Merge tag 'x86-fpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[linux-2.6-microblaze.git] / mm / swap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39
40 #include "internal.h"
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/pagemap.h>
44
45 /* How many pages do we try to swap or page in/out together? */
46 int page_cluster;
47
48 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
49 struct lru_rotate {
50         local_lock_t lock;
51         struct pagevec pvec;
52 };
53 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
54         .lock = INIT_LOCAL_LOCK(lock),
55 };
56
57 /*
58  * The following struct pagevec are grouped together because they are protected
59  * by disabling preemption (and interrupts remain enabled).
60  */
61 struct lru_pvecs {
62         local_lock_t lock;
63         struct pagevec lru_add;
64         struct pagevec lru_deactivate_file;
65         struct pagevec lru_deactivate;
66         struct pagevec lru_lazyfree;
67 #ifdef CONFIG_SMP
68         struct pagevec activate_page;
69 #endif
70 };
71 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
72         .lock = INIT_LOCAL_LOCK(lock),
73 };
74
75 /*
76  * This path almost never happens for VM activity - pages are normally
77  * freed via pagevecs.  But it gets used by networking.
78  */
79 static void __page_cache_release(struct page *page)
80 {
81         if (PageLRU(page)) {
82                 pg_data_t *pgdat = page_pgdat(page);
83                 struct lruvec *lruvec;
84                 unsigned long flags;
85
86                 spin_lock_irqsave(&pgdat->lru_lock, flags);
87                 lruvec = mem_cgroup_page_lruvec(page, pgdat);
88                 VM_BUG_ON_PAGE(!PageLRU(page), page);
89                 __ClearPageLRU(page);
90                 del_page_from_lru_list(page, lruvec, page_off_lru(page));
91                 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
92         }
93         __ClearPageWaiters(page);
94 }
95
96 static void __put_single_page(struct page *page)
97 {
98         __page_cache_release(page);
99         mem_cgroup_uncharge(page);
100         free_unref_page(page);
101 }
102
103 static void __put_compound_page(struct page *page)
104 {
105         compound_page_dtor *dtor;
106
107         /*
108          * __page_cache_release() is supposed to be called for thp, not for
109          * hugetlb. This is because hugetlb page does never have PageLRU set
110          * (it's never listed to any LRU lists) and no memcg routines should
111          * be called for hugetlb (it has a separate hugetlb_cgroup.)
112          */
113         if (!PageHuge(page))
114                 __page_cache_release(page);
115         dtor = get_compound_page_dtor(page);
116         (*dtor)(page);
117 }
118
119 void __put_page(struct page *page)
120 {
121         if (is_zone_device_page(page)) {
122                 put_dev_pagemap(page->pgmap);
123
124                 /*
125                  * The page belongs to the device that created pgmap. Do
126                  * not return it to page allocator.
127                  */
128                 return;
129         }
130
131         if (unlikely(PageCompound(page)))
132                 __put_compound_page(page);
133         else
134                 __put_single_page(page);
135 }
136 EXPORT_SYMBOL(__put_page);
137
138 /**
139  * put_pages_list() - release a list of pages
140  * @pages: list of pages threaded on page->lru
141  *
142  * Release a list of pages which are strung together on page.lru.  Currently
143  * used by read_cache_pages() and related error recovery code.
144  */
145 void put_pages_list(struct list_head *pages)
146 {
147         while (!list_empty(pages)) {
148                 struct page *victim;
149
150                 victim = lru_to_page(pages);
151                 list_del(&victim->lru);
152                 put_page(victim);
153         }
154 }
155 EXPORT_SYMBOL(put_pages_list);
156
157 /*
158  * get_kernel_pages() - pin kernel pages in memory
159  * @kiov:       An array of struct kvec structures
160  * @nr_segs:    number of segments to pin
161  * @write:      pinning for read/write, currently ignored
162  * @pages:      array that receives pointers to the pages pinned.
163  *              Should be at least nr_segs long.
164  *
165  * Returns number of pages pinned. This may be fewer than the number
166  * requested. If nr_pages is 0 or negative, returns 0. If no pages
167  * were pinned, returns -errno. Each page returned must be released
168  * with a put_page() call when it is finished with.
169  */
170 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
171                 struct page **pages)
172 {
173         int seg;
174
175         for (seg = 0; seg < nr_segs; seg++) {
176                 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
177                         return seg;
178
179                 pages[seg] = kmap_to_page(kiov[seg].iov_base);
180                 get_page(pages[seg]);
181         }
182
183         return seg;
184 }
185 EXPORT_SYMBOL_GPL(get_kernel_pages);
186
187 /*
188  * get_kernel_page() - pin a kernel page in memory
189  * @start:      starting kernel address
190  * @write:      pinning for read/write, currently ignored
191  * @pages:      array that receives pointer to the page pinned.
