include/linux/mmzone.h: avoid a warning in sparse memory support
[linux-2.6-microblaze.git] / mm / sparse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/bootmem_info.h>
17
18 #include "internal.h"
19 #include <asm/dma.h>
20
21 /*
22  * Permanent SPARSEMEM data:
23  *
24  * 1) mem_section       - memory sections, mem_map's for valid memory
25  */
26 #ifdef CONFIG_SPARSEMEM_EXTREME
27 struct mem_section **mem_section;
28 #else
29 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
30         ____cacheline_internodealigned_in_smp;
31 #endif
32 EXPORT_SYMBOL(mem_section);
33
34 #ifdef NODE_NOT_IN_PAGE_FLAGS
35 /*
36  * If we did not store the node number in the page then we have to
37  * do a lookup in the section_to_node_table in order to find which
38  * node the page belongs to.
39  */
40 #if MAX_NUMNODES <= 256
41 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
42 #else
43 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
44 #endif
45
46 int page_to_nid(const struct page *page)
47 {
48         return section_to_node_table[page_to_section(page)];
49 }
50 EXPORT_SYMBOL(page_to_nid);
51
52 static void set_section_nid(unsigned long section_nr, int nid)
53 {
54         section_to_node_table[section_nr] = nid;
55 }
56 #else /* !NODE_NOT_IN_PAGE_FLAGS */
57 static inline void set_section_nid(unsigned long section_nr, int nid)
58 {
59 }
60 #endif
61
62 #ifdef CONFIG_SPARSEMEM_EXTREME
63 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
64 {
65         struct mem_section *section = NULL;
66         unsigned long array_size = SECTIONS_PER_ROOT *
67                                    sizeof(struct mem_section);
68
69         if (slab_is_available()) {
70                 section = kzalloc_node(array_size, GFP_KERNEL, nid);
71         } else {
72                 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
73                                               nid);
74                 if (!section)
75                         panic("%s: Failed to allocate %lu bytes nid=%d\n",
76                               __func__, array_size, nid);
77         }
78
79         return section;
80 }
81
82 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
83 {
84         unsigned long root = SECTION_NR_TO_ROOT(section_nr);
85         struct mem_section *section;
86
87         /*
88          * An existing section is possible in the sub-section hotplug
89          * case. First hot-add instantiates, follow-on hot-add reuses
90          * the existing section.
91          *
92          * The mem_hotplug_lock resolves the apparent race below.
93          */
94         if (mem_section[root])
95                 return 0;
96
97         section = sparse_index_alloc(nid);
98         if (!section)
99                 return -ENOMEM;
100
101         mem_section[root] = section;
102
103         return 0;
104 }
105 #else /* !SPARSEMEM_EXTREME */
106 static inline int sparse_index_init(unsigned long section_nr, int nid)
107 {
108         return 0;
109 }
110 #endif
111
112 /*
113  * During early boot, before section_mem_map is used for an actual
114  * mem_map, we use section_mem_map to store the section's NUMA
115  * node.  This keeps us from having to use another data structure.  The
116  * node information is cleared just before we store the real mem_map.
117  */
118 static inline unsigned long sparse_encode_early_nid(int nid)
119 {
120         return ((unsigned long)nid << SECTION_NID_SHIFT);
121 }
122
123 static inline int sparse_early_nid(struct mem_section *section)
124 {
125         return (section->section_mem_map >> SECTION_NID_SHIFT);
126 }
127
128 /* Validate the physical addressing limitations of the model */
129 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
130                                                 unsigned long *end_pfn)
131 {
132         unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
133
134         /*
135          * Sanity checks - do not allow an architecture to pass
136          * in larger pfns than the maximum scope of sparsemem:
137          */
138         if (*start_pfn > max_sparsemem_pfn) {
139                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
140                         "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
141                         *start_pfn, *end_pfn, max_sparsemem_pfn);
142                 WARN_ON_ONCE(1);
143                 *start_pfn = max_sparsemem_pfn;
144                 *end_pfn = max_sparsemem_pfn;
145         } else if (*end_pfn > max_sparsemem_pfn) {
146                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
147                         "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
148                         *start_pfn, *end_pfn, max_sparsemem_pfn);
149                 WARN_ON_ONCE(1);
150                 *end_pfn = max_sparsemem_pfn;
151         }
152 }
153
154 /*
155  * There are a number of times that we loop over NR_MEM_SECTIONS,
156  * looking for section_present() on each.  But, when we have very
157  * large physical address spaces, NR_MEM_SECTIONS can also be
158  * very large which makes the loops quite long.
