Merge branches 'pm-opp' and 'pm-cpufreq'
[linux-2.6-microblaze.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42
43 static struct vfsmount *shm_mnt;
44
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81
82 #include <linux/uaccess.h>
83
84 #include "internal.h"
85
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_rwsem making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102         pgoff_t start;          /* start of range currently being fallocated */
103         pgoff_t next;           /* the next page offset to be fallocated */
104         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
105         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
106 };
107
108 struct shmem_options {
109         unsigned long long blocks;
110         unsigned long long inodes;
111         struct mempolicy *mpol;
112         kuid_t uid;
113         kgid_t gid;
114         umode_t mode;
115         bool full_inums;
116         int huge;
117         int seen;
118 #define SHMEM_SEEN_BLOCKS 1
119 #define SHMEM_SEEN_INODES 2
120 #define SHMEM_SEEN_HUGE 4
121 #define SHMEM_SEEN_INUMS 8
122 };
123
124 #ifdef CONFIG_TMPFS
125 static unsigned long shmem_default_max_blocks(void)
126 {
127         return totalram_pages() / 2;
128 }
129
130 static unsigned long shmem_default_max_inodes(void)
131 {
132         unsigned long nr_pages = totalram_pages();
133
134         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
135 }
136 #endif
137
138 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
139                              struct page **pagep, enum sgp_type sgp,
140                              gfp_t gfp, struct vm_area_struct *vma,
141                              vm_fault_t *fault_type);
142 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
143                 struct page **pagep, enum sgp_type sgp,
144                 gfp_t gfp, struct vm_area_struct *vma,
145                 struct vm_fault *vmf, vm_fault_t *fault_type);
146
147 int shmem_getpage(struct inode *inode, pgoff_t index,
148                 struct page **pagep, enum sgp_type sgp)
149 {
150         return shmem_getpage_gfp(inode, index, pagep, sgp,
151                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
152 }
153
154 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
155 {
156         return sb->s_fs_info;
157 }
158
159 /*
160  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
161  * for shared memory and for shared anonymous (/dev/zero) mappings
162  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
163  * consistent with the pre-accounting of private mappings ...
164  */
165 static inline int shmem_acct_size(unsigned long flags, loff_t size)
166 {
167         return (flags & VM_NORESERVE) ?
168                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
169 }
170
171 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
172 {
173         if (!(flags & VM_NORESERVE))
174                 vm_unacct_memory(VM_ACCT(size));
175 }
176
177 static inline int shmem_reacct_size(unsigned long flags,
178                 loff_t oldsize, loff_t newsize)
179 {
180         if (!(flags & VM_NORESERVE)) {
181                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
182                         return security_vm_enough_memory_mm(current->mm,
183                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
184                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
185                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
186         }
187         return 0;
188 }
189
190 /*
191  * ... whereas tmpfs objects are accounted incrementally as
192  * pages are allocated, in order to allow large sparse files.
193  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
194  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
195  */
196 static inline int shmem_acct_block(unsigned long flags, long pages)
197 {
198         if (!(flags & VM_NORESERVE))
199                 return 0;
200
201         return security_vm_enough_memory_mm(current->mm,
202                         pages * VM_ACCT(PAGE_SIZE));
203 }
204
205 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
206 {
207         if (flags & VM_NORESERVE)
208                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
209 }
210
211 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
212 {
213         struct shmem_inode_info *info = SHMEM_I(inode);
214         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
215
216         if (shmem_acct_block(info->flags, pages))
217                 return false;
218
219         if (sbinfo->max_blocks) {
220                 if (percpu_counter_compare(&sbinfo->used_blocks,
221                                            sbinfo->max_blocks - pages) > 0)
222                         goto unacct;
223                 percpu_counter_add(&sbinfo->used_blocks, pages);
224         }
225
226         return true;
227
228 unacct:
229         shmem_unacct_blocks(info->flags, pages);
230         return false;
231 }
232
233 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
234 {
235         struct shmem_inode_info *info = SHMEM_I(inode);
236         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
237
238         if (sbinfo->max_blocks)
239                 percpu_counter_sub(&sbinfo->used_blocks, pages);
240         shmem_unacct_blocks(info->flags, pages);
241 }
242
243 static const struct super_operations shmem_ops;
244 const struct address_space_operations shmem_aops;
245 static const struct file_operations shmem_file_operations;
246 static const struct inode_operations shmem_inode_operations;
247 static const struct inode_operations shmem_dir_inode_operations;
248 static const struct inode_operations shmem_special_inode_operations;
249 static const struct vm_operations_struct shmem_vm_ops;
250 static struct file_system_type shmem_fs_type;
251
252 bool vma_is_shmem(struct vm_area_struct *vma)
253 {
254         return vma->vm_ops == &shmem_vm_ops;
255 }
256
257 static LIST_HEAD(shmem_swaplist);
258 static DEFINE_MUTEX(shmem_swaplist_mutex);
259
260 /*
261  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
262  * produces a novel ino for the newly allocated inode.
263  *
264  * It may also be called when making a hard link to permit the space needed by
265  * each dentry. However, in that case, no new inode number is needed since that
266  * internally draws from another pool of inode numbers (currently global
267  * get_next_ino()). This case is indicated by passing NULL as inop.
268  */
269 #define SHMEM_INO_BATCH 1024
270 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
271 {
272         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
273         ino_t ino;
274
275         if (!(sb->s_flags & SB_KERNMOUNT)) {
276                 raw_spin_lock(&sbinfo->stat_lock);
277                 if (sbinfo->max_inodes) {
278                         if (!sbinfo->free_inodes) {
279                                 raw_spin_unlock(&sbinfo->stat_lock);
280                                 return -ENOSPC;
281                         }
282                         sbinfo->free_inodes--;
283                 }
284                 if (inop) {
285                         ino = sbinfo->next_ino++;
286                         if (unlikely(is_zero_ino(ino)))
287                                 ino = sbinfo->next_ino++;
288                         if (unlikely(!sbinfo->full_inums &&
289                                      ino > UINT_MAX)) {
290                                 /*
291                                  * Emulate get_next_ino uint wraparound for
292                                  * compatibility
293                                  */
294                                 if (IS_ENABLED(CONFIG_64BIT))
295                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
296                                                 __func__, MINOR(sb->s_dev));
297                                 sbinfo->next_ino = 1;
298                                 ino = sbinfo->next_ino++;
299                         }
300                         *inop = ino;
301                 }
302                 raw_spin_unlock(&sbinfo->stat_lock);
303         } else if (inop) {
304                 /*
305                  * __shmem_file_setup, one of our callers, is lock-free: it
306                  * doesn't hold stat_lock in shmem_reserve_inode since
307                  * max_inodes is always 0, and is called from potentially
308                  * unknown contexts. As such, use a per-cpu batched allocator
309                  * which doesn't require the per-sb stat_lock unless we are at
310                  * the batch boundary.
311                  *
312                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
313                  * shmem mounts are not exposed to userspace, so we don't need
314                  * to worry about things like glibc compatibility.
315                  */
316                 ino_t *next_ino;
317
318                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
319                 ino = *next_ino;
320                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
321                         raw_spin_lock(&sbinfo->stat_lock);
322                         ino = sbinfo->next_ino;
323                         sbinfo->next_ino += SHMEM_INO_BATCH;
324                         raw_spin_unlock(&sbinfo->stat_lock);
325                         if (unlikely(is_zero_ino(ino)))
326                                 ino++;
327                 }
328                 *inop = ino;
329                 *next_ino = ++ino;
330                 put_cpu();
331         }
332
333         return 0;
334 }
335
336 static void shmem_free_inode(struct super_block *sb)
337 {
338         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339         if (sbinfo->max_inodes) {
340                 raw_spin_lock(&sbinfo->stat_lock);
341                 sbinfo->free_inodes++;
342                 raw_spin_unlock(&sbinfo->stat_lock);
343         }
344 }
345
346 /**
347  * shmem_recalc_inode - recalculate the block usage of an inode
348  * @inode: inode to recalc
349  *
350  * We have to calculate the free blocks since the mm can drop
351  * undirtied hole pages behind our back.
352  *
353  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
354  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
355  *
356  * It has to be called with the spinlock held.
357  */
358 static void shmem_recalc_inode(struct inode *inode)
359 {
360         struct shmem_inode_info *info = SHMEM_I(inode);
361         long freed;
362
363         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
364         if (freed > 0) {
365                 info->alloced -= freed;
366                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
367                 shmem_inode_unacct_blocks(inode, freed);
368         }
369 }
370
371 bool shmem_charge(struct inode *inode, long pages)
372 {
373         struct shmem_inode_info *info = SHMEM_I(inode);
374         unsigned long flags;
375
376         if (!shmem_inode_acct_block(inode, pages))
377                 return false;
378
379         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
380         inode->i_mapping->nrpages += pages;
381
382         spin_lock_irqsave(&info->lock, flags);
383         info->alloced += pages;
384         inode->i_blocks += pages * BLOCKS_PER_PAGE;
385         shmem_recalc_inode(inode);
386         spin_unlock_irqrestore(&info->lock, flags);
387
388         return true;
389 }
390
391 void shmem_uncharge(struct inode *inode, long pages)
392 {
393         struct shmem_inode_info *info = SHMEM_I(inode);
394         unsigned long flags;
395
396         /* nrpages adjustment done by __delete_from_page_cache() or caller */
397
398         spin_lock_irqsave(&info->lock, flags);
399         info->alloced -= pages;
400         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
401         shmem_recalc_inode(inode);
402         spin_unlock_irqrestore(&info->lock, flags);
403
404         shmem_inode_unacct_blocks(inode, pages);
405 }
406
407 /*
408  * Replace item expected in xarray by a new item, while holding xa_lock.
409  */
410 static int shmem_replace_entry(struct address_space *mapping,
411                         pgoff_t index, void *expected, void *replacement)
412 {
413         XA_STATE(xas, &mapping->i_pages, index);
414         void *item;
415
416         VM_BUG_ON(!expected);
417         VM_BUG_ON(!replacement);
418         item = xas_load(&xas);
419         if (item != expected)
420                 return -ENOENT;
421         xas_store(&xas, replacement);
422         return 0;
423 }
424
425 /*
426  * Sometimes, before we decide whether to proceed or to fail, we must check
427  * that an entry was not already brought back from swap by a racing thread.
428  *
429  * Checking page is not enough: by the time a SwapCache page is locked, it
430  * might be reused, and again be SwapCache, using the same swap as before.
431  */
432 static bool shmem_confirm_swap(struct address_space *mapping,
433                                pgoff_t index, swp_entry_t swap)
434 {
435         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
436 }
437
438 /*
439  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
440  *
441  * SHMEM_HUGE_NEVER:
442  *      disables huge pages for the mount;
443  * SHMEM_HUGE_ALWAYS:
444  *      enables huge pages for the mount;
445  * SHMEM_HUGE_WITHIN_SIZE:
446  *      only allocate huge pages if the page will be fully within i_size,
447  *      also respect fadvise()/madvise() hints;
448  * SHMEM_HUGE_ADVISE:
449  *      only allocate huge pages if requested with fadvise()/madvise();
450  */
451
452 #define SHMEM_HUGE_NEVER        0
453 #define SHMEM_HUGE_ALWAYS       1
454 #define SHMEM_HUGE_WITHIN_SIZE  2
455 #define SHMEM_HUGE_ADVISE       3
456
457 /*
458  * Special values.
459  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
460  *
461  * SHMEM_HUGE_DENY:
462  *      disables huge on shm_mnt and all mounts, for emergency use;
463  * SHMEM_HUGE_FORCE:
464  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
465  *
466  */
467 #define SHMEM_HUGE_DENY         (-1)
468 #define SHMEM_HUGE_FORCE        (-2)
469
470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
471 /* ifdef here to avoid bloating shmem.o when not necessary */
472
473 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
474
475 bool shmem_is_huge(struct vm_area_struct *vma,
476                    struct inode *inode, pgoff_t index)
477 {
478         loff_t i_size;
479
480         if (shmem_huge == SHMEM_HUGE_DENY)
481                 return false;
482         if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
483             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
484                 return false;
485         if (shmem_huge == SHMEM_HUGE_FORCE)
486                 return true;
487
488         switch (SHMEM_SB(inode->i_sb)->huge) {
489         case SHMEM_HUGE_ALWAYS:
490                 return true;
491         case SHMEM_HUGE_WITHIN_SIZE:
492                 index = round_up(index + 1, HPAGE_PMD_NR);
493                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
494                 if (i_size >> PAGE_SHIFT >= index)
495                         return true;
496                 fallthrough;
497         case SHMEM_HUGE_ADVISE:
498                 if (vma && (vma->vm_flags & VM_HUGEPAGE))
499                         return true;
500                 fallthrough;
501         default:
502                 return false;
503         }
504 }
505
506 #if defined(CONFIG_SYSFS)
507 static int shmem_parse_huge(const char *str)
508 {
509         if (!strcmp(str, "never"))
510                 return SHMEM_HUGE_NEVER;
511         if (!strcmp(str, "always"))
512                 return SHMEM_HUGE_ALWAYS;
513         if (!strcmp(str, "within_size"))
514                 return SHMEM_HUGE_WITHIN_SIZE;
515         if (!strcmp(str, "advise"))
516                 return SHMEM_HUGE_ADVISE;
517         if (!strcmp(str, "deny"))
518                 return SHMEM_HUGE_DENY;
519         if (!strcmp(str, "force"))
520                 return SHMEM_HUGE_FORCE;
521         return -EINVAL;
522 }
523 #endif
524
525 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
526 static const char *shmem_format_huge(int huge)
527 {
528         switch (huge) {
529         case SHMEM_HUGE_NEVER:
530                 return "never";
531         case SHMEM_HUGE_ALWAYS:
532                 return "always";
533         case SHMEM_HUGE_WITHIN_SIZE:
534                 return "within_size";
535         case SHMEM_HUGE_ADVISE:
536                 return "advise";
537         case SHMEM_HUGE_DENY:
538                 return "deny";
539         case SHMEM_HUGE_FORCE:
540                 return "force";
541         default:
542                 VM_BUG_ON(1);
543                 return "bad_val";
544         }
545 }
546 #endif
547
548 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
549                 struct shrink_control *sc, unsigned long nr_to_split)
550 {
551         LIST_HEAD(list), *pos, *next;
552         LIST_HEAD(to_remove);
553         struct inode *inode;
554         struct shmem_inode_info *info;
555         struct page *page;
556         unsigned long batch = sc ? sc->nr_to_scan : 128;
557         int removed = 0, split = 0;
558
559         if (list_empty(&sbinfo->shrinklist))
560                 return SHRINK_STOP;
561
562         spin_lock(&sbinfo->shrinklist_lock);
563         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
564                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
565
566                 /* pin the inode */
567                 inode = igrab(&info->vfs_inode);
568
569                 /* inode is about to be evicted */
570                 if (!inode) {
571                         list_del_init(&info->shrinklist);
572                         removed++;
573                         goto next;
574                 }
575
576                 /* Check if there's anything to gain */
577                 if (round_up(inode->i_size, PAGE_SIZE) ==
578                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
579                         list_move(&info->shrinklist, &to_remove);
580                         removed++;
581                         goto next;
582                 }
583
584                 list_move(&info->shrinklist, &list);
585 next:
586                 if (!--batch)
587                         break;
588         }
589         spin_unlock(&sbinfo->shrinklist_lock);
590
591         list_for_each_safe(pos, next, &to_remove) {
592                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
593                 inode = &info->vfs_inode;
594                 list_del_init(&info->shrinklist);
595                 iput(inode);
596         }
597
598         list_for_each_safe(pos, next, &list) {
599                 int ret;
600
601                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
602                 inode = &info->vfs_inode;
603
604                 if (nr_to_split && split >= nr_to_split)
605                         goto leave;
606
607                 page = find_get_page(inode->i_mapping,
608                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
609                 if (!page)
610                         goto drop;
611
612                 /* No huge page at the end of the file: nothing to split */
613                 if (!PageTransHuge(page)) {
614                         put_page(page);
615                         goto drop;
616                 }
617
618                 /*
619                  * Leave the inode on the list if we failed to lock
620                  * the page at this time.
