mm: hugetlb: free the 2nd vmemmap page associated with each HugeTLB page
[linux-2.6-microblaze.git] / mm / sparse-vmemmap.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Virtual Memory Map support
4  *
5  * (C) 2007 sgi. Christoph Lameter.
6  *
7  * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
8  * virt_to_page, page_address() to be implemented as a base offset
9  * calculation without memory access.
10  *
11  * However, virtual mappings need a page table and TLBs. Many Linux
12  * architectures already map their physical space using 1-1 mappings
13  * via TLBs. For those arches the virtual memory map is essentially
14  * for free if we use the same page size as the 1-1 mappings. In that
15  * case the overhead consists of a few additional pages that are
16  * allocated to create a view of memory for vmemmap.
17  *
18  * The architecture is expected to provide a vmemmap_populate() function
19  * to instantiate the mapping.
20  */
21 #include <linux/mm.h>
22 #include <linux/mmzone.h>
23 #include <linux/memblock.h>
24 #include <linux/memremap.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/bootmem_info.h>
32
33 #include <asm/dma.h>
34 #include <asm/pgalloc.h>
35 #include <asm/tlbflush.h>
36
37 /**
38  * struct vmemmap_remap_walk - walk vmemmap page table
39  *
40  * @remap_pte:          called for each lowest-level entry (PTE).
41  * @nr_walked:          the number of walked pte.
42  * @reuse_page:         the page which is reused for the tail vmemmap pages.
43  * @reuse_addr:         the virtual address of the @reuse_page page.
44  * @vmemmap_pages:      the list head of the vmemmap pages that can be freed
45  *                      or is mapped from.
46  */
47 struct vmemmap_remap_walk {
48         void (*remap_pte)(pte_t *pte, unsigned long addr,
49                           struct vmemmap_remap_walk *walk);
50         unsigned long nr_walked;
51         struct page *reuse_page;
52         unsigned long reuse_addr;
53         struct list_head *vmemmap_pages;
54 };
55
56 static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start,
57                                   struct vmemmap_remap_walk *walk)
58 {
59         pmd_t __pmd;
60         int i;
61         unsigned long addr = start;
62         struct page *page = pmd_page(*pmd);
63         pte_t *pgtable = pte_alloc_one_kernel(&init_mm);
64
65         if (!pgtable)
66                 return -ENOMEM;
67
68         pmd_populate_kernel(&init_mm, &__pmd, pgtable);
69
70         for (i = 0; i < PMD_SIZE / PAGE_SIZE; i++, addr += PAGE_SIZE) {
71                 pte_t entry, *pte;
72                 pgprot_t pgprot = PAGE_KERNEL;
73
74                 entry = mk_pte(page + i, pgprot);
75                 pte = pte_offset_kernel(&__pmd, addr);
76                 set_pte_at(&init_mm, addr, pte, entry);
77         }
78
79         /* Make pte visible before pmd. See comment in pmd_install(). */
80         smp_wmb();
81         pmd_populate_kernel(&init_mm, pmd, pgtable);
82
83         flush_tlb_kernel_range(start, start + PMD_SIZE);
84
85         return 0;
86 }
87
88 static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
89                               unsigned long end,
90                               struct vmemmap_remap_walk *walk)
91 {
92         pte_t *pte = pte_offset_kernel(pmd, addr);
93
94         /*
95          * The reuse_page is found 'first' in table walk before we start
96          * remapping (which is calling @walk->remap_pte).
97          */
98         if (!walk->reuse_page) {
99                 walk->reuse_page = pte_page(*pte);
100                 /*
101                  * Because the reuse address is part of the range that we are
102                  * walking, skip the reuse address range.
