3017                                         unsigned long maxpages,
3018                                         sector_t *span)
3019 {
3020         unsigned int j, k;
3021         unsigned int nr_good_pages;
3022         int nr_extents;
3023         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3024         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3025         unsigned long i, idx;
3026
3027         nr_good_pages = maxpages - 1;   /* omit header page */
3028
3029         cluster_list_init(&p->free_clusters);
3030         cluster_list_init(&p->discard_clusters);
3031
3032         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3033                 unsigned int page_nr = swap_header->info.badpages[i];
3034                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3035                         return -EINVAL;
3036                 if (page_nr < maxpages) {
3037                         swap_map[page_nr] = SWAP_MAP_BAD;
3038                         nr_good_pages--;
3039                         /*
3040                          * Haven't marked the cluster free yet, no list
3041                          * operation involved
3042                          */
3043                         inc_cluster_info_page(p, cluster_info, page_nr);
3044                 }
3045         }
3046
3047         /* Haven't marked the cluster free yet, no list operation involved */
3048         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3049                 inc_cluster_info_page(p, cluster_info, i);
3050
3051         if (nr_good_pages) {
3052                 swap_map[0] = SWAP_MAP_BAD;
3053                 /*
3054                  * Not mark the cluster free yet, no list
3055                  * operation involved
3056                  */
3057                 inc_cluster_info_page(p, cluster_info, 0);
3058                 p->max = maxpages;
3059                 p->pages = nr_good_pages;
3060                 nr_extents = setup_swap_extents(p, span);
3061                 if (nr_extents < 0)
3062                         return nr_extents;
3063                 nr_good_pages = p->pages;
3064         }
3065         if (!nr_good_pages) {
3066                 pr_warn("Empty swap-file\n");
3067                 return -EINVAL;
3068         }
3069
3070         if (!cluster_info)
3071                 return nr_extents;
3072
3073
3074         /*
3075          * Reduce false cache line sharing between cluster_info and
3076          * sharing same address space.
3077          */
3078         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3079                 j = (k + col) % SWAP_CLUSTER_COLS;
3080                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3081                         idx = i * SWAP_CLUSTER_COLS + j;
3082                         if (idx >= nr_clusters)
3083                                 continue;
3084                         if (cluster_count(&cluster_info[idx]))
3085                                 continue;
3086                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3087                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3088                                               idx);
3089                 }
3090         }
3091         return nr_extents;
3092 }
3093
3094 /*
3095  * Helper to sys_swapon determining if a given swap
3096  * backing device queue supports DISCARD operations.
3097  */
3098 static bool swap_discardable(struct swap_info_struct *si)
3099 {
3100         struct request_queue *q = bdev_get_queue(si->bdev);
3101
3102         if (!q || !blk_queue_discard(q))
3103                 return false;
3104
3105         return true;
3106 }
3107
3108 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3109 {
3110         struct swap_info_struct *p;
3111         struct filename *name;
3112         struct file *swap_file = NULL;
3113         struct address_space *mapping;
3114         int prio;
3115         int error;
3116         union swap_header *swap_header;
3117         int nr_extents;
3118         sector_t span;
3119         unsigned long maxpages;
3120         unsigned char *swap_map = NULL;
3121         struct swap_cluster_info *cluster_info = NULL;
3122         unsigned long *frontswap_map = NULL;
3123         struct page *page = NULL;
3124         struct inode *inode = NULL;
3125         bool inced_nr_rotate_swap = false;
3126
3127         if (swap_flags & ~SWAP_FLAGS_VALID)
3128                 return -EINVAL;
3129
3130         if (!capable(CAP_SYS_ADMIN))
3131                 return -EPERM;
3132
3133         if (!swap_avail_heads)
3134                 return -ENOMEM;
3135
3136         p = alloc_swap_info();
3137         if (IS_ERR(p))
3138                 return PTR_ERR(p);
3139
3140         INIT_WORK(&p->discard_work, swap_discard_work);
3141
3142         name = getname(specialfile);
3143         if (IS_ERR(name)) {
3144                 error = PTR_ERR(name);
3145                 name = NULL;
3146                 goto bad_swap;
3147         }
3148         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3149         if (IS_ERR(swap_file)) {
3150                 error = PTR_ERR(swap_file);
3151                 swap_file = NULL;
3152                 goto bad_swap;
3153         }
3154
3155         p->swap_file = swap_file;
3156         mapping = swap_file->f_mapping;
3157         inode = mapping->host;
3158
3159         error = claim_swapfile(p, inode);
3160         if (unlikely(error))
3161                 goto bad_swap;
3162
3163         inode_lock(inode);
3164         if (IS_SWAPFILE(inode)) {
3165                 error = -EBUSY;
3166                 goto bad_swap_unlock_inode;
3167         }
3168
3169         /*
3170          * Read the swap header.
