mm/shmem: use pagevec_lookup in shmem_unlock_mapping
[linux-2.6-microblaze.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85
86 #include "internal.h"
87
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96
97 /*
98  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99  * inode->i_private (with i_mutex making sure that it has only one user at
100  * a time): we would prefer not to enlarge the shmem inode just for that.
101  */
102 struct shmem_falloc {
103         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104         pgoff_t start;          /* start of range currently being fallocated */
105         pgoff_t next;           /* the next page offset to be fallocated */
106         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
107         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
108 };
109
110 struct shmem_options {
111         unsigned long long blocks;
112         unsigned long long inodes;
113         struct mempolicy *mpol;
114         kuid_t uid;
115         kgid_t gid;
116         umode_t mode;
117         bool full_inums;
118         int huge;
119         int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129         return totalram_pages() / 2;
130 }
131
132 static unsigned long shmem_default_max_inodes(void)
133 {
134         unsigned long nr_pages = totalram_pages();
135
136         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142                                 struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144                              struct page **pagep, enum sgp_type sgp,
145                              gfp_t gfp, struct vm_area_struct *vma,
146                              vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148                 struct page **pagep, enum sgp_type sgp,
149                 gfp_t gfp, struct vm_area_struct *vma,
150                 struct vm_fault *vmf, vm_fault_t *fault_type);
151
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153                 struct page **pagep, enum sgp_type sgp)
154 {
155         return shmem_getpage_gfp(inode, index, pagep, sgp,
156                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161         return sb->s_fs_info;
162 }
163
164 /*
165  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166  * for shared memory and for shared anonymous (/dev/zero) mappings
167  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168  * consistent with the pre-accounting of private mappings ...
169  */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172         return (flags & VM_NORESERVE) ?
173                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178         if (!(flags & VM_NORESERVE))
179                 vm_unacct_memory(VM_ACCT(size));
180 }
181
182 static inline int shmem_reacct_size(unsigned long flags,
183                 loff_t oldsize, loff_t newsize)
184 {
185         if (!(flags & VM_NORESERVE)) {
186                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187                         return security_vm_enough_memory_mm(current->mm,
188                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
189                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191         }
192         return 0;
193 }
194
195 /*
196  * ... whereas tmpfs objects are accounted incrementally as
197  * pages are allocated, in order to allow large sparse files.
198  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200  */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203         if (!(flags & VM_NORESERVE))
204                 return 0;
205
206         return security_vm_enough_memory_mm(current->mm,
207                         pages * VM_ACCT(PAGE_SIZE));
208 }
209
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212         if (flags & VM_NORESERVE)
213                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218         struct shmem_inode_info *info = SHMEM_I(inode);
219         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220
221         if (shmem_acct_block(info->flags, pages))
222                 return false;
223
224         if (sbinfo->max_blocks) {
225                 if (percpu_counter_compare(&sbinfo->used_blocks,
226                                            sbinfo->max_blocks - pages) > 0)
227                         goto unacct;
228                 percpu_counter_add(&sbinfo->used_blocks, pages);
229         }
230
231         return true;
232
233 unacct:
234         shmem_unacct_blocks(info->flags, pages);
235         return false;
236 }
237
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240         struct shmem_inode_info *info = SHMEM_I(inode);
241         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242
243         if (sbinfo->max_blocks)
244                 percpu_counter_sub(&sbinfo->used_blocks, pages);
245         shmem_unacct_blocks(info->flags, pages);
246 }
247
248 static const struct super_operations shmem_ops;
249 const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259         return vma->vm_ops == &shmem_vm_ops;
260 }
261
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264
265 /*
266  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267  * produces a novel ino for the newly allocated inode.
268  *
269  * It may also be called when making a hard link to permit the space needed by
270  * each dentry. However, in that case, no new inode number is needed since that
271  * internally draws from another pool of inode numbers (currently global
272  * get_next_ino()). This case is indicated by passing NULL as inop.
273  */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278         ino_t ino;
279
280         if (!(sb->s_flags & SB_KERNMOUNT)) {
281                 spin_lock(&sbinfo->stat_lock);
282                 if (sbinfo->max_inodes) {
283                         if (!sbinfo->free_inodes) {
284                                 spin_unlock(&sbinfo->stat_lock);
285                                 return -ENOSPC;
286                         }
287                         sbinfo->free_inodes--;
288                 }
289                 if (inop) {
290                         ino = sbinfo->next_ino++;
291                         if (unlikely(is_zero_ino(ino)))
292                                 ino = sbinfo->next_ino++;
293                         if (unlikely(!sbinfo->full_inums &&
294                                      ino > UINT_MAX)) {
295                                 /*
296                                  * Emulate get_next_ino uint wraparound for
297                                  * compatibility
298                                  */
299                                 if (IS_ENABLED(CONFIG_64BIT))
300                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301                                                 __func__, MINOR(sb->s_dev));
302                                 sbinfo->next_ino = 1;
303                                 ino = sbinfo->next_ino++;
304                         }
305                         *inop = ino;
306                 }
307                 spin_unlock(&sbinfo->stat_lock);
308         } else if (inop) {
309                 /*
310                  * __shmem_file_setup, one of our callers, is lock-free: it
311                  * doesn't hold stat_lock in shmem_reserve_inode since
312                  * max_inodes is always 0, and is called from potentially
313                  * unknown contexts. As such, use a per-cpu batched allocator
314                  * which doesn't require the per-sb stat_lock unless we are at
315                  * the batch boundary.
316                  *
317                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318                  * shmem mounts are not exposed to userspace, so we don't need
319                  * to worry about things like glibc compatibility.
320                  */
321                 ino_t *next_ino;
322                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
323                 ino = *next_ino;
324                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
325                         spin_lock(&sbinfo->stat_lock);
326                         ino = sbinfo->next_ino;
327                         sbinfo->next_ino += SHMEM_INO_BATCH;
328                         spin_unlock(&sbinfo->stat_lock);
329                         if (unlikely(is_zero_ino(ino)))
330                                 ino++;
331                 }
332                 *inop = ino;
333                 *next_ino = ++ino;
334                 put_cpu();
335         }
336
337         return 0;
338 }
339
340 static void shmem_free_inode(struct super_block *sb)
341 {
342         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
343         if (sbinfo->max_inodes) {
344                 spin_lock(&sbinfo->stat_lock);
345                 sbinfo->free_inodes++;
346                 spin_unlock(&sbinfo->stat_lock);
347         }
348 }
349
350 /**
351  * shmem_recalc_inode - recalculate the block usage of an inode
352  * @inode: inode to recalc
353  *
354  * We have to calculate the free blocks since the mm can drop
355  * undirtied hole pages behind our back.
356  *
357  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
358  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
359  *
360  * It has to be called with the spinlock held.
361  */
362 static void shmem_recalc_inode(struct inode *inode)
363 {
364         struct shmem_inode_info *info = SHMEM_I(inode);
365         long freed;
366
367         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
368         if (freed > 0) {
369                 info->alloced -= freed;
370                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
371                 shmem_inode_unacct_blocks(inode, freed);
372         }
373 }
374
375 bool shmem_charge(struct inode *inode, long pages)
376 {
377         struct shmem_inode_info *info = SHMEM_I(inode);
378         unsigned long flags;
379
380         if (!shmem_inode_acct_block(inode, pages))
381                 return false;
382
383         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
384         inode->i_mapping->nrpages += pages;
385
386         spin_lock_irqsave(&info->lock, flags);
387         info->alloced += pages;
388         inode->i_blocks += pages * BLOCKS_PER_PAGE;
389         shmem_recalc_inode(inode);
390         spin_unlock_irqrestore(&info->lock, flags);
391
392         return true;
393 }
394
395 void shmem_uncharge(struct inode *inode, long pages)
396 {
397         struct shmem_inode_info *info = SHMEM_I(inode);
398         unsigned long flags;
399
400         /* nrpages adjustment done by __delete_from_page_cache() or caller */
401
402         spin_lock_irqsave(&info->lock, flags);
403         info->alloced -= pages;
404         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
405         shmem_recalc_inode(inode);
406         spin_unlock_irqrestore(&info->lock, flags);
407
408         shmem_inode_unacct_blocks(inode, pages);
409 }
410
411 /*
412  * Replace item expected in xarray by a new item, while holding xa_lock.
413  */
414 static int shmem_replace_entry(struct address_space *mapping,
415                         pgoff_t index, void *expected, void *replacement)
416 {
417         XA_STATE(xas, &mapping->i_pages, index);
418         void *item;
419
420         VM_BUG_ON(!expected);
421         VM_BUG_ON(!replacement);
422         item = xas_load(&xas);
423         if (item != expected)
424                 return -ENOENT;
425         xas_store(&xas, replacement);
426         return 0;
427 }
428
429 /*
430  * Sometimes, before we decide whether to proceed or to fail, we must check
431  * that an entry was not already brought back from swap by a racing thread.
432  *
433  * Checking page is not enough: by the time a SwapCache page is locked, it
434  * might be reused, and again be SwapCache, using the same swap as before.
435  */
436 static bool shmem_confirm_swap(struct address_space *mapping,
437                                pgoff_t index, swp_entry_t swap)
438 {
439         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
440 }
441
442 /*
443  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
444  *
445  * SHMEM_HUGE_NEVER:
446  *      disables huge pages for the mount;
447  * SHMEM_HUGE_ALWAYS:
448  *      enables huge pages for the mount;
449  * SHMEM_HUGE_WITHIN_SIZE:
450  *      only allocate huge pages if the page will be fully within i_size,
451  *      also respect fadvise()/madvise() hints;
452  * SHMEM_HUGE_ADVISE:
453  *      only allocate huge pages if requested with fadvise()/madvise();
454  */
455
456 #define SHMEM_HUGE_NEVER        0
457 #define SHMEM_HUGE_ALWAYS       1
458 #define SHMEM_HUGE_WITHIN_SIZE  2
459 #define SHMEM_HUGE_ADVISE       3
460
461 /*
462  * Special values.
463  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
464  *
465  * SHMEM_HUGE_DENY:
466  *      disables huge on shm_mnt and all mounts, for emergency use;
467  * SHMEM_HUGE_FORCE:
468  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
469  *
470  */
471 #define SHMEM_HUGE_DENY         (-1)
472 #define SHMEM_HUGE_FORCE        (-2)
473
474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
475 /* ifdef here to avoid bloating shmem.o when not necessary */
476
477 static int shmem_huge __read_mostly;
478
479 #if defined(CONFIG_SYSFS)
480 static int shmem_parse_huge(const char *str)
481 {
482         if (!strcmp(str, "never"))
483                 return SHMEM_HUGE_NEVER;
484         if (!strcmp(str, "always"))
485                 return SHMEM_HUGE_ALWAYS;
486         if (!strcmp(str, "within_size"))
487                 return SHMEM_HUGE_WITHIN_SIZE;
488         if (!strcmp(str, "advise"))
489                 return SHMEM_HUGE_ADVISE;
490         if (!strcmp(str, "deny"))
491                 return SHMEM_HUGE_DENY;
492         if (!strcmp(str, "force"))
493                 return SHMEM_HUGE_FORCE;
494         return -EINVAL;
495 }
496 #endif
497
498 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
499 static const char *shmem_format_huge(int huge)
500 {
501         switch (huge) {
502         case SHMEM_HUGE_NEVER:
503                 return "never";
504         case SHMEM_HUGE_ALWAYS:
505                 return "always";
506         case SHMEM_HUGE_WITHIN_SIZE:
507                 return "within_size";
508         case SHMEM_HUGE_ADVISE:
509                 return "advise";
510         case SHMEM_HUGE_DENY:
511                 return "deny";
512         case SHMEM_HUGE_FORCE:
513                 return "force";
514         default:
515                 VM_BUG_ON(1);
516                 return "bad_val";
517         }
518 }
519 #endif
520
521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522                 struct shrink_control *sc, unsigned long nr_to_split)
523 {
524         LIST_HEAD(list), *pos, *next;
525         LIST_HEAD(to_remove);
526         struct inode *inode;
527         struct shmem_inode_info *info;
528         struct page *page;
529         unsigned long batch = sc ? sc->nr_to_scan : 128;
530         int removed = 0, split = 0;
531
532         if (list_empty(&sbinfo->shrinklist))
533                 return SHRINK_STOP;
534
535         spin_lock(&sbinfo->shrinklist_lock);
536         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
537                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
538
539                 /* pin the inode */
540                 inode = igrab(&info->vfs_inode);
541
542                 /* inode is about to be evicted */
543                 if (!inode) {
544                         list_del_init(&info->shrinklist);
545                         removed++;
546                         goto next;
547                 }
548
549                 /* Check if there's anything to gain */
550                 if (round_up(inode->i_size, PAGE_SIZE) ==
551                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
552                         list_move(&info->shrinklist, &to_remove);
553                         removed++;
554                         goto next;
555                 }
556
557                 list_move(&info->shrinklist, &list);
558 next:
559                 if (!--batch)
560                         break;
561         }
562         spin_unlock(&sbinfo->shrinklist_lock);
563
564         list_for_each_safe(pos, next, &to_remove) {
565                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566                 inode = &info->vfs_inode;
567                 list_del_init(&info->shrinklist);
568                 iput(inode);
569         }
570
571         list_for_each_safe(pos, next, &list) {
572                 int ret;
573
574                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
575                 inode = &info->vfs_inode;
576
577                 if (nr_to_split && split >= nr_to_split)
578                         goto leave;
579
580                 page = find_get_page(inode->i_mapping,
581                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
582                 if (!page)
583                         goto drop;
584
585                 /* No huge page at the end of the file: nothing to split */
586                 if (!PageTransHuge(page)) {
587                         put_page(page);
588                         goto drop;
589                 }
590
591                 /*
592                  * Leave the inode on the list if we failed to lock
593                  * the page at this time.
594                  *
595                  * Waiting for the lock may lead to deadlock in the
596                  * reclaim path.
597                  */
598                 if (!trylock_page(page)) {
599                         put_page(page);
600                         goto leave;
601                 }
602
603                 ret = split_huge_page(page);
604                 unlock_page(page);
605                 put_page(page);
606
607                 /* If split failed leave the inode on the list */
608                 if (ret)
609                         goto leave;
610
611                 split++;
612 drop:
613                 list_del_init(&info->shrinklist);
614                 removed++;
615 leave:
616                 iput(inode);
617         }
618
619         spin_lock(&sbinfo->shrinklist_lock);
620         list_splice_tail(&list, &sbinfo->shrinklist);
621         sbinfo->shrinklist_len -= removed;
622         spin_unlock(&sbinfo->shrinklist_lock);
623
624         return split;
625 }
626
627 static long shmem_unused_huge_scan(struct super_block *sb,
628                 struct shrink_control *sc)
629 {
630         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
631
632         if (!READ_ONCE(sbinfo->shrinklist_len))
633                 return SHRINK_STOP;
634
635         return shmem_unused_huge_shrink(sbinfo, sc, 0);
636 }
637
638 static long shmem_unused_huge_count(struct super_block *sb,
639                 struct shrink_control *sc)
640 {
641         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
642         return READ_ONCE(sbinfo->shrinklist_len);
643 }
644 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
645
646 #define shmem_huge SHMEM_HUGE_DENY
647
648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649                 struct shrink_control *sc, unsigned long nr_to_split)
650 {
651         return 0;
652 }
653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
654
655 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
656 {
657         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
658             (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
659             shmem_huge != SHMEM_HUGE_DENY)
660                 return true;
661         return false;
662 }
663
664 /*
665  * Like add_to_page_cache_locked, but error if expected item has gone.
