Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
[linux-2.6-microblaze.git] / mm / swap_state.c
1 /*
2  *  linux/mm/swap_state.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  *
7  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8  */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/vmalloc.h>
21 #include <linux/swap_slots.h>
22 #include <linux/huge_mm.h>
23
24 #include <asm/pgtable.h>
25
26 /*
27  * swapper_space is a fiction, retained to simplify the path through
28  * vmscan's shrink_page_list.
29  */
30 static const struct address_space_operations swap_aops = {
31         .writepage      = swap_writepage,
32         .set_page_dirty = swap_set_page_dirty,
33 #ifdef CONFIG_MIGRATION
34         .migratepage    = migrate_page,
35 #endif
36 };
37
38 struct address_space *swapper_spaces[MAX_SWAPFILES];
39 static unsigned int nr_swapper_spaces[MAX_SWAPFILES];
40 bool swap_vma_readahead = true;
41
42 #define SWAP_RA_WIN_SHIFT       (PAGE_SHIFT / 2)
43 #define SWAP_RA_HITS_MASK       ((1UL << SWAP_RA_WIN_SHIFT) - 1)
44 #define SWAP_RA_HITS_MAX        SWAP_RA_HITS_MASK
45 #define SWAP_RA_WIN_MASK        (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
46
47 #define SWAP_RA_HITS(v)         ((v) & SWAP_RA_HITS_MASK)
48 #define SWAP_RA_WIN(v)          (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
49 #define SWAP_RA_ADDR(v)         ((v) & PAGE_MASK)
50
51 #define SWAP_RA_VAL(addr, win, hits)                            \
52         (((addr) & PAGE_MASK) |                                 \
53          (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |    \
54          ((hits) & SWAP_RA_HITS_MASK))
55
56 /* Initial readahead hits is 4 to start up with a small window */
57 #define GET_SWAP_RA_VAL(vma)                                    \
58         (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
59
60 #define INC_CACHE_INFO(x)       do { swap_cache_info.x++; } while (0)
61 #define ADD_CACHE_INFO(x, nr)   do { swap_cache_info.x += (nr); } while (0)
62
63 static struct {
64         unsigned long add_total;
65         unsigned long del_total;
66         unsigned long find_success;
67         unsigned long find_total;
68 } swap_cache_info;
69
70 unsigned long total_swapcache_pages(void)
71 {
72         unsigned int i, j, nr;
73         unsigned long ret = 0;
74         struct address_space *spaces;
75
76         rcu_read_lock();
77         for (i = 0; i < MAX_SWAPFILES; i++) {
78                 /*
79                  * The corresponding entries in nr_swapper_spaces and
80                  * swapper_spaces will be reused only after at least
81                  * one grace period.  So it is impossible for them
82                  * belongs to different usage.
83                  */
84                 nr = nr_swapper_spaces[i];
85                 spaces = rcu_dereference(swapper_spaces[i]);
86                 if (!nr || !spaces)
87                         continue;
88                 for (j = 0; j < nr; j++)
89                         ret += spaces[j].nrpages;
90         }
91         rcu_read_unlock();
92         return ret;
93 }
94
95 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
96
97 void show_swap_cache_info(void)
98 {
99         printk("%lu pages in swap cache\n", total_swapcache_pages());
100         printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
101                 swap_cache_info.add_total, swap_cache_info.del_total,
102                 swap_cache_info.find_success, swap_cache_info.find_total);
103         printk("Free swap  = %ldkB\n",
104                 get_nr_swap_pages() << (PAGE_SHIFT - 10));
105         printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
106 }
107
108 /*
109  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
110  * but sets SwapCache flag and private instead of mapping and index.
111  */
112 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
113 {
114         int error, i, nr = hpage_nr_pages(page);
115         struct address_space *address_space;
116         pgoff_t idx = swp_offset(entry);
117
118         VM_BUG_ON_PAGE(!PageLocked(page), page);
119         VM_BUG_ON_PAGE(PageSwapCache(page), page);
120         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
121
122         page_ref_add(page, nr);
123         SetPageSwapCache(page);
124
125         address_space = swap_address_space(entry);
126         spin_lock_irq(&address_space->tree_lock);
127         for (i = 0; i < nr; i++) {
128                 set_page_private(page + i, entry.val + i);
129                 error = radix_tree_insert(&address_space->page_tree,
130                                           idx + i, page + i);
131                 if (unlikely(error))
132                         break;
133         }
134         if (likely(!error)) {
135                 address_space->nrpages += nr;
136                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
137                 ADD_CACHE_INFO(add_total, nr);
138         } else {
139                 /*
140                  * Only the context which have set SWAP_HAS_CACHE flag
141                  * would call add_to_swap_cache().
