mm: add and use find_lock_entries
[linux-2.6-microblaze.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85
86 #include "internal.h"
87
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96
97 /*
98  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99  * inode->i_private (with i_mutex making sure that it has only one user at
100  * a time): we would prefer not to enlarge the shmem inode just for that.
101  */
102 struct shmem_falloc {
103         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104         pgoff_t start;          /* start of range currently being fallocated */
105         pgoff_t next;           /* the next page offset to be fallocated */
106         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
107         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
108 };
109
110 struct shmem_options {
111         unsigned long long blocks;
112         unsigned long long inodes;
113         struct mempolicy *mpol;
114         kuid_t uid;
115         kgid_t gid;
116         umode_t mode;
117         bool full_inums;
118         int huge;
119         int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129         return totalram_pages() / 2;
130 }
131
132 static unsigned long shmem_default_max_inodes(void)
133 {
134         unsigned long nr_pages = totalram_pages();
135
136         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142                                 struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144                              struct page **pagep, enum sgp_type sgp,
145                              gfp_t gfp, struct vm_area_struct *vma,
146                              vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148                 struct page **pagep, enum sgp_type sgp,
149                 gfp_t gfp, struct vm_area_struct *vma,
150                 struct vm_fault *vmf, vm_fault_t *fault_type);
151
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153                 struct page **pagep, enum sgp_type sgp)
154 {
155         return shmem_getpage_gfp(inode, index, pagep, sgp,
156                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161         return sb->s_fs_info;
162 }
163
164 /*
165  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166  * for shared memory and for shared anonymous (/dev/zero) mappings
167  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168  * consistent with the pre-accounting of private mappings ...
169  */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172         return (flags & VM_NORESERVE) ?
173                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178         if (!(flags & VM_NORESERVE))
179                 vm_unacct_memory(VM_ACCT(size));
180 }
181
182 static inline int shmem_reacct_size(unsigned long flags,
183                 loff_t oldsize, loff_t newsize)
184 {
185         if (!(flags & VM_NORESERVE)) {
186                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187                         return security_vm_enough_memory_mm(current->mm,
188                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
189                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191         }
192         return 0;
193 }
194
195 /*
196  * ... whereas tmpfs objects are accounted incrementally as
197  * pages are allocated, in order to allow large sparse files.
198  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200  */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203         if (!(flags & VM_NORESERVE))
204                 return 0;
205
206         return security_vm_enough_memory_mm(current->mm,
207                         pages * VM_ACCT(PAGE_SIZE));
208 }
209
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212         if (flags & VM_NORESERVE)
213                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218         struct shmem_inode_info *info = SHMEM_I(inode);
219         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220
221         if (shmem_acct_block(info->flags, pages))
222                 return false;
223
224         if (sbinfo->max_blocks) {
225                 if (percpu_counter_compare(&sbinfo->used_blocks,
226                                            sbinfo->max_blocks - pages) > 0)
227                         goto unacct;
228                 percpu_counter_add(&sbinfo->used_blocks, pages);
229         }
230
231         return true;
232
233 unacct:
234         shmem_unacct_blocks(info->flags, pages);
235         return false;
236 }
237
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240         struct shmem_inode_info *info = SHMEM_I(inode);
241         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242
243         if (sbinfo->max_blocks)
244                 percpu_counter_sub(&sbinfo->used_blocks, pages);
245         shmem_unacct_blocks(info->flags, pages);
246 }
247
248 static const struct super_operations shmem_ops;
249 const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259         return vma->vm_ops == &shmem_vm_ops;
260 }
261
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264
265 /*
266  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267  * produces a novel ino for the newly allocated inode.
268  *
269  * It may also be called when making a hard link to permit the space needed by
270  * each dentry. However, in that case, no new inode number is needed since that
271  * internally draws from another pool of inode numbers (currently global
272  * get_next_ino()). This case is indicated by passing NULL as inop.
