perf tools: Make perf_event__synthesize_mmap_events() scale
[linux-2.6-microblaze.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40
41 #include <asm/pgtable.h>
42 #include <asm/tlbflush.h>
43 #include <linux/swapops.h>
44 #include <linux/swap_cgroup.h>
45
46 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
47                                  unsigned char);
48 static void free_swap_count_continuations(struct swap_info_struct *);
49 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
50
51 DEFINE_SPINLOCK(swap_lock);
52 static unsigned int nr_swapfiles;
53 atomic_long_t nr_swap_pages;
54 /*
55  * Some modules use swappable objects and may try to swap them out under
56  * memory pressure (via the shrinker). Before doing so, they may wish to
57  * check to see if any swap space is available.
58  */
59 EXPORT_SYMBOL_GPL(nr_swap_pages);
60 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
61 long total_swap_pages;
62 static int least_priority;
63
64 static const char Bad_file[] = "Bad swap file entry ";
65 static const char Unused_file[] = "Unused swap file entry ";
66 static const char Bad_offset[] = "Bad swap offset entry ";
67 static const char Unused_offset[] = "Unused swap offset entry ";
68
69 /*
70  * all active swap_info_structs
71  * protected with swap_lock, and ordered by priority.
72  */
73 PLIST_HEAD(swap_active_head);
74
75 /*
76  * all available (active, not full) swap_info_structs
77  * protected with swap_avail_lock, ordered by priority.
78  * This is used by get_swap_page() instead of swap_active_head
79  * because swap_active_head includes all swap_info_structs,
80  * but get_swap_page() doesn't need to look at full ones.
81  * This uses its own lock instead of swap_lock because when a
82  * swap_info_struct changes between not-full/full, it needs to
83  * add/remove itself to/from this list, but the swap_info_struct->lock
84  * is held and the locking order requires swap_lock to be taken
85  * before any swap_info_struct->lock.
86  */
87 static PLIST_HEAD(swap_avail_head);
88 static DEFINE_SPINLOCK(swap_avail_lock);
89
90 struct swap_info_struct *swap_info[MAX_SWAPFILES];
91
92 static DEFINE_MUTEX(swapon_mutex);
93
94 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
95 /* Activity counter to indicate that a swapon or swapoff has occurred */
96 static atomic_t proc_poll_event = ATOMIC_INIT(0);
97
98 static inline unsigned char swap_count(unsigned char ent)
99 {
100         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
101 }
102
103 /* returns 1 if swap entry is freed */
104 static int
105 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
106 {
107         swp_entry_t entry = swp_entry(si->type, offset);
108         struct page *page;
109         int ret = 0;
110
111         page = find_get_page(swap_address_space(entry), swp_offset(entry));
112         if (!page)
113                 return 0;
114         /*
115          * This function is called from scan_swap_map() and it's called
116          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
117          * We have to use trylock for avoiding deadlock. This is a special
118          * case and you should use try_to_free_swap() with explicit lock_page()
119          * in usual operations.
120          */
121         if (trylock_page(page)) {
122                 ret = try_to_free_swap(page);
123                 unlock_page(page);
124         }
125         put_page(page);
126         return ret;
127 }
128
129 /*
130  * swapon tell device that all the old swap contents can be discarded,
131  * to allow the swap device to optimize its wear-levelling.
132  */
133 static int discard_swap(struct swap_info_struct *si)
134 {
135         struct swap_extent *se;
136         sector_t start_block;
137         sector_t nr_blocks;
138         int err = 0;
139
140         /* Do not discard the swap header page! */
141         se = &si->first_swap_extent;
142         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
143         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
144         if (nr_blocks) {
145                 err = blkdev_issue_discard(si->bdev, start_block,
146                                 nr_blocks, GFP_KERNEL, 0);
147                 if (err)
148                         return err;
149                 cond_resched();
150         }
151
152         list_for_each_entry(se, &si->first_swap_extent.list, list) {
153                 start_block = se->start_block << (PAGE_SHIFT - 9);
154                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
155
156                 err = blkdev_issue_discard(si->bdev, start_block,
157                                 nr_blocks, GFP_KERNEL, 0);
158                 if (err)
159                         break;
160
161                 cond_resched();
162         }
163         return err;             /* That will often be -EOPNOTSUPP */
164 }
165
166 /*
167  * swap allocation tell device that a cluster of swap can now be discarded,
168  * to allow the swap device to optimize its wear-levelling.
169  */
170 static void discard_swap_cluster(struct swap_info_struct *si,
171                                  pgoff_t start_page, pgoff_t nr_pages)
172 {
173         struct swap_extent *se = si->curr_swap_extent;
174         int found_extent = 0;
175
176         while (nr_pages) {
177                 if (se->start_page <= start_page &&
178                     start_page < se->start_page + se->nr_pages) {
179                         pgoff_t offset = start_page - se->start_page;
180                         sector_t start_block = se->start_block + offset;
181                         sector_t nr_blocks = se->nr_pages - offset;
182
183                         if (nr_blocks > nr_pages)
184                                 nr_blocks = nr_pages;
185                         start_page += nr_blocks;
186                         nr_pages -= nr_blocks;
187
188                         if (!found_extent++)
189                                 si->curr_swap_extent = se;
190
191                         start_block <<= PAGE_SHIFT - 9;
192                         nr_blocks <<= PAGE_SHIFT - 9;
193                         if (blkdev_issue_discard(si->bdev, start_block,
194                                     nr_blocks, GFP_NOIO, 0))
195                                 break;
196                 }
197
198                 se = list_next_entry(se, list);
199         }
200 }
201
202 #define SWAPFILE_CLUSTER        256
203 #define LATENCY_LIMIT           256
204
205 static inline void cluster_set_flag(struct swap_cluster_info *info,
206         unsigned int flag)
207 {
208         info->flags = flag;
209 }
210
211 static inline unsigned int cluster_count(struct swap_cluster_info *info)
212 {
213         return info->data;
214 }
215
216 static inline void cluster_set_count(struct swap_cluster_info *info,
217                                      unsigned int c)
218 {
219         info->data = c;
220 }
221
222 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
223                                          unsigned int c, unsigned int f)
224 {
225         info->flags = f;
226         info->data = c;
227 }
228
229 static inline unsigned int cluster_next(struct swap_cluster_info *info)
230 {
231         return info->data;
232 }
233
234 static inline void cluster_set_next(struct swap_cluster_info *info,
235                                     unsigned int n)
236 {
237         info->data = n;
238 }
239
240 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
241                                          unsigned int n, unsigned int f)
242 {
243         info->flags = f;
244         info->data = n;
245 }
246
247 static inline bool cluster_is_free(struct swap_cluster_info *info)
248 {
249         return info->flags & CLUSTER_FLAG_FREE;
250 }
251
252 static inline bool cluster_is_null(struct swap_cluster_info *info)
253 {
254         return info->flags & CLUSTER_FLAG_NEXT_NULL;
255 }
256
257 static inline void cluster_set_null(struct swap_cluster_info *info)
258 {
259         info->flags = CLUSTER_FLAG_NEXT_NULL;
260         info->data = 0;
261 }
262
263 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
264                                                      unsigned long offset)
265 {
266         struct swap_cluster_info *ci;
267
268         ci = si->cluster_info;
269         if (ci) {
270                 ci += offset / SWAPFILE_CLUSTER;
271                 spin_lock(&ci->lock);
272         }
273         return ci;
274 }
275
276 static inline void unlock_cluster(struct swap_cluster_info *ci)
277 {
278         if (ci)
279                 spin_unlock(&ci->lock);
280 }
281
282 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
283         struct swap_info_struct *si,
284         unsigned long offset)
285 {
286         struct swap_cluster_info *ci;
287
288         ci = lock_cluster(si, offset);
289         if (!ci)
290                 spin_lock(&si->lock);
291
292         return ci;
293 }
294
295 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
296                                                struct swap_cluster_info *ci)
297 {
298         if (ci)
299                 unlock_cluster(ci);
300         else
301                 spin_unlock(&si->lock);
302 }
303
304 static inline bool cluster_list_empty(struct swap_cluster_list *list)
305 {
306         return cluster_is_null(&list->head);
307 }
308
309 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
310 {
311         return cluster_next(&list->head);
312 }
313
314 static void cluster_list_init(struct swap_cluster_list *list)
315 {
316         cluster_set_null(&list->head);
317         cluster_set_null(&list->tail);
318 }
319
320 static void cluster_list_add_tail(struct swap_cluster_list *list,
321                                   struct swap_cluster_info *ci,
322                                   unsigned int idx)
323 {
324         if (cluster_list_empty(list)) {
325                 cluster_set_next_flag(&list->head, idx, 0);
326                 cluster_set_next_flag(&list->tail, idx, 0);
327         } else {
328                 struct swap_cluster_info *ci_tail;
329                 unsigned int tail = cluster_next(&list->tail);
330
331                 /*
332                  * Nested cluster lock, but both cluster locks are
333                  * only acquired when we held swap_info_struct->lock
334                  */
335                 ci_tail = ci + tail;
336                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
337                 cluster_set_next(ci_tail, idx);
338                 unlock_cluster(ci_tail);
339                 cluster_set_next_flag(&list->tail, idx, 0);
340         }
341 }
342
343 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
344                                            struct swap_cluster_info *ci)
345 {
346         unsigned int idx;
347
348         idx = cluster_next(&list->head);
349         if (cluster_next(&list->tail) == idx) {
350                 cluster_set_null(&list->head);
351                 cluster_set_null(&list->tail);
352         } else
353                 cluster_set_next_flag(&list->head,
354                                       cluster_next(&ci[idx]), 0);
355
356         return idx;
357 }
358
359 /* Add a cluster to discard list and schedule it to do discard */
360 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
361                 unsigned int idx)
362 {
363         /*
364          * If scan_swap_map() can't find a free cluster, it will check
365          * si->swap_map directly. To make sure the discarding cluster isn't
366          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
367          * will be cleared after discard
368          */
369         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
370                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
371
372         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
373
374         schedule_work(&si->discard_work);
375 }
376
377 /*
378  * Doing discard actually. After a cluster discard is finished, the cluster
379  * will be added to free cluster list. caller should hold si->lock.
380 */
381 static void swap_do_scheduled_discard(struct swap_info_struct *si)
382 {
383         struct swap_cluster_info *info, *ci;
384         unsigned int idx;
385
386         info = si->cluster_info;
387
388         while (!cluster_list_empty(&si->discard_clusters)) {
389                 idx = cluster_list_del_first(&si->discard_clusters, info);
390                 spin_unlock(&si->lock);
391
392                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
393                                 SWAPFILE_CLUSTER);
394
395                 spin_lock(&si->lock);
396                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
397                 cluster_set_flag(ci, CLUSTER_FLAG_FREE);
398                 unlock_cluster(ci);
399                 cluster_list_add_tail(&si->free_clusters, info, idx);
400                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
401                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
402                                 0, SWAPFILE_CLUSTER);
403                 unlock_cluster(ci);
404         }
405 }
406
407 static void swap_discard_work(struct work_struct *work)
408 {
409         struct swap_info_struct *si;
410
411         si = container_of(work, struct swap_info_struct, discard_work);
412
413         spin_lock(&si->lock);
414         swap_do_scheduled_discard(si);
415         spin_unlock(&si->lock);
416 }
417
418 /*
419  * The cluster corresponding to page_nr will be used. The cluster will be
420  * removed from free cluster list and its usage counter will be increased.
421  */
422 static void inc_cluster_info_page(struct swap_info_struct *p,
423         struct swap_cluster_info *cluster_info, unsigned long page_nr)
424 {
425         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
426
427         if (!cluster_info)
428                 return;
429         if (cluster_is_free(&cluster_info[idx])) {
430                 VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
431                 cluster_list_del_first(&p->free_clusters, cluster_info);
432                 cluster_set_count_flag(&cluster_info[idx], 0, 0);
433         }
434
435         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
436         cluster_set_count(&cluster_info[idx],
437                 cluster_count(&cluster_info[idx]) + 1);
438 }
439
440 /*
441  * The cluster corresponding to page_nr decreases one usage. If the usage
442  * counter becomes 0, which means no page in the cluster is in using, we can
443  * optionally discard the cluster and add it to free cluster list.
444  */
445 static void dec_cluster_info_page(struct swap_info_struct *p,
446         struct swap_cluster_info *cluster_info, unsigned long page_nr)
447 {
448         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
449
450         if (!cluster_info)
451                 return;
452
453         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
454         cluster_set_count(&cluster_info[idx],
455                 cluster_count(&cluster_info[idx]) - 1);
456
457         if (cluster_count(&cluster_info[idx]) == 0) {
458                 /*
459                  * If the swap is discardable, prepare discard the cluster
460                  * instead of free it immediately. The cluster will be freed
461                  * after discard.