142                  * So add_to_swap_cache() doesn't returns -EEXIST.
143                  */
144                 VM_BUG_ON(error == -EEXIST);
145                 set_page_private(page + i, 0UL);
146                 while (i--) {
147                         radix_tree_delete(&address_space->page_tree, idx + i);
148                         set_page_private(page + i, 0UL);
149                 }
150                 ClearPageSwapCache(page);
151                 page_ref_sub(page, nr);
152         }
153         spin_unlock_irq(&address_space->tree_lock);
154
155         return error;
156 }
157
158
159 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
160 {
161         int error;
162
163         error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
164         if (!error) {
165                 error = __add_to_swap_cache(page, entry);
166                 radix_tree_preload_end();
167         }
168         return error;
169 }
170
171 /*
172  * This must be called only on pages that have
173  * been verified to be in the swap cache.
174  */
175 void __delete_from_swap_cache(struct page *page)
176 {
177         struct address_space *address_space;
178         int i, nr = hpage_nr_pages(page);
179         swp_entry_t entry;
180         pgoff_t idx;
181
182         VM_BUG_ON_PAGE(!PageLocked(page), page);
183         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
184         VM_BUG_ON_PAGE(PageWriteback(page), page);
185
186         entry.val = page_private(page);
187         address_space = swap_address_space(entry);
188         idx = swp_offset(entry);
189         for (i = 0; i < nr; i++) {
190                 radix_tree_delete(&address_space->page_tree, idx + i);
191                 set_page_private(page + i, 0);
192         }
193         ClearPageSwapCache(page);
194         address_space->nrpages -= nr;
195         __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
196         ADD_CACHE_INFO(del_total, nr);
197 }
198
199 /**
200  * add_to_swap - allocate swap space for a page
201  * @page: page we want to move to swap
202  *
203  * Allocate swap space for the page and add the page to the
204  * swap cache.  Caller needs to hold the page lock. 
205  */
206 int add_to_swap(struct page *page)
207 {
208         swp_entry_t entry;
209         int err;
210
211         VM_BUG_ON_PAGE(!PageLocked(page), page);
212         VM_BUG_ON_PAGE(!PageUptodate(page), page);
213
214         entry = get_swap_page(page);
215         if (!entry.val)
216                 return 0;
217
218         if (mem_cgroup_try_charge_swap(page, entry))
219                 goto fail;
220
221         /*
222          * Radix-tree node allocations from PF_MEMALLOC contexts could
223          * completely exhaust the page allocator. __GFP_NOMEMALLOC
224          * stops emergency reserves from being allocated.
225          *
226          * TODO: this could cause a theoretical memory reclaim
227          * deadlock in the swap out path.
228          */
229         /*
230          * Add it to the swap cache.
231          */
232         err = add_to_swap_cache(page, entry,
233                         __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
234         /* -ENOMEM radix-tree allocation failure */
235         if (err)
236                 /*
237                  * add_to_swap_cache() doesn't return -EEXIST, so we can safely
238                  * clear SWAP_HAS_CACHE flag.
239                  */
240                 goto fail;
241         /*
242          * Normally the page will be dirtied in unmap because its pte should be
243          * dirty. A special case is MADV_FREE page. The page'e pte could have
244          * dirty bit cleared but the page's SwapBacked bit is still set because
245          * clearing the dirty bit and SwapBacked bit has no lock protected. For
246          * such page, unmap will not set dirty bit for it, so page reclaim will
247          * not write the page out. This can cause data corruption when the page
248          * is swap in later. Always setting the dirty bit for the page solves
249          * the problem.
250          */
251         set_page_dirty(page);
252
253         return 1;
254
255 fail:
256         put_swap_page(page, entry);
257         return 0;
258 }
259
260 /*
261  * This must be called only on pages that have
262  * been verified to be in the swap cache and locked.
263  * It will never put the page into the free list,
264  * the caller has a reference on the page.