666  */
667 static int shmem_add_to_page_cache(struct page *page,
668                                    struct address_space *mapping,
669                                    pgoff_t index, void *expected, gfp_t gfp,
670                                    struct mm_struct *charge_mm)
671 {
672         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
673         unsigned long i = 0;
674         unsigned long nr = compound_nr(page);
675         int error;
676
677         VM_BUG_ON_PAGE(PageTail(page), page);
678         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
679         VM_BUG_ON_PAGE(!PageLocked(page), page);
680         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
681         VM_BUG_ON(expected && PageTransHuge(page));
682
683         page_ref_add(page, nr);
684         page->mapping = mapping;
685         page->index = index;
686
687         if (!PageSwapCache(page)) {
688                 error = mem_cgroup_charge(page, charge_mm, gfp);
689                 if (error) {
690                         if (PageTransHuge(page)) {
691                                 count_vm_event(THP_FILE_FALLBACK);
692                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
693                         }
694                         goto error;
695                 }
696         }
697         cgroup_throttle_swaprate(page, gfp);
698
699         do {
700                 void *entry;
701                 xas_lock_irq(&xas);
702                 entry = xas_find_conflict(&xas);
703                 if (entry != expected)
704                         xas_set_err(&xas, -EEXIST);
705                 xas_create_range(&xas);
706                 if (xas_error(&xas))
707                         goto unlock;
708 next:
709                 xas_store(&xas, page);
710                 if (++i < nr) {
711                         xas_next(&xas);
712                         goto next;
713                 }
714                 if (PageTransHuge(page)) {
715                         count_vm_event(THP_FILE_ALLOC);
716                         __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
717                 }
718                 mapping->nrpages += nr;
719                 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
720                 __mod_lruvec_page_state(page, NR_SHMEM, nr);
721 unlock:
722                 xas_unlock_irq(&xas);
723         } while (xas_nomem(&xas, gfp));
724
725         if (xas_error(&xas)) {
726                 error = xas_error(&xas);
727                 goto error;
728         }
729
730         return 0;
731 error:
732         page->mapping = NULL;
733         page_ref_sub(page, nr);
734         return error;
735 }
736
737 /*
738  * Like delete_from_page_cache, but substitutes swap for page.
739  */
740 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
741 {
742         struct address_space *mapping = page->mapping;
743         int error;
744
745         VM_BUG_ON_PAGE(PageCompound(page), page);
746
747         xa_lock_irq(&mapping->i_pages);
748         error = shmem_replace_entry(mapping, page->index, page, radswap);
749         page->mapping = NULL;
750         mapping->nrpages--;
751         __dec_lruvec_page_state(page, NR_FILE_PAGES);
752         __dec_lruvec_page_state(page, NR_SHMEM);
753         xa_unlock_irq(&mapping->i_pages);
754         put_page(page);
755         BUG_ON(error);
756 }
757
758 /*
759  * Remove swap entry from page cache, free the swap and its page cache.
760  */
761 static int shmem_free_swap(struct address_space *mapping,
762                            pgoff_t index, void *radswap)
763 {
764         void *old;
765
766         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
767         if (old != radswap)
768                 return -ENOENT;
769         free_swap_and_cache(radix_to_swp_entry(radswap));
770         return 0;
771 }
772
773 /*
774  * Determine (in bytes) how many of the shmem object's pages mapped by the
775  * given offsets are swapped out.
776  *
777  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
778  * as long as the inode doesn't go away and racy results are not a problem.
779  */
780 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
781                                                 pgoff_t start, pgoff_t end)
782 {
783         XA_STATE(xas, &mapping->i_pages, start);
784         struct page *page;
785         unsigned long swapped = 0;
786
787         rcu_read_lock();
788         xas_for_each(&xas, page, end - 1) {
789                 if (xas_retry(&xas, page))
790                         continue;
791                 if (xa_is_value(page))
792                         swapped++;
793
794                 if (need_resched()) {
795                         xas_pause(&xas);
796                         cond_resched_rcu();
797                 }
798         }
799
800         rcu_read_unlock();
801
802         return swapped << PAGE_SHIFT;
803 }
804
805 /*
806  * Determine (in bytes) how many of the shmem object's pages mapped by the
807  * given vma is swapped out.
808  *
809  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
810  * as long as the inode doesn't go away and racy results are not a problem.
811  */
812 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
813 {
814         struct inode *inode = file_inode(vma->vm_file);
815         struct shmem_inode_info *info = SHMEM_I(inode);
816         struct address_space *mapping = inode->i_mapping;
817         unsigned long swapped;
818
819         /* Be careful as we don't hold info->lock */
820         swapped = READ_ONCE(info->swapped);
821
822         /*
823          * The easier cases are when the shmem object has nothing in swap, or
824          * the vma maps it whole. Then we can simply use the stats that we
825          * already track.
826          */
827         if (!swapped)
828                 return 0;
829
830         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
831                 return swapped << PAGE_SHIFT;
832
833         /* Here comes the more involved part */
834         return shmem_partial_swap_usage(mapping,
835                         linear_page_index(vma, vma->vm_start),
836                         linear_page_index(vma, vma->vm_end));
837 }
838
839 /*
840  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
841  */
842 void shmem_unlock_mapping(struct address_space *mapping)
843 {
844         struct pagevec pvec;
845         pgoff_t index = 0;
846
847         pagevec_init(&pvec);
848         /*
849          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
850          */
851         while (!mapping_unevictable(mapping)) {
852                 if (!pagevec_lookup(&pvec, mapping, &index))
853                         break;
854                 check_move_unevictable_pages(&pvec);
855                 pagevec_release(&pvec);
856                 cond_resched();
857         }
858 }
859
860 /*
861  * Check whether a hole-punch or truncation needs to split a huge page,
862  * returning true if no split was required, or the split has been successful.
863  *
864  * Eviction (or truncation to 0 size) should never need to split a huge page;
865  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
866  * head, and then succeeded to trylock on tail.
867  *
868  * A split can only succeed when there are no additional references on the
869  * huge page: so the split below relies upon find_get_entries() having stopped
870  * when it found a subpage of the huge page, without getting further references.
871  */
872 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
873 {
874         if (!PageTransCompound(page))
875                 return true;
876
877         /* Just proceed to delete a huge page wholly within the range punched */
878         if (PageHead(page) &&
879             page->index >= start && page->index + HPAGE_PMD_NR <= end)
880                 return true;
881
882         /* Try to split huge page, so we can truly punch the hole or truncate */
883         return split_huge_page(page) >= 0;
884 }
885
886 /*
887  * Remove range of pages and swap entries from page cache, and free them.
888  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
889  */
890 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
891                                                                  bool unfalloc)
892 {
893         struct address_space *mapping = inode->i_mapping;
894         struct shmem_inode_info *info = SHMEM_I(inode);
895         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
896         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
897         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
898         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
899         struct pagevec pvec;
900         pgoff_t indices[PAGEVEC_SIZE];
901         long nr_swaps_freed = 0;
902         pgoff_t index;
903         int i;
904
905         if (lend == -1)
906                 end = -1;       /* unsigned, so actually very big */
907
908         pagevec_init(&pvec);
909         index = start;
910         while (index < end) {
911                 pvec.nr = find_get_entries(mapping, index,
912                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
913                         pvec.pages, indices);
914                 if (!pvec.nr)
915                         break;
916                 for (i = 0; i < pagevec_count(&pvec); i++) {
917                         struct page *page = pvec.pages[i];
918
919                         index = indices[i];
920                         if (index >= end)
921                                 break;
922
923                         if (xa_is_value(page)) {
924                                 if (unfalloc)
925                                         continue;
926                                 nr_swaps_freed += !shmem_free_swap(mapping,
927                                                                 index, page);
928                                 continue;
929                         }
930
931                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
932
933                         if (!trylock_page(page))
934                                 continue;
935
936                         if ((!unfalloc || !PageUptodate(page)) &&
937                             page_mapping(page) == mapping) {
938                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
939                                 if (shmem_punch_compound(page, start, end))
940                                         truncate_inode_page(mapping, page);
941                         }
942                         unlock_page(page);
943                 }
944                 pagevec_remove_exceptionals(&pvec);
945                 pagevec_release(&pvec);
946                 cond_resched();
947                 index++;
948         }
949
950         if (partial_start) {
951                 struct page *page = NULL;
952                 shmem_getpage(inode, start - 1, &page, SGP_READ);
953                 if (page) {
954                         unsigned int top = PAGE_SIZE;
955                         if (start > end) {
956                                 top = partial_end;
957                                 partial_end = 0;
958                         }
959                         zero_user_segment(page, partial_start, top);
960                         set_page_dirty(page);
961                         unlock_page(page);
962                         put_page(page);
963                 }
964         }
965         if (partial_end) {
966                 struct page *page = NULL;
967                 shmem_getpage(inode, end, &page, SGP_READ);
968                 if (page) {
969                         zero_user_segment(page, 0, partial_end);
970                         set_page_dirty(page);
971                         unlock_page(page);
972                         put_page(page);
973                 }
974         }
975         if (start >= end)
976                 return;
977
978         index = start;
979         while (index < end) {
980                 cond_resched();
981
982                 pvec.nr = find_get_entries(mapping, index,
983                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
984                                 pvec.pages, indices);
985                 if (!pvec.nr) {
986                         /* If all gone or hole-punch or unfalloc, we're done */
987                         if (index == start || end != -1)
988                                 break;
989                         /* But if truncating, restart to make sure all gone */
990                         index = start;
991                         continue;
992                 }
993                 for (i = 0; i < pagevec_count(&pvec); i++) {
994                         struct page *page = pvec.pages[i];
995
996                         index = indices[i];
997                         if (index >= end)
998                                 break;
999
1000                         if (xa_is_value(page)) {
1001                                 if (unfalloc)
1002                                         continue;
1003                                 if (shmem_free_swap(mapping, index, page)) {
1004                                         /* Swap was replaced by page: retry */
1005                                         index--;
1006                                         break;
1007                                 }
1008                                 nr_swaps_freed++;
1009                                 continue;
1010                         }
1011
1012                         lock_page(page);
1013
1014                         if (!unfalloc || !PageUptodate(page)) {
1015                                 if (page_mapping(page) != mapping) {
1016                                         /* Page was replaced by swap: retry */
1017                                         unlock_page(page);
1018                                         index--;
1019                                         break;
1020                                 }
1021                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1022                                 if (shmem_punch_compound(page, start, end))
1023                                         truncate_inode_page(mapping, page);
1024                                 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1025                                         /* Wipe the page and don't get stuck */
1026                                         clear_highpage(page);
1027                                         flush_dcache_page(page);
1028                                         set_page_dirty(page);
1029                                         if (index <
1030                                             round_up(start, HPAGE_PMD_NR))
1031                                                 start = index + 1;
1032                                 }
1033                         }
1034                         unlock_page(page);
1035                 }
1036                 pagevec_remove_exceptionals(&pvec);
1037                 pagevec_release(&pvec);
1038                 index++;
1039         }
1040
1041         spin_lock_irq(&info->lock);
1042         info->swapped -= nr_swaps_freed;
1043         shmem_recalc_inode(inode);
1044         spin_unlock_irq(&info->lock);
1045 }
1046
1047 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1048 {
1049         shmem_undo_range(inode, lstart, lend, false);
1050         inode->i_ctime = inode->i_mtime = current_time(inode);
1051 }
1052 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1053
1054 static int shmem_getattr(struct user_namespace *mnt_userns,
1055                          const struct path *path, struct kstat *stat,
1056                          u32 request_mask, unsigned int query_flags)
1057 {
1058         struct inode *inode = path->dentry->d_inode;
1059         struct shmem_inode_info *info = SHMEM_I(inode);
1060         struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1061
1062         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1063                 spin_lock_irq(&info->lock);
1064                 shmem_recalc_inode(inode);
1065                 spin_unlock_irq(&info->lock);
1066         }
1067         generic_fillattr(&init_user_ns, inode, stat);
1068
1069         if (is_huge_enabled(sb_info))
1070                 stat->blksize = HPAGE_PMD_SIZE;
1071
1072         return 0;
1073 }
1074
1075 static int shmem_setattr(struct user_namespace *mnt_userns,
1076                          struct dentry *dentry, struct iattr *attr)
1077 {
1078         struct inode *inode = d_inode(dentry);
1079         struct shmem_inode_info *info = SHMEM_I(inode);
1080         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1081         int error;
1082
1083         error = setattr_prepare(&init_user_ns, dentry, attr);
1084         if (error)
1085                 return error;
1086
1087         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1088                 loff_t oldsize = inode->i_size;
1089                 loff_t newsize = attr->ia_size;
1090
1091                 /* protected by i_mutex */
1092                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1093                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1094                         return -EPERM;
1095
1096                 if (newsize != oldsize) {
1097                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1098                                         oldsize, newsize);
1099                         if (error)
1100                                 return error;
1101                         i_size_write(inode, newsize);
1102                         inode->i_ctime = inode->i_mtime = current_time(inode);
1103                 }
1104                 if (newsize <= oldsize) {
1105                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1106                         if (oldsize > holebegin)
1107                                 unmap_mapping_range(inode->i_mapping,
1108                                                         holebegin, 0, 1);
1109                         if (info->alloced)
1110                                 shmem_truncate_range(inode,
1111                                                         newsize, (loff_t)-1);
1112                         /* unmap again to remove racily COWed private pages */
1113                         if (oldsize > holebegin)
1114                                 unmap_mapping_range(inode->i_mapping,
1115                                                         holebegin, 0, 1);
1116
1117                         /*
1118                          * Part of the huge page can be beyond i_size: subject
1119                          * to shrink under memory pressure.
1120                          */
1121                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1122                                 spin_lock(&sbinfo->shrinklist_lock);
1123                                 /*
1124                                  * _careful to defend against unlocked access to
1125                                  * ->shrink_list in shmem_unused_huge_shrink()
1126                                  */
1127                                 if (list_empty_careful(&info->shrinklist)) {
1128                                         list_add_tail(&info->shrinklist,
1129                                                         &sbinfo->shrinklist);
1130                                         sbinfo->shrinklist_len++;
1131                                 }
1132                                 spin_unlock(&sbinfo->shrinklist_lock);
1133                         }
1134                 }
1135         }
1136
1137         setattr_copy(&init_user_ns, inode, attr);
1138         if (attr->ia_valid & ATTR_MODE)
1139                 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1140         return error;
1141 }
1142
1143 static void shmem_evict_inode(struct inode *inode)
1144 {
1145         struct shmem_inode_info *info = SHMEM_I(inode);
1146         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1147
1148         if (shmem_mapping(inode->i_mapping)) {
1149                 shmem_unacct_size(info->flags, inode->i_size);
1150                 inode->i_size = 0;
1151                 shmem_truncate_range(inode, 0, (loff_t)-1);
1152                 if (!list_empty(&info->shrinklist)) {
1153                         spin_lock(&sbinfo->shrinklist_lock);
1154                         if (!list_empty(&info->shrinklist)) {
1155                                 list_del_init(&info->shrinklist);
1156                                 sbinfo->shrinklist_len--;
1157                         }
1158                         spin_unlock(&sbinfo->shrinklist_lock);
1159                 }
1160                 while (!list_empty(&info->swaplist)) {
1161                         /* Wait while shmem_unuse() is scanning this inode... */
1162                         wait_var_event(&info->stop_eviction,
1163                                        !atomic_read(&info->stop_eviction));
1164                         mutex_lock(&shmem_swaplist_mutex);
1165                         /* ...but beware of the race if we peeked too early */
1166                         if (!atomic_read(&info->stop_eviction))
1167                                 list_del_init(&info->swaplist);
1168                         mutex_unlock(&shmem_swaplist_mutex);
1169                 }
1170         }
1171
1172         simple_xattrs_free(&info->xattrs);
1173         WARN_ON(inode->i_blocks);
1174         shmem_free_inode(inode->i_sb);
1175         clear_inode(inode);
1176 }
1177
1178 extern struct swap_info_struct *swap_info[];
1179
1180 static int shmem_find_swap_entries(struct address_space *mapping,
1181                                    pgoff_t start, unsigned int nr_entries,
1182                                    struct page **entries, pgoff_t *indices,
1183                                    unsigned int type, bool frontswap)
1184 {
1185         XA_STATE(xas, &mapping->i_pages, start);
1186         struct page *page;
1187         swp_entry_t entry;
1188         unsigned int ret = 0;
1189
1190         if (!nr_entries)
1191                 return 0;
1192
1193         rcu_read_lock();
1194         xas_for_each(&xas, page, ULONG_MAX) {
1195                 if (xas_retry(&xas, page))
1196                         continue;
1197
1198                 if (!xa_is_value(page))
1199                         continue;
1200
1201                 entry = radix_to_swp_entry(page);
1202                 if (swp_type(entry) != type)
1203                         continue;
1204                 if (frontswap &&
1205                     !frontswap_test(swap_info[type], swp_offset(entry)))
1206                         continue;
1207
1208                 indices[ret] = xas.xa_index;
1209                 entries[ret] = page;
1210
1211                 if (need_resched()) {
1212                         xas_pause(&xas);
1213                         cond_resched_rcu();
1214                 }
1215                 if (++ret == nr_entries)
1216                         break;
1217         }
1218         rcu_read_unlock();
1219
1220         return ret;
1221 }
1222
1223 /*
1224  * Move the swapped pages for an inode to page cache. Returns the count
1225  * of pages swapped in, or the error in case of failure.
