63ac67208453c0953575035cc68f2c566be974b9
[linux-2.6-microblaze.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/pgtable.h>
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49                                  unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57  * Some modules use swappable objects and may try to swap them out under
58  * memory pressure (via the shrinker). Before doing so, they may wish to
59  * check to see if any swap space is available.
60  */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70
71 /*
72  * all active swap_info_structs
73  * protected with swap_lock, and ordered by priority.
74  */
75 PLIST_HEAD(swap_active_head);
76
77 /*
78  * all available (active, not full) swap_info_structs
79  * protected with swap_avail_lock, ordered by priority.
80  * This is used by get_swap_page() instead of swap_active_head
81  * because swap_active_head includes all swap_info_structs,
82  * but get_swap_page() doesn't need to look at full ones.
83  * This uses its own lock instead of swap_lock because when a
84  * swap_info_struct changes between not-full/full, it needs to
85  * add/remove itself to/from this list, but the swap_info_struct->lock
86  * is held and the locking order requires swap_lock to be taken
87  * before any swap_info_struct->lock.
88  */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93
94 static DEFINE_MUTEX(swapon_mutex);
95
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104         if (type >= READ_ONCE(nr_swapfiles))
105                 return NULL;
106
107         smp_rmb();      /* Pairs with smp_wmb in alloc_swap_info. */
108         return READ_ONCE(swap_info[type]);
109 }
110
111 static inline unsigned char swap_count(unsigned char ent)
112 {
113         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
114 }
115
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY             0x1
118 /*
119  * Reclaim the swap entry if there are no more mappings of the
120  * corresponding page
121  */
122 #define TTRS_UNMAPPED           0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL               0x4
125
126 /* returns 1 if swap entry is freed */
127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128                                  unsigned long offset, unsigned long flags)
129 {
130         swp_entry_t entry = swp_entry(si->type, offset);
131         struct page *page;
132         int ret = 0;
133
134         page = find_get_page(swap_address_space(entry), offset);
135         if (!page)
136                 return 0;
137         /*
138          * When this function is called from scan_swap_map_slots() and it's
139          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140          * here. We have to use trylock for avoiding deadlock. This is a special
141          * case and you should use try_to_free_swap() with explicit lock_page()
142          * in usual operations.
143          */
144         if (trylock_page(page)) {
145                 if ((flags & TTRS_ANYWAY) ||
146                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148                         ret = try_to_free_swap(page);
149                 unlock_page(page);
150         }
151         put_page(page);
152         return ret;
153 }
154
155 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156 {
157         struct rb_node *rb = rb_first(&sis->swap_extent_root);
158         return rb_entry(rb, struct swap_extent, rb_node);
159 }
160
161 static inline struct swap_extent *next_se(struct swap_extent *se)
162 {
163         struct rb_node *rb = rb_next(&se->rb_node);
164         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165 }
166
167 /*
168  * swapon tell device that all the old swap contents can be discarded,
169  * to allow the swap device to optimize its wear-levelling.
170  */
171 static int discard_swap(struct swap_info_struct *si)
172 {
173         struct swap_extent *se;
174         sector_t start_block;
175         sector_t nr_blocks;
176         int err = 0;
177
178         /* Do not discard the swap header page! */
179         se = first_se(si);
180         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182         if (nr_blocks) {
183                 err = blkdev_issue_discard(si->bdev, start_block,
184                                 nr_blocks, GFP_KERNEL, 0);
185                 if (err)
186                         return err;
187                 cond_resched();
188         }
189
190         for (se = next_se(se); se; se = next_se(se)) {
191                 start_block = se->start_block << (PAGE_SHIFT - 9);
192                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
193
194                 err = blkdev_issue_discard(si->bdev, start_block,
195                                 nr_blocks, GFP_KERNEL, 0);
196                 if (err)
197                         break;
198
199                 cond_resched();
200         }
201         return err;             /* That will often be -EOPNOTSUPP */
202 }
203
204 static struct swap_extent *
205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206 {
207         struct swap_extent *se;
208         struct rb_node *rb;
209
210         rb = sis->swap_extent_root.rb_node;
211         while (rb) {
212                 se = rb_entry(rb, struct swap_extent, rb_node);
213                 if (offset < se->start_page)
214                         rb = rb->rb_left;
215                 else if (offset >= se->start_page + se->nr_pages)
216                         rb = rb->rb_right;
217                 else
218                         return se;
219         }
220         /* It *must* be present */
221         BUG();
222 }
223
224 /*
225  * swap allocation tell device that a cluster of swap can now be discarded,
226  * to allow the swap device to optimize its wear-levelling.
227  */
228 static void discard_swap_cluster(struct swap_info_struct *si,
229                                  pgoff_t start_page, pgoff_t nr_pages)
230 {
231         struct swap_extent *se = offset_to_swap_extent(si, start_page);
232
233         while (nr_pages) {
234                 pgoff_t offset = start_page - se->start_page;
235                 sector_t start_block = se->start_block + offset;
236                 sector_t nr_blocks = se->nr_pages - offset;
237
238                 if (nr_blocks > nr_pages)
239                         nr_blocks = nr_pages;
240                 start_page += nr_blocks;
241                 nr_pages -= nr_blocks;
242
243                 start_block <<= PAGE_SHIFT - 9;
244                 nr_blocks <<= PAGE_SHIFT - 9;
245                 if (blkdev_issue_discard(si->bdev, start_block,
246                                         nr_blocks, GFP_NOIO, 0))
247                         break;
248
249                 se = next_se(se);
250         }
251 }
252
253 #ifdef CONFIG_THP_SWAP
254 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
255
256 #define swap_entry_size(size)   (size)
257 #else
258 #define SWAPFILE_CLUSTER        256
259
260 /*
261  * Define swap_entry_size() as constant to let compiler to optimize
262  * out some code if !CONFIG_THP_SWAP
263  */
264 #define swap_entry_size(size)   1
265 #endif
266 #define LATENCY_LIMIT           256
267
268 static inline void cluster_set_flag(struct swap_cluster_info *info,
269         unsigned int flag)
270 {
271         info->flags = flag;
272 }
273
274 static inline unsigned int cluster_count(struct swap_cluster_info *info)
275 {
276         return info->data;
277 }
278
279 static inline void cluster_set_count(struct swap_cluster_info *info,
280                                      unsigned int c)
281 {
282         info->data = c;
283 }
284
285 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
286                                          unsigned int c, unsigned int f)
287 {
288         info->flags = f;
289         info->data = c;
290 }
291
292 static inline unsigned int cluster_next(struct swap_cluster_info *info)
293 {
294         return info->data;
295 }
296
297 static inline void cluster_set_next(struct swap_cluster_info *info,
298                                     unsigned int n)
299 {
300         info->data = n;
301 }
302
303 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
304                                          unsigned int n, unsigned int f)
305 {
306         info->flags = f;
307         info->data = n;
308 }
309
310 static inline bool cluster_is_free(struct swap_cluster_info *info)
311 {
312         return info->flags & CLUSTER_FLAG_FREE;
313 }
314
315 static inline bool cluster_is_null(struct swap_cluster_info *info)
316 {
317         return info->flags & CLUSTER_FLAG_NEXT_NULL;
318 }
319
320 static inline void cluster_set_null(struct swap_cluster_info *info)
321 {
322         info->flags = CLUSTER_FLAG_NEXT_NULL;
323         info->data = 0;
324 }
325
326 static inline bool cluster_is_huge(struct swap_cluster_info *info)
327 {
328         if (IS_ENABLED(CONFIG_THP_SWAP))
329                 return info->flags & CLUSTER_FLAG_HUGE;
330         return false;
331 }
332
333 static inline void cluster_clear_huge(struct swap_cluster_info *info)
334 {
335         info->flags &= ~CLUSTER_FLAG_HUGE;
336 }
337
338 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
339                                                      unsigned long offset)
340 {
341         struct swap_cluster_info *ci;
342
343         ci = si->cluster_info;
344         if (ci) {
345                 ci += offset / SWAPFILE_CLUSTER;
346                 spin_lock(&ci->lock);
347         }
348         return ci;
349 }
350
351 static inline void unlock_cluster(struct swap_cluster_info *ci)
352 {
353         if (ci)
354                 spin_unlock(&ci->lock);
355 }
356
357 /*
358  * Determine the locking method in use for this device.  Return
359  * swap_cluster_info if SSD-style cluster-based locking is in place.
360  */
361 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
362                 struct swap_info_struct *si, unsigned long offset)
363 {
364         struct swap_cluster_info *ci;
365
366         /* Try to use fine-grained SSD-style locking if available: */
367         ci = lock_cluster(si, offset);
368         /* Otherwise, fall back to traditional, coarse locking: */
369         if (!ci)
370                 spin_lock(&si->lock);
371
372         return ci;
373 }
374
375 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
376                                                struct swap_cluster_info *ci)
377 {
378         if (ci)
379                 unlock_cluster(ci);
380         else
381                 spin_unlock(&si->lock);
382 }
383
384 static inline bool cluster_list_empty(struct swap_cluster_list *list)
385 {
386         return cluster_is_null(&list->head);
387 }
388
389 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
390 {
391         return cluster_next(&list->head);
392 }
393
394 static void cluster_list_init(struct swap_cluster_list *list)
395 {
396         cluster_set_null(&list->head);
397         cluster_set_null(&list->tail);
398 }
399
400 static void cluster_list_add_tail(struct swap_cluster_list *list,
401                                   struct swap_cluster_info *ci,
402                                   unsigned int idx)
403 {
404         if (cluster_list_empty(list)) {
405                 cluster_set_next_flag(&list->head, idx, 0);
406                 cluster_set_next_flag(&list->tail, idx, 0);
407         } else {
408                 struct swap_cluster_info *ci_tail;
409                 unsigned int tail = cluster_next(&list->tail);
410
411                 /*
412                  * Nested cluster lock, but both cluster locks are
413                  * only acquired when we held swap_info_struct->lock
414                  */
415                 ci_tail = ci + tail;
416                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
417                 cluster_set_next(ci_tail, idx);
418                 spin_unlock(&ci_tail->lock);
419                 cluster_set_next_flag(&list->tail, idx, 0);
420         }
421 }
422
423 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
424                                            struct swap_cluster_info *ci)
425 {
426         unsigned int idx;
427
428         idx = cluster_next(&list->head);
429         if (cluster_next(&list->tail) == idx) {
430                 cluster_set_null(&list->head);
431                 cluster_set_null(&list->tail);
432         } else
433                 cluster_set_next_flag(&list->head,
434                                       cluster_next(&ci[idx]), 0);
435
436         return idx;
437 }
438
439 /* Add a cluster to discard list and schedule it to do discard */
440 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
441                 unsigned int idx)
442 {
443         /*
444          * If scan_swap_map() can't find a free cluster, it will check
445          * si->swap_map directly. To make sure the discarding cluster isn't
446          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
447          * will be cleared after discard
448          */
449         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
450                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
451
452         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
453
454         schedule_work(&si->discard_work);
455 }
456
457 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
458 {
459         struct swap_cluster_info *ci = si->cluster_info;
460
461         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
462         cluster_list_add_tail(&si->free_clusters, ci, idx);
463 }
464
465 /*
466  * Doing discard actually. After a cluster discard is finished, the cluster
467  * will be added to free cluster list. caller should hold si->lock.
468 */
469 static void swap_do_scheduled_discard(struct swap_info_struct *si)
470 {
471         struct swap_cluster_info *info, *ci;
472         unsigned int idx;
473
474         info = si->cluster_info;
475
476         while (!cluster_list_empty(&si->discard_clusters)) {
477                 idx = cluster_list_del_first(&si->discard_clusters, info);
478                 spin_unlock(&si->lock);
479
480                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
481                                 SWAPFILE_CLUSTER);
482
483                 spin_lock(&si->lock);
484                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
485                 __free_cluster(si, idx);
486                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
487                                 0, SWAPFILE_CLUSTER);
488                 unlock_cluster(ci);
489         }
490 }
491
492 static void swap_discard_work(struct work_struct *work)
493 {
494         struct swap_info_struct *si;
495
496         si = container_of(work, struct swap_info_struct, discard_work);
497
498         spin_lock(&si->lock);
499         swap_do_scheduled_discard(si);
500         spin_unlock(&si->lock);
501 }
502
503 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
504 {
505         struct swap_cluster_info *ci = si->cluster_info;
506
507         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
508         cluster_list_del_first(&si->free_clusters, ci);
509         cluster_set_count_flag(ci + idx, 0, 0);
510 }
511
512 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
513 {
514         struct swap_cluster_info *ci = si->cluster_info + idx;
515
516         VM_BUG_ON(cluster_count(ci) != 0);
517         /*
518          * If the swap is discardable, prepare discard the cluster
519          * instead of free it immediately. The cluster will be freed
520          * after discard.
521          */
522         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
523             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
524                 swap_cluster_schedule_discard(si, idx);
525                 return;
526         }
527
528         __free_cluster(si, idx);
529 }
530
531 /*
532  * The cluster corresponding to page_nr will be used. The cluster will be
533  * removed from free cluster list and its usage counter will be increased.
534  */
535 static void inc_cluster_info_page(struct swap_info_struct *p,
536         struct swap_cluster_info *cluster_info, unsigned long page_nr)
537 {
538         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
539
540         if (!cluster_info)
541                 return;
542         if (cluster_is_free(&cluster_info[idx]))
543                 alloc_cluster(p, idx);
544
545         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
546         cluster_set_count(&cluster_info[idx],
547                 cluster_count(&cluster_info[idx]) + 1);
548 }
549
550 /*
551  * The cluster corresponding to page_nr decreases one usage. If the usage
552  * counter becomes 0, which means no page in the cluster is in using, we can
553  * optionally discard the cluster and add it to free cluster list.
554  */
555 static void dec_cluster_info_page(struct swap_info_struct *p,
556         struct swap_cluster_info *cluster_info, unsigned long page_nr)
557 {
558         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559
560         if (!cluster_info)
561                 return;
562
563         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
564         cluster_set_count(&cluster_info[idx],
565                 cluster_count(&cluster_info[idx]) - 1);
566
567         if (cluster_count(&cluster_info[idx]) == 0)
568                 free_cluster(p, idx);
569 }
570
571 /*
572  * It's possible scan_swap_map() uses a free cluster in the middle of free
573  * cluster list. Avoiding such abuse to avoid list corruption.