3171          */
3172         if (!mapping->a_ops->readpage) {
3173                 error = -EINVAL;
3174                 goto bad_swap_unlock_inode;
3175         }
3176         page = read_mapping_page(mapping, 0, swap_file);
3177         if (IS_ERR(page)) {
3178                 error = PTR_ERR(page);
3179                 goto bad_swap_unlock_inode;
3180         }
3181         swap_header = kmap(page);
3182
3183         maxpages = read_swap_header(p, swap_header, inode);
3184         if (unlikely(!maxpages)) {
3185                 error = -EINVAL;
3186                 goto bad_swap_unlock_inode;
3187         }
3188
3189         /* OK, set up the swap map and apply the bad block list */
3190         swap_map = vzalloc(maxpages);
3191         if (!swap_map) {
3192                 error = -ENOMEM;
3193                 goto bad_swap_unlock_inode;
3194         }
3195
3196         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3197                 p->flags |= SWP_STABLE_WRITES;
3198
3199         if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3200                 p->flags |= SWP_SYNCHRONOUS_IO;
3201
3202         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3203                 int cpu;
3204                 unsigned long ci, nr_cluster;
3205
3206                 p->flags |= SWP_SOLIDSTATE;
3207                 /*
3208                  * select a random position to start with to help wear leveling
3209                  * SSD
3210                  */
3211                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3212                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3213
3214                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3215                                         GFP_KERNEL);
3216                 if (!cluster_info) {
3217                         error = -ENOMEM;
3218                         goto bad_swap_unlock_inode;
3219                 }
3220
3221                 for (ci = 0; ci < nr_cluster; ci++)
3222                         spin_lock_init(&((cluster_info + ci)->lock));
3223
3224                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3225                 if (!p->percpu_cluster) {
3226                         error = -ENOMEM;
3227                         goto bad_swap_unlock_inode;
3228                 }
3229                 for_each_possible_cpu(cpu) {
3230                         struct percpu_cluster *cluster;
3231                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3232                         cluster_set_null(&cluster->index);
3233                 }
3234         } else {
3235                 atomic_inc(&nr_rotate_swap);
3236                 inced_nr_rotate_swap = true;
3237         }
3238
3239         error = swap_cgroup_swapon(p->type, maxpages);
3240         if (error)
3241                 goto bad_swap_unlock_inode;
3242
3243         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3244                 cluster_info, maxpages, &span);
3245         if (unlikely(nr_extents < 0)) {
3246                 error = nr_extents;
3247                 goto bad_swap_unlock_inode;
3248         }
3249         /* frontswap enabled? set up bit-per-page map for frontswap */
3250         if (IS_ENABLED(CONFIG_FRONTSWAP))
3251                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3252                                          sizeof(long),
3253                                          GFP_KERNEL);
3254
3255         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3256                 /*
3257                  * When discard is enabled for swap with no particular
3258                  * policy flagged, we set all swap discard flags here in
3259                  * order to sustain backward compatibility with older
3260                  * swapon(8) releases.