192  *              Must be at least nr_segs long.
193  *
194  * Returns 1 if page is pinned. If the page was not pinned, returns
195  * -errno. The page returned must be released with a put_page() call
196  * when it is finished with.
197  */
198 int get_kernel_page(unsigned long start, int write, struct page **pages)
199 {
200         const struct kvec kiov = {
201                 .iov_base = (void *)start,
202                 .iov_len = PAGE_SIZE
203         };
204
205         return get_kernel_pages(&kiov, 1, write, pages);
206 }
207 EXPORT_SYMBOL_GPL(get_kernel_page);
208
209 static void pagevec_lru_move_fn(struct pagevec *pvec,
210         void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
211         void *arg)
212 {
213         int i;
214         struct pglist_data *pgdat = NULL;
215         struct lruvec *lruvec;
216         unsigned long flags = 0;
217
218         for (i = 0; i < pagevec_count(pvec); i++) {
219                 struct page *page = pvec->pages[i];
220                 struct pglist_data *pagepgdat = page_pgdat(page);
221
222                 if (pagepgdat != pgdat) {
223                         if (pgdat)
224                                 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
225                         pgdat = pagepgdat;
226                         spin_lock_irqsave(&pgdat->lru_lock, flags);
227                 }
228
229                 lruvec = mem_cgroup_page_lruvec(page, pgdat);
230                 (*move_fn)(page, lruvec, arg);
231         }
232         if (pgdat)
233                 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
234         release_pages(pvec->pages, pvec->nr);
235         pagevec_reinit(pvec);
236 }
237
238 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
239                                  void *arg)
240 {
241         int *pgmoved = arg;
242
243         if (PageLRU(page) && !PageUnevictable(page)) {
244                 del_page_from_lru_list(page, lruvec, page_lru(page));
245                 ClearPageActive(page);
246                 add_page_to_lru_list_tail(page, lruvec, page_lru(page));
247                 (*pgmoved)++;
248         }
249 }
250
251 /*
252  * pagevec_move_tail() must be called with IRQ disabled.
253  * Otherwise this may cause nasty races.
254  */
255 static void pagevec_move_tail(struct pagevec *pvec)
256 {
257         int pgmoved = 0;
258
259         pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
260         __count_vm_events(PGROTATED, pgmoved);
261 }
262
263 /*
264  * Writeback is about to end against a page which has been marked for immediate
265  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
266  * inactive list.
267  */
268 void rotate_reclaimable_page(struct page *page)
269 {
270         if (!PageLocked(page) && !PageDirty(page) &&
271             !PageUnevictable(page) && PageLRU(page)) {
272                 struct pagevec *pvec;
273                 unsigned long flags;
274
275                 get_page(page);
276                 local_lock_irqsave(&lru_rotate.lock, flags);
277                 pvec = this_cpu_ptr(&lru_rotate.pvec);
278                 if (!pagevec_add(pvec, page) || PageCompound(page))
279                         pagevec_move_tail(pvec);
280                 local_unlock_irqrestore(&lru_rotate.lock, flags);
281         }
282 }
283
284 static void update_page_reclaim_stat(struct lruvec *lruvec,
285                                      int file, int rotated)
286 {
287         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
288
289         reclaim_stat->recent_scanned[file]++;
290         if (rotated)
291                 reclaim_stat->recent_rotated[file]++;
292 }
293
294 static void __activate_page(struct page *page, struct lruvec *lruvec,
295                             void *arg)
296 {
297         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
298                 int file = page_is_file_lru(page);
299                 int lru = page_lru_base_type(page);
300
301                 del_page_from_lru_list(page, lruvec, lru);
302                 SetPageActive(page);
303                 lru += LRU_ACTIVE;
304                 add_page_to_lru_list(page, lruvec, lru);
305                 trace_mm_lru_activate(page);
306
307                 __count_vm_event(PGACTIVATE);
308                 update_page_reclaim_stat(lruvec, file, 1);
309         }
310 }
311
312 #ifdef CONFIG_SMP
313 static void activate_page_drain(int cpu)
314 {
315         struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
316
317         if (pagevec_count(pvec))
318                 pagevec_lru_move_fn(pvec, __activate_page, NULL);
319 }
320
321 static bool need_activate_page_drain(int cpu)
322 {
323         return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
324 }
325
326 void activate_page(struct page *page)
327 {
328         page = compound_head(page);
329         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
330                 struct pagevec *pvec;
331
332                 local_lock(&lru_pvecs.lock);