159  *
160  * Keeping track of this gives us an easy way to break out of
161  * those loops early.
162  */
163 unsigned long __highest_present_section_nr;
164 static void __section_mark_present(struct mem_section *ms,
165                 unsigned long section_nr)
166 {
167         if (section_nr > __highest_present_section_nr)
168                 __highest_present_section_nr = section_nr;
169
170         ms->section_mem_map |= SECTION_MARKED_PRESENT;
171 }
172
173 #define for_each_present_section_nr(start, section_nr)          \
174         for (section_nr = next_present_section_nr(start-1);     \
175              ((section_nr != -1) &&                             \
176               (section_nr <= __highest_present_section_nr));    \
177              section_nr = next_present_section_nr(section_nr))
178
179 static inline unsigned long first_present_section_nr(void)
180 {
181         return next_present_section_nr(-1);
182 }
183
184 #ifdef CONFIG_SPARSEMEM_VMEMMAP
185 static void subsection_mask_set(unsigned long *map, unsigned long pfn,
186                 unsigned long nr_pages)
187 {
188         int idx = subsection_map_index(pfn);
189         int end = subsection_map_index(pfn + nr_pages - 1);
190
191         bitmap_set(map, idx, end - idx + 1);
192 }
193
194 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
195 {
196         int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
197         unsigned long nr, start_sec = pfn_to_section_nr(pfn);
198
199         if (!nr_pages)
200                 return;
201
202         for (nr = start_sec; nr <= end_sec; nr++) {
203                 struct mem_section *ms;
204                 unsigned long pfns;
205
206                 pfns = min(nr_pages, PAGES_PER_SECTION
207                                 - (pfn & ~PAGE_SECTION_MASK));
208                 ms = __nr_to_section(nr);
209                 subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
210
211                 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
212                                 pfns, subsection_map_index(pfn),
213                                 subsection_map_index(pfn + pfns - 1));
214
215                 pfn += pfns;
216                 nr_pages -= pfns;
217         }
218 }
219 #else
220 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
221 {
222 }
223 #endif
224
225 /* Record a memory area against a node. */
226 static void __init memory_present(int nid, unsigned long start, unsigned long end)
227 {
228         unsigned long pfn;
229
230 #ifdef CONFIG_SPARSEMEM_EXTREME
231         if (unlikely(!mem_section)) {
232                 unsigned long size, align;
233
234                 size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
235                 align = 1 << (INTERNODE_CACHE_SHIFT);
236                 mem_section = memblock_alloc(size, align);
237                 if (!mem_section)
238                         panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
239                               __func__, size, align);
240         }
241 #endif
242
243         start &= PAGE_SECTION_MASK;
244         mminit_validate_memmodel_limits(&start, &end);
245         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
246                 unsigned long section = pfn_to_section_nr(pfn);
247                 struct mem_section *ms;
248
249                 sparse_index_init(section, nid);
250                 set_section_nid(section, nid);
251
252                 ms = __nr_to_section(section);
253                 if (!ms->section_mem_map) {
254                         ms->section_mem_map = sparse_encode_early_nid(nid) |
255                                                         SECTION_IS_ONLINE;
256                         __section_mark_present(ms, section);
257                 }
258         }
259 }
260
261 /*
262  * Mark all memblocks as present using memory_present().
263  * This is a convenience function that is useful to mark all of the systems
264  * memory as present during initialization.