3261                  */
3262                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3263                              SWP_PAGE_DISCARD);
3264
3265                 /*
3266                  * By flagging sys_swapon, a sysadmin can tell us to
3267                  * either do single-time area discards only, or to just
3268                  * perform discards for released swap page-clusters.
3269                  * Now it's time to adjust the p->flags accordingly.
3270                  */
3271                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3272                         p->flags &= ~SWP_PAGE_DISCARD;
3273                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3274                         p->flags &= ~SWP_AREA_DISCARD;
3275
3276                 /* issue a swapon-time discard if it's still required */
3277                 if (p->flags & SWP_AREA_DISCARD) {
3278                         int err = discard_swap(p);
3279                         if (unlikely(err))
3280                                 pr_err("swapon: discard_swap(%p): %d\n",
3281                                         p, err);
3282                 }
3283         }
3284
3285         error = init_swap_address_space(p->type, maxpages);
3286         if (error)
3287                 goto bad_swap_unlock_inode;
3288
3289         /*
3290          * Flush any pending IO and dirty mappings before we start using this
3291          * swap device.
3292          */
3293         inode->i_flags |= S_SWAPFILE;
3294         error = inode_drain_writes(inode);
3295         if (error) {
3296                 inode->i_flags &= ~S_SWAPFILE;
3297                 goto bad_swap_unlock_inode;
3298         }
3299
3300         mutex_lock(&swapon_mutex);
3301         prio = -1;
3302         if (swap_flags & SWAP_FLAG_PREFER)
3303                 prio =
3304                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3305         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3306
3307         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3308                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3309                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3310                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3311                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3312                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3313                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3314                 (frontswap_map) ? "FS" : "");
3315
3316         mutex_unlock(&swapon_mutex);
3317         atomic_inc(&proc_poll_event);
3318         wake_up_interruptible(&proc_poll_wait);
3319
3320         error = 0;
3321         goto out;
3322 bad_swap_unlock_inode:
3323         inode_unlock(inode);
3324 bad_swap:
3325         free_percpu(p->percpu_cluster);
3326         p->percpu_cluster = NULL;
3327         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3328                 set_blocksize(p->bdev, p->old_block_size);
3329                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3330         }
3331         inode = NULL;
3332         destroy_swap_extents(p);
3333         swap_cgroup_swapoff(p->type);
3334         spin_lock(&swap_lock);
3335         p->swap_file = NULL;
3336         p->flags = 0;
3337         spin_unlock(&swap_lock);
3338         vfree(swap_map);
3339         kvfree(cluster_info);
3340         kvfree(frontswap_map);
3341         if (inced_nr_rotate_swap)
3342                 atomic_dec(&nr_rotate_swap);
3343         if (swap_file)
3344                 filp_close(swap_file, NULL);
3345 out:
3346         if (page && !IS_ERR(page)) {
3347                 kunmap(page);
3348                 put_page(page);
3349         }
3350         if (name)
3351                 putname(name);
3352         if (inode)
3353                 inode_unlock(inode);
3354         if (!error)
3355                 enable_swap_slots_cache();
3356         return error;
3357 }
3358
3359 void si_swapinfo(struct sysinfo *val)
3360 {
3361         unsigned int type;
3362         unsigned long nr_to_be_unused = 0;
3363
3364         spin_lock(&swap_lock);
3365         for (type = 0; type < nr_swapfiles; type++) {
3366                 struct swap_info_struct *si = swap_info[type];
3367
3368                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3369                         nr_to_be_unused += si->inuse_pages;
3370         }
3371         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3372         val->totalswap = total_swap_pages + nr_to_be_unused;
3373         spin_unlock(&swap_lock);
3374 }
3375
3376 /*
3377  * Verify that a swap entry is valid and increment its swap map count.
3378  *
3379  * Returns error code in following case.