103                  */
104                 addr += PAGE_SIZE;
105                 pte++;
106                 walk->nr_walked++;
107         }
108
109         for (; addr != end; addr += PAGE_SIZE, pte++) {
110                 walk->remap_pte(pte, addr, walk);
111                 walk->nr_walked++;
112         }
113 }
114
115 static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
116                              unsigned long end,
117                              struct vmemmap_remap_walk *walk)
118 {
119         pmd_t *pmd;
120         unsigned long next;
121
122         pmd = pmd_offset(pud, addr);
123         do {
124                 if (pmd_leaf(*pmd)) {
125                         int ret;
126
127                         ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK, walk);
128                         if (ret)
129                                 return ret;
130                 }
131                 next = pmd_addr_end(addr, end);
132                 vmemmap_pte_range(pmd, addr, next, walk);
133         } while (pmd++, addr = next, addr != end);
134
135         return 0;
136 }
137
138 static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
139                              unsigned long end,
140                              struct vmemmap_remap_walk *walk)
141 {
142         pud_t *pud;
143         unsigned long next;
144
145         pud = pud_offset(p4d, addr);
146         do {
147                 int ret;
148
149                 next = pud_addr_end(addr, end);
150                 ret = vmemmap_pmd_range(pud, addr, next, walk);
151                 if (ret)
152                         return ret;
153         } while (pud++, addr = next, addr != end);
154
155         return 0;
156 }
157
158 static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
159                              unsigned long end,
160                              struct vmemmap_remap_walk *walk)
161 {
162         p4d_t *p4d;
163         unsigned long next;
164
165         p4d = p4d_offset(pgd, addr);
166         do {
167                 int ret;
168
169                 next = p4d_addr_end(addr, end);
170                 ret = vmemmap_pud_range(p4d, addr, next, walk);
171                 if (ret)
172                         return ret;
173         } while (p4d++, addr = next, addr != end);
174
175         return 0;
176 }
177
178 static int vmemmap_remap_range(unsigned long start, unsigned long end,
179                                struct vmemmap_remap_walk *walk)
180 {
181         unsigned long addr = start;
182         unsigned long next;
183         pgd_t *pgd;
184
185         VM_BUG_ON(!IS_ALIGNED(start, PAGE_SIZE));
186         VM_BUG_ON(!IS_ALIGNED(end, PAGE_SIZE));
187
188         pgd = pgd_offset_k(addr);
189         do {
190                 int ret;
191
192                 next = pgd_addr_end(addr, end);
193                 ret = vmemmap_p4d_range(pgd, addr, next, walk);
194                 if (ret)
195                         return ret;
196         } while (pgd++, addr = next, addr != end);
197
198         /*
199          * We only change the mapping of the vmemmap virtual address range
200          * [@start + PAGE_SIZE, end), so we only need to flush the TLB which
201          * belongs to the range.
202          */
203         flush_tlb_kernel_range(start + PAGE_SIZE, end);
204
205         return 0;
206 }
207
208 /*
209  * Free a vmemmap page. A vmemmap page can be allocated from the memblock
210  * allocator or buddy allocator. If the PG_reserved flag is set, it means
211  * that it allocated from the memblock allocator, just free it via the
212  * free_bootmem_page(). Otherwise, use __free_page().
213  */
214 static inline void free_vmemmap_page(struct page *page)
215 {
216         if (PageReserved(page))
217                 free_bootmem_page(page);
218         else
219                 __free_page(page);
220 }
221
222 /* Free a list of the vmemmap pages */
223 static void free_vmemmap_page_list(struct list_head *list)
224 {
225         struct page *page, *next;
226
227         list_for_each_entry_safe(page, next, list, lru) {
228                 list_del(&page->lru);
229                 free_vmemmap_page(page);
230         }
231 }
232
233 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
234                               struct vmemmap_remap_walk *walk)
235 {
236         /*
237          * Remap the tail pages as read-only to catch illegal write operation
238          * to the tail pages.
239          */
240         pgprot_t pgprot = PAGE_KERNEL_RO;
241         pte_t entry = mk_pte(walk->reuse_page, pgprot);
242         struct page *page = pte_page(*pte);
243
244         list_add_tail(&page->lru, walk->vmemmap_pages);
245         set_pte_at(&init_mm, addr, pte, entry);
246 }
247
248 /*
249  * How many struct page structs need to be reset. When we reuse the head
250  * struct page, the special metadata (e.g. page->flags or page->mapping)
251  * cannot copy to the tail struct page structs. The invalid value will be
252  * checked in the free_tail_pages_check(). In order to avoid the message
253  * of "corrupted mapping in tail page". We need to reset at least 3 (one
254  * head struct page struct and two tail struct page structs) struct page
255  * structs.