265  */
266 static void __init memblocks_present(void)
267 {
268         unsigned long start, end;
269         int i, nid;
270
271         for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
272                 memory_present(nid, start, end);
273 }
274
275 /*
276  * Subtle, we encode the real pfn into the mem_map such that
277  * the identity pfn - section_mem_map will return the actual
278  * physical page frame number.
279  */
280 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
281 {
282         unsigned long coded_mem_map =
283                 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
284         BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
285         BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
286         return coded_mem_map;
287 }
288
289 #ifdef CONFIG_MEMORY_HOTPLUG
290 /*
291  * Decode mem_map from the coded memmap
292  */
293 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
294 {
295         /* mask off the extra low bits of information */
296         coded_mem_map &= SECTION_MAP_MASK;
297         return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
298 }
299 #endif /* CONFIG_MEMORY_HOTPLUG */
300
301 static void __meminit sparse_init_one_section(struct mem_section *ms,
302                 unsigned long pnum, struct page *mem_map,
303                 struct mem_section_usage *usage, unsigned long flags)
304 {
305         ms->section_mem_map &= ~SECTION_MAP_MASK;
306         ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
307                 | SECTION_HAS_MEM_MAP | flags;
308         ms->usage = usage;
309 }
310
311 static unsigned long usemap_size(void)
312 {
313         return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
314 }
315
316 size_t mem_section_usage_size(void)
317 {
318         return sizeof(struct mem_section_usage) + usemap_size();
319 }
320
321 static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
322 {
323 #ifndef CONFIG_NUMA
324         return __pa_symbol(pgdat);
325 #else
326         return __pa(pgdat);
327 #endif
328 }
329
330 #ifdef CONFIG_MEMORY_HOTREMOVE
331 static struct mem_section_usage * __init
332 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
333                                          unsigned long size)
334 {
335         struct mem_section_usage *usage;
336         unsigned long goal, limit;
337         int nid;
338         /*
339          * A page may contain usemaps for other sections preventing the
340          * page being freed and making a section unremovable while
341          * other sections referencing the usemap remain active. Similarly,
342          * a pgdat can prevent a section being removed. If section A
343          * contains a pgdat and section B contains the usemap, both
344          * sections become inter-dependent. This allocates usemaps
345          * from the same section as the pgdat where possible to avoid
346          * this problem.
347          */
348         goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
349         limit = goal + (1UL << PA_SECTION_SHIFT);
350         nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
351 again:
352         usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
353         if (!usage && limit) {
354                 limit = 0;
355                 goto again;
356         }
357         return usage;
358 }
359
360 static void __init check_usemap_section_nr(int nid,
361                 struct mem_section_usage *usage)
362 {
363         unsigned long usemap_snr, pgdat_snr;
364         static unsigned long old_usemap_snr;
365         static unsigned long old_pgdat_snr;
366         struct pglist_data *pgdat = NODE_DATA(nid);
367         int usemap_nid;
368
369         /* First call */
370         if (!old_usemap_snr) {
371                 old_usemap_snr = NR_MEM_SECTIONS;
372                 old_pgdat_snr = NR_MEM_SECTIONS;
373         }
374
375         usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
376         pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
377         if (usemap_snr == pgdat_snr)
378                 return;
379
380         if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
381                 /* skip redundant message */
382                 return;
383
384         old_usemap_snr = usemap_snr;
385         old_pgdat_snr = pgdat_snr;
386
387         usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
388         if (usemap_nid != nid) {
389                 pr_info("node %d must be removed before remove section %ld\n",
390                         nid, usemap_snr);
391                 return;
392         }
393         /*
394          * There is a circular dependency.
395          * Some platforms allow un-removable section because they will just
396          * gather other removable sections for dynamic partitioning.
397          * Just notify un-removable section's number here.