3380  * - success -> 0
3381  * - swp_entry is invalid -> EINVAL
3382  * - swp_entry is migration entry -> EINVAL
3383  * - swap-cache reference is requested but there is already one. -> EEXIST
3384  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3385  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3386  */
3387 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3388 {
3389         struct swap_info_struct *p;
3390         struct swap_cluster_info *ci;
3391         unsigned long offset;
3392         unsigned char count;
3393         unsigned char has_cache;
3394         int err = -EINVAL;
3395
3396         p = get_swap_device(entry);
3397         if (!p)
3398                 goto out;
3399
3400         offset = swp_offset(entry);
3401         ci = lock_cluster_or_swap_info(p, offset);
3402
3403         count = p->swap_map[offset];
3404
3405         /*
3406          * swapin_readahead() doesn't check if a swap entry is valid, so the
3407          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3408          */
3409         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3410                 err = -ENOENT;
3411                 goto unlock_out;
3412         }
3413
3414         has_cache = count & SWAP_HAS_CACHE;
3415         count &= ~SWAP_HAS_CACHE;
3416         err = 0;
3417
3418         if (usage == SWAP_HAS_CACHE) {
3419
3420                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3421                 if (!has_cache && count)
3422                         has_cache = SWAP_HAS_CACHE;
3423                 else if (has_cache)             /* someone else added cache */
3424                         err = -EEXIST;
3425                 else                            /* no users remaining */
3426                         err = -ENOENT;
3427
3428         } else if (count || has_cache) {
3429
3430                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3431                         count += usage;
3432                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3433                         err = -EINVAL;
3434                 else if (swap_count_continued(p, offset, count))
3435                         count = COUNT_CONTINUED;
3436                 else
3437                         err = -ENOMEM;
3438         } else
3439                 err = -ENOENT;                  /* unused swap entry */
3440
3441         p->swap_map[offset] = count | has_cache;
3442
3443 unlock_out:
3444         unlock_cluster_or_swap_info(p, ci);
3445 out:
3446         if (p)
3447                 put_swap_device(p);
3448         return err;
3449 }
3450
3451 /*
3452  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3453  * (in which case its reference count is never incremented).
3454  */
3455 void swap_shmem_alloc(swp_entry_t entry)
3456 {
3457         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3458 }
3459
3460 /*
3461  * Increase reference count of swap entry by 1.
3462  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3463  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3464  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3465  * might occur if a page table entry has got corrupted.
3466  */
3467 int swap_duplicate(swp_entry_t entry)
3468 {
3469         int err = 0;
3470
3471         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3472                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3473         return err;
3474 }
3475
3476 /*
3477  * @entry: swap entry for which we allocate swap cache.
3478  *
3479  * Called when allocating swap cache for existing swap entry,
3480  * This can return error codes. Returns 0 at success.
3481  * -EEXIST means there is a swap cache.
3482  * Note: return code is different from swap_duplicate().
3483  */
3484 int swapcache_prepare(swp_entry_t entry)
3485 {
3486         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3487 }
3488
3489 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3490 {
3491         return swap_type_to_swap_info(swp_type(entry));
3492 }
3493
3494 struct swap_info_struct *page_swap_info(struct page *page)
3495 {
3496         swp_entry_t entry = { .val = page_private(page) };
3497         return swp_swap_info(entry);
3498 }
3499
3500 /*
3501  * out-of-line __page_file_ methods to avoid include hell.
3502  */
3503 struct address_space *__page_file_mapping(struct page *page)
3504 {
3505         return page_swap_info(page)->swap_file->f_mapping;
3506 }
3507 EXPORT_SYMBOL_GPL(__page_file_mapping);
3508
3509 pgoff_t __page_file_index(struct page *page)
3510 {
3511         swp_entry_t swap = { .val = page_private(page) };
3512         return swp_offset(swap);
3513 }
3514 EXPORT_SYMBOL_GPL(__page_file_index);
3515
3516 /*
3517  * add_swap_count_continuation - called when a swap count is duplicated
3518  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3519  * page of the original vmalloc'ed swap_map, to hold the continuation count
3520  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3521  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3522  *
3523  * These continuation pages are seldom referenced: the common paths all work
3524  * on the original swap_map, only referring to a continuation page when the
3525  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3526  *
3527  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3528  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3529  * can be called after dropping locks.