574  */
575 static bool
576 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
577         unsigned long offset)
578 {
579         struct percpu_cluster *percpu_cluster;
580         bool conflict;
581
582         offset /= SWAPFILE_CLUSTER;
583         conflict = !cluster_list_empty(&si->free_clusters) &&
584                 offset != cluster_list_first(&si->free_clusters) &&
585                 cluster_is_free(&si->cluster_info[offset]);
586
587         if (!conflict)
588                 return false;
589
590         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
591         cluster_set_null(&percpu_cluster->index);
592         return true;
593 }
594
595 /*
596  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
597  * might involve allocating a new cluster for current CPU too.
598  */
599 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
600         unsigned long *offset, unsigned long *scan_base)
601 {
602         struct percpu_cluster *cluster;
603         struct swap_cluster_info *ci;
604         unsigned long tmp, max;
605
606 new_cluster:
607         cluster = this_cpu_ptr(si->percpu_cluster);
608         if (cluster_is_null(&cluster->index)) {
609                 if (!cluster_list_empty(&si->free_clusters)) {
610                         cluster->index = si->free_clusters.head;
611                         cluster->next = cluster_next(&cluster->index) *
612                                         SWAPFILE_CLUSTER;
613                 } else if (!cluster_list_empty(&si->discard_clusters)) {
614                         /*
615                          * we don't have free cluster but have some clusters in
616                          * discarding, do discard now and reclaim them, then
617                          * reread cluster_next_cpu since we dropped si->lock
618                          */
619                         swap_do_scheduled_discard(si);
620                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
621                         *offset = *scan_base;
622                         goto new_cluster;
623                 } else
624                         return false;
625         }
626
627         /*
628          * Other CPUs can use our cluster if they can't find a free cluster,
629          * check if there is still free entry in the cluster
630          */
631         tmp = cluster->next;
632         max = min_t(unsigned long, si->max,
633                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
634         if (tmp < max) {
635                 ci = lock_cluster(si, tmp);
636                 while (tmp < max) {
637                         if (!si->swap_map[tmp])
638                                 break;
639                         tmp++;
640                 }
641                 unlock_cluster(ci);
642         }
643         if (tmp >= max) {
644                 cluster_set_null(&cluster->index);
645                 goto new_cluster;
646         }
647         cluster->next = tmp + 1;
648         *offset = tmp;
649         *scan_base = tmp;
650         return true;
651 }
652
653 static void __del_from_avail_list(struct swap_info_struct *p)
654 {
655         int nid;
656
657         for_each_node(nid)
658                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
659 }
660
661 static void del_from_avail_list(struct swap_info_struct *p)
662 {
663         spin_lock(&swap_avail_lock);
664         __del_from_avail_list(p);
665         spin_unlock(&swap_avail_lock);
666 }
667
668 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
669                              unsigned int nr_entries)
670 {
671         unsigned int end = offset + nr_entries - 1;
672
673         if (offset == si->lowest_bit)
674                 si->lowest_bit += nr_entries;
675         if (end == si->highest_bit)
676                 si->highest_bit -= nr_entries;
677         si->inuse_pages += nr_entries;
678         if (si->inuse_pages == si->pages) {
679                 si->lowest_bit = si->max;
680                 si->highest_bit = 0;
681                 del_from_avail_list(si);
682         }
683 }
684
685 static void add_to_avail_list(struct swap_info_struct *p)
686 {
687         int nid;
688
689         spin_lock(&swap_avail_lock);
690         for_each_node(nid) {
691                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
692                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
693         }
694         spin_unlock(&swap_avail_lock);
695 }
696
697 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
698                             unsigned int nr_entries)
699 {
700         unsigned long end = offset + nr_entries - 1;
701         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
702
703         if (offset < si->lowest_bit)
704                 si->lowest_bit = offset;
705         if (end > si->highest_bit) {
706                 bool was_full = !si->highest_bit;
707
708                 si->highest_bit = end;
709                 if (was_full && (si->flags & SWP_WRITEOK))
710                         add_to_avail_list(si);
711         }
712         atomic_long_add(nr_entries, &nr_swap_pages);
713         si->inuse_pages -= nr_entries;
714         if (si->flags & SWP_BLKDEV)
715                 swap_slot_free_notify =
716                         si->bdev->bd_disk->fops->swap_slot_free_notify;
717         else
718                 swap_slot_free_notify = NULL;
719         while (offset <= end) {
720                 frontswap_invalidate_page(si->type, offset);
721                 if (swap_slot_free_notify)
722                         swap_slot_free_notify(si->bdev, offset);
723                 offset++;
724         }
725 }
726
727 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
728 {
729         unsigned long prev;
730
731         if (!(si->flags & SWP_SOLIDSTATE)) {
732                 si->cluster_next = next;
733                 return;
734         }
735
736         prev = this_cpu_read(*si->cluster_next_cpu);
737         /*
738          * Cross the swap address space size aligned trunk, choose
739          * another trunk randomly to avoid lock contention on swap
740          * address space if possible.
741          */
742         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
743             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
744                 /* No free swap slots available */
745                 if (si->highest_bit <= si->lowest_bit)
746                         return;
747                 next = si->lowest_bit +
748                         prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
749                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
750                 next = max_t(unsigned int, next, si->lowest_bit);
751         }
752         this_cpu_write(*si->cluster_next_cpu, next);
753 }
754
755 static int scan_swap_map_slots(struct swap_info_struct *si,
756                                unsigned char usage, int nr,
757                                swp_entry_t slots[])
758 {
759         struct swap_cluster_info *ci;
760         unsigned long offset;
761         unsigned long scan_base;
762         unsigned long last_in_cluster = 0;
763         int latency_ration = LATENCY_LIMIT;
764         int n_ret = 0;
765         bool scanned_many = false;
766
767         /*
768          * We try to cluster swap pages by allocating them sequentially
769          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
770          * way, however, we resort to first-free allocation, starting
771          * a new cluster.  This prevents us from scattering swap pages
772          * all over the entire swap partition, so that we reduce
773          * overall disk seek times between swap pages.  -- sct
774          * But we do now try to find an empty cluster.  -Andrea
775          * And we let swap pages go all over an SSD partition.  Hugh
776          */
777
778         si->flags += SWP_SCANNING;
779         /*
780          * Use percpu scan base for SSD to reduce lock contention on
781          * cluster and swap cache.  For HDD, sequential access is more
782          * important.
783          */
784         if (si->flags & SWP_SOLIDSTATE)
785                 scan_base = this_cpu_read(*si->cluster_next_cpu);
786         else
787                 scan_base = si->cluster_next;
788         offset = scan_base;
789
790         /* SSD algorithm */
791         if (si->cluster_info) {
792                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
793                         goto scan;
794         } else if (unlikely(!si->cluster_nr--)) {
795                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
796                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
797                         goto checks;
798                 }
799
800                 spin_unlock(&si->lock);
801
802                 /*
803                  * If seek is expensive, start searching for new cluster from
804                  * start of partition, to minimize the span of allocated swap.
805                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
806                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
807                  */
808                 scan_base = offset = si->lowest_bit;
809                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
810
811                 /* Locate the first empty (unaligned) cluster */
812                 for (; last_in_cluster <= si->highest_bit; offset++) {
813                         if (si->swap_map[offset])
814                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
815                         else if (offset == last_in_cluster) {
816                                 spin_lock(&si->lock);
817                                 offset -= SWAPFILE_CLUSTER - 1;
818                                 si->cluster_next = offset;
819                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
820                                 goto checks;
821                         }
822                         if (unlikely(--latency_ration < 0)) {
823                                 cond_resched();
824                                 latency_ration = LATENCY_LIMIT;
825                         }
826                 }
827
828                 offset = scan_base;
829                 spin_lock(&si->lock);
830                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
831         }
832
833 checks:
834         if (si->cluster_info) {
835                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
836                 /* take a break if we already got some slots */
837                         if (n_ret)
838                                 goto done;
839                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
840                                                         &scan_base))
841                                 goto scan;
842                 }
843         }
844         if (!(si->flags & SWP_WRITEOK))
845                 goto no_page;
846         if (!si->highest_bit)
847                 goto no_page;
848         if (offset > si->highest_bit)
849                 scan_base = offset = si->lowest_bit;
850
851         ci = lock_cluster(si, offset);
852         /* reuse swap entry of cache-only swap if not busy. */
853         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
854                 int swap_was_freed;
855                 unlock_cluster(ci);
856                 spin_unlock(&si->lock);
857                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
858                 spin_lock(&si->lock);
859                 /* entry was freed successfully, try to use this again */
860                 if (swap_was_freed)
861                         goto checks;
862                 goto scan; /* check next one */
863         }
864
865         if (si->swap_map[offset]) {
866                 unlock_cluster(ci);
867                 if (!n_ret)
868                         goto scan;
869                 else
870                         goto done;
871         }
872         si->swap_map[offset] = usage;
873         inc_cluster_info_page(si, si->cluster_info, offset);
874         unlock_cluster(ci);
875
876         swap_range_alloc(si, offset, 1);
877         slots[n_ret++] = swp_entry(si->type, offset);
878
879         /* got enough slots or reach max slots? */
880         if ((n_ret == nr) || (offset >= si->highest_bit))
881                 goto done;
882
883         /* search for next available slot */
884
885         /* time to take a break? */
886         if (unlikely(--latency_ration < 0)) {
887                 if (n_ret)
888                         goto done;
889                 spin_unlock(&si->lock);
890                 cond_resched();
891                 spin_lock(&si->lock);
892                 latency_ration = LATENCY_LIMIT;
893         }
894
895         /* try to get more slots in cluster */
896         if (si->cluster_info) {
897                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
898                         goto checks;
899         } else if (si->cluster_nr && !si->swap_map[++offset]) {
900                 /* non-ssd case, still more slots in cluster? */
901                 --si->cluster_nr;
902                 goto checks;
903         }
904
905         /*
906          * Even if there's no free clusters available (fragmented),
907          * try to scan a little more quickly with lock held unless we
908          * have scanned too many slots already.
909          */
910         if (!scanned_many) {
911                 unsigned long scan_limit;
912
913                 if (offset < scan_base)
914                         scan_limit = scan_base;
915                 else
916                         scan_limit = si->highest_bit;
917                 for (; offset <= scan_limit && --latency_ration > 0;
918                      offset++) {
919                         if (!si->swap_map[offset])
920                                 goto checks;
921                 }
922         }
923
924 done:
925         set_cluster_next(si, offset + 1);
926         si->flags -= SWP_SCANNING;
927         return n_ret;
928
929 scan:
930         spin_unlock(&si->lock);
931         while (++offset <= si->highest_bit) {
932                 if (!si->swap_map[offset]) {
933                         spin_lock(&si->lock);
934                         goto checks;
935                 }
936                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
937                         spin_lock(&si->lock);
938                         goto checks;
939                 }
940                 if (unlikely(--latency_ration < 0)) {
941                         cond_resched();
942                         latency_ration = LATENCY_LIMIT;
943                         scanned_many = true;
944                 }
945         }
946         offset = si->lowest_bit;
947         while (offset < scan_base) {
948                 if (!si->swap_map[offset]) {
949                         spin_lock(&si->lock);
950                         goto checks;
951                 }
952                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
953                         spin_lock(&si->lock);
954                         goto checks;
955                 }
956                 if (unlikely(--latency_ration < 0)) {
957                         cond_resched();
958                         latency_ration = LATENCY_LIMIT;
959                         scanned_many = true;
960                 }
961                 offset++;
962         }
963         spin_lock(&si->lock);
964
965 no_page:
966         si->flags -= SWP_SCANNING;
967         return n_ret;
968 }
969
970 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
971 {
972         unsigned long idx;
973         struct swap_cluster_info *ci;
974         unsigned long offset, i;
975         unsigned char *map;
976
977         /*
978          * Should not even be attempting cluster allocations when huge
979          * page swap is disabled.  Warn and fail the allocation.
980          */
981         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
982                 VM_WARN_ON_ONCE(1);
983                 return 0;
984         }
985
986         if (cluster_list_empty(&si->free_clusters))
987                 return 0;
988
989         idx = cluster_list_first(&si->free_clusters);
990         offset = idx * SWAPFILE_CLUSTER;
991         ci = lock_cluster(si, offset);
992         alloc_cluster(si, idx);
993         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
994
995         map = si->swap_map + offset;
996         for (i = 0; i < SWAPFILE_CLUSTER; i++)
997                 map[i] = SWAP_HAS_CACHE;
998         unlock_cluster(ci);
999         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1000         *slot = swp_entry(si->type, offset);
1001
1002         return 1;
1003 }
1004
1005 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1006 {
1007         unsigned long offset = idx * SWAPFILE_CLUSTER;
1008         struct swap_cluster_info *ci;
1009
1010         ci = lock_cluster(si, offset);
1011         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1012         cluster_set_count_flag(ci, 0, 0);
1013         free_cluster(si, idx);
1014         unlock_cluster(ci);
1015         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1016 }
1017
1018 static unsigned long scan_swap_map(struct swap_info_struct *si,
1019                                    unsigned char usage)
1020 {
1021         swp_entry_t entry;
1022         int n_ret;
1023
1024         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1025
1026         if (n_ret)
1027                 return swp_offset(entry);
1028         else
1029                 return 0;
1030
1031 }
1032
1033 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1034 {
1035         unsigned long size = swap_entry_size(entry_size);
1036         struct swap_info_struct *si, *next;
1037         long avail_pgs;
1038         int n_ret = 0;
1039         int node;
1040
1041         /* Only single cluster request supported */
1042         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1043
1044         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1045         if (avail_pgs <= 0)
1046                 goto noswap;
1047
1048         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1049
1050         atomic_long_sub(n_goal * size, &nr_swap_pages);
1051
1052         spin_lock(&swap_avail_lock);
1053
1054 start_over:
1055         node = numa_node_id();
1056         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1057                 /* requeue si to after same-priority siblings */
1058                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1059                 spin_unlock(&swap_avail_lock);
1060                 spin_lock(&si->lock);
1061                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1062                         spin_lock(&swap_avail_lock);
1063                         if (plist_node_empty(&si->avail_lists[node])) {
1064                                 spin_unlock(&si->lock);
1065                                 goto nextsi;
1066                         }
1067                         WARN(!si->highest_bit,
1068                              "swap_info %d in list but !highest_bit\n",
1069                              si->type);
1070                         WARN(!(si->flags & SWP_WRITEOK),
1071                              "swap_info %d in list but !SWP_WRITEOK\n",
1072                              si->type);
1073                         __del_from_avail_list(si);
1074                         spin_unlock(&si->lock);
1075                         goto nextsi;
1076                 }
1077                 if (size == SWAPFILE_CLUSTER) {
1078                         if (!(si->flags & SWP_FS))
1079                                 n_ret = swap_alloc_cluster(si, swp_entries);
1080                 } else
1081                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1082                                                     n_goal, swp_entries);
1083                 spin_unlock(&si->lock);
1084                 if (n_ret || size == SWAPFILE_CLUSTER)
1085                         goto check_out;
1086                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1087                         si->type);
1088
1089                 spin_lock(&swap_avail_lock);
1090 nextsi:
1091                 /*
1092                  * if we got here, it's likely that si was almost full before,
1093                  * and since scan_swap_map() can drop the si->lock, multiple
1094                  * callers probably all tried to get a page from the same si
1095                  * and it filled up before we could get one; or, the si filled
1096                  * up between us dropping swap_avail_lock and taking si->lock.