621                  *
622                  * Waiting for the lock may lead to deadlock in the
623                  * reclaim path.
624                  */
625                 if (!trylock_page(page)) {
626                         put_page(page);
627                         goto leave;
628                 }
629
630                 ret = split_huge_page(page);
631                 unlock_page(page);
632                 put_page(page);
633
634                 /* If split failed leave the inode on the list */
635                 if (ret)
636                         goto leave;
637
638                 split++;
639 drop:
640                 list_del_init(&info->shrinklist);
641                 removed++;
642 leave:
643                 iput(inode);
644         }
645
646         spin_lock(&sbinfo->shrinklist_lock);
647         list_splice_tail(&list, &sbinfo->shrinklist);
648         sbinfo->shrinklist_len -= removed;
649         spin_unlock(&sbinfo->shrinklist_lock);
650
651         return split;
652 }
653
654 static long shmem_unused_huge_scan(struct super_block *sb,
655                 struct shrink_control *sc)
656 {
657         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
658
659         if (!READ_ONCE(sbinfo->shrinklist_len))
660                 return SHRINK_STOP;
661
662         return shmem_unused_huge_shrink(sbinfo, sc, 0);
663 }
664
665 static long shmem_unused_huge_count(struct super_block *sb,
666                 struct shrink_control *sc)
667 {
668         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
669         return READ_ONCE(sbinfo->shrinklist_len);
670 }
671 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
672
673 #define shmem_huge SHMEM_HUGE_DENY
674
675 bool shmem_is_huge(struct vm_area_struct *vma,
676                    struct inode *inode, pgoff_t index)
677 {
678         return false;
679 }
680
681 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
682                 struct shrink_control *sc, unsigned long nr_to_split)
683 {
684         return 0;
685 }
686 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
687
688 /*
689  * Like add_to_page_cache_locked, but error if expected item has gone.
690  */
691 static int shmem_add_to_page_cache(struct page *page,
692                                    struct address_space *mapping,
693                                    pgoff_t index, void *expected, gfp_t gfp,
694                                    struct mm_struct *charge_mm)
695 {
696         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
697         unsigned long i = 0;
698         unsigned long nr = compound_nr(page);
699         int error;
700
701         VM_BUG_ON_PAGE(PageTail(page), page);
702         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
703         VM_BUG_ON_PAGE(!PageLocked(page), page);
704         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
705         VM_BUG_ON(expected && PageTransHuge(page));
706
707         page_ref_add(page, nr);
708         page->mapping = mapping;
709         page->index = index;
710
711         if (!PageSwapCache(page)) {
712                 error = mem_cgroup_charge(page_folio(page), charge_mm, gfp);
713                 if (error) {
714                         if (PageTransHuge(page)) {
715                                 count_vm_event(THP_FILE_FALLBACK);
716                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
717                         }
718                         goto error;
719                 }
720         }
721         cgroup_throttle_swaprate(page, gfp);
722
723         do {
724                 void *entry;
725                 xas_lock_irq(&xas);
726                 entry = xas_find_conflict(&xas);
727                 if (entry != expected)
728                         xas_set_err(&xas, -EEXIST);
729                 xas_create_range(&xas);
730                 if (xas_error(&xas))
731                         goto unlock;
732 next:
733                 xas_store(&xas, page);
734                 if (++i < nr) {
735                         xas_next(&xas);
736                         goto next;
737                 }
738                 if (PageTransHuge(page)) {
739                         count_vm_event(THP_FILE_ALLOC);
740                         __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
741                 }
742                 mapping->nrpages += nr;
743                 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
744                 __mod_lruvec_page_state(page, NR_SHMEM, nr);
745 unlock:
746                 xas_unlock_irq(&xas);
747         } while (xas_nomem(&xas, gfp));
748
749         if (xas_error(&xas)) {
750                 error = xas_error(&xas);
751                 goto error;
752         }
753
754         return 0;
755 error:
756         page->mapping = NULL;
757         page_ref_sub(page, nr);
758         return error;
759 }
760
761 /*
762  * Like delete_from_page_cache, but substitutes swap for page.
763  */
764 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
765 {
766         struct address_space *mapping = page->mapping;
767         int error;
768
769         VM_BUG_ON_PAGE(PageCompound(page), page);
770
771         xa_lock_irq(&mapping->i_pages);
772         error = shmem_replace_entry(mapping, page->index, page, radswap);
773         page->mapping = NULL;
774         mapping->nrpages--;
775         __dec_lruvec_page_state(page, NR_FILE_PAGES);
776         __dec_lruvec_page_state(page, NR_SHMEM);
777         xa_unlock_irq(&mapping->i_pages);
778         put_page(page);
779         BUG_ON(error);
780 }
781
782 /*
783  * Remove swap entry from page cache, free the swap and its page cache.
784  */
785 static int shmem_free_swap(struct address_space *mapping,
786                            pgoff_t index, void *radswap)
787 {
788         void *old;
789
790         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
791         if (old != radswap)
792                 return -ENOENT;
793         free_swap_and_cache(radix_to_swp_entry(radswap));
794         return 0;
795 }
796
797 /*
798  * Determine (in bytes) how many of the shmem object's pages mapped by the
799  * given offsets are swapped out.
800  *
801  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
802  * as long as the inode doesn't go away and racy results are not a problem.
803  */
804 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
805                                                 pgoff_t start, pgoff_t end)
806 {
807         XA_STATE(xas, &mapping->i_pages, start);
808         struct page *page;
809         unsigned long swapped = 0;
810
811         rcu_read_lock();
812         xas_for_each(&xas, page, end - 1) {
813                 if (xas_retry(&xas, page))
814                         continue;
815                 if (xa_is_value(page))
816                         swapped++;
817
818                 if (need_resched()) {
819                         xas_pause(&xas);
820                         cond_resched_rcu();
821                 }
822         }
823
824         rcu_read_unlock();
825
826         return swapped << PAGE_SHIFT;
827 }
828
829 /*
830  * Determine (in bytes) how many of the shmem object's pages mapped by the
831  * given vma is swapped out.
832  *
833  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
834  * as long as the inode doesn't go away and racy results are not a problem.
835  */
836 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
837 {
838         struct inode *inode = file_inode(vma->vm_file);
839         struct shmem_inode_info *info = SHMEM_I(inode);
840         struct address_space *mapping = inode->i_mapping;
841         unsigned long swapped;
842
843         /* Be careful as we don't hold info->lock */
844         swapped = READ_ONCE(info->swapped);
845
846         /*
847          * The easier cases are when the shmem object has nothing in swap, or
848          * the vma maps it whole. Then we can simply use the stats that we
849          * already track.
850          */
851         if (!swapped)
852                 return 0;
853
854         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
855                 return swapped << PAGE_SHIFT;
856
857         /* Here comes the more involved part */
858         return shmem_partial_swap_usage(mapping,
859                         linear_page_index(vma, vma->vm_start),
860                         linear_page_index(vma, vma->vm_end));
861 }
862
863 /*
864  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
865  */
866 void shmem_unlock_mapping(struct address_space *mapping)
867 {
868         struct pagevec pvec;
869         pgoff_t index = 0;
870
871         pagevec_init(&pvec);
872         /*
873          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
874          */
875         while (!mapping_unevictable(mapping)) {
876                 if (!pagevec_lookup(&pvec, mapping, &index))
877                         break;
878                 check_move_unevictable_pages(&pvec);
879                 pagevec_release(&pvec);
880                 cond_resched();
881         }
882 }
883
884 /*
885  * Check whether a hole-punch or truncation needs to split a huge page,
886  * returning true if no split was required, or the split has been successful.
887  *
888  * Eviction (or truncation to 0 size) should never need to split a huge page;
889  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
890  * head, and then succeeded to trylock on tail.
891  *
892  * A split can only succeed when there are no additional references on the
893  * huge page: so the split below relies upon find_get_entries() having stopped
894  * when it found a subpage of the huge page, without getting further references.
895  */
896 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
897 {
898         if (!PageTransCompound(page))
899                 return true;
900
901         /* Just proceed to delete a huge page wholly within the range punched */
902         if (PageHead(page) &&
903             page->index >= start && page->index + HPAGE_PMD_NR <= end)
904                 return true;
905
906         /* Try to split huge page, so we can truly punch the hole or truncate */
907         return split_huge_page(page) >= 0;
908 }
909
910 /*
911  * Remove range of pages and swap entries from page cache, and free them.
912  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
913  */
914 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
915                                                                  bool unfalloc)
916 {
917         struct address_space *mapping = inode->i_mapping;
918         struct shmem_inode_info *info = SHMEM_I(inode);
919         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
920         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
921         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
922         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
923         struct pagevec pvec;
924         pgoff_t indices[PAGEVEC_SIZE];
925         long nr_swaps_freed = 0;
926         pgoff_t index;
927         int i;
928
929         if (lend == -1)
930                 end = -1;       /* unsigned, so actually very big */
931
932         if (info->fallocend > start && info->fallocend <= end && !unfalloc)
933                 info->fallocend = start;
934
935         pagevec_init(&pvec);
936         index = start;
937         while (index < end && find_lock_entries(mapping, index, end - 1,
938                         &pvec, indices)) {
939                 for (i = 0; i < pagevec_count(&pvec); i++) {
940                         struct page *page = pvec.pages[i];
941
942                         index = indices[i];
943
944                         if (xa_is_value(page)) {
945                                 if (unfalloc)
946                                         continue;
947                                 nr_swaps_freed += !shmem_free_swap(mapping,
948                                                                 index, page);
949                                 continue;
950                         }
951                         index += thp_nr_pages(page) - 1;
952
953                         if (!unfalloc || !PageUptodate(page))
954                                 truncate_inode_page(mapping, page);
955                         unlock_page(page);
956                 }
957                 pagevec_remove_exceptionals(&pvec);
958                 pagevec_release(&pvec);
959                 cond_resched();
960                 index++;
961         }
962
963         if (partial_start) {
964                 struct page *page = NULL;
965                 shmem_getpage(inode, start - 1, &page, SGP_READ);
966                 if (page) {
967                         unsigned int top = PAGE_SIZE;
968                         if (start > end) {
969                                 top = partial_end;
970                                 partial_end = 0;
971                         }
972                         zero_user_segment(page, partial_start, top);
973                         set_page_dirty(page);
974                         unlock_page(page);
975                         put_page(page);
976                 }
977         }
978         if (partial_end) {
979                 struct page *page = NULL;
980                 shmem_getpage(inode, end, &page, SGP_READ);
981                 if (page) {
982                         zero_user_segment(page, 0, partial_end);
983                         set_page_dirty(page);
984                         unlock_page(page);
985                         put_page(page);
986                 }
987         }
988         if (start >= end)
989                 return;
990
991         index = start;
992         while (index < end) {
993                 cond_resched();
994
995                 if (!find_get_entries(mapping, index, end - 1, &pvec,
996                                 indices)) {
997                         /* If all gone or hole-punch or unfalloc, we're done */
998                         if (index == start || end != -1)
999                                 break;
1000                         /* But if truncating, restart to make sure all gone */
1001                         index = start;
1002                         continue;
1003                 }
1004                 for (i = 0; i < pagevec_count(&pvec); i++) {
1005                         struct page *page = pvec.pages[i];
1006
1007                         index = indices[i];
1008                         if (xa_is_value(page)) {
1009                                 if (unfalloc)
1010                                         continue;
1011                                 if (shmem_free_swap(mapping, index, page)) {
1012                                         /* Swap was replaced by page: retry */
1013                                         index--;
1014                                         break;
1015                                 }
1016                                 nr_swaps_freed++;
1017                                 continue;
1018                         }
1019
1020                         lock_page(page);
1021
1022                         if (!unfalloc || !PageUptodate(page)) {
1023                                 if (page_mapping(page) != mapping) {
1024                                         /* Page was replaced by swap: retry */
1025                                         unlock_page(page);
1026                                         index--;
1027                                         break;
1028                                 }
1029                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1030                                 if (shmem_punch_compound(page, start, end))
1031                                         truncate_inode_page(mapping, page);
1032                                 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1033                                         /* Wipe the page and don't get stuck */
1034                                         clear_highpage(page);
1035                                         flush_dcache_page(page);
1036                                         set_page_dirty(page);
1037                                         if (index <
1038                                             round_up(start, HPAGE_PMD_NR))
1039                                                 start = index + 1;
1040                                 }
1041                         }
1042                         unlock_page(page);
1043                 }
1044                 pagevec_remove_exceptionals(&pvec);
1045                 pagevec_release(&pvec);
1046                 index++;
1047         }
1048
1049         spin_lock_irq(&info->lock);
1050         info->swapped -= nr_swaps_freed;
1051         shmem_recalc_inode(inode);
1052         spin_unlock_irq(&info->lock);
1053 }
1054
1055 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1056 {
1057         shmem_undo_range(inode, lstart, lend, false);
1058         inode->i_ctime = inode->i_mtime = current_time(inode);
1059 }
1060 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1061
1062 static int shmem_getattr(struct user_namespace *mnt_userns,
1063                          const struct path *path, struct kstat *stat,
1064                          u32 request_mask, unsigned int query_flags)
1065 {
1066         struct inode *inode = path->dentry->d_inode;
1067         struct shmem_inode_info *info = SHMEM_I(inode);
1068
1069         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1070                 spin_lock_irq(&info->lock);
1071                 shmem_recalc_inode(inode);
1072                 spin_unlock_irq(&info->lock);
1073         }
1074         generic_fillattr(&init_user_ns, inode, stat);
1075
1076         if (shmem_is_huge(NULL, inode, 0))
1077                 stat->blksize = HPAGE_PMD_SIZE;
1078
1079         return 0;
1080 }
1081
1082 static int shmem_setattr(struct user_namespace *mnt_userns,
1083                          struct dentry *dentry, struct iattr *attr)
1084 {
1085         struct inode *inode = d_inode(dentry);
1086         struct shmem_inode_info *info = SHMEM_I(inode);
1087         int error;
1088
1089         error = setattr_prepare(&init_user_ns, dentry, attr);
1090         if (error)
1091                 return error;
1092
1093         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1094                 loff_t oldsize = inode->i_size;
1095                 loff_t newsize = attr->ia_size;
1096
1097                 /* protected by i_rwsem */
1098                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1099                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1100                         return -EPERM;
1101
1102                 if (newsize != oldsize) {
1103                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1104                                         oldsize, newsize);
1105                         if (error)
1106                                 return error;
1107                         i_size_write(inode, newsize);
1108                         inode->i_ctime = inode->i_mtime = current_time(inode);
1109                 }
1110                 if (newsize <= oldsize) {
1111                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1112                         if (oldsize > holebegin)
1113                                 unmap_mapping_range(inode->i_mapping,
1114                                                         holebegin, 0, 1);
1115                         if (info->alloced)
1116                                 shmem_truncate_range(inode,
1117                                                         newsize, (loff_t)-1);
1118                         /* unmap again to remove racily COWed private pages */
1119                         if (oldsize > holebegin)
1120                                 unmap_mapping_range(inode->i_mapping,
1121                                                         holebegin, 0, 1);
1122                 }
1123         }
1124
1125         setattr_copy(&init_user_ns, inode, attr);
1126         if (attr->ia_valid & ATTR_MODE)
1127                 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1128         return error;
1129 }
1130
1131 static void shmem_evict_inode(struct inode *inode)
1132 {
1133         struct shmem_inode_info *info = SHMEM_I(inode);
1134         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1135
1136         if (shmem_mapping(inode->i_mapping)) {
1137                 shmem_unacct_size(info->flags, inode->i_size);
1138                 inode->i_size = 0;
1139                 shmem_truncate_range(inode, 0, (loff_t)-1);
1140                 if (!list_empty(&info->shrinklist)) {
1141                         spin_lock(&sbinfo->shrinklist_lock);
1142                         if (!list_empty(&info->shrinklist)) {
1143                                 list_del_init(&info->shrinklist);
1144                                 sbinfo->shrinklist_len--;
1145                         }
1146                         spin_unlock(&sbinfo->shrinklist_lock);
1147                 }
1148                 while (!list_empty(&info->swaplist)) {
1149                         /* Wait while shmem_unuse() is scanning this inode... */
1150                         wait_var_event(&info->stop_eviction,
1151                                        !atomic_read(&info->stop_eviction));
1152                         mutex_lock(&shmem_swaplist_mutex);
1153                         /* ...but beware of the race if we peeked too early */
1154                         if (!atomic_read(&info->stop_eviction))
1155                                 list_del_init(&info->swaplist);
1156                         mutex_unlock(&shmem_swaplist_mutex);
1157                 }
1158         }
1159
1160         simple_xattrs_free(&info->xattrs);
1161         WARN_ON(inode->i_blocks);
1162         shmem_free_inode(inode->i_sb);
1163         clear_inode(inode);
1164 }
1165
1166 static int shmem_find_swap_entries(struct address_space *mapping,
1167                                    pgoff_t start, unsigned int nr_entries,
1168                                    struct page **entries, pgoff_t *indices,
1169                                    unsigned int type, bool frontswap)
1170 {
1171         XA_STATE(xas, &mapping->i_pages, start);
1172         struct page *page;
1173         swp_entry_t entry;
1174         unsigned int ret = 0;
1175
1176         if (!nr_entries)
1177                 return 0;
1178
1179         rcu_read_lock();
1180         xas_for_each(&xas, page, ULONG_MAX) {
1181                 if (xas_retry(&xas, page))
1182                         continue;
1183
1184                 if (!xa_is_value(page))
1185                         continue;
1186
1187                 entry = radix_to_swp_entry(page);
1188                 if (swp_type(entry) != type)
1189                         continue;
1190                 if (frontswap &&
1191                     !frontswap_test(swap_info[type], swp_offset(entry)))
1192                         continue;
1193
1194                 indices[ret] = xas.xa_index;
1195                 entries[ret] = page;
1196
1197                 if (need_resched()) {
1198                         xas_pause(&xas);
1199                         cond_resched_rcu();
1200                 }
1201                 if (++ret == nr_entries)
1202                         break;
1203         }
1204         rcu_read_unlock();
1205
1206         return ret;
1207 }
1208
1209 /*
1210  * Move the swapped pages for an inode to page cache. Returns the count
1211  * of pages swapped in, or the error in case of failure.