3530  */
3531 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3532 {
3533         struct swap_info_struct *si;
3534         struct swap_cluster_info *ci;
3535         struct page *head;
3536         struct page *page;
3537         struct page *list_page;
3538         pgoff_t offset;
3539         unsigned char count;
3540         int ret = 0;
3541
3542         /*
3543          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3544          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3545          */
3546         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3547
3548         si = get_swap_device(entry);
3549         if (!si) {
3550                 /*
3551                  * An acceptable race has occurred since the failing
3552                  * __swap_duplicate(): the swap device may be swapoff
3553                  */
3554                 goto outer;
3555         }
3556         spin_lock(&si->lock);
3557
3558         offset = swp_offset(entry);
3559
3560         ci = lock_cluster(si, offset);
3561
3562         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3563
3564         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3565                 /*
3566                  * The higher the swap count, the more likely it is that tasks
3567                  * will race to add swap count continuation: we need to avoid
3568                  * over-provisioning.
3569                  */
3570                 goto out;
3571         }
3572
3573         if (!page) {
3574                 ret = -ENOMEM;
3575                 goto out;
3576         }
3577
3578         /*
3579          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3580          * no architecture is using highmem pages for kernel page tables: so it
3581          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3582          */
3583         head = vmalloc_to_page(si->swap_map + offset);
3584         offset &= ~PAGE_MASK;
3585
3586         spin_lock(&si->cont_lock);
3587         /*
3588          * Page allocation does not initialize the page's lru field,
3589          * but it does always reset its private field.
3590          */
3591         if (!page_private(head)) {
3592                 BUG_ON(count & COUNT_CONTINUED);
3593                 INIT_LIST_HEAD(&head->lru);
3594                 set_page_private(head, SWP_CONTINUED);
3595                 si->flags |= SWP_CONTINUED;
3596         }
3597
3598         list_for_each_entry(list_page, &head->lru, lru) {
3599                 unsigned char *map;
3600
3601                 /*
3602                  * If the previous map said no continuation, but we've found
3603                  * a continuation page, free our allocation and use this one.
3604                  */
3605                 if (!(count & COUNT_CONTINUED))
3606                         goto out_unlock_cont;
3607
3608                 map = kmap_atomic(list_page) + offset;
3609                 count = *map;
3610                 kunmap_atomic(map);
3611
3612                 /*
3613                  * If this continuation count now has some space in it,
3614                  * free our allocation and use this one.
3615                  */
3616                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3617                         goto out_unlock_cont;
3618         }
3619
3620         list_add_tail(&page->lru, &head->lru);
3621         page = NULL;                    /* now it's attached, don't free it */
3622 out_unlock_cont:
3623         spin_unlock(&si->cont_lock);
3624 out:
3625         unlock_cluster(ci);
3626         spin_unlock(&si->lock);
3627         put_swap_device(si);
3628 outer:
3629         if (page)
3630                 __free_page(page);
3631         return ret;
3632 }
3633
3634 /*
3635  * swap_count_continued - when the original swap_map count is incremented
3636  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3637  * into, carry if so, or else fail until a new continuation page is allocated;
3638  * when the original swap_map count is decremented from 0 with continuation,
3639  * borrow from the continuation and report whether it still holds more.
3640  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3641  * lock.