398          */
399         pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
400                 usemap_snr, pgdat_snr, nid);
401 }
402 #else
403 static struct mem_section_usage * __init
404 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
405                                          unsigned long size)
406 {
407         return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
408 }
409
410 static void __init check_usemap_section_nr(int nid,
411                 struct mem_section_usage *usage)
412 {
413 }
414 #endif /* CONFIG_MEMORY_HOTREMOVE */
415
416 #ifdef CONFIG_SPARSEMEM_VMEMMAP
417 static unsigned long __init section_map_size(void)
418 {
419         return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
420 }
421
422 #else
423 static unsigned long __init section_map_size(void)
424 {
425         return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
426 }
427
428 struct page __init *__populate_section_memmap(unsigned long pfn,
429                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
430 {
431         unsigned long size = section_map_size();
432         struct page *map = sparse_buffer_alloc(size);
433         phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
434
435         if (map)
436                 return map;
437
438         map = memblock_alloc_try_nid_raw(size, size, addr,
439                                           MEMBLOCK_ALLOC_ACCESSIBLE, nid);
440         if (!map)
441                 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
442                       __func__, size, PAGE_SIZE, nid, &addr);
443
444         return map;
445 }
446 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
447
448 static void *sparsemap_buf __meminitdata;
449 static void *sparsemap_buf_end __meminitdata;
450
451 static inline void __meminit sparse_buffer_free(unsigned long size)
452 {
453         WARN_ON(!sparsemap_buf || size == 0);
454         memblock_free_early(__pa(sparsemap_buf), size);
455 }
456
457 static void __init sparse_buffer_init(unsigned long size, int nid)
458 {
459         phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
460         WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
461         /*
462          * Pre-allocated buffer is mainly used by __populate_section_memmap
463          * and we want it to be properly aligned to the section size - this is
464          * especially the case for VMEMMAP which maps memmap to PMDs
465          */
466         sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
467                                         addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
468         sparsemap_buf_end = sparsemap_buf + size;
469 }
470
471 static void __init sparse_buffer_fini(void)
472 {
473         unsigned long size = sparsemap_buf_end - sparsemap_buf;
474
475         if (sparsemap_buf && size > 0)
476                 sparse_buffer_free(size);
477         sparsemap_buf = NULL;
478 }
479
480 void * __meminit sparse_buffer_alloc(unsigned long size)
481 {
482         void *ptr = NULL;
483
484         if (sparsemap_buf) {
485                 ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
486                 if (ptr + size > sparsemap_buf_end)
487                         ptr = NULL;
488                 else {
489                         /* Free redundant aligned space */
490                         if ((unsigned long)(ptr - sparsemap_buf) > 0)
491                                 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
492                         sparsemap_buf = ptr + size;
493                 }
494         }
495         return ptr;
496 }
497
498 void __weak __meminit vmemmap_populate_print_last(void)
499 {
500 }
501
502 /*
503  * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
504  * And number of present sections in this node is map_count.
505  */
506 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
507                                    unsigned long pnum_end,
508                                    unsigned long map_count)
509 {
510         struct mem_section_usage *usage;
511         unsigned long pnum;
512         struct page *map;
513
514         usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
515                         mem_section_usage_size() * map_count);
516         if (!usage) {
517                 pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
518                 goto failed;
519         }
520         sparse_buffer_init(map_count * section_map_size(), nid);
521         for_each_present_section_nr(pnum_begin, pnum) {
522                 unsigned long pfn = section_nr_to_pfn(pnum);
523
524                 if (pnum >= pnum_end)
525                         break;
526
527                 map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
528                                 nid, NULL);
529                 if (!map) {
530                         pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
531                                __func__, nid);
532                         pnum_begin = pnum;
533                         sparse_buffer_fini();
534                         goto failed;
535                 }
536                 check_usemap_section_nr(nid, usage);
537                 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
538                                 SECTION_IS_EARLY);
539                 usage = (void *) usage + mem_section_usage_size();
540         }
541         sparse_buffer_fini();
542         return;
543 failed:
544         /* We failed to allocate, mark all the following pnums as not present */
545         for_each_present_section_nr(pnum_begin, pnum) {
546                 struct mem_section *ms;
547
548                 if (pnum >= pnum_end)
549                         break;
550                 ms = __nr_to_section(pnum);
551                 ms->section_mem_map = 0;
552         }
553 }
554
555 /*
556  * Allocate the accumulated non-linear sections, allocate a mem_map
557  * for each and record the physical to section mapping.