462                  */
463                 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
464                                  (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
465                         swap_cluster_schedule_discard(p, idx);
466                         return;
467                 }
468
469                 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
470                 cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
471         }
472 }
473
474 /*
475  * It's possible scan_swap_map() uses a free cluster in the middle of free
476  * cluster list. Avoiding such abuse to avoid list corruption.
477  */
478 static bool
479 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
480         unsigned long offset)
481 {
482         struct percpu_cluster *percpu_cluster;
483         bool conflict;
484
485         offset /= SWAPFILE_CLUSTER;
486         conflict = !cluster_list_empty(&si->free_clusters) &&
487                 offset != cluster_list_first(&si->free_clusters) &&
488                 cluster_is_free(&si->cluster_info[offset]);
489
490         if (!conflict)
491                 return false;
492
493         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
494         cluster_set_null(&percpu_cluster->index);
495         return true;
496 }
497
498 /*
499  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
500  * might involve allocating a new cluster for current CPU too.
501  */
502 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
503         unsigned long *offset, unsigned long *scan_base)
504 {
505         struct percpu_cluster *cluster;
506         struct swap_cluster_info *ci;
507         bool found_free;
508         unsigned long tmp, max;
509
510 new_cluster:
511         cluster = this_cpu_ptr(si->percpu_cluster);
512         if (cluster_is_null(&cluster->index)) {
513                 if (!cluster_list_empty(&si->free_clusters)) {
514                         cluster->index = si->free_clusters.head;
515                         cluster->next = cluster_next(&cluster->index) *
516                                         SWAPFILE_CLUSTER;
517                 } else if (!cluster_list_empty(&si->discard_clusters)) {
518                         /*
519                          * we don't have free cluster but have some clusters in
520                          * discarding, do discard now and reclaim them
521                          */
522                         swap_do_scheduled_discard(si);
523                         *scan_base = *offset = si->cluster_next;
524                         goto new_cluster;
525                 } else
526                         return false;
527         }
528
529         found_free = false;
530
531         /*
532          * Other CPUs can use our cluster if they can't find a free cluster,
533          * check if there is still free entry in the cluster
534          */
535         tmp = cluster->next;
536         max = min_t(unsigned long, si->max,
537                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
538         if (tmp >= max) {
539                 cluster_set_null(&cluster->index);
540                 goto new_cluster;
541         }
542         ci = lock_cluster(si, tmp);
543         while (tmp < max) {
544                 if (!si->swap_map[tmp]) {
545                         found_free = true;
546                         break;
547                 }
548                 tmp++;
549         }
550         unlock_cluster(ci);
551         if (!found_free) {
552                 cluster_set_null(&cluster->index);
553                 goto new_cluster;
554         }
555         cluster->next = tmp + 1;
556         *offset = tmp;
557         *scan_base = tmp;
558         return found_free;
559 }
560
561 static int scan_swap_map_slots(struct swap_info_struct *si,
562                                unsigned char usage, int nr,
563                                swp_entry_t slots[])
564 {
565         struct swap_cluster_info *ci;
566         unsigned long offset;
567         unsigned long scan_base;
568         unsigned long last_in_cluster = 0;
569         int latency_ration = LATENCY_LIMIT;
570         int n_ret = 0;
571
572         if (nr > SWAP_BATCH)
573                 nr = SWAP_BATCH;
574
575         /*
576          * We try to cluster swap pages by allocating them sequentially
577          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
578          * way, however, we resort to first-free allocation, starting
579          * a new cluster.  This prevents us from scattering swap pages
580          * all over the entire swap partition, so that we reduce
581          * overall disk seek times between swap pages.  -- sct
582          * But we do now try to find an empty cluster.  -Andrea
583          * And we let swap pages go all over an SSD partition.  Hugh
584          */
585
586         si->flags += SWP_SCANNING;
587         scan_base = offset = si->cluster_next;
588
589         /* SSD algorithm */
590         if (si->cluster_info) {
591                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
592                         goto checks;
593                 else
594                         goto scan;
595         }
596
597         if (unlikely(!si->cluster_nr--)) {
598                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
599                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
600                         goto checks;
601                 }
602
603                 spin_unlock(&si->lock);
604
605                 /*
606                  * If seek is expensive, start searching for new cluster from
607                  * start of partition, to minimize the span of allocated swap.
608                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
609                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
610                  */
611                 scan_base = offset = si->lowest_bit;
612                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
613
614                 /* Locate the first empty (unaligned) cluster */
615                 for (; last_in_cluster <= si->highest_bit; offset++) {
616                         if (si->swap_map[offset])
617                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
618                         else if (offset == last_in_cluster) {
619                                 spin_lock(&si->lock);
620                                 offset -= SWAPFILE_CLUSTER - 1;
621                                 si->cluster_next = offset;
622                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
623                                 goto checks;
624                         }
625                         if (unlikely(--latency_ration < 0)) {
626                                 cond_resched();
627                                 latency_ration = LATENCY_LIMIT;
628                         }
629                 }
630
631                 offset = scan_base;
632                 spin_lock(&si->lock);
633                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
634         }
635
636 checks:
637         if (si->cluster_info) {
638                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
639                 /* take a break if we already got some slots */
640                         if (n_ret)
641                                 goto done;
642                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
643                                                         &scan_base))
644                                 goto scan;
645                 }
646         }
647         if (!(si->flags & SWP_WRITEOK))
648                 goto no_page;
649         if (!si->highest_bit)
650                 goto no_page;
651         if (offset > si->highest_bit)
652                 scan_base = offset = si->lowest_bit;
653
654         ci = lock_cluster(si, offset);
655         /* reuse swap entry of cache-only swap if not busy. */
656         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
657                 int swap_was_freed;
658                 unlock_cluster(ci);
659                 spin_unlock(&si->lock);
660                 swap_was_freed = __try_to_reclaim_swap(si, offset);
661                 spin_lock(&si->lock);
662                 /* entry was freed successfully, try to use this again */
663                 if (swap_was_freed)
664                         goto checks;
665                 goto scan; /* check next one */
666         }
667
668         if (si->swap_map[offset]) {
669                 unlock_cluster(ci);
670                 if (!n_ret)
671                         goto scan;
672                 else
673                         goto done;
674         }
675
676         if (offset == si->lowest_bit)
677                 si->lowest_bit++;
678         if (offset == si->highest_bit)
679                 si->highest_bit--;
680         si->inuse_pages++;
681         if (si->inuse_pages == si->pages) {
682                 si->lowest_bit = si->max;
683                 si->highest_bit = 0;
684                 spin_lock(&swap_avail_lock);
685                 plist_del(&si->avail_list, &swap_avail_head);
686                 spin_unlock(&swap_avail_lock);
687         }
688         si->swap_map[offset] = usage;
689         inc_cluster_info_page(si, si->cluster_info, offset);
690         unlock_cluster(ci);
691         si->cluster_next = offset + 1;
692         slots[n_ret++] = swp_entry(si->type, offset);
693
694         /* got enough slots or reach max slots? */
695         if ((n_ret == nr) || (offset >= si->highest_bit))
696                 goto done;
697
698         /* search for next available slot */
699
700         /* time to take a break? */
701         if (unlikely(--latency_ration < 0)) {
702                 if (n_ret)
703                         goto done;
704                 spin_unlock(&si->lock);
705                 cond_resched();
706                 spin_lock(&si->lock);
707                 latency_ration = LATENCY_LIMIT;
708         }
709
710         /* try to get more slots in cluster */
711         if (si->cluster_info) {
712                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
713                         goto checks;
714                 else
715                         goto done;
716         }
717         /* non-ssd case */
718         ++offset;
719
720         /* non-ssd case, still more slots in cluster? */
721         if (si->cluster_nr && !si->swap_map[offset]) {
722                 --si->cluster_nr;
723                 goto checks;
724         }
725
726 done:
727         si->flags -= SWP_SCANNING;
728         return n_ret;
729
730 scan:
731         spin_unlock(&si->lock);
732         while (++offset <= si->highest_bit) {
733                 if (!si->swap_map[offset]) {
734                         spin_lock(&si->lock);
735                         goto checks;
736                 }
737                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
738                         spin_lock(&si->lock);
739                         goto checks;
740                 }
741                 if (unlikely(--latency_ration < 0)) {
742                         cond_resched();
743                         latency_ration = LATENCY_LIMIT;
744                 }
745         }
746         offset = si->lowest_bit;
747         while (offset < scan_base) {
748                 if (!si->swap_map[offset]) {
749                         spin_lock(&si->lock);
750                         goto checks;
751                 }
752                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
753                         spin_lock(&si->lock);
754                         goto checks;
755                 }
756                 if (unlikely(--latency_ration < 0)) {
757                         cond_resched();
758                         latency_ration = LATENCY_LIMIT;
759                 }
760                 offset++;
761         }
762         spin_lock(&si->lock);
763
764 no_page:
765         si->flags -= SWP_SCANNING;
766         return n_ret;
767 }
768
769 static unsigned long scan_swap_map(struct swap_info_struct *si,
770                                    unsigned char usage)
771 {
772         swp_entry_t entry;
773         int n_ret;
774
775         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
776
777         if (n_ret)
778                 return swp_offset(entry);
779         else
780                 return 0;
781
782 }
783
784 int get_swap_pages(int n_goal, swp_entry_t swp_entries[])
785 {
786         struct swap_info_struct *si, *next;
787         long avail_pgs;
788         int n_ret = 0;
789
790         avail_pgs = atomic_long_read(&nr_swap_pages);
791         if (avail_pgs <= 0)
792                 goto noswap;
793
794         if (n_goal > SWAP_BATCH)
795                 n_goal = SWAP_BATCH;
796
797         if (n_goal > avail_pgs)
798                 n_goal = avail_pgs;
799
800         atomic_long_sub(n_goal, &nr_swap_pages);
801
802         spin_lock(&swap_avail_lock);
803
804 start_over:
805         plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
806                 /* requeue si to after same-priority siblings */
807                 plist_requeue(&si->avail_list, &swap_avail_head);
808                 spin_unlock(&swap_avail_lock);
809                 spin_lock(&si->lock);
810                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
811                         spin_lock(&swap_avail_lock);
812                         if (plist_node_empty(&si->avail_list)) {
813                                 spin_unlock(&si->lock);
814                                 goto nextsi;
815                         }
816                         WARN(!si->highest_bit,
817                              "swap_info %d in list but !highest_bit\n",
818                              si->type);
819                         WARN(!(si->flags & SWP_WRITEOK),
820                              "swap_info %d in list but !SWP_WRITEOK\n",
821                              si->type);
822                         plist_del(&si->avail_list, &swap_avail_head);
823                         spin_unlock(&si->lock);
824                         goto nextsi;
825                 }
826                 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
827                                             n_goal, swp_entries);
828                 spin_unlock(&si->lock);
829                 if (n_ret)
830                         goto check_out;
831                 pr_debug("scan_swap_map of si %d failed to find offset\n",
832                         si->type);
833
834                 spin_lock(&swap_avail_lock);
835 nextsi:
836                 /*
837                  * if we got here, it's likely that si was almost full before,
838                  * and since scan_swap_map() can drop the si->lock, multiple
839                  * callers probably all tried to get a page from the same si
840                  * and it filled up before we could get one; or, the si filled
841                  * up between us dropping swap_avail_lock and taking si->lock.
842                  * Since we dropped the swap_avail_lock, the swap_avail_head
843                  * list may have been modified; so if next is still in the
844                  * swap_avail_head list then try it, otherwise start over
845                  * if we have not gotten any slots.