273  */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278         ino_t ino;
279
280         if (!(sb->s_flags & SB_KERNMOUNT)) {
281                 spin_lock(&sbinfo->stat_lock);
282                 if (sbinfo->max_inodes) {
283                         if (!sbinfo->free_inodes) {
284                                 spin_unlock(&sbinfo->stat_lock);
285                                 return -ENOSPC;
286                         }
287                         sbinfo->free_inodes--;
288                 }
289                 if (inop) {
290                         ino = sbinfo->next_ino++;
291                         if (unlikely(is_zero_ino(ino)))
292                                 ino = sbinfo->next_ino++;
293                         if (unlikely(!sbinfo->full_inums &&
294                                      ino > UINT_MAX)) {
295                                 /*
296                                  * Emulate get_next_ino uint wraparound for
297                                  * compatibility
298                                  */
299                                 if (IS_ENABLED(CONFIG_64BIT))
300                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301                                                 __func__, MINOR(sb->s_dev));
302                                 sbinfo->next_ino = 1;
303                                 ino = sbinfo->next_ino++;
304                         }
305                         *inop = ino;
306                 }
307                 spin_unlock(&sbinfo->stat_lock);
308         } else if (inop) {
309                 /*
310                  * __shmem_file_setup, one of our callers, is lock-free: it
311                  * doesn't hold stat_lock in shmem_reserve_inode since
312                  * max_inodes is always 0, and is called from potentially
313                  * unknown contexts. As such, use a per-cpu batched allocator
314                  * which doesn't require the per-sb stat_lock unless we are at
315                  * the batch boundary.
316                  *
317                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318                  * shmem mounts are not exposed to userspace, so we don't need
319                  * to worry about things like glibc compatibility.
320                  */
321                 ino_t *next_ino;
322                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
323                 ino = *next_ino;
324                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
325                         spin_lock(&sbinfo->stat_lock);
326                         ino = sbinfo->next_ino;
327                         sbinfo->next_ino += SHMEM_INO_BATCH;
328                         spin_unlock(&sbinfo->stat_lock);
329                         if (unlikely(is_zero_ino(ino)))
330                                 ino++;
331                 }
332                 *inop = ino;
333                 *next_ino = ++ino;
334                 put_cpu();
335         }
336
337         return 0;
338 }
339
340 static void shmem_free_inode(struct super_block *sb)
341 {
342         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
343         if (sbinfo->max_inodes) {
344                 spin_lock(&sbinfo->stat_lock);
345                 sbinfo->free_inodes++;
346                 spin_unlock(&sbinfo->stat_lock);
347         }
348 }
349
350 /**
351  * shmem_recalc_inode - recalculate the block usage of an inode
352  * @inode: inode to recalc
353  *
354  * We have to calculate the free blocks since the mm can drop
355  * undirtied hole pages behind our back.
356  *
357  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
358  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
359  *
360  * It has to be called with the spinlock held.
361  */
362 static void shmem_recalc_inode(struct inode *inode)
363 {
364         struct shmem_inode_info *info = SHMEM_I(inode);
365         long freed;
366
367         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
368         if (freed > 0) {
369                 info->alloced -= freed;
370                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
371                 shmem_inode_unacct_blocks(inode, freed);
372         }
373 }
374
375 bool shmem_charge(struct inode *inode, long pages)
376 {
377         struct shmem_inode_info *info = SHMEM_I(inode);
378         unsigned long flags;
379
380         if (!shmem_inode_acct_block(inode, pages))
381                 return false;
382
383         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
384         inode->i_mapping->nrpages += pages;
385
386         spin_lock_irqsave(&info->lock, flags);
387         info->alloced += pages;
388         inode->i_blocks += pages * BLOCKS_PER_PAGE;
389         shmem_recalc_inode(inode);
390         spin_unlock_irqrestore(&info->lock, flags);
391
392         return true;
393 }
394
395 void shmem_uncharge(struct inode *inode, long pages)
396 {
397         struct shmem_inode_info *info = SHMEM_I(inode);
398         unsigned long flags;
399
400         /* nrpages adjustment done by __delete_from_page_cache() or caller */
401
402         spin_lock_irqsave(&info->lock, flags);
403         info->alloced -= pages;
404         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
405         shmem_recalc_inode(inode);
406         spin_unlock_irqrestore(&info->lock, flags);
407
408         shmem_inode_unacct_blocks(inode, pages);
409 }
410
411 /*
412  * Replace item expected in xarray by a new item, while holding xa_lock.