1097                  * Since we dropped the swap_avail_lock, the swap_avail_head
1098                  * list may have been modified; so if next is still in the
1099                  * swap_avail_head list then try it, otherwise start over
1100                  * if we have not gotten any slots.
1101                  */
1102                 if (plist_node_empty(&next->avail_lists[node]))
1103                         goto start_over;
1104         }
1105
1106         spin_unlock(&swap_avail_lock);
1107
1108 check_out:
1109         if (n_ret < n_goal)
1110                 atomic_long_add((long)(n_goal - n_ret) * size,
1111                                 &nr_swap_pages);
1112 noswap:
1113         return n_ret;
1114 }
1115
1116 /* The only caller of this function is now suspend routine */
1117 swp_entry_t get_swap_page_of_type(int type)
1118 {
1119         struct swap_info_struct *si = swap_type_to_swap_info(type);
1120         pgoff_t offset;
1121
1122         if (!si)
1123                 goto fail;
1124
1125         spin_lock(&si->lock);
1126         if (si->flags & SWP_WRITEOK) {
1127                 atomic_long_dec(&nr_swap_pages);
1128                 /* This is called for allocating swap entry, not cache */
1129                 offset = scan_swap_map(si, 1);
1130                 if (offset) {
1131                         spin_unlock(&si->lock);
1132                         return swp_entry(type, offset);
1133                 }
1134                 atomic_long_inc(&nr_swap_pages);
1135         }
1136         spin_unlock(&si->lock);
1137 fail:
1138         return (swp_entry_t) {0};
1139 }
1140
1141 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1142 {
1143         struct swap_info_struct *p;
1144         unsigned long offset;
1145
1146         if (!entry.val)
1147                 goto out;
1148         p = swp_swap_info(entry);
1149         if (!p)
1150                 goto bad_nofile;
1151         if (!(p->flags & SWP_USED))
1152                 goto bad_device;
1153         offset = swp_offset(entry);
1154         if (offset >= p->max)
1155                 goto bad_offset;
1156         return p;
1157
1158 bad_offset:
1159         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1160         goto out;
1161 bad_device:
1162         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1163         goto out;
1164 bad_nofile:
1165         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1166 out:
1167         return NULL;
1168 }
1169
1170 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1171 {
1172         struct swap_info_struct *p;
1173
1174         p = __swap_info_get(entry);
1175         if (!p)
1176                 goto out;
1177         if (!p->swap_map[swp_offset(entry)])
1178                 goto bad_free;
1179         return p;
1180
1181 bad_free:
1182         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1183         goto out;
1184 out:
1185         return NULL;
1186 }
1187
1188 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1189 {
1190         struct swap_info_struct *p;
1191
1192         p = _swap_info_get(entry);
1193         if (p)
1194                 spin_lock(&p->lock);
1195         return p;
1196 }
1197
1198 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1199                                         struct swap_info_struct *q)
1200 {
1201         struct swap_info_struct *p;
1202
1203         p = _swap_info_get(entry);
1204
1205         if (p != q) {
1206                 if (q != NULL)
1207                         spin_unlock(&q->lock);
1208                 if (p != NULL)
1209                         spin_lock(&p->lock);
1210         }
1211         return p;
1212 }
1213
1214 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1215                                               unsigned long offset,
1216                                               unsigned char usage)
1217 {
1218         unsigned char count;
1219         unsigned char has_cache;
1220
1221         count = p->swap_map[offset];
1222
1223         has_cache = count & SWAP_HAS_CACHE;
1224         count &= ~SWAP_HAS_CACHE;
1225
1226         if (usage == SWAP_HAS_CACHE) {
1227                 VM_BUG_ON(!has_cache);
1228                 has_cache = 0;
1229         } else if (count == SWAP_MAP_SHMEM) {
1230                 /*
1231                  * Or we could insist on shmem.c using a special
1232                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1233                  */
1234                 count = 0;
1235         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1236                 if (count == COUNT_CONTINUED) {
1237                         if (swap_count_continued(p, offset, count))
1238                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1239                         else
1240                                 count = SWAP_MAP_MAX;
1241                 } else
1242                         count--;
1243         }
1244
1245         usage = count | has_cache;
1246         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1247
1248         return usage;
1249 }
1250
1251 /*
1252  * Check whether swap entry is valid in the swap device.  If so,
1253  * return pointer to swap_info_struct, and keep the swap entry valid
1254  * via preventing the swap device from being swapoff, until
1255  * put_swap_device() is called.  Otherwise return NULL.
1256  *
1257  * The entirety of the RCU read critical section must come before the
1258  * return from or after the call to synchronize_rcu() in
1259  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1260  * true, the si->map, si->cluster_info, etc. must be valid in the
1261  * critical section.
1262  *
1263  * Notice that swapoff or swapoff+swapon can still happen before the
1264  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1265  * in put_swap_device() if there isn't any other way to prevent
1266  * swapoff, such as page lock, page table lock, etc.  The caller must
1267  * be prepared for that.  For example, the following situation is
1268  * possible.
1269  *
1270  *   CPU1                               CPU2
1271  *   do_swap_page()
1272  *     ...                              swapoff+swapon
1273  *     __read_swap_cache_async()
1274  *       swapcache_prepare()
1275  *         __swap_duplicate()
1276  *           // check swap_map
1277  *     // verify PTE not changed
1278  *
1279  * In __swap_duplicate(), the swap_map need to be checked before
1280  * changing partly because the specified swap entry may be for another
1281  * swap device which has been swapoff.  And in do_swap_page(), after
1282  * the page is read from the swap device, the PTE is verified not
1283  * changed with the page table locked to check whether the swap device
1284  * has been swapoff or swapoff+swapon.
1285  */
1286 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1287 {
1288         struct swap_info_struct *si;
1289         unsigned long offset;
1290
1291         if (!entry.val)
1292                 goto out;
1293         si = swp_swap_info(entry);
1294         if (!si)
1295                 goto bad_nofile;
1296
1297         rcu_read_lock();
1298         if (!(si->flags & SWP_VALID))
1299                 goto unlock_out;
1300         offset = swp_offset(entry);
1301         if (offset >= si->max)
1302                 goto unlock_out;
1303
1304         return si;
1305 bad_nofile:
1306         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1307 out:
1308         return NULL;
1309 unlock_out:
1310         rcu_read_unlock();
1311         return NULL;
1312 }
1313
1314 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1315                                        swp_entry_t entry)
1316 {
1317         struct swap_cluster_info *ci;
1318         unsigned long offset = swp_offset(entry);
1319         unsigned char usage;
1320
1321         ci = lock_cluster_or_swap_info(p, offset);
1322         usage = __swap_entry_free_locked(p, offset, 1);
1323         unlock_cluster_or_swap_info(p, ci);
1324         if (!usage)
1325                 free_swap_slot(entry);
1326
1327         return usage;
1328 }
1329
1330 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1331 {
1332         struct swap_cluster_info *ci;
1333         unsigned long offset = swp_offset(entry);
1334         unsigned char count;
1335
1336         ci = lock_cluster(p, offset);
1337         count = p->swap_map[offset];
1338         VM_BUG_ON(count != SWAP_HAS_CACHE);
1339         p->swap_map[offset] = 0;
1340         dec_cluster_info_page(p, p->cluster_info, offset);
1341         unlock_cluster(ci);
1342
1343         mem_cgroup_uncharge_swap(entry, 1);
1344         swap_range_free(p, offset, 1);
1345 }
1346
1347 /*
1348  * Caller has made sure that the swap device corresponding to entry
1349  * is still around or has not been recycled.
1350  */
1351 void swap_free(swp_entry_t entry)
1352 {
1353         struct swap_info_struct *p;
1354
1355         p = _swap_info_get(entry);
1356         if (p)
1357                 __swap_entry_free(p, entry);
1358 }
1359
1360 /*
1361  * Called after dropping swapcache to decrease refcnt to swap entries.
1362  */
1363 void put_swap_page(struct page *page, swp_entry_t entry)
1364 {
1365         unsigned long offset = swp_offset(entry);
1366         unsigned long idx = offset / SWAPFILE_CLUSTER;
1367         struct swap_cluster_info *ci;
1368         struct swap_info_struct *si;
1369         unsigned char *map;
1370         unsigned int i, free_entries = 0;
1371         unsigned char val;
1372         int size = swap_entry_size(hpage_nr_pages(page));
1373
1374         si = _swap_info_get(entry);
1375         if (!si)
1376                 return;
1377
1378         ci = lock_cluster_or_swap_info(si, offset);
1379         if (size == SWAPFILE_CLUSTER) {
1380                 VM_BUG_ON(!cluster_is_huge(ci));
1381                 map = si->swap_map + offset;
1382                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1383                         val = map[i];
1384                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1385                         if (val == SWAP_HAS_CACHE)
1386                                 free_entries++;
1387                 }
1388                 cluster_clear_huge(ci);
1389                 if (free_entries == SWAPFILE_CLUSTER) {
1390                         unlock_cluster_or_swap_info(si, ci);
1391                         spin_lock(&si->lock);
1392                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1393                         swap_free_cluster(si, idx);
1394                         spin_unlock(&si->lock);
1395                         return;
1396                 }
1397         }
1398         for (i = 0; i < size; i++, entry.val++) {
1399                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1400                         unlock_cluster_or_swap_info(si, ci);
1401                         free_swap_slot(entry);
1402                         if (i == size - 1)
1403                                 return;
1404                         lock_cluster_or_swap_info(si, offset);
1405                 }
1406         }
1407         unlock_cluster_or_swap_info(si, ci);
1408 }
1409
1410 #ifdef CONFIG_THP_SWAP
1411 int split_swap_cluster(swp_entry_t entry)
1412 {
1413         struct swap_info_struct *si;
1414         struct swap_cluster_info *ci;
1415         unsigned long offset = swp_offset(entry);
1416
1417         si = _swap_info_get(entry);
1418         if (!si)
1419                 return -EBUSY;
1420         ci = lock_cluster(si, offset);
1421         cluster_clear_huge(ci);
1422         unlock_cluster(ci);
1423         return 0;
1424 }
1425 #endif
1426
1427 static int swp_entry_cmp(const void *ent1, const void *ent2)
1428 {
1429         const swp_entry_t *e1 = ent1, *e2 = ent2;
1430
1431         return (int)swp_type(*e1) - (int)swp_type(*e2);
1432 }
1433
1434 void swapcache_free_entries(swp_entry_t *entries, int n)
1435 {
1436         struct swap_info_struct *p, *prev;
1437         int i;
1438
1439         if (n <= 0)
1440                 return;
1441
1442         prev = NULL;
1443         p = NULL;
1444
1445         /*
1446          * Sort swap entries by swap device, so each lock is only taken once.
1447          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1448          * so low that it isn't necessary to optimize further.
1449          */
1450         if (nr_swapfiles > 1)
1451                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1452         for (i = 0; i < n; ++i) {
1453                 p = swap_info_get_cont(entries[i], prev);
1454                 if (p)
1455                         swap_entry_free(p, entries[i]);
1456                 prev = p;
1457         }
1458         if (p)
1459                 spin_unlock(&p->lock);
1460 }
1461
1462 /*
1463  * How many references to page are currently swapped out?
1464  * This does not give an exact answer when swap count is continued,
1465  * but does include the high COUNT_CONTINUED flag to allow for that.
1466  */
1467 int page_swapcount(struct page *page)
1468 {
1469         int count = 0;
1470         struct swap_info_struct *p;
1471         struct swap_cluster_info *ci;
1472         swp_entry_t entry;
1473         unsigned long offset;
1474
1475         entry.val = page_private(page);
1476         p = _swap_info_get(entry);
1477         if (p) {
1478                 offset = swp_offset(entry);
1479                 ci = lock_cluster_or_swap_info(p, offset);
1480                 count = swap_count(p->swap_map[offset]);
1481                 unlock_cluster_or_swap_info(p, ci);
1482         }
1483         return count;
1484 }
1485
1486 int __swap_count(swp_entry_t entry)
1487 {
1488         struct swap_info_struct *si;
1489         pgoff_t offset = swp_offset(entry);
1490         int count = 0;
1491
1492         si = get_swap_device(entry);
1493         if (si) {
1494                 count = swap_count(si->swap_map[offset]);
1495                 put_swap_device(si);
1496         }
1497         return count;
1498 }
1499
1500 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1501 {
1502         int count = 0;
1503         pgoff_t offset = swp_offset(entry);
1504         struct swap_cluster_info *ci;
1505
1506         ci = lock_cluster_or_swap_info(si, offset);
1507         count = swap_count(si->swap_map[offset]);
1508         unlock_cluster_or_swap_info(si, ci);
1509         return count;
1510 }
1511
1512 /*
1513  * How many references to @entry are currently swapped out?
1514  * This does not give an exact answer when swap count is continued,
1515  * but does include the high COUNT_CONTINUED flag to allow for that.
1516  */
1517 int __swp_swapcount(swp_entry_t entry)
1518 {
1519         int count = 0;
1520         struct swap_info_struct *si;
1521
1522         si = get_swap_device(entry);
1523         if (si) {
1524                 count = swap_swapcount(si, entry);
1525                 put_swap_device(si);
1526         }
1527         return count;
1528 }
1529
1530 /*
1531  * How many references to @entry are currently swapped out?
1532  * This considers COUNT_CONTINUED so it returns exact answer.