256  */
257 #define NR_RESET_STRUCT_PAGE            3
258
259 static inline void reset_struct_pages(struct page *start)
260 {
261         int i;
262         struct page *from = start + NR_RESET_STRUCT_PAGE;
263
264         for (i = 0; i < NR_RESET_STRUCT_PAGE; i++)
265                 memcpy(start + i, from, sizeof(*from));
266 }
267
268 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
269                                 struct vmemmap_remap_walk *walk)
270 {
271         pgprot_t pgprot = PAGE_KERNEL;
272         struct page *page;
273         void *to;
274
275         BUG_ON(pte_page(*pte) != walk->reuse_page);
276
277         page = list_first_entry(walk->vmemmap_pages, struct page, lru);
278         list_del(&page->lru);
279         to = page_to_virt(page);
280         copy_page(to, (void *)walk->reuse_addr);
281         reset_struct_pages(to);
282
283         set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
284 }
285
286 /**
287  * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
288  *                      to the page which @reuse is mapped to, then free vmemmap
289  *                      which the range are mapped to.
290  * @start:      start address of the vmemmap virtual address range that we want
291  *              to remap.
292  * @end:        end address of the vmemmap virtual address range that we want to
293  *              remap.
294  * @reuse:      reuse address.
295  *
296  * Return: %0 on success, negative error code otherwise.
297  */
298 int vmemmap_remap_free(unsigned long start, unsigned long end,
299                        unsigned long reuse)
300 {
301         int ret;
302         LIST_HEAD(vmemmap_pages);
303         struct vmemmap_remap_walk walk = {
304                 .remap_pte      = vmemmap_remap_pte,
305                 .reuse_addr     = reuse,
306                 .vmemmap_pages  = &vmemmap_pages,
307         };
308
309         /*
310          * In order to make remapping routine most efficient for the huge pages,
311          * the routine of vmemmap page table walking has the following rules
312          * (see more details from the vmemmap_pte_range()):
313          *
314          * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
315          *   should be continuous.
316          * - The @reuse address is part of the range [@reuse, @end) that we are
317          *   walking which is passed to vmemmap_remap_range().
318          * - The @reuse address is the first in the complete range.
319          *
320          * So we need to make sure that @start and @reuse meet the above rules.
321          */
322         BUG_ON(start - reuse != PAGE_SIZE);
323
324         mmap_write_lock(&init_mm);
325         ret = vmemmap_remap_range(reuse, end, &walk);
326         mmap_write_downgrade(&init_mm);
327
328         if (ret && walk.nr_walked) {
329                 end = reuse + walk.nr_walked * PAGE_SIZE;
330                 /*
331                  * vmemmap_pages contains pages from the previous
332                  * vmemmap_remap_range call which failed.  These
333                  * are pages which were removed from the vmemmap.
334                  * They will be restored in the following call.
335                  */
336                 walk = (struct vmemmap_remap_walk) {
337                         .remap_pte      = vmemmap_restore_pte,
338                         .reuse_addr     = reuse,
339                         .vmemmap_pages  = &vmemmap_pages,
340                 };
341
342                 vmemmap_remap_range(reuse, end, &walk);
343         }
344         mmap_read_unlock(&init_mm);
345
346         free_vmemmap_page_list(&vmemmap_pages);
347
348         return ret;
349 }
350
351 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
352                                    gfp_t gfp_mask, struct list_head *list)
353 {
354         unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
355         int nid = page_to_nid((struct page *)start);
356         struct page *page, *next;
357
358         while (nr_pages--) {
359                 page = alloc_pages_node(nid, gfp_mask, 0);
360                 if (!page)
361                         goto out;
362                 list_add_tail(&page->lru, list);
363         }
364
365         return 0;
366 out:
367         list_for_each_entry_safe(page, next, list, lru)
368                 __free_pages(page, 0);
369         return -ENOMEM;
370 }
371
372 /**
373  * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
374  *                       to the page which is from the @vmemmap_pages
375  *                       respectively.