265  */
266 void delete_from_swap_cache(struct page *page)
267 {
268         swp_entry_t entry;
269         struct address_space *address_space;
270
271         entry.val = page_private(page);
272
273         address_space = swap_address_space(entry);
274         spin_lock_irq(&address_space->tree_lock);
275         __delete_from_swap_cache(page);
276         spin_unlock_irq(&address_space->tree_lock);
277
278         put_swap_page(page, entry);
279         page_ref_sub(page, hpage_nr_pages(page));
280 }
281
282 /* 
283  * If we are the only user, then try to free up the swap cache. 
284  * 
285  * Its ok to check for PageSwapCache without the page lock
286  * here because we are going to recheck again inside
287  * try_to_free_swap() _with_ the lock.
288  *                                      - Marcelo
289  */
290 static inline void free_swap_cache(struct page *page)
291 {
292         if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
293                 try_to_free_swap(page);
294                 unlock_page(page);
295         }
296 }
297
298 /* 
299  * Perform a free_page(), also freeing any swap cache associated with
300  * this page if it is the last user of the page.
301  */
302 void free_page_and_swap_cache(struct page *page)
303 {
304         free_swap_cache(page);
305         if (!is_huge_zero_page(page))
306                 put_page(page);
307 }
308
309 /*
310  * Passed an array of pages, drop them all from swapcache and then release
311  * them.  They are removed from the LRU and freed if this is their last use.
312  */
313 void free_pages_and_swap_cache(struct page **pages, int nr)
314 {
315         struct page **pagep = pages;
316         int i;
317
318         lru_add_drain();
319         for (i = 0; i < nr; i++)
320                 free_swap_cache(pagep[i]);
321         release_pages(pagep, nr, false);
322 }
323
324 /*
325  * Lookup a swap entry in the swap cache. A found page will be returned
326  * unlocked and with its refcount incremented - we rely on the kernel
327  * lock getting page table operations atomic even if we drop the page
328  * lock before returning.
329  */
330 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
331                                unsigned long addr)
332 {
333         struct page *page;
334         unsigned long ra_info;
335         int win, hits, readahead;
336
337         page = find_get_page(swap_address_space(entry), swp_offset(entry));
338
339         INC_CACHE_INFO(find_total);
340         if (page) {
341                 INC_CACHE_INFO(find_success);
342                 if (unlikely(PageTransCompound(page)))
343                         return page;
344                 readahead = TestClearPageReadahead(page);
345                 if (vma) {
346                         ra_info = GET_SWAP_RA_VAL(vma);
347                         win = SWAP_RA_WIN(ra_info);
348                         hits = SWAP_RA_HITS(ra_info);
349                         if (readahead)
350                                 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
351                         atomic_long_set(&vma->swap_readahead_info,
352                                         SWAP_RA_VAL(addr, win, hits));
353                 }
354                 if (readahead) {
355                         count_vm_event(SWAP_RA_HIT);
356                         if (!vma)
357                                 atomic_inc(&swapin_readahead_hits);
358                 }
359         }
360         return page;
361 }
362
363 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
364                         struct vm_area_struct *vma, unsigned long addr,
365                         bool *new_page_allocated)
366 {
367         struct page *found_page, *new_page = NULL;
368         struct address_space *swapper_space = swap_address_space(entry);
369         int err;
370         *new_page_allocated = false;
371
372         do {
373                 /*
374                  * First check the swap cache.  Since this is normally
375                  * called after lookup_swap_cache() failed, re-calling
376                  * that would confuse statistics.
377                  */
378                 found_page = find_get_page(swapper_space, swp_offset(entry));
379                 if (found_page)
380                         break;
381
382                 /*
383                  * Just skip read ahead for unused swap slot.
384                  * During swap_off when swap_slot_cache is disabled,
385                  * we have to handle the race between putting
386                  * swap entry in swap cache and marking swap slot
387                  * as SWAP_HAS_CACHE.  That's done in later part of code or
388                  * else swap_off will be aborted if we return NULL.
389                  */
390                 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
391                         break;
392
393                 /*
394                  * Get a new page to read into from swap.
395                  */
396                 if (!new_page) {
397                         new_page = alloc_page_vma(gfp_mask, vma, addr);
398                         if (!new_page)
399                                 break;          /* Out of memory */
400                 }
401
402                 /*
403                  * call radix_tree_preload() while we can wait.
404                  */
405                 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
406                 if (err)
407                         break;
408
409                 /*
410                  * Swap entry may have been freed since our caller observed it.