1226  */
1227 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1228                                     pgoff_t *indices)
1229 {
1230         int i = 0;
1231         int ret = 0;
1232         int error = 0;
1233         struct address_space *mapping = inode->i_mapping;
1234
1235         for (i = 0; i < pvec.nr; i++) {
1236                 struct page *page = pvec.pages[i];
1237
1238                 if (!xa_is_value(page))
1239                         continue;
1240                 error = shmem_swapin_page(inode, indices[i],
1241                                           &page, SGP_CACHE,
1242                                           mapping_gfp_mask(mapping),
1243                                           NULL, NULL);
1244                 if (error == 0) {
1245                         unlock_page(page);
1246                         put_page(page);
1247                         ret++;
1248                 }
1249                 if (error == -ENOMEM)
1250                         break;
1251                 error = 0;
1252         }
1253         return error ? error : ret;
1254 }
1255
1256 /*
1257  * If swap found in inode, free it and move page from swapcache to filecache.
1258  */
1259 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1260                              bool frontswap, unsigned long *fs_pages_to_unuse)
1261 {
1262         struct address_space *mapping = inode->i_mapping;
1263         pgoff_t start = 0;
1264         struct pagevec pvec;
1265         pgoff_t indices[PAGEVEC_SIZE];
1266         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1267         int ret = 0;
1268
1269         pagevec_init(&pvec);
1270         do {
1271                 unsigned int nr_entries = PAGEVEC_SIZE;
1272
1273                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1274                         nr_entries = *fs_pages_to_unuse;
1275
1276                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1277                                                   pvec.pages, indices,
1278                                                   type, frontswap);
1279                 if (pvec.nr == 0) {
1280                         ret = 0;
1281                         break;
1282                 }
1283
1284                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1285                 if (ret < 0)
1286                         break;
1287
1288                 if (frontswap_partial) {
1289                         *fs_pages_to_unuse -= ret;
1290                         if (*fs_pages_to_unuse == 0) {
1291                                 ret = FRONTSWAP_PAGES_UNUSED;
1292                                 break;
1293                         }
1294                 }
1295
1296                 start = indices[pvec.nr - 1];
1297         } while (true);
1298
1299         return ret;
1300 }
1301
1302 /*
1303  * Read all the shared memory data that resides in the swap
1304  * device 'type' back into memory, so the swap device can be
1305  * unused.
1306  */
1307 int shmem_unuse(unsigned int type, bool frontswap,
1308                 unsigned long *fs_pages_to_unuse)
1309 {
1310         struct shmem_inode_info *info, *next;
1311         int error = 0;
1312
1313         if (list_empty(&shmem_swaplist))
1314                 return 0;
1315
1316         mutex_lock(&shmem_swaplist_mutex);
1317         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1318                 if (!info->swapped) {
1319                         list_del_init(&info->swaplist);
1320                         continue;
1321                 }
1322                 /*
1323                  * Drop the swaplist mutex while searching the inode for swap;
1324                  * but before doing so, make sure shmem_evict_inode() will not
1325                  * remove placeholder inode from swaplist, nor let it be freed
1326                  * (igrab() would protect from unlink, but not from unmount).
1327                  */
1328                 atomic_inc(&info->stop_eviction);
1329                 mutex_unlock(&shmem_swaplist_mutex);
1330
1331                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1332                                           fs_pages_to_unuse);
1333                 cond_resched();
1334
1335                 mutex_lock(&shmem_swaplist_mutex);
1336                 next = list_next_entry(info, swaplist);
1337                 if (!info->swapped)
1338                         list_del_init(&info->swaplist);
1339                 if (atomic_dec_and_test(&info->stop_eviction))
1340                         wake_up_var(&info->stop_eviction);
1341                 if (error)
1342                         break;
1343         }
1344         mutex_unlock(&shmem_swaplist_mutex);
1345
1346         return error;
1347 }
1348
1349 /*
1350  * Move the page from the page cache to the swap cache.
1351  */
1352 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1353 {
1354         struct shmem_inode_info *info;
1355         struct address_space *mapping;
1356         struct inode *inode;
1357         swp_entry_t swap;
1358         pgoff_t index;
1359
1360         VM_BUG_ON_PAGE(PageCompound(page), page);
1361         BUG_ON(!PageLocked(page));
1362         mapping = page->mapping;
1363         index = page->index;
1364         inode = mapping->host;
1365         info = SHMEM_I(inode);
1366         if (info->flags & VM_LOCKED)
1367                 goto redirty;
1368         if (!total_swap_pages)
1369                 goto redirty;
1370
1371         /*
1372          * Our capabilities prevent regular writeback or sync from ever calling
1373          * shmem_writepage; but a stacking filesystem might use ->writepage of
1374          * its underlying filesystem, in which case tmpfs should write out to
1375          * swap only in response to memory pressure, and not for the writeback
1376          * threads or sync.
1377          */
1378         if (!wbc->for_reclaim) {
1379                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1380                 goto redirty;
1381         }
1382
1383         /*
1384          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1385          * value into swapfile.c, the only way we can correctly account for a
1386          * fallocated page arriving here is now to initialize it and write it.
1387          *
1388          * That's okay for a page already fallocated earlier, but if we have
1389          * not yet completed the fallocation, then (a) we want to keep track
1390          * of this page in case we have to undo it, and (b) it may not be a
1391          * good idea to continue anyway, once we're pushing into swap.  So
1392          * reactivate the page, and let shmem_fallocate() quit when too many.
1393          */
1394         if (!PageUptodate(page)) {
1395                 if (inode->i_private) {
1396                         struct shmem_falloc *shmem_falloc;
1397                         spin_lock(&inode->i_lock);
1398                         shmem_falloc = inode->i_private;
1399                         if (shmem_falloc &&
1400                             !shmem_falloc->waitq &&
1401                             index >= shmem_falloc->start &&
1402                             index < shmem_falloc->next)
1403                                 shmem_falloc->nr_unswapped++;
1404                         else
1405                                 shmem_falloc = NULL;
1406                         spin_unlock(&inode->i_lock);
1407                         if (shmem_falloc)
1408                                 goto redirty;
1409                 }
1410                 clear_highpage(page);
1411                 flush_dcache_page(page);
1412                 SetPageUptodate(page);
1413         }
1414
1415         swap = get_swap_page(page);
1416         if (!swap.val)
1417                 goto redirty;
1418
1419         /*
1420          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1421          * if it's not already there.  Do it now before the page is
1422          * moved to swap cache, when its pagelock no longer protects
1423          * the inode from eviction.  But don't unlock the mutex until
1424          * we've incremented swapped, because shmem_unuse_inode() will
1425          * prune a !swapped inode from the swaplist under this mutex.
1426          */
1427         mutex_lock(&shmem_swaplist_mutex);
1428         if (list_empty(&info->swaplist))
1429                 list_add(&info->swaplist, &shmem_swaplist);
1430
1431         if (add_to_swap_cache(page, swap,
1432                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1433                         NULL) == 0) {
1434                 spin_lock_irq(&info->lock);
1435                 shmem_recalc_inode(inode);
1436                 info->swapped++;
1437                 spin_unlock_irq(&info->lock);
1438
1439                 swap_shmem_alloc(swap);
1440                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1441
1442                 mutex_unlock(&shmem_swaplist_mutex);
1443                 BUG_ON(page_mapped(page));
1444                 swap_writepage(page, wbc);
1445                 return 0;
1446         }
1447
1448         mutex_unlock(&shmem_swaplist_mutex);
1449         put_swap_page(page, swap);
1450 redirty:
1451         set_page_dirty(page);
1452         if (wbc->for_reclaim)
1453                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1454         unlock_page(page);
1455         return 0;
1456 }
1457
1458 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1459 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1460 {
1461         char buffer[64];
1462
1463         if (!mpol || mpol->mode == MPOL_DEFAULT)
1464                 return;         /* show nothing */
1465
1466         mpol_to_str(buffer, sizeof(buffer), mpol);
1467
1468         seq_printf(seq, ",mpol=%s", buffer);
1469 }
1470
1471 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1472 {
1473         struct mempolicy *mpol = NULL;
1474         if (sbinfo->mpol) {
1475                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1476                 mpol = sbinfo->mpol;
1477                 mpol_get(mpol);
1478                 spin_unlock(&sbinfo->stat_lock);
1479         }
1480         return mpol;
1481 }
1482 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1483 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1484 {
1485 }
1486 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1487 {
1488         return NULL;
1489 }
1490 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1491 #ifndef CONFIG_NUMA
1492 #define vm_policy vm_private_data
1493 #endif
1494
1495 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1496                 struct shmem_inode_info *info, pgoff_t index)
1497 {
1498         /* Create a pseudo vma that just contains the policy */
1499         vma_init(vma, NULL);
1500         /* Bias interleave by inode number to distribute better across nodes */
1501         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1502         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1503 }
1504
1505 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1506 {
1507         /* Drop reference taken by mpol_shared_policy_lookup() */
1508         mpol_cond_put(vma->vm_policy);
1509 }
1510
1511 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1512                         struct shmem_inode_info *info, pgoff_t index)
1513 {
1514         struct vm_area_struct pvma;
1515         struct page *page;
1516         struct vm_fault vmf = {
1517                 .vma = &pvma,
1518         };
1519
1520         shmem_pseudo_vma_init(&pvma, info, index);
1521         page = swap_cluster_readahead(swap, gfp, &vmf);
1522         shmem_pseudo_vma_destroy(&pvma);
1523
1524         return page;
1525 }
1526
1527 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1528                 struct shmem_inode_info *info, pgoff_t index)
1529 {
1530         struct vm_area_struct pvma;
1531         struct address_space *mapping = info->vfs_inode.i_mapping;
1532         pgoff_t hindex;
1533         struct page *page;
1534
1535         hindex = round_down(index, HPAGE_PMD_NR);
1536         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1537                                                                 XA_PRESENT))
1538                 return NULL;
1539
1540         shmem_pseudo_vma_init(&pvma, info, hindex);
1541         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1542                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1543         shmem_pseudo_vma_destroy(&pvma);
1544         if (page)
1545                 prep_transhuge_page(page);
1546         else
1547                 count_vm_event(THP_FILE_FALLBACK);
1548         return page;
1549 }
1550
1551 static struct page *shmem_alloc_page(gfp_t gfp,
1552                         struct shmem_inode_info *info, pgoff_t index)
1553 {
1554         struct vm_area_struct pvma;
1555         struct page *page;
1556
1557         shmem_pseudo_vma_init(&pvma, info, index);
1558         page = alloc_page_vma(gfp, &pvma, 0);
1559         shmem_pseudo_vma_destroy(&pvma);
1560
1561         return page;
1562 }
1563
1564 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1565                 struct inode *inode,
1566                 pgoff_t index, bool huge)
1567 {
1568         struct shmem_inode_info *info = SHMEM_I(inode);
1569         struct page *page;
1570         int nr;
1571         int err = -ENOSPC;
1572
1573         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1574                 huge = false;
1575         nr = huge ? HPAGE_PMD_NR : 1;
1576
1577         if (!shmem_inode_acct_block(inode, nr))
1578                 goto failed;
1579
1580         if (huge)
1581                 page = shmem_alloc_hugepage(gfp, info, index);
1582         else
1583                 page = shmem_alloc_page(gfp, info, index);
1584         if (page) {
1585                 __SetPageLocked(page);
1586                 __SetPageSwapBacked(page);
1587                 return page;
1588         }
1589
1590         err = -ENOMEM;
1591         shmem_inode_unacct_blocks(inode, nr);
1592 failed:
1593         return ERR_PTR(err);
1594 }
1595
1596 /*
1597  * When a page is moved from swapcache to shmem filecache (either by the
1598  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1599  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1600  * ignorance of the mapping it belongs to.  If that mapping has special
1601  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1602  * we may need to copy to a suitable page before moving to filecache.
1603  *
1604  * In a future release, this may well be extended to respect cpuset and
1605  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1606  * but for now it is a simple matter of zone.
1607  */
1608 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1609 {
1610         return page_zonenum(page) > gfp_zone(gfp);
1611 }
1612
1613 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1614                                 struct shmem_inode_info *info, pgoff_t index)
1615 {
1616         struct page *oldpage, *newpage;
1617         struct address_space *swap_mapping;
1618         swp_entry_t entry;
1619         pgoff_t swap_index;
1620         int error;
1621
1622         oldpage = *pagep;
1623         entry.val = page_private(oldpage);
1624         swap_index = swp_offset(entry);
1625         swap_mapping = page_mapping(oldpage);
1626
1627         /*
1628          * We have arrived here because our zones are constrained, so don't
1629          * limit chance of success by further cpuset and node constraints.
1630          */
1631         gfp &= ~GFP_CONSTRAINT_MASK;
1632         newpage = shmem_alloc_page(gfp, info, index);
1633         if (!newpage)
1634                 return -ENOMEM;
1635
1636         get_page(newpage);
1637         copy_highpage(newpage, oldpage);
1638         flush_dcache_page(newpage);
1639
1640         __SetPageLocked(newpage);
1641         __SetPageSwapBacked(newpage);
1642         SetPageUptodate(newpage);
1643         set_page_private(newpage, entry.val);
1644         SetPageSwapCache(newpage);
1645
1646         /*
1647          * Our caller will very soon move newpage out of swapcache, but it's
1648          * a nice clean interface for us to replace oldpage by newpage there.
1649          */
1650         xa_lock_irq(&swap_mapping->i_pages);
1651         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1652         if (!error) {
1653                 mem_cgroup_migrate(oldpage, newpage);
1654                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1655                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1656         }
1657         xa_unlock_irq(&swap_mapping->i_pages);
1658
1659         if (unlikely(error)) {
1660                 /*
1661                  * Is this possible?  I think not, now that our callers check
1662                  * both PageSwapCache and page_private after getting page lock;
1663                  * but be defensive.  Reverse old to newpage for clear and free.
1664                  */
1665                 oldpage = newpage;
1666         } else {
1667                 lru_cache_add(newpage);
1668                 *pagep = newpage;
1669         }
1670
1671         ClearPageSwapCache(oldpage);
1672         set_page_private(oldpage, 0);
1673
1674         unlock_page(oldpage);
1675         put_page(oldpage);
1676         put_page(oldpage);
1677         return error;
1678 }
1679
1680 /*
1681  * Swap in the page pointed to by *pagep.
1682  * Caller has to make sure that *pagep contains a valid swapped page.
1683  * Returns 0 and the page in pagep if success. On failure, returns the
1684  * error code and NULL in *pagep.
1685  */
1686 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1687                              struct page **pagep, enum sgp_type sgp,
1688                              gfp_t gfp, struct vm_area_struct *vma,
1689                              vm_fault_t *fault_type)
1690 {
1691         struct address_space *mapping = inode->i_mapping;
1692         struct shmem_inode_info *info = SHMEM_I(inode);
1693         struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1694         struct page *page;
1695         swp_entry_t swap;
1696         int error;
1697
1698         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1699         swap = radix_to_swp_entry(*pagep);
1700         *pagep = NULL;
1701
1702         /* Look it up and read it in.. */
1703         page = lookup_swap_cache(swap, NULL, 0);
1704         if (!page) {
1705                 /* Or update major stats only when swapin succeeds?? */
1706                 if (fault_type) {
1707                         *fault_type |= VM_FAULT_MAJOR;
1708                         count_vm_event(PGMAJFAULT);
1709                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1710                 }
1711                 /* Here we actually start the io */
1712                 page = shmem_swapin(swap, gfp, info, index);
1713                 if (!page) {
1714                         error = -ENOMEM;
1715                         goto failed;
1716                 }
1717         }
1718
1719         /* We have to do this with page locked to prevent races */
1720         lock_page(page);
1721         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1722             !shmem_confirm_swap(mapping, index, swap)) {
1723                 error = -EEXIST;
1724                 goto unlock;
1725         }
1726         if (!PageUptodate(page)) {
1727                 error = -EIO;
1728                 goto failed;
1729         }
1730         wait_on_page_writeback(page);
1731
1732         /*
1733          * Some architectures may have to restore extra metadata to the
1734          * physical page after reading from swap.