1533  */
1534 int swp_swapcount(swp_entry_t entry)
1535 {
1536         int count, tmp_count, n;
1537         struct swap_info_struct *p;
1538         struct swap_cluster_info *ci;
1539         struct page *page;
1540         pgoff_t offset;
1541         unsigned char *map;
1542
1543         p = _swap_info_get(entry);
1544         if (!p)
1545                 return 0;
1546
1547         offset = swp_offset(entry);
1548
1549         ci = lock_cluster_or_swap_info(p, offset);
1550
1551         count = swap_count(p->swap_map[offset]);
1552         if (!(count & COUNT_CONTINUED))
1553                 goto out;
1554
1555         count &= ~COUNT_CONTINUED;
1556         n = SWAP_MAP_MAX + 1;
1557
1558         page = vmalloc_to_page(p->swap_map + offset);
1559         offset &= ~PAGE_MASK;
1560         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1561
1562         do {
1563                 page = list_next_entry(page, lru);
1564                 map = kmap_atomic(page);
1565                 tmp_count = map[offset];
1566                 kunmap_atomic(map);
1567
1568                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1569                 n *= (SWAP_CONT_MAX + 1);
1570         } while (tmp_count & COUNT_CONTINUED);
1571 out:
1572         unlock_cluster_or_swap_info(p, ci);
1573         return count;
1574 }
1575
1576 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1577                                          swp_entry_t entry)
1578 {
1579         struct swap_cluster_info *ci;
1580         unsigned char *map = si->swap_map;
1581         unsigned long roffset = swp_offset(entry);
1582         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1583         int i;
1584         bool ret = false;
1585
1586         ci = lock_cluster_or_swap_info(si, offset);
1587         if (!ci || !cluster_is_huge(ci)) {
1588                 if (swap_count(map[roffset]))
1589                         ret = true;
1590                 goto unlock_out;
1591         }
1592         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1593                 if (swap_count(map[offset + i])) {
1594                         ret = true;
1595                         break;
1596                 }
1597         }
1598 unlock_out:
1599         unlock_cluster_or_swap_info(si, ci);
1600         return ret;
1601 }
1602
1603 static bool page_swapped(struct page *page)
1604 {
1605         swp_entry_t entry;
1606         struct swap_info_struct *si;
1607
1608         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1609                 return page_swapcount(page) != 0;
1610
1611         page = compound_head(page);
1612         entry.val = page_private(page);
1613         si = _swap_info_get(entry);
1614         if (si)
1615                 return swap_page_trans_huge_swapped(si, entry);
1616         return false;
1617 }
1618
1619 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1620                                          int *total_swapcount)
1621 {
1622         int i, map_swapcount, _total_mapcount, _total_swapcount;
1623         unsigned long offset = 0;
1624         struct swap_info_struct *si;
1625         struct swap_cluster_info *ci = NULL;
1626         unsigned char *map = NULL;
1627         int mapcount, swapcount = 0;
1628
1629         /* hugetlbfs shouldn't call it */
1630         VM_BUG_ON_PAGE(PageHuge(page), page);
1631
1632         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1633                 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1634                 if (PageSwapCache(page))
1635                         swapcount = page_swapcount(page);
1636                 if (total_swapcount)
1637                         *total_swapcount = swapcount;
1638                 return mapcount + swapcount;
1639         }
1640
1641         page = compound_head(page);
1642
1643         _total_mapcount = _total_swapcount = map_swapcount = 0;
1644         if (PageSwapCache(page)) {
1645                 swp_entry_t entry;
1646
1647                 entry.val = page_private(page);
1648                 si = _swap_info_get(entry);
1649                 if (si) {
1650                         map = si->swap_map;
1651                         offset = swp_offset(entry);
1652                 }
1653         }
1654         if (map)
1655                 ci = lock_cluster(si, offset);
1656         for (i = 0; i < HPAGE_PMD_NR; i++) {
1657                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1658                 _total_mapcount += mapcount;
1659                 if (map) {
1660                         swapcount = swap_count(map[offset + i]);
1661                         _total_swapcount += swapcount;
1662                 }
1663                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1664         }
1665         unlock_cluster(ci);
1666         if (PageDoubleMap(page)) {
1667                 map_swapcount -= 1;
1668                 _total_mapcount -= HPAGE_PMD_NR;
1669         }
1670         mapcount = compound_mapcount(page);
1671         map_swapcount += mapcount;
1672         _total_mapcount += mapcount;
1673         if (total_mapcount)
1674                 *total_mapcount = _total_mapcount;
1675         if (total_swapcount)
1676                 *total_swapcount = _total_swapcount;
1677
1678         return map_swapcount;
1679 }
1680
1681 /*
1682  * We can write to an anon page without COW if there are no other references
1683  * to it.  And as a side-effect, free up its swap: because the old content
1684  * on disk will never be read, and seeking back there to write new content
1685  * later would only waste time away from clustering.
1686  *
1687  * NOTE: total_map_swapcount should not be relied upon by the caller if
1688  * reuse_swap_page() returns false, but it may be always overwritten
1689  * (see the other implementation for CONFIG_SWAP=n).
1690  */
1691 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1692 {
1693         int count, total_mapcount, total_swapcount;
1694
1695         VM_BUG_ON_PAGE(!PageLocked(page), page);
1696         if (unlikely(PageKsm(page)))
1697                 return false;
1698         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1699                                               &total_swapcount);
1700         if (total_map_swapcount)
1701                 *total_map_swapcount = total_mapcount + total_swapcount;
1702         if (count == 1 && PageSwapCache(page) &&
1703             (likely(!PageTransCompound(page)) ||
1704              /* The remaining swap count will be freed soon */
1705              total_swapcount == page_swapcount(page))) {
1706                 if (!PageWriteback(page)) {
1707                         page = compound_head(page);
1708                         delete_from_swap_cache(page);
1709                         SetPageDirty(page);
1710                 } else {
1711                         swp_entry_t entry;
1712                         struct swap_info_struct *p;
1713
1714                         entry.val = page_private(page);
1715                         p = swap_info_get(entry);
1716                         if (p->flags & SWP_STABLE_WRITES) {
1717                                 spin_unlock(&p->lock);
1718                                 return false;
1719                         }
1720                         spin_unlock(&p->lock);
1721                 }
1722         }
1723
1724         return count <= 1;
1725 }
1726
1727 /*
1728  * If swap is getting full, or if there are no more mappings of this page,
1729  * then try_to_free_swap is called to free its swap space.
1730  */
1731 int try_to_free_swap(struct page *page)
1732 {
1733         VM_BUG_ON_PAGE(!PageLocked(page), page);
1734
1735         if (!PageSwapCache(page))
1736                 return 0;
1737         if (PageWriteback(page))
1738                 return 0;
1739         if (page_swapped(page))
1740                 return 0;
1741
1742         /*
1743          * Once hibernation has begun to create its image of memory,
1744          * there's a danger that one of the calls to try_to_free_swap()
1745          * - most probably a call from __try_to_reclaim_swap() while
1746          * hibernation is allocating its own swap pages for the image,
1747          * but conceivably even a call from memory reclaim - will free
1748          * the swap from a page which has already been recorded in the
1749          * image as a clean swapcache page, and then reuse its swap for
1750          * another page of the image.  On waking from hibernation, the
1751          * original page might be freed under memory pressure, then
1752          * later read back in from swap, now with the wrong data.
1753          *
1754          * Hibernation suspends storage while it is writing the image
1755          * to disk so check that here.
1756          */
1757         if (pm_suspended_storage())
1758                 return 0;
1759
1760         page = compound_head(page);
1761         delete_from_swap_cache(page);
1762         SetPageDirty(page);
1763         return 1;
1764 }
1765
1766 /*
1767  * Free the swap entry like above, but also try to
1768  * free the page cache entry if it is the last user.
1769  */
1770 int free_swap_and_cache(swp_entry_t entry)
1771 {
1772         struct swap_info_struct *p;
1773         unsigned char count;
1774
1775         if (non_swap_entry(entry))
1776                 return 1;
1777
1778         p = _swap_info_get(entry);
1779         if (p) {
1780                 count = __swap_entry_free(p, entry);
1781                 if (count == SWAP_HAS_CACHE &&
1782                     !swap_page_trans_huge_swapped(p, entry))
1783                         __try_to_reclaim_swap(p, swp_offset(entry),
1784                                               TTRS_UNMAPPED | TTRS_FULL);
1785         }
1786         return p != NULL;
1787 }
1788
1789 #ifdef CONFIG_HIBERNATION
1790 /*
1791  * Find the swap type that corresponds to given device (if any).
1792  *
1793  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1794  * from 0, in which the swap header is expected to be located.
1795  *
1796  * This is needed for the suspend to disk (aka swsusp).
1797  */
1798 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1799 {
1800         struct block_device *bdev = NULL;
1801         int type;
1802
1803         if (device)
1804                 bdev = bdget(device);
1805
1806         spin_lock(&swap_lock);
1807         for (type = 0; type < nr_swapfiles; type++) {
1808                 struct swap_info_struct *sis = swap_info[type];
1809
1810                 if (!(sis->flags & SWP_WRITEOK))
1811                         continue;
1812
1813                 if (!bdev) {
1814                         if (bdev_p)
1815                                 *bdev_p = bdgrab(sis->bdev);
1816
1817                         spin_unlock(&swap_lock);
1818                         return type;
1819                 }
1820                 if (bdev == sis->bdev) {
1821                         struct swap_extent *se = first_se(sis);
1822
1823                         if (se->start_block == offset) {
1824                                 if (bdev_p)
1825                                         *bdev_p = bdgrab(sis->bdev);
1826
1827                                 spin_unlock(&swap_lock);
1828                                 bdput(bdev);
1829                                 return type;
1830                         }
1831                 }
1832         }
1833         spin_unlock(&swap_lock);
1834         if (bdev)
1835                 bdput(bdev);
1836
1837         return -ENODEV;
1838 }
1839
1840 /*
1841  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1842  * corresponding to given index in swap_info (swap type).
1843  */
1844 sector_t swapdev_block(int type, pgoff_t offset)
1845 {
1846         struct block_device *bdev;
1847         struct swap_info_struct *si = swap_type_to_swap_info(type);
1848
1849         if (!si || !(si->flags & SWP_WRITEOK))
1850                 return 0;
1851         return map_swap_entry(swp_entry(type, offset), &bdev);
1852 }
1853
1854 /*
1855  * Return either the total number of swap pages of given type, or the number
1856  * of free pages of that type (depending on @free)
1857  *
1858  * This is needed for software suspend
1859  */
1860 unsigned int count_swap_pages(int type, int free)
1861 {
1862         unsigned int n = 0;
1863
1864         spin_lock(&swap_lock);
1865         if ((unsigned int)type < nr_swapfiles) {
1866                 struct swap_info_struct *sis = swap_info[type];
1867
1868                 spin_lock(&sis->lock);
1869                 if (sis->flags & SWP_WRITEOK) {
1870                         n = sis->pages;
1871                         if (free)
1872                                 n -= sis->inuse_pages;
1873                 }
1874                 spin_unlock(&sis->lock);
1875         }
1876         spin_unlock(&swap_lock);
1877         return n;
1878 }
1879 #endif /* CONFIG_HIBERNATION */
1880
1881 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1882 {
1883         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1884 }
1885
1886 /*
1887  * No need to decide whether this PTE shares the swap entry with others,
1888  * just let do_wp_page work it out if a write is requested later - to
1889  * force COW, vm_page_prot omits write permission from any private vma.
1890  */
1891 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1892                 unsigned long addr, swp_entry_t entry, struct page *page)
1893 {
1894         struct page *swapcache;
1895         struct mem_cgroup *memcg;
1896         spinlock_t *ptl;
1897         pte_t *pte;
1898         int ret = 1;
1899
1900         swapcache = page;
1901         page = ksm_might_need_to_copy(page, vma, addr);
1902         if (unlikely(!page))
1903                 return -ENOMEM;
1904
1905         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1906                                 &memcg, false)) {
1907                 ret = -ENOMEM;
1908                 goto out_nolock;
1909         }
1910
1911         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1912         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1913                 mem_cgroup_cancel_charge(page, memcg, false);
1914                 ret = 0;
1915                 goto out;
1916         }
1917
1918         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1919         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1920         get_page(page);
1921         set_pte_at(vma->vm_mm, addr, pte,
1922                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1923         if (page == swapcache) {
1924                 page_add_anon_rmap(page, vma, addr, false);
1925                 mem_cgroup_commit_charge(page, memcg, true, false);
1926         } else { /* ksm created a completely new copy */
1927                 page_add_new_anon_rmap(page, vma, addr, false);
1928                 mem_cgroup_commit_charge(page, memcg, false, false);
1929                 lru_cache_add_active_or_unevictable(page, vma);
1930         }
1931         swap_free(entry);
1932         /*
1933          * Move the page to the active list so it is not
1934          * immediately swapped out again after swapon.