1212  */
1213 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1214                                     pgoff_t *indices)
1215 {
1216         int i = 0;
1217         int ret = 0;
1218         int error = 0;
1219         struct address_space *mapping = inode->i_mapping;
1220
1221         for (i = 0; i < pvec.nr; i++) {
1222                 struct page *page = pvec.pages[i];
1223
1224                 if (!xa_is_value(page))
1225                         continue;
1226                 error = shmem_swapin_page(inode, indices[i],
1227                                           &page, SGP_CACHE,
1228                                           mapping_gfp_mask(mapping),
1229                                           NULL, NULL);
1230                 if (error == 0) {
1231                         unlock_page(page);
1232                         put_page(page);
1233                         ret++;
1234                 }
1235                 if (error == -ENOMEM)
1236                         break;
1237                 error = 0;
1238         }
1239         return error ? error : ret;
1240 }
1241
1242 /*
1243  * If swap found in inode, free it and move page from swapcache to filecache.
1244  */
1245 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1246                              bool frontswap, unsigned long *fs_pages_to_unuse)
1247 {
1248         struct address_space *mapping = inode->i_mapping;
1249         pgoff_t start = 0;
1250         struct pagevec pvec;
1251         pgoff_t indices[PAGEVEC_SIZE];
1252         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1253         int ret = 0;
1254
1255         pagevec_init(&pvec);
1256         do {
1257                 unsigned int nr_entries = PAGEVEC_SIZE;
1258
1259                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1260                         nr_entries = *fs_pages_to_unuse;
1261
1262                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1263                                                   pvec.pages, indices,
1264                                                   type, frontswap);
1265                 if (pvec.nr == 0) {
1266                         ret = 0;
1267                         break;
1268                 }
1269
1270                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1271                 if (ret < 0)
1272                         break;
1273
1274                 if (frontswap_partial) {
1275                         *fs_pages_to_unuse -= ret;
1276                         if (*fs_pages_to_unuse == 0) {
1277                                 ret = FRONTSWAP_PAGES_UNUSED;
1278                                 break;
1279                         }
1280                 }
1281
1282                 start = indices[pvec.nr - 1];
1283         } while (true);
1284
1285         return ret;
1286 }
1287
1288 /*
1289  * Read all the shared memory data that resides in the swap
1290  * device 'type' back into memory, so the swap device can be
1291  * unused.
1292  */
1293 int shmem_unuse(unsigned int type, bool frontswap,
1294                 unsigned long *fs_pages_to_unuse)
1295 {
1296         struct shmem_inode_info *info, *next;
1297         int error = 0;
1298
1299         if (list_empty(&shmem_swaplist))
1300                 return 0;
1301
1302         mutex_lock(&shmem_swaplist_mutex);
1303         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1304                 if (!info->swapped) {
1305                         list_del_init(&info->swaplist);
1306                         continue;
1307                 }
1308                 /*
1309                  * Drop the swaplist mutex while searching the inode for swap;
1310                  * but before doing so, make sure shmem_evict_inode() will not
1311                  * remove placeholder inode from swaplist, nor let it be freed
1312                  * (igrab() would protect from unlink, but not from unmount).
1313                  */
1314                 atomic_inc(&info->stop_eviction);
1315                 mutex_unlock(&shmem_swaplist_mutex);
1316
1317                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1318                                           fs_pages_to_unuse);
1319                 cond_resched();
1320
1321                 mutex_lock(&shmem_swaplist_mutex);
1322                 next = list_next_entry(info, swaplist);
1323                 if (!info->swapped)
1324                         list_del_init(&info->swaplist);
1325                 if (atomic_dec_and_test(&info->stop_eviction))
1326                         wake_up_var(&info->stop_eviction);
1327                 if (error)
1328                         break;
1329         }
1330         mutex_unlock(&shmem_swaplist_mutex);
1331
1332         return error;
1333 }
1334
1335 /*
1336  * Move the page from the page cache to the swap cache.
1337  */
1338 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1339 {
1340         struct shmem_inode_info *info;
1341         struct address_space *mapping;
1342         struct inode *inode;
1343         swp_entry_t swap;
1344         pgoff_t index;
1345
1346         /*
1347          * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1348          * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1349          * and its shmem_writeback() needs them to be split when swapping.
1350          */
1351         if (PageTransCompound(page)) {
1352                 /* Ensure the subpages are still dirty */
1353                 SetPageDirty(page);
1354                 if (split_huge_page(page) < 0)
1355                         goto redirty;
1356                 ClearPageDirty(page);
1357         }
1358
1359         BUG_ON(!PageLocked(page));
1360         mapping = page->mapping;
1361         index = page->index;
1362         inode = mapping->host;
1363         info = SHMEM_I(inode);
1364         if (info->flags & VM_LOCKED)
1365                 goto redirty;
1366         if (!total_swap_pages)
1367                 goto redirty;
1368
1369         /*
1370          * Our capabilities prevent regular writeback or sync from ever calling
1371          * shmem_writepage; but a stacking filesystem might use ->writepage of
1372          * its underlying filesystem, in which case tmpfs should write out to
1373          * swap only in response to memory pressure, and not for the writeback
1374          * threads or sync.
1375          */
1376         if (!wbc->for_reclaim) {
1377                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1378                 goto redirty;
1379         }
1380
1381         /*
1382          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1383          * value into swapfile.c, the only way we can correctly account for a
1384          * fallocated page arriving here is now to initialize it and write it.
1385          *
1386          * That's okay for a page already fallocated earlier, but if we have
1387          * not yet completed the fallocation, then (a) we want to keep track
1388          * of this page in case we have to undo it, and (b) it may not be a
1389          * good idea to continue anyway, once we're pushing into swap.  So
1390          * reactivate the page, and let shmem_fallocate() quit when too many.
1391          */
1392         if (!PageUptodate(page)) {
1393                 if (inode->i_private) {
1394                         struct shmem_falloc *shmem_falloc;
1395                         spin_lock(&inode->i_lock);
1396                         shmem_falloc = inode->i_private;
1397                         if (shmem_falloc &&
1398                             !shmem_falloc->waitq &&
1399                             index >= shmem_falloc->start &&
1400                             index < shmem_falloc->next)
1401                                 shmem_falloc->nr_unswapped++;
1402                         else
1403                                 shmem_falloc = NULL;
1404                         spin_unlock(&inode->i_lock);
1405                         if (shmem_falloc)
1406                                 goto redirty;
1407                 }
1408                 clear_highpage(page);
1409                 flush_dcache_page(page);
1410                 SetPageUptodate(page);
1411         }
1412
1413         swap = get_swap_page(page);
1414         if (!swap.val)
1415                 goto redirty;
1416
1417         /*
1418          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1419          * if it's not already there.  Do it now before the page is
1420          * moved to swap cache, when its pagelock no longer protects
1421          * the inode from eviction.  But don't unlock the mutex until
1422          * we've incremented swapped, because shmem_unuse_inode() will
1423          * prune a !swapped inode from the swaplist under this mutex.
1424          */
1425         mutex_lock(&shmem_swaplist_mutex);
1426         if (list_empty(&info->swaplist))
1427                 list_add(&info->swaplist, &shmem_swaplist);
1428
1429         if (add_to_swap_cache(page, swap,
1430                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1431                         NULL) == 0) {
1432                 spin_lock_irq(&info->lock);
1433                 shmem_recalc_inode(inode);
1434                 info->swapped++;
1435                 spin_unlock_irq(&info->lock);
1436
1437                 swap_shmem_alloc(swap);
1438                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1439
1440                 mutex_unlock(&shmem_swaplist_mutex);
1441                 BUG_ON(page_mapped(page));
1442                 swap_writepage(page, wbc);
1443                 return 0;
1444         }
1445
1446         mutex_unlock(&shmem_swaplist_mutex);
1447         put_swap_page(page, swap);
1448 redirty:
1449         set_page_dirty(page);
1450         if (wbc->for_reclaim)
1451                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1452         unlock_page(page);
1453         return 0;
1454 }
1455
1456 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1457 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1458 {
1459         char buffer[64];
1460
1461         if (!mpol || mpol->mode == MPOL_DEFAULT)
1462                 return;         /* show nothing */
1463
1464         mpol_to_str(buffer, sizeof(buffer), mpol);
1465
1466         seq_printf(seq, ",mpol=%s", buffer);
1467 }
1468
1469 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1470 {
1471         struct mempolicy *mpol = NULL;
1472         if (sbinfo->mpol) {
1473                 raw_spin_lock(&sbinfo->stat_lock);      /* prevent replace/use races */
1474                 mpol = sbinfo->mpol;
1475                 mpol_get(mpol);
1476                 raw_spin_unlock(&sbinfo->stat_lock);
1477         }
1478         return mpol;
1479 }
1480 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1481 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1482 {
1483 }
1484 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1485 {
1486         return NULL;
1487 }
1488 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1489 #ifndef CONFIG_NUMA
1490 #define vm_policy vm_private_data
1491 #endif
1492
1493 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1494                 struct shmem_inode_info *info, pgoff_t index)
1495 {
1496         /* Create a pseudo vma that just contains the policy */
1497         vma_init(vma, NULL);
1498         /* Bias interleave by inode number to distribute better across nodes */
1499         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1500         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1501 }
1502
1503 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1504 {
1505         /* Drop reference taken by mpol_shared_policy_lookup() */
1506         mpol_cond_put(vma->vm_policy);
1507 }
1508
1509 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1510                         struct shmem_inode_info *info, pgoff_t index)
1511 {
1512         struct vm_area_struct pvma;
1513         struct page *page;
1514         struct vm_fault vmf = {
1515                 .vma = &pvma,
1516         };
1517
1518         shmem_pseudo_vma_init(&pvma, info, index);
1519         page = swap_cluster_readahead(swap, gfp, &vmf);
1520         shmem_pseudo_vma_destroy(&pvma);
1521
1522         return page;
1523 }
1524
1525 /*
1526  * Make sure huge_gfp is always more limited than limit_gfp.
1527  * Some of the flags set permissions, while others set limitations.
1528  */
1529 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1530 {
1531         gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1532         gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1533         gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1534         gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1535
1536         /* Allow allocations only from the originally specified zones. */
1537         result |= zoneflags;
1538
1539         /*
1540          * Minimize the result gfp by taking the union with the deny flags,
1541          * and the intersection of the allow flags.
1542          */
1543         result |= (limit_gfp & denyflags);
1544         result |= (huge_gfp & limit_gfp) & allowflags;
1545
1546         return result;
1547 }
1548
1549 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1550                 struct shmem_inode_info *info, pgoff_t index)
1551 {
1552         struct vm_area_struct pvma;
1553         struct address_space *mapping = info->vfs_inode.i_mapping;
1554         pgoff_t hindex;
1555         struct page *page;
1556
1557         hindex = round_down(index, HPAGE_PMD_NR);
1558         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1559                                                                 XA_PRESENT))
1560                 return NULL;
1561
1562         shmem_pseudo_vma_init(&pvma, info, hindex);
1563         page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1564                                true);
1565         shmem_pseudo_vma_destroy(&pvma);
1566         if (page)
1567                 prep_transhuge_page(page);
1568         else
1569                 count_vm_event(THP_FILE_FALLBACK);
1570         return page;
1571 }
1572
1573 static struct page *shmem_alloc_page(gfp_t gfp,
1574                         struct shmem_inode_info *info, pgoff_t index)
1575 {
1576         struct vm_area_struct pvma;
1577         struct page *page;
1578
1579         shmem_pseudo_vma_init(&pvma, info, index);
1580         page = alloc_page_vma(gfp, &pvma, 0);
1581         shmem_pseudo_vma_destroy(&pvma);
1582
1583         return page;
1584 }
1585
1586 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1587                 struct inode *inode,
1588                 pgoff_t index, bool huge)
1589 {
1590         struct shmem_inode_info *info = SHMEM_I(inode);
1591         struct page *page;
1592         int nr;
1593         int err = -ENOSPC;
1594
1595         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1596                 huge = false;
1597         nr = huge ? HPAGE_PMD_NR : 1;
1598
1599         if (!shmem_inode_acct_block(inode, nr))
1600                 goto failed;
1601
1602         if (huge)
1603                 page = shmem_alloc_hugepage(gfp, info, index);
1604         else
1605                 page = shmem_alloc_page(gfp, info, index);
1606         if (page) {
1607                 __SetPageLocked(page);
1608                 __SetPageSwapBacked(page);
1609                 return page;
1610         }
1611
1612         err = -ENOMEM;
1613         shmem_inode_unacct_blocks(inode, nr);
1614 failed:
1615         return ERR_PTR(err);
1616 }
1617
1618 /*
1619  * When a page is moved from swapcache to shmem filecache (either by the
1620  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1621  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1622  * ignorance of the mapping it belongs to.  If that mapping has special
1623  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1624  * we may need to copy to a suitable page before moving to filecache.
1625  *
1626  * In a future release, this may well be extended to respect cpuset and
1627  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1628  * but for now it is a simple matter of zone.
1629  */
1630 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1631 {
1632         return page_zonenum(page) > gfp_zone(gfp);
1633 }
1634
1635 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1636                                 struct shmem_inode_info *info, pgoff_t index)
1637 {
1638         struct page *oldpage, *newpage;
1639         struct folio *old, *new;
1640         struct address_space *swap_mapping;
1641         swp_entry_t entry;
1642         pgoff_t swap_index;
1643         int error;
1644
1645         oldpage = *pagep;
1646         entry.val = page_private(oldpage);
1647         swap_index = swp_offset(entry);
1648         swap_mapping = page_mapping(oldpage);
1649
1650         /*
1651          * We have arrived here because our zones are constrained, so don't
1652          * limit chance of success by further cpuset and node constraints.
1653          */
1654         gfp &= ~GFP_CONSTRAINT_MASK;
1655         newpage = shmem_alloc_page(gfp, info, index);
1656         if (!newpage)
1657                 return -ENOMEM;
1658
1659         get_page(newpage);
1660         copy_highpage(newpage, oldpage);
1661         flush_dcache_page(newpage);
1662
1663         __SetPageLocked(newpage);
1664         __SetPageSwapBacked(newpage);
1665         SetPageUptodate(newpage);
1666         set_page_private(newpage, entry.val);
1667         SetPageSwapCache(newpage);
1668
1669         /*
1670          * Our caller will very soon move newpage out of swapcache, but it's
1671          * a nice clean interface for us to replace oldpage by newpage there.