558  */
559 void __init sparse_init(void)
560 {
561         unsigned long pnum_end, pnum_begin, map_count = 1;
562         int nid_begin;
563
564         memblocks_present();
565
566         pnum_begin = first_present_section_nr();
567         nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
568
569         /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
570         set_pageblock_order();
571
572         for_each_present_section_nr(pnum_begin + 1, pnum_end) {
573                 int nid = sparse_early_nid(__nr_to_section(pnum_end));
574
575                 if (nid == nid_begin) {
576                         map_count++;
577                         continue;
578                 }
579                 /* Init node with sections in range [pnum_begin, pnum_end) */
580                 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
581                 nid_begin = nid;
582                 pnum_begin = pnum_end;
583                 map_count = 1;
584         }
585         /* cover the last node */
586         sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
587         vmemmap_populate_print_last();
588 }
589
590 #ifdef CONFIG_MEMORY_HOTPLUG
591
592 /* Mark all memory sections within the pfn range as online */
593 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
594 {
595         unsigned long pfn;
596
597         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
598                 unsigned long section_nr = pfn_to_section_nr(pfn);
599                 struct mem_section *ms;
600
601                 /* onlining code should never touch invalid ranges */
602                 if (WARN_ON(!valid_section_nr(section_nr)))
603                         continue;
604
605                 ms = __nr_to_section(section_nr);
606                 ms->section_mem_map |= SECTION_IS_ONLINE;
607         }
608 }
609
610 /* Mark all memory sections within the pfn range as offline */
611 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
612 {
613         unsigned long pfn;
614
615         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
616                 unsigned long section_nr = pfn_to_section_nr(pfn);
617                 struct mem_section *ms;
618
619                 /*
620                  * TODO this needs some double checking. Offlining code makes
621                  * sure to check pfn_valid but those checks might be just bogus
622                  */
623                 if (WARN_ON(!valid_section_nr(section_nr)))
624                         continue;
625
626                 ms = __nr_to_section(section_nr);
627                 ms->section_mem_map &= ~SECTION_IS_ONLINE;
628         }
629 }
630
631 #ifdef CONFIG_SPARSEMEM_VMEMMAP
632 static struct page * __meminit populate_section_memmap(unsigned long pfn,
633                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
634 {
635         return __populate_section_memmap(pfn, nr_pages, nid, altmap);
636 }
637
638 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
639                 struct vmem_altmap *altmap)
640 {
641         unsigned long start = (unsigned long) pfn_to_page(pfn);
642         unsigned long end = start + nr_pages * sizeof(struct page);
643
644         vmemmap_free(start, end, altmap);
645 }
646 static void free_map_bootmem(struct page *memmap)
647 {
648         unsigned long start = (unsigned long)memmap;
649         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
650
651         vmemmap_free(start, end, NULL);
652 }
653
654 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
655 {
656         DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
657         DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
658         struct mem_section *ms = __pfn_to_section(pfn);
659         unsigned long *subsection_map = ms->usage
660                 ? &ms->usage->subsection_map[0] : NULL;
661
662         subsection_mask_set(map, pfn, nr_pages);
663         if (subsection_map)
664                 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
665
666         if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
667                                 "section already deactivated (%#lx + %ld)\n",
668                                 pfn, nr_pages))
669                 return -EINVAL;
670
671         bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
672         return 0;
673 }
674
675 static bool is_subsection_map_empty(struct mem_section *ms)
676 {
677         return bitmap_empty(&ms->usage->subsection_map[0],
678                             SUBSECTIONS_PER_SECTION);
679 }
680
681 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
682 {
683         struct mem_section *ms = __pfn_to_section(pfn);
684         DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
685         unsigned long *subsection_map;
686         int rc = 0;
687
688         subsection_mask_set(map, pfn, nr_pages);
689
