mm: hugetlb: alloc the vmemmap pages associated with each HugeTLB page
[linux-2.6-microblaze.git] / mm / sparse-vmemmap.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Virtual Memory Map support
4  *
5  * (C) 2007 sgi. Christoph Lameter.
6  *
7  * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
8  * virt_to_page, page_address() to be implemented as a base offset
9  * calculation without memory access.
10  *
11  * However, virtual mappings need a page table and TLBs. Many Linux
12  * architectures already map their physical space using 1-1 mappings
13  * via TLBs. For those arches the virtual memory map is essentially
14  * for free if we use the same page size as the 1-1 mappings. In that
15  * case the overhead consists of a few additional pages that are
16  * allocated to create a view of memory for vmemmap.
17  *
18  * The architecture is expected to provide a vmemmap_populate() function
19  * to instantiate the mapping.
20  */
21 #include <linux/mm.h>
22 #include <linux/mmzone.h>
23 #include <linux/memblock.h>
24 #include <linux/memremap.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/bootmem_info.h>
32
33 #include <asm/dma.h>
34 #include <asm/pgalloc.h>
35 #include <asm/tlbflush.h>
36
37 /**
38  * struct vmemmap_remap_walk - walk vmemmap page table
39  *
40  * @remap_pte:          called for each lowest-level entry (PTE).
41  * @reuse_page:         the page which is reused for the tail vmemmap pages.
42  * @reuse_addr:         the virtual address of the @reuse_page page.
43  * @vmemmap_pages:      the list head of the vmemmap pages that can be freed
44  *                      or is mapped from.
45  */
46 struct vmemmap_remap_walk {
47         void (*remap_pte)(pte_t *pte, unsigned long addr,
48                           struct vmemmap_remap_walk *walk);
49         struct page *reuse_page;
50         unsigned long reuse_addr;
51         struct list_head *vmemmap_pages;
52 };
53
54 static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
55                               unsigned long end,
56                               struct vmemmap_remap_walk *walk)
57 {
58         pte_t *pte = pte_offset_kernel(pmd, addr);
59
60         /*
61          * The reuse_page is found 'first' in table walk before we start
62          * remapping (which is calling @walk->remap_pte).
63          */
64         if (!walk->reuse_page) {
65                 walk->reuse_page = pte_page(*pte);
66                 /*
67                  * Because the reuse address is part of the range that we are
68                  * walking, skip the reuse address range.
69                  */
70                 addr += PAGE_SIZE;
71                 pte++;
72         }
73
74         for (; addr != end; addr += PAGE_SIZE, pte++)
75                 walk->remap_pte(pte, addr, walk);
76 }
77
78 static void vmemmap_pmd_range(pud_t *pud, unsigned long addr,
79                               unsigned long end,
80                               struct vmemmap_remap_walk *walk)
81 {
82         pmd_t *pmd;
83         unsigned long next;
84
85         pmd = pmd_offset(pud, addr);
86         do {
87                 BUG_ON(pmd_leaf(*pmd));
88
89                 next = pmd_addr_end(addr, end);
90                 vmemmap_pte_range(pmd, addr, next, walk);
91         } while (pmd++, addr = next, addr != end);
92 }
93
94 static void vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
95                               unsigned long end,
96                               struct vmemmap_remap_walk *walk)
97 {
98         pud_t *pud;
99         unsigned long next;
100
101         pud = pud_offset(p4d, addr);
102         do {
103                 next = pud_addr_end(addr, end);
104                 vmemmap_pmd_range(pud, addr, next, walk);
105         } while (pud++, addr = next, addr != end);
106 }
107
108 static void vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
109                               unsigned long end,
110                               struct vmemmap_remap_walk *walk)
111 {
112         p4d_t *p4d;
113         unsigned long next;
114
115         p4d = p4d_offset(pgd, addr);
116         do {
117                 next = p4d_addr_end(addr, end);
118                 vmemmap_pud_range(p4d, addr, next, walk);
119         } while (p4d++, addr = next, addr != end);
120 }
121
122 static void vmemmap_remap_range(unsigned long start, unsigned long end,
123                                 struct vmemmap_remap_walk *walk)
124 {
125         unsigned long addr = start;
126         unsigned long next;
127         pgd_t *pgd;
128
129         VM_BUG_ON(!IS_ALIGNED(start, PAGE_SIZE));
130         VM_BUG_ON(!IS_ALIGNED(end, PAGE_SIZE));
131
132         pgd = pgd_offset_k(addr);
133         do {
134                 next = pgd_addr_end(addr, end);
135                 vmemmap_p4d_range(pgd, addr, next, walk);
136         } while (pgd++, addr = next, addr != end);
137
138         /*
139          * We only change the mapping of the vmemmap virtual address range
140          * [@start + PAGE_SIZE, end), so we only need to flush the TLB which
141          * belongs to the range.