3642  */
3643 static bool swap_count_continued(struct swap_info_struct *si,
3644                                  pgoff_t offset, unsigned char count)
3645 {
3646         struct page *head;
3647         struct page *page;
3648         unsigned char *map;
3649         bool ret;
3650
3651         head = vmalloc_to_page(si->swap_map + offset);
3652         if (page_private(head) != SWP_CONTINUED) {
3653                 BUG_ON(count & COUNT_CONTINUED);
3654                 return false;           /* need to add count continuation */
3655         }
3656
3657         spin_lock(&si->cont_lock);
3658         offset &= ~PAGE_MASK;
3659         page = list_next_entry(head, lru);
3660         map = kmap_atomic(page) + offset;
3661
3662         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3663                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3664
3665         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3666                 /*
3667                  * Think of how you add 1 to 999
3668                  */
3669                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3670                         kunmap_atomic(map);
3671                         page = list_next_entry(page, lru);
3672                         BUG_ON(page == head);
3673                         map = kmap_atomic(page) + offset;
3674                 }
3675                 if (*map == SWAP_CONT_MAX) {
3676                         kunmap_atomic(map);
3677                         page = list_next_entry(page, lru);
3678                         if (page == head) {
3679                                 ret = false;    /* add count continuation */
3680                                 goto out;
3681                         }
3682                         map = kmap_atomic(page) + offset;
3683 init_map:               *map = 0;               /* we didn't zero the page */
3684                 }
3685                 *map += 1;
3686                 kunmap_atomic(map);
3687                 while ((page = list_prev_entry(page, lru)) != head) {
3688                         map = kmap_atomic(page) + offset;
3689                         *map = COUNT_CONTINUED;
3690                         kunmap_atomic(map);
3691                 }
3692                 ret = true;                     /* incremented */
3693
3694         } else {                                /* decrementing */
3695                 /*
3696                  * Think of how you subtract 1 from 1000
3697                  */
3698                 BUG_ON(count != COUNT_CONTINUED);
3699                 while (*map == COUNT_CONTINUED) {
3700                         kunmap_atomic(map);
3701                         page = list_next_entry(page, lru);
3702                         BUG_ON(page == head);
3703                         map = kmap_atomic(page) + offset;
3704                 }
3705                 BUG_ON(*map == 0);
3706                 *map -= 1;
3707                 if (*map == 0)
3708                         count = 0;
3709                 kunmap_atomic(map);
3710                 while ((page = list_prev_entry(page, lru)) != head) {
3711                         map = kmap_atomic(page) + offset;
3712                         *map = SWAP_CONT_MAX | count;
3713                         count = COUNT_CONTINUED;
3714                         kunmap_atomic(map);
3715                 }
3716                 ret = count == COUNT_CONTINUED;
3717         }
3718 out:
3719         spin_unlock(&si->cont_lock);
3720         return ret;
3721 }
3722
3723 /*
3724  * free_swap_count_continuations - swapoff free all the continuation pages
3725  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3726  */
3727 static void free_swap_count_continuations(struct swap_info_struct *si)
3728 {
3729         pgoff_t offset;
3730
3731         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3732                 struct page *head;
3733                 head = vmalloc_to_page(si->swap_map + offset);
3734                 if (page_private(head)) {
3735                         struct page *page, *next;
3736
3737                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3738                                 list_del(&page->lru);
3739                                 __free_page(page);
3740                         }
3741                 }
3742         }
3743 }
3744
3745 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3746 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3747                                   gfp_t gfp_mask)
3748 {
3749         struct swap_info_struct *si, *next;
3750         if (!(gfp_mask & __GFP_IO) || !memcg)
3751                 return;
3752
3753         if (!blk_cgroup_congested())
3754                 return;
3755
3756         /*
3757          * We've already scheduled a throttle, avoid taking the global swap
3758          * lock.
3759          */
3760         if (current->throttle_queue)
3761                 return;
3762
3763         spin_lock(&swap_avail_lock);
3764         plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3765                                   avail_lists[node]) {
3766                 if (si->bdev) {
3767                         blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3768                                                 true);
3769                         break;
3770                 }
3771         }
3772         spin_unlock(&swap_avail_lock);
3773 }
3774 #endif
3775
3776 static int __init swapfile_init(void)
3777 {
3778         int nid;
3779
3780         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3781                                          GFP_KERNEL);
3782         if (!swap_avail_heads) {
3783                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3784                 return -ENOMEM;
3785         }
3786
3787         for_each_node(nid)
3788                 plist_head_init(&swap_avail_heads[nid]);
3789
3790         return 0;
3791 }
3792 subsys_initcall(swapfile_init);