690         subsection_map = &ms->usage->subsection_map[0];
691
692         if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
693                 rc = -EINVAL;
694         else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
695                 rc = -EEXIST;
696         else
697                 bitmap_or(subsection_map, map, subsection_map,
698                                 SUBSECTIONS_PER_SECTION);
699
700         return rc;
701 }
702 #else
703 struct page * __meminit populate_section_memmap(unsigned long pfn,
704                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
705 {
706         return kvmalloc_node(array_size(sizeof(struct page),
707                                         PAGES_PER_SECTION), GFP_KERNEL, nid);
708 }
709
710 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
711                 struct vmem_altmap *altmap)
712 {
713         kvfree(pfn_to_page(pfn));
714 }
715
716 static void free_map_bootmem(struct page *memmap)
717 {
718         unsigned long maps_section_nr, removing_section_nr, i;
719         unsigned long magic, nr_pages;
720         struct page *page = virt_to_page(memmap);
721
722         nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
723                 >> PAGE_SHIFT;
724
725         for (i = 0; i < nr_pages; i++, page++) {
726                 magic = (unsigned long) page->freelist;
727
728                 BUG_ON(magic == NODE_INFO);
729
730                 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
731                 removing_section_nr = page_private(page);
732
733                 /*
734                  * When this function is called, the removing section is
735                  * logical offlined state. This means all pages are isolated
736                  * from page allocator. If removing section's memmap is placed
737                  * on the same section, it must not be freed.
738                  * If it is freed, page allocator may allocate it which will
739                  * be removed physically soon.
740                  */
741                 if (maps_section_nr != removing_section_nr)
742                         put_page_bootmem(page);
743         }
744 }
745
746 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
747 {
748         return 0;
749 }
750
751 static bool is_subsection_map_empty(struct mem_section *ms)
752 {
753         return true;
754 }
755
756 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
757 {
758         return 0;
759 }
760 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
761
762 /*
763  * To deactivate a memory region, there are 3 cases to handle across
764  * two configurations (SPARSEMEM_VMEMMAP={y,n}):
765  *
766  * 1. deactivation of a partial hot-added section (only possible in
767  *    the SPARSEMEM_VMEMMAP=y case).
768  *      a) section was present at memory init.
769  *      b) section was hot-added post memory init.
770  * 2. deactivation of a complete hot-added section.
771  * 3. deactivation of a complete section from memory init.
772  *
773  * For 1, when subsection_map does not empty we will not be freeing the
774  * usage map, but still need to free the vmemmap range.
775  *
776  * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
777  */
778 static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
779                 struct vmem_altmap *altmap)
780 {
781         struct mem_section *ms = __pfn_to_section(pfn);
782         bool section_is_early = early_section(ms);
783         struct page *memmap = NULL;
784         bool empty;
785
786         if (clear_subsection_map(pfn, nr_pages))
787                 return;
788
789         empty = is_subsection_map_empty(ms);
790         if (empty) {
791                 unsigned long section_nr = pfn_to_section_nr(pfn);
792
793                 /*
794                  * When removing an early section, the usage map is kept (as the
795                  * usage maps of other sections fall into the same page). It
796                  * will be re-used when re-adding the section - which is then no
797                  * longer an early section. If the usage map is PageReserved, it
798                  * was allocated during boot.
799                  */
800                 if (!PageReserved(virt_to_page(ms->usage))) {
801                         kfree(ms->usage);
802                         ms->usage = NULL;
803                 }
804                 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
805                 /*
806                  * Mark the section invalid so that valid_section()
807                  * return false. This prevents code from dereferencing
808                  * ms->usage array.
809                  */
810                 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
811         }
812
813         /*
814          * The memmap of early sections is always fully populated. See
815          * section_activate() and pfn_valid() .