1672          */
1673         xa_lock_irq(&swap_mapping->i_pages);
1674         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1675         if (!error) {
1676                 old = page_folio(oldpage);
1677                 new = page_folio(newpage);
1678                 mem_cgroup_migrate(old, new);
1679                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1680                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1681         }
1682         xa_unlock_irq(&swap_mapping->i_pages);
1683
1684         if (unlikely(error)) {
1685                 /*
1686                  * Is this possible?  I think not, now that our callers check
1687                  * both PageSwapCache and page_private after getting page lock;
1688                  * but be defensive.  Reverse old to newpage for clear and free.
1689                  */
1690                 oldpage = newpage;
1691         } else {
1692                 lru_cache_add(newpage);
1693                 *pagep = newpage;
1694         }
1695
1696         ClearPageSwapCache(oldpage);
1697         set_page_private(oldpage, 0);
1698
1699         unlock_page(oldpage);
1700         put_page(oldpage);
1701         put_page(oldpage);
1702         return error;
1703 }
1704
1705 /*
1706  * Swap in the page pointed to by *pagep.
1707  * Caller has to make sure that *pagep contains a valid swapped page.
1708  * Returns 0 and the page in pagep if success. On failure, returns the
1709  * error code and NULL in *pagep.
1710  */
1711 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1712                              struct page **pagep, enum sgp_type sgp,
1713                              gfp_t gfp, struct vm_area_struct *vma,
1714                              vm_fault_t *fault_type)
1715 {
1716         struct address_space *mapping = inode->i_mapping;
1717         struct shmem_inode_info *info = SHMEM_I(inode);
1718         struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1719         struct page *page;
1720         swp_entry_t swap;
1721         int error;
1722
1723         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1724         swap = radix_to_swp_entry(*pagep);
1725         *pagep = NULL;
1726
1727         /* Look it up and read it in.. */
1728         page = lookup_swap_cache(swap, NULL, 0);
1729         if (!page) {
1730                 /* Or update major stats only when swapin succeeds?? */
1731                 if (fault_type) {
1732                         *fault_type |= VM_FAULT_MAJOR;
1733                         count_vm_event(PGMAJFAULT);
1734                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1735                 }
1736                 /* Here we actually start the io */
1737                 page = shmem_swapin(swap, gfp, info, index);
1738                 if (!page) {
1739                         error = -ENOMEM;
1740                         goto failed;
1741                 }
1742         }
1743
1744         /* We have to do this with page locked to prevent races */
1745         lock_page(page);
1746         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1747             !shmem_confirm_swap(mapping, index, swap)) {
1748                 error = -EEXIST;
1749                 goto unlock;
1750         }
1751         if (!PageUptodate(page)) {
1752                 error = -EIO;
1753                 goto failed;
1754         }
1755         wait_on_page_writeback(page);
1756
1757         /*
1758          * Some architectures may have to restore extra metadata to the
1759          * physical page after reading from swap.
1760          */
1761         arch_swap_restore(swap, page);
1762
1763         if (shmem_should_replace_page(page, gfp)) {
1764                 error = shmem_replace_page(&page, gfp, info, index);
1765                 if (error)
1766                         goto failed;
1767         }
1768
1769         error = shmem_add_to_page_cache(page, mapping, index,
1770                                         swp_to_radix_entry(swap), gfp,
1771                                         charge_mm);
1772         if (error)
1773                 goto failed;
1774
1775         spin_lock_irq(&info->lock);
1776         info->swapped--;
1777         shmem_recalc_inode(inode);
1778         spin_unlock_irq(&info->lock);
1779
1780         if (sgp == SGP_WRITE)
1781                 mark_page_accessed(page);
1782
1783         delete_from_swap_cache(page);
1784         set_page_dirty(page);
1785         swap_free(swap);
1786
1787         *pagep = page;
1788         return 0;
1789 failed:
1790         if (!shmem_confirm_swap(mapping, index, swap))
1791                 error = -EEXIST;
1792 unlock:
1793         if (page) {
1794                 unlock_page(page);
1795                 put_page(page);
1796         }
1797
1798         return error;
1799 }
1800
1801 /*
1802  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1803  *
1804  * If we allocate a new one we do not mark it dirty. That's up to the
1805  * vm. If we swap it in we mark it dirty since we also free the swap
1806  * entry since a page cannot live in both the swap and page cache.
1807  *
1808  * vma, vmf, and fault_type are only supplied by shmem_fault:
1809  * otherwise they are NULL.
1810  */
1811 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1812         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1813         struct vm_area_struct *vma, struct vm_fault *vmf,
1814                         vm_fault_t *fault_type)
1815 {
1816         struct address_space *mapping = inode->i_mapping;
1817         struct shmem_inode_info *info = SHMEM_I(inode);
1818         struct shmem_sb_info *sbinfo;
1819         struct mm_struct *charge_mm;
1820         struct page *page;
1821         pgoff_t hindex = index;
1822         gfp_t huge_gfp;
1823         int error;
1824         int once = 0;
1825         int alloced = 0;
1826
1827         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1828                 return -EFBIG;
1829 repeat:
1830         if (sgp <= SGP_CACHE &&
1831             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1832                 return -EINVAL;
1833         }
1834
1835         sbinfo = SHMEM_SB(inode->i_sb);
1836         charge_mm = vma ? vma->vm_mm : NULL;
1837
1838         page = pagecache_get_page(mapping, index,
1839                                         FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1840
1841         if (page && vma && userfaultfd_minor(vma)) {
1842                 if (!xa_is_value(page)) {
1843                         unlock_page(page);
1844                         put_page(page);
1845                 }
1846                 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1847                 return 0;
1848         }
1849
1850         if (xa_is_value(page)) {
1851                 error = shmem_swapin_page(inode, index, &page,
1852                                           sgp, gfp, vma, fault_type);
1853                 if (error == -EEXIST)
1854                         goto repeat;
1855
1856                 *pagep = page;
1857                 return error;
1858         }
1859
1860         if (page) {
1861                 hindex = page->index;
1862                 if (sgp == SGP_WRITE)
1863                         mark_page_accessed(page);
1864                 if (PageUptodate(page))
1865                         goto out;
1866                 /* fallocated page */
1867                 if (sgp != SGP_READ)
1868                         goto clear;
1869                 unlock_page(page);
1870                 put_page(page);
1871         }
1872
1873         /*
1874          * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1875          * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1876          */
1877         *pagep = NULL;
1878         if (sgp == SGP_READ)
1879                 return 0;
1880         if (sgp == SGP_NOALLOC)
1881                 return -ENOENT;
1882
1883         /*
1884          * Fast cache lookup and swap lookup did not find it: allocate.
1885          */
1886
1887         if (vma && userfaultfd_missing(vma)) {
1888                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1889                 return 0;
1890         }
1891
1892         /* Never use a huge page for shmem_symlink() */
1893         if (S_ISLNK(inode->i_mode))
1894                 goto alloc_nohuge;
1895         if (!shmem_is_huge(vma, inode, index))
1896                 goto alloc_nohuge;
1897
1898         huge_gfp = vma_thp_gfp_mask(vma);
1899         huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1900         page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1901         if (IS_ERR(page)) {
1902 alloc_nohuge:
1903                 page = shmem_alloc_and_acct_page(gfp, inode,
1904                                                  index, false);
1905         }
1906         if (IS_ERR(page)) {
1907                 int retry = 5;
1908
1909                 error = PTR_ERR(page);
1910                 page = NULL;
1911                 if (error != -ENOSPC)
1912                         goto unlock;
1913                 /*
1914                  * Try to reclaim some space by splitting a huge page
1915                  * beyond i_size on the filesystem.
1916                  */
1917                 while (retry--) {
1918                         int ret;
1919
1920                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1921                         if (ret == SHRINK_STOP)
1922                                 break;
1923                         if (ret)
1924                                 goto alloc_nohuge;
1925                 }
1926                 goto unlock;
1927         }
1928
1929         if (PageTransHuge(page))
1930                 hindex = round_down(index, HPAGE_PMD_NR);
1931         else
1932                 hindex = index;
1933
1934         if (sgp == SGP_WRITE)
1935                 __SetPageReferenced(page);
1936
1937         error = shmem_add_to_page_cache(page, mapping, hindex,
1938                                         NULL, gfp & GFP_RECLAIM_MASK,
1939                                         charge_mm);
1940         if (error)
1941                 goto unacct;
1942         lru_cache_add(page);
1943
1944         spin_lock_irq(&info->lock);
1945         info->alloced += compound_nr(page);
1946         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1947         shmem_recalc_inode(inode);
1948         spin_unlock_irq(&info->lock);
1949         alloced = true;
1950
1951         if (PageTransHuge(page) &&
1952             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1953                         hindex + HPAGE_PMD_NR - 1) {
1954                 /*
1955                  * Part of the huge page is beyond i_size: subject
1956                  * to shrink under memory pressure.
1957                  */
1958                 spin_lock(&sbinfo->shrinklist_lock);
1959                 /*
1960                  * _careful to defend against unlocked access to
1961                  * ->shrink_list in shmem_unused_huge_shrink()
1962                  */
1963                 if (list_empty_careful(&info->shrinklist)) {
1964                         list_add_tail(&info->shrinklist,
1965                                       &sbinfo->shrinklist);
1966                         sbinfo->shrinklist_len++;
1967                 }
1968                 spin_unlock(&sbinfo->shrinklist_lock);
1969         }
1970
1971         /*
1972          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1973          */
1974         if (sgp == SGP_FALLOC)
1975                 sgp = SGP_WRITE;
1976 clear:
1977         /*
1978          * Let SGP_WRITE caller clear ends if write does not fill page;
1979          * but SGP_FALLOC on a page fallocated earlier must initialize
1980          * it now, lest undo on failure cancel our earlier guarantee.
1981          */
1982         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1983                 int i;
1984
1985                 for (i = 0; i < compound_nr(page); i++) {
1986                         clear_highpage(page + i);
1987                         flush_dcache_page(page + i);
1988                 }
1989                 SetPageUptodate(page);
1990         }
1991
1992         /* Perhaps the file has been truncated since we checked */
1993         if (sgp <= SGP_CACHE &&
1994             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1995                 if (alloced) {
1996                         ClearPageDirty(page);
1997                         delete_from_page_cache(page);
1998                         spin_lock_irq(&info->lock);
1999                         shmem_recalc_inode(inode);
2000                         spin_unlock_irq(&info->lock);
2001                 }
2002                 error = -EINVAL;
2003                 goto unlock;
2004         }
2005 out:
2006         *pagep = page + index - hindex;
2007         return 0;
2008
2009         /*
2010          * Error recovery.
2011          */
2012 unacct:
2013         shmem_inode_unacct_blocks(inode, compound_nr(page));
2014
2015         if (PageTransHuge(page)) {
2016                 unlock_page(page);
2017                 put_page(page);
2018                 goto alloc_nohuge;
2019         }
2020 unlock:
2021         if (page) {
2022                 unlock_page(page);
2023                 put_page(page);
2024         }
2025         if (error == -ENOSPC && !once++) {
2026                 spin_lock_irq(&info->lock);
2027                 shmem_recalc_inode(inode);
2028                 spin_unlock_irq(&info->lock);
2029                 goto repeat;
2030         }
2031         if (error == -EEXIST)
2032                 goto repeat;
2033         return error;
2034 }
2035
2036 /*
2037  * This is like autoremove_wake_function, but it removes the wait queue
2038  * entry unconditionally - even if something else had already woken the
2039  * target.
2040  */
2041 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2042 {
2043         int ret = default_wake_function(wait, mode, sync, key);
2044         list_del_init(&wait->entry);
2045         return ret;
2046 }
2047
2048 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2049 {
2050         struct vm_area_struct *vma = vmf->vma;
2051         struct inode *inode = file_inode(vma->vm_file);
2052         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2053         int err;
2054         vm_fault_t ret = VM_FAULT_LOCKED;
2055
2056         /*
2057          * Trinity finds that probing a hole which tmpfs is punching can
2058          * prevent the hole-punch from ever completing: which in turn
2059          * locks writers out with its hold on i_rwsem.  So refrain from
2060          * faulting pages into the hole while it's being punched.  Although
2061          * shmem_undo_range() does remove the additions, it may be unable to
2062          * keep up, as each new page needs its own unmap_mapping_range() call,
2063          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2064          *
2065          * It does not matter if we sometimes reach this check just before the
2066          * hole-punch begins, so that one fault then races with the punch:
2067          * we just need to make racing faults a rare case.
2068          *
2069          * The implementation below would be much simpler if we just used a
2070          * standard mutex or completion: but we cannot take i_rwsem in fault,
2071          * and bloating every shmem inode for this unlikely case would be sad.
2072          */
2073         if (unlikely(inode->i_private)) {
2074                 struct shmem_falloc *shmem_falloc;
2075
2076                 spin_lock(&inode->i_lock);
2077                 shmem_falloc = inode->i_private;
2078                 if (shmem_falloc &&
2079                     shmem_falloc->waitq &&
2080                     vmf->pgoff >= shmem_falloc->start &&
2081                     vmf->pgoff < shmem_falloc->next) {
2082                         struct file *fpin;
2083                         wait_queue_head_t *shmem_falloc_waitq;
2084                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2085
2086                         ret = VM_FAULT_NOPAGE;
2087                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2088                         if (fpin)
2089                                 ret = VM_FAULT_RETRY;
2090
2091                         shmem_falloc_waitq = shmem_falloc->waitq;
2092                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2093                                         TASK_UNINTERRUPTIBLE);
2094                         spin_unlock(&inode->i_lock);
2095                         schedule();
2096
2097                         /*
2098                          * shmem_falloc_waitq points into the shmem_fallocate()
2099                          * stack of the hole-punching task: shmem_falloc_waitq
2100                          * is usually invalid by the time we reach here, but
2101                          * finish_wait() does not dereference it in that case;
2102                          * though i_lock needed lest racing with wake_up_all().
2103                          */
2104                         spin_lock(&inode->i_lock);
2105                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2106                         spin_unlock(&inode->i_lock);
2107
2108                         if (fpin)
2109                                 fput(fpin);
2110                         return ret;
2111                 }
2112                 spin_unlock(&inode->i_lock);
2113         }
2114
2115         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2116                                   gfp, vma, vmf, &ret);
2117         if (err)
2118                 return vmf_error(err);
2119         return ret;
2120 }
2121
2122 unsigned long shmem_get_unmapped_area(struct file *file,
2123                                       unsigned long uaddr, unsigned long len,
2124                                       unsigned long pgoff, unsigned long flags)
2125 {
2126         unsigned long (*get_area)(struct file *,
2127                 unsigned long, unsigned long, unsigned long, unsigned long);
2128         unsigned long addr;
2129         unsigned long offset;
2130         unsigned long inflated_len;
2131         unsigned long inflated_addr;
2132         unsigned long inflated_offset;
2133
2134         if (len > TASK_SIZE)
2135                 return -ENOMEM;
2136
2137         get_area = current->mm->get_unmapped_area;
2138         addr = get_area(file, uaddr, len, pgoff, flags);
2139
2140         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2141                 return addr;
2142         if (IS_ERR_VALUE(addr))
2143                 return addr;
2144         if (addr & ~PAGE_MASK)
2145                 return addr;
2146         if (addr > TASK_SIZE - len)
2147                 return addr;
2148
2149         if (shmem_huge == SHMEM_HUGE_DENY)
2150                 return addr;
2151         if (len < HPAGE_PMD_SIZE)
2152                 return addr;
2153         if (flags & MAP_FIXED)
2154                 return addr;
2155         /*
2156          * Our priority is to support MAP_SHARED mapped hugely;
2157          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2158          * But if caller specified an address hint and we allocated area there
2159          * successfully, respect that as before.
2160          */
2161         if (uaddr == addr)
2162                 return addr;
2163
2164         if (shmem_huge != SHMEM_HUGE_FORCE) {
2165                 struct super_block *sb;
2166
2167                 if (file) {
2168                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2169                         sb = file_inode(file)->i_sb;
2170                 } else {
2171                         /*
2172                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2173                          * for "/dev/zero", to create a shared anonymous object.