846                  */
847                 if (plist_node_empty(&next->avail_list))
848                         goto start_over;
849         }
850
851         spin_unlock(&swap_avail_lock);
852
853 check_out:
854         if (n_ret < n_goal)
855                 atomic_long_add((long) (n_goal-n_ret), &nr_swap_pages);
856 noswap:
857         return n_ret;
858 }
859
860 /* The only caller of this function is now suspend routine */
861 swp_entry_t get_swap_page_of_type(int type)
862 {
863         struct swap_info_struct *si;
864         pgoff_t offset;
865
866         si = swap_info[type];
867         spin_lock(&si->lock);
868         if (si && (si->flags & SWP_WRITEOK)) {
869                 atomic_long_dec(&nr_swap_pages);
870                 /* This is called for allocating swap entry, not cache */
871                 offset = scan_swap_map(si, 1);
872                 if (offset) {
873                         spin_unlock(&si->lock);
874                         return swp_entry(type, offset);
875                 }
876                 atomic_long_inc(&nr_swap_pages);
877         }
878         spin_unlock(&si->lock);
879         return (swp_entry_t) {0};
880 }
881
882 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
883 {
884         struct swap_info_struct *p;
885         unsigned long offset, type;
886
887         if (!entry.val)
888                 goto out;
889         type = swp_type(entry);
890         if (type >= nr_swapfiles)
891                 goto bad_nofile;
892         p = swap_info[type];
893         if (!(p->flags & SWP_USED))
894                 goto bad_device;
895         offset = swp_offset(entry);
896         if (offset >= p->max)
897                 goto bad_offset;
898         return p;
899
900 bad_offset:
901         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
902         goto out;
903 bad_device:
904         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
905         goto out;
906 bad_nofile:
907         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
908 out:
909         return NULL;
910 }
911
912 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
913 {
914         struct swap_info_struct *p;
915
916         p = __swap_info_get(entry);
917         if (!p)
918                 goto out;
919         if (!p->swap_map[swp_offset(entry)])
920                 goto bad_free;
921         return p;
922
923 bad_free:
924         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
925         goto out;
926 out:
927         return NULL;
928 }
929
930 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
931 {
932         struct swap_info_struct *p;
933
934         p = _swap_info_get(entry);
935         if (p)
936                 spin_lock(&p->lock);
937         return p;
938 }
939
940 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
941                                         struct swap_info_struct *q)
942 {
943         struct swap_info_struct *p;
944
945         p = _swap_info_get(entry);
946
947         if (p != q) {
948                 if (q != NULL)
949                         spin_unlock(&q->lock);
950                 if (p != NULL)
951                         spin_lock(&p->lock);
952         }
953         return p;
954 }
955
956 static unsigned char __swap_entry_free(struct swap_info_struct *p,
957                                        swp_entry_t entry, unsigned char usage)
958 {
959         struct swap_cluster_info *ci;
960         unsigned long offset = swp_offset(entry);
961         unsigned char count;
962         unsigned char has_cache;
963
964         ci = lock_cluster_or_swap_info(p, offset);
965
966         count = p->swap_map[offset];
967
968         has_cache = count & SWAP_HAS_CACHE;
969         count &= ~SWAP_HAS_CACHE;
970
971         if (usage == SWAP_HAS_CACHE) {
972                 VM_BUG_ON(!has_cache);
973                 has_cache = 0;
974         } else if (count == SWAP_MAP_SHMEM) {
975                 /*
976                  * Or we could insist on shmem.c using a special
977                  * swap_shmem_free() and free_shmem_swap_and_cache()...
978                  */
979                 count = 0;
980         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
981                 if (count == COUNT_CONTINUED) {
982                         if (swap_count_continued(p, offset, count))
983                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
984                         else
985                                 count = SWAP_MAP_MAX;
986                 } else
987                         count--;
988         }
989
990         usage = count | has_cache;
991         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
992
993         unlock_cluster_or_swap_info(p, ci);
994
995         return usage;
996 }
997
998 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
999 {
1000         struct swap_cluster_info *ci;
1001         unsigned long offset = swp_offset(entry);
1002         unsigned char count;
1003
1004         ci = lock_cluster(p, offset);
1005         count = p->swap_map[offset];
1006         VM_BUG_ON(count != SWAP_HAS_CACHE);
1007         p->swap_map[offset] = 0;
1008         dec_cluster_info_page(p, p->cluster_info, offset);
1009         unlock_cluster(ci);
1010
1011         mem_cgroup_uncharge_swap(entry);
1012         if (offset < p->lowest_bit)
1013                 p->lowest_bit = offset;
1014         if (offset > p->highest_bit) {
1015                 bool was_full = !p->highest_bit;
1016
1017                 p->highest_bit = offset;
1018                 if (was_full && (p->flags & SWP_WRITEOK)) {
1019                         spin_lock(&swap_avail_lock);
1020                         WARN_ON(!plist_node_empty(&p->avail_list));
1021                         if (plist_node_empty(&p->avail_list))
1022                                 plist_add(&p->avail_list,
1023                                           &swap_avail_head);
1024                         spin_unlock(&swap_avail_lock);
1025                 }
1026         }
1027         atomic_long_inc(&nr_swap_pages);
1028         p->inuse_pages--;
1029         frontswap_invalidate_page(p->type, offset);
1030         if (p->flags & SWP_BLKDEV) {
1031                 struct gendisk *disk = p->bdev->bd_disk;
1032
1033                 if (disk->fops->swap_slot_free_notify)
1034                         disk->fops->swap_slot_free_notify(p->bdev,
1035                                                           offset);
1036         }
1037 }
1038
1039 /*
1040  * Caller has made sure that the swap device corresponding to entry
1041  * is still around or has not been recycled.
1042  */
1043 void swap_free(swp_entry_t entry)
1044 {
1045         struct swap_info_struct *p;
1046
1047         p = _swap_info_get(entry);
1048         if (p) {
1049                 if (!__swap_entry_free(p, entry, 1))
1050                         free_swap_slot(entry);
1051         }
1052 }
1053
1054 /*
1055  * Called after dropping swapcache to decrease refcnt to swap entries.
1056  */
1057 void swapcache_free(swp_entry_t entry)
1058 {
1059         struct swap_info_struct *p;
1060
1061         p = _swap_info_get(entry);
1062         if (p) {
1063                 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1064                         free_swap_slot(entry);
1065         }
1066 }
1067
1068 void swapcache_free_entries(swp_entry_t *entries, int n)
1069 {
1070         struct swap_info_struct *p, *prev;
1071         int i;
1072
1073         if (n <= 0)
1074                 return;
1075
1076         prev = NULL;
1077         p = NULL;
1078         for (i = 0; i < n; ++i) {
1079                 p = swap_info_get_cont(entries[i], prev);
1080                 if (p)
1081                         swap_entry_free(p, entries[i]);
1082                 else
1083                         break;
1084                 prev = p;
1085         }
1086         if (p)
1087                 spin_unlock(&p->lock);
1088 }
1089
1090 /*
1091  * How many references to page are currently swapped out?
1092  * This does not give an exact answer when swap count is continued,
1093  * but does include the high COUNT_CONTINUED flag to allow for that.
1094  */
1095 int page_swapcount(struct page *page)
1096 {
1097         int count = 0;
1098         struct swap_info_struct *p;
1099         struct swap_cluster_info *ci;
1100         swp_entry_t entry;
1101         unsigned long offset;
1102
1103         entry.val = page_private(page);
1104         p = _swap_info_get(entry);
1105         if (p) {
1106                 offset = swp_offset(entry);
1107                 ci = lock_cluster_or_swap_info(p, offset);
1108                 count = swap_count(p->swap_map[offset]);
1109                 unlock_cluster_or_swap_info(p, ci);
1110         }
1111         return count;
1112 }
1113
1114 /*
1115  * How many references to @entry are currently swapped out?
1116  * This does not give an exact answer when swap count is continued,
1117  * but does include the high COUNT_CONTINUED flag to allow for that.
1118  */
1119 int __swp_swapcount(swp_entry_t entry)
1120 {
1121         int count = 0;
1122         pgoff_t offset;
1123         struct swap_info_struct *si;
1124         struct swap_cluster_info *ci;
1125
1126         si = __swap_info_get(entry);
1127         if (si) {
1128                 offset = swp_offset(entry);
1129                 ci = lock_cluster_or_swap_info(si, offset);
1130                 count = swap_count(si->swap_map[offset]);
1131                 unlock_cluster_or_swap_info(si, ci);
1132         }
1133         return count;
1134 }
1135
1136 /*
1137  * How many references to @entry are currently swapped out?
1138  * This considers COUNT_CONTINUED so it returns exact answer.
1139  */
1140 int swp_swapcount(swp_entry_t entry)
1141 {
1142         int count, tmp_count, n;
1143         struct swap_info_struct *p;
1144         struct swap_cluster_info *ci;
1145         struct page *page;
1146         pgoff_t offset;
1147         unsigned char *map;
1148
1149         p = _swap_info_get(entry);
1150         if (!p)
1151                 return 0;
1152
1153         offset = swp_offset(entry);
1154
1155         ci = lock_cluster_or_swap_info(p, offset);
1156
1157         count = swap_count(p->swap_map[offset]);
1158         if (!(count & COUNT_CONTINUED))
1159                 goto out;
1160
1161         count &= ~COUNT_CONTINUED;
1162         n = SWAP_MAP_MAX + 1;
1163
1164         page = vmalloc_to_page(p->swap_map + offset);
1165         offset &= ~PAGE_MASK;
1166         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1167
1168         do {
1169                 page = list_next_entry(page, lru);
1170                 map = kmap_atomic(page);
1171                 tmp_count = map[offset];
1172                 kunmap_atomic(map);
1173
1174                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1175                 n *= (SWAP_CONT_MAX + 1);
1176         } while (tmp_count & COUNT_CONTINUED);
1177 out:
1178         unlock_cluster_or_swap_info(p, ci);
1179         return count;
1180 }
1181
1182 /*
1183  * We can write to an anon page without COW if there are no other references
1184  * to it.  And as a side-effect, free up its swap: because the old content
1185  * on disk will never be read, and seeking back there to write new content
1186  * later would only waste time away from clustering.
1187  *
1188  * NOTE: total_mapcount should not be relied upon by the caller if
1189  * reuse_swap_page() returns false, but it may be always overwritten
1190  * (see the other implementation for CONFIG_SWAP=n).
1191  */
1192 bool reuse_swap_page(struct page *page, int *total_mapcount)
1193 {
1194         int count;
1195
1196         VM_BUG_ON_PAGE(!PageLocked(page), page);
1197         if (unlikely(PageKsm(page)))
1198                 return false;
1199         count = page_trans_huge_mapcount(page, total_mapcount);
1200         if (count <= 1 && PageSwapCache(page)) {
1201                 count += page_swapcount(page);
1202                 if (count != 1)
1203                         goto out;
1204                 if (!PageWriteback(page)) {
1205                         delete_from_swap_cache(page);
1206                         SetPageDirty(page);
1207                 } else {
1208                         swp_entry_t entry;
1209                         struct swap_info_struct *p;
1210
1211                         entry.val = page_private(page);
1212                         p = swap_info_get(entry);
1213                         if (p->flags & SWP_STABLE_WRITES) {
1214                                 spin_unlock(&p->lock);
1215                                 return false;
1216                         }
1217                         spin_unlock(&p->lock);
1218                 }
1219         }
1220 out:
1221         return count <= 1;
1222 }
1223
1224 /*
1225  * If swap is getting full, or if there are no more mappings of this page,
1226  * then try_to_free_swap is called to free its swap space.
1227  */
1228 int try_to_free_swap(struct page *page)
1229 {
1230         VM_BUG_ON_PAGE(!PageLocked(page), page);
1231
1232         if (!PageSwapCache(page))
1233                 return 0;
1234         if (PageWriteback(page))
1235                 return 0;
1236         if (page_swapcount(page))
1237                 return 0;
1238
1239         /*
1240          * Once hibernation has begun to create its image of memory,
1241          * there's a danger that one of the calls to try_to_free_swap()
1242          * - most probably a call from __try_to_reclaim_swap() while
1243          * hibernation is allocating its own swap pages for the image,
1244          * but conceivably even a call from memory reclaim - will free
1245          * the swap from a page which has already been recorded in the
1246          * image as a clean swapcache page, and then reuse its swap for
1247          * another page of the image.  On waking from hibernation, the
1248          * original page might be freed under memory pressure, then
1249          * later read back in from swap, now with the wrong data.
1250          *
1251          * Hibernation suspends storage while it is writing the image
1252          * to disk so check that here.
1253          */
1254         if (pm_suspended_storage())
1255                 return 0;
1256
1257         delete_from_swap_cache(page);
1258         SetPageDirty(page);
1259         return 1;
1260 }
1261
1262 /*
1263  * Free the swap entry like above, but also try to
1264  * free the page cache entry if it is the last user.
1265  */
1266 int free_swap_and_cache(swp_entry_t entry)
1267 {
1268         struct swap_info_struct *p;
1269         struct page *page = NULL;
1270         unsigned char count;
1271
1272         if (non_swap_entry(entry))
1273                 return 1;
1274
1275         p = _swap_info_get(entry);
1276         if (p) {
1277                 count = __swap_entry_free(p, entry, 1);
1278                 if (count == SWAP_HAS_CACHE) {
1279                         page = find_get_page(swap_address_space(entry),
1280                                              swp_offset(entry));
1281                         if (page && !trylock_page(page)) {
1282                                 put_page(page);
1283                                 page = NULL;
1284                         }
1285                 } else if (!count)
1286                         free_swap_slot(entry);
1287         }
1288         if (page) {
1289                 /*
1290                  * Not mapped elsewhere, or swap space full? Free it!