1935          */
1936         activate_page(page);
1937 out:
1938         pte_unmap_unlock(pte, ptl);
1939 out_nolock:
1940         if (page != swapcache) {
1941                 unlock_page(page);
1942                 put_page(page);
1943         }
1944         return ret;
1945 }
1946
1947 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1948                         unsigned long addr, unsigned long end,
1949                         unsigned int type, bool frontswap,
1950                         unsigned long *fs_pages_to_unuse)
1951 {
1952         struct page *page;
1953         swp_entry_t entry;
1954         pte_t *pte;
1955         struct swap_info_struct *si;
1956         unsigned long offset;
1957         int ret = 0;
1958         volatile unsigned char *swap_map;
1959
1960         si = swap_info[type];
1961         pte = pte_offset_map(pmd, addr);
1962         do {
1963                 struct vm_fault vmf;
1964
1965                 if (!is_swap_pte(*pte))
1966                         continue;
1967
1968                 entry = pte_to_swp_entry(*pte);
1969                 if (swp_type(entry) != type)
1970                         continue;
1971
1972                 offset = swp_offset(entry);
1973                 if (frontswap && !frontswap_test(si, offset))
1974                         continue;
1975
1976                 pte_unmap(pte);
1977                 swap_map = &si->swap_map[offset];
1978                 page = lookup_swap_cache(entry, vma, addr);
1979                 if (!page) {
1980                         vmf.vma = vma;
1981                         vmf.address = addr;
1982                         vmf.pmd = pmd;
1983                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1984                                                 &vmf);
1985                 }
1986                 if (!page) {
1987                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1988                                 goto try_next;
1989                         return -ENOMEM;
1990                 }
1991
1992                 lock_page(page);
1993                 wait_on_page_writeback(page);
1994                 ret = unuse_pte(vma, pmd, addr, entry, page);
1995                 if (ret < 0) {
1996                         unlock_page(page);
1997                         put_page(page);
1998                         goto out;
1999                 }
2000
2001                 try_to_free_swap(page);
2002                 unlock_page(page);
2003                 put_page(page);
2004
2005                 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2006                         ret = FRONTSWAP_PAGES_UNUSED;
2007                         goto out;
2008                 }
2009 try_next:
2010                 pte = pte_offset_map(pmd, addr);
2011         } while (pte++, addr += PAGE_SIZE, addr != end);
2012         pte_unmap(pte - 1);
2013
2014         ret = 0;
2015 out:
2016         return ret;
2017 }
2018
2019 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2020                                 unsigned long addr, unsigned long end,
2021                                 unsigned int type, bool frontswap,
2022                                 unsigned long *fs_pages_to_unuse)
2023 {
2024         pmd_t *pmd;
2025         unsigned long next;
2026         int ret;
2027
2028         pmd = pmd_offset(pud, addr);
2029         do {
2030                 cond_resched();
2031                 next = pmd_addr_end(addr, end);
2032                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2033                         continue;
2034                 ret = unuse_pte_range(vma, pmd, addr, next, type,
2035                                       frontswap, fs_pages_to_unuse);
2036                 if (ret)
2037                         return ret;
2038         } while (pmd++, addr = next, addr != end);
2039         return 0;
2040 }
2041
2042 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2043                                 unsigned long addr, unsigned long end,
2044                                 unsigned int type, bool frontswap,
2045                                 unsigned long *fs_pages_to_unuse)
2046 {
2047         pud_t *pud;
2048         unsigned long next;
2049         int ret;
2050
2051         pud = pud_offset(p4d, addr);
2052         do {
2053                 next = pud_addr_end(addr, end);
2054                 if (pud_none_or_clear_bad(pud))
2055                         continue;
2056                 ret = unuse_pmd_range(vma, pud, addr, next, type,
2057                                       frontswap, fs_pages_to_unuse);
2058                 if (ret)
2059                         return ret;
2060         } while (pud++, addr = next, addr != end);
2061         return 0;
2062 }
2063
2064 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2065                                 unsigned long addr, unsigned long end,
2066                                 unsigned int type, bool frontswap,
2067                                 unsigned long *fs_pages_to_unuse)
2068 {
2069         p4d_t *p4d;
2070         unsigned long next;
2071         int ret;
2072
2073         p4d = p4d_offset(pgd, addr);
2074         do {
2075                 next = p4d_addr_end(addr, end);
2076                 if (p4d_none_or_clear_bad(p4d))
2077                         continue;
2078                 ret = unuse_pud_range(vma, p4d, addr, next, type,
2079                                       frontswap, fs_pages_to_unuse);
2080                 if (ret)
2081                         return ret;
2082         } while (p4d++, addr = next, addr != end);
2083         return 0;
2084 }
2085
2086 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2087                      bool frontswap, unsigned long *fs_pages_to_unuse)
2088 {
2089         pgd_t *pgd;
2090         unsigned long addr, end, next;
2091         int ret;
2092
2093         addr = vma->vm_start;
2094         end = vma->vm_end;
2095
2096         pgd = pgd_offset(vma->vm_mm, addr);
2097         do {
2098                 next = pgd_addr_end(addr, end);
2099                 if (pgd_none_or_clear_bad(pgd))
2100                         continue;
2101                 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2102                                       frontswap, fs_pages_to_unuse);
2103                 if (ret)
2104                         return ret;
2105         } while (pgd++, addr = next, addr != end);
2106         return 0;
2107 }
2108
2109 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2110                     bool frontswap, unsigned long *fs_pages_to_unuse)
2111 {
2112         struct vm_area_struct *vma;
2113         int ret = 0;
2114
2115         down_read(&mm->mmap_sem);
2116         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2117                 if (vma->anon_vma) {
2118                         ret = unuse_vma(vma, type, frontswap,
2119                                         fs_pages_to_unuse);
2120                         if (ret)
2121                                 break;
2122                 }
2123                 cond_resched();
2124         }
2125         up_read(&mm->mmap_sem);
2126         return ret;
2127 }
2128
2129 /*
2130  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2131  * from current position to next entry still in use. Return 0
2132  * if there are no inuse entries after prev till end of the map.
2133  */
2134 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2135                                         unsigned int prev, bool frontswap)
2136 {
2137         unsigned int i;
2138         unsigned char count;
2139
2140         /*
2141          * No need for swap_lock here: we're just looking
2142          * for whether an entry is in use, not modifying it; false
2143          * hits are okay, and sys_swapoff() has already prevented new
2144          * allocations from this area (while holding swap_lock).
2145          */
2146         for (i = prev + 1; i < si->max; i++) {
2147                 count = READ_ONCE(si->swap_map[i]);
2148                 if (count && swap_count(count) != SWAP_MAP_BAD)
2149                         if (!frontswap || frontswap_test(si, i))
2150                                 break;
2151                 if ((i % LATENCY_LIMIT) == 0)
2152                         cond_resched();
2153         }
2154
2155         if (i == si->max)
2156                 i = 0;
2157
2158         return i;
2159 }
2160
2161 /*
2162  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2163  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2164  */
2165 int try_to_unuse(unsigned int type, bool frontswap,
2166                  unsigned long pages_to_unuse)
2167 {
2168         struct mm_struct *prev_mm;
2169         struct mm_struct *mm;
2170         struct list_head *p;
2171         int retval = 0;
2172         struct swap_info_struct *si = swap_info[type];
2173         struct page *page;
2174         swp_entry_t entry;
2175         unsigned int i;
2176
2177         if (!READ_ONCE(si->inuse_pages))
2178                 return 0;
2179
2180         if (!frontswap)
2181                 pages_to_unuse = 0;
2182
2183 retry:
2184         retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2185         if (retval)
2186                 goto out;
2187
2188         prev_mm = &init_mm;
2189         mmget(prev_mm);
2190
2191         spin_lock(&mmlist_lock);
2192         p = &init_mm.mmlist;
2193         while (READ_ONCE(si->inuse_pages) &&
2194                !signal_pending(current) &&
2195                (p = p->next) != &init_mm.mmlist) {
2196
2197                 mm = list_entry(p, struct mm_struct, mmlist);
2198                 if (!mmget_not_zero(mm))
2199                         continue;
2200                 spin_unlock(&mmlist_lock);
2201                 mmput(prev_mm);
2202                 prev_mm = mm;
2203                 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2204
2205                 if (retval) {
2206                         mmput(prev_mm);
2207                         goto out;
2208                 }
2209
2210                 /*
2211                  * Make sure that we aren't completely killing
2212                  * interactive performance.
2213                  */
2214                 cond_resched();
2215                 spin_lock(&mmlist_lock);
2216         }
2217         spin_unlock(&mmlist_lock);
2218
2219         mmput(prev_mm);
2220
2221         i = 0;
2222         while (READ_ONCE(si->inuse_pages) &&
2223                !signal_pending(current) &&
2224                (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2225
2226                 entry = swp_entry(type, i);
2227                 page = find_get_page(swap_address_space(entry), i);
2228                 if (!page)
2229                         continue;
2230
2231                 /*
2232                  * It is conceivable that a racing task removed this page from
2233                  * swap cache just before we acquired the page lock. The page
2234                  * might even be back in swap cache on another swap area. But
2235                  * that is okay, try_to_free_swap() only removes stale pages.
2236                  */
2237                 lock_page(page);
2238                 wait_on_page_writeback(page);
2239                 try_to_free_swap(page);
2240                 unlock_page(page);
2241                 put_page(page);
2242
2243                 /*
2244                  * For frontswap, we just need to unuse pages_to_unuse, if
2245                  * it was specified. Need not check frontswap again here as
2246                  * we already zeroed out pages_to_unuse if not frontswap.
2247                  */
2248                 if (pages_to_unuse && --pages_to_unuse == 0)
2249                         goto out;
2250         }
2251
2252         /*
2253          * Lets check again to see if there are still swap entries in the map.
2254          * If yes, we would need to do retry the unuse logic again.
2255          * Under global memory pressure, swap entries can be reinserted back
2256          * into process space after the mmlist loop above passes over them.
2257          *
2258          * Limit the number of retries? No: when mmget_not_zero() above fails,
2259          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2260          * at its own independent pace; and even shmem_writepage() could have
2261          * been preempted after get_swap_page(), temporarily hiding that swap.
2262          * It's easy and robust (though cpu-intensive) just to keep retrying.
2263          */
2264         if (READ_ONCE(si->inuse_pages)) {
2265                 if (!signal_pending(current))
2266                         goto retry;
2267                 retval = -EINTR;
2268         }
2269 out:
2270         return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2271 }
2272
2273 /*
2274  * After a successful try_to_unuse, if no swap is now in use, we know
2275  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2276  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2277  * added to the mmlist just after page_duplicate - before would be racy.
2278  */
2279 static void drain_mmlist(void)
2280 {
2281         struct list_head *p, *next;
2282         unsigned int type;
2283
2284         for (type = 0; type < nr_swapfiles; type++)
2285                 if (swap_info[type]->inuse_pages)
2286                         return;
2287         spin_lock(&mmlist_lock);
2288         list_for_each_safe(p, next, &init_mm.mmlist)
2289                 list_del_init(p);
2290         spin_unlock(&mmlist_lock);
2291 }
2292
2293 /*
2294  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2295  * corresponds to page offset for the specified swap entry.
2296  * Note that the type of this function is sector_t, but it returns page offset
2297  * into the bdev, not sector offset.
2298  */
2299 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2300 {
2301         struct swap_info_struct *sis;
2302         struct swap_extent *se;
2303         pgoff_t offset;
2304
2305         sis = swp_swap_info(entry);
2306         *bdev = sis->bdev;
2307
2308         offset = swp_offset(entry);
2309         se = offset_to_swap_extent(sis, offset);
2310         return se->start_block + (offset - se->start_page);
2311 }
2312
2313 /*
2314  * Returns the page offset into bdev for the specified page's swap entry.
2315  */
2316 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2317 {
2318         swp_entry_t entry;
2319         entry.val = page_private(page);
2320         return map_swap_entry(entry, bdev);
2321 }
2322
2323 /*
2324  * Free all of a swapdev's extent information
2325  */
2326 static void destroy_swap_extents(struct swap_info_struct *sis)
2327 {
2328         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2329                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2330                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2331
2332                 rb_erase(rb, &sis->swap_extent_root);
2333                 kfree(se);
2334         }
2335
2336         if (sis->flags & SWP_ACTIVATED) {
2337                 struct file *swap_file = sis->swap_file;
2338                 struct address_space *mapping = swap_file->f_mapping;
2339
2340                 sis->flags &= ~SWP_ACTIVATED;
2341                 if (mapping->a_ops->swap_deactivate)
2342                         mapping->a_ops->swap_deactivate(swap_file);
2343         }
2344 }
2345
2346 /*
2347  * Add a block range (and the corresponding page range) into this swapdev's
2348  * extent tree.
2349  *
2350  * This function rather assumes that it is called in ascending page order.
2351  */
2352 int
2353 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2354                 unsigned long nr_pages, sector_t start_block)
2355 {
2356         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2357         struct swap_extent *se;
2358         struct swap_extent *new_se;
2359
2360         /*
2361          * place the new node at the right most since the
2362          * function is called in ascending page order.
2363          */
2364         while (*link) {
2365                 parent = *link;
2366                 link = &parent->rb_right;
2367         }
2368
2369         if (parent) {
2370                 se = rb_entry(parent, struct swap_extent, rb_node);
2371                 BUG_ON(se->start_page + se->nr_pages != start_page);
2372                 if (se->start_block + se->nr_pages == start_block) {
2373                         /* Merge it */
2374                         se->nr_pages += nr_pages;
2375                         return 0;
2376                 }
2377         }
2378
2379         /* No merge, insert a new extent. */
2380         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2381         if (new_se == NULL)
2382                 return -ENOMEM;
2383         new_se->start_page = start_page;
2384         new_se->nr_pages = nr_pages;
2385         new_se->start_block = start_block;
2386
2387         rb_link_node(&new_se->rb_node, parent, link);
2388         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2389         return 1;
2390 }
2391 EXPORT_SYMBOL_GPL(add_swap_extent);
2392
2393 /*
2394  * A `swap extent' is a simple thing which maps a contiguous range of pages
2395  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2396  * is built at swapon time and is then used at swap_writepage/swap_readpage
2397  * time for locating where on disk a page belongs.
2398  *
2399  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2400  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2401  * swap files identically.
2402  *
2403  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2404  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2405  * swapfiles are handled *identically* after swapon time.
2406  *
2407  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2408  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2409  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2410  * requirements, they are simply tossed out - we will never use those blocks
2411  * for swapping.
2412  *
2413  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2414  * prevents users from writing to the swap device, which will corrupt memory.
2415  *
2416  * The amount of disk space which a single swap extent represents varies.
2417  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2418  * extents in the list.  To avoid much list walking, we cache the previous
2419  * search location in `curr_swap_extent', and start new searches from there.