411                  */
412                 err = swapcache_prepare(entry);
413                 if (err == -EEXIST) {
414                         radix_tree_preload_end();
415                         /*
416                          * We might race against get_swap_page() and stumble
417                          * across a SWAP_HAS_CACHE swap_map entry whose page
418                          * has not been brought into the swapcache yet.
419                          */
420                         cond_resched();
421                         continue;
422                 }
423                 if (err) {              /* swp entry is obsolete ? */
424                         radix_tree_preload_end();
425                         break;
426                 }
427
428                 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
429                 __SetPageLocked(new_page);
430                 __SetPageSwapBacked(new_page);
431                 err = __add_to_swap_cache(new_page, entry);
432                 if (likely(!err)) {
433                         radix_tree_preload_end();
434                         /*
435                          * Initiate read into locked page and return.
436                          */
437                         lru_cache_add_anon(new_page);
438                         *new_page_allocated = true;
439                         return new_page;
440                 }
441                 radix_tree_preload_end();
442                 __ClearPageLocked(new_page);
443                 /*
444                  * add_to_swap_cache() doesn't return -EEXIST, so we can safely
445                  * clear SWAP_HAS_CACHE flag.
446                  */
447                 put_swap_page(new_page, entry);
448         } while (err != -ENOMEM);
449
450         if (new_page)
451                 put_page(new_page);
452         return found_page;
453 }
454
455 /*
456  * Locate a page of swap in physical memory, reserving swap cache space
457  * and reading the disk if it is not already cached.
458  * A failure return means that either the page allocation failed or that
459  * the swap entry is no longer in use.
460  */
461 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
462                 struct vm_area_struct *vma, unsigned long addr, bool do_poll)
463 {
464         bool page_was_allocated;
465         struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
466                         vma, addr, &page_was_allocated);
467
468         if (page_was_allocated)
469                 swap_readpage(retpage, do_poll);
470
471         return retpage;
472 }
473
474 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
475                                       unsigned long offset,
476                                       int hits,
477                                       int max_pages,
478                                       int prev_win)
479 {
480         unsigned int pages, last_ra;
481
482         /*
483          * This heuristic has been found to work well on both sequential and
484          * random loads, swapping to hard disk or to SSD: please don't ask
485          * what the "+ 2" means, it just happens to work well, that's all.
486          */
487         pages = hits + 2;
488         if (pages == 2) {
489                 /*
490                  * We can have no readahead hits to judge by: but must not get
491                  * stuck here forever, so check for an adjacent offset instead
492                  * (and don't even bother to check whether swap type is same).
493                  */
494                 if (offset != prev_offset + 1 && offset != prev_offset - 1)
495                         pages = 1;
496         } else {
497                 unsigned int roundup = 4;
498                 while (roundup < pages)
499                         roundup <<= 1;
500                 pages = roundup;
501         }
502
503         if (pages > max_pages)
504                 pages = max_pages;
505
506         /* Don't shrink readahead too fast */
507         last_ra = prev_win / 2;
508         if (pages < last_ra)
509                 pages = last_ra;
510
511         return pages;
512 }
513
514 static unsigned long swapin_nr_pages(unsigned long offset)
515 {
516         static unsigned long prev_offset;
517         unsigned int hits, pages, max_pages;
518         static atomic_t last_readahead_pages;
519
520         max_pages = 1 << READ_ONCE(page_cluster);
521         if (max_pages <= 1)
522                 return 1;
523
524         hits = atomic_xchg(&swapin_readahead_hits, 0);
525         pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages,
526                                   atomic_read(&last_readahead_pages));
527         if (!hits)
528                 prev_offset = offset;
529         atomic_set(&last_readahead_pages, pages);
530
531         return pages;
532 }
533
534 /**
535  * swapin_readahead - swap in pages in hope we need them soon
536  * @entry: swap entry of this memory
537  * @gfp_mask: memory allocation flags
538  * @vma: user vma this address belongs to
539  * @addr: target address for mempolicy
540  *
541  * Returns the struct page for entry and addr, after queueing swapin.
542  *
543  * Primitive swap readahead code. We simply read an aligned block of
544  * (1 << page_cluster) entries in the swap area. This method is chosen
545  * because it doesn't cost us any seek time.  We also make sure to queue
546  * the 'original' request together with the readahead ones...