1735          */
1736         arch_swap_restore(swap, page);
1737
1738         if (shmem_should_replace_page(page, gfp)) {
1739                 error = shmem_replace_page(&page, gfp, info, index);
1740                 if (error)
1741                         goto failed;
1742         }
1743
1744         error = shmem_add_to_page_cache(page, mapping, index,
1745                                         swp_to_radix_entry(swap), gfp,
1746                                         charge_mm);
1747         if (error)
1748                 goto failed;
1749
1750         spin_lock_irq(&info->lock);
1751         info->swapped--;
1752         shmem_recalc_inode(inode);
1753         spin_unlock_irq(&info->lock);
1754
1755         if (sgp == SGP_WRITE)
1756                 mark_page_accessed(page);
1757
1758         delete_from_swap_cache(page);
1759         set_page_dirty(page);
1760         swap_free(swap);
1761
1762         *pagep = page;
1763         return 0;
1764 failed:
1765         if (!shmem_confirm_swap(mapping, index, swap))
1766                 error = -EEXIST;
1767 unlock:
1768         if (page) {
1769                 unlock_page(page);
1770                 put_page(page);
1771         }
1772
1773         return error;
1774 }
1775
1776 /*
1777  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1778  *
1779  * If we allocate a new one we do not mark it dirty. That's up to the
1780  * vm. If we swap it in we mark it dirty since we also free the swap
1781  * entry since a page cannot live in both the swap and page cache.
1782  *
1783  * vmf and fault_type are only supplied by shmem_fault:
1784  * otherwise they are NULL.
1785  */
1786 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1787         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1788         struct vm_area_struct *vma, struct vm_fault *vmf,
1789                         vm_fault_t *fault_type)
1790 {
1791         struct address_space *mapping = inode->i_mapping;
1792         struct shmem_inode_info *info = SHMEM_I(inode);
1793         struct shmem_sb_info *sbinfo;
1794         struct mm_struct *charge_mm;
1795         struct page *page;
1796         enum sgp_type sgp_huge = sgp;
1797         pgoff_t hindex = index;
1798         int error;
1799         int once = 0;
1800         int alloced = 0;
1801
1802         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1803                 return -EFBIG;
1804         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1805                 sgp = SGP_CACHE;
1806 repeat:
1807         if (sgp <= SGP_CACHE &&
1808             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1809                 return -EINVAL;
1810         }
1811
1812         sbinfo = SHMEM_SB(inode->i_sb);
1813         charge_mm = vma ? vma->vm_mm : current->mm;
1814
1815         page = find_lock_entry(mapping, index);
1816         if (xa_is_value(page)) {
1817                 error = shmem_swapin_page(inode, index, &page,
1818                                           sgp, gfp, vma, fault_type);
1819                 if (error == -EEXIST)
1820                         goto repeat;
1821
1822                 *pagep = page;
1823                 return error;
1824         }
1825
1826         if (page)
1827                 hindex = page->index;
1828         if (page && sgp == SGP_WRITE)
1829                 mark_page_accessed(page);
1830
1831         /* fallocated page? */
1832         if (page && !PageUptodate(page)) {
1833                 if (sgp != SGP_READ)
1834                         goto clear;
1835                 unlock_page(page);
1836                 put_page(page);
1837                 page = NULL;
1838                 hindex = index;
1839         }
1840         if (page || sgp == SGP_READ)
1841                 goto out;
1842
1843         /*
1844          * Fast cache lookup did not find it:
1845          * bring it back from swap or allocate.
1846          */
1847
1848         if (vma && userfaultfd_missing(vma)) {
1849                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1850                 return 0;
1851         }
1852
1853         /* shmem_symlink() */
1854         if (!shmem_mapping(mapping))
1855                 goto alloc_nohuge;
1856         if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1857                 goto alloc_nohuge;
1858         if (shmem_huge == SHMEM_HUGE_FORCE)
1859                 goto alloc_huge;
1860         switch (sbinfo->huge) {
1861         case SHMEM_HUGE_NEVER:
1862                 goto alloc_nohuge;
1863         case SHMEM_HUGE_WITHIN_SIZE: {
1864                 loff_t i_size;
1865                 pgoff_t off;
1866
1867                 off = round_up(index, HPAGE_PMD_NR);
1868                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1869                 if (i_size >= HPAGE_PMD_SIZE &&
1870                     i_size >> PAGE_SHIFT >= off)
1871                         goto alloc_huge;
1872
1873                 fallthrough;
1874         }
1875         case SHMEM_HUGE_ADVISE:
1876                 if (sgp_huge == SGP_HUGE)
1877                         goto alloc_huge;
1878                 /* TODO: implement fadvise() hints */
1879                 goto alloc_nohuge;
1880         }
1881
1882 alloc_huge:
1883         page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1884         if (IS_ERR(page)) {
1885 alloc_nohuge:
1886                 page = shmem_alloc_and_acct_page(gfp, inode,
1887                                                  index, false);
1888         }
1889         if (IS_ERR(page)) {
1890                 int retry = 5;
1891
1892                 error = PTR_ERR(page);
1893                 page = NULL;
1894                 if (error != -ENOSPC)
1895                         goto unlock;
1896                 /*
1897                  * Try to reclaim some space by splitting a huge page
1898                  * beyond i_size on the filesystem.
1899                  */
1900                 while (retry--) {
1901                         int ret;
1902
1903                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1904                         if (ret == SHRINK_STOP)
1905                                 break;
1906                         if (ret)
1907                                 goto alloc_nohuge;
1908                 }
1909                 goto unlock;
1910         }
1911
1912         if (PageTransHuge(page))
1913                 hindex = round_down(index, HPAGE_PMD_NR);
1914         else
1915                 hindex = index;
1916
1917         if (sgp == SGP_WRITE)
1918                 __SetPageReferenced(page);
1919
1920         error = shmem_add_to_page_cache(page, mapping, hindex,
1921                                         NULL, gfp & GFP_RECLAIM_MASK,
1922                                         charge_mm);
1923         if (error)
1924                 goto unacct;
1925         lru_cache_add(page);
1926
1927         spin_lock_irq(&info->lock);
1928         info->alloced += compound_nr(page);
1929         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1930         shmem_recalc_inode(inode);
1931         spin_unlock_irq(&info->lock);
1932         alloced = true;
1933
1934         if (PageTransHuge(page) &&
1935             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1936                         hindex + HPAGE_PMD_NR - 1) {
1937                 /*
1938                  * Part of the huge page is beyond i_size: subject
1939                  * to shrink under memory pressure.
1940                  */
1941                 spin_lock(&sbinfo->shrinklist_lock);
1942                 /*
1943                  * _careful to defend against unlocked access to
1944                  * ->shrink_list in shmem_unused_huge_shrink()
1945                  */
1946                 if (list_empty_careful(&info->shrinklist)) {
1947                         list_add_tail(&info->shrinklist,
1948                                       &sbinfo->shrinklist);
1949                         sbinfo->shrinklist_len++;
1950                 }
1951                 spin_unlock(&sbinfo->shrinklist_lock);
1952         }
1953
1954         /*
1955          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1956          */
1957         if (sgp == SGP_FALLOC)
1958                 sgp = SGP_WRITE;
1959 clear:
1960         /*
1961          * Let SGP_WRITE caller clear ends if write does not fill page;
1962          * but SGP_FALLOC on a page fallocated earlier must initialize
1963          * it now, lest undo on failure cancel our earlier guarantee.
1964          */
1965         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1966                 int i;
1967
1968                 for (i = 0; i < compound_nr(page); i++) {
1969                         clear_highpage(page + i);
1970                         flush_dcache_page(page + i);
1971                 }
1972                 SetPageUptodate(page);
1973         }
1974
1975         /* Perhaps the file has been truncated since we checked */
1976         if (sgp <= SGP_CACHE &&
1977             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1978                 if (alloced) {
1979                         ClearPageDirty(page);
1980                         delete_from_page_cache(page);
1981                         spin_lock_irq(&info->lock);
1982                         shmem_recalc_inode(inode);
1983                         spin_unlock_irq(&info->lock);
1984                 }
1985                 error = -EINVAL;
1986                 goto unlock;
1987         }
1988 out:
1989         *pagep = page + index - hindex;
1990         return 0;
1991
1992         /*
1993          * Error recovery.
1994          */
1995 unacct:
1996         shmem_inode_unacct_blocks(inode, compound_nr(page));
1997
1998         if (PageTransHuge(page)) {
1999                 unlock_page(page);
2000                 put_page(page);
2001                 goto alloc_nohuge;
2002         }
2003 unlock:
2004         if (page) {
2005                 unlock_page(page);
2006                 put_page(page);
2007         }
2008         if (error == -ENOSPC && !once++) {
2009                 spin_lock_irq(&info->lock);
2010                 shmem_recalc_inode(inode);
2011                 spin_unlock_irq(&info->lock);
2012                 goto repeat;
2013         }
2014         if (error == -EEXIST)
2015                 goto repeat;
2016         return error;
2017 }
2018
2019 /*
2020  * This is like autoremove_wake_function, but it removes the wait queue
2021  * entry unconditionally - even if something else had already woken the
2022  * target.
2023  */
2024 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2025 {
2026         int ret = default_wake_function(wait, mode, sync, key);
2027         list_del_init(&wait->entry);
2028         return ret;
2029 }
2030
2031 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2032 {
2033         struct vm_area_struct *vma = vmf->vma;
2034         struct inode *inode = file_inode(vma->vm_file);
2035         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2036         enum sgp_type sgp;
2037         int err;
2038         vm_fault_t ret = VM_FAULT_LOCKED;
2039
2040         /*
2041          * Trinity finds that probing a hole which tmpfs is punching can
2042          * prevent the hole-punch from ever completing: which in turn
2043          * locks writers out with its hold on i_mutex.  So refrain from
2044          * faulting pages into the hole while it's being punched.  Although
2045          * shmem_undo_range() does remove the additions, it may be unable to
2046          * keep up, as each new page needs its own unmap_mapping_range() call,
2047          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2048          *
2049          * It does not matter if we sometimes reach this check just before the
2050          * hole-punch begins, so that one fault then races with the punch:
2051          * we just need to make racing faults a rare case.
2052          *
2053          * The implementation below would be much simpler if we just used a
2054          * standard mutex or completion: but we cannot take i_mutex in fault,
2055          * and bloating every shmem inode for this unlikely case would be sad.
2056          */
2057         if (unlikely(inode->i_private)) {
2058                 struct shmem_falloc *shmem_falloc;
2059
2060                 spin_lock(&inode->i_lock);
2061                 shmem_falloc = inode->i_private;
2062                 if (shmem_falloc &&
2063                     shmem_falloc->waitq &&
2064                     vmf->pgoff >= shmem_falloc->start &&
2065                     vmf->pgoff < shmem_falloc->next) {
2066                         struct file *fpin;
2067                         wait_queue_head_t *shmem_falloc_waitq;
2068                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2069
2070                         ret = VM_FAULT_NOPAGE;
2071                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2072                         if (fpin)
2073                                 ret = VM_FAULT_RETRY;
2074
2075                         shmem_falloc_waitq = shmem_falloc->waitq;
2076                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2077                                         TASK_UNINTERRUPTIBLE);
2078                         spin_unlock(&inode->i_lock);
2079                         schedule();
2080
2081                         /*
2082                          * shmem_falloc_waitq points into the shmem_fallocate()
2083                          * stack of the hole-punching task: shmem_falloc_waitq
2084                          * is usually invalid by the time we reach here, but
2085                          * finish_wait() does not dereference it in that case;
2086                          * though i_lock needed lest racing with wake_up_all().
2087                          */
2088                         spin_lock(&inode->i_lock);
2089                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2090                         spin_unlock(&inode->i_lock);
2091
2092                         if (fpin)
2093                                 fput(fpin);
2094                         return ret;
2095                 }
2096                 spin_unlock(&inode->i_lock);
2097         }
2098
2099         sgp = SGP_CACHE;
2100
2101         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2102             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2103                 sgp = SGP_NOHUGE;
2104         else if (vma->vm_flags & VM_HUGEPAGE)
2105                 sgp = SGP_HUGE;
2106
2107         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2108                                   gfp, vma, vmf, &ret);
2109         if (err)
2110                 return vmf_error(err);
2111         return ret;
2112 }
2113
2114 unsigned long shmem_get_unmapped_area(struct file *file,
2115                                       unsigned long uaddr, unsigned long len,
2116                                       unsigned long pgoff, unsigned long flags)
2117 {
2118         unsigned long (*get_area)(struct file *,
2119                 unsigned long, unsigned long, unsigned long, unsigned long);
2120         unsigned long addr;
2121         unsigned long offset;
2122         unsigned long inflated_len;
2123         unsigned long inflated_addr;
2124         unsigned long inflated_offset;
2125
2126         if (len > TASK_SIZE)
2127                 return -ENOMEM;
2128
2129         get_area = current->mm->get_unmapped_area;
2130         addr = get_area(file, uaddr, len, pgoff, flags);
2131
2132         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2133                 return addr;
2134         if (IS_ERR_VALUE(addr))
2135                 return addr;
2136         if (addr & ~PAGE_MASK)
2137                 return addr;
2138         if (addr > TASK_SIZE - len)
2139                 return addr;
2140
2141         if (shmem_huge == SHMEM_HUGE_DENY)
2142                 return addr;
2143         if (len < HPAGE_PMD_SIZE)
2144                 return addr;
2145         if (flags & MAP_FIXED)
2146                 return addr;
2147         /*
2148          * Our priority is to support MAP_SHARED mapped hugely;
2149          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2150          * But if caller specified an address hint and we allocated area there
2151          * successfully, respect that as before.
2152          */
2153         if (uaddr == addr)
2154                 return addr;
2155
2156         if (shmem_huge != SHMEM_HUGE_FORCE) {
2157                 struct super_block *sb;
2158
2159                 if (file) {
2160                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2161                         sb = file_inode(file)->i_sb;
2162                 } else {
2163                         /*
2164                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2165                          * for "/dev/zero", to create a shared anonymous object.
2166                          */
2167                         if (IS_ERR(shm_mnt))
2168                                 return addr;
2169                         sb = shm_mnt->mnt_sb;
2170                 }
2171                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2172                         return addr;
2173         }
2174
2175         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2176         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2177                 return addr;
2178         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2179                 return addr;
2180
2181         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2182         if (inflated_len > TASK_SIZE)
2183                 return addr;
2184         if (inflated_len < len)
2185                 return addr;
2186
2187         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2188         if (IS_ERR_VALUE(inflated_addr))
2189                 return addr;
2190         if (inflated_addr & ~PAGE_MASK)
2191                 return addr;
2192
2193         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2194         inflated_addr += offset - inflated_offset;
2195         if (inflated_offset > offset)
2196                 inflated_addr += HPAGE_PMD_SIZE;
2197
2198         if (inflated_addr > TASK_SIZE - len)
2199                 return addr;
2200         return inflated_addr;
2201 }
2202
2203 #ifdef CONFIG_NUMA
2204 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2205 {
2206         struct inode *inode = file_inode(vma->vm_file);
2207         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2208 }
2209
2210 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2211                                           unsigned long addr)
2212 {
2213         struct inode *inode = file_inode(vma->vm_file);
2214         pgoff_t index;
2215
2216         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2217         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2218 }
2219 #endif
2220
2221 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2222 {
2223         struct inode *inode = file_inode(file);
2224         struct shmem_inode_info *info = SHMEM_I(inode);
2225         int retval = -ENOMEM;
2226
2227         /*
2228          * What serializes the accesses to info->flags?
2229          * ipc_lock_object() when called from shmctl_do_lock(),
2230          * no serialization needed when called from shm_destroy().
2231          */
2232         if (lock && !(info->flags & VM_LOCKED)) {
2233                 if (!user_shm_lock(inode->i_size, user))
2234                         goto out_nomem;
2235                 info->flags |= VM_LOCKED;
2236                 mapping_set_unevictable(file->f_mapping);
2237         }
2238         if (!lock && (info->flags & VM_LOCKED) && user) {
2239                 user_shm_unlock(inode->i_size, user);
2240                 info->flags &= ~VM_LOCKED;
2241                 mapping_clear_unevictable(file->f_mapping);
2242         }
2243         retval = 0;
2244
2245 out_nomem:
2246         return retval;
2247 }
2248
2249 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2250 {
2251         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2252
2253         if (info->seals & F_SEAL_FUTURE_WRITE) {
2254                 /*
2255                  * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2256                  * "future write" seal active.
2257                  */
2258                 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2259                         return -EPERM;
2260
2261                 /*
2262                  * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2263                  * MAP_SHARED and read-only, take care to not allow mprotect to
2264                  * revert protections on such mappings. Do this only for shared
2265                  * mappings. For private mappings, don't need to mask
2266                  * VM_MAYWRITE as we still want them to be COW-writable.