2174                          */
2175                         if (IS_ERR(shm_mnt))
2176                                 return addr;
2177                         sb = shm_mnt->mnt_sb;
2178                 }
2179                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2180                         return addr;
2181         }
2182
2183         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2184         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2185                 return addr;
2186         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2187                 return addr;
2188
2189         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2190         if (inflated_len > TASK_SIZE)
2191                 return addr;
2192         if (inflated_len < len)
2193                 return addr;
2194
2195         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2196         if (IS_ERR_VALUE(inflated_addr))
2197                 return addr;
2198         if (inflated_addr & ~PAGE_MASK)
2199                 return addr;
2200
2201         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2202         inflated_addr += offset - inflated_offset;
2203         if (inflated_offset > offset)
2204                 inflated_addr += HPAGE_PMD_SIZE;
2205
2206         if (inflated_addr > TASK_SIZE - len)
2207                 return addr;
2208         return inflated_addr;
2209 }
2210
2211 #ifdef CONFIG_NUMA
2212 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2213 {
2214         struct inode *inode = file_inode(vma->vm_file);
2215         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2216 }
2217
2218 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2219                                           unsigned long addr)
2220 {
2221         struct inode *inode = file_inode(vma->vm_file);
2222         pgoff_t index;
2223
2224         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2225         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2226 }
2227 #endif
2228
2229 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2230 {
2231         struct inode *inode = file_inode(file);
2232         struct shmem_inode_info *info = SHMEM_I(inode);
2233         int retval = -ENOMEM;
2234
2235         /*
2236          * What serializes the accesses to info->flags?
2237          * ipc_lock_object() when called from shmctl_do_lock(),
2238          * no serialization needed when called from shm_destroy().
2239          */
2240         if (lock && !(info->flags & VM_LOCKED)) {
2241                 if (!user_shm_lock(inode->i_size, ucounts))
2242                         goto out_nomem;
2243                 info->flags |= VM_LOCKED;
2244                 mapping_set_unevictable(file->f_mapping);
2245         }
2246         if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2247                 user_shm_unlock(inode->i_size, ucounts);
2248                 info->flags &= ~VM_LOCKED;
2249                 mapping_clear_unevictable(file->f_mapping);
2250         }
2251         retval = 0;
2252
2253 out_nomem:
2254         return retval;
2255 }
2256
2257 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2258 {
2259         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2260         int ret;
2261
2262         ret = seal_check_future_write(info->seals, vma);
2263         if (ret)
2264                 return ret;
2265
2266         /* arm64 - allow memory tagging on RAM-based files */
2267         vma->vm_flags |= VM_MTE_ALLOWED;
2268
2269         file_accessed(file);
2270         vma->vm_ops = &shmem_vm_ops;
2271         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2272                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2273                         (vma->vm_end & HPAGE_PMD_MASK)) {
2274                 khugepaged_enter(vma, vma->vm_flags);
2275         }
2276         return 0;
2277 }
2278
2279 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2280                                      umode_t mode, dev_t dev, unsigned long flags)
2281 {
2282         struct inode *inode;
2283         struct shmem_inode_info *info;
2284         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2285         ino_t ino;
2286
2287         if (shmem_reserve_inode(sb, &ino))
2288                 return NULL;
2289
2290         inode = new_inode(sb);
2291         if (inode) {
2292                 inode->i_ino = ino;
2293                 inode_init_owner(&init_user_ns, inode, dir, mode);
2294                 inode->i_blocks = 0;
2295                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2296                 inode->i_generation = prandom_u32();
2297                 info = SHMEM_I(inode);
2298                 memset(info, 0, (char *)inode - (char *)info);
2299                 spin_lock_init(&info->lock);
2300                 atomic_set(&info->stop_eviction, 0);
2301                 info->seals = F_SEAL_SEAL;
2302                 info->flags = flags & VM_NORESERVE;
2303                 INIT_LIST_HEAD(&info->shrinklist);
2304                 INIT_LIST_HEAD(&info->swaplist);
2305                 simple_xattrs_init(&info->xattrs);
2306                 cache_no_acl(inode);
2307
2308                 switch (mode & S_IFMT) {
2309                 default:
2310                         inode->i_op = &shmem_special_inode_operations;
2311                         init_special_inode(inode, mode, dev);
2312                         break;
2313                 case S_IFREG:
2314                         inode->i_mapping->a_ops = &shmem_aops;
2315                         inode->i_op = &shmem_inode_operations;
2316                         inode->i_fop = &shmem_file_operations;
2317                         mpol_shared_policy_init(&info->policy,
2318                                                  shmem_get_sbmpol(sbinfo));
2319                         break;
2320                 case S_IFDIR:
2321                         inc_nlink(inode);
2322                         /* Some things misbehave if size == 0 on a directory */
2323                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2324                         inode->i_op = &shmem_dir_inode_operations;
2325                         inode->i_fop = &simple_dir_operations;
2326                         break;
2327                 case S_IFLNK:
2328                         /*
2329                          * Must not load anything in the rbtree,
2330                          * mpol_free_shared_policy will not be called.
2331                          */
2332                         mpol_shared_policy_init(&info->policy, NULL);
2333                         break;
2334                 }
2335
2336                 lockdep_annotate_inode_mutex_key(inode);
2337         } else
2338                 shmem_free_inode(sb);
2339         return inode;
2340 }
2341
2342 #ifdef CONFIG_USERFAULTFD
2343 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2344                            pmd_t *dst_pmd,
2345                            struct vm_area_struct *dst_vma,
2346                            unsigned long dst_addr,
2347                            unsigned long src_addr,
2348                            bool zeropage,
2349                            struct page **pagep)
2350 {
2351         struct inode *inode = file_inode(dst_vma->vm_file);
2352         struct shmem_inode_info *info = SHMEM_I(inode);
2353         struct address_space *mapping = inode->i_mapping;
2354         gfp_t gfp = mapping_gfp_mask(mapping);
2355         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2356         void *page_kaddr;
2357         struct page *page;
2358         int ret;
2359         pgoff_t max_off;
2360
2361         if (!shmem_inode_acct_block(inode, 1)) {
2362                 /*
2363                  * We may have got a page, returned -ENOENT triggering a retry,
2364                  * and now we find ourselves with -ENOMEM. Release the page, to
2365                  * avoid a BUG_ON in our caller.
2366                  */
2367                 if (unlikely(*pagep)) {
2368                         put_page(*pagep);
2369                         *pagep = NULL;
2370                 }
2371                 return -ENOMEM;
2372         }
2373
2374         if (!*pagep) {
2375                 ret = -ENOMEM;
2376                 page = shmem_alloc_page(gfp, info, pgoff);
2377                 if (!page)
2378                         goto out_unacct_blocks;
2379
2380                 if (!zeropage) {        /* COPY */
2381                         page_kaddr = kmap_atomic(page);
2382                         ret = copy_from_user(page_kaddr,
2383                                              (const void __user *)src_addr,
2384                                              PAGE_SIZE);
2385                         kunmap_atomic(page_kaddr);
2386
2387                         /* fallback to copy_from_user outside mmap_lock */
2388                         if (unlikely(ret)) {
2389                                 *pagep = page;
2390                                 ret = -ENOENT;
2391                                 /* don't free the page */
2392                                 goto out_unacct_blocks;
2393                         }
2394                 } else {                /* ZEROPAGE */
2395                         clear_highpage(page);
2396                 }
2397         } else {
2398                 page = *pagep;
2399                 *pagep = NULL;
2400         }
2401
2402         VM_BUG_ON(PageLocked(page));
2403         VM_BUG_ON(PageSwapBacked(page));
2404         __SetPageLocked(page);
2405         __SetPageSwapBacked(page);
2406         __SetPageUptodate(page);
2407
2408         ret = -EFAULT;
2409         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2410         if (unlikely(pgoff >= max_off))
2411                 goto out_release;
2412
2413         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2414                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2415         if (ret)
2416                 goto out_release;
2417
2418         ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2419                                        page, true, false);
2420         if (ret)
2421                 goto out_delete_from_cache;
2422
2423         spin_lock_irq(&info->lock);
2424         info->alloced++;
2425         inode->i_blocks += BLOCKS_PER_PAGE;
2426         shmem_recalc_inode(inode);
2427         spin_unlock_irq(&info->lock);
2428
2429         SetPageDirty(page);
2430         unlock_page(page);
2431         return 0;
2432 out_delete_from_cache:
2433         delete_from_page_cache(page);
2434 out_release:
2435         unlock_page(page);
2436         put_page(page);
2437 out_unacct_blocks:
2438         shmem_inode_unacct_blocks(inode, 1);
2439         return ret;
2440 }
2441 #endif /* CONFIG_USERFAULTFD */
2442
2443 #ifdef CONFIG_TMPFS
2444 static const struct inode_operations shmem_symlink_inode_operations;
2445 static const struct inode_operations shmem_short_symlink_operations;
2446
2447 #ifdef CONFIG_TMPFS_XATTR
2448 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2449 #else
2450 #define shmem_initxattrs NULL
2451 #endif
2452
2453 static int
2454 shmem_write_begin(struct file *file, struct address_space *mapping,
2455                         loff_t pos, unsigned len, unsigned flags,
2456                         struct page **pagep, void **fsdata)
2457 {
2458         struct inode *inode = mapping->host;
2459         struct shmem_inode_info *info = SHMEM_I(inode);
2460         pgoff_t index = pos >> PAGE_SHIFT;
2461
2462         /* i_rwsem is held by caller */
2463         if (unlikely(info->seals & (F_SEAL_GROW |
2464                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2465                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2466                         return -EPERM;
2467                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2468                         return -EPERM;
2469         }
2470
2471         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2472 }
2473
2474 static int
2475 shmem_write_end(struct file *file, struct address_space *mapping,
2476                         loff_t pos, unsigned len, unsigned copied,
2477                         struct page *page, void *fsdata)
2478 {
2479         struct inode *inode = mapping->host;
2480
2481         if (pos + copied > inode->i_size)
2482                 i_size_write(inode, pos + copied);
2483
2484         if (!PageUptodate(page)) {
2485                 struct page *head = compound_head(page);
2486                 if (PageTransCompound(page)) {
2487                         int i;
2488
2489                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2490                                 if (head + i == page)
2491                                         continue;
2492                                 clear_highpage(head + i);
2493                                 flush_dcache_page(head + i);
2494                         }
2495                 }
2496                 if (copied < PAGE_SIZE) {
2497                         unsigned from = pos & (PAGE_SIZE - 1);
2498                         zero_user_segments(page, 0, from,
2499                                         from + copied, PAGE_SIZE);
2500                 }
2501                 SetPageUptodate(head);
2502         }
2503         set_page_dirty(page);
2504         unlock_page(page);
2505         put_page(page);
2506
2507         return copied;
2508 }
2509
2510 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2511 {
2512         struct file *file = iocb->ki_filp;
2513         struct inode *inode = file_inode(file);
2514         struct address_space *mapping = inode->i_mapping;
2515         pgoff_t index;
2516         unsigned long offset;
2517         enum sgp_type sgp = SGP_READ;
2518         int error = 0;
2519         ssize_t retval = 0;
2520         loff_t *ppos = &iocb->ki_pos;
2521
2522         /*
2523          * Might this read be for a stacking filesystem?  Then when reading
2524          * holes of a sparse file, we actually need to allocate those pages,
2525          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2526          */
2527         if (!iter_is_iovec(to))
2528                 sgp = SGP_CACHE;
2529
2530         index = *ppos >> PAGE_SHIFT;
2531         offset = *ppos & ~PAGE_MASK;
2532
2533         for (;;) {
2534                 struct page *page = NULL;
2535                 pgoff_t end_index;
2536                 unsigned long nr, ret;
2537                 loff_t i_size = i_size_read(inode);
2538
2539                 end_index = i_size >> PAGE_SHIFT;
2540                 if (index > end_index)
2541                         break;
2542                 if (index == end_index) {
2543                         nr = i_size & ~PAGE_MASK;
2544                         if (nr <= offset)
2545                                 break;
2546                 }
2547
2548                 error = shmem_getpage(inode, index, &page, sgp);
2549                 if (error) {
2550                         if (error == -EINVAL)
2551                                 error = 0;
2552                         break;
2553                 }
2554                 if (page) {
2555                         if (sgp == SGP_CACHE)
2556                                 set_page_dirty(page);
2557                         unlock_page(page);
2558                 }
2559
2560                 /*
2561                  * We must evaluate after, since reads (unlike writes)
2562                  * are called without i_rwsem protection against truncate
2563                  */
2564                 nr = PAGE_SIZE;
2565                 i_size = i_size_read(inode);
2566                 end_index = i_size >> PAGE_SHIFT;
2567                 if (index == end_index) {
2568                         nr = i_size & ~PAGE_MASK;
2569                         if (nr <= offset) {
2570                                 if (page)
2571                                         put_page(page);
2572                                 break;
2573                         }
2574                 }
2575                 nr -= offset;
2576
2577                 if (page) {
2578                         /*
2579                          * If users can be writing to this page using arbitrary
2580                          * virtual addresses, take care about potential aliasing
2581                          * before reading the page on the kernel side.
2582                          */
2583                         if (mapping_writably_mapped(mapping))
2584                                 flush_dcache_page(page);
2585                         /*
2586                          * Mark the page accessed if we read the beginning.
2587                          */
2588                         if (!offset)
2589                                 mark_page_accessed(page);
2590                 } else {
2591                         page = ZERO_PAGE(0);
2592                         get_page(page);
2593                 }
2594
2595                 /*
2596                  * Ok, we have the page, and it's up-to-date, so
2597                  * now we can copy it to user space...
2598                  */
2599                 ret = copy_page_to_iter(page, offset, nr, to);
2600                 retval += ret;
2601                 offset += ret;
2602                 index += offset >> PAGE_SHIFT;
2603                 offset &= ~PAGE_MASK;
2604
2605                 put_page(page);
2606                 if (!iov_iter_count(to))
2607                         break;
2608                 if (ret < nr) {
2609                         error = -EFAULT;
2610                         break;
2611                 }
2612                 cond_resched();
2613         }
2614
2615         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2616         file_accessed(file);
2617         return retval ? retval : error;
2618 }
2619
2620 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2621 {
2622         struct address_space *mapping = file->f_mapping;
2623         struct inode *inode = mapping->host;
2624
2625         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2626                 return generic_file_llseek_size(file, offset, whence,
2627                                         MAX_LFS_FILESIZE, i_size_read(inode));
2628         if (offset < 0)
2629                 return -ENXIO;
2630
2631         inode_lock(inode);
2632         /* We're holding i_rwsem so we can access i_size directly */
2633         offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2634         if (offset >= 0)
2635                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2636         inode_unlock(inode);
2637         return offset;
2638 }
2639
2640 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2641                                                          loff_t len)
2642 {
2643         struct inode *inode = file_inode(file);
2644         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2645         struct shmem_inode_info *info = SHMEM_I(inode);
2646         struct shmem_falloc shmem_falloc;
2647         pgoff_t start, index, end, undo_fallocend;
2648         int error;
2649
2650         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2651                 return -EOPNOTSUPP;
2652
2653         inode_lock(inode);
2654
2655         if (mode & FALLOC_FL_PUNCH_HOLE) {
2656                 struct address_space *mapping = file->f_mapping;
2657                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2658                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2659                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2660
2661                 /* protected by i_rwsem */
2662                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2663                         error = -EPERM;
2664                         goto out;
2665                 }
2666
2667                 shmem_falloc.waitq = &shmem_falloc_waitq;
2668                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2669                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2670                 spin_lock(&inode->i_lock);
2671                 inode->i_private = &shmem_falloc;
2672                 spin_unlock(&inode->i_lock);
2673
2674                 if ((u64)unmap_end > (u64)unmap_start)
2675                         unmap_mapping_range(mapping, unmap_start,
2676                                             1 + unmap_end - unmap_start, 0);
2677                 shmem_truncate_range(inode, offset, offset + len - 1);
2678                 /* No need to unmap again: hole-punching leaves COWed pages */
2679
2680                 spin_lock(&inode->i_lock);
2681                 inode->i_private = NULL;
2682                 wake_up_all(&shmem_falloc_waitq);
2683                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2684                 spin_unlock(&inode->i_lock);
2685                 error = 0;
2686                 goto out;
2687         }
2688
2689         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2690         error = inode_newsize_ok(inode, offset + len);
2691         if (error)
2692                 goto out;
2693
2694         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2695                 error = -EPERM;
2696                 goto out;
2697         }
2698
2699         start = offset >> PAGE_SHIFT;
2700         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2701         /* Try to avoid a swapstorm if len is impossible to satisfy */
2702         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2703                 error = -ENOSPC;
2704                 goto out;
2705         }
2706
2707         shmem_falloc.waitq = NULL;
2708         shmem_falloc.start = start;
2709         shmem_falloc.next  = start;
2710         shmem_falloc.nr_falloced = 0;
2711         shmem_falloc.nr_unswapped = 0;
2712         spin_lock(&inode->i_lock);
2713         inode->i_private = &shmem_falloc;
2714         spin_unlock(&inode->i_lock);
2715
2716         /*
2717          * info->fallocend is only relevant when huge pages might be
2718          * involved: to prevent split_huge_page() freeing fallocated
2719          * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2720          */
2721         undo_fallocend = info->fallocend;
2722         if (info->fallocend < end)
2723                 info->fallocend = end;
2724
2725         for (index = start; index < end; ) {
2726                 struct page *page;
2727
2728                 /*
2729                  * Good, the fallocate(2) manpage permits EINTR: we may have
2730                  * been interrupted because we are using up too much memory.