333                 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
334                 get_page(page);
335                 if (!pagevec_add(pvec, page) || PageCompound(page))
336                         pagevec_lru_move_fn(pvec, __activate_page, NULL);
337                 local_unlock(&lru_pvecs.lock);
338         }
339 }
340
341 #else
342 static inline void activate_page_drain(int cpu)
343 {
344 }
345
346 void activate_page(struct page *page)
347 {
348         pg_data_t *pgdat = page_pgdat(page);
349
350         page = compound_head(page);
351         spin_lock_irq(&pgdat->lru_lock);
352         __activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
353         spin_unlock_irq(&pgdat->lru_lock);
354 }
355 #endif
356
357 static void __lru_cache_activate_page(struct page *page)
358 {
359         struct pagevec *pvec;
360         int i;
361
362         local_lock(&lru_pvecs.lock);
363         pvec = this_cpu_ptr(&lru_pvecs.lru_add);
364
365         /*
366          * Search backwards on the optimistic assumption that the page being
367          * activated has just been added to this pagevec. Note that only
368          * the local pagevec is examined as a !PageLRU page could be in the
369          * process of being released, reclaimed, migrated or on a remote
370          * pagevec that is currently being drained. Furthermore, marking
371          * a remote pagevec's page PageActive potentially hits a race where
372          * a page is marked PageActive just after it is added to the inactive
373          * list causing accounting errors and BUG_ON checks to trigger.
374          */
375         for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
376                 struct page *pagevec_page = pvec->pages[i];
377
378                 if (pagevec_page == page) {
379                         SetPageActive(page);
380                         break;
381                 }
382         }
383
384         local_unlock(&lru_pvecs.lock);
385 }
386
387 /*
388  * Mark a page as having seen activity.
389  *
390  * inactive,unreferenced        ->      inactive,referenced
391  * inactive,referenced          ->      active,unreferenced
392  * active,unreferenced          ->      active,referenced
393  *
394  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
395  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
396  */
397 void mark_page_accessed(struct page *page)
398 {
399         page = compound_head(page);
400
401         if (!PageReferenced(page)) {
402                 SetPageReferenced(page);
403         } else if (PageUnevictable(page)) {
404                 /*
405                  * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
406                  * this list is never rotated or maintained, so marking an
407                  * evictable page accessed has no effect.
408                  */
409         } else if (!PageActive(page)) {
410                 /*
411                  * If the page is on the LRU, queue it for activation via
412                  * lru_pvecs.activate_page. Otherwise, assume the page is on a
413                  * pagevec, mark it active and it'll be moved to the active
414                  * LRU on the next drain.
415                  */
416                 if (PageLRU(page))
417                         activate_page(page);
418                 else
419                         __lru_cache_activate_page(page);
420                 ClearPageReferenced(page);
421                 if (page_is_file_lru(page))
422                         workingset_activation(page);
423         }
424         if (page_is_idle(page))
425                 clear_page_idle(page);
426 }
427 EXPORT_SYMBOL(mark_page_accessed);
428
429 static void __lru_cache_add(struct page *page)
430 {
431         struct pagevec *pvec;
432
433         local_lock(&lru_pvecs.lock);
434         pvec = this_cpu_ptr(&lru_pvecs.lru_add);
435         get_page(page);
436         if (!pagevec_add(pvec, page) || PageCompound(page))
437                 __pagevec_lru_add(pvec);
438         local_unlock(&lru_pvecs.lock);
439 }
440
441 /**
442  * lru_cache_add_anon - add a page to the page lists
443  * @page: the page to add
444  */
445 void lru_cache_add_anon(struct page *page)
446 {
447         if (PageActive(page))
448                 ClearPageActive(page);
449         __lru_cache_add(page);
450 }
451
452 void lru_cache_add_file(struct page *page)
453 {
454         if (PageActive(page))
455                 ClearPageActive(page);
456         __lru_cache_add(page);
457 }
458 EXPORT_SYMBOL(lru_cache_add_file);
459
460 /**
461  * lru_cache_add - add a page to a page list
462  * @page: the page to be added to the LRU.
463  *
464  * Queue the page for addition to the LRU via pagevec. The decision on whether
465  * to add the page to the [in]active [file|anon] list is deferred until the
466  * pagevec is drained. This gives a chance for the caller of lru_cache_add()
467  * have the page added to the active list using mark_page_accessed().