816          */
817         if (!section_is_early)
818                 depopulate_section_memmap(pfn, nr_pages, altmap);
819         else if (memmap)
820                 free_map_bootmem(memmap);
821
822         if (empty)
823                 ms->section_mem_map = (unsigned long)NULL;
824 }
825
826 static struct page * __meminit section_activate(int nid, unsigned long pfn,
827                 unsigned long nr_pages, struct vmem_altmap *altmap)
828 {
829         struct mem_section *ms = __pfn_to_section(pfn);
830         struct mem_section_usage *usage = NULL;
831         struct page *memmap;
832         int rc = 0;
833
834         if (!ms->usage) {
835                 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
836                 if (!usage)
837                         return ERR_PTR(-ENOMEM);
838                 ms->usage = usage;
839         }
840
841         rc = fill_subsection_map(pfn, nr_pages);
842         if (rc) {
843                 if (usage)
844                         ms->usage = NULL;
845                 kfree(usage);
846                 return ERR_PTR(rc);
847         }
848
849         /*
850          * The early init code does not consider partially populated
851          * initial sections, it simply assumes that memory will never be
852          * referenced.  If we hot-add memory into such a section then we
853          * do not need to populate the memmap and can simply reuse what
854          * is already there.
855          */
856         if (nr_pages < PAGES_PER_SECTION && early_section(ms))
857                 return pfn_to_page(pfn);
858
859         memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
860         if (!memmap) {
861                 section_deactivate(pfn, nr_pages, altmap);
862                 return ERR_PTR(-ENOMEM);
863         }
864
865         return memmap;
866 }
867
868 /**
869  * sparse_add_section - add a memory section, or populate an existing one
870  * @nid: The node to add section on
871  * @start_pfn: start pfn of the memory range
872  * @nr_pages: number of pfns to add in the section
873  * @altmap: device page map
874  *
875  * This is only intended for hotplug.
876  *
877  * Note that only VMEMMAP supports sub-section aligned hotplug,
878  * the proper alignment and size are gated by check_pfn_span().
879  *
880  *
881  * Return:
882  * * 0          - On success.
883  * * -EEXIST    - Section has been present.
884  * * -ENOMEM    - Out of memory.
885  */
886 int __meminit sparse_add_section(int nid, unsigned long start_pfn,
887                 unsigned long nr_pages, struct vmem_altmap *altmap)
888 {
889         unsigned long section_nr = pfn_to_section_nr(start_pfn);
890         struct mem_section *ms;
891         struct page *memmap;
892         int ret;
893
894         ret = sparse_index_init(section_nr, nid);
895         if (ret < 0)
896                 return ret;
897
898         memmap = section_activate(nid, start_pfn, nr_pages, altmap);
899         if (IS_ERR(memmap))
900                 return PTR_ERR(memmap);
901
902         /*
903          * Poison uninitialized struct pages in order to catch invalid flags
904          * combinations.
905          */
906         page_init_poison(memmap, sizeof(struct page) * nr_pages);
907
908         ms = __nr_to_section(section_nr);
909         set_section_nid(section_nr, nid);
910         __section_mark_present(ms, section_nr);
911
912         /* Align memmap to section boundary in the subsection case */
913         if (section_nr_to_pfn(section_nr) != start_pfn)
914                 memmap = pfn_to_page(section_nr_to_pfn(section_nr));
915         sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
916
917         return 0;
918 }
919
920 #ifdef CONFIG_MEMORY_FAILURE
921 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
922 {
923         int i;
924
925         /*
926          * A further optimization is to have per section refcounted
927          * num_poisoned_pages.  But that would need more space per memmap, so
928          * for now just do a quick global check to speed up this routine in the
929          * absence of bad pages.
930          */
931         if (atomic_long_read(&num_poisoned_pages) == 0)
932                 return;
933
934         for (i = 0; i < nr_pages; i++) {
935                 if (PageHWPoison(&memmap[i])) {
936                         num_poisoned_pages_dec();
937                         ClearPageHWPoison(&memmap[i]);
938                 }
939         }
940 }
941 #else
942 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
943 {
944 }
945 #endif
946
947 void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
948                 unsigned long nr_pages, unsigned long map_offset,
949                 struct vmem_altmap *altmap)
950 {
951         clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
952                         nr_pages - map_offset);
953         section_deactivate(pfn, nr_pages, altmap);
954 }
955 #endif /* CONFIG_MEMORY_HOTPLUG */