547  *
548  * This has been extended to use the NUMA policies from the mm triggering
549  * the readahead.
550  *
551  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
552  */
553 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
554                         struct vm_area_struct *vma, unsigned long addr)
555 {
556         struct page *page;
557         unsigned long entry_offset = swp_offset(entry);
558         unsigned long offset = entry_offset;
559         unsigned long start_offset, end_offset;
560         unsigned long mask;
561         struct blk_plug plug;
562         bool do_poll = true, page_allocated;
563
564         mask = swapin_nr_pages(offset) - 1;
565         if (!mask)
566                 goto skip;
567
568         do_poll = false;
569         /* Read a page_cluster sized and aligned cluster around offset. */
570         start_offset = offset & ~mask;
571         end_offset = offset | mask;
572         if (!start_offset)      /* First page is swap header. */
573                 start_offset++;
574
575         blk_start_plug(&plug);
576         for (offset = start_offset; offset <= end_offset ; offset++) {
577                 /* Ok, do the async read-ahead now */
578                 page = __read_swap_cache_async(
579                         swp_entry(swp_type(entry), offset),
580                         gfp_mask, vma, addr, &page_allocated);
581                 if (!page)
582                         continue;
583                 if (page_allocated) {
584                         swap_readpage(page, false);
585                         if (offset != entry_offset &&
586                             likely(!PageTransCompound(page))) {
587                                 SetPageReadahead(page);
588                                 count_vm_event(SWAP_RA);
589                         }
590                 }
591                 put_page(page);
592         }
593         blk_finish_plug(&plug);
594
595         lru_add_drain();        /* Push any new pages onto the LRU now */
596 skip:
597         return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
598 }
599
600 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
601 {
602         struct address_space *spaces, *space;
603         unsigned int i, nr;
604
605         nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
606         spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
607         if (!spaces)
608                 return -ENOMEM;
609         for (i = 0; i < nr; i++) {
610                 space = spaces + i;
611                 INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
612                 atomic_set(&space->i_mmap_writable, 0);
613                 space->a_ops = &swap_aops;
614                 /* swap cache doesn't use writeback related tags */
615                 mapping_set_no_writeback_tags(space);
616                 spin_lock_init(&space->tree_lock);
617         }
618         nr_swapper_spaces[type] = nr;
619         rcu_assign_pointer(swapper_spaces[type], spaces);
620
621         return 0;
622 }
623
624 void exit_swap_address_space(unsigned int type)
625 {
626         struct address_space *spaces;
627
628         spaces = swapper_spaces[type];
629         nr_swapper_spaces[type] = 0;
630         rcu_assign_pointer(swapper_spaces[type], NULL);
631         synchronize_rcu();
632         kvfree(spaces);
633 }
634
635 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
636                                      unsigned long faddr,
637                                      unsigned long lpfn,
638                                      unsigned long rpfn,
639                                      unsigned long *start,
640                                      unsigned long *end)
641 {
642         *start = max3(lpfn, PFN_DOWN(vma->vm_start),
643                       PFN_DOWN(faddr & PMD_MASK));
644         *end = min3(rpfn, PFN_DOWN(vma->vm_end),
645                     PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
646 }
647
648 struct page *swap_readahead_detect(struct vm_fault *vmf,
649                                    struct vma_swap_readahead *swap_ra)
650 {
651         struct vm_area_struct *vma = vmf->vma;
652         unsigned long swap_ra_info;
653         struct page *page;
654         swp_entry_t entry;
655         unsigned long faddr, pfn, fpfn;
656         unsigned long start, end;
657         pte_t *pte;
658         unsigned int max_win, hits, prev_win, win, left;
659 #ifndef CONFIG_64BIT
660         pte_t *tpte;
661 #endif
662
663         max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
664                              SWAP_RA_ORDER_CEILING);
665         if (max_win == 1) {
666                 swap_ra->win = 1;
667                 return NULL;
668         }
669
670         faddr = vmf->address;
671         entry = pte_to_swp_entry(vmf->orig_pte);
672         if ((unlikely(non_swap_entry(entry))))
673                 return NULL;
674         page = lookup_swap_cache(entry, vma, faddr);
675         if (page)
676                 return page;
677
678         fpfn = PFN_DOWN(faddr);
679         swap_ra_info = GET_SWAP_RA_VAL(vma);