2731                  */
2732                 if (signal_pending(current))
2733                         error = -EINTR;
2734                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2735                         error = -ENOMEM;
2736                 else
2737                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2738                 if (error) {
2739                         info->fallocend = undo_fallocend;
2740                         /* Remove the !PageUptodate pages we added */
2741                         if (index > start) {
2742                                 shmem_undo_range(inode,
2743                                     (loff_t)start << PAGE_SHIFT,
2744                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2745                         }
2746                         goto undone;
2747                 }
2748
2749                 index++;
2750                 /*
2751                  * Here is a more important optimization than it appears:
2752                  * a second SGP_FALLOC on the same huge page will clear it,
2753                  * making it PageUptodate and un-undoable if we fail later.
2754                  */
2755                 if (PageTransCompound(page)) {
2756                         index = round_up(index, HPAGE_PMD_NR);
2757                         /* Beware 32-bit wraparound */
2758                         if (!index)
2759                                 index--;
2760                 }
2761
2762                 /*
2763                  * Inform shmem_writepage() how far we have reached.
2764                  * No need for lock or barrier: we have the page lock.
2765                  */
2766                 if (!PageUptodate(page))
2767                         shmem_falloc.nr_falloced += index - shmem_falloc.next;
2768                 shmem_falloc.next = index;
2769
2770                 /*
2771                  * If !PageUptodate, leave it that way so that freeable pages
2772                  * can be recognized if we need to rollback on error later.
2773                  * But set_page_dirty so that memory pressure will swap rather
2774                  * than free the pages we are allocating (and SGP_CACHE pages
2775                  * might still be clean: we now need to mark those dirty too).
2776                  */
2777                 set_page_dirty(page);
2778                 unlock_page(page);
2779                 put_page(page);
2780                 cond_resched();
2781         }
2782
2783         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2784                 i_size_write(inode, offset + len);
2785         inode->i_ctime = current_time(inode);
2786 undone:
2787         spin_lock(&inode->i_lock);
2788         inode->i_private = NULL;
2789         spin_unlock(&inode->i_lock);
2790 out:
2791         inode_unlock(inode);
2792         return error;
2793 }
2794
2795 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2796 {
2797         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2798
2799         buf->f_type = TMPFS_MAGIC;
2800         buf->f_bsize = PAGE_SIZE;
2801         buf->f_namelen = NAME_MAX;
2802         if (sbinfo->max_blocks) {
2803                 buf->f_blocks = sbinfo->max_blocks;
2804                 buf->f_bavail =
2805                 buf->f_bfree  = sbinfo->max_blocks -
2806                                 percpu_counter_sum(&sbinfo->used_blocks);
2807         }
2808         if (sbinfo->max_inodes) {
2809                 buf->f_files = sbinfo->max_inodes;
2810                 buf->f_ffree = sbinfo->free_inodes;
2811         }
2812         /* else leave those fields 0 like simple_statfs */
2813
2814         buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2815
2816         return 0;
2817 }
2818
2819 /*
2820  * File creation. Allocate an inode, and we're done..
2821  */
2822 static int
2823 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2824             struct dentry *dentry, umode_t mode, dev_t dev)
2825 {
2826         struct inode *inode;
2827         int error = -ENOSPC;
2828
2829         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2830         if (inode) {
2831                 error = simple_acl_create(dir, inode);
2832                 if (error)
2833                         goto out_iput;
2834                 error = security_inode_init_security(inode, dir,
2835                                                      &dentry->d_name,
2836                                                      shmem_initxattrs, NULL);
2837                 if (error && error != -EOPNOTSUPP)
2838                         goto out_iput;
2839
2840                 error = 0;
2841                 dir->i_size += BOGO_DIRENT_SIZE;
2842                 dir->i_ctime = dir->i_mtime = current_time(dir);
2843                 d_instantiate(dentry, inode);
2844                 dget(dentry); /* Extra count - pin the dentry in core */
2845         }
2846         return error;
2847 out_iput:
2848         iput(inode);
2849         return error;
2850 }
2851
2852 static int
2853 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2854               struct dentry *dentry, umode_t mode)
2855 {
2856         struct inode *inode;
2857         int error = -ENOSPC;
2858
2859         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2860         if (inode) {
2861                 error = security_inode_init_security(inode, dir,
2862                                                      NULL,
2863                                                      shmem_initxattrs, NULL);
2864                 if (error && error != -EOPNOTSUPP)
2865                         goto out_iput;
2866                 error = simple_acl_create(dir, inode);
2867                 if (error)
2868                         goto out_iput;
2869                 d_tmpfile(dentry, inode);
2870         }
2871         return error;
2872 out_iput:
2873         iput(inode);
2874         return error;
2875 }
2876
2877 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2878                        struct dentry *dentry, umode_t mode)
2879 {
2880         int error;
2881
2882         if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2883                                  mode | S_IFDIR, 0)))
2884                 return error;
2885         inc_nlink(dir);
2886         return 0;
2887 }
2888
2889 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2890                         struct dentry *dentry, umode_t mode, bool excl)
2891 {
2892         return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2893 }
2894
2895 /*
2896  * Link a file..
2897  */
2898 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2899 {
2900         struct inode *inode = d_inode(old_dentry);
2901         int ret = 0;
2902
2903         /*
2904          * No ordinary (disk based) filesystem counts links as inodes;
2905          * but each new link needs a new dentry, pinning lowmem, and
2906          * tmpfs dentries cannot be pruned until they are unlinked.
2907          * But if an O_TMPFILE file is linked into the tmpfs, the
2908          * first link must skip that, to get the accounting right.
2909          */
2910         if (inode->i_nlink) {
2911                 ret = shmem_reserve_inode(inode->i_sb, NULL);
2912                 if (ret)
2913                         goto out;
2914         }
2915
2916         dir->i_size += BOGO_DIRENT_SIZE;
2917         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2918         inc_nlink(inode);
2919         ihold(inode);   /* New dentry reference */
2920         dget(dentry);           /* Extra pinning count for the created dentry */
2921         d_instantiate(dentry, inode);
2922 out:
2923         return ret;
2924 }
2925
2926 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2927 {
2928         struct inode *inode = d_inode(dentry);
2929
2930         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2931                 shmem_free_inode(inode->i_sb);
2932
2933         dir->i_size -= BOGO_DIRENT_SIZE;
2934         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2935         drop_nlink(inode);
2936         dput(dentry);   /* Undo the count from "create" - this does all the work */
2937         return 0;
2938 }
2939
2940 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2941 {
2942         if (!simple_empty(dentry))
2943                 return -ENOTEMPTY;
2944
2945         drop_nlink(d_inode(dentry));
2946         drop_nlink(dir);
2947         return shmem_unlink(dir, dentry);
2948 }
2949
2950 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2951 {
2952         bool old_is_dir = d_is_dir(old_dentry);
2953         bool new_is_dir = d_is_dir(new_dentry);
2954
2955         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2956                 if (old_is_dir) {
2957                         drop_nlink(old_dir);
2958                         inc_nlink(new_dir);
2959                 } else {
2960                         drop_nlink(new_dir);
2961                         inc_nlink(old_dir);
2962                 }
2963         }
2964         old_dir->i_ctime = old_dir->i_mtime =
2965         new_dir->i_ctime = new_dir->i_mtime =
2966         d_inode(old_dentry)->i_ctime =
2967         d_inode(new_dentry)->i_ctime = current_time(old_dir);
2968
2969         return 0;
2970 }
2971
2972 static int shmem_whiteout(struct user_namespace *mnt_userns,
2973                           struct inode *old_dir, struct dentry *old_dentry)
2974 {
2975         struct dentry *whiteout;
2976         int error;
2977
2978         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2979         if (!whiteout)
2980                 return -ENOMEM;
2981
2982         error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2983                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2984         dput(whiteout);
2985         if (error)
2986                 return error;
2987
2988         /*
2989          * Cheat and hash the whiteout while the old dentry is still in
2990          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2991          *
2992          * d_lookup() will consistently find one of them at this point,
2993          * not sure which one, but that isn't even important.
2994          */
2995         d_rehash(whiteout);
2996         return 0;
2997 }
2998
2999 /*
3000  * The VFS layer already does all the dentry stuff for rename,
3001  * we just have to decrement the usage count for the target if
3002  * it exists so that the VFS layer correctly free's it when it
3003  * gets overwritten.
3004  */
3005 static int shmem_rename2(struct user_namespace *mnt_userns,
3006                          struct inode *old_dir, struct dentry *old_dentry,
3007                          struct inode *new_dir, struct dentry *new_dentry,
3008                          unsigned int flags)
3009 {
3010         struct inode *inode = d_inode(old_dentry);
3011         int they_are_dirs = S_ISDIR(inode->i_mode);
3012
3013         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3014                 return -EINVAL;
3015
3016         if (flags & RENAME_EXCHANGE)
3017                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3018
3019         if (!simple_empty(new_dentry))
3020                 return -ENOTEMPTY;
3021
3022         if (flags & RENAME_WHITEOUT) {
3023                 int error;
3024
3025                 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3026                 if (error)
3027                         return error;
3028         }
3029
3030         if (d_really_is_positive(new_dentry)) {
3031                 (void) shmem_unlink(new_dir, new_dentry);
3032                 if (they_are_dirs) {
3033                         drop_nlink(d_inode(new_dentry));
3034                         drop_nlink(old_dir);
3035                 }
3036         } else if (they_are_dirs) {
3037                 drop_nlink(old_dir);
3038                 inc_nlink(new_dir);
3039         }
3040
3041         old_dir->i_size -= BOGO_DIRENT_SIZE;
3042         new_dir->i_size += BOGO_DIRENT_SIZE;
3043         old_dir->i_ctime = old_dir->i_mtime =
3044         new_dir->i_ctime = new_dir->i_mtime =
3045         inode->i_ctime = current_time(old_dir);
3046         return 0;
3047 }
3048
3049 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3050                          struct dentry *dentry, const char *symname)
3051 {
3052         int error;
3053         int len;
3054         struct inode *inode;
3055         struct page *page;
3056
3057         len = strlen(symname) + 1;
3058         if (len > PAGE_SIZE)
3059                 return -ENAMETOOLONG;
3060
3061         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3062                                 VM_NORESERVE);
3063         if (!inode)
3064                 return -ENOSPC;
3065
3066         error = security_inode_init_security(inode, dir, &dentry->d_name,
3067                                              shmem_initxattrs, NULL);
3068         if (error && error != -EOPNOTSUPP) {
3069                 iput(inode);
3070                 return error;
3071         }
3072
3073         inode->i_size = len-1;
3074         if (len <= SHORT_SYMLINK_LEN) {
3075                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3076                 if (!inode->i_link) {
3077                         iput(inode);
3078                         return -ENOMEM;
3079                 }
3080                 inode->i_op = &shmem_short_symlink_operations;
3081         } else {
3082                 inode_nohighmem(inode);
3083                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3084                 if (error) {
3085                         iput(inode);
3086                         return error;
3087                 }
3088                 inode->i_mapping->a_ops = &shmem_aops;
3089                 inode->i_op = &shmem_symlink_inode_operations;
3090                 memcpy(page_address(page), symname, len);
3091                 SetPageUptodate(page);
3092                 set_page_dirty(page);
3093                 unlock_page(page);
3094                 put_page(page);
3095         }
3096         dir->i_size += BOGO_DIRENT_SIZE;
3097         dir->i_ctime = dir->i_mtime = current_time(dir);
3098         d_instantiate(dentry, inode);
3099         dget(dentry);
3100         return 0;
3101 }
3102
3103 static void shmem_put_link(void *arg)
3104 {
3105         mark_page_accessed(arg);
3106         put_page(arg);
3107 }
3108
3109 static const char *shmem_get_link(struct dentry *dentry,
3110                                   struct inode *inode,
3111                                   struct delayed_call *done)
3112 {
3113         struct page *page = NULL;
3114         int error;
3115         if (!dentry) {
3116                 page = find_get_page(inode->i_mapping, 0);
3117                 if (!page)
3118                         return ERR_PTR(-ECHILD);
3119                 if (!PageUptodate(page)) {
3120                         put_page(page);
3121                         return ERR_PTR(-ECHILD);
3122                 }
3123         } else {
3124                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3125                 if (error)
3126                         return ERR_PTR(error);
3127                 unlock_page(page);
3128         }
3129         set_delayed_call(done, shmem_put_link, page);
3130         return page_address(page);
3131 }
3132
3133 #ifdef CONFIG_TMPFS_XATTR
3134 /*
3135  * Superblocks without xattr inode operations may get some security.* xattr
3136  * support from the LSM "for free". As soon as we have any other xattrs
3137  * like ACLs, we also need to implement the security.* handlers at
3138  * filesystem level, though.
3139  */
3140
3141 /*
3142  * Callback for security_inode_init_security() for acquiring xattrs.