413  */
414 static int shmem_replace_entry(struct address_space *mapping,
415                         pgoff_t index, void *expected, void *replacement)
416 {
417         XA_STATE(xas, &mapping->i_pages, index);
418         void *item;
419
420         VM_BUG_ON(!expected);
421         VM_BUG_ON(!replacement);
422         item = xas_load(&xas);
423         if (item != expected)
424                 return -ENOENT;
425         xas_store(&xas, replacement);
426         return 0;
427 }
428
429 /*
430  * Sometimes, before we decide whether to proceed or to fail, we must check
431  * that an entry was not already brought back from swap by a racing thread.
432  *
433  * Checking page is not enough: by the time a SwapCache page is locked, it
434  * might be reused, and again be SwapCache, using the same swap as before.
435  */
436 static bool shmem_confirm_swap(struct address_space *mapping,
437                                pgoff_t index, swp_entry_t swap)
438 {
439         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
440 }
441
442 /*
443  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
444  *
445  * SHMEM_HUGE_NEVER:
446  *      disables huge pages for the mount;
447  * SHMEM_HUGE_ALWAYS:
448  *      enables huge pages for the mount;
449  * SHMEM_HUGE_WITHIN_SIZE:
450  *      only allocate huge pages if the page will be fully within i_size,
451  *      also respect fadvise()/madvise() hints;
452  * SHMEM_HUGE_ADVISE:
453  *      only allocate huge pages if requested with fadvise()/madvise();
454  */
455
456 #define SHMEM_HUGE_NEVER        0
457 #define SHMEM_HUGE_ALWAYS       1
458 #define SHMEM_HUGE_WITHIN_SIZE  2
459 #define SHMEM_HUGE_ADVISE       3
460
461 /*
462  * Special values.
463  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
464  *
465  * SHMEM_HUGE_DENY:
466  *      disables huge on shm_mnt and all mounts, for emergency use;
467  * SHMEM_HUGE_FORCE:
468  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
469  *
470  */
471 #define SHMEM_HUGE_DENY         (-1)
472 #define SHMEM_HUGE_FORCE        (-2)
473
474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
475 /* ifdef here to avoid bloating shmem.o when not necessary */
476
477 static int shmem_huge __read_mostly;
478
479 #if defined(CONFIG_SYSFS)
480 static int shmem_parse_huge(const char *str)
481 {
482         if (!strcmp(str, "never"))
483                 return SHMEM_HUGE_NEVER;
484         if (!strcmp(str, "always"))
485                 return SHMEM_HUGE_ALWAYS;
486         if (!strcmp(str, "within_size"))
487                 return SHMEM_HUGE_WITHIN_SIZE;
488         if (!strcmp(str, "advise"))
489                 return SHMEM_HUGE_ADVISE;
490         if (!strcmp(str, "deny"))
491                 return SHMEM_HUGE_DENY;
492         if (!strcmp(str, "force"))
493                 return SHMEM_HUGE_FORCE;
494         return -EINVAL;
495 }
496 #endif
497
498 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
499 static const char *shmem_format_huge(int huge)
500 {
501         switch (huge) {
502         case SHMEM_HUGE_NEVER:
503                 return "never";
504         case SHMEM_HUGE_ALWAYS:
505                 return "always";
506         case SHMEM_HUGE_WITHIN_SIZE:
507                 return "within_size";
508         case SHMEM_HUGE_ADVISE:
509                 return "advise";
510         case SHMEM_HUGE_DENY:
511                 return "deny";
512         case SHMEM_HUGE_FORCE:
513                 return "force";
514         default:
515                 VM_BUG_ON(1);
516                 return "bad_val";
517         }
518 }
519 #endif
520
521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522                 struct shrink_control *sc, unsigned long nr_to_split)
523 {
524         LIST_HEAD(list), *pos, *next;
525         LIST_HEAD(to_remove);
526         struct inode *inode;
527         struct shmem_inode_info *info;
528         struct page *page;
529         unsigned long batch = sc ? sc->nr_to_scan : 128;
530         int removed = 0, split = 0;
531
532         if (list_empty(&sbinfo->shrinklist))
533                 return SHRINK_STOP;
534
535         spin_lock(&sbinfo->shrinklist_lock);
536         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
537                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
538
539                 /* pin the inode */
540                 inode = igrab(&info->vfs_inode);
541
542                 /* inode is about to be evicted */
543                 if (!inode) {
544                         list_del_init(&info->shrinklist);
545                         removed++;
546                         goto next;
547                 }
548
549                 /* Check if there's anything to gain */