680         pfn = PFN_DOWN(SWAP_RA_ADDR(swap_ra_info));
681         prev_win = SWAP_RA_WIN(swap_ra_info);
682         hits = SWAP_RA_HITS(swap_ra_info);
683         swap_ra->win = win = __swapin_nr_pages(pfn, fpfn, hits,
684                                                max_win, prev_win);
685         atomic_long_set(&vma->swap_readahead_info,
686                         SWAP_RA_VAL(faddr, win, 0));
687
688         if (win == 1)
689                 return NULL;
690
691         /* Copy the PTEs because the page table may be unmapped */
692         if (fpfn == pfn + 1)
693                 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
694         else if (pfn == fpfn + 1)
695                 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
696                                   &start, &end);
697         else {
698                 left = (win - 1) / 2;
699                 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
700                                   &start, &end);
701         }
702         swap_ra->nr_pte = end - start;
703         swap_ra->offset = fpfn - start;
704         pte = vmf->pte - swap_ra->offset;
705 #ifdef CONFIG_64BIT
706         swap_ra->ptes = pte;
707 #else
708         tpte = swap_ra->ptes;
709         for (pfn = start; pfn != end; pfn++)
710                 *tpte++ = *pte++;
711 #endif
712
713         return NULL;
714 }
715
716 struct page *do_swap_page_readahead(swp_entry_t fentry, gfp_t gfp_mask,
717                                     struct vm_fault *vmf,
718                                     struct vma_swap_readahead *swap_ra)
719 {
720         struct blk_plug plug;
721         struct vm_area_struct *vma = vmf->vma;
722         struct page *page;
723         pte_t *pte, pentry;
724         swp_entry_t entry;
725         unsigned int i;
726         bool page_allocated;
727
728         if (swap_ra->win == 1)
729                 goto skip;
730
731         blk_start_plug(&plug);
732         for (i = 0, pte = swap_ra->ptes; i < swap_ra->nr_pte;
733              i++, pte++) {
734                 pentry = *pte;
735                 if (pte_none(pentry))
736                         continue;
737                 if (pte_present(pentry))
738                         continue;
739                 entry = pte_to_swp_entry(pentry);
740                 if (unlikely(non_swap_entry(entry)))
741                         continue;
742                 page = __read_swap_cache_async(entry, gfp_mask, vma,
743                                                vmf->address, &page_allocated);
744                 if (!page)
745                         continue;
746                 if (page_allocated) {
747                         swap_readpage(page, false);
748                         if (i != swap_ra->offset &&
749                             likely(!PageTransCompound(page))) {
750                                 SetPageReadahead(page);
751                                 count_vm_event(SWAP_RA);
752                         }
753                 }
754                 put_page(page);
755         }
756         blk_finish_plug(&plug);
757         lru_add_drain();
758 skip:
759         return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
760                                      swap_ra->win == 1);
761 }
762
763 #ifdef CONFIG_SYSFS
764 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
765                                      struct kobj_attribute *attr, char *buf)
766 {
767         return sprintf(buf, "%s\n", swap_vma_readahead ? "true" : "false");
768 }
769 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
770                                       struct kobj_attribute *attr,
771                                       const char *buf, size_t count)
772 {
773         if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
774                 swap_vma_readahead = true;
775         else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
776                 swap_vma_readahead = false;
777         else
778                 return -EINVAL;
779
780         return count;
781 }
782 static struct kobj_attribute vma_ra_enabled_attr =
783         __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
784                vma_ra_enabled_store);
785
786 static struct attribute *swap_attrs[] = {
787         &vma_ra_enabled_attr.attr,
788         NULL,
789 };
790
791 static struct attribute_group swap_attr_group = {
792         .attrs = swap_attrs,
793 };
794
795 static int __init swap_init_sysfs(void)
796 {
797         int err;
798         struct kobject *swap_kobj;
799
800         swap_kobj = kobject_create_and_add("swap", mm_kobj);
801         if (!swap_kobj) {
802                 pr_err("failed to create swap kobject\n");
803                 return -ENOMEM;
804         }
805         err = sysfs_create_group(swap_kobj, &swap_attr_group);
806         if (err) {
807                 pr_err("failed to register swap group\n");
808                 goto delete_obj;
809         }
810         return 0;
811
812 delete_obj:
813         kobject_put(swap_kobj);
814         return err;
815 }
816 subsys_initcall(swap_init_sysfs);
817 #endif