3143  */
3144 static int shmem_initxattrs(struct inode *inode,
3145                             const struct xattr *xattr_array,
3146                             void *fs_info)
3147 {
3148         struct shmem_inode_info *info = SHMEM_I(inode);
3149         const struct xattr *xattr;
3150         struct simple_xattr *new_xattr;
3151         size_t len;
3152
3153         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3154                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3155                 if (!new_xattr)
3156                         return -ENOMEM;
3157
3158                 len = strlen(xattr->name) + 1;
3159                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3160                                           GFP_KERNEL);
3161                 if (!new_xattr->name) {
3162                         kvfree(new_xattr);
3163                         return -ENOMEM;
3164                 }
3165
3166                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3167                        XATTR_SECURITY_PREFIX_LEN);
3168                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3169                        xattr->name, len);
3170
3171                 simple_xattr_list_add(&info->xattrs, new_xattr);
3172         }
3173
3174         return 0;
3175 }
3176
3177 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3178                                    struct dentry *unused, struct inode *inode,
3179                                    const char *name, void *buffer, size_t size)
3180 {
3181         struct shmem_inode_info *info = SHMEM_I(inode);
3182
3183         name = xattr_full_name(handler, name);
3184         return simple_xattr_get(&info->xattrs, name, buffer, size);
3185 }
3186
3187 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3188                                    struct user_namespace *mnt_userns,
3189                                    struct dentry *unused, struct inode *inode,
3190                                    const char *name, const void *value,
3191                                    size_t size, int flags)
3192 {
3193         struct shmem_inode_info *info = SHMEM_I(inode);
3194
3195         name = xattr_full_name(handler, name);
3196         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3197 }
3198
3199 static const struct xattr_handler shmem_security_xattr_handler = {
3200         .prefix = XATTR_SECURITY_PREFIX,
3201         .get = shmem_xattr_handler_get,
3202         .set = shmem_xattr_handler_set,
3203 };
3204
3205 static const struct xattr_handler shmem_trusted_xattr_handler = {
3206         .prefix = XATTR_TRUSTED_PREFIX,
3207         .get = shmem_xattr_handler_get,
3208         .set = shmem_xattr_handler_set,
3209 };
3210
3211 static const struct xattr_handler *shmem_xattr_handlers[] = {
3212 #ifdef CONFIG_TMPFS_POSIX_ACL
3213         &posix_acl_access_xattr_handler,
3214         &posix_acl_default_xattr_handler,
3215 #endif
3216         &shmem_security_xattr_handler,
3217         &shmem_trusted_xattr_handler,
3218         NULL
3219 };
3220
3221 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3222 {
3223         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3224         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3225 }
3226 #endif /* CONFIG_TMPFS_XATTR */
3227
3228 static const struct inode_operations shmem_short_symlink_operations = {
3229         .get_link       = simple_get_link,
3230 #ifdef CONFIG_TMPFS_XATTR
3231         .listxattr      = shmem_listxattr,
3232 #endif
3233 };
3234
3235 static const struct inode_operations shmem_symlink_inode_operations = {
3236         .get_link       = shmem_get_link,
3237 #ifdef CONFIG_TMPFS_XATTR
3238         .listxattr      = shmem_listxattr,
3239 #endif
3240 };
3241
3242 static struct dentry *shmem_get_parent(struct dentry *child)
3243 {
3244         return ERR_PTR(-ESTALE);
3245 }
3246
3247 static int shmem_match(struct inode *ino, void *vfh)
3248 {
3249         __u32 *fh = vfh;
3250         __u64 inum = fh[2];
3251         inum = (inum << 32) | fh[1];
3252         return ino->i_ino == inum && fh[0] == ino->i_generation;
3253 }
3254
3255 /* Find any alias of inode, but prefer a hashed alias */
3256 static struct dentry *shmem_find_alias(struct inode *inode)
3257 {
3258         struct dentry *alias = d_find_alias(inode);
3259
3260         return alias ?: d_find_any_alias(inode);
3261 }
3262
3263
3264 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3265                 struct fid *fid, int fh_len, int fh_type)
3266 {
3267         struct inode *inode;
3268         struct dentry *dentry = NULL;
3269         u64 inum;
3270
3271         if (fh_len < 3)
3272                 return NULL;
3273
3274         inum = fid->raw[2];
3275         inum = (inum << 32) | fid->raw[1];
3276
3277         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3278                         shmem_match, fid->raw);
3279         if (inode) {
3280                 dentry = shmem_find_alias(inode);
3281                 iput(inode);
3282         }
3283
3284         return dentry;
3285 }
3286
3287 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3288                                 struct inode *parent)
3289 {
3290         if (*len < 3) {
3291                 *len = 3;
3292                 return FILEID_INVALID;
3293         }
3294
3295         if (inode_unhashed(inode)) {
3296                 /* Unfortunately insert_inode_hash is not idempotent,
3297                  * so as we hash inodes here rather than at creation
3298                  * time, we need a lock to ensure we only try
3299                  * to do it once
3300                  */
3301                 static DEFINE_SPINLOCK(lock);
3302                 spin_lock(&lock);
3303                 if (inode_unhashed(inode))
3304                         __insert_inode_hash(inode,
3305                                             inode->i_ino + inode->i_generation);
3306                 spin_unlock(&lock);
3307         }
3308
3309         fh[0] = inode->i_generation;
3310         fh[1] = inode->i_ino;
3311         fh[2] = ((__u64)inode->i_ino) >> 32;
3312
3313         *len = 3;
3314         return 1;
3315 }
3316
3317 static const struct export_operations shmem_export_ops = {
3318         .get_parent     = shmem_get_parent,
3319         .encode_fh      = shmem_encode_fh,
3320         .fh_to_dentry   = shmem_fh_to_dentry,
3321 };
3322
3323 enum shmem_param {
3324         Opt_gid,
3325         Opt_huge,
3326         Opt_mode,
3327         Opt_mpol,
3328         Opt_nr_blocks,
3329         Opt_nr_inodes,
3330         Opt_size,
3331         Opt_uid,
3332         Opt_inode32,
3333         Opt_inode64,
3334 };
3335
3336 static const struct constant_table shmem_param_enums_huge[] = {
3337         {"never",       SHMEM_HUGE_NEVER },
3338         {"always",      SHMEM_HUGE_ALWAYS },
3339         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3340         {"advise",      SHMEM_HUGE_ADVISE },
3341         {}
3342 };
3343
3344 const struct fs_parameter_spec shmem_fs_parameters[] = {
3345         fsparam_u32   ("gid",           Opt_gid),
3346         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3347         fsparam_u32oct("mode",          Opt_mode),
3348         fsparam_string("mpol",          Opt_mpol),
3349         fsparam_string("nr_blocks",     Opt_nr_blocks),
3350         fsparam_string("nr_inodes",     Opt_nr_inodes),
3351         fsparam_string("size",          Opt_size),
3352         fsparam_u32   ("uid",           Opt_uid),
3353         fsparam_flag  ("inode32",       Opt_inode32),
3354         fsparam_flag  ("inode64",       Opt_inode64),
3355         {}
3356 };
3357
3358 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3359 {
3360         struct shmem_options *ctx = fc->fs_private;
3361         struct fs_parse_result result;
3362         unsigned long long size;
3363         char *rest;
3364         int opt;
3365
3366         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3367         if (opt < 0)
3368                 return opt;
3369
3370         switch (opt) {
3371         case Opt_size:
3372                 size = memparse(param->string, &rest);
3373                 if (*rest == '%') {
3374                         size <<= PAGE_SHIFT;
3375                         size *= totalram_pages();
3376                         do_div(size, 100);
3377                         rest++;
3378                 }
3379                 if (*rest)
3380                         goto bad_value;
3381                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3382                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3383                 break;
3384         case Opt_nr_blocks:
3385                 ctx->blocks = memparse(param->string, &rest);
3386                 if (*rest)
3387                         goto bad_value;
3388                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3389                 break;
3390         case Opt_nr_inodes:
3391                 ctx->inodes = memparse(param->string, &rest);
3392                 if (*rest)
3393                         goto bad_value;
3394                 ctx->seen |= SHMEM_SEEN_INODES;
3395                 break;
3396         case Opt_mode:
3397                 ctx->mode = result.uint_32 & 07777;
3398                 break;
3399         case Opt_uid:
3400                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3401                 if (!uid_valid(ctx->uid))
3402                         goto bad_value;
3403                 break;
3404         case Opt_gid:
3405                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3406                 if (!gid_valid(ctx->gid))
3407                         goto bad_value;
3408                 break;
3409         case Opt_huge:
3410                 ctx->huge = result.uint_32;
3411                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3412                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3413                       has_transparent_hugepage()))
3414                         goto unsupported_parameter;
3415                 ctx->seen |= SHMEM_SEEN_HUGE;
3416                 break;
3417         case Opt_mpol:
3418                 if (IS_ENABLED(CONFIG_NUMA)) {
3419                         mpol_put(ctx->mpol);
3420                         ctx->mpol = NULL;
3421                         if (mpol_parse_str(param->string, &ctx->mpol))
3422                                 goto bad_value;
3423                         break;
3424                 }
3425                 goto unsupported_parameter;
3426         case Opt_inode32:
3427                 ctx->full_inums = false;
3428                 ctx->seen |= SHMEM_SEEN_INUMS;
3429                 break;
3430         case Opt_inode64:
3431                 if (sizeof(ino_t) < 8) {
3432                         return invalfc(fc,
3433                                        "Cannot use inode64 with <64bit inums in kernel\n");
3434                 }
3435                 ctx->full_inums = true;
3436                 ctx->seen |= SHMEM_SEEN_INUMS;
3437                 break;
3438         }
3439         return 0;
3440
3441 unsupported_parameter:
3442         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3443 bad_value:
3444         return invalfc(fc, "Bad value for '%s'", param->key);
3445 }
3446
3447 static int shmem_parse_options(struct fs_context *fc, void *data)
3448 {
3449         char *options = data;
3450
3451         if (options) {
3452                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3453                 if (err)
3454                         return err;
3455         }
3456
3457         while (options != NULL) {
3458                 char *this_char = options;
3459                 for (;;) {
3460                         /*
3461                          * NUL-terminate this option: unfortunately,
3462                          * mount options form a comma-separated list,
3463                          * but mpol's nodelist may also contain commas.
3464                          */
3465                         options = strchr(options, ',');
3466                         if (options == NULL)
3467                                 break;
3468                         options++;
3469                         if (!isdigit(*options)) {
3470                                 options[-1] = '\0';
3471                                 break;
3472                         }
3473                 }
3474                 if (*this_char) {
3475                         char *value = strchr(this_char, '=');
3476                         size_t len = 0;
3477                         int err;
3478
3479                         if (value) {
3480                                 *value++ = '\0';
3481                                 len = strlen(value);
3482                         }
3483                         err = vfs_parse_fs_string(fc, this_char, value, len);
3484                         if (err < 0)
3485                                 return err;
3486                 }
3487         }
3488         return 0;
3489 }
3490
3491 /*
3492  * Reconfigure a shmem filesystem.
3493  *
3494  * Note that we disallow change from limited->unlimited blocks/inodes while any
3495  * are in use; but we must separately disallow unlimited->limited, because in
3496  * that case we have no record of how much is already in use.
3497  */
3498 static int shmem_reconfigure(struct fs_context *fc)
3499 {
3500         struct shmem_options *ctx = fc->fs_private;
3501         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3502         unsigned long inodes;
3503         struct mempolicy *mpol = NULL;
3504         const char *err;
3505
3506         raw_spin_lock(&sbinfo->stat_lock);
3507         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3508         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3509                 if (!sbinfo->max_blocks) {
3510                         err = "Cannot retroactively limit size";
3511                         goto out;
3512                 }
3513                 if (percpu_counter_compare(&sbinfo->used_blocks,
3514                                            ctx->blocks) > 0) {
3515                         err = "Too small a size for current use";
3516                         goto out;
3517                 }
3518         }
3519         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3520                 if (!sbinfo->max_inodes) {
3521                         err = "Cannot retroactively limit inodes";
3522                         goto out;
3523                 }
3524                 if (ctx->inodes < inodes) {
3525                         err = "Too few inodes for current use";
3526                         goto out;
3527                 }
3528         }
3529
3530         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3531             sbinfo->next_ino > UINT_MAX) {
3532                 err = "Current inum too high to switch to 32-bit inums";
3533                 goto out;
3534         }
3535
3536         if (ctx->seen & SHMEM_SEEN_HUGE)
3537                 sbinfo->huge = ctx->huge;
3538         if (ctx->seen & SHMEM_SEEN_INUMS)
3539                 sbinfo->full_inums = ctx->full_inums;
3540         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3541                 sbinfo->max_blocks  = ctx->blocks;
3542         if (ctx->seen & SHMEM_SEEN_INODES) {
3543                 sbinfo->max_inodes  = ctx->inodes;
3544                 sbinfo->free_inodes = ctx->inodes - inodes;
3545         }
3546
3547         /*
3548          * Preserve previous mempolicy unless mpol remount option was specified.
3549          */
3550         if (ctx->mpol) {
3551                 mpol = sbinfo->mpol;
3552                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3553                 ctx->mpol = NULL;
3554         }
3555         raw_spin_unlock(&sbinfo->stat_lock);
3556         mpol_put(mpol);
3557         return 0;
3558 out:
3559         raw_spin_unlock(&sbinfo->stat_lock);
3560         return invalfc(fc, "%s", err);
3561 }
3562
3563 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3564 {
3565         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3566
3567         if (sbinfo->max_blocks != shmem_default_max_blocks())
3568                 seq_printf(seq, ",size=%luk",
3569                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3570         if (sbinfo->max_inodes != shmem_default_max_inodes())
3571                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3572         if (sbinfo->mode != (0777 | S_ISVTX))
3573                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3574         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3575                 seq_printf(seq, ",uid=%u",
3576                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3577         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3578                 seq_printf(seq, ",gid=%u",
3579                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3580
3581         /*
3582          * Showing inode{64,32} might be useful even if it's the system default,
3583          * since then people don't have to resort to checking both here and
3584          * /proc/config.gz to confirm 64-bit inums were successfully applied
3585          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3586          *
3587          * We hide it when inode64 isn't the default and we are using 32-bit
3588          * inodes, since that probably just means the feature isn't even under
3589          * consideration.
3590          *
3591          * As such:
3592          *
3593          *                     +-----------------+-----------------+
3594          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3595          *  +------------------+-----------------+-----------------+
3596          *  | full_inums=true  | show            | show            |
3597          *  | full_inums=false | show            | hide            |
3598          *  +------------------+-----------------+-----------------+
3599          *
3600          */
3601         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3602                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3603 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3604         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3605         if (sbinfo->huge)
3606                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3607 #endif
3608         shmem_show_mpol(seq, sbinfo->mpol);
3609         return 0;
3610 }
3611
3612 #endif /* CONFIG_TMPFS */
3613
3614 static void shmem_put_super(struct super_block *sb)
3615 {
3616         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3617
3618         free_percpu(sbinfo->ino_batch);
3619         percpu_counter_destroy(&sbinfo->used_blocks);
3620         mpol_put(sbinfo->mpol);
3621         kfree(sbinfo);
3622         sb->s_fs_info = NULL;
3623 }
3624
3625 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3626 {
3627         struct shmem_options *ctx = fc->fs_private;
3628         struct inode *inode;
3629         struct shmem_sb_info *sbinfo;
3630
3631         /* Round up to L1_CACHE_BYTES to resist false sharing */
3632         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3633                                 L1_CACHE_BYTES), GFP_KERNEL);
3634         if (!sbinfo)
3635                 return -ENOMEM;
3636
3637         sb->s_fs_info = sbinfo;
3638
3639 #ifdef CONFIG_TMPFS
3640         /*
3641          * Per default we only allow half of the physical ram per
3642          * tmpfs instance, limiting inodes to one per page of lowmem;
3643          * but the internal instance is left unlimited.