2420  * This is extremely effective.  The average number of iterations in
2421  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2422  */
2423 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2424 {
2425         struct file *swap_file = sis->swap_file;
2426         struct address_space *mapping = swap_file->f_mapping;
2427         struct inode *inode = mapping->host;
2428         int ret;
2429
2430         if (S_ISBLK(inode->i_mode)) {
2431                 ret = add_swap_extent(sis, 0, sis->max, 0);
2432                 *span = sis->pages;
2433                 return ret;
2434         }
2435
2436         if (mapping->a_ops->swap_activate) {
2437                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2438                 if (ret >= 0)
2439                         sis->flags |= SWP_ACTIVATED;
2440                 if (!ret) {
2441                         sis->flags |= SWP_FS;
2442                         ret = add_swap_extent(sis, 0, sis->max, 0);
2443                         *span = sis->pages;
2444                 }
2445                 return ret;
2446         }
2447
2448         return generic_swapfile_activate(sis, swap_file, span);
2449 }
2450
2451 static int swap_node(struct swap_info_struct *p)
2452 {
2453         struct block_device *bdev;
2454
2455         if (p->bdev)
2456                 bdev = p->bdev;
2457         else
2458                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2459
2460         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2461 }
2462
2463 static void setup_swap_info(struct swap_info_struct *p, int prio,
2464                             unsigned char *swap_map,
2465                             struct swap_cluster_info *cluster_info)
2466 {
2467         int i;
2468
2469         if (prio >= 0)
2470                 p->prio = prio;
2471         else
2472                 p->prio = --least_priority;
2473         /*
2474          * the plist prio is negated because plist ordering is
2475          * low-to-high, while swap ordering is high-to-low
2476          */
2477         p->list.prio = -p->prio;
2478         for_each_node(i) {
2479                 if (p->prio >= 0)
2480                         p->avail_lists[i].prio = -p->prio;
2481                 else {
2482                         if (swap_node(p) == i)
2483                                 p->avail_lists[i].prio = 1;
2484                         else
2485                                 p->avail_lists[i].prio = -p->prio;
2486                 }
2487         }
2488         p->swap_map = swap_map;
2489         p->cluster_info = cluster_info;
2490 }
2491
2492 static void _enable_swap_info(struct swap_info_struct *p)
2493 {
2494         p->flags |= SWP_WRITEOK | SWP_VALID;
2495         atomic_long_add(p->pages, &nr_swap_pages);
2496         total_swap_pages += p->pages;
2497
2498         assert_spin_locked(&swap_lock);
2499         /*
2500          * both lists are plists, and thus priority ordered.
2501          * swap_active_head needs to be priority ordered for swapoff(),
2502          * which on removal of any swap_info_struct with an auto-assigned
2503          * (i.e. negative) priority increments the auto-assigned priority
2504          * of any lower-priority swap_info_structs.
2505          * swap_avail_head needs to be priority ordered for get_swap_page(),
2506          * which allocates swap pages from the highest available priority
2507          * swap_info_struct.
2508          */
2509         plist_add(&p->list, &swap_active_head);
2510         add_to_avail_list(p);
2511 }
2512
2513 static void enable_swap_info(struct swap_info_struct *p, int prio,
2514                                 unsigned char *swap_map,
2515                                 struct swap_cluster_info *cluster_info,
2516                                 unsigned long *frontswap_map)
2517 {
2518         frontswap_init(p->type, frontswap_map);
2519         spin_lock(&swap_lock);
2520         spin_lock(&p->lock);
2521         setup_swap_info(p, prio, swap_map, cluster_info);
2522         spin_unlock(&p->lock);
2523         spin_unlock(&swap_lock);
2524         /*
2525          * Guarantee swap_map, cluster_info, etc. fields are valid
2526          * between get/put_swap_device() if SWP_VALID bit is set
2527          */
2528         synchronize_rcu();
2529         spin_lock(&swap_lock);
2530         spin_lock(&p->lock);
2531         _enable_swap_info(p);
2532         spin_unlock(&p->lock);
2533         spin_unlock(&swap_lock);
2534 }
2535
2536 static void reinsert_swap_info(struct swap_info_struct *p)
2537 {
2538         spin_lock(&swap_lock);
2539         spin_lock(&p->lock);
2540         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2541         _enable_swap_info(p);
2542         spin_unlock(&p->lock);
2543         spin_unlock(&swap_lock);
2544 }
2545
2546 bool has_usable_swap(void)
2547 {
2548         bool ret = true;
2549
2550         spin_lock(&swap_lock);
2551         if (plist_head_empty(&swap_active_head))
2552                 ret = false;
2553         spin_unlock(&swap_lock);
2554         return ret;
2555 }
2556
2557 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2558 {
2559         struct swap_info_struct *p = NULL;
2560         unsigned char *swap_map;
2561         struct swap_cluster_info *cluster_info;
2562         unsigned long *frontswap_map;
2563         struct file *swap_file, *victim;
2564         struct address_space *mapping;
2565         struct inode *inode;
2566         struct filename *pathname;
2567         int err, found = 0;
2568         unsigned int old_block_size;
2569
2570         if (!capable(CAP_SYS_ADMIN))
2571                 return -EPERM;
2572
2573         BUG_ON(!current->mm);
2574
2575         pathname = getname(specialfile);
2576         if (IS_ERR(pathname))
2577                 return PTR_ERR(pathname);
2578
2579         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2580         err = PTR_ERR(victim);
2581         if (IS_ERR(victim))
2582                 goto out;
2583
2584         mapping = victim->f_mapping;
2585         spin_lock(&swap_lock);
2586         plist_for_each_entry(p, &swap_active_head, list) {
2587                 if (p->flags & SWP_WRITEOK) {
2588                         if (p->swap_file->f_mapping == mapping) {
2589                                 found = 1;
2590                                 break;
2591                         }
2592                 }
2593         }
2594         if (!found) {
2595                 err = -EINVAL;
2596                 spin_unlock(&swap_lock);
2597                 goto out_dput;
2598         }
2599         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2600                 vm_unacct_memory(p->pages);
2601         else {
2602                 err = -ENOMEM;
2603                 spin_unlock(&swap_lock);
2604                 goto out_dput;
2605         }
2606         del_from_avail_list(p);
2607         spin_lock(&p->lock);
2608         if (p->prio < 0) {
2609                 struct swap_info_struct *si = p;
2610                 int nid;
2611
2612                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2613                         si->prio++;
2614                         si->list.prio--;
2615                         for_each_node(nid) {
2616                                 if (si->avail_lists[nid].prio != 1)
2617                                         si->avail_lists[nid].prio--;
2618                         }
2619                 }
2620                 least_priority++;
2621         }
2622         plist_del(&p->list, &swap_active_head);
2623         atomic_long_sub(p->pages, &nr_swap_pages);
2624         total_swap_pages -= p->pages;
2625         p->flags &= ~SWP_WRITEOK;
2626         spin_unlock(&p->lock);
2627         spin_unlock(&swap_lock);
2628
2629         disable_swap_slots_cache_lock();
2630
2631         set_current_oom_origin();
2632         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2633         clear_current_oom_origin();
2634
2635         if (err) {
2636                 /* re-insert swap space back into swap_list */
2637                 reinsert_swap_info(p);
2638                 reenable_swap_slots_cache_unlock();
2639                 goto out_dput;
2640         }
2641
2642         reenable_swap_slots_cache_unlock();
2643
2644         spin_lock(&swap_lock);
2645         spin_lock(&p->lock);
2646         p->flags &= ~SWP_VALID;         /* mark swap device as invalid */
2647         spin_unlock(&p->lock);
2648         spin_unlock(&swap_lock);
2649         /*
2650          * wait for swap operations protected by get/put_swap_device()
2651          * to complete
2652          */
2653         synchronize_rcu();
2654
2655         flush_work(&p->discard_work);
2656
2657         destroy_swap_extents(p);
2658         if (p->flags & SWP_CONTINUED)
2659                 free_swap_count_continuations(p);
2660
2661         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2662                 atomic_dec(&nr_rotate_swap);
2663
2664         mutex_lock(&swapon_mutex);
2665         spin_lock(&swap_lock);
2666         spin_lock(&p->lock);
2667         drain_mmlist();
2668
2669         /* wait for anyone still in scan_swap_map */
2670         p->highest_bit = 0;             /* cuts scans short */
2671         while (p->flags >= SWP_SCANNING) {
2672                 spin_unlock(&p->lock);
2673                 spin_unlock(&swap_lock);
2674                 schedule_timeout_uninterruptible(1);
2675                 spin_lock(&swap_lock);
2676                 spin_lock(&p->lock);
2677         }
2678
2679         swap_file = p->swap_file;
2680         old_block_size = p->old_block_size;
2681         p->swap_file = NULL;
2682         p->max = 0;
2683         swap_map = p->swap_map;
2684         p->swap_map = NULL;
2685         cluster_info = p->cluster_info;
2686         p->cluster_info = NULL;
2687         frontswap_map = frontswap_map_get(p);
2688         spin_unlock(&p->lock);
2689         spin_unlock(&swap_lock);
2690         frontswap_invalidate_area(p->type);
2691         frontswap_map_set(p, NULL);
2692         mutex_unlock(&swapon_mutex);
2693         free_percpu(p->percpu_cluster);
2694         p->percpu_cluster = NULL;
2695         free_percpu(p->cluster_next_cpu);
2696         p->cluster_next_cpu = NULL;
2697         vfree(swap_map);
2698         kvfree(cluster_info);
2699         kvfree(frontswap_map);
2700         /* Destroy swap account information */
2701         swap_cgroup_swapoff(p->type);
2702         exit_swap_address_space(p->type);
2703
2704         inode = mapping->host;
2705         if (S_ISBLK(inode->i_mode)) {
2706                 struct block_device *bdev = I_BDEV(inode);
2707
2708                 set_blocksize(bdev, old_block_size);
2709                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2710         }
2711
2712         inode_lock(inode);
2713         inode->i_flags &= ~S_SWAPFILE;
2714         inode_unlock(inode);
2715         filp_close(swap_file, NULL);
2716
2717         /*
2718          * Clear the SWP_USED flag after all resources are freed so that swapon
2719          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2720          * not hold p->lock after we cleared its SWP_WRITEOK.
2721          */
2722         spin_lock(&swap_lock);
2723         p->flags = 0;
2724         spin_unlock(&swap_lock);
2725
2726         err = 0;
2727         atomic_inc(&proc_poll_event);
2728         wake_up_interruptible(&proc_poll_wait);
2729
2730 out_dput:
2731         filp_close(victim, NULL);
2732 out:
2733         putname(pathname);
2734         return err;
2735 }
2736
2737 #ifdef CONFIG_PROC_FS
2738 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2739 {
2740         struct seq_file *seq = file->private_data;
2741
2742         poll_wait(file, &proc_poll_wait, wait);
2743
2744         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2745                 seq->poll_event = atomic_read(&proc_poll_event);
2746                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2747         }
2748
2749         return EPOLLIN | EPOLLRDNORM;
2750 }
2751
2752 /* iterator */
2753 static void *swap_start(struct seq_file *swap, loff_t *pos)
2754 {
2755         struct swap_info_struct *si;
2756         int type;
2757         loff_t l = *pos;
2758
2759         mutex_lock(&swapon_mutex);
2760
2761         if (!l)
2762                 return SEQ_START_TOKEN;
2763
2764         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2765                 if (!(si->flags & SWP_USED) || !si->swap_map)
2766                         continue;
2767                 if (!--l)
2768                         return si;
2769         }
2770
2771         return NULL;
2772 }
2773
2774 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2775 {
2776         struct swap_info_struct *si = v;
2777         int type;
2778
2779         if (v == SEQ_START_TOKEN)
2780                 type = 0;
2781         else
2782                 type = si->type + 1;
2783
2784         ++(*pos);
2785         for (; (si = swap_type_to_swap_info(type)); type++) {
2786                 if (!(si->flags & SWP_USED) || !si->swap_map)
2787                         continue;
2788                 return si;
2789         }
2790
2791         return NULL;
2792 }
2793
2794 static void swap_stop(struct seq_file *swap, void *v)
2795 {
2796         mutex_unlock(&swapon_mutex);
2797 }
2798
2799 static int swap_show(struct seq_file *swap, void *v)
2800 {
2801         struct swap_info_struct *si = v;
2802         struct file *file;
2803         int len;
2804         unsigned int bytes, inuse;
2805
2806         if (si == SEQ_START_TOKEN) {
2807                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2808                 return 0;
2809         }
2810
2811         bytes = si->pages << (PAGE_SHIFT - 10);
2812         inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2813
2814         file = si->swap_file;
2815         len = seq_file_path(swap, file, " \t\n\\");
2816         seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2817                         len < 40 ? 40 - len : 1, " ",
2818                         S_ISBLK(file_inode(file)->i_mode) ?
2819                                 "partition" : "file\t",
2820                         bytes, bytes < 10000000 ? "\t" : "",
2821                         inuse, inuse < 10000000 ? "\t" : "",
2822                         si->prio);
2823         return 0;
2824 }
2825
2826 static const struct seq_operations swaps_op = {
2827         .start =        swap_start,
2828         .next =         swap_next,
2829         .stop =         swap_stop,
2830         .show =         swap_show
2831 };
2832
2833 static int swaps_open(struct inode *inode, struct file *file)
2834 {
2835         struct seq_file *seq;
2836         int ret;
2837
2838         ret = seq_open(file, &swaps_op);
2839         if (ret)
2840                 return ret;
2841
2842         seq = file->private_data;
2843         seq->poll_event = atomic_read(&proc_poll_event);
2844         return 0;
2845 }
2846
2847 static const struct proc_ops swaps_proc_ops = {
2848         .proc_flags     = PROC_ENTRY_PERMANENT,
2849         .proc_open      = swaps_open,
2850         .proc_read      = seq_read,
2851         .proc_lseek     = seq_lseek,
2852         .proc_release   = seq_release,
2853         .proc_poll      = swaps_poll,
2854 };
2855
2856 static int __init procswaps_init(void)
2857 {
2858         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2859         return 0;
2860 }
2861 __initcall(procswaps_init);
2862 #endif /* CONFIG_PROC_FS */
2863
2864 #ifdef MAX_SWAPFILES_CHECK
2865 static int __init max_swapfiles_check(void)
2866 {
2867         MAX_SWAPFILES_CHECK();
2868         return 0;
2869 }
2870 late_initcall(max_swapfiles_check);
2871 #endif
2872
2873 static struct swap_info_struct *alloc_swap_info(void)
2874 {
2875         struct swap_info_struct *p;
2876         unsigned int type;
2877         int i;
2878
2879         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2880         if (!p)
2881                 return ERR_PTR(-ENOMEM);
2882
2883         spin_lock(&swap_lock);
2884         for (type = 0; type < nr_swapfiles; type++) {
2885                 if (!(swap_info[type]->flags & SWP_USED))
2886                         break;
2887         }
2888         if (type >= MAX_SWAPFILES) {
2889                 spin_unlock(&swap_lock);
2890                 kvfree(p);
2891                 return ERR_PTR(-EPERM);
2892         }
2893         if (type >= nr_swapfiles) {
2894                 p->type = type;
2895                 WRITE_ONCE(swap_info[type], p);
2896                 /*
2897                  * Write swap_info[type] before nr_swapfiles, in case a
2898                  * racing procfs swap_start() or swap_next() is reading them.
2899                  * (We never shrink nr_swapfiles, we never free this entry.)
2900                  */
2901                 smp_wmb();
2902                 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2903         } else {
2904                 kvfree(p);
2905                 p = swap_info[type];
2906                 /*
2907                  * Do not memset this entry: a racing procfs swap_next()
2908                  * would be relying on p->type to remain valid.