468  */
469 void lru_cache_add(struct page *page)
470 {
471         VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
472         VM_BUG_ON_PAGE(PageLRU(page), page);
473         __lru_cache_add(page);
474 }
475
476 /**
477  * lru_cache_add_active_or_unevictable
478  * @page:  the page to be added to LRU
479  * @vma:   vma in which page is mapped for determining reclaimability
480  *
481  * Place @page on the active or unevictable LRU list, depending on its
482  * evictability.  Note that if the page is not evictable, it goes
483  * directly back onto it's zone's unevictable list, it does NOT use a
484  * per cpu pagevec.
485  */
486 void lru_cache_add_active_or_unevictable(struct page *page,
487                                          struct vm_area_struct *vma)
488 {
489         VM_BUG_ON_PAGE(PageLRU(page), page);
490
491         if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
492                 SetPageActive(page);
493         else if (!TestSetPageMlocked(page)) {
494                 /*
495                  * We use the irq-unsafe __mod_zone_page_stat because this
496                  * counter is not modified from interrupt context, and the pte
497                  * lock is held(spinlock), which implies preemption disabled.
498                  */
499                 __mod_zone_page_state(page_zone(page), NR_MLOCK,
500                                     hpage_nr_pages(page));
501                 count_vm_event(UNEVICTABLE_PGMLOCKED);
502         }
503         lru_cache_add(page);
504 }
505
506 /*
507  * If the page can not be invalidated, it is moved to the
508  * inactive list to speed up its reclaim.  It is moved to the
509  * head of the list, rather than the tail, to give the flusher
510  * threads some time to write it out, as this is much more
511  * effective than the single-page writeout from reclaim.
512  *
513  * If the page isn't page_mapped and dirty/writeback, the page
514  * could reclaim asap using PG_reclaim.
515  *
516  * 1. active, mapped page -> none
517  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
518  * 3. inactive, mapped page -> none
519  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
520  * 5. inactive, clean -> inactive, tail
521  * 6. Others -> none
522  *
523  * In 4, why it moves inactive's head, the VM expects the page would
524  * be write it out by flusher threads as this is much more effective
525  * than the single-page writeout from reclaim.
526  */
527 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
528                               void *arg)
529 {
530         int lru, file;
531         bool active;
532
533         if (!PageLRU(page))
534                 return;
535
536         if (PageUnevictable(page))
537                 return;
538
539         /* Some processes are using the page */
540         if (page_mapped(page))
541                 return;
542
543         active = PageActive(page);
544         file = page_is_file_lru(page);
545         lru = page_lru_base_type(page);
546
547         del_page_from_lru_list(page, lruvec, lru + active);
548         ClearPageActive(page);
549         ClearPageReferenced(page);
550
551         if (PageWriteback(page) || PageDirty(page)) {
552                 /*
553                  * PG_reclaim could be raced with end_page_writeback
554                  * It can make readahead confusing.  But race window
555                  * is _really_ small and  it's non-critical problem.
556                  */
557                 add_page_to_lru_list(page, lruvec, lru);
558                 SetPageReclaim(page);
559         } else {
560                 /*
561                  * The page's writeback ends up during pagevec
562                  * We moves tha page into tail of inactive.
563                  */
564                 add_page_to_lru_list_tail(page, lruvec, lru);
565                 __count_vm_event(PGROTATED);
566         }
567
568         if (active)
569                 __count_vm_event(PGDEACTIVATE);
570         update_page_reclaim_stat(lruvec, file, 0);
571 }
572
573 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
574                             void *arg)
575 {
576         if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
577                 int file = page_is_file_lru(page);
578                 int lru = page_lru_base_type(page);
579
580                 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
581                 ClearPageActive(page);
582                 ClearPageReferenced(page);
583                 add_page_to_lru_list(page, lruvec, lru);
584
585                 __count_vm_events(PGDEACTIVATE, hpage_nr_pages(page));
586                 update_page_reclaim_stat(lruvec, file, 0);
587         }
588 }
589
590 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
591                             void *arg)
592 {
593         if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
594             !PageSwapCache(page) && !PageUnevictable(page)) {
595                 bool active = PageActive(page);
596
597                 del_page_from_lru_list(page, lruvec,
598                                        LRU_INACTIVE_ANON + active);
599                 ClearPageActive(page);
600                 ClearPageReferenced(page);
601                 /*
602                  * Lazyfree pages are clean anonymous pages.  They have
603                  * PG_swapbacked flag cleared, to distinguish them from normal
604                  * anonymous pages
605                  */
606                 ClearPageSwapBacked(page);
607                 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
608
609                 __count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
610                 count_memcg_page_event(page, PGLAZYFREE);
611                 update_page_reclaim_stat(lruvec, 1, 0);
612         }
613 }
614
615 /*
616  * Drain pages out of the cpu's pagevecs.