2267                  */
2268                 if (vma->vm_flags & VM_SHARED)
2269                         vma->vm_flags &= ~(VM_MAYWRITE);
2270         }
2271
2272         /* arm64 - allow memory tagging on RAM-based files */
2273         vma->vm_flags |= VM_MTE_ALLOWED;
2274
2275         file_accessed(file);
2276         vma->vm_ops = &shmem_vm_ops;
2277         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2278                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2279                         (vma->vm_end & HPAGE_PMD_MASK)) {
2280                 khugepaged_enter(vma, vma->vm_flags);
2281         }
2282         return 0;
2283 }
2284
2285 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2286                                      umode_t mode, dev_t dev, unsigned long flags)
2287 {
2288         struct inode *inode;
2289         struct shmem_inode_info *info;
2290         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2291         ino_t ino;
2292
2293         if (shmem_reserve_inode(sb, &ino))
2294                 return NULL;
2295
2296         inode = new_inode(sb);
2297         if (inode) {
2298                 inode->i_ino = ino;
2299                 inode_init_owner(&init_user_ns, inode, dir, mode);
2300                 inode->i_blocks = 0;
2301                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2302                 inode->i_generation = prandom_u32();
2303                 info = SHMEM_I(inode);
2304                 memset(info, 0, (char *)inode - (char *)info);
2305                 spin_lock_init(&info->lock);
2306                 atomic_set(&info->stop_eviction, 0);
2307                 info->seals = F_SEAL_SEAL;
2308                 info->flags = flags & VM_NORESERVE;
2309                 INIT_LIST_HEAD(&info->shrinklist);
2310                 INIT_LIST_HEAD(&info->swaplist);
2311                 simple_xattrs_init(&info->xattrs);
2312                 cache_no_acl(inode);
2313
2314                 switch (mode & S_IFMT) {
2315                 default:
2316                         inode->i_op = &shmem_special_inode_operations;
2317                         init_special_inode(inode, mode, dev);
2318                         break;
2319                 case S_IFREG:
2320                         inode->i_mapping->a_ops = &shmem_aops;
2321                         inode->i_op = &shmem_inode_operations;
2322                         inode->i_fop = &shmem_file_operations;
2323                         mpol_shared_policy_init(&info->policy,
2324                                                  shmem_get_sbmpol(sbinfo));
2325                         break;
2326                 case S_IFDIR:
2327                         inc_nlink(inode);
2328                         /* Some things misbehave if size == 0 on a directory */
2329                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2330                         inode->i_op = &shmem_dir_inode_operations;
2331                         inode->i_fop = &simple_dir_operations;
2332                         break;
2333                 case S_IFLNK:
2334                         /*
2335                          * Must not load anything in the rbtree,
2336                          * mpol_free_shared_policy will not be called.
2337                          */
2338                         mpol_shared_policy_init(&info->policy, NULL);
2339                         break;
2340                 }
2341
2342                 lockdep_annotate_inode_mutex_key(inode);
2343         } else
2344                 shmem_free_inode(sb);
2345         return inode;
2346 }
2347
2348 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2349                                   pmd_t *dst_pmd,
2350                                   struct vm_area_struct *dst_vma,
2351                                   unsigned long dst_addr,
2352                                   unsigned long src_addr,
2353                                   bool zeropage,
2354                                   struct page **pagep)
2355 {
2356         struct inode *inode = file_inode(dst_vma->vm_file);
2357         struct shmem_inode_info *info = SHMEM_I(inode);
2358         struct address_space *mapping = inode->i_mapping;
2359         gfp_t gfp = mapping_gfp_mask(mapping);
2360         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2361         spinlock_t *ptl;
2362         void *page_kaddr;
2363         struct page *page;
2364         pte_t _dst_pte, *dst_pte;
2365         int ret;
2366         pgoff_t offset, max_off;
2367
2368         ret = -ENOMEM;
2369         if (!shmem_inode_acct_block(inode, 1))
2370                 goto out;
2371
2372         if (!*pagep) {
2373                 page = shmem_alloc_page(gfp, info, pgoff);
2374                 if (!page)
2375                         goto out_unacct_blocks;
2376
2377                 if (!zeropage) {        /* mcopy_atomic */
2378                         page_kaddr = kmap_atomic(page);
2379                         ret = copy_from_user(page_kaddr,
2380                                              (const void __user *)src_addr,
2381                                              PAGE_SIZE);
2382                         kunmap_atomic(page_kaddr);
2383
2384                         /* fallback to copy_from_user outside mmap_lock */
2385                         if (unlikely(ret)) {
2386                                 *pagep = page;
2387                                 shmem_inode_unacct_blocks(inode, 1);
2388                                 /* don't free the page */
2389                                 return -ENOENT;
2390                         }
2391                 } else {                /* mfill_zeropage_atomic */
2392                         clear_highpage(page);
2393                 }
2394         } else {
2395                 page = *pagep;
2396                 *pagep = NULL;
2397         }
2398
2399         VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2400         __SetPageLocked(page);
2401         __SetPageSwapBacked(page);
2402         __SetPageUptodate(page);
2403
2404         ret = -EFAULT;
2405         offset = linear_page_index(dst_vma, dst_addr);
2406         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2407         if (unlikely(offset >= max_off))
2408                 goto out_release;
2409
2410         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2411                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2412         if (ret)
2413                 goto out_release;
2414
2415         _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2416         if (dst_vma->vm_flags & VM_WRITE)
2417                 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2418         else {
2419                 /*
2420                  * We don't set the pte dirty if the vma has no
2421                  * VM_WRITE permission, so mark the page dirty or it
2422                  * could be freed from under us. We could do it
2423                  * unconditionally before unlock_page(), but doing it
2424                  * only if VM_WRITE is not set is faster.
2425                  */
2426                 set_page_dirty(page);
2427         }
2428
2429         dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2430
2431         ret = -EFAULT;
2432         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2433         if (unlikely(offset >= max_off))
2434                 goto out_release_unlock;
2435
2436         ret = -EEXIST;
2437         if (!pte_none(*dst_pte))
2438                 goto out_release_unlock;
2439
2440         lru_cache_add(page);
2441
2442         spin_lock_irq(&info->lock);
2443         info->alloced++;
2444         inode->i_blocks += BLOCKS_PER_PAGE;
2445         shmem_recalc_inode(inode);
2446         spin_unlock_irq(&info->lock);
2447
2448         inc_mm_counter(dst_mm, mm_counter_file(page));
2449         page_add_file_rmap(page, false);
2450         set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2451
2452         /* No need to invalidate - it was non-present before */
2453         update_mmu_cache(dst_vma, dst_addr, dst_pte);
2454         pte_unmap_unlock(dst_pte, ptl);
2455         unlock_page(page);
2456         ret = 0;
2457 out:
2458         return ret;
2459 out_release_unlock:
2460         pte_unmap_unlock(dst_pte, ptl);
2461         ClearPageDirty(page);
2462         delete_from_page_cache(page);
2463 out_release:
2464         unlock_page(page);
2465         put_page(page);
2466 out_unacct_blocks:
2467         shmem_inode_unacct_blocks(inode, 1);
2468         goto out;
2469 }
2470
2471 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2472                            pmd_t *dst_pmd,
2473                            struct vm_area_struct *dst_vma,
2474                            unsigned long dst_addr,
2475                            unsigned long src_addr,
2476                            struct page **pagep)
2477 {
2478         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2479                                       dst_addr, src_addr, false, pagep);
2480 }
2481
2482 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2483                              pmd_t *dst_pmd,
2484                              struct vm_area_struct *dst_vma,
2485                              unsigned long dst_addr)
2486 {
2487         struct page *page = NULL;
2488
2489         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2490                                       dst_addr, 0, true, &page);
2491 }
2492
2493 #ifdef CONFIG_TMPFS
2494 static const struct inode_operations shmem_symlink_inode_operations;
2495 static const struct inode_operations shmem_short_symlink_operations;
2496
2497 #ifdef CONFIG_TMPFS_XATTR
2498 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2499 #else
2500 #define shmem_initxattrs NULL
2501 #endif
2502
2503 static int
2504 shmem_write_begin(struct file *file, struct address_space *mapping,
2505                         loff_t pos, unsigned len, unsigned flags,
2506                         struct page **pagep, void **fsdata)
2507 {
2508         struct inode *inode = mapping->host;
2509         struct shmem_inode_info *info = SHMEM_I(inode);
2510         pgoff_t index = pos >> PAGE_SHIFT;
2511
2512         /* i_mutex is held by caller */
2513         if (unlikely(info->seals & (F_SEAL_GROW |
2514                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2515                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2516                         return -EPERM;
2517                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2518                         return -EPERM;
2519         }
2520
2521         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2522 }
2523
2524 static int
2525 shmem_write_end(struct file *file, struct address_space *mapping,
2526                         loff_t pos, unsigned len, unsigned copied,
2527                         struct page *page, void *fsdata)
2528 {
2529         struct inode *inode = mapping->host;
2530
2531         if (pos + copied > inode->i_size)
2532                 i_size_write(inode, pos + copied);
2533
2534         if (!PageUptodate(page)) {
2535                 struct page *head = compound_head(page);
2536                 if (PageTransCompound(page)) {
2537                         int i;
2538
2539                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2540                                 if (head + i == page)
2541                                         continue;
2542                                 clear_highpage(head + i);
2543                                 flush_dcache_page(head + i);
2544                         }
2545                 }
2546                 if (copied < PAGE_SIZE) {
2547                         unsigned from = pos & (PAGE_SIZE - 1);
2548                         zero_user_segments(page, 0, from,
2549                                         from + copied, PAGE_SIZE);
2550                 }
2551                 SetPageUptodate(head);
2552         }
2553         set_page_dirty(page);
2554         unlock_page(page);
2555         put_page(page);
2556
2557         return copied;
2558 }
2559
2560 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2561 {
2562         struct file *file = iocb->ki_filp;
2563         struct inode *inode = file_inode(file);
2564         struct address_space *mapping = inode->i_mapping;
2565         pgoff_t index;
2566         unsigned long offset;
2567         enum sgp_type sgp = SGP_READ;
2568         int error = 0;
2569         ssize_t retval = 0;
2570         loff_t *ppos = &iocb->ki_pos;
2571
2572         /*
2573          * Might this read be for a stacking filesystem?  Then when reading
2574          * holes of a sparse file, we actually need to allocate those pages,
2575          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2576          */
2577         if (!iter_is_iovec(to))
2578                 sgp = SGP_CACHE;
2579
2580         index = *ppos >> PAGE_SHIFT;
2581         offset = *ppos & ~PAGE_MASK;
2582
2583         for (;;) {
2584                 struct page *page = NULL;
2585                 pgoff_t end_index;
2586                 unsigned long nr, ret;
2587                 loff_t i_size = i_size_read(inode);
2588
2589                 end_index = i_size >> PAGE_SHIFT;
2590                 if (index > end_index)
2591                         break;
2592                 if (index == end_index) {
2593                         nr = i_size & ~PAGE_MASK;
2594                         if (nr <= offset)
2595                                 break;
2596                 }
2597
2598                 error = shmem_getpage(inode, index, &page, sgp);
2599                 if (error) {
2600                         if (error == -EINVAL)
2601                                 error = 0;
2602                         break;
2603                 }
2604                 if (page) {
2605                         if (sgp == SGP_CACHE)
2606                                 set_page_dirty(page);
2607                         unlock_page(page);
2608                 }
2609
2610                 /*
2611                  * We must evaluate after, since reads (unlike writes)
2612                  * are called without i_mutex protection against truncate
2613                  */
2614                 nr = PAGE_SIZE;
2615                 i_size = i_size_read(inode);
2616                 end_index = i_size >> PAGE_SHIFT;
2617                 if (index == end_index) {
2618                         nr = i_size & ~PAGE_MASK;
2619                         if (nr <= offset) {
2620                                 if (page)
2621                                         put_page(page);
2622                                 break;
2623                         }
2624                 }
2625                 nr -= offset;
2626
2627                 if (page) {
2628                         /*
2629                          * If users can be writing to this page using arbitrary
2630                          * virtual addresses, take care about potential aliasing
2631                          * before reading the page on the kernel side.
2632                          */
2633                         if (mapping_writably_mapped(mapping))
2634                                 flush_dcache_page(page);
2635                         /*
2636                          * Mark the page accessed if we read the beginning.
2637                          */
2638                         if (!offset)
2639                                 mark_page_accessed(page);
2640                 } else {
2641                         page = ZERO_PAGE(0);
2642                         get_page(page);
2643                 }
2644
2645                 /*
2646                  * Ok, we have the page, and it's up-to-date, so
2647                  * now we can copy it to user space...
2648                  */
2649                 ret = copy_page_to_iter(page, offset, nr, to);
2650                 retval += ret;
2651                 offset += ret;
2652                 index += offset >> PAGE_SHIFT;
2653                 offset &= ~PAGE_MASK;
2654
2655                 put_page(page);
2656                 if (!iov_iter_count(to))
2657                         break;
2658                 if (ret < nr) {
2659                         error = -EFAULT;
2660                         break;
2661                 }
2662                 cond_resched();
2663         }
2664
2665         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2666         file_accessed(file);
2667         return retval ? retval : error;
2668 }
2669
2670 /*
2671  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2672  */
2673 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2674                                     pgoff_t index, pgoff_t end, int whence)
2675 {
2676         struct page *page;
2677         struct pagevec pvec;
2678         pgoff_t indices[PAGEVEC_SIZE];
2679         bool done = false;
2680         int i;
2681
2682         pagevec_init(&pvec);
2683         pvec.nr = 1;            /* start small: we may be there already */
2684         while (!done) {
2685                 pvec.nr = find_get_entries(mapping, index,
2686                                         pvec.nr, pvec.pages, indices);
2687                 if (!pvec.nr) {
2688                         if (whence == SEEK_DATA)
2689                                 index = end;
2690                         break;
2691                 }
2692                 for (i = 0; i < pvec.nr; i++, index++) {
2693                         if (index < indices[i]) {
2694                                 if (whence == SEEK_HOLE) {
2695                                         done = true;
2696                                         break;
2697                                 }
2698                                 index = indices[i];
2699                         }
2700                         page = pvec.pages[i];
2701                         if (page && !xa_is_value(page)) {
2702                                 if (!PageUptodate(page))
2703                                         page = NULL;
2704                         }
2705                         if (index >= end ||
2706                             (page && whence == SEEK_DATA) ||
2707                             (!page && whence == SEEK_HOLE)) {
2708                                 done = true;
2709                                 break;
2710                         }
2711                 }
2712                 pagevec_remove_exceptionals(&pvec);
2713                 pagevec_release(&pvec);
2714                 pvec.nr = PAGEVEC_SIZE;
2715                 cond_resched();
2716         }
2717         return index;
2718 }
2719
2720 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2721 {
2722         struct address_space *mapping = file->f_mapping;
2723         struct inode *inode = mapping->host;
2724         pgoff_t start, end;
2725         loff_t new_offset;
2726
2727         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2728                 return generic_file_llseek_size(file, offset, whence,
2729                                         MAX_LFS_FILESIZE, i_size_read(inode));
2730         inode_lock(inode);
2731         /* We're holding i_mutex so we can access i_size directly */
2732
2733         if (offset < 0 || offset >= inode->i_size)
2734                 offset = -ENXIO;
2735         else {
2736                 start = offset >> PAGE_SHIFT;
2737                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2738                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2739                 new_offset <<= PAGE_SHIFT;
2740                 if (new_offset > offset) {
2741                         if (new_offset < inode->i_size)
2742                                 offset = new_offset;
2743                         else if (whence == SEEK_DATA)
2744                                 offset = -ENXIO;
2745                         else
2746                                 offset = inode->i_size;
2747                 }
2748         }
2749
2750         if (offset >= 0)
2751                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2752         inode_unlock(inode);
2753         return offset;
2754 }
2755
2756 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2757                                                          loff_t len)
2758 {
2759         struct inode *inode = file_inode(file);
2760         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2761         struct shmem_inode_info *info = SHMEM_I(inode);
2762         struct shmem_falloc shmem_falloc;
2763         pgoff_t start, index, end;
2764         int error;
2765
2766         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2767                 return -EOPNOTSUPP;
2768
2769         inode_lock(inode);
2770
2771         if (mode & FALLOC_FL_PUNCH_HOLE) {
2772                 struct address_space *mapping = file->f_mapping;
2773                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2774                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2775                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2776
2777                 /* protected by i_mutex */
2778                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2779                         error = -EPERM;
2780                         goto out;
2781                 }
2782
2783                 shmem_falloc.waitq = &shmem_falloc_waitq;
2784                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2785                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2786                 spin_lock(&inode->i_lock);
2787                 inode->i_private = &shmem_falloc;
2788                 spin_unlock(&inode->i_lock);
2789
2790                 if ((u64)unmap_end > (u64)unmap_start)
2791                         unmap_mapping_range(mapping, unmap_start,
2792                                             1 + unmap_end - unmap_start, 0);
2793                 shmem_truncate_range(inode, offset, offset + len - 1);
2794                 /* No need to unmap again: hole-punching leaves COWed pages */
2795
2796                 spin_lock(&inode->i_lock);
2797                 inode->i_private = NULL;
2798                 wake_up_all(&shmem_falloc_waitq);
2799                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2800                 spin_unlock(&inode->i_lock);
2801                 error = 0;
2802                 goto out;
2803         }
2804
2805         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2806         error = inode_newsize_ok(inode, offset + len);
2807         if (error)
2808                 goto out;
2809
2810         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2811                 error = -EPERM;
2812                 goto out;
2813         }
2814
2815         start = offset >> PAGE_SHIFT;
2816         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2817         /* Try to avoid a swapstorm if len is impossible to satisfy */
2818         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2819                 error = -ENOSPC;
2820                 goto out;
2821         }
2822
2823         shmem_falloc.waitq = NULL;
2824         shmem_falloc.start = start;
2825         shmem_falloc.next  = start;
2826         shmem_falloc.nr_falloced = 0;
2827         shmem_falloc.nr_unswapped = 0;
2828         spin_lock(&inode->i_lock);
2829         inode->i_private = &shmem_falloc;
2830         spin_unlock(&inode->i_lock);
2831
2832         for (index = start; index < end; index++) {
2833                 struct page *page;
2834
2835                 /*
2836                  * Good, the fallocate(2) manpage permits EINTR: we may have
2837                  * been interrupted because we are using up too much memory.