142          */
143         flush_tlb_kernel_range(start + PAGE_SIZE, end);
144 }
145
146 /*
147  * Free a vmemmap page. A vmemmap page can be allocated from the memblock
148  * allocator or buddy allocator. If the PG_reserved flag is set, it means
149  * that it allocated from the memblock allocator, just free it via the
150  * free_bootmem_page(). Otherwise, use __free_page().
151  */
152 static inline void free_vmemmap_page(struct page *page)
153 {
154         if (PageReserved(page))
155                 free_bootmem_page(page);
156         else
157                 __free_page(page);
158 }
159
160 /* Free a list of the vmemmap pages */
161 static void free_vmemmap_page_list(struct list_head *list)
162 {
163         struct page *page, *next;
164
165         list_for_each_entry_safe(page, next, list, lru) {
166                 list_del(&page->lru);
167                 free_vmemmap_page(page);
168         }
169 }
170
171 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
172                               struct vmemmap_remap_walk *walk)
173 {
174         /*
175          * Remap the tail pages as read-only to catch illegal write operation
176          * to the tail pages.
177          */
178         pgprot_t pgprot = PAGE_KERNEL_RO;
179         pte_t entry = mk_pte(walk->reuse_page, pgprot);
180         struct page *page = pte_page(*pte);
181
182         list_add(&page->lru, walk->vmemmap_pages);
183         set_pte_at(&init_mm, addr, pte, entry);
184 }
185
186 /**
187  * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
188  *                      to the page which @reuse is mapped to, then free vmemmap
189  *                      which the range are mapped to.
190  * @start:      start address of the vmemmap virtual address range that we want
191  *              to remap.
192  * @end:        end address of the vmemmap virtual address range that we want to
193  *              remap.
194  * @reuse:      reuse address.
195  *
196  * Note: This function depends on vmemmap being base page mapped. Please make
197  * sure that we disable PMD mapping of vmemmap pages when calling this function.
198  */
199 void vmemmap_remap_free(unsigned long start, unsigned long end,
200                         unsigned long reuse)
201 {
202         LIST_HEAD(vmemmap_pages);
203         struct vmemmap_remap_walk walk = {
204                 .remap_pte      = vmemmap_remap_pte,
205                 .reuse_addr     = reuse,
206                 .vmemmap_pages  = &vmemmap_pages,
207         };
208
209         /*
210          * In order to make remapping routine most efficient for the huge pages,
211          * the routine of vmemmap page table walking has the following rules
212          * (see more details from the vmemmap_pte_range()):
213          *
214          * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
215          *   should be continuous.
216          * - The @reuse address is part of the range [@reuse, @end) that we are
217          *   walking which is passed to vmemmap_remap_range().
218          * - The @reuse address is the first in the complete range.
219          *
220          * So we need to make sure that @start and @reuse meet the above rules.
221          */
222         BUG_ON(start - reuse != PAGE_SIZE);
223
224         vmemmap_remap_range(reuse, end, &walk);
225         free_vmemmap_page_list(&vmemmap_pages);
226 }
227
228 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
229                                 struct vmemmap_remap_walk *walk)
230 {
231         pgprot_t pgprot = PAGE_KERNEL;
232         struct page *page;
233         void *to;
234
235         BUG_ON(pte_page(*pte) != walk->reuse_page);
236
237         page = list_first_entry(walk->vmemmap_pages, struct page, lru);
238         list_del(&page->lru);
239         to = page_to_virt(page);
240         copy_page(to, (void *)walk->reuse_addr);
241
242         set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
243 }
244
245 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
246                                    gfp_t gfp_mask, struct list_head *list)
247 {
248         unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
249         int nid = page_to_nid((struct page *)start);
250         struct page *page, *next;
251
252         while (nr_pages--) {
253                 page = alloc_pages_node(nid, gfp_mask, 0);
254                 if (!page)
255                         goto out;
256                 list_add_tail(&page->lru, list);
257         }
258
259         return 0;
260 out:
261         list_for_each_entry_safe(page, next, list, lru)
262                 __free_pages(page, 0);
263         return -ENOMEM;
264 }
265
266 /**
267  * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
268  *                       to the page which is from the @vmemmap_pages
269  *                       respectively.