617  * Either "cpu" is the current CPU, and preemption has already been
618  * disabled; or "cpu" is being hot-unplugged, and is already dead.
619  */
620 void lru_add_drain_cpu(int cpu)
621 {
622         struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
623
624         if (pagevec_count(pvec))
625                 __pagevec_lru_add(pvec);
626
627         pvec = &per_cpu(lru_rotate.pvec, cpu);
628         if (pagevec_count(pvec)) {
629                 unsigned long flags;
630
631                 /* No harm done if a racing interrupt already did this */
632                 local_lock_irqsave(&lru_rotate.lock, flags);
633                 pagevec_move_tail(pvec);
634                 local_unlock_irqrestore(&lru_rotate.lock, flags);
635         }
636
637         pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
638         if (pagevec_count(pvec))
639                 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
640
641         pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
642         if (pagevec_count(pvec))
643                 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
644
645         pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
646         if (pagevec_count(pvec))
647                 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
648
649         activate_page_drain(cpu);
650 }
651
652 /**
653  * deactivate_file_page - forcefully deactivate a file page
654  * @page: page to deactivate
655  *
656  * This function hints the VM that @page is a good reclaim candidate,
657  * for example if its invalidation fails due to the page being dirty
658  * or under writeback.
659  */
660 void deactivate_file_page(struct page *page)
661 {
662         /*
663          * In a workload with many unevictable page such as mprotect,
664          * unevictable page deactivation for accelerating reclaim is pointless.
665          */
666         if (PageUnevictable(page))
667                 return;
668
669         if (likely(get_page_unless_zero(page))) {
670                 struct pagevec *pvec;
671
672                 local_lock(&lru_pvecs.lock);
673                 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
674
675                 if (!pagevec_add(pvec, page) || PageCompound(page))
676                         pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
677                 local_unlock(&lru_pvecs.lock);
678         }
679 }
680
681 /*
682  * deactivate_page - deactivate a page
683  * @page: page to deactivate
684  *
685  * deactivate_page() moves @page to the inactive list if @page was on the active
686  * list and was not an unevictable page.  This is done to accelerate the reclaim
687  * of @page.
688  */
689 void deactivate_page(struct page *page)
690 {
691         if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
692                 struct pagevec *pvec;
693
694                 local_lock(&lru_pvecs.lock);
695                 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
696                 get_page(page);
697                 if (!pagevec_add(pvec, page) || PageCompound(page))
698                         pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
699                 local_unlock(&lru_pvecs.lock);
700         }
701 }
702
703 /**
704  * mark_page_lazyfree - make an anon page lazyfree
705  * @page: page to deactivate
706  *
707  * mark_page_lazyfree() moves @page to the inactive file list.
708  * This is done to accelerate the reclaim of @page.
709  */
710 void mark_page_lazyfree(struct page *page)
711 {
712         if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
713             !PageSwapCache(page) && !PageUnevictable(page)) {
714                 struct pagevec *pvec;
715
716                 local_lock(&lru_pvecs.lock);
717                 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
718                 get_page(page);
719                 if (!pagevec_add(pvec, page) || PageCompound(page))
720                         pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
721                 local_unlock(&lru_pvecs.lock);
722         }
723 }
724
725 void lru_add_drain(void)
726 {
727         local_lock(&lru_pvecs.lock);
728         lru_add_drain_cpu(smp_processor_id());
729         local_unlock(&lru_pvecs.lock);
730 }
731
732 void lru_add_drain_cpu_zone(struct zone *zone)
733 {
734         local_lock(&lru_pvecs.lock);
735         lru_add_drain_cpu(smp_processor_id());
736         drain_local_pages(zone);
737         local_unlock(&lru_pvecs.lock);
738 }
739
740 #ifdef CONFIG_SMP
741
742 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
743
744 static void lru_add_drain_per_cpu(struct work_struct *dummy)
745 {
746         lru_add_drain();
747 }
748
749 /*
750  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
751  * kworkers being shut down before our page_alloc_cpu_dead callback is
752  * executed on the offlined cpu.
753  * Calling this function with cpu hotplug locks held can actually lead
754  * to obscure indirect dependencies via WQ context.
755  */
756 void lru_add_drain_all(void)
757 {
758         static seqcount_t seqcount = SEQCNT_ZERO(seqcount);
759         static DEFINE_MUTEX(lock);
760         static struct cpumask has_work;
761         int cpu, seq;
762
763         /*
764          * Make sure nobody triggers this path before mm_percpu_wq is fully
765          * initialized.