1291                  * Also recheck PageSwapCache now page is locked (above).
1292                  */
1293                 if (PageSwapCache(page) && !PageWriteback(page) &&
1294                     (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1295                         delete_from_swap_cache(page);
1296                         SetPageDirty(page);
1297                 }
1298                 unlock_page(page);
1299                 put_page(page);
1300         }
1301         return p != NULL;
1302 }
1303
1304 #ifdef CONFIG_HIBERNATION
1305 /*
1306  * Find the swap type that corresponds to given device (if any).
1307  *
1308  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1309  * from 0, in which the swap header is expected to be located.
1310  *
1311  * This is needed for the suspend to disk (aka swsusp).
1312  */
1313 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1314 {
1315         struct block_device *bdev = NULL;
1316         int type;
1317
1318         if (device)
1319                 bdev = bdget(device);
1320
1321         spin_lock(&swap_lock);
1322         for (type = 0; type < nr_swapfiles; type++) {
1323                 struct swap_info_struct *sis = swap_info[type];
1324
1325                 if (!(sis->flags & SWP_WRITEOK))
1326                         continue;
1327
1328                 if (!bdev) {
1329                         if (bdev_p)
1330                                 *bdev_p = bdgrab(sis->bdev);
1331
1332                         spin_unlock(&swap_lock);
1333                         return type;
1334                 }
1335                 if (bdev == sis->bdev) {
1336                         struct swap_extent *se = &sis->first_swap_extent;
1337
1338                         if (se->start_block == offset) {
1339                                 if (bdev_p)
1340                                         *bdev_p = bdgrab(sis->bdev);
1341
1342                                 spin_unlock(&swap_lock);
1343                                 bdput(bdev);
1344                                 return type;
1345                         }
1346                 }
1347         }
1348         spin_unlock(&swap_lock);
1349         if (bdev)
1350                 bdput(bdev);
1351
1352         return -ENODEV;
1353 }
1354
1355 /*
1356  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1357  * corresponding to given index in swap_info (swap type).
1358  */
1359 sector_t swapdev_block(int type, pgoff_t offset)
1360 {
1361         struct block_device *bdev;
1362
1363         if ((unsigned int)type >= nr_swapfiles)
1364                 return 0;
1365         if (!(swap_info[type]->flags & SWP_WRITEOK))
1366                 return 0;
1367         return map_swap_entry(swp_entry(type, offset), &bdev);
1368 }
1369
1370 /*
1371  * Return either the total number of swap pages of given type, or the number
1372  * of free pages of that type (depending on @free)
1373  *
1374  * This is needed for software suspend
1375  */
1376 unsigned int count_swap_pages(int type, int free)
1377 {
1378         unsigned int n = 0;
1379
1380         spin_lock(&swap_lock);
1381         if ((unsigned int)type < nr_swapfiles) {
1382                 struct swap_info_struct *sis = swap_info[type];
1383
1384                 spin_lock(&sis->lock);
1385                 if (sis->flags & SWP_WRITEOK) {
1386                         n = sis->pages;
1387                         if (free)
1388                                 n -= sis->inuse_pages;
1389                 }
1390                 spin_unlock(&sis->lock);
1391         }
1392         spin_unlock(&swap_lock);
1393         return n;
1394 }
1395 #endif /* CONFIG_HIBERNATION */
1396
1397 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1398 {
1399         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1400 }
1401
1402 /*
1403  * No need to decide whether this PTE shares the swap entry with others,
1404  * just let do_wp_page work it out if a write is requested later - to
1405  * force COW, vm_page_prot omits write permission from any private vma.
1406  */
1407 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1408                 unsigned long addr, swp_entry_t entry, struct page *page)
1409 {
1410         struct page *swapcache;
1411         struct mem_cgroup *memcg;
1412         spinlock_t *ptl;
1413         pte_t *pte;
1414         int ret = 1;
1415
1416         swapcache = page;
1417         page = ksm_might_need_to_copy(page, vma, addr);
1418         if (unlikely(!page))
1419                 return -ENOMEM;
1420
1421         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1422                                 &memcg, false)) {
1423                 ret = -ENOMEM;
1424                 goto out_nolock;
1425         }
1426
1427         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1428         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1429                 mem_cgroup_cancel_charge(page, memcg, false);
1430                 ret = 0;
1431                 goto out;
1432         }
1433
1434         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1435         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1436         get_page(page);
1437         set_pte_at(vma->vm_mm, addr, pte,
1438                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1439         if (page == swapcache) {
1440                 page_add_anon_rmap(page, vma, addr, false);
1441                 mem_cgroup_commit_charge(page, memcg, true, false);
1442         } else { /* ksm created a completely new copy */
1443                 page_add_new_anon_rmap(page, vma, addr, false);
1444                 mem_cgroup_commit_charge(page, memcg, false, false);
1445                 lru_cache_add_active_or_unevictable(page, vma);
1446         }
1447         swap_free(entry);
1448         /*
1449          * Move the page to the active list so it is not
1450          * immediately swapped out again after swapon.
1451          */
1452         activate_page(page);
1453 out:
1454         pte_unmap_unlock(pte, ptl);
1455 out_nolock:
1456         if (page != swapcache) {
1457                 unlock_page(page);
1458                 put_page(page);
1459         }
1460         return ret;
1461 }
1462
1463 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1464                                 unsigned long addr, unsigned long end,
1465                                 swp_entry_t entry, struct page *page)
1466 {
1467         pte_t swp_pte = swp_entry_to_pte(entry);
1468         pte_t *pte;
1469         int ret = 0;
1470
1471         /*
1472          * We don't actually need pte lock while scanning for swp_pte: since
1473          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1474          * page table while we're scanning; though it could get zapped, and on
1475          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1476          * of unmatched parts which look like swp_pte, so unuse_pte must
1477          * recheck under pte lock.  Scanning without pte lock lets it be
1478          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1479          */
1480         pte = pte_offset_map(pmd, addr);
1481         do {
1482                 /*
1483                  * swapoff spends a _lot_ of time in this loop!
1484                  * Test inline before going to call unuse_pte.
1485                  */
1486                 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1487                         pte_unmap(pte);
1488                         ret = unuse_pte(vma, pmd, addr, entry, page);
1489                         if (ret)
1490                                 goto out;
1491                         pte = pte_offset_map(pmd, addr);
1492                 }
1493         } while (pte++, addr += PAGE_SIZE, addr != end);
1494         pte_unmap(pte - 1);
1495 out:
1496         return ret;
1497 }
1498
1499 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1500                                 unsigned long addr, unsigned long end,
1501                                 swp_entry_t entry, struct page *page)
1502 {
1503         pmd_t *pmd;
1504         unsigned long next;
1505         int ret;
1506
1507         pmd = pmd_offset(pud, addr);
1508         do {
1509                 cond_resched();
1510                 next = pmd_addr_end(addr, end);
1511                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1512                         continue;
1513                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1514                 if (ret)
1515                         return ret;
1516         } while (pmd++, addr = next, addr != end);
1517         return 0;
1518 }
1519
1520 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1521                                 unsigned long addr, unsigned long end,
1522                                 swp_entry_t entry, struct page *page)
1523 {
1524         pud_t *pud;
1525         unsigned long next;
1526         int ret;
1527
1528         pud = pud_offset(pgd, addr);
1529         do {
1530                 next = pud_addr_end(addr, end);
1531                 if (pud_none_or_clear_bad(pud))
1532                         continue;
1533                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1534                 if (ret)
1535                         return ret;
1536         } while (pud++, addr = next, addr != end);
1537         return 0;
1538 }
1539
1540 static int unuse_vma(struct vm_area_struct *vma,
1541                                 swp_entry_t entry, struct page *page)
1542 {
1543         pgd_t *pgd;
1544         unsigned long addr, end, next;
1545         int ret;
1546
1547         if (page_anon_vma(page)) {
1548                 addr = page_address_in_vma(page, vma);
1549                 if (addr == -EFAULT)
1550                         return 0;
1551                 else
1552                         end = addr + PAGE_SIZE;
1553         } else {
1554                 addr = vma->vm_start;
1555                 end = vma->vm_end;
1556         }
1557
1558         pgd = pgd_offset(vma->vm_mm, addr);
1559         do {
1560                 next = pgd_addr_end(addr, end);
1561                 if (pgd_none_or_clear_bad(pgd))
1562                         continue;
1563                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1564                 if (ret)
1565                         return ret;
1566         } while (pgd++, addr = next, addr != end);
1567         return 0;
1568 }
1569
1570 static int unuse_mm(struct mm_struct *mm,
1571                                 swp_entry_t entry, struct page *page)
1572 {
1573         struct vm_area_struct *vma;
1574         int ret = 0;
1575
1576         if (!down_read_trylock(&mm->mmap_sem)) {
1577                 /*
1578                  * Activate page so shrink_inactive_list is unlikely to unmap
1579                  * its ptes while lock is dropped, so swapoff can make progress.
1580                  */
1581                 activate_page(page);
1582                 unlock_page(page);
1583                 down_read(&mm->mmap_sem);
1584                 lock_page(page);
1585         }
1586         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1587                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1588                         break;
1589                 cond_resched();
1590         }
1591         up_read(&mm->mmap_sem);
1592         return (ret < 0)? ret: 0;
1593 }
1594
1595 /*
1596  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1597  * from current position to next entry still in use.
1598  * Recycle to start on reaching the end, returning 0 when empty.
1599  */
1600 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1601                                         unsigned int prev, bool frontswap)
1602 {
1603         unsigned int max = si->max;
1604         unsigned int i = prev;
1605         unsigned char count;
1606
1607         /*
1608          * No need for swap_lock here: we're just looking
1609          * for whether an entry is in use, not modifying it; false
1610          * hits are okay, and sys_swapoff() has already prevented new
1611          * allocations from this area (while holding swap_lock).
1612          */
1613         for (;;) {
1614                 if (++i >= max) {
1615                         if (!prev) {
1616                                 i = 0;
1617                                 break;
1618                         }
1619                         /*
1620                          * No entries in use at top of swap_map,
1621                          * loop back to start and recheck there.
1622                          */
1623                         max = prev + 1;
1624                         prev = 0;
1625                         i = 1;
1626                 }
1627                 count = READ_ONCE(si->swap_map[i]);
1628                 if (count && swap_count(count) != SWAP_MAP_BAD)
1629                         if (!frontswap || frontswap_test(si, i))
1630                                 break;
1631                 if ((i % LATENCY_LIMIT) == 0)
1632                         cond_resched();
1633         }
1634         return i;
1635 }
1636
1637 /*
1638  * We completely avoid races by reading each swap page in advance,
1639  * and then search for the process using it.  All the necessary
1640  * page table adjustments can then be made atomically.
1641  *
1642  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1643  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1644  */
1645 int try_to_unuse(unsigned int type, bool frontswap,
1646                  unsigned long pages_to_unuse)
1647 {
1648         struct swap_info_struct *si = swap_info[type];
1649         struct mm_struct *start_mm;
1650         volatile unsigned char *swap_map; /* swap_map is accessed without
1651                                            * locking. Mark it as volatile
1652                                            * to prevent compiler doing
1653                                            * something odd.
1654                                            */
1655         unsigned char swcount;
1656         struct page *page;
1657         swp_entry_t entry;
1658         unsigned int i = 0;
1659         int retval = 0;
1660
1661         /*
1662          * When searching mms for an entry, a good strategy is to
1663          * start at the first mm we freed the previous entry from
1664          * (though actually we don't notice whether we or coincidence
1665          * freed the entry).  Initialize this start_mm with a hold.
1666          *
1667          * A simpler strategy would be to start at the last mm we
1668          * freed the previous entry from; but that would take less
1669          * advantage of mmlist ordering, which clusters forked mms
1670          * together, child after parent.  If we race with dup_mmap(), we
1671          * prefer to resolve parent before child, lest we miss entries
1672          * duplicated after we scanned child: using last mm would invert
1673          * that.
1674          */
1675         start_mm = &init_mm;
1676         mmget(&init_mm);
1677
1678         /*
1679          * Keep on scanning until all entries have gone.  Usually,
1680          * one pass through swap_map is enough, but not necessarily:
1681          * there are races when an instance of an entry might be missed.
1682          */
1683         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1684                 if (signal_pending(current)) {
1685                         retval = -EINTR;
1686                         break;
1687                 }
1688
1689                 /*
1690                  * Get a page for the entry, using the existing swap
1691                  * cache page if there is one.  Otherwise, get a clean
1692                  * page and read the swap into it.