270  * @start:      start address of the vmemmap virtual address range that we want
271  *              to remap.
272  * @end:        end address of the vmemmap virtual address range that we want to
273  *              remap.
274  * @reuse:      reuse address.
275  * @gfp_mask:   GFP flag for allocating vmemmap pages.
276  */
277 int vmemmap_remap_alloc(unsigned long start, unsigned long end,
278                         unsigned long reuse, gfp_t gfp_mask)
279 {
280         LIST_HEAD(vmemmap_pages);
281         struct vmemmap_remap_walk walk = {
282                 .remap_pte      = vmemmap_restore_pte,
283                 .reuse_addr     = reuse,
284                 .vmemmap_pages  = &vmemmap_pages,
285         };
286
287         /* See the comment in the vmemmap_remap_free(). */
288         BUG_ON(start - reuse != PAGE_SIZE);
289
290         might_sleep_if(gfpflags_allow_blocking(gfp_mask));
291
292         if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
293                 return -ENOMEM;
294
295         vmemmap_remap_range(reuse, end, &walk);
296
297         return 0;
298 }
299
300 /*
301  * Allocate a block of memory to be used to back the virtual memory map
302  * or to back the page tables that are used to create the mapping.
303  * Uses the main allocators if they are available, else bootmem.
304  */
305
306 static void * __ref __earlyonly_bootmem_alloc(int node,
307                                 unsigned long size,
308                                 unsigned long align,
309                                 unsigned long goal)
310 {
311         return memblock_alloc_try_nid_raw(size, align, goal,
312                                                MEMBLOCK_ALLOC_ACCESSIBLE, node);
313 }
314
315 void * __meminit vmemmap_alloc_block(unsigned long size, int node)
316 {
317         /* If the main allocator is up use that, fallback to bootmem. */
318         if (slab_is_available()) {
319                 gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
320                 int order = get_order(size);
321                 static bool warned;
322                 struct page *page;
323
324                 page = alloc_pages_node(node, gfp_mask, order);
325                 if (page)
326                         return page_address(page);
327
328                 if (!warned) {
329                         warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
330                                    "vmemmap alloc failure: order:%u", order);
331                         warned = true;
332                 }
333                 return NULL;
334         } else
335                 return __earlyonly_bootmem_alloc(node, size, size,
336                                 __pa(MAX_DMA_ADDRESS));
337 }
338
339 static void * __meminit altmap_alloc_block_buf(unsigned long size,
340                                                struct vmem_altmap *altmap);
341
342 /* need to make sure size is all the same during early stage */
343 void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node,
344                                          struct vmem_altmap *altmap)
345 {
346         void *ptr;
347
348         if (altmap)
349                 return altmap_alloc_block_buf(size, altmap);
350
351         ptr = sparse_buffer_alloc(size);
352         if (!ptr)
353                 ptr = vmemmap_alloc_block(size, node);
354         return ptr;
355 }
356
357 static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
358 {
359         return altmap->base_pfn + altmap->reserve + altmap->alloc
360                 + altmap->align;
361 }
362
363 static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
364 {
365         unsigned long allocated = altmap->alloc + altmap->align;
366
367         if (altmap->free > allocated)
368                 return altmap->free - allocated;
369         return 0;
370 }
371
372 static void * __meminit altmap_alloc_block_buf(unsigned long size,
373                                                struct vmem_altmap *altmap)
374 {
375         unsigned long pfn, nr_pfns, nr_align;
376
377         if (size & ~PAGE_MASK) {
378                 pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
379                                 __func__, size);
380                 return NULL;
381         }
382
383         pfn = vmem_altmap_next_pfn(altmap);
384         nr_pfns = size >> PAGE_SHIFT;
385         nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
386         nr_align = ALIGN(pfn, nr_align) - pfn;
387         if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
388                 return NULL;
389
390         altmap->alloc += nr_pfns;
391         altmap->align += nr_align;
392         pfn += nr_align;
393
394         pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