376  * @start:      start address of the vmemmap virtual address range that we want
377  *              to remap.
378  * @end:        end address of the vmemmap virtual address range that we want to
379  *              remap.
380  * @reuse:      reuse address.
381  * @gfp_mask:   GFP flag for allocating vmemmap pages.
382  *
383  * Return: %0 on success, negative error code otherwise.
384  */
385 int vmemmap_remap_alloc(unsigned long start, unsigned long end,
386                         unsigned long reuse, gfp_t gfp_mask)
387 {
388         LIST_HEAD(vmemmap_pages);
389         struct vmemmap_remap_walk walk = {
390                 .remap_pte      = vmemmap_restore_pte,
391                 .reuse_addr     = reuse,
392                 .vmemmap_pages  = &vmemmap_pages,
393         };
394
395         /* See the comment in the vmemmap_remap_free(). */
396         BUG_ON(start - reuse != PAGE_SIZE);
397
398         if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
399                 return -ENOMEM;
400
401         mmap_read_lock(&init_mm);
402         vmemmap_remap_range(reuse, end, &walk);
403         mmap_read_unlock(&init_mm);
404
405         return 0;
406 }
407
408 /*
409  * Allocate a block of memory to be used to back the virtual memory map
410  * or to back the page tables that are used to create the mapping.
411  * Uses the main allocators if they are available, else bootmem.
412  */
413
414 static void * __ref __earlyonly_bootmem_alloc(int node,
415                                 unsigned long size,
416                                 unsigned long align,
417                                 unsigned long goal)
418 {
419         return memblock_alloc_try_nid_raw(size, align, goal,
420                                                MEMBLOCK_ALLOC_ACCESSIBLE, node);
421 }
422
423 void * __meminit vmemmap_alloc_block(unsigned long size, int node)
424 {
425         /* If the main allocator is up use that, fallback to bootmem. */
426         if (slab_is_available()) {
427                 gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
428                 int order = get_order(size);
429                 static bool warned;
430                 struct page *page;
431
432                 page = alloc_pages_node(node, gfp_mask, order);
433                 if (page)
434                         return page_address(page);
435
436                 if (!warned) {
437                         warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
438                                    "vmemmap alloc failure: order:%u", order);
439                         warned = true;
440                 }
441                 return NULL;
442         } else
443                 return __earlyonly_bootmem_alloc(node, size, size,
444                                 __pa(MAX_DMA_ADDRESS));
445 }
446
447 static void * __meminit altmap_alloc_block_buf(unsigned long size,
448                                                struct vmem_altmap *altmap);
449
450 /* need to make sure size is all the same during early stage */
451 void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node,
452                                          struct vmem_altmap *altmap)
453 {
454         void *ptr;
455
456         if (altmap)
457                 return altmap_alloc_block_buf(size, altmap);
458
459         ptr = sparse_buffer_alloc(size);
460         if (!ptr)
461                 ptr = vmemmap_alloc_block(size, node);
462         return ptr;
463 }
464
465 static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
466 {
467         return altmap->base_pfn + altmap->reserve + altmap->alloc
468                 + altmap->align;
469 }
470
471 static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
472 {
473         unsigned long allocated = altmap->alloc + altmap->align;
474
475         if (altmap->free > allocated)
476                 return altmap->free - allocated;
477         return 0;
478 }
479
480 static void * __meminit altmap_alloc_block_buf(unsigned long size,
481                                                struct vmem_altmap *altmap)
482 {
483         unsigned long pfn, nr_pfns, nr_align;
484
485         if (size & ~PAGE_MASK) {
486                 pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
487                                 __func__, size);
488                 return NULL;
489         }
490
491         pfn = vmem_altmap_next_pfn(altmap);
492         nr_pfns = size >> PAGE_SHIFT;
493         nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
494         nr_align = ALIGN(pfn, nr_align) - pfn;
495         if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
496                 return NULL;
497
498         altmap->alloc += nr_pfns;
499         altmap->align += nr_align;
500         pfn += nr_align;
501
502         pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