1693                  */
1694                 swap_map = &si->swap_map[i];
1695                 entry = swp_entry(type, i);
1696                 page = read_swap_cache_async(entry,
1697                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1698                 if (!page) {
1699                         /*
1700                          * Either swap_duplicate() failed because entry
1701                          * has been freed independently, and will not be
1702                          * reused since sys_swapoff() already disabled
1703                          * allocation from here, or alloc_page() failed.
1704                          */
1705                         swcount = *swap_map;
1706                         /*
1707                          * We don't hold lock here, so the swap entry could be
1708                          * SWAP_MAP_BAD (when the cluster is discarding).
1709                          * Instead of fail out, We can just skip the swap
1710                          * entry because swapoff will wait for discarding
1711                          * finish anyway.
1712                          */
1713                         if (!swcount || swcount == SWAP_MAP_BAD)
1714                                 continue;
1715                         retval = -ENOMEM;
1716                         break;
1717                 }
1718
1719                 /*
1720                  * Don't hold on to start_mm if it looks like exiting.
1721                  */
1722                 if (atomic_read(&start_mm->mm_users) == 1) {
1723                         mmput(start_mm);
1724                         start_mm = &init_mm;
1725                         mmget(&init_mm);
1726                 }
1727
1728                 /*
1729                  * Wait for and lock page.  When do_swap_page races with
1730                  * try_to_unuse, do_swap_page can handle the fault much
1731                  * faster than try_to_unuse can locate the entry.  This
1732                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1733                  * defer to do_swap_page in such a case - in some tests,
1734                  * do_swap_page and try_to_unuse repeatedly compete.
1735                  */
1736                 wait_on_page_locked(page);
1737                 wait_on_page_writeback(page);
1738                 lock_page(page);
1739                 wait_on_page_writeback(page);
1740
1741                 /*
1742                  * Remove all references to entry.
1743                  */
1744                 swcount = *swap_map;
1745                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1746                         retval = shmem_unuse(entry, page);
1747                         /* page has already been unlocked and released */
1748                         if (retval < 0)
1749                                 break;
1750                         continue;
1751                 }
1752                 if (swap_count(swcount) && start_mm != &init_mm)
1753                         retval = unuse_mm(start_mm, entry, page);
1754
1755                 if (swap_count(*swap_map)) {
1756                         int set_start_mm = (*swap_map >= swcount);
1757                         struct list_head *p = &start_mm->mmlist;
1758                         struct mm_struct *new_start_mm = start_mm;
1759                         struct mm_struct *prev_mm = start_mm;
1760                         struct mm_struct *mm;
1761
1762                         mmget(new_start_mm);
1763                         mmget(prev_mm);
1764                         spin_lock(&mmlist_lock);
1765                         while (swap_count(*swap_map) && !retval &&
1766                                         (p = p->next) != &start_mm->mmlist) {
1767                                 mm = list_entry(p, struct mm_struct, mmlist);
1768                                 if (!mmget_not_zero(mm))
1769                                         continue;
1770                                 spin_unlock(&mmlist_lock);
1771                                 mmput(prev_mm);
1772                                 prev_mm = mm;
1773
1774                                 cond_resched();
1775
1776                                 swcount = *swap_map;
1777                                 if (!swap_count(swcount)) /* any usage ? */
1778                                         ;
1779                                 else if (mm == &init_mm)
1780                                         set_start_mm = 1;
1781                                 else
1782                                         retval = unuse_mm(mm, entry, page);
1783
1784                                 if (set_start_mm && *swap_map < swcount) {
1785                                         mmput(new_start_mm);
1786                                         mmget(mm);
1787                                         new_start_mm = mm;
1788                                         set_start_mm = 0;
1789                                 }
1790                                 spin_lock(&mmlist_lock);
1791                         }
1792                         spin_unlock(&mmlist_lock);
1793                         mmput(prev_mm);
1794                         mmput(start_mm);
1795                         start_mm = new_start_mm;
1796                 }
1797                 if (retval) {
1798                         unlock_page(page);
1799                         put_page(page);
1800                         break;
1801                 }
1802
1803                 /*
1804                  * If a reference remains (rare), we would like to leave
1805                  * the page in the swap cache; but try_to_unmap could
1806                  * then re-duplicate the entry once we drop page lock,
1807                  * so we might loop indefinitely; also, that page could
1808                  * not be swapped out to other storage meanwhile.  So:
1809                  * delete from cache even if there's another reference,
1810                  * after ensuring that the data has been saved to disk -
1811                  * since if the reference remains (rarer), it will be
1812                  * read from disk into another page.  Splitting into two
1813                  * pages would be incorrect if swap supported "shared
1814                  * private" pages, but they are handled by tmpfs files.
1815                  *
1816                  * Given how unuse_vma() targets one particular offset
1817                  * in an anon_vma, once the anon_vma has been determined,
1818                  * this splitting happens to be just what is needed to
1819                  * handle where KSM pages have been swapped out: re-reading
1820                  * is unnecessarily slow, but we can fix that later on.
1821                  */
1822                 if (swap_count(*swap_map) &&
1823                      PageDirty(page) && PageSwapCache(page)) {
1824                         struct writeback_control wbc = {
1825                                 .sync_mode = WB_SYNC_NONE,
1826                         };
1827
1828                         swap_writepage(page, &wbc);
1829                         lock_page(page);
1830                         wait_on_page_writeback(page);
1831                 }
1832
1833                 /*
1834                  * It is conceivable that a racing task removed this page from
1835                  * swap cache just before we acquired the page lock at the top,
1836                  * or while we dropped it in unuse_mm().  The page might even
1837                  * be back in swap cache on another swap area: that we must not
1838                  * delete, since it may not have been written out to swap yet.
1839                  */
1840                 if (PageSwapCache(page) &&
1841                     likely(page_private(page) == entry.val))
1842                         delete_from_swap_cache(page);
1843
1844                 /*
1845                  * So we could skip searching mms once swap count went
1846                  * to 1, we did not mark any present ptes as dirty: must
1847                  * mark page dirty so shrink_page_list will preserve it.
1848                  */
1849                 SetPageDirty(page);
1850                 unlock_page(page);
1851                 put_page(page);
1852
1853                 /*
1854                  * Make sure that we aren't completely killing
1855                  * interactive performance.
1856                  */
1857                 cond_resched();
1858                 if (frontswap && pages_to_unuse > 0) {
1859                         if (!--pages_to_unuse)
1860                                 break;
1861                 }
1862         }
1863
1864         mmput(start_mm);
1865         return retval;
1866 }
1867
1868 /*
1869  * After a successful try_to_unuse, if no swap is now in use, we know
1870  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1871  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1872  * added to the mmlist just after page_duplicate - before would be racy.
1873  */
1874 static void drain_mmlist(void)
1875 {
1876         struct list_head *p, *next;
1877         unsigned int type;
1878
1879         for (type = 0; type < nr_swapfiles; type++)
1880                 if (swap_info[type]->inuse_pages)
1881                         return;
1882         spin_lock(&mmlist_lock);
1883         list_for_each_safe(p, next, &init_mm.mmlist)
1884                 list_del_init(p);
1885         spin_unlock(&mmlist_lock);
1886 }
1887
1888 /*
1889  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1890  * corresponds to page offset for the specified swap entry.
1891  * Note that the type of this function is sector_t, but it returns page offset
1892  * into the bdev, not sector offset.
1893  */
1894 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1895 {
1896         struct swap_info_struct *sis;
1897         struct swap_extent *start_se;
1898         struct swap_extent *se;
1899         pgoff_t offset;
1900
1901         sis = swap_info[swp_type(entry)];
1902         *bdev = sis->bdev;
1903
1904         offset = swp_offset(entry);
1905         start_se = sis->curr_swap_extent;
1906         se = start_se;
1907
1908         for ( ; ; ) {
1909                 if (se->start_page <= offset &&
1910                                 offset < (se->start_page + se->nr_pages)) {
1911                         return se->start_block + (offset - se->start_page);
1912                 }
1913                 se = list_next_entry(se, list);
1914                 sis->curr_swap_extent = se;
1915                 BUG_ON(se == start_se);         /* It *must* be present */
1916         }
1917 }
1918
1919 /*
1920  * Returns the page offset into bdev for the specified page's swap entry.
1921  */
1922 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1923 {
1924         swp_entry_t entry;
1925         entry.val = page_private(page);
1926         return map_swap_entry(entry, bdev);
1927 }
1928
1929 /*
1930  * Free all of a swapdev's extent information
1931  */
1932 static void destroy_swap_extents(struct swap_info_struct *sis)
1933 {
1934         while (!list_empty(&sis->first_swap_extent.list)) {
1935                 struct swap_extent *se;
1936
1937                 se = list_first_entry(&sis->first_swap_extent.list,
1938                                 struct swap_extent, list);
1939                 list_del(&se->list);
1940                 kfree(se);
1941         }
1942
1943         if (sis->flags & SWP_FILE) {
1944                 struct file *swap_file = sis->swap_file;
1945                 struct address_space *mapping = swap_file->f_mapping;
1946
1947                 sis->flags &= ~SWP_FILE;
1948                 mapping->a_ops->swap_deactivate(swap_file);
1949         }
1950 }
1951
1952 /*
1953  * Add a block range (and the corresponding page range) into this swapdev's
1954  * extent list.  The extent list is kept sorted in page order.
1955  *
1956  * This function rather assumes that it is called in ascending page order.
1957  */
1958 int
1959 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1960                 unsigned long nr_pages, sector_t start_block)
1961 {
1962         struct swap_extent *se;
1963         struct swap_extent *new_se;
1964         struct list_head *lh;
1965
1966         if (start_page == 0) {
1967                 se = &sis->first_swap_extent;
1968                 sis->curr_swap_extent = se;
1969                 se->start_page = 0;
1970                 se->nr_pages = nr_pages;
1971                 se->start_block = start_block;
1972                 return 1;
1973         } else {
1974                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1975                 se = list_entry(lh, struct swap_extent, list);
1976                 BUG_ON(se->start_page + se->nr_pages != start_page);
1977                 if (se->start_block + se->nr_pages == start_block) {
1978                         /* Merge it */
1979                         se->nr_pages += nr_pages;
1980                         return 0;
1981                 }
1982         }
1983
1984         /*
1985          * No merge.  Insert a new extent, preserving ordering.
1986          */
1987         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1988         if (new_se == NULL)
1989                 return -ENOMEM;
1990         new_se->start_page = start_page;
1991         new_se->nr_pages = nr_pages;
1992         new_se->start_block = start_block;
1993
1994         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1995         return 1;
1996 }
1997
1998 /*
1999  * A `swap extent' is a simple thing which maps a contiguous range of pages
2000  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2001  * is built at swapon time and is then used at swap_writepage/swap_readpage
2002  * time for locating where on disk a page belongs.
2003  *
2004  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2005  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2006  * swap files identically.
2007  *
2008  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2009  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2010  * swapfiles are handled *identically* after swapon time.
2011  *
2012  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2013  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2014  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2015  * requirements, they are simply tossed out - we will never use those blocks
2016  * for swapping.
2017  *
2018  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2019  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2020  * which will scribble on the fs.
2021  *
2022  * The amount of disk space which a single swap extent represents varies.
2023  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2024  * extents in the list.  To avoid much list walking, we cache the previous
2025  * search location in `curr_swap_extent', and start new searches from there.
2026  * This is extremely effective.  The average number of iterations in
2027  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2028  */
2029 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2030 {
2031         struct file *swap_file = sis->swap_file;
2032         struct address_space *mapping = swap_file->f_mapping;
2033         struct inode *inode = mapping->host;
2034         int ret;
2035
2036         if (S_ISBLK(inode->i_mode)) {
2037                 ret = add_swap_extent(sis, 0, sis->max, 0);
2038                 *span = sis->pages;
2039                 return ret;
2040         }
2041
2042         if (mapping->a_ops->swap_activate) {
2043                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2044                 if (!ret) {
2045                         sis->flags |= SWP_FILE;
2046                         ret = add_swap_extent(sis, 0, sis->max, 0);
2047                         *span = sis->pages;
2048                 }
2049                 return ret;
2050         }
2051
2052         return generic_swapfile_activate(sis, swap_file, span);
2053 }
2054
2055 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2056                                 unsigned char *swap_map,
2057                                 struct swap_cluster_info *cluster_info)
2058 {
2059         if (prio >= 0)
2060                 p->prio = prio;
2061         else
2062                 p->prio = --least_priority;
2063         /*
2064          * the plist prio is negated because plist ordering is
2065          * low-to-high, while swap ordering is high-to-low
2066          */
2067         p->list.prio = -p->prio;
2068         p->avail_list.prio = -p->prio;
2069         p->swap_map = swap_map;
2070         p->cluster_info = cluster_info;
2071         p->flags |= SWP_WRITEOK;
2072         atomic_long_add(p->pages, &nr_swap_pages);
2073         total_swap_pages += p->pages;
2074
2075         assert_spin_locked(&swap_lock);
2076         /*
2077          * both lists are plists, and thus priority ordered.