766          */
767         if (WARN_ON(!mm_percpu_wq))
768                 return;
769
770         seq = raw_read_seqcount_latch(&seqcount);
771
772         mutex_lock(&lock);
773
774         /*
775          * Piggyback on drain started and finished while we waited for lock:
776          * all pages pended at the time of our enter were drained from vectors.
777          */
778         if (__read_seqcount_retry(&seqcount, seq))
779                 goto done;
780
781         raw_write_seqcount_latch(&seqcount);
782
783         cpumask_clear(&has_work);
784
785         for_each_online_cpu(cpu) {
786                 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
787
788                 if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
789                     pagevec_count(&per_cpu(lru_rotate.pvec, cpu)) ||
790                     pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
791                     pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
792                     pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
793                     need_activate_page_drain(cpu)) {
794                         INIT_WORK(work, lru_add_drain_per_cpu);
795                         queue_work_on(cpu, mm_percpu_wq, work);
796                         cpumask_set_cpu(cpu, &has_work);
797                 }
798         }
799
800         for_each_cpu(cpu, &has_work)
801                 flush_work(&per_cpu(lru_add_drain_work, cpu));
802
803 done:
804         mutex_unlock(&lock);
805 }
806 #else
807 void lru_add_drain_all(void)
808 {
809         lru_add_drain();
810 }
811 #endif
812
813 /**
814  * release_pages - batched put_page()
815  * @pages: array of pages to release
816  * @nr: number of pages
817  *
818  * Decrement the reference count on all the pages in @pages.  If it
819  * fell to zero, remove the page from the LRU and free it.
820  */
821 void release_pages(struct page **pages, int nr)
822 {
823         int i;
824         LIST_HEAD(pages_to_free);
825         struct pglist_data *locked_pgdat = NULL;
826         struct lruvec *lruvec;
827         unsigned long uninitialized_var(flags);
828         unsigned int uninitialized_var(lock_batch);
829
830         for (i = 0; i < nr; i++) {
831                 struct page *page = pages[i];
832
833                 /*
834                  * Make sure the IRQ-safe lock-holding time does not get
835                  * excessive with a continuous string of pages from the
836                  * same pgdat. The lock is held only if pgdat != NULL.
837                  */
838                 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
839                         spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
840                         locked_pgdat = NULL;
841                 }
842
843                 if (is_huge_zero_page(page))
844                         continue;
845
846                 if (is_zone_device_page(page)) {
847                         if (locked_pgdat) {
848                                 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
849                                                        flags);
850                                 locked_pgdat = NULL;
851                         }
852                         /*
853                          * ZONE_DEVICE pages that return 'false' from
854                          * put_devmap_managed_page() do not require special
855                          * processing, and instead, expect a call to
856                          * put_page_testzero().
857                          */
858                         if (page_is_devmap_managed(page)) {
859                                 put_devmap_managed_page(page);
860                                 continue;
861                         }
862                 }
863
864                 page = compound_head(page);
865                 if (!put_page_testzero(page))
866                         continue;
867
868                 if (PageCompound(page)) {
869                         if (locked_pgdat) {
870                                 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
871                                 locked_pgdat = NULL;
872                         }
873                         __put_compound_page(page);
874                         continue;
875                 }
876
877                 if (PageLRU(page)) {
878                         struct pglist_data *pgdat = page_pgdat(page);
879
880                         if (pgdat != locked_pgdat) {
881                                 if (locked_pgdat)
882                                         spin_unlock_irqrestore(&locked_pgdat->lru_lock,
883                                                                         flags);
884                                 lock_batch = 0;
885                                 locked_pgdat = pgdat;
886                                 spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
887                         }
888
889                         lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
890                         VM_BUG_ON_PAGE(!PageLRU(page), page);
891                         __ClearPageLRU(page);
892                         del_page_from_lru_list(page, lruvec, page_off_lru(page));
893                 }
894
895                 /* Clear Active bit in case of parallel mark_page_accessed */
896                 __ClearPageActive(page);
897                 __ClearPageWaiters(page);
898
899                 list_add(&page->lru, &pages_to_free);
900         }
901         if (locked_pgdat)
902                 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
903
904         mem_cgroup_uncharge_list(&pages_to_free);
905         free_unref_page_list(&pages_to_free);
906 }
907 EXPORT_SYMBOL(release_pages);
908
909 /*
910  * The pages which we're about to release may be in the deferred lru-addition
911  * queues.  That would prevent them from really being freed right now.  That's
912  * OK from a correctness point of view but is inefficient - those pages may be
913  * cache-warm and we want to give them back to the page allocator ASAP.