395                         __func__, pfn, altmap->alloc, altmap->align, nr_pfns);
396         return __va(__pfn_to_phys(pfn));
397 }
398
399 void __meminit vmemmap_verify(pte_t *pte, int node,
400                                 unsigned long start, unsigned long end)
401 {
402         unsigned long pfn = pte_pfn(*pte);
403         int actual_node = early_pfn_to_nid(pfn);
404
405         if (node_distance(actual_node, node) > LOCAL_DISTANCE)
406                 pr_warn("[%lx-%lx] potential offnode page_structs\n",
407                         start, end - 1);
408 }
409
410 pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
411                                        struct vmem_altmap *altmap)
412 {
413         pte_t *pte = pte_offset_kernel(pmd, addr);
414         if (pte_none(*pte)) {
415                 pte_t entry;
416                 void *p;
417
418                 p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
419                 if (!p)
420                         return NULL;
421                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
422                 set_pte_at(&init_mm, addr, pte, entry);
423         }
424         return pte;
425 }
426
427 static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
428 {
429         void *p = vmemmap_alloc_block(size, node);
430
431         if (!p)
432                 return NULL;
433         memset(p, 0, size);
434
435         return p;
436 }
437
438 pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
439 {
440         pmd_t *pmd = pmd_offset(pud, addr);
441         if (pmd_none(*pmd)) {
442                 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
443                 if (!p)
444                         return NULL;
445                 pmd_populate_kernel(&init_mm, pmd, p);
446         }
447         return pmd;
448 }
449
450 pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
451 {
452         pud_t *pud = pud_offset(p4d, addr);
453         if (pud_none(*pud)) {
454                 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
455                 if (!p)
456                         return NULL;
457                 pud_populate(&init_mm, pud, p);
458         }
459         return pud;
460 }
461
462 p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
463 {
464         p4d_t *p4d = p4d_offset(pgd, addr);
465         if (p4d_none(*p4d)) {
466                 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
467                 if (!p)
468                         return NULL;
469                 p4d_populate(&init_mm, p4d, p);
470         }
471         return p4d;
472 }
473
474 pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
475 {
476         pgd_t *pgd = pgd_offset_k(addr);
477         if (pgd_none(*pgd)) {
478                 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
479                 if (!p)
480                         return NULL;
481                 pgd_populate(&init_mm, pgd, p);
482         }
483         return pgd;
484 }
485
486 int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end,
487                                          int node, struct vmem_altmap *altmap)
488 {
489         unsigned long addr = start;
490         pgd_t *pgd;
491         p4d_t *p4d;
492         pud_t *pud;
493         pmd_t *pmd;
494         pte_t *pte;
495
496         for (; addr < end; addr += PAGE_SIZE) {
497                 pgd = vmemmap_pgd_populate(addr, node);
498                 if (!pgd)
499                         return -ENOMEM;
500                 p4d = vmemmap_p4d_populate(pgd, addr, node);
501                 if (!p4d)
502                         return -ENOMEM;
503                 pud = vmemmap_pud_populate(p4d, addr, node);
504                 if (!pud)
505                         return -ENOMEM;
506                 pmd = vmemmap_pmd_populate(pud, addr, node);
507                 if (!pmd)
508                         return -ENOMEM;
509                 pte = vmemmap_pte_populate(pmd, addr, node, altmap);
510                 if (!pte)
511                         return -ENOMEM;
512                 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
513         }
514
515         return 0;
516 }
517
518 struct page * __meminit __populate_section_memmap(unsigned long pfn,
519                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
520 {
521         unsigned long start = (unsigned long) pfn_to_page(pfn);
522         unsigned long end = start + nr_pages * sizeof(struct page);
523
524         if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) ||
525                 !IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION)))
526                 return NULL;
527
528         if (vmemmap_populate(start, end, nid, altmap))
529                 return NULL;
530
531         return pfn_to_page(pfn);
532 }