2078          * swap_active_head needs to be priority ordered for swapoff(),
2079          * which on removal of any swap_info_struct with an auto-assigned
2080          * (i.e. negative) priority increments the auto-assigned priority
2081          * of any lower-priority swap_info_structs.
2082          * swap_avail_head needs to be priority ordered for get_swap_page(),
2083          * which allocates swap pages from the highest available priority
2084          * swap_info_struct.
2085          */
2086         plist_add(&p->list, &swap_active_head);
2087         spin_lock(&swap_avail_lock);
2088         plist_add(&p->avail_list, &swap_avail_head);
2089         spin_unlock(&swap_avail_lock);
2090 }
2091
2092 static void enable_swap_info(struct swap_info_struct *p, int prio,
2093                                 unsigned char *swap_map,
2094                                 struct swap_cluster_info *cluster_info,
2095                                 unsigned long *frontswap_map)
2096 {
2097         frontswap_init(p->type, frontswap_map);
2098         spin_lock(&swap_lock);
2099         spin_lock(&p->lock);
2100          _enable_swap_info(p, prio, swap_map, cluster_info);
2101         spin_unlock(&p->lock);
2102         spin_unlock(&swap_lock);
2103 }
2104
2105 static void reinsert_swap_info(struct swap_info_struct *p)
2106 {
2107         spin_lock(&swap_lock);
2108         spin_lock(&p->lock);
2109         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2110         spin_unlock(&p->lock);
2111         spin_unlock(&swap_lock);
2112 }
2113
2114 bool has_usable_swap(void)
2115 {
2116         bool ret = true;
2117
2118         spin_lock(&swap_lock);
2119         if (plist_head_empty(&swap_active_head))
2120                 ret = false;
2121         spin_unlock(&swap_lock);
2122         return ret;
2123 }
2124
2125 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2126 {
2127         struct swap_info_struct *p = NULL;
2128         unsigned char *swap_map;
2129         struct swap_cluster_info *cluster_info;
2130         unsigned long *frontswap_map;
2131         struct file *swap_file, *victim;
2132         struct address_space *mapping;
2133         struct inode *inode;
2134         struct filename *pathname;
2135         int err, found = 0;
2136         unsigned int old_block_size;
2137
2138         if (!capable(CAP_SYS_ADMIN))
2139                 return -EPERM;
2140
2141         BUG_ON(!current->mm);
2142
2143         pathname = getname(specialfile);
2144         if (IS_ERR(pathname))
2145                 return PTR_ERR(pathname);
2146
2147         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2148         err = PTR_ERR(victim);
2149         if (IS_ERR(victim))
2150                 goto out;
2151
2152         mapping = victim->f_mapping;
2153         spin_lock(&swap_lock);
2154         plist_for_each_entry(p, &swap_active_head, list) {
2155                 if (p->flags & SWP_WRITEOK) {
2156                         if (p->swap_file->f_mapping == mapping) {
2157                                 found = 1;
2158                                 break;
2159                         }
2160                 }
2161         }
2162         if (!found) {
2163                 err = -EINVAL;
2164                 spin_unlock(&swap_lock);
2165                 goto out_dput;
2166         }
2167         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2168                 vm_unacct_memory(p->pages);
2169         else {
2170                 err = -ENOMEM;
2171                 spin_unlock(&swap_lock);
2172                 goto out_dput;
2173         }
2174         spin_lock(&swap_avail_lock);
2175         plist_del(&p->avail_list, &swap_avail_head);
2176         spin_unlock(&swap_avail_lock);
2177         spin_lock(&p->lock);
2178         if (p->prio < 0) {
2179                 struct swap_info_struct *si = p;
2180
2181                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2182                         si->prio++;
2183                         si->list.prio--;
2184                         si->avail_list.prio--;
2185                 }
2186                 least_priority++;
2187         }
2188         plist_del(&p->list, &swap_active_head);
2189         atomic_long_sub(p->pages, &nr_swap_pages);
2190         total_swap_pages -= p->pages;
2191         p->flags &= ~SWP_WRITEOK;
2192         spin_unlock(&p->lock);
2193         spin_unlock(&swap_lock);
2194
2195         disable_swap_slots_cache_lock();
2196
2197         set_current_oom_origin();
2198         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2199         clear_current_oom_origin();
2200
2201         if (err) {
2202                 /* re-insert swap space back into swap_list */
2203                 reinsert_swap_info(p);
2204                 reenable_swap_slots_cache_unlock();
2205                 goto out_dput;
2206         }
2207
2208         reenable_swap_slots_cache_unlock();
2209
2210         flush_work(&p->discard_work);
2211
2212         destroy_swap_extents(p);
2213         if (p->flags & SWP_CONTINUED)
2214                 free_swap_count_continuations(p);
2215
2216         mutex_lock(&swapon_mutex);
2217         spin_lock(&swap_lock);
2218         spin_lock(&p->lock);
2219         drain_mmlist();
2220
2221         /* wait for anyone still in scan_swap_map */
2222         p->highest_bit = 0;             /* cuts scans short */
2223         while (p->flags >= SWP_SCANNING) {
2224                 spin_unlock(&p->lock);
2225                 spin_unlock(&swap_lock);
2226                 schedule_timeout_uninterruptible(1);
2227                 spin_lock(&swap_lock);
2228                 spin_lock(&p->lock);
2229         }
2230
2231         swap_file = p->swap_file;
2232         old_block_size = p->old_block_size;
2233         p->swap_file = NULL;
2234         p->max = 0;
2235         swap_map = p->swap_map;
2236         p->swap_map = NULL;
2237         cluster_info = p->cluster_info;
2238         p->cluster_info = NULL;
2239         frontswap_map = frontswap_map_get(p);
2240         spin_unlock(&p->lock);
2241         spin_unlock(&swap_lock);
2242         frontswap_invalidate_area(p->type);
2243         frontswap_map_set(p, NULL);
2244         mutex_unlock(&swapon_mutex);
2245         free_percpu(p->percpu_cluster);
2246         p->percpu_cluster = NULL;
2247         vfree(swap_map);
2248         vfree(cluster_info);
2249         vfree(frontswap_map);
2250         /* Destroy swap account information */
2251         swap_cgroup_swapoff(p->type);
2252         exit_swap_address_space(p->type);
2253
2254         inode = mapping->host;
2255         if (S_ISBLK(inode->i_mode)) {
2256                 struct block_device *bdev = I_BDEV(inode);
2257                 set_blocksize(bdev, old_block_size);
2258                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2259         } else {
2260                 inode_lock(inode);
2261                 inode->i_flags &= ~S_SWAPFILE;
2262                 inode_unlock(inode);
2263         }
2264         filp_close(swap_file, NULL);
2265
2266         /*
2267          * Clear the SWP_USED flag after all resources are freed so that swapon
2268          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2269          * not hold p->lock after we cleared its SWP_WRITEOK.
2270          */
2271         spin_lock(&swap_lock);
2272         p->flags = 0;
2273         spin_unlock(&swap_lock);
2274
2275         err = 0;
2276         atomic_inc(&proc_poll_event);
2277         wake_up_interruptible(&proc_poll_wait);
2278
2279 out_dput:
2280         filp_close(victim, NULL);
2281 out:
2282         putname(pathname);
2283         return err;
2284 }
2285
2286 #ifdef CONFIG_PROC_FS
2287 static unsigned swaps_poll(struct file *file, poll_table *wait)
2288 {
2289         struct seq_file *seq = file->private_data;
2290
2291         poll_wait(file, &proc_poll_wait, wait);
2292
2293         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2294                 seq->poll_event = atomic_read(&proc_poll_event);
2295                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2296         }
2297
2298         return POLLIN | POLLRDNORM;
2299 }
2300
2301 /* iterator */
2302 static void *swap_start(struct seq_file *swap, loff_t *pos)
2303 {
2304         struct swap_info_struct *si;
2305         int type;
2306         loff_t l = *pos;
2307
2308         mutex_lock(&swapon_mutex);
2309
2310         if (!l)
2311                 return SEQ_START_TOKEN;
2312
2313         for (type = 0; type < nr_swapfiles; type++) {
2314                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2315                 si = swap_info[type];
2316                 if (!(si->flags & SWP_USED) || !si->swap_map)
2317                         continue;
2318                 if (!--l)
2319                         return si;
2320         }
2321
2322         return NULL;
2323 }
2324
2325 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2326 {
2327         struct swap_info_struct *si = v;
2328         int type;
2329
2330         if (v == SEQ_START_TOKEN)
2331                 type = 0;
2332         else
2333                 type = si->type + 1;
2334
2335         for (; type < nr_swapfiles; type++) {
2336                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2337                 si = swap_info[type];
2338                 if (!(si->flags & SWP_USED) || !si->swap_map)
2339                         continue;
2340                 ++*pos;
2341                 return si;
2342         }
2343
2344         return NULL;
2345 }
2346
2347 static void swap_stop(struct seq_file *swap, void *v)
2348 {
2349         mutex_unlock(&swapon_mutex);
2350 }
2351
2352 static int swap_show(struct seq_file *swap, void *v)
2353 {
2354         struct swap_info_struct *si = v;
2355         struct file *file;
2356         int len;
2357
2358         if (si == SEQ_START_TOKEN) {
2359                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2360                 return 0;
2361         }
2362
2363         file = si->swap_file;
2364         len = seq_file_path(swap, file, " \t\n\\");
2365         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2366                         len < 40 ? 40 - len : 1, " ",
2367                         S_ISBLK(file_inode(file)->i_mode) ?
2368                                 "partition" : "file\t",
2369                         si->pages << (PAGE_SHIFT - 10),
2370                         si->inuse_pages << (PAGE_SHIFT - 10),
2371                         si->prio);
2372         return 0;
2373 }
2374
2375 static const struct seq_operations swaps_op = {
2376         .start =        swap_start,
2377         .next =         swap_next,
2378         .stop =         swap_stop,
2379         .show =         swap_show
2380 };
2381
2382 static int swaps_open(struct inode *inode, struct file *file)
2383 {
2384         struct seq_file *seq;
2385         int ret;
2386
2387         ret = seq_open(file, &swaps_op);
2388         if (ret)
2389                 return ret;
2390
2391         seq = file->private_data;
2392         seq->poll_event = atomic_read(&proc_poll_event);
2393         return 0;
2394 }
2395
2396 static const struct file_operations proc_swaps_operations = {
2397         .open           = swaps_open,
2398         .read           = seq_read,
2399         .llseek         = seq_lseek,
2400         .release        = seq_release,
2401         .poll           = swaps_poll,
2402 };
2403
2404 static int __init procswaps_init(void)
2405 {
2406         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2407         return 0;
2408 }
2409 __initcall(procswaps_init);
2410 #endif /* CONFIG_PROC_FS */
2411
2412 #ifdef MAX_SWAPFILES_CHECK
2413 static int __init max_swapfiles_check(void)
2414 {
2415         MAX_SWAPFILES_CHECK();
2416         return 0;
2417 }
2418 late_initcall(max_swapfiles_check);
2419 #endif
2420
2421 static struct swap_info_struct *alloc_swap_info(void)
2422 {
2423         struct swap_info_struct *p;
2424         unsigned int type;
2425
2426         p = kzalloc(sizeof(*p), GFP_KERNEL);
2427         if (!p)
2428                 return ERR_PTR(-ENOMEM);
2429
2430         spin_lock(&swap_lock);
2431         for (type = 0; type < nr_swapfiles; type++) {
2432                 if (!(swap_info[type]->flags & SWP_USED))
2433                         break;
2434         }
2435         if (type >= MAX_SWAPFILES) {
2436                 spin_unlock(&swap_lock);
2437                 kfree(p);
2438                 return ERR_PTR(-EPERM);
2439         }
2440         if (type >= nr_swapfiles) {
2441                 p->type = type;
2442                 swap_info[type] = p;
2443                 /*
2444                  * Write swap_info[type] before nr_swapfiles, in case a
2445                  * racing procfs swap_start() or swap_next() is reading them.
2446                  * (We never shrink nr_swapfiles, we never free this entry.)
2447                  */
2448                 smp_wmb();
2449                 nr_swapfiles++;
2450         } else {
2451                 kfree(p);
2452                 p = swap_info[type];
2453                 /*
2454                  * Do not memset this entry: a racing procfs swap_next()
2455                  * would be relying on p->type to remain valid.