2909                  */
2910         }
2911         p->swap_extent_root = RB_ROOT;
2912         plist_node_init(&p->list, 0);
2913         for_each_node(i)
2914                 plist_node_init(&p->avail_lists[i], 0);
2915         p->flags = SWP_USED;
2916         spin_unlock(&swap_lock);
2917         spin_lock_init(&p->lock);
2918         spin_lock_init(&p->cont_lock);
2919
2920         return p;
2921 }
2922
2923 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2924 {
2925         int error;
2926
2927         if (S_ISBLK(inode->i_mode)) {
2928                 p->bdev = bdgrab(I_BDEV(inode));
2929                 error = blkdev_get(p->bdev,
2930                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2931                 if (error < 0) {
2932                         p->bdev = NULL;
2933                         return error;
2934                 }
2935                 p->old_block_size = block_size(p->bdev);
2936                 error = set_blocksize(p->bdev, PAGE_SIZE);
2937                 if (error < 0)
2938                         return error;
2939                 /*
2940                  * Zoned block devices contain zones that have a sequential
2941                  * write only restriction.  Hence zoned block devices are not
2942                  * suitable for swapping.  Disallow them here.
2943                  */
2944                 if (blk_queue_is_zoned(p->bdev->bd_queue))
2945                         return -EINVAL;
2946                 p->flags |= SWP_BLKDEV;
2947         } else if (S_ISREG(inode->i_mode)) {
2948                 p->bdev = inode->i_sb->s_bdev;
2949         }
2950
2951         return 0;
2952 }
2953
2954
2955 /*
2956  * Find out how many pages are allowed for a single swap device. There
2957  * are two limiting factors:
2958  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2959  * 2) the number of bits in the swap pte, as defined by the different
2960  * architectures.
2961  *
2962  * In order to find the largest possible bit mask, a swap entry with
2963  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2964  * decoded to a swp_entry_t again, and finally the swap offset is
2965  * extracted.
2966  *
2967  * This will mask all the bits from the initial ~0UL mask that can't
2968  * be encoded in either the swp_entry_t or the architecture definition
2969  * of a swap pte.
2970  */
2971 unsigned long generic_max_swapfile_size(void)
2972 {
2973         return swp_offset(pte_to_swp_entry(
2974                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2975 }
2976
2977 /* Can be overridden by an architecture for additional checks. */
2978 __weak unsigned long max_swapfile_size(void)
2979 {
2980         return generic_max_swapfile_size();
2981 }
2982
2983 static unsigned long read_swap_header(struct swap_info_struct *p,
2984                                         union swap_header *swap_header,
2985                                         struct inode *inode)
2986 {
2987         int i;
2988         unsigned long maxpages;
2989         unsigned long swapfilepages;
2990         unsigned long last_page;
2991
2992         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2993                 pr_err("Unable to find swap-space signature\n");
2994                 return 0;
2995         }
2996
2997         /* swap partition endianess hack... */
2998         if (swab32(swap_header->info.version) == 1) {
2999                 swab32s(&swap_header->info.version);
3000                 swab32s(&swap_header->info.last_page);
3001                 swab32s(&swap_header->info.nr_badpages);
3002                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3003                         return 0;
3004                 for (i = 0; i < swap_header->info.nr_badpages; i++)
3005                         swab32s(&swap_header->info.badpages[i]);
3006         }
3007         /* Check the swap header's sub-version */
3008         if (swap_header->info.version != 1) {
3009                 pr_warn("Unable to handle swap header version %d\n",
3010                         swap_header->info.version);
3011                 return 0;
3012         }
3013
3014         p->lowest_bit  = 1;
3015         p->cluster_next = 1;
3016         p->cluster_nr = 0;
3017
3018         maxpages = max_swapfile_size();
3019         last_page = swap_header->info.last_page;
3020         if (!last_page) {
3021                 pr_warn("Empty swap-file\n");
3022                 return 0;
3023         }
3024         if (last_page > maxpages) {
3025                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3026                         maxpages << (PAGE_SHIFT - 10),
3027                         last_page << (PAGE_SHIFT - 10));
3028         }
3029         if (maxpages > last_page) {
3030                 maxpages = last_page + 1;
3031                 /* p->max is an unsigned int: don't overflow it */
3032                 if ((unsigned int)maxpages == 0)
3033                         maxpages = UINT_MAX;
3034         }
3035         p->highest_bit = maxpages - 1;
3036
3037         if (!maxpages)
3038                 return 0;
3039         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3040         if (swapfilepages && maxpages > swapfilepages) {
3041                 pr_warn("Swap area shorter than signature indicates\n");
3042                 return 0;
3043         }
3044         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3045                 return 0;
3046         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3047                 return 0;
3048
3049         return maxpages;
3050 }
3051
3052 #define SWAP_CLUSTER_INFO_COLS                                          \
3053         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3054 #define SWAP_CLUSTER_SPACE_COLS                                         \
3055         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3056 #define SWAP_CLUSTER_COLS                                               \
3057         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3058
3059 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3060                                         union swap_header *swap_header,
3061                                         unsigned char *swap_map,
3062                                         struct swap_cluster_info *cluster_info,
3063                                         unsigned long maxpages,
3064                                         sector_t *span)
3065 {
3066         unsigned int j, k;
3067         unsigned int nr_good_pages;
3068         int nr_extents;
3069         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3070         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3071         unsigned long i, idx;
3072
3073         nr_good_pages = maxpages - 1;   /* omit header page */
3074
3075         cluster_list_init(&p->free_clusters);
3076         cluster_list_init(&p->discard_clusters);
3077
3078         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3079                 unsigned int page_nr = swap_header->info.badpages[i];
3080                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3081                         return -EINVAL;
3082                 if (page_nr < maxpages) {
3083                         swap_map[page_nr] = SWAP_MAP_BAD;
3084                         nr_good_pages--;
3085                         /*
3086                          * Haven't marked the cluster free yet, no list
3087                          * operation involved
3088                          */
3089                         inc_cluster_info_page(p, cluster_info, page_nr);
3090                 }
3091         }
3092
3093         /* Haven't marked the cluster free yet, no list operation involved */
3094         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3095                 inc_cluster_info_page(p, cluster_info, i);
3096
3097         if (nr_good_pages) {
3098                 swap_map[0] = SWAP_MAP_BAD;
3099                 /*
3100                  * Not mark the cluster free yet, no list
3101                  * operation involved
3102                  */
3103                 inc_cluster_info_page(p, cluster_info, 0);
3104                 p->max = maxpages;
3105                 p->pages = nr_good_pages;
3106                 nr_extents = setup_swap_extents(p, span);
3107                 if (nr_extents < 0)
3108                         return nr_extents;
3109                 nr_good_pages = p->pages;
3110         }
3111         if (!nr_good_pages) {
3112                 pr_warn("Empty swap-file\n");
3113                 return -EINVAL;
3114         }
3115
3116         if (!cluster_info)
3117                 return nr_extents;
3118
3119
3120         /*
3121          * Reduce false cache line sharing between cluster_info and
3122          * sharing same address space.
3123          */
3124         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3125                 j = (k + col) % SWAP_CLUSTER_COLS;
3126                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3127                         idx = i * SWAP_CLUSTER_COLS + j;
3128                         if (idx >= nr_clusters)
3129                                 continue;
3130                         if (cluster_count(&cluster_info[idx]))
3131                                 continue;
3132                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3133                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3134                                               idx);
3135                 }
3136         }
3137         return nr_extents;
3138 }
3139
3140 /*
3141  * Helper to sys_swapon determining if a given swap
3142  * backing device queue supports DISCARD operations.
3143  */
3144 static bool swap_discardable(struct swap_info_struct *si)
3145 {
3146         struct request_queue *q = bdev_get_queue(si->bdev);
3147
3148         if (!q || !blk_queue_discard(q))
3149                 return false;
3150
3151         return true;
3152 }
3153
3154 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3155 {
3156         struct swap_info_struct *p;
3157         struct filename *name;
3158         struct file *swap_file = NULL;
3159         struct address_space *mapping;
3160         int prio;
3161         int error;
3162         union swap_header *swap_header;
3163         int nr_extents;
3164         sector_t span;
3165         unsigned long maxpages;
3166         unsigned char *swap_map = NULL;
3167         struct swap_cluster_info *cluster_info = NULL;
3168         unsigned long *frontswap_map = NULL;
3169         struct page *page = NULL;
3170         struct inode *inode = NULL;
3171         bool inced_nr_rotate_swap = false;
3172
3173         if (swap_flags & ~SWAP_FLAGS_VALID)
3174                 return -EINVAL;
3175
3176         if (!capable(CAP_SYS_ADMIN))
3177                 return -EPERM;
3178
3179         if (!swap_avail_heads)
3180                 return -ENOMEM;
3181
3182         p = alloc_swap_info();
3183         if (IS_ERR(p))
3184                 return PTR_ERR(p);
3185
3186         INIT_WORK(&p->discard_work, swap_discard_work);
3187
3188         name = getname(specialfile);
3189         if (IS_ERR(name)) {
3190                 error = PTR_ERR(name);
3191                 name = NULL;
3192                 goto bad_swap;
3193         }
3194         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3195         if (IS_ERR(swap_file)) {
3196                 error = PTR_ERR(swap_file);
3197                 swap_file = NULL;
3198                 goto bad_swap;
3199         }
3200
3201         p->swap_file = swap_file;
3202         mapping = swap_file->f_mapping;
3203         inode = mapping->host;
3204
3205         error = claim_swapfile(p, inode);
3206         if (unlikely(error))
3207                 goto bad_swap;
3208
3209         inode_lock(inode);
3210         if (IS_SWAPFILE(inode)) {
3211                 error = -EBUSY;
3212                 goto bad_swap_unlock_inode;
3213         }
3214
3215         /*
3216          * Read the swap header.
3217          */
3218         if (!mapping->a_ops->readpage) {
3219                 error = -EINVAL;
3220                 goto bad_swap_unlock_inode;
3221         }
3222         page = read_mapping_page(mapping, 0, swap_file);
3223         if (IS_ERR(page)) {
3224                 error = PTR_ERR(page);
3225                 goto bad_swap_unlock_inode;
3226         }
3227         swap_header = kmap(page);
3228
3229         maxpages = read_swap_header(p, swap_header, inode);
3230         if (unlikely(!maxpages)) {
3231                 error = -EINVAL;
3232                 goto bad_swap_unlock_inode;
3233         }
3234
3235         /* OK, set up the swap map and apply the bad block list */
3236         swap_map = vzalloc(maxpages);
3237         if (!swap_map) {
3238                 error = -ENOMEM;
3239                 goto bad_swap_unlock_inode;
3240         }
3241
3242         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3243                 p->flags |= SWP_STABLE_WRITES;
3244
3245         if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3246                 p->flags |= SWP_SYNCHRONOUS_IO;
3247
3248         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3249                 int cpu;
3250                 unsigned long ci, nr_cluster;
3251
3252                 p->flags |= SWP_SOLIDSTATE;
3253                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3254                 if (!p->cluster_next_cpu) {
3255                         error = -ENOMEM;
3256                         goto bad_swap_unlock_inode;
3257                 }
3258                 /*
3259                  * select a random position to start with to help wear leveling
3260                  * SSD
3261                  */
3262                 for_each_possible_cpu(cpu) {
3263                         per_cpu(*p->cluster_next_cpu, cpu) =
3264                                 1 + prandom_u32_max(p->highest_bit);
3265                 }
3266                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3267
3268                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3269                                         GFP_KERNEL);
3270                 if (!cluster_info) {
3271                         error = -ENOMEM;
3272                         goto bad_swap_unlock_inode;
3273                 }
3274
3275                 for (ci = 0; ci < nr_cluster; ci++)
3276                         spin_lock_init(&((cluster_info + ci)->lock));
3277
3278                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3279                 if (!p->percpu_cluster) {
3280                         error = -ENOMEM;
3281                         goto bad_swap_unlock_inode;
3282                 }
3283                 for_each_possible_cpu(cpu) {
3284                         struct percpu_cluster *cluster;
3285                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3286                         cluster_set_null(&cluster->index);
3287                 }
3288         } else {
3289                 atomic_inc(&nr_rotate_swap);
3290                 inced_nr_rotate_swap = true;
3291         }
3292
3293         error = swap_cgroup_swapon(p->type, maxpages);
3294         if (error)
3295                 goto bad_swap_unlock_inode;
3296
3297         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3298                 cluster_info, maxpages, &span);
3299         if (unlikely(nr_extents < 0)) {
3300                 error = nr_extents;
3301                 goto bad_swap_unlock_inode;
3302         }
3303         /* frontswap enabled? set up bit-per-page map for frontswap */
3304         if (IS_ENABLED(CONFIG_FRONTSWAP))
3305                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3306                                          sizeof(long),
3307                                          GFP_KERNEL);
3308
3309         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3310                 /*
3311                  * When discard is enabled for swap with no particular
3312                  * policy flagged, we set all swap discard flags here in
3313                  * order to sustain backward compatibility with older
3314                  * swapon(8) releases.
3315                  */
3316                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3317                              SWP_PAGE_DISCARD);
3318
3319                 /*
3320                  * By flagging sys_swapon, a sysadmin can tell us to
3321                  * either do single-time area discards only, or to just
3322                  * perform discards for released swap page-clusters.
3323                  * Now it's time to adjust the p->flags accordingly.
3324                  */
3325                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3326                         p->flags &= ~SWP_PAGE_DISCARD;
3327                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3328                         p->flags &= ~SWP_AREA_DISCARD;
3329
3330                 /* issue a swapon-time discard if it's still required */
3331                 if (p->flags & SWP_AREA_DISCARD) {
3332                         int err = discard_swap(p);
3333                         if (unlikely(err))
3334                                 pr_err("swapon: discard_swap(%p): %d\n",
3335                                         p, err);
3336                 }
3337         }
3338
3339         error = init_swap_address_space(p->type, maxpages);
3340         if (error)
3341                 goto bad_swap_unlock_inode;
3342
3343         /*
3344          * Flush any pending IO and dirty mappings before we start using this
3345          * swap device.