2838                  */
2839                 if (signal_pending(current))
2840                         error = -EINTR;
2841                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2842                         error = -ENOMEM;
2843                 else
2844                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2845                 if (error) {
2846                         /* Remove the !PageUptodate pages we added */
2847                         if (index > start) {
2848                                 shmem_undo_range(inode,
2849                                     (loff_t)start << PAGE_SHIFT,
2850                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2851                         }
2852                         goto undone;
2853                 }
2854
2855                 /*
2856                  * Inform shmem_writepage() how far we have reached.
2857                  * No need for lock or barrier: we have the page lock.
2858                  */
2859                 shmem_falloc.next++;
2860                 if (!PageUptodate(page))
2861                         shmem_falloc.nr_falloced++;
2862
2863                 /*
2864                  * If !PageUptodate, leave it that way so that freeable pages
2865                  * can be recognized if we need to rollback on error later.
2866                  * But set_page_dirty so that memory pressure will swap rather
2867                  * than free the pages we are allocating (and SGP_CACHE pages
2868                  * might still be clean: we now need to mark those dirty too).
2869                  */
2870                 set_page_dirty(page);
2871                 unlock_page(page);
2872                 put_page(page);
2873                 cond_resched();
2874         }
2875
2876         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2877                 i_size_write(inode, offset + len);
2878         inode->i_ctime = current_time(inode);
2879 undone:
2880         spin_lock(&inode->i_lock);
2881         inode->i_private = NULL;
2882         spin_unlock(&inode->i_lock);
2883 out:
2884         inode_unlock(inode);
2885         return error;
2886 }
2887
2888 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2889 {
2890         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2891
2892         buf->f_type = TMPFS_MAGIC;
2893         buf->f_bsize = PAGE_SIZE;
2894         buf->f_namelen = NAME_MAX;
2895         if (sbinfo->max_blocks) {
2896                 buf->f_blocks = sbinfo->max_blocks;
2897                 buf->f_bavail =
2898                 buf->f_bfree  = sbinfo->max_blocks -
2899                                 percpu_counter_sum(&sbinfo->used_blocks);
2900         }
2901         if (sbinfo->max_inodes) {
2902                 buf->f_files = sbinfo->max_inodes;
2903                 buf->f_ffree = sbinfo->free_inodes;
2904         }
2905         /* else leave those fields 0 like simple_statfs */
2906         return 0;
2907 }
2908
2909 /*
2910  * File creation. Allocate an inode, and we're done..
2911  */
2912 static int
2913 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2914             struct dentry *dentry, umode_t mode, dev_t dev)
2915 {
2916         struct inode *inode;
2917         int error = -ENOSPC;
2918
2919         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2920         if (inode) {
2921                 error = simple_acl_create(dir, inode);
2922                 if (error)
2923                         goto out_iput;
2924                 error = security_inode_init_security(inode, dir,
2925                                                      &dentry->d_name,
2926                                                      shmem_initxattrs, NULL);
2927                 if (error && error != -EOPNOTSUPP)
2928                         goto out_iput;
2929
2930                 error = 0;
2931                 dir->i_size += BOGO_DIRENT_SIZE;
2932                 dir->i_ctime = dir->i_mtime = current_time(dir);
2933                 d_instantiate(dentry, inode);
2934                 dget(dentry); /* Extra count - pin the dentry in core */
2935         }
2936         return error;
2937 out_iput:
2938         iput(inode);
2939         return error;
2940 }
2941
2942 static int
2943 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2944               struct dentry *dentry, umode_t mode)
2945 {
2946         struct inode *inode;
2947         int error = -ENOSPC;
2948
2949         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2950         if (inode) {
2951                 error = security_inode_init_security(inode, dir,
2952                                                      NULL,
2953                                                      shmem_initxattrs, NULL);
2954                 if (error && error != -EOPNOTSUPP)
2955                         goto out_iput;
2956                 error = simple_acl_create(dir, inode);
2957                 if (error)
2958                         goto out_iput;
2959                 d_tmpfile(dentry, inode);
2960         }
2961         return error;
2962 out_iput:
2963         iput(inode);
2964         return error;
2965 }
2966
2967 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2968                        struct dentry *dentry, umode_t mode)
2969 {
2970         int error;
2971
2972         if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2973                                  mode | S_IFDIR, 0)))
2974                 return error;
2975         inc_nlink(dir);
2976         return 0;
2977 }
2978
2979 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2980                         struct dentry *dentry, umode_t mode, bool excl)
2981 {
2982         return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2983 }
2984
2985 /*
2986  * Link a file..
2987  */
2988 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2989 {
2990         struct inode *inode = d_inode(old_dentry);
2991         int ret = 0;
2992
2993         /*
2994          * No ordinary (disk based) filesystem counts links as inodes;
2995          * but each new link needs a new dentry, pinning lowmem, and
2996          * tmpfs dentries cannot be pruned until they are unlinked.
2997          * But if an O_TMPFILE file is linked into the tmpfs, the
2998          * first link must skip that, to get the accounting right.
2999          */
3000         if (inode->i_nlink) {
3001                 ret = shmem_reserve_inode(inode->i_sb, NULL);
3002                 if (ret)
3003                         goto out;
3004         }
3005
3006         dir->i_size += BOGO_DIRENT_SIZE;
3007         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3008         inc_nlink(inode);
3009         ihold(inode);   /* New dentry reference */
3010         dget(dentry);           /* Extra pinning count for the created dentry */
3011         d_instantiate(dentry, inode);
3012 out:
3013         return ret;
3014 }
3015
3016 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3017 {
3018         struct inode *inode = d_inode(dentry);
3019
3020         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3021                 shmem_free_inode(inode->i_sb);
3022
3023         dir->i_size -= BOGO_DIRENT_SIZE;
3024         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3025         drop_nlink(inode);
3026         dput(dentry);   /* Undo the count from "create" - this does all the work */
3027         return 0;
3028 }
3029
3030 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3031 {
3032         if (!simple_empty(dentry))
3033                 return -ENOTEMPTY;
3034
3035         drop_nlink(d_inode(dentry));
3036         drop_nlink(dir);
3037         return shmem_unlink(dir, dentry);
3038 }
3039
3040 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3041 {
3042         bool old_is_dir = d_is_dir(old_dentry);
3043         bool new_is_dir = d_is_dir(new_dentry);
3044
3045         if (old_dir != new_dir && old_is_dir != new_is_dir) {
3046                 if (old_is_dir) {
3047                         drop_nlink(old_dir);
3048                         inc_nlink(new_dir);
3049                 } else {
3050                         drop_nlink(new_dir);
3051                         inc_nlink(old_dir);
3052                 }
3053         }
3054         old_dir->i_ctime = old_dir->i_mtime =
3055         new_dir->i_ctime = new_dir->i_mtime =
3056         d_inode(old_dentry)->i_ctime =
3057         d_inode(new_dentry)->i_ctime = current_time(old_dir);
3058
3059         return 0;
3060 }
3061
3062 static int shmem_whiteout(struct user_namespace *mnt_userns,
3063                           struct inode *old_dir, struct dentry *old_dentry)
3064 {
3065         struct dentry *whiteout;
3066         int error;
3067
3068         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3069         if (!whiteout)
3070                 return -ENOMEM;
3071
3072         error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3073                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3074         dput(whiteout);
3075         if (error)
3076                 return error;
3077
3078         /*
3079          * Cheat and hash the whiteout while the old dentry is still in
3080          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3081          *
3082          * d_lookup() will consistently find one of them at this point,
3083          * not sure which one, but that isn't even important.
3084          */
3085         d_rehash(whiteout);
3086         return 0;
3087 }
3088
3089 /*
3090  * The VFS layer already does all the dentry stuff for rename,
3091  * we just have to decrement the usage count for the target if
3092  * it exists so that the VFS layer correctly free's it when it
3093  * gets overwritten.
3094  */
3095 static int shmem_rename2(struct user_namespace *mnt_userns,
3096                          struct inode *old_dir, struct dentry *old_dentry,
3097                          struct inode *new_dir, struct dentry *new_dentry,
3098                          unsigned int flags)
3099 {
3100         struct inode *inode = d_inode(old_dentry);
3101         int they_are_dirs = S_ISDIR(inode->i_mode);
3102
3103         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3104                 return -EINVAL;
3105
3106         if (flags & RENAME_EXCHANGE)
3107                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3108
3109         if (!simple_empty(new_dentry))
3110                 return -ENOTEMPTY;
3111
3112         if (flags & RENAME_WHITEOUT) {
3113                 int error;
3114
3115                 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3116                 if (error)
3117                         return error;
3118         }
3119
3120         if (d_really_is_positive(new_dentry)) {
3121                 (void) shmem_unlink(new_dir, new_dentry);
3122                 if (they_are_dirs) {
3123                         drop_nlink(d_inode(new_dentry));
3124                         drop_nlink(old_dir);
3125                 }
3126         } else if (they_are_dirs) {
3127                 drop_nlink(old_dir);
3128                 inc_nlink(new_dir);
3129         }
3130
3131         old_dir->i_size -= BOGO_DIRENT_SIZE;
3132         new_dir->i_size += BOGO_DIRENT_SIZE;
3133         old_dir->i_ctime = old_dir->i_mtime =
3134         new_dir->i_ctime = new_dir->i_mtime =
3135         inode->i_ctime = current_time(old_dir);
3136         return 0;
3137 }
3138
3139 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3140                          struct dentry *dentry, const char *symname)
3141 {
3142         int error;
3143         int len;
3144         struct inode *inode;
3145         struct page *page;
3146
3147         len = strlen(symname) + 1;
3148         if (len > PAGE_SIZE)
3149                 return -ENAMETOOLONG;
3150
3151         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3152                                 VM_NORESERVE);
3153         if (!inode)
3154                 return -ENOSPC;
3155
3156         error = security_inode_init_security(inode, dir, &dentry->d_name,
3157                                              shmem_initxattrs, NULL);
3158         if (error && error != -EOPNOTSUPP) {
3159                 iput(inode);
3160                 return error;
3161         }
3162
3163         inode->i_size = len-1;
3164         if (len <= SHORT_SYMLINK_LEN) {
3165                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3166                 if (!inode->i_link) {
3167                         iput(inode);
3168                         return -ENOMEM;
3169                 }
3170                 inode->i_op = &shmem_short_symlink_operations;
3171         } else {
3172                 inode_nohighmem(inode);
3173                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3174                 if (error) {
3175                         iput(inode);
3176                         return error;
3177                 }
3178                 inode->i_mapping->a_ops = &shmem_aops;
3179                 inode->i_op = &shmem_symlink_inode_operations;
3180                 memcpy(page_address(page), symname, len);
3181                 SetPageUptodate(page);
3182                 set_page_dirty(page);
3183                 unlock_page(page);
3184                 put_page(page);
3185         }
3186         dir->i_size += BOGO_DIRENT_SIZE;
3187         dir->i_ctime = dir->i_mtime = current_time(dir);
3188         d_instantiate(dentry, inode);
3189         dget(dentry);
3190         return 0;
3191 }
3192
3193 static void shmem_put_link(void *arg)
3194 {
3195         mark_page_accessed(arg);
3196         put_page(arg);
3197 }
3198
3199 static const char *shmem_get_link(struct dentry *dentry,
3200                                   struct inode *inode,
3201                                   struct delayed_call *done)
3202 {
3203         struct page *page = NULL;
3204         int error;
3205         if (!dentry) {
3206                 page = find_get_page(inode->i_mapping, 0);
3207                 if (!page)
3208                         return ERR_PTR(-ECHILD);
3209                 if (!PageUptodate(page)) {
3210                         put_page(page);
3211                         return ERR_PTR(-ECHILD);
3212                 }
3213         } else {
3214                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3215                 if (error)
3216                         return ERR_PTR(error);
3217                 unlock_page(page);
3218         }
3219         set_delayed_call(done, shmem_put_link, page);
3220         return page_address(page);
3221 }
3222
3223 #ifdef CONFIG_TMPFS_XATTR
3224 /*
3225  * Superblocks without xattr inode operations may get some security.* xattr
3226  * support from the LSM "for free". As soon as we have any other xattrs
3227  * like ACLs, we also need to implement the security.* handlers at
3228  * filesystem level, though.
3229  */
3230
3231 /*
3232  * Callback for security_inode_init_security() for acquiring xattrs.