2456                  */
2457         }
2458         INIT_LIST_HEAD(&p->first_swap_extent.list);
2459         plist_node_init(&p->list, 0);
2460         plist_node_init(&p->avail_list, 0);
2461         p->flags = SWP_USED;
2462         spin_unlock(&swap_lock);
2463         spin_lock_init(&p->lock);
2464
2465         return p;
2466 }
2467
2468 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2469 {
2470         int error;
2471
2472         if (S_ISBLK(inode->i_mode)) {
2473                 p->bdev = bdgrab(I_BDEV(inode));
2474                 error = blkdev_get(p->bdev,
2475                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2476                 if (error < 0) {
2477                         p->bdev = NULL;
2478                         return error;
2479                 }
2480                 p->old_block_size = block_size(p->bdev);
2481                 error = set_blocksize(p->bdev, PAGE_SIZE);
2482                 if (error < 0)
2483                         return error;
2484                 p->flags |= SWP_BLKDEV;
2485         } else if (S_ISREG(inode->i_mode)) {
2486                 p->bdev = inode->i_sb->s_bdev;
2487                 inode_lock(inode);
2488                 if (IS_SWAPFILE(inode))
2489                         return -EBUSY;
2490         } else
2491                 return -EINVAL;
2492
2493         return 0;
2494 }
2495
2496 static unsigned long read_swap_header(struct swap_info_struct *p,
2497                                         union swap_header *swap_header,
2498                                         struct inode *inode)
2499 {
2500         int i;
2501         unsigned long maxpages;
2502         unsigned long swapfilepages;
2503         unsigned long last_page;
2504
2505         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2506                 pr_err("Unable to find swap-space signature\n");
2507                 return 0;
2508         }
2509
2510         /* swap partition endianess hack... */
2511         if (swab32(swap_header->info.version) == 1) {
2512                 swab32s(&swap_header->info.version);
2513                 swab32s(&swap_header->info.last_page);
2514                 swab32s(&swap_header->info.nr_badpages);
2515                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2516                         return 0;
2517                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2518                         swab32s(&swap_header->info.badpages[i]);
2519         }
2520         /* Check the swap header's sub-version */
2521         if (swap_header->info.version != 1) {
2522                 pr_warn("Unable to handle swap header version %d\n",
2523                         swap_header->info.version);
2524                 return 0;
2525         }
2526
2527         p->lowest_bit  = 1;
2528         p->cluster_next = 1;
2529         p->cluster_nr = 0;
2530
2531         /*
2532          * Find out how many pages are allowed for a single swap
2533          * device. There are two limiting factors: 1) the number
2534          * of bits for the swap offset in the swp_entry_t type, and
2535          * 2) the number of bits in the swap pte as defined by the
2536          * different architectures. In order to find the
2537          * largest possible bit mask, a swap entry with swap type 0
2538          * and swap offset ~0UL is created, encoded to a swap pte,
2539          * decoded to a swp_entry_t again, and finally the swap
2540          * offset is extracted. This will mask all the bits from
2541          * the initial ~0UL mask that can't be encoded in either
2542          * the swp_entry_t or the architecture definition of a
2543          * swap pte.
2544          */
2545         maxpages = swp_offset(pte_to_swp_entry(
2546                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2547         last_page = swap_header->info.last_page;
2548         if (last_page > maxpages) {
2549                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2550                         maxpages << (PAGE_SHIFT - 10),
2551                         last_page << (PAGE_SHIFT - 10));
2552         }
2553         if (maxpages > last_page) {
2554                 maxpages = last_page + 1;
2555                 /* p->max is an unsigned int: don't overflow it */
2556                 if ((unsigned int)maxpages == 0)
2557                         maxpages = UINT_MAX;
2558         }
2559         p->highest_bit = maxpages - 1;
2560
2561         if (!maxpages)
2562                 return 0;
2563         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2564         if (swapfilepages && maxpages > swapfilepages) {
2565                 pr_warn("Swap area shorter than signature indicates\n");
2566                 return 0;
2567         }
2568         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2569                 return 0;
2570         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2571                 return 0;
2572
2573         return maxpages;
2574 }
2575
2576 #define SWAP_CLUSTER_INFO_COLS                                          \
2577         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2578 #define SWAP_CLUSTER_SPACE_COLS                                         \
2579         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2580 #define SWAP_CLUSTER_COLS                                               \
2581         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2582
2583 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2584                                         union swap_header *swap_header,
2585                                         unsigned char *swap_map,
2586                                         struct swap_cluster_info *cluster_info,
2587                                         unsigned long maxpages,
2588                                         sector_t *span)
2589 {
2590         unsigned int j, k;
2591         unsigned int nr_good_pages;
2592         int nr_extents;
2593         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2594         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2595         unsigned long i, idx;
2596
2597         nr_good_pages = maxpages - 1;   /* omit header page */
2598
2599         cluster_list_init(&p->free_clusters);
2600         cluster_list_init(&p->discard_clusters);
2601
2602         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2603                 unsigned int page_nr = swap_header->info.badpages[i];
2604                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2605                         return -EINVAL;
2606                 if (page_nr < maxpages) {
2607                         swap_map[page_nr] = SWAP_MAP_BAD;
2608                         nr_good_pages--;
2609                         /*
2610                          * Haven't marked the cluster free yet, no list
2611                          * operation involved
2612                          */
2613                         inc_cluster_info_page(p, cluster_info, page_nr);
2614                 }
2615         }
2616
2617         /* Haven't marked the cluster free yet, no list operation involved */
2618         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2619                 inc_cluster_info_page(p, cluster_info, i);
2620
2621         if (nr_good_pages) {
2622                 swap_map[0] = SWAP_MAP_BAD;
2623                 /*
2624                  * Not mark the cluster free yet, no list
2625                  * operation involved
2626                  */
2627                 inc_cluster_info_page(p, cluster_info, 0);
2628                 p->max = maxpages;
2629                 p->pages = nr_good_pages;
2630                 nr_extents = setup_swap_extents(p, span);
2631                 if (nr_extents < 0)
2632                         return nr_extents;
2633                 nr_good_pages = p->pages;
2634         }
2635         if (!nr_good_pages) {
2636                 pr_warn("Empty swap-file\n");
2637                 return -EINVAL;
2638         }
2639
2640         if (!cluster_info)
2641                 return nr_extents;
2642
2643
2644         /*
2645          * Reduce false cache line sharing between cluster_info and
2646          * sharing same address space.
2647          */
2648         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2649                 j = (k + col) % SWAP_CLUSTER_COLS;
2650                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2651                         idx = i * SWAP_CLUSTER_COLS + j;
2652                         if (idx >= nr_clusters)
2653                                 continue;
2654                         if (cluster_count(&cluster_info[idx]))
2655                                 continue;
2656                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2657                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2658                                               idx);
2659                 }
2660         }
2661         return nr_extents;
2662 }
2663
2664 /*
2665  * Helper to sys_swapon determining if a given swap
2666  * backing device queue supports DISCARD operations.
2667  */
2668 static bool swap_discardable(struct swap_info_struct *si)
2669 {
2670         struct request_queue *q = bdev_get_queue(si->bdev);
2671
2672         if (!q || !blk_queue_discard(q))
2673                 return false;
2674
2675         return true;
2676 }
2677
2678 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2679 {
2680         struct swap_info_struct *p;
2681         struct filename *name;
2682         struct file *swap_file = NULL;
2683         struct address_space *mapping;
2684         int prio;
2685         int error;
2686         union swap_header *swap_header;
2687         int nr_extents;
2688         sector_t span;
2689         unsigned long maxpages;
2690         unsigned char *swap_map = NULL;
2691         struct swap_cluster_info *cluster_info = NULL;
2692         unsigned long *frontswap_map = NULL;
2693         struct page *page = NULL;
2694         struct inode *inode = NULL;
2695
2696         if (swap_flags & ~SWAP_FLAGS_VALID)
2697                 return -EINVAL;
2698
2699         if (!capable(CAP_SYS_ADMIN))
2700                 return -EPERM;
2701
2702         p = alloc_swap_info();
2703         if (IS_ERR(p))
2704                 return PTR_ERR(p);
2705
2706         INIT_WORK(&p->discard_work, swap_discard_work);
2707
2708         name = getname(specialfile);
2709         if (IS_ERR(name)) {
2710                 error = PTR_ERR(name);
2711                 name = NULL;
2712                 goto bad_swap;
2713         }
2714         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2715         if (IS_ERR(swap_file)) {
2716                 error = PTR_ERR(swap_file);
2717                 swap_file = NULL;
2718                 goto bad_swap;
2719         }
2720
2721         p->swap_file = swap_file;
2722         mapping = swap_file->f_mapping;
2723         inode = mapping->host;
2724
2725         /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2726         error = claim_swapfile(p, inode);
2727         if (unlikely(error))
2728                 goto bad_swap;
2729
2730         /*
2731          * Read the swap header.
2732          */
2733         if (!mapping->a_ops->readpage) {
2734                 error = -EINVAL;
2735                 goto bad_swap;
2736         }
2737         page = read_mapping_page(mapping, 0, swap_file);
2738         if (IS_ERR(page)) {
2739                 error = PTR_ERR(page);
2740                 goto bad_swap;
2741         }
2742         swap_header = kmap(page);
2743
2744         maxpages = read_swap_header(p, swap_header, inode);
2745         if (unlikely(!maxpages)) {
2746                 error = -EINVAL;
2747                 goto bad_swap;
2748         }
2749
2750         /* OK, set up the swap map and apply the bad block list */
2751         swap_map = vzalloc(maxpages);
2752         if (!swap_map) {
2753                 error = -ENOMEM;
2754                 goto bad_swap;
2755         }
2756
2757         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2758                 p->flags |= SWP_STABLE_WRITES;
2759
2760         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2761                 int cpu;
2762                 unsigned long ci, nr_cluster;
2763
2764                 p->flags |= SWP_SOLIDSTATE;
2765                 /*
2766                  * select a random position to start with to help wear leveling
2767                  * SSD
2768                  */
2769                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2770                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2771
2772                 cluster_info = vzalloc(nr_cluster * sizeof(*cluster_info));
2773                 if (!cluster_info) {
2774                         error = -ENOMEM;
2775                         goto bad_swap;
2776                 }
2777
2778                 for (ci = 0; ci < nr_cluster; ci++)
2779                         spin_lock_init(&((cluster_info + ci)->lock));
2780
2781                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2782                 if (!p->percpu_cluster) {
2783                         error = -ENOMEM;
2784                         goto bad_swap;
2785                 }
2786                 for_each_possible_cpu(cpu) {
2787                         struct percpu_cluster *cluster;
2788                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2789                         cluster_set_null(&cluster->index);
2790                 }
2791         }
2792
2793         error = swap_cgroup_swapon(p->type, maxpages);
2794         if (error)
2795                 goto bad_swap;
2796
2797         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2798                 cluster_info, maxpages, &span);
2799         if (unlikely(nr_extents < 0)) {
2800                 error = nr_extents;
2801                 goto bad_swap;
2802         }
2803         /* frontswap enabled? set up bit-per-page map for frontswap */
2804         if (IS_ENABLED(CONFIG_FRONTSWAP))
2805                 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2806
2807         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2808                 /*
2809                  * When discard is enabled for swap with no particular
2810                  * policy flagged, we set all swap discard flags here in
2811                  * order to sustain backward compatibility with older
2812                  * swapon(8) releases.
2813                  */
2814                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2815                              SWP_PAGE_DISCARD);
2816
2817                 /*
2818                  * By flagging sys_swapon, a sysadmin can tell us to
2819                  * either do single-time area discards only, or to just
2820                  * perform discards for released swap page-clusters.
2821                  * Now it's time to adjust the p->flags accordingly.