3644          */
3645         if (!(sb->s_flags & SB_KERNMOUNT)) {
3646                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3647                         ctx->blocks = shmem_default_max_blocks();
3648                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3649                         ctx->inodes = shmem_default_max_inodes();
3650                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3651                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3652         } else {
3653                 sb->s_flags |= SB_NOUSER;
3654         }
3655         sb->s_export_op = &shmem_export_ops;
3656         sb->s_flags |= SB_NOSEC;
3657 #else
3658         sb->s_flags |= SB_NOUSER;
3659 #endif
3660         sbinfo->max_blocks = ctx->blocks;
3661         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3662         if (sb->s_flags & SB_KERNMOUNT) {
3663                 sbinfo->ino_batch = alloc_percpu(ino_t);
3664                 if (!sbinfo->ino_batch)
3665                         goto failed;
3666         }
3667         sbinfo->uid = ctx->uid;
3668         sbinfo->gid = ctx->gid;
3669         sbinfo->full_inums = ctx->full_inums;
3670         sbinfo->mode = ctx->mode;
3671         sbinfo->huge = ctx->huge;
3672         sbinfo->mpol = ctx->mpol;
3673         ctx->mpol = NULL;
3674
3675         raw_spin_lock_init(&sbinfo->stat_lock);
3676         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3677                 goto failed;
3678         spin_lock_init(&sbinfo->shrinklist_lock);
3679         INIT_LIST_HEAD(&sbinfo->shrinklist);
3680
3681         sb->s_maxbytes = MAX_LFS_FILESIZE;
3682         sb->s_blocksize = PAGE_SIZE;
3683         sb->s_blocksize_bits = PAGE_SHIFT;
3684         sb->s_magic = TMPFS_MAGIC;
3685         sb->s_op = &shmem_ops;
3686         sb->s_time_gran = 1;
3687 #ifdef CONFIG_TMPFS_XATTR
3688         sb->s_xattr = shmem_xattr_handlers;
3689 #endif
3690 #ifdef CONFIG_TMPFS_POSIX_ACL
3691         sb->s_flags |= SB_POSIXACL;
3692 #endif
3693         uuid_gen(&sb->s_uuid);
3694
3695         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3696         if (!inode)
3697                 goto failed;
3698         inode->i_uid = sbinfo->uid;
3699         inode->i_gid = sbinfo->gid;
3700         sb->s_root = d_make_root(inode);
3701         if (!sb->s_root)
3702                 goto failed;
3703         return 0;
3704
3705 failed:
3706         shmem_put_super(sb);
3707         return -ENOMEM;
3708 }
3709
3710 static int shmem_get_tree(struct fs_context *fc)
3711 {
3712         return get_tree_nodev(fc, shmem_fill_super);
3713 }
3714
3715 static void shmem_free_fc(struct fs_context *fc)
3716 {
3717         struct shmem_options *ctx = fc->fs_private;
3718
3719         if (ctx) {
3720                 mpol_put(ctx->mpol);
3721                 kfree(ctx);
3722         }
3723 }
3724
3725 static const struct fs_context_operations shmem_fs_context_ops = {
3726         .free                   = shmem_free_fc,
3727         .get_tree               = shmem_get_tree,
3728 #ifdef CONFIG_TMPFS
3729         .parse_monolithic       = shmem_parse_options,
3730         .parse_param            = shmem_parse_one,
3731         .reconfigure            = shmem_reconfigure,
3732 #endif
3733 };
3734
3735 static struct kmem_cache *shmem_inode_cachep;
3736
3737 static struct inode *shmem_alloc_inode(struct super_block *sb)
3738 {
3739         struct shmem_inode_info *info;
3740         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3741         if (!info)
3742                 return NULL;
3743         return &info->vfs_inode;
3744 }
3745
3746 static void shmem_free_in_core_inode(struct inode *inode)
3747 {
3748         if (S_ISLNK(inode->i_mode))
3749                 kfree(inode->i_link);
3750         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3751 }
3752
3753 static void shmem_destroy_inode(struct inode *inode)
3754 {
3755         if (S_ISREG(inode->i_mode))
3756                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3757 }
3758
3759 static void shmem_init_inode(void *foo)
3760 {
3761         struct shmem_inode_info *info = foo;
3762         inode_init_once(&info->vfs_inode);
3763 }
3764
3765 static void shmem_init_inodecache(void)
3766 {
3767         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3768                                 sizeof(struct shmem_inode_info),
3769                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3770 }
3771
3772 static void shmem_destroy_inodecache(void)
3773 {
3774         kmem_cache_destroy(shmem_inode_cachep);
3775 }
3776
3777 const struct address_space_operations shmem_aops = {
3778         .writepage      = shmem_writepage,
3779         .set_page_dirty = __set_page_dirty_no_writeback,
3780 #ifdef CONFIG_TMPFS
3781         .write_begin    = shmem_write_begin,
3782         .write_end      = shmem_write_end,
3783 #endif
3784 #ifdef CONFIG_MIGRATION
3785         .migratepage    = migrate_page,
3786 #endif
3787         .error_remove_page = generic_error_remove_page,
3788 };
3789 EXPORT_SYMBOL(shmem_aops);
3790
3791 static const struct file_operations shmem_file_operations = {
3792         .mmap           = shmem_mmap,
3793         .get_unmapped_area = shmem_get_unmapped_area,
3794 #ifdef CONFIG_TMPFS
3795         .llseek         = shmem_file_llseek,
3796         .read_iter      = shmem_file_read_iter,
3797         .write_iter     = generic_file_write_iter,
3798         .fsync          = noop_fsync,
3799         .splice_read    = generic_file_splice_read,
3800         .splice_write   = iter_file_splice_write,
3801         .fallocate      = shmem_fallocate,
3802 #endif
3803 };
3804
3805 static const struct inode_operations shmem_inode_operations = {
3806         .getattr        = shmem_getattr,
3807         .setattr        = shmem_setattr,
3808 #ifdef CONFIG_TMPFS_XATTR
3809         .listxattr      = shmem_listxattr,
3810         .set_acl        = simple_set_acl,
3811 #endif
3812 };
3813
3814 static const struct inode_operations shmem_dir_inode_operations = {
3815 #ifdef CONFIG_TMPFS
3816         .create         = shmem_create,
3817         .lookup         = simple_lookup,
3818         .link           = shmem_link,
3819         .unlink         = shmem_unlink,
3820         .symlink        = shmem_symlink,
3821         .mkdir          = shmem_mkdir,
3822         .rmdir          = shmem_rmdir,
3823         .mknod          = shmem_mknod,
3824         .rename         = shmem_rename2,
3825         .tmpfile        = shmem_tmpfile,
3826 #endif
3827 #ifdef CONFIG_TMPFS_XATTR
3828         .listxattr      = shmem_listxattr,
3829 #endif
3830 #ifdef CONFIG_TMPFS_POSIX_ACL
3831         .setattr        = shmem_setattr,
3832         .set_acl        = simple_set_acl,
3833 #endif
3834 };
3835
3836 static const struct inode_operations shmem_special_inode_operations = {
3837 #ifdef CONFIG_TMPFS_XATTR
3838         .listxattr      = shmem_listxattr,
3839 #endif
3840 #ifdef CONFIG_TMPFS_POSIX_ACL
3841         .setattr        = shmem_setattr,
3842         .set_acl        = simple_set_acl,
3843 #endif
3844 };
3845
3846 static const struct super_operations shmem_ops = {
3847         .alloc_inode    = shmem_alloc_inode,
3848         .free_inode     = shmem_free_in_core_inode,
3849         .destroy_inode  = shmem_destroy_inode,
3850 #ifdef CONFIG_TMPFS
3851         .statfs         = shmem_statfs,
3852         .show_options   = shmem_show_options,
3853 #endif
3854         .evict_inode    = shmem_evict_inode,
3855         .drop_inode     = generic_delete_inode,
3856         .put_super      = shmem_put_super,
3857 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3858         .nr_cached_objects      = shmem_unused_huge_count,
3859         .free_cached_objects    = shmem_unused_huge_scan,
3860 #endif
3861 };
3862
3863 static const struct vm_operations_struct shmem_vm_ops = {
3864         .fault          = shmem_fault,
3865         .map_pages      = filemap_map_pages,
3866 #ifdef CONFIG_NUMA
3867         .set_policy     = shmem_set_policy,
3868         .get_policy     = shmem_get_policy,
3869 #endif
3870 };
3871
3872 int shmem_init_fs_context(struct fs_context *fc)
3873 {
3874         struct shmem_options *ctx;
3875
3876         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3877         if (!ctx)
3878                 return -ENOMEM;
3879
3880         ctx->mode = 0777 | S_ISVTX;
3881         ctx->uid = current_fsuid();
3882         ctx->gid = current_fsgid();
3883
3884         fc->fs_private = ctx;
3885         fc->ops = &shmem_fs_context_ops;
3886         return 0;
3887 }
3888
3889 static struct file_system_type shmem_fs_type = {
3890         .owner          = THIS_MODULE,
3891         .name           = "tmpfs",
3892         .init_fs_context = shmem_init_fs_context,
3893 #ifdef CONFIG_TMPFS
3894         .parameters     = shmem_fs_parameters,
3895 #endif
3896         .kill_sb        = kill_litter_super,
3897         .fs_flags       = FS_USERNS_MOUNT | FS_THP_SUPPORT,
3898 };
3899
3900 int __init shmem_init(void)
3901 {
3902         int error;
3903
3904         shmem_init_inodecache();
3905
3906         error = register_filesystem(&shmem_fs_type);
3907         if (error) {
3908                 pr_err("Could not register tmpfs\n");
3909                 goto out2;
3910         }
3911
3912         shm_mnt = kern_mount(&shmem_fs_type);
3913         if (IS_ERR(shm_mnt)) {
3914                 error = PTR_ERR(shm_mnt);
3915                 pr_err("Could not kern_mount tmpfs\n");
3916                 goto out1;
3917         }
3918
3919 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3920         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3921                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3922         else
3923                 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3924 #endif
3925         return 0;
3926
3927 out1:
3928         unregister_filesystem(&shmem_fs_type);
3929 out2:
3930         shmem_destroy_inodecache();
3931         shm_mnt = ERR_PTR(error);
3932         return error;
3933 }
3934
3935 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3936 static ssize_t shmem_enabled_show(struct kobject *kobj,
3937                                   struct kobj_attribute *attr, char *buf)
3938 {
3939         static const int values[] = {
3940                 SHMEM_HUGE_ALWAYS,
3941                 SHMEM_HUGE_WITHIN_SIZE,
3942                 SHMEM_HUGE_ADVISE,
3943                 SHMEM_HUGE_NEVER,
3944                 SHMEM_HUGE_DENY,
3945                 SHMEM_HUGE_FORCE,
3946         };
3947         int len = 0;
3948         int i;
3949
3950         for (i = 0; i < ARRAY_SIZE(values); i++) {
3951                 len += sysfs_emit_at(buf, len,
3952                                      shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3953                                      i ? " " : "",
3954                                      shmem_format_huge(values[i]));
3955         }
3956
3957         len += sysfs_emit_at(buf, len, "\n");
3958
3959         return len;
3960 }
3961
3962 static ssize_t shmem_enabled_store(struct kobject *kobj,
3963                 struct kobj_attribute *attr, const char *buf, size_t count)
3964 {
3965         char tmp[16];
3966         int huge;
3967
3968         if (count + 1 > sizeof(tmp))
3969                 return -EINVAL;
3970         memcpy(tmp, buf, count);
3971         tmp[count] = '\0';
3972         if (count && tmp[count - 1] == '\n')
3973                 tmp[count - 1] = '\0';
3974
3975         huge = shmem_parse_huge(tmp);
3976         if (huge == -EINVAL)
3977                 return -EINVAL;
3978         if (!has_transparent_hugepage() &&
3979                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3980                 return -EINVAL;
3981
3982         shmem_huge = huge;
3983         if (shmem_huge > SHMEM_HUGE_DENY)
3984                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3985         return count;
3986 }
3987
3988 struct kobj_attribute shmem_enabled_attr =
3989         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3990 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3991
3992 #else /* !CONFIG_SHMEM */
3993
3994 /*
3995  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3996  *
3997  * This is intended for small system where the benefits of the full
3998  * shmem code (swap-backed and resource-limited) are outweighed by
3999  * their complexity. On systems without swap this code should be
4000  * effectively equivalent, but much lighter weight.
4001  */
4002
4003 static struct file_system_type shmem_fs_type = {
4004         .name           = "tmpfs",
4005         .init_fs_context = ramfs_init_fs_context,
4006         .parameters     = ramfs_fs_parameters,
4007         .kill_sb        = kill_litter_super,
4008         .fs_flags       = FS_USERNS_MOUNT,
4009 };
4010
4011 int __init shmem_init(void)
4012 {
4013         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4014
4015         shm_mnt = kern_mount(&shmem_fs_type);
4016         BUG_ON(IS_ERR(shm_mnt));
4017
4018         return 0;
4019 }
4020
4021 int shmem_unuse(unsigned int type, bool frontswap,
4022                 unsigned long *fs_pages_to_unuse)
4023 {
4024         return 0;
4025 }
4026
4027 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4028 {
4029         return 0;
4030 }
4031
4032 void shmem_unlock_mapping(struct address_space *mapping)
4033 {
4034 }
4035
4036 #ifdef CONFIG_MMU
4037 unsigned long shmem_get_unmapped_area(struct file *file,
4038                                       unsigned long addr, unsigned long len,
4039                                       unsigned long pgoff, unsigned long flags)
4040 {
4041         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4042 }
4043 #endif
4044
4045 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4046 {
4047         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4048 }
4049 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4050
4051 #define shmem_vm_ops                            generic_file_vm_ops
4052 #define shmem_file_operations                   ramfs_file_operations
4053 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4054 #define shmem_acct_size(flags, size)            0
4055 #define shmem_unacct_size(flags, size)          do {} while (0)
4056
4057 #endif /* CONFIG_SHMEM */
4058
4059 /* common code */
4060
4061 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4062                                        unsigned long flags, unsigned int i_flags)
4063 {
4064         struct inode *inode;
4065         struct file *res;
4066
4067         if (IS_ERR(mnt))
4068                 return ERR_CAST(mnt);
4069
4070         if (size < 0 || size > MAX_LFS_FILESIZE)
4071                 return ERR_PTR(-EINVAL);
4072
4073         if (shmem_acct_size(flags, size))
4074                 return ERR_PTR(-ENOMEM);
4075
4076         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4077                                 flags);
4078         if (unlikely(!inode)) {
4079                 shmem_unacct_size(flags, size);
4080                 return ERR_PTR(-ENOSPC);
4081         }
4082         inode->i_flags |= i_flags;
4083         inode->i_size = size;
4084         clear_nlink(inode);     /* It is unlinked */
4085         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4086         if (!IS_ERR(res))
4087                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4088                                 &shmem_file_operations);
4089         if (IS_ERR(res))
4090                 iput(inode);
4091         return res;
4092 }
4093
4094 /**
4095  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4096  *      kernel internal.  There will be NO LSM permission checks against the
4097  *      underlying inode.  So users of this interface must do LSM checks at a
4098  *      higher layer.  The users are the big_key and shm implementations.  LSM
4099  *      checks are provided at the key or shm level rather than the inode.
4100  * @name: name for dentry (to be seen in /proc/<pid>/maps
4101  * @size: size to be set for the file
4102  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4103  */
4104 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4105 {
4106         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4107 }
4108
4109 /**
4110  * shmem_file_setup - get an unlinked file living in tmpfs
4111  * @name: name for dentry (to be seen in /proc/<pid>/maps
4112  * @size: size to be set for the file
4113  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4114  */
4115 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4116 {
4117         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4118 }
4119 EXPORT_SYMBOL_GPL(shmem_file_setup);
4120
4121 /**
4122  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4123  * @mnt: the tmpfs mount where the file will be created
4124  * @name: name for dentry (to be seen in /proc/<pid>/maps
4125  * @size: size to be set for the file
4126  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4127  */
4128 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4129                                        loff_t size, unsigned long flags)
4130 {
4131         return __shmem_file_setup(mnt, name, size, flags, 0);
4132 }
4133 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4134
4135 /**
4136  * shmem_zero_setup - setup a shared anonymous mapping
4137  * @vma: the vma to be mmapped is prepared by do_mmap
4138  */
4139 int shmem_zero_setup(struct vm_area_struct *vma)
4140 {
4141         struct file *file;
4142         loff_t size = vma->vm_end - vma->vm_start;
4143
4144         /*
4145          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4146          * between XFS directory reading and selinux: since this file is only
4147          * accessible to the user through its mapping, use S_PRIVATE flag to
4148          * bypass file security, in the same way as shmem_kernel_file_setup().
4149          */
4150         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4151         if (IS_ERR(file))
4152                 return PTR_ERR(file);
4153
4154         if (vma->vm_file)
4155                 fput(vma->vm_file);
4156         vma->vm_file = file;
4157         vma->vm_ops = &shmem_vm_ops;
4158
4159         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4160                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4161                         (vma->vm_end & HPAGE_PMD_MASK)) {
4162                 khugepaged_enter(vma, vma->vm_flags);
4163         }
4164
4165         return 0;
4166 }
4167
4168 /**
4169  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4170  * @mapping:    the page's address_space
4171  * @index:      the page index
4172  * @gfp:        the page allocator flags to use if allocating
4173  *
4174  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4175  * with any new page allocations done using the specified allocation flags.
4176  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4177  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4178  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4179  *
4180  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4181  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4182  */
4183 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4184                                          pgoff_t index, gfp_t gfp)
4185 {
4186 #ifdef CONFIG_SHMEM
4187         struct inode *inode = mapping->host;
4188         struct page *page;
4189         int error;
4190
4191         BUG_ON(!shmem_mapping(mapping));
4192         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4193                                   gfp, NULL, NULL, NULL);
4194         if (error)
4195                 page = ERR_PTR(error);
4196         else
4197                 unlock_page(page);
4198         return page;
4199 #else
4200         /*
4201          * The tiny !SHMEM case uses ramfs without swap
4202          */
4203         return read_cache_page_gfp(mapping, index, gfp);
4204 #endif
4205 }
4206 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);