3233  */
3234 static int shmem_initxattrs(struct inode *inode,
3235                             const struct xattr *xattr_array,
3236                             void *fs_info)
3237 {
3238         struct shmem_inode_info *info = SHMEM_I(inode);
3239         const struct xattr *xattr;
3240         struct simple_xattr *new_xattr;
3241         size_t len;
3242
3243         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3244                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3245                 if (!new_xattr)
3246                         return -ENOMEM;
3247
3248                 len = strlen(xattr->name) + 1;
3249                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3250                                           GFP_KERNEL);
3251                 if (!new_xattr->name) {
3252                         kvfree(new_xattr);
3253                         return -ENOMEM;
3254                 }
3255
3256                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3257                        XATTR_SECURITY_PREFIX_LEN);
3258                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3259                        xattr->name, len);
3260
3261                 simple_xattr_list_add(&info->xattrs, new_xattr);
3262         }
3263
3264         return 0;
3265 }
3266
3267 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3268                                    struct dentry *unused, struct inode *inode,
3269                                    const char *name, void *buffer, size_t size)
3270 {
3271         struct shmem_inode_info *info = SHMEM_I(inode);
3272
3273         name = xattr_full_name(handler, name);
3274         return simple_xattr_get(&info->xattrs, name, buffer, size);
3275 }
3276
3277 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3278                                    struct user_namespace *mnt_userns,
3279                                    struct dentry *unused, struct inode *inode,
3280                                    const char *name, const void *value,
3281                                    size_t size, int flags)
3282 {
3283         struct shmem_inode_info *info = SHMEM_I(inode);
3284
3285         name = xattr_full_name(handler, name);
3286         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3287 }
3288
3289 static const struct xattr_handler shmem_security_xattr_handler = {
3290         .prefix = XATTR_SECURITY_PREFIX,
3291         .get = shmem_xattr_handler_get,
3292         .set = shmem_xattr_handler_set,
3293 };
3294
3295 static const struct xattr_handler shmem_trusted_xattr_handler = {
3296         .prefix = XATTR_TRUSTED_PREFIX,
3297         .get = shmem_xattr_handler_get,
3298         .set = shmem_xattr_handler_set,
3299 };
3300
3301 static const struct xattr_handler *shmem_xattr_handlers[] = {
3302 #ifdef CONFIG_TMPFS_POSIX_ACL
3303         &posix_acl_access_xattr_handler,
3304         &posix_acl_default_xattr_handler,
3305 #endif
3306         &shmem_security_xattr_handler,
3307         &shmem_trusted_xattr_handler,
3308         NULL
3309 };
3310
3311 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3312 {
3313         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3314         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3315 }
3316 #endif /* CONFIG_TMPFS_XATTR */
3317
3318 static const struct inode_operations shmem_short_symlink_operations = {
3319         .get_link       = simple_get_link,
3320 #ifdef CONFIG_TMPFS_XATTR
3321         .listxattr      = shmem_listxattr,
3322 #endif
3323 };
3324
3325 static const struct inode_operations shmem_symlink_inode_operations = {
3326         .get_link       = shmem_get_link,
3327 #ifdef CONFIG_TMPFS_XATTR
3328         .listxattr      = shmem_listxattr,
3329 #endif
3330 };
3331
3332 static struct dentry *shmem_get_parent(struct dentry *child)
3333 {
3334         return ERR_PTR(-ESTALE);
3335 }
3336
3337 static int shmem_match(struct inode *ino, void *vfh)
3338 {
3339         __u32 *fh = vfh;
3340         __u64 inum = fh[2];
3341         inum = (inum << 32) | fh[1];
3342         return ino->i_ino == inum && fh[0] == ino->i_generation;
3343 }
3344
3345 /* Find any alias of inode, but prefer a hashed alias */
3346 static struct dentry *shmem_find_alias(struct inode *inode)
3347 {
3348         struct dentry *alias = d_find_alias(inode);
3349
3350         return alias ?: d_find_any_alias(inode);
3351 }
3352
3353
3354 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3355                 struct fid *fid, int fh_len, int fh_type)
3356 {
3357         struct inode *inode;
3358         struct dentry *dentry = NULL;
3359         u64 inum;
3360
3361         if (fh_len < 3)
3362                 return NULL;
3363
3364         inum = fid->raw[2];
3365         inum = (inum << 32) | fid->raw[1];
3366
3367         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3368                         shmem_match, fid->raw);
3369         if (inode) {
3370                 dentry = shmem_find_alias(inode);
3371                 iput(inode);
3372         }
3373
3374         return dentry;
3375 }
3376
3377 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3378                                 struct inode *parent)
3379 {
3380         if (*len < 3) {
3381                 *len = 3;
3382                 return FILEID_INVALID;
3383         }
3384
3385         if (inode_unhashed(inode)) {
3386                 /* Unfortunately insert_inode_hash is not idempotent,
3387                  * so as we hash inodes here rather than at creation
3388                  * time, we need a lock to ensure we only try
3389                  * to do it once
3390                  */
3391                 static DEFINE_SPINLOCK(lock);
3392                 spin_lock(&lock);
3393                 if (inode_unhashed(inode))
3394                         __insert_inode_hash(inode,
3395                                             inode->i_ino + inode->i_generation);
3396                 spin_unlock(&lock);
3397         }
3398
3399         fh[0] = inode->i_generation;
3400         fh[1] = inode->i_ino;
3401         fh[2] = ((__u64)inode->i_ino) >> 32;
3402
3403         *len = 3;
3404         return 1;
3405 }
3406
3407 static const struct export_operations shmem_export_ops = {
3408         .get_parent     = shmem_get_parent,
3409         .encode_fh      = shmem_encode_fh,
3410         .fh_to_dentry   = shmem_fh_to_dentry,
3411 };
3412
3413 enum shmem_param {
3414         Opt_gid,
3415         Opt_huge,
3416         Opt_mode,
3417         Opt_mpol,
3418         Opt_nr_blocks,
3419         Opt_nr_inodes,
3420         Opt_size,
3421         Opt_uid,
3422         Opt_inode32,
3423         Opt_inode64,
3424 };
3425
3426 static const struct constant_table shmem_param_enums_huge[] = {
3427         {"never",       SHMEM_HUGE_NEVER },
3428         {"always",      SHMEM_HUGE_ALWAYS },
3429         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3430         {"advise",      SHMEM_HUGE_ADVISE },
3431         {}
3432 };
3433
3434 const struct fs_parameter_spec shmem_fs_parameters[] = {
3435         fsparam_u32   ("gid",           Opt_gid),
3436         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3437         fsparam_u32oct("mode",          Opt_mode),
3438         fsparam_string("mpol",          Opt_mpol),
3439         fsparam_string("nr_blocks",     Opt_nr_blocks),
3440         fsparam_string("nr_inodes",     Opt_nr_inodes),
3441         fsparam_string("size",          Opt_size),
3442         fsparam_u32   ("uid",           Opt_uid),
3443         fsparam_flag  ("inode32",       Opt_inode32),
3444         fsparam_flag  ("inode64",       Opt_inode64),
3445         {}
3446 };
3447
3448 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3449 {
3450         struct shmem_options *ctx = fc->fs_private;
3451         struct fs_parse_result result;
3452         unsigned long long size;
3453         char *rest;
3454         int opt;
3455
3456         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3457         if (opt < 0)
3458                 return opt;
3459
3460         switch (opt) {
3461         case Opt_size:
3462                 size = memparse(param->string, &rest);
3463                 if (*rest == '%') {
3464                         size <<= PAGE_SHIFT;
3465                         size *= totalram_pages();
3466                         do_div(size, 100);
3467                         rest++;
3468                 }
3469                 if (*rest)
3470                         goto bad_value;
3471                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3472                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3473                 break;
3474         case Opt_nr_blocks:
3475                 ctx->blocks = memparse(param->string, &rest);
3476                 if (*rest)
3477                         goto bad_value;
3478                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3479                 break;
3480         case Opt_nr_inodes:
3481                 ctx->inodes = memparse(param->string, &rest);
3482                 if (*rest)
3483                         goto bad_value;
3484                 ctx->seen |= SHMEM_SEEN_INODES;
3485                 break;
3486         case Opt_mode:
3487                 ctx->mode = result.uint_32 & 07777;
3488                 break;
3489         case Opt_uid:
3490                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3491                 if (!uid_valid(ctx->uid))
3492                         goto bad_value;
3493                 break;
3494         case Opt_gid:
3495                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3496                 if (!gid_valid(ctx->gid))
3497                         goto bad_value;
3498                 break;
3499         case Opt_huge:
3500                 ctx->huge = result.uint_32;
3501                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3502                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3503                       has_transparent_hugepage()))
3504                         goto unsupported_parameter;
3505                 ctx->seen |= SHMEM_SEEN_HUGE;
3506                 break;
3507         case Opt_mpol:
3508                 if (IS_ENABLED(CONFIG_NUMA)) {
3509                         mpol_put(ctx->mpol);
3510                         ctx->mpol = NULL;
3511                         if (mpol_parse_str(param->string, &ctx->mpol))
3512                                 goto bad_value;
3513                         break;
3514                 }
3515                 goto unsupported_parameter;
3516         case Opt_inode32:
3517                 ctx->full_inums = false;
3518                 ctx->seen |= SHMEM_SEEN_INUMS;
3519                 break;
3520         case Opt_inode64:
3521                 if (sizeof(ino_t) < 8) {
3522                         return invalfc(fc,
3523                                        "Cannot use inode64 with <64bit inums in kernel\n");
3524                 }
3525                 ctx->full_inums = true;
3526                 ctx->seen |= SHMEM_SEEN_INUMS;
3527                 break;
3528         }
3529         return 0;
3530
3531 unsupported_parameter:
3532         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3533 bad_value:
3534         return invalfc(fc, "Bad value for '%s'", param->key);
3535 }
3536
3537 static int shmem_parse_options(struct fs_context *fc, void *data)
3538 {
3539         char *options = data;
3540
3541         if (options) {
3542                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3543                 if (err)
3544                         return err;
3545         }
3546
3547         while (options != NULL) {
3548                 char *this_char = options;
3549                 for (;;) {
3550                         /*
3551                          * NUL-terminate this option: unfortunately,
3552                          * mount options form a comma-separated list,
3553                          * but mpol's nodelist may also contain commas.
3554                          */
3555                         options = strchr(options, ',');
3556                         if (options == NULL)
3557                                 break;
3558                         options++;
3559                         if (!isdigit(*options)) {
3560                                 options[-1] = '\0';
3561                                 break;
3562                         }
3563                 }
3564                 if (*this_char) {
3565                         char *value = strchr(this_char,'=');
3566                         size_t len = 0;
3567                         int err;
3568
3569                         if (value) {
3570                                 *value++ = '\0';
3571                                 len = strlen(value);
3572                         }
3573                         err = vfs_parse_fs_string(fc, this_char, value, len);
3574                         if (err < 0)
3575                                 return err;
3576                 }
3577         }
3578         return 0;
3579 }
3580
3581 /*
3582  * Reconfigure a shmem filesystem.
3583  *
3584  * Note that we disallow change from limited->unlimited blocks/inodes while any
3585  * are in use; but we must separately disallow unlimited->limited, because in
3586  * that case we have no record of how much is already in use.
3587  */
3588 static int shmem_reconfigure(struct fs_context *fc)
3589 {
3590         struct shmem_options *ctx = fc->fs_private;
3591         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3592         unsigned long inodes;
3593         const char *err;
3594
3595         spin_lock(&sbinfo->stat_lock);
3596         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3597         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3598                 if (!sbinfo->max_blocks) {
3599                         err = "Cannot retroactively limit size";
3600                         goto out;
3601                 }
3602                 if (percpu_counter_compare(&sbinfo->used_blocks,
3603                                            ctx->blocks) > 0) {
3604                         err = "Too small a size for current use";
3605                         goto out;
3606                 }
3607         }
3608         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3609                 if (!sbinfo->max_inodes) {
3610                         err = "Cannot retroactively limit inodes";
3611                         goto out;
3612                 }
3613                 if (ctx->inodes < inodes) {
3614                         err = "Too few inodes for current use";
3615                         goto out;
3616                 }
3617         }
3618
3619         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3620             sbinfo->next_ino > UINT_MAX) {
3621                 err = "Current inum too high to switch to 32-bit inums";
3622                 goto out;
3623         }
3624
3625         if (ctx->seen & SHMEM_SEEN_HUGE)
3626                 sbinfo->huge = ctx->huge;
3627         if (ctx->seen & SHMEM_SEEN_INUMS)
3628                 sbinfo->full_inums = ctx->full_inums;
3629         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3630                 sbinfo->max_blocks  = ctx->blocks;
3631         if (ctx->seen & SHMEM_SEEN_INODES) {
3632                 sbinfo->max_inodes  = ctx->inodes;
3633                 sbinfo->free_inodes = ctx->inodes - inodes;
3634         }
3635
3636         /*
3637          * Preserve previous mempolicy unless mpol remount option was specified.
3638          */
3639         if (ctx->mpol) {
3640                 mpol_put(sbinfo->mpol);
3641                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3642                 ctx->mpol = NULL;
3643         }
3644         spin_unlock(&sbinfo->stat_lock);
3645         return 0;
3646 out:
3647         spin_unlock(&sbinfo->stat_lock);
3648         return invalfc(fc, "%s", err);
3649 }
3650
3651 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3652 {
3653         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3654
3655         if (sbinfo->max_blocks != shmem_default_max_blocks())
3656                 seq_printf(seq, ",size=%luk",
3657                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3658         if (sbinfo->max_inodes != shmem_default_max_inodes())
3659                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3660         if (sbinfo->mode != (0777 | S_ISVTX))
3661                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3662         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3663                 seq_printf(seq, ",uid=%u",
3664                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3665         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3666                 seq_printf(seq, ",gid=%u",
3667                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3668
3669         /*
3670          * Showing inode{64,32} might be useful even if it's the system default,
3671          * since then people don't have to resort to checking both here and
3672          * /proc/config.gz to confirm 64-bit inums were successfully applied
3673          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3674          *
3675          * We hide it when inode64 isn't the default and we are using 32-bit
3676          * inodes, since that probably just means the feature isn't even under
3677          * consideration.
3678          *
3679          * As such:
3680          *
3681          *                     +-----------------+-----------------+
3682          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3683          *  +------------------+-----------------+-----------------+
3684          *  | full_inums=true  | show            | show            |
3685          *  | full_inums=false | show            | hide            |
3686          *  +------------------+-----------------+-----------------+
3687          *
3688          */
3689         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3690                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3691 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3692         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3693         if (sbinfo->huge)
3694                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3695 #endif
3696         shmem_show_mpol(seq, sbinfo->mpol);
3697         return 0;
3698 }
3699
3700 #endif /* CONFIG_TMPFS */
3701
3702 static void shmem_put_super(struct super_block *sb)
3703 {
3704         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3705
3706         free_percpu(sbinfo->ino_batch);
3707         percpu_counter_destroy(&sbinfo->used_blocks);
3708         mpol_put(sbinfo->mpol);
3709         kfree(sbinfo);
3710         sb->s_fs_info = NULL;
3711 }
3712
3713 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3714 {
3715         struct shmem_options *ctx = fc->fs_private;
3716         struct inode *inode;
3717         struct shmem_sb_info *sbinfo;
3718         int err = -ENOMEM;
3719
3720         /* Round up to L1_CACHE_BYTES to resist false sharing */
3721         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3722                                 L1_CACHE_BYTES), GFP_KERNEL);
3723         if (!sbinfo)
3724                 return -ENOMEM;
3725
3726         sb->s_fs_info = sbinfo;
3727
3728 #ifdef CONFIG_TMPFS
3729         /*
3730          * Per default we only allow half of the physical ram per
3731          * tmpfs instance, limiting inodes to one per page of lowmem;
3732          * but the internal instance is left unlimited.