2822                  */
2823                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2824                         p->flags &= ~SWP_PAGE_DISCARD;
2825                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2826                         p->flags &= ~SWP_AREA_DISCARD;
2827
2828                 /* issue a swapon-time discard if it's still required */
2829                 if (p->flags & SWP_AREA_DISCARD) {
2830                         int err = discard_swap(p);
2831                         if (unlikely(err))
2832                                 pr_err("swapon: discard_swap(%p): %d\n",
2833                                         p, err);
2834                 }
2835         }
2836
2837         error = init_swap_address_space(p->type, maxpages);
2838         if (error)
2839                 goto bad_swap;
2840
2841         mutex_lock(&swapon_mutex);
2842         prio = -1;
2843         if (swap_flags & SWAP_FLAG_PREFER)
2844                 prio =
2845                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2846         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2847
2848         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2849                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2850                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2851                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2852                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2853                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2854                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2855                 (frontswap_map) ? "FS" : "");
2856
2857         mutex_unlock(&swapon_mutex);
2858         atomic_inc(&proc_poll_event);
2859         wake_up_interruptible(&proc_poll_wait);
2860
2861         if (S_ISREG(inode->i_mode))
2862                 inode->i_flags |= S_SWAPFILE;
2863         error = 0;
2864         goto out;
2865 bad_swap:
2866         free_percpu(p->percpu_cluster);
2867         p->percpu_cluster = NULL;
2868         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2869                 set_blocksize(p->bdev, p->old_block_size);
2870                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2871         }
2872         destroy_swap_extents(p);
2873         swap_cgroup_swapoff(p->type);
2874         spin_lock(&swap_lock);
2875         p->swap_file = NULL;
2876         p->flags = 0;
2877         spin_unlock(&swap_lock);
2878         vfree(swap_map);
2879         vfree(cluster_info);
2880         if (swap_file) {
2881                 if (inode && S_ISREG(inode->i_mode)) {
2882                         inode_unlock(inode);
2883                         inode = NULL;
2884                 }
2885                 filp_close(swap_file, NULL);
2886         }
2887 out:
2888         if (page && !IS_ERR(page)) {
2889                 kunmap(page);
2890                 put_page(page);
2891         }
2892         if (name)
2893                 putname(name);
2894         if (inode && S_ISREG(inode->i_mode))
2895                 inode_unlock(inode);
2896         if (!error)
2897                 enable_swap_slots_cache();
2898         return error;
2899 }
2900
2901 void si_swapinfo(struct sysinfo *val)
2902 {
2903         unsigned int type;
2904         unsigned long nr_to_be_unused = 0;
2905
2906         spin_lock(&swap_lock);
2907         for (type = 0; type < nr_swapfiles; type++) {
2908                 struct swap_info_struct *si = swap_info[type];
2909
2910                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2911                         nr_to_be_unused += si->inuse_pages;
2912         }
2913         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2914         val->totalswap = total_swap_pages + nr_to_be_unused;
2915         spin_unlock(&swap_lock);
2916 }
2917
2918 /*
2919  * Verify that a swap entry is valid and increment its swap map count.
2920  *
2921  * Returns error code in following case.
2922  * - success -> 0
2923  * - swp_entry is invalid -> EINVAL
2924  * - swp_entry is migration entry -> EINVAL
2925  * - swap-cache reference is requested but there is already one. -> EEXIST
2926  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2927  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2928  */
2929 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2930 {
2931         struct swap_info_struct *p;
2932         struct swap_cluster_info *ci;
2933         unsigned long offset, type;
2934         unsigned char count;
2935         unsigned char has_cache;
2936         int err = -EINVAL;
2937
2938         if (non_swap_entry(entry))
2939                 goto out;
2940
2941         type = swp_type(entry);
2942         if (type >= nr_swapfiles)
2943                 goto bad_file;
2944         p = swap_info[type];
2945         offset = swp_offset(entry);
2946         if (unlikely(offset >= p->max))
2947                 goto out;
2948
2949         ci = lock_cluster_or_swap_info(p, offset);
2950
2951         count = p->swap_map[offset];
2952
2953         /*
2954          * swapin_readahead() doesn't check if a swap entry is valid, so the
2955          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2956          */
2957         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2958                 err = -ENOENT;
2959                 goto unlock_out;
2960         }
2961
2962         has_cache = count & SWAP_HAS_CACHE;
2963         count &= ~SWAP_HAS_CACHE;
2964         err = 0;
2965
2966         if (usage == SWAP_HAS_CACHE) {
2967
2968                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2969                 if (!has_cache && count)
2970                         has_cache = SWAP_HAS_CACHE;
2971                 else if (has_cache)             /* someone else added cache */
2972                         err = -EEXIST;
2973                 else                            /* no users remaining */
2974                         err = -ENOENT;
2975
2976         } else if (count || has_cache) {
2977
2978                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2979                         count += usage;
2980                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2981                         err = -EINVAL;
2982                 else if (swap_count_continued(p, offset, count))
2983                         count = COUNT_CONTINUED;
2984                 else
2985                         err = -ENOMEM;
2986         } else
2987                 err = -ENOENT;                  /* unused swap entry */
2988
2989         p->swap_map[offset] = count | has_cache;
2990
2991 unlock_out:
2992         unlock_cluster_or_swap_info(p, ci);
2993 out:
2994         return err;
2995
2996 bad_file:
2997         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2998         goto out;
2999 }
3000
3001 /*
3002  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3003  * (in which case its reference count is never incremented).
3004  */
3005 void swap_shmem_alloc(swp_entry_t entry)
3006 {
3007         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3008 }
3009
3010 /*
3011  * Increase reference count of swap entry by 1.
3012  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3013  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3014  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3015  * might occur if a page table entry has got corrupted.
3016  */
3017 int swap_duplicate(swp_entry_t entry)
3018 {
3019         int err = 0;
3020
3021         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3022                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3023         return err;
3024 }
3025
3026 /*
3027  * @entry: swap entry for which we allocate swap cache.
3028  *
3029  * Called when allocating swap cache for existing swap entry,
3030  * This can return error codes. Returns 0 at success.
3031  * -EBUSY means there is a swap cache.
3032  * Note: return code is different from swap_duplicate().
3033  */
3034 int swapcache_prepare(swp_entry_t entry)
3035 {
3036         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3037 }
3038
3039 struct swap_info_struct *page_swap_info(struct page *page)
3040 {
3041         swp_entry_t swap = { .val = page_private(page) };
3042         return swap_info[swp_type(swap)];
3043 }
3044
3045 /*
3046  * out-of-line __page_file_ methods to avoid include hell.
3047  */
3048 struct address_space *__page_file_mapping(struct page *page)
3049 {
3050         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3051         return page_swap_info(page)->swap_file->f_mapping;
3052 }
3053 EXPORT_SYMBOL_GPL(__page_file_mapping);
3054
3055 pgoff_t __page_file_index(struct page *page)
3056 {
3057         swp_entry_t swap = { .val = page_private(page) };
3058         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3059         return swp_offset(swap);
3060 }
3061 EXPORT_SYMBOL_GPL(__page_file_index);
3062
3063 /*
3064  * add_swap_count_continuation - called when a swap count is duplicated
3065  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3066  * page of the original vmalloc'ed swap_map, to hold the continuation count
3067  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3068  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3069  *
3070  * These continuation pages are seldom referenced: the common paths all work
3071  * on the original swap_map, only referring to a continuation page when the
3072  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3073  *
3074  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3075  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3076  * can be called after dropping locks.
3077  */
3078 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3079 {
3080         struct swap_info_struct *si;
3081         struct swap_cluster_info *ci;
3082         struct page *head;
3083         struct page *page;
3084         struct page *list_page;
3085         pgoff_t offset;
3086         unsigned char count;
3087
3088         /*
3089          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3090          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3091          */
3092         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3093
3094         si = swap_info_get(entry);
3095         if (!si) {
3096                 /*
3097                  * An acceptable race has occurred since the failing
3098                  * __swap_duplicate(): the swap entry has been freed,
3099                  * perhaps even the whole swap_map cleared for swapoff.
3100                  */
3101                 goto outer;
3102         }
3103
3104         offset = swp_offset(entry);
3105
3106         ci = lock_cluster(si, offset);
3107
3108         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3109
3110         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3111                 /*
3112                  * The higher the swap count, the more likely it is that tasks
3113                  * will race to add swap count continuation: we need to avoid
3114                  * over-provisioning.
3115                  */
3116                 goto out;
3117         }
3118
3119         if (!page) {
3120                 unlock_cluster(ci);
3121                 spin_unlock(&si->lock);
3122                 return -ENOMEM;
3123         }
3124
3125         /*
3126          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3127          * no architecture is using highmem pages for kernel page tables: so it
3128          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3129          */
3130         head = vmalloc_to_page(si->swap_map + offset);
3131         offset &= ~PAGE_MASK;
3132
3133         /*
3134          * Page allocation does not initialize the page's lru field,
3135          * but it does always reset its private field.
3136          */
3137         if (!page_private(head)) {
3138                 BUG_ON(count & COUNT_CONTINUED);
3139                 INIT_LIST_HEAD(&head->lru);
3140                 set_page_private(head, SWP_CONTINUED);
3141                 si->flags |= SWP_CONTINUED;
3142         }
3143
3144         list_for_each_entry(list_page, &head->lru, lru) {
3145                 unsigned char *map;
3146
3147                 /*
3148                  * If the previous map said no continuation, but we've found
3149                  * a continuation page, free our allocation and use this one.
3150                  */
3151                 if (!(count & COUNT_CONTINUED))
3152                         goto out;
3153
3154                 map = kmap_atomic(list_page) + offset;
3155                 count = *map;
3156                 kunmap_atomic(map);
3157
3158                 /*
3159                  * If this continuation count now has some space in it,
3160                  * free our allocation and use this one.
3161                  */
3162                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3163                         goto out;
3164         }
3165
3166         list_add_tail(&page->lru, &head->lru);
3167         page = NULL;                    /* now it's attached, don't free it */
3168 out:
3169         unlock_cluster(ci);
3170         spin_unlock(&si->lock);
3171 outer:
3172         if (page)
3173                 __free_page(page);
3174         return 0;
3175 }
3176
3177 /*
3178  * swap_count_continued - when the original swap_map count is incremented
3179  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3180  * into, carry if so, or else fail until a new continuation page is allocated;
3181  * when the original swap_map count is decremented from 0 with continuation,
3182  * borrow from the continuation and report whether it still holds more.
3183  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3184  * lock.
3185  */
3186 static bool swap_count_continued(struct swap_info_struct *si,
3187                                  pgoff_t offset, unsigned char count)
3188 {
3189         struct page *head;
3190         struct page *page;
3191         unsigned char *map;
3192
3193         head = vmalloc_to_page(si->swap_map + offset);
3194         if (page_private(head) != SWP_CONTINUED) {
3195                 BUG_ON(count & COUNT_CONTINUED);
3196                 return false;           /* need to add count continuation */
3197         }
3198
3199         offset &= ~PAGE_MASK;
3200         page = list_entry(head->lru.next, struct page, lru);
3201         map = kmap_atomic(page) + offset;
3202
3203         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3204                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3205
3206         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3207                 /*
3208                  * Think of how you add 1 to 999
3209                  */
3210                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3211                         kunmap_atomic(map);
3212                         page = list_entry(page->lru.next, struct page, lru);
3213                         BUG_ON(page == head);
3214                         map = kmap_atomic(page) + offset;
3215                 }
3216                 if (*map == SWAP_CONT_MAX) {
3217                         kunmap_atomic(map);
3218                         page = list_entry(page->lru.next, struct page, lru);
3219                         if (page == head)
3220                                 return false;   /* add count continuation */
3221                         map = kmap_atomic(page) + offset;
3222 init_map:               *map = 0;               /* we didn't zero the page */
3223                 }
3224                 *map += 1;
3225                 kunmap_atomic(map);
3226                 page = list_entry(page->lru.prev, struct page, lru);
3227                 while (page != head) {
3228                         map = kmap_atomic(page) + offset;
3229                         *map = COUNT_CONTINUED;
3230                         kunmap_atomic(map);
3231                         page = list_entry(page->lru.prev, struct page, lru);
3232                 }
3233                 return true;                    /* incremented */
3234
3235         } else {                                /* decrementing */
3236                 /*
3237                  * Think of how you subtract 1 from 1000
3238                  */
3239                 BUG_ON(count != COUNT_CONTINUED);
3240                 while (*map == COUNT_CONTINUED) {
3241                         kunmap_atomic(map);
3242                         page = list_entry(page->lru.next, struct page, lru);
3243                         BUG_ON(page == head);
3244                         map = kmap_atomic(page) + offset;
3245                 }
3246                 BUG_ON(*map == 0);
3247                 *map -= 1;
3248                 if (*map == 0)
3249                         count = 0;
3250                 kunmap_atomic(map);
3251                 page = list_entry(page->lru.prev, struct page, lru);
3252                 while (page != head) {
3253                         map = kmap_atomic(page) + offset;
3254                         *map = SWAP_CONT_MAX | count;
3255                         count = COUNT_CONTINUED;
3256                         kunmap_atomic(map);
3257                         page = list_entry(page->lru.prev, struct page, lru);
3258                 }
3259                 return count == COUNT_CONTINUED;
3260         }
3261 }
3262
3263 /*
3264  * free_swap_count_continuations - swapoff free all the continuation pages
3265  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3266  */
3267 static void free_swap_count_continuations(struct swap_info_struct *si)
3268 {
3269         pgoff_t offset;
3270
3271         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3272                 struct page *head;
3273                 head = vmalloc_to_page(si->swap_map + offset);
3274                 if (page_private(head)) {
3275                         struct page *page, *next;
3276
3277                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3278                                 list_del(&page->lru);
3279                                 __free_page(page);
3280                         }
3281                 }
3282         }
3283 }