3346          */
3347         inode->i_flags |= S_SWAPFILE;
3348         error = inode_drain_writes(inode);
3349         if (error) {
3350                 inode->i_flags &= ~S_SWAPFILE;
3351                 goto bad_swap_unlock_inode;
3352         }
3353
3354         mutex_lock(&swapon_mutex);
3355         prio = -1;
3356         if (swap_flags & SWAP_FLAG_PREFER)
3357                 prio =
3358                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3359         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3360
3361         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3362                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3363                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3364                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3365                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3366                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3367                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3368                 (frontswap_map) ? "FS" : "");
3369
3370         mutex_unlock(&swapon_mutex);
3371         atomic_inc(&proc_poll_event);
3372         wake_up_interruptible(&proc_poll_wait);
3373
3374         error = 0;
3375         goto out;
3376 bad_swap_unlock_inode:
3377         inode_unlock(inode);
3378 bad_swap:
3379         free_percpu(p->percpu_cluster);
3380         p->percpu_cluster = NULL;
3381         free_percpu(p->cluster_next_cpu);
3382         p->cluster_next_cpu = NULL;
3383         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3384                 set_blocksize(p->bdev, p->old_block_size);
3385                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3386         }
3387         inode = NULL;
3388         destroy_swap_extents(p);
3389         swap_cgroup_swapoff(p->type);
3390         spin_lock(&swap_lock);
3391         p->swap_file = NULL;
3392         p->flags = 0;
3393         spin_unlock(&swap_lock);
3394         vfree(swap_map);
3395         kvfree(cluster_info);
3396         kvfree(frontswap_map);
3397         if (inced_nr_rotate_swap)
3398                 atomic_dec(&nr_rotate_swap);
3399         if (swap_file)
3400                 filp_close(swap_file, NULL);
3401 out:
3402         if (page && !IS_ERR(page)) {
3403                 kunmap(page);
3404                 put_page(page);
3405         }
3406         if (name)
3407                 putname(name);
3408         if (inode)
3409                 inode_unlock(inode);
3410         if (!error)
3411                 enable_swap_slots_cache();
3412         return error;
3413 }
3414
3415 void si_swapinfo(struct sysinfo *val)
3416 {
3417         unsigned int type;
3418         unsigned long nr_to_be_unused = 0;
3419
3420         spin_lock(&swap_lock);
3421         for (type = 0; type < nr_swapfiles; type++) {
3422                 struct swap_info_struct *si = swap_info[type];
3423
3424                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3425                         nr_to_be_unused += si->inuse_pages;
3426         }
3427         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3428         val->totalswap = total_swap_pages + nr_to_be_unused;
3429         spin_unlock(&swap_lock);
3430 }
3431
3432 /*
3433  * Verify that a swap entry is valid and increment its swap map count.
3434  *
3435  * Returns error code in following case.
3436  * - success -> 0
3437  * - swp_entry is invalid -> EINVAL
3438  * - swp_entry is migration entry -> EINVAL
3439  * - swap-cache reference is requested but there is already one. -> EEXIST
3440  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3441  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3442  */
3443 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3444 {
3445         struct swap_info_struct *p;
3446         struct swap_cluster_info *ci;
3447         unsigned long offset;
3448         unsigned char count;
3449         unsigned char has_cache;
3450         int err = -EINVAL;
3451
3452         p = get_swap_device(entry);
3453         if (!p)
3454                 goto out;
3455
3456         offset = swp_offset(entry);
3457         ci = lock_cluster_or_swap_info(p, offset);
3458
3459         count = p->swap_map[offset];
3460
3461         /*
3462          * swapin_readahead() doesn't check if a swap entry is valid, so the
3463          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3464          */
3465         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3466                 err = -ENOENT;
3467                 goto unlock_out;
3468         }
3469
3470         has_cache = count & SWAP_HAS_CACHE;
3471         count &= ~SWAP_HAS_CACHE;
3472         err = 0;
3473
3474         if (usage == SWAP_HAS_CACHE) {
3475
3476                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3477                 if (!has_cache && count)
3478                         has_cache = SWAP_HAS_CACHE;
3479                 else if (has_cache)             /* someone else added cache */
3480                         err = -EEXIST;
3481                 else                            /* no users remaining */
3482                         err = -ENOENT;
3483
3484         } else if (count || has_cache) {
3485
3486                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3487                         count += usage;
3488                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3489                         err = -EINVAL;
3490                 else if (swap_count_continued(p, offset, count))
3491                         count = COUNT_CONTINUED;
3492                 else
3493                         err = -ENOMEM;
3494         } else
3495                 err = -ENOENT;                  /* unused swap entry */
3496
3497         p->swap_map[offset] = count | has_cache;
3498
3499 unlock_out:
3500         unlock_cluster_or_swap_info(p, ci);
3501 out:
3502         if (p)
3503                 put_swap_device(p);
3504         return err;
3505 }
3506
3507 /*
3508  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3509  * (in which case its reference count is never incremented).
3510  */
3511 void swap_shmem_alloc(swp_entry_t entry)
3512 {
3513         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3514 }
3515
3516 /*
3517  * Increase reference count of swap entry by 1.
3518  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3519  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3520  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3521  * might occur if a page table entry has got corrupted.
3522  */
3523 int swap_duplicate(swp_entry_t entry)
3524 {
3525         int err = 0;
3526
3527         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3528                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3529         return err;
3530 }
3531
3532 /*
3533  * @entry: swap entry for which we allocate swap cache.
3534  *
3535  * Called when allocating swap cache for existing swap entry,
3536  * This can return error codes. Returns 0 at success.
3537  * -EEXIST means there is a swap cache.
3538  * Note: return code is different from swap_duplicate().
3539  */
3540 int swapcache_prepare(swp_entry_t entry)
3541 {
3542         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3543 }
3544
3545 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3546 {
3547         return swap_type_to_swap_info(swp_type(entry));
3548 }
3549
3550 struct swap_info_struct *page_swap_info(struct page *page)
3551 {
3552         swp_entry_t entry = { .val = page_private(page) };
3553         return swp_swap_info(entry);
3554 }
3555
3556 /*
3557  * out-of-line __page_file_ methods to avoid include hell.
3558  */
3559 struct address_space *__page_file_mapping(struct page *page)
3560 {
3561         return page_swap_info(page)->swap_file->f_mapping;
3562 }
3563 EXPORT_SYMBOL_GPL(__page_file_mapping);
3564
3565 pgoff_t __page_file_index(struct page *page)
3566 {
3567         swp_entry_t swap = { .val = page_private(page) };
3568         return swp_offset(swap);
3569 }
3570 EXPORT_SYMBOL_GPL(__page_file_index);
3571
3572 /*
3573  * add_swap_count_continuation - called when a swap count is duplicated
3574  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3575  * page of the original vmalloc'ed swap_map, to hold the continuation count
3576  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3577  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3578  *
3579  * These continuation pages are seldom referenced: the common paths all work
3580  * on the original swap_map, only referring to a continuation page when the
3581  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3582  *
3583  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3584  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3585  * can be called after dropping locks.
3586  */
3587 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3588 {
3589         struct swap_info_struct *si;
3590         struct swap_cluster_info *ci;
3591         struct page *head;
3592         struct page *page;
3593         struct page *list_page;
3594         pgoff_t offset;
3595         unsigned char count;
3596         int ret = 0;
3597
3598         /*
3599          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3600          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3601          */
3602         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3603
3604         si = get_swap_device(entry);
3605         if (!si) {
3606                 /*
3607                  * An acceptable race has occurred since the failing
3608                  * __swap_duplicate(): the swap device may be swapoff
3609                  */
3610                 goto outer;
3611         }
3612         spin_lock(&si->lock);
3613
3614         offset = swp_offset(entry);
3615
3616         ci = lock_cluster(si, offset);
3617
3618         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3619
3620         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3621                 /*
3622                  * The higher the swap count, the more likely it is that tasks
3623                  * will race to add swap count continuation: we need to avoid
3624                  * over-provisioning.
3625                  */
3626                 goto out;
3627         }
3628
3629         if (!page) {
3630                 ret = -ENOMEM;
3631                 goto out;
3632         }
3633
3634         /*
3635          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3636          * no architecture is using highmem pages for kernel page tables: so it
3637          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3638          */
3639         head = vmalloc_to_page(si->swap_map + offset);
3640         offset &= ~PAGE_MASK;
3641
3642         spin_lock(&si->cont_lock);
3643         /*
3644          * Page allocation does not initialize the page's lru field,
3645          * but it does always reset its private field.
3646          */
3647         if (!page_private(head)) {
3648                 BUG_ON(count & COUNT_CONTINUED);
3649                 INIT_LIST_HEAD(&head->lru);
3650                 set_page_private(head, SWP_CONTINUED);
3651                 si->flags |= SWP_CONTINUED;
3652         }
3653
3654         list_for_each_entry(list_page, &head->lru, lru) {
3655                 unsigned char *map;
3656
3657                 /*
3658                  * If the previous map said no continuation, but we've found
3659                  * a continuation page, free our allocation and use this one.
3660                  */
3661                 if (!(count & COUNT_CONTINUED))
3662                         goto out_unlock_cont;
3663
3664                 map = kmap_atomic(list_page) + offset;
3665                 count = *map;
3666                 kunmap_atomic(map);
3667
3668                 /*
3669                  * If this continuation count now has some space in it,
3670                  * free our allocation and use this one.
3671                  */
3672                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3673                         goto out_unlock_cont;
3674         }
3675
3676         list_add_tail(&page->lru, &head->lru);
3677         page = NULL;                    /* now it's attached, don't free it */
3678 out_unlock_cont:
3679         spin_unlock(&si->cont_lock);
3680 out:
3681         unlock_cluster(ci);
3682         spin_unlock(&si->lock);
3683         put_swap_device(si);
3684 outer:
3685         if (page)
3686                 __free_page(page);
3687         return ret;
3688 }
3689
3690 /*
3691  * swap_count_continued - when the original swap_map count is incremented
3692  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3693  * into, carry if so, or else fail until a new continuation page is allocated;
3694  * when the original swap_map count is decremented from 0 with continuation,
3695  * borrow from the continuation and report whether it still holds more.
3696  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3697  * lock.
3698  */
3699 static bool swap_count_continued(struct swap_info_struct *si,
3700                                  pgoff_t offset, unsigned char count)
3701 {
3702         struct page *head;
3703         struct page *page;
3704         unsigned char *map;
3705         bool ret;
3706
3707         head = vmalloc_to_page(si->swap_map + offset);
3708         if (page_private(head) != SWP_CONTINUED) {
3709                 BUG_ON(count & COUNT_CONTINUED);
3710                 return false;           /* need to add count continuation */
3711         }
3712
3713         spin_lock(&si->cont_lock);
3714         offset &= ~PAGE_MASK;
3715         page = list_next_entry(head, lru);
3716         map = kmap_atomic(page) + offset;
3717
3718         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3719                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3720
3721         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3722                 /*
3723                  * Think of how you add 1 to 999
3724                  */
3725                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3726                         kunmap_atomic(map);
3727                         page = list_next_entry(page, lru);
3728                         BUG_ON(page == head);
3729                         map = kmap_atomic(page) + offset;
3730                 }
3731                 if (*map == SWAP_CONT_MAX) {
3732                         kunmap_atomic(map);
3733                         page = list_next_entry(page, lru);
3734                         if (page == head) {
3735                                 ret = false;    /* add count continuation */
3736                                 goto out;
3737                         }
3738                         map = kmap_atomic(page) + offset;
3739 init_map:               *map = 0;               /* we didn't zero the page */
3740                 }
3741                 *map += 1;
3742                 kunmap_atomic(map);
3743                 while ((page = list_prev_entry(page, lru)) != head) {
3744                         map = kmap_atomic(page) + offset;
3745                         *map = COUNT_CONTINUED;
3746                         kunmap_atomic(map);
3747                 }
3748                 ret = true;                     /* incremented */
3749
3750         } else {                                /* decrementing */
3751                 /*
3752                  * Think of how you subtract 1 from 1000
3753                  */
3754                 BUG_ON(count != COUNT_CONTINUED);
3755                 while (*map == COUNT_CONTINUED) {
3756                         kunmap_atomic(map);
3757                         page = list_next_entry(page, lru);
3758                         BUG_ON(page == head);
3759                         map = kmap_atomic(page) + offset;
3760                 }
3761                 BUG_ON(*map == 0);
3762                 *map -= 1;
3763                 if (*map == 0)
3764                         count = 0;
3765                 kunmap_atomic(map);
3766                 while ((page = list_prev_entry(page, lru)) != head) {
3767                         map = kmap_atomic(page) + offset;
3768                         *map = SWAP_CONT_MAX | count;
3769                         count = COUNT_CONTINUED;
3770                         kunmap_atomic(map);
3771                 }
3772                 ret = count == COUNT_CONTINUED;
3773         }
3774 out:
3775         spin_unlock(&si->cont_lock);
3776         return ret;
3777 }
3778
3779 /*
3780  * free_swap_count_continuations - swapoff free all the continuation pages
3781  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3782  */
3783 static void free_swap_count_continuations(struct swap_info_struct *si)
3784 {
3785         pgoff_t offset;
3786
3787         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3788                 struct page *head;
3789                 head = vmalloc_to_page(si->swap_map + offset);
3790                 if (page_private(head)) {
3791                         struct page *page, *next;
3792
3793                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3794                                 list_del(&page->lru);
3795                                 __free_page(page);
3796                         }
3797                 }
3798         }
3799 }
3800
3801 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3802 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3803                                   gfp_t gfp_mask)
3804 {
3805         struct swap_info_struct *si, *next;
3806         if (!(gfp_mask & __GFP_IO) || !memcg)
3807                 return;
3808
3809         if (!blk_cgroup_congested())
3810                 return;
3811
3812         /*
3813          * We've already scheduled a throttle, avoid taking the global swap
3814          * lock.
3815          */
3816         if (current->throttle_queue)
3817                 return;
3818
3819         spin_lock(&swap_avail_lock);
3820         plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3821                                   avail_lists[node]) {
3822                 if (si->bdev) {
3823                         blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3824                                                 true);
3825                         break;
3826                 }
3827         }
3828         spin_unlock(&swap_avail_lock);
3829 }
3830 #endif
3831
3832 static int __init swapfile_init(void)
3833 {
3834         int nid;
3835
3836         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3837                                          GFP_KERNEL);
3838         if (!swap_avail_heads) {
3839                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3840                 return -ENOMEM;
3841         }
3842
3843         for_each_node(nid)
3844                 plist_head_init(&swap_avail_heads[nid]);
3845
3846         return 0;
3847 }
3848 subsys_initcall(swapfile_init);