3733          */
3734         if (!(sb->s_flags & SB_KERNMOUNT)) {
3735                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3736                         ctx->blocks = shmem_default_max_blocks();
3737                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3738                         ctx->inodes = shmem_default_max_inodes();
3739                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3740                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3741         } else {
3742                 sb->s_flags |= SB_NOUSER;
3743         }
3744         sb->s_export_op = &shmem_export_ops;
3745         sb->s_flags |= SB_NOSEC;
3746 #else
3747         sb->s_flags |= SB_NOUSER;
3748 #endif
3749         sbinfo->max_blocks = ctx->blocks;
3750         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3751         if (sb->s_flags & SB_KERNMOUNT) {
3752                 sbinfo->ino_batch = alloc_percpu(ino_t);
3753                 if (!sbinfo->ino_batch)
3754                         goto failed;
3755         }
3756         sbinfo->uid = ctx->uid;
3757         sbinfo->gid = ctx->gid;
3758         sbinfo->full_inums = ctx->full_inums;
3759         sbinfo->mode = ctx->mode;
3760         sbinfo->huge = ctx->huge;
3761         sbinfo->mpol = ctx->mpol;
3762         ctx->mpol = NULL;
3763
3764         spin_lock_init(&sbinfo->stat_lock);
3765         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3766                 goto failed;
3767         spin_lock_init(&sbinfo->shrinklist_lock);
3768         INIT_LIST_HEAD(&sbinfo->shrinklist);
3769
3770         sb->s_maxbytes = MAX_LFS_FILESIZE;
3771         sb->s_blocksize = PAGE_SIZE;
3772         sb->s_blocksize_bits = PAGE_SHIFT;
3773         sb->s_magic = TMPFS_MAGIC;
3774         sb->s_op = &shmem_ops;
3775         sb->s_time_gran = 1;
3776 #ifdef CONFIG_TMPFS_XATTR
3777         sb->s_xattr = shmem_xattr_handlers;
3778 #endif
3779 #ifdef CONFIG_TMPFS_POSIX_ACL
3780         sb->s_flags |= SB_POSIXACL;
3781 #endif
3782         uuid_gen(&sb->s_uuid);
3783
3784         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3785         if (!inode)
3786                 goto failed;
3787         inode->i_uid = sbinfo->uid;
3788         inode->i_gid = sbinfo->gid;
3789         sb->s_root = d_make_root(inode);
3790         if (!sb->s_root)
3791                 goto failed;
3792         return 0;
3793
3794 failed:
3795         shmem_put_super(sb);
3796         return err;
3797 }
3798
3799 static int shmem_get_tree(struct fs_context *fc)
3800 {
3801         return get_tree_nodev(fc, shmem_fill_super);
3802 }
3803
3804 static void shmem_free_fc(struct fs_context *fc)
3805 {
3806         struct shmem_options *ctx = fc->fs_private;
3807
3808         if (ctx) {
3809                 mpol_put(ctx->mpol);
3810                 kfree(ctx);
3811         }
3812 }
3813
3814 static const struct fs_context_operations shmem_fs_context_ops = {
3815         .free                   = shmem_free_fc,
3816         .get_tree               = shmem_get_tree,
3817 #ifdef CONFIG_TMPFS
3818         .parse_monolithic       = shmem_parse_options,
3819         .parse_param            = shmem_parse_one,
3820         .reconfigure            = shmem_reconfigure,
3821 #endif
3822 };
3823
3824 static struct kmem_cache *shmem_inode_cachep;
3825
3826 static struct inode *shmem_alloc_inode(struct super_block *sb)
3827 {
3828         struct shmem_inode_info *info;
3829         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3830         if (!info)
3831                 return NULL;
3832         return &info->vfs_inode;
3833 }
3834
3835 static void shmem_free_in_core_inode(struct inode *inode)
3836 {
3837         if (S_ISLNK(inode->i_mode))
3838                 kfree(inode->i_link);
3839         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3840 }
3841
3842 static void shmem_destroy_inode(struct inode *inode)
3843 {
3844         if (S_ISREG(inode->i_mode))
3845                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3846 }
3847
3848 static void shmem_init_inode(void *foo)
3849 {
3850         struct shmem_inode_info *info = foo;
3851         inode_init_once(&info->vfs_inode);
3852 }
3853
3854 static void shmem_init_inodecache(void)
3855 {
3856         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3857                                 sizeof(struct shmem_inode_info),
3858                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3859 }
3860
3861 static void shmem_destroy_inodecache(void)
3862 {
3863         kmem_cache_destroy(shmem_inode_cachep);
3864 }
3865
3866 const struct address_space_operations shmem_aops = {
3867         .writepage      = shmem_writepage,
3868         .set_page_dirty = __set_page_dirty_no_writeback,
3869 #ifdef CONFIG_TMPFS
3870         .write_begin    = shmem_write_begin,
3871         .write_end      = shmem_write_end,
3872 #endif
3873 #ifdef CONFIG_MIGRATION
3874         .migratepage    = migrate_page,
3875 #endif
3876         .error_remove_page = generic_error_remove_page,
3877 };
3878 EXPORT_SYMBOL(shmem_aops);
3879
3880 static const struct file_operations shmem_file_operations = {
3881         .mmap           = shmem_mmap,
3882         .get_unmapped_area = shmem_get_unmapped_area,
3883 #ifdef CONFIG_TMPFS
3884         .llseek         = shmem_file_llseek,
3885         .read_iter      = shmem_file_read_iter,
3886         .write_iter     = generic_file_write_iter,
3887         .fsync          = noop_fsync,
3888         .splice_read    = generic_file_splice_read,
3889         .splice_write   = iter_file_splice_write,
3890         .fallocate      = shmem_fallocate,
3891 #endif
3892 };
3893
3894 static const struct inode_operations shmem_inode_operations = {
3895         .getattr        = shmem_getattr,
3896         .setattr        = shmem_setattr,
3897 #ifdef CONFIG_TMPFS_XATTR
3898         .listxattr      = shmem_listxattr,
3899         .set_acl        = simple_set_acl,
3900 #endif
3901 };
3902
3903 static const struct inode_operations shmem_dir_inode_operations = {
3904 #ifdef CONFIG_TMPFS
3905         .create         = shmem_create,
3906         .lookup         = simple_lookup,
3907         .link           = shmem_link,
3908         .unlink         = shmem_unlink,
3909         .symlink        = shmem_symlink,
3910         .mkdir          = shmem_mkdir,
3911         .rmdir          = shmem_rmdir,
3912         .mknod          = shmem_mknod,
3913         .rename         = shmem_rename2,
3914         .tmpfile        = shmem_tmpfile,
3915 #endif
3916 #ifdef CONFIG_TMPFS_XATTR
3917         .listxattr      = shmem_listxattr,
3918 #endif
3919 #ifdef CONFIG_TMPFS_POSIX_ACL
3920         .setattr        = shmem_setattr,
3921         .set_acl        = simple_set_acl,
3922 #endif
3923 };
3924
3925 static const struct inode_operations shmem_special_inode_operations = {
3926 #ifdef CONFIG_TMPFS_XATTR
3927         .listxattr      = shmem_listxattr,
3928 #endif
3929 #ifdef CONFIG_TMPFS_POSIX_ACL
3930         .setattr        = shmem_setattr,
3931         .set_acl        = simple_set_acl,
3932 #endif
3933 };
3934
3935 static const struct super_operations shmem_ops = {
3936         .alloc_inode    = shmem_alloc_inode,
3937         .free_inode     = shmem_free_in_core_inode,
3938         .destroy_inode  = shmem_destroy_inode,
3939 #ifdef CONFIG_TMPFS
3940         .statfs         = shmem_statfs,
3941         .show_options   = shmem_show_options,
3942 #endif
3943         .evict_inode    = shmem_evict_inode,
3944         .drop_inode     = generic_delete_inode,
3945         .put_super      = shmem_put_super,
3946 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3947         .nr_cached_objects      = shmem_unused_huge_count,
3948         .free_cached_objects    = shmem_unused_huge_scan,
3949 #endif
3950 };
3951
3952 static const struct vm_operations_struct shmem_vm_ops = {
3953         .fault          = shmem_fault,
3954         .map_pages      = filemap_map_pages,
3955 #ifdef CONFIG_NUMA
3956         .set_policy     = shmem_set_policy,
3957         .get_policy     = shmem_get_policy,
3958 #endif
3959 };
3960
3961 int shmem_init_fs_context(struct fs_context *fc)
3962 {
3963         struct shmem_options *ctx;
3964
3965         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3966         if (!ctx)
3967                 return -ENOMEM;
3968
3969         ctx->mode = 0777 | S_ISVTX;
3970         ctx->uid = current_fsuid();
3971         ctx->gid = current_fsgid();
3972
3973         fc->fs_private = ctx;
3974         fc->ops = &shmem_fs_context_ops;
3975         return 0;
3976 }
3977
3978 static struct file_system_type shmem_fs_type = {
3979         .owner          = THIS_MODULE,
3980         .name           = "tmpfs",
3981         .init_fs_context = shmem_init_fs_context,
3982 #ifdef CONFIG_TMPFS
3983         .parameters     = shmem_fs_parameters,
3984 #endif
3985         .kill_sb        = kill_litter_super,
3986         .fs_flags       = FS_USERNS_MOUNT | FS_THP_SUPPORT,
3987 };
3988
3989 int __init shmem_init(void)
3990 {
3991         int error;
3992
3993         shmem_init_inodecache();
3994
3995         error = register_filesystem(&shmem_fs_type);
3996         if (error) {
3997                 pr_err("Could not register tmpfs\n");
3998                 goto out2;
3999         }
4000
4001         shm_mnt = kern_mount(&shmem_fs_type);
4002         if (IS_ERR(shm_mnt)) {
4003                 error = PTR_ERR(shm_mnt);
4004                 pr_err("Could not kern_mount tmpfs\n");
4005                 goto out1;
4006         }
4007
4008 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4009         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4010                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4011         else
4012                 shmem_huge = 0; /* just in case it was patched */
4013 #endif
4014         return 0;
4015
4016 out1:
4017         unregister_filesystem(&shmem_fs_type);
4018 out2:
4019         shmem_destroy_inodecache();
4020         shm_mnt = ERR_PTR(error);
4021         return error;
4022 }
4023
4024 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4025 static ssize_t shmem_enabled_show(struct kobject *kobj,
4026                                   struct kobj_attribute *attr, char *buf)
4027 {
4028         static const int values[] = {
4029                 SHMEM_HUGE_ALWAYS,
4030                 SHMEM_HUGE_WITHIN_SIZE,
4031                 SHMEM_HUGE_ADVISE,
4032                 SHMEM_HUGE_NEVER,
4033                 SHMEM_HUGE_DENY,
4034                 SHMEM_HUGE_FORCE,
4035         };
4036         int len = 0;
4037         int i;
4038
4039         for (i = 0; i < ARRAY_SIZE(values); i++) {
4040                 len += sysfs_emit_at(buf, len,
4041                                      shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4042                                      i ? " " : "",
4043                                      shmem_format_huge(values[i]));
4044         }
4045
4046         len += sysfs_emit_at(buf, len, "\n");
4047
4048         return len;
4049 }
4050
4051 static ssize_t shmem_enabled_store(struct kobject *kobj,
4052                 struct kobj_attribute *attr, const char *buf, size_t count)
4053 {
4054         char tmp[16];
4055         int huge;
4056
4057         if (count + 1 > sizeof(tmp))
4058                 return -EINVAL;
4059         memcpy(tmp, buf, count);
4060         tmp[count] = '\0';
4061         if (count && tmp[count - 1] == '\n')
4062                 tmp[count - 1] = '\0';
4063
4064         huge = shmem_parse_huge(tmp);
4065         if (huge == -EINVAL)
4066                 return -EINVAL;
4067         if (!has_transparent_hugepage() &&
4068                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4069                 return -EINVAL;
4070
4071         shmem_huge = huge;
4072         if (shmem_huge > SHMEM_HUGE_DENY)
4073                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4074         return count;
4075 }
4076
4077 struct kobj_attribute shmem_enabled_attr =
4078         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4079 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4080
4081 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4082 bool shmem_huge_enabled(struct vm_area_struct *vma)
4083 {
4084         struct inode *inode = file_inode(vma->vm_file);
4085         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4086         loff_t i_size;
4087         pgoff_t off;
4088
4089         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4090             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4091                 return false;
4092         if (shmem_huge == SHMEM_HUGE_FORCE)
4093                 return true;
4094         if (shmem_huge == SHMEM_HUGE_DENY)
4095                 return false;
4096         switch (sbinfo->huge) {
4097                 case SHMEM_HUGE_NEVER:
4098                         return false;
4099                 case SHMEM_HUGE_ALWAYS:
4100                         return true;
4101                 case SHMEM_HUGE_WITHIN_SIZE:
4102                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4103                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
4104                         if (i_size >= HPAGE_PMD_SIZE &&
4105                                         i_size >> PAGE_SHIFT >= off)
4106                                 return true;
4107                         fallthrough;
4108                 case SHMEM_HUGE_ADVISE:
4109                         /* TODO: implement fadvise() hints */
4110                         return (vma->vm_flags & VM_HUGEPAGE);
4111                 default:
4112                         VM_BUG_ON(1);
4113                         return false;
4114         }
4115 }
4116 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4117
4118 #else /* !CONFIG_SHMEM */
4119
4120 /*
4121  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4122  *
4123  * This is intended for small system where the benefits of the full
4124  * shmem code (swap-backed and resource-limited) are outweighed by
4125  * their complexity. On systems without swap this code should be
4126  * effectively equivalent, but much lighter weight.
4127  */
4128
4129 static struct file_system_type shmem_fs_type = {
4130         .name           = "tmpfs",
4131         .init_fs_context = ramfs_init_fs_context,
4132         .parameters     = ramfs_fs_parameters,
4133         .kill_sb        = kill_litter_super,
4134         .fs_flags       = FS_USERNS_MOUNT,
4135 };
4136
4137 int __init shmem_init(void)
4138 {
4139         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4140
4141         shm_mnt = kern_mount(&shmem_fs_type);
4142         BUG_ON(IS_ERR(shm_mnt));
4143
4144         return 0;
4145 }
4146
4147 int shmem_unuse(unsigned int type, bool frontswap,
4148                 unsigned long *fs_pages_to_unuse)
4149 {
4150         return 0;
4151 }
4152
4153 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4154 {
4155         return 0;
4156 }
4157
4158 void shmem_unlock_mapping(struct address_space *mapping)
4159 {
4160 }
4161
4162 #ifdef CONFIG_MMU
4163 unsigned long shmem_get_unmapped_area(struct file *file,
4164                                       unsigned long addr, unsigned long len,
4165                                       unsigned long pgoff, unsigned long flags)
4166 {
4167         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4168 }
4169 #endif
4170
4171 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4172 {
4173         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4174 }
4175 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4176
4177 #define shmem_vm_ops                            generic_file_vm_ops
4178 #define shmem_file_operations                   ramfs_file_operations
4179 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4180 #define shmem_acct_size(flags, size)            0
4181 #define shmem_unacct_size(flags, size)          do {} while (0)
4182
4183 #endif /* CONFIG_SHMEM */
4184
4185 /* common code */
4186
4187 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4188                                        unsigned long flags, unsigned int i_flags)
4189 {
4190         struct inode *inode;
4191         struct file *res;
4192
4193         if (IS_ERR(mnt))
4194                 return ERR_CAST(mnt);
4195
4196         if (size < 0 || size > MAX_LFS_FILESIZE)
4197                 return ERR_PTR(-EINVAL);
4198
4199         if (shmem_acct_size(flags, size))
4200                 return ERR_PTR(-ENOMEM);
4201
4202         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4203                                 flags);
4204         if (unlikely(!inode)) {
4205                 shmem_unacct_size(flags, size);
4206                 return ERR_PTR(-ENOSPC);
4207         }
4208         inode->i_flags |= i_flags;
4209         inode->i_size = size;
4210         clear_nlink(inode);     /* It is unlinked */
4211         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4212         if (!IS_ERR(res))
4213                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4214                                 &shmem_file_operations);
4215         if (IS_ERR(res))
4216                 iput(inode);
4217         return res;
4218 }
4219
4220 /**
4221  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4222  *      kernel internal.  There will be NO LSM permission checks against the
4223  *      underlying inode.  So users of this interface must do LSM checks at a
4224  *      higher layer.  The users are the big_key and shm implementations.  LSM
4225  *      checks are provided at the key or shm level rather than the inode.
4226  * @name: name for dentry (to be seen in /proc/<pid>/maps
4227  * @size: size to be set for the file
4228  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4229  */
4230 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4231 {
4232         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4233 }
4234
4235 /**
4236  * shmem_file_setup - get an unlinked file living in tmpfs
4237  * @name: name for dentry (to be seen in /proc/<pid>/maps
4238  * @size: size to be set for the file
4239  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4240  */
4241 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4242 {
4243         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4244 }
4245 EXPORT_SYMBOL_GPL(shmem_file_setup);
4246
4247 /**
4248  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4249  * @mnt: the tmpfs mount where the file will be created
4250  * @name: name for dentry (to be seen in /proc/<pid>/maps
4251  * @size: size to be set for the file
4252  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4253  */
4254 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4255                                        loff_t size, unsigned long flags)
4256 {
4257         return __shmem_file_setup(mnt, name, size, flags, 0);
4258 }
4259 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4260
4261 /**
4262  * shmem_zero_setup - setup a shared anonymous mapping
4263  * @vma: the vma to be mmapped is prepared by do_mmap
4264  */
4265 int shmem_zero_setup(struct vm_area_struct *vma)
4266 {
4267         struct file *file;
4268         loff_t size = vma->vm_end - vma->vm_start;
4269
4270         /*
4271          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4272          * between XFS directory reading and selinux: since this file is only
4273          * accessible to the user through its mapping, use S_PRIVATE flag to
4274          * bypass file security, in the same way as shmem_kernel_file_setup().
4275          */
4276         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4277         if (IS_ERR(file))
4278                 return PTR_ERR(file);
4279
4280         if (vma->vm_file)
4281                 fput(vma->vm_file);
4282         vma->vm_file = file;
4283         vma->vm_ops = &shmem_vm_ops;
4284
4285         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4286                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4287                         (vma->vm_end & HPAGE_PMD_MASK)) {
4288                 khugepaged_enter(vma, vma->vm_flags);
4289         }
4290
4291         return 0;
4292 }
4293
4294 /**
4295  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4296  * @mapping:    the page's address_space
4297  * @index:      the page index
4298  * @gfp:        the page allocator flags to use if allocating
4299  *
4300  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4301  * with any new page allocations done using the specified allocation flags.
4302  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4303  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4304  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4305  *
4306  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4307  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4308  */
4309 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4310                                          pgoff_t index, gfp_t gfp)
4311 {
4312 #ifdef CONFIG_SHMEM
4313         struct inode *inode = mapping->host;
4314         struct page *page;
4315         int error;
4316
4317         BUG_ON(!shmem_mapping(mapping));
4318         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4319                                   gfp, NULL, NULL, NULL);
4320         if (error)
4321                 page = ERR_PTR(error);
4322         else
4323                 unlock_page(page);
4324         return page;
4325 #else
4326         /*
4327          * The tiny !SHMEM case uses ramfs without swap
4328          */
4329         return read_cache_page_gfp(mapping, index, gfp);
4330 #endif
4331 }
4332 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);