503                         __func__, pfn, altmap->alloc, altmap->align, nr_pfns);
504         return __va(__pfn_to_phys(pfn));
505 }
506
507 void __meminit vmemmap_verify(pte_t *pte, int node,
508                                 unsigned long start, unsigned long end)
509 {
510         unsigned long pfn = pte_pfn(*pte);
511         int actual_node = early_pfn_to_nid(pfn);
512
513         if (node_distance(actual_node, node) > LOCAL_DISTANCE)
514                 pr_warn("[%lx-%lx] potential offnode page_structs\n",
515                         start, end - 1);
516 }
517
518 pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
519                                        struct vmem_altmap *altmap)
520 {
521         pte_t *pte = pte_offset_kernel(pmd, addr);
522         if (pte_none(*pte)) {
523                 pte_t entry;
524                 void *p;
525
526                 p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
527                 if (!p)
528                         return NULL;
529                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
530                 set_pte_at(&init_mm, addr, pte, entry);
531         }
532         return pte;
533 }
534
535 static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
536 {
537         void *p = vmemmap_alloc_block(size, node);
538
539         if (!p)
540                 return NULL;
541         memset(p, 0, size);
542
543         return p;
544 }
545
546 pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
547 {
548         pmd_t *pmd = pmd_offset(pud, addr);
549         if (pmd_none(*pmd)) {
550                 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
551                 if (!p)
552                         return NULL;
553                 pmd_populate_kernel(&init_mm, pmd, p);
554         }
555         return pmd;
556 }
557
558 pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
559 {
560         pud_t *pud = pud_offset(p4d, addr);
561         if (pud_none(*pud)) {
562                 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
563                 if (!p)
564                         return NULL;
565                 pud_populate(&init_mm, pud, p);
566         }
567         return pud;
568 }
569
570 p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
571 {
572         p4d_t *p4d = p4d_offset(pgd, addr);
573         if (p4d_none(*p4d)) {
574                 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
575                 if (!p)
576                         return NULL;
577                 p4d_populate(&init_mm, p4d, p);
578         }
579         return p4d;
580 }
581
582 pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
583 {
584         pgd_t *pgd = pgd_offset_k(addr);
585         if (pgd_none(*pgd)) {
586                 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
587                 if (!p)
588                         return NULL;
589                 pgd_populate(&init_mm, pgd, p);
590         }
591         return pgd;
592 }
593
594 int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end,
595                                          int node, struct vmem_altmap *altmap)
596 {
597         unsigned long addr = start;
598         pgd_t *pgd;
599         p4d_t *p4d;
600         pud_t *pud;
601         pmd_t *pmd;
602         pte_t *pte;
603
604         for (; addr < end; addr += PAGE_SIZE) {
605                 pgd = vmemmap_pgd_populate(addr, node);
606                 if (!pgd)
607                         return -ENOMEM;
608                 p4d = vmemmap_p4d_populate(pgd, addr, node);
609                 if (!p4d)
610                         return -ENOMEM;
611                 pud = vmemmap_pud_populate(p4d, addr, node);
612                 if (!pud)
613                         return -ENOMEM;
614                 pmd = vmemmap_pmd_populate(pud, addr, node);
615                 if (!pmd)
616                         return -ENOMEM;
617                 pte = vmemmap_pte_populate(pmd, addr, node, altmap);
618                 if (!pte)
619                         return -ENOMEM;
620                 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
621         }
622
623         return 0;
624 }
625
626 struct page * __meminit __populate_section_memmap(unsigned long pfn,
627                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
628 {
629         unsigned long start = (unsigned long) pfn_to_page(pfn);
630         unsigned long end = start + nr_pages * sizeof(struct page);
631
632         if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) ||
633                 !IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION)))
634                 return NULL;
635
636         if (vmemmap_populate(start, end, nid, altmap))
637                 return NULL;
638
639         return pfn_to_page(pfn);
640 }