914  *
915  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
916  * and __pagevec_lru_add_active() call release_pages() directly to avoid
917  * mutual recursion.
918  */
919 void __pagevec_release(struct pagevec *pvec)
920 {
921         if (!pvec->percpu_pvec_drained) {
922                 lru_add_drain();
923                 pvec->percpu_pvec_drained = true;
924         }
925         release_pages(pvec->pages, pagevec_count(pvec));
926         pagevec_reinit(pvec);
927 }
928 EXPORT_SYMBOL(__pagevec_release);
929
930 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
931 /* used by __split_huge_page_refcount() */
932 void lru_add_page_tail(struct page *page, struct page *page_tail,
933                        struct lruvec *lruvec, struct list_head *list)
934 {
935         const int file = 0;
936
937         VM_BUG_ON_PAGE(!PageHead(page), page);
938         VM_BUG_ON_PAGE(PageCompound(page_tail), page);
939         VM_BUG_ON_PAGE(PageLRU(page_tail), page);
940         lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
941
942         if (!list)
943                 SetPageLRU(page_tail);
944
945         if (likely(PageLRU(page)))
946                 list_add_tail(&page_tail->lru, &page->lru);
947         else if (list) {
948                 /* page reclaim is reclaiming a huge page */
949                 get_page(page_tail);
950                 list_add_tail(&page_tail->lru, list);
951         } else {
952                 /*
953                  * Head page has not yet been counted, as an hpage,
954                  * so we must account for each subpage individually.
955                  *
956                  * Put page_tail on the list at the correct position
957                  * so they all end up in order.
958                  */
959                 add_page_to_lru_list_tail(page_tail, lruvec,
960                                           page_lru(page_tail));
961         }
962
963         if (!PageUnevictable(page))
964                 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
965 }
966 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
967
968 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
969                                  void *arg)
970 {
971         enum lru_list lru;
972         int was_unevictable = TestClearPageUnevictable(page);
973
974         VM_BUG_ON_PAGE(PageLRU(page), page);
975
976         /*
977          * Page becomes evictable in two ways:
978          * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
979          * 2) Before acquiring LRU lock to put the page to correct LRU and then
980          *   a) do PageLRU check with lock [check_move_unevictable_pages]
981          *   b) do PageLRU check before lock [clear_page_mlock]
982          *
983          * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
984          * following strict ordering:
985          *
986          * #0: __pagevec_lru_add_fn             #1: clear_page_mlock
987          *
988          * SetPageLRU()                         TestClearPageMlocked()
989          * smp_mb() // explicit ordering        // above provides strict
990          *                                      // ordering
991          * PageMlocked()                        PageLRU()
992          *
993          *
994          * if '#1' does not observe setting of PG_lru by '#0' and fails
995          * isolation, the explicit barrier will make sure that page_evictable
996          * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
997          * can be reordered after PageMlocked check and can make '#1' to fail
998          * the isolation of the page whose Mlocked bit is cleared (#0 is also
999          * looking at the same page) and the evictable page will be stranded
1000          * in an unevictable LRU.
1001          */
1002         SetPageLRU(page);
1003         smp_mb__after_atomic();
1004
1005         if (page_evictable(page)) {
1006                 lru = page_lru(page);
1007                 update_page_reclaim_stat(lruvec, page_is_file_lru(page),
1008                                          PageActive(page));
1009                 if (was_unevictable)
1010                         count_vm_event(UNEVICTABLE_PGRESCUED);
1011         } else {
1012                 lru = LRU_UNEVICTABLE;
1013                 ClearPageActive(page);
1014                 SetPageUnevictable(page);
1015                 if (!was_unevictable)
1016                         count_vm_event(UNEVICTABLE_PGCULLED);
1017         }
1018
1019         add_page_to_lru_list(page, lruvec, lru);
1020         trace_mm_lru_insertion(page, lru);
1021 }
1022
1023 /*
1024  * Add the passed pages to the LRU, then drop the caller's refcount
1025  * on them.  Reinitialises the caller's pagevec.
1026  */
1027 void __pagevec_lru_add(struct pagevec *pvec)
1028 {
1029         pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1030 }
1031
1032 /**
1033  * pagevec_lookup_entries - gang pagecache lookup
1034  * @pvec:       Where the resulting entries are placed
1035  * @mapping:    The address_space to search
1036  * @start:      The starting entry index
1037  * @nr_entries: The maximum number of pages
1038  * @indices:    The cache indices corresponding to the entries in @pvec
1039  *
1040  * pagevec_lookup_entries() will search for and return a group of up
1041  * to @nr_pages pages and shadow entries in the mapping.  All
1042  * entries are placed in @pvec.  pagevec_lookup_entries() takes a
1043  * reference against actual pages in @pvec.
1044  *
1045  * The search returns a group of mapping-contiguous entries with
1046  * ascending indexes.  There may be holes in the indices due to
1047  * not-present entries.
1048  *
1049  * Only one subpage of a Transparent Huge Page is returned in one call:
1050  * allowing truncate_inode_pages_range() to evict the whole THP without
1051  * cycling through a pagevec of extra references.
1052  *
1053  * pagevec_lookup_entries() returns the number of entries which were
1054  * found.
1055  */
1056 unsigned pagevec_lookup_entries(struct pagevec *pvec,
1057                                 struct address_space *mapping,
1058                                 pgoff_t start, unsigned nr_entries,
1059                                 pgoff_t *indices)
1060 {
1061         pvec->nr = find_get_entries(mapping, start, nr_entries,
1062                                     pvec->pages, indices);
1063         return pagevec_count(pvec);
1064 }
1065
1066 /**
1067  * pagevec_remove_exceptionals - pagevec exceptionals pruning
1068  * @pvec:       The pagevec to prune
1069  *
1070  * pagevec_lookup_entries() fills both pages and exceptional radix
1071  * tree entries into the pagevec.  This function prunes all
1072  * exceptionals from @pvec without leaving holes, so that it can be
1073  * passed on to page-only pagevec operations.
1074  */
1075 void pagevec_remove_exceptionals(struct pagevec *pvec)
1076 {
1077         int i, j;
1078
1079         for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1080                 struct page *page = pvec->pages[i];
1081                 if (!xa_is_value(page))
1082                         pvec->pages[j++] = page;
1083         }
1084         pvec->nr = j;
1085 }
1086
1087 /**
1088  * pagevec_lookup_range - gang pagecache lookup
1089  * @pvec:       Where the resulting pages are placed
1090  * @mapping:    The address_space to search
1091  * @start:      The starting page index
1092  * @end:        The final page index
1093  *
1094  * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1095  * pages in the mapping starting from index @start and upto index @end
1096  * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
1097  * reference against the pages in @pvec.
1098  *
1099  * The search returns a group of mapping-contiguous pages with ascending
1100  * indexes.  There may be holes in the indices due to not-present pages. We
1101  * also update @start to index the next page for the traversal.
1102  *
1103  * pagevec_lookup_range() returns the number of pages which were found. If this
1104  * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1105  * reached.
1106  */
1107 unsigned pagevec_lookup_range(struct pagevec *pvec,
1108                 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1109 {
1110         pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1111                                         pvec->pages);
1112         return pagevec_count(pvec);
1113 }
1114 EXPORT_SYMBOL(pagevec_lookup_range);
1115
1116 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1117                 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1118                 xa_mark_t tag)
1119 {
1120         pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1121                                         PAGEVEC_SIZE, pvec->pages);
1122         return pagevec_count(pvec);
1123 }
1124 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1125
1126 unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1127                 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1128                 xa_mark_t tag, unsigned max_pages)
1129 {
1130         pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1131                 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1132         return pagevec_count(pvec);
1133 }
1134 EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1135 /*
1136  * Perform any setup for the swap system
1137  */
1138 void __init swap_setup(void)
1139 {
1140         unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1141
1142         /* Use a smaller cluster for small-memory machines */
1143         if (megs < 16)
1144                 page_cluster = 2;
1145         else
1146                 page_cluster = 3;
1147         /*
1148          * Right now other parts of the system means that we
1149          * _really_ don't want to cluster much more
1150          */
1151 }
1152
1153 #ifdef CONFIG_DEV_PAGEMAP_OPS
1154 void put_devmap_managed_page(struct page *page)
1155 {
1156         int count;
1157
1158         if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1159                 return;
1160
1161         count = page_ref_dec_return(page);
1162
1163         /*
1164          * devmap page refcounts are 1-based, rather than 0-based: if
1165          * refcount is 1, then the page is free and the refcount is
1166          * stable because nobody holds a reference on the page.
1167          */
1168         if (count == 1)
1169                 free_devmap_managed_page(page);
1170         else if (!count)
1171                 __put_page(page);
1172 }
1173 EXPORT_SYMBOL(put_devmap_managed_page);
1174 #endif