550                 if (round_up(inode->i_size, PAGE_SIZE) ==
551                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
552                         list_move(&info->shrinklist, &to_remove);
553                         removed++;
554                         goto next;
555                 }
556
557                 list_move(&info->shrinklist, &list);
558 next:
559                 if (!--batch)
560                         break;
561         }
562         spin_unlock(&sbinfo->shrinklist_lock);
563
564         list_for_each_safe(pos, next, &to_remove) {
565                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566                 inode = &info->vfs_inode;
567                 list_del_init(&info->shrinklist);
568                 iput(inode);
569         }
570
571         list_for_each_safe(pos, next, &list) {
572                 int ret;
573
574                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
575                 inode = &info->vfs_inode;
576
577                 if (nr_to_split && split >= nr_to_split)
578                         goto leave;
579
580                 page = find_get_page(inode->i_mapping,
581                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
582                 if (!page)
583                         goto drop;
584
585                 /* No huge page at the end of the file: nothing to split */
586                 if (!PageTransHuge(page)) {
587                         put_page(page);
588                         goto drop;
589                 }
590
591                 /*
592                  * Leave the inode on the list if we failed to lock
593                  * the page at this time.
594                  *
595                  * Waiting for the lock may lead to deadlock in the
596                  * reclaim path.
597                  */
598                 if (!trylock_page(page)) {
599                         put_page(page);
600                         goto leave;
601                 }
602
603                 ret = split_huge_page(page);
604                 unlock_page(page);
605                 put_page(page);
606
607                 /* If split failed leave the inode on the list */
608                 if (ret)
609                         goto leave;
610
611                 split++;
612 drop:
613                 list_del_init(&info->shrinklist);
614                 removed++;
615 leave:
616                 iput(inode);
617         }
618
619         spin_lock(&sbinfo->shrinklist_lock);
620         list_splice_tail(&list, &sbinfo->shrinklist);
621         sbinfo->shrinklist_len -= removed;
622         spin_unlock(&sbinfo->shrinklist_lock);
623
624         return split;
625 }
626
627 static long shmem_unused_huge_scan(struct super_block *sb,
628                 struct shrink_control *sc)
629 {
630         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
631
632         if (!READ_ONCE(sbinfo->shrinklist_len))
633                 return SHRINK_STOP;
634
635         return shmem_unused_huge_shrink(sbinfo, sc, 0);
636 }
637
638 static long shmem_unused_huge_count(struct super_block *sb,
639                 struct shrink_control *sc)
640 {
641         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
642         return READ_ONCE(sbinfo->shrinklist_len);
643 }
644 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
645
646 #define shmem_huge SHMEM_HUGE_DENY
647
648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649                 struct shrink_control *sc, unsigned long nr_to_split)
650 {
651         return 0;
652 }
653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
654
655 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
656 {
657         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
658             (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
659             shmem_huge != SHMEM_HUGE_DENY)
660                 return true;
661         return false;
662 }
663
664 /*
665  * Like add_to_page_cache_locked, but error if expected item has gone.
666  */
667 static int shmem_add_to_page_cache(struct page *page,
668                                    struct address_space *mapping,
669                                    pgoff_t index, void *expected, gfp_t gfp,
670                                    struct mm_struct *charge_mm)
671 {
672         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
673         unsigned long i = 0;
674         unsigned long nr = compound_nr(page);
675         int error;
676
677         VM_BUG_ON_PAGE(PageTail(page), page);
678         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
679         VM_BUG_ON_PAGE(!PageLocked(page), page);
680         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
681         VM_BUG_ON(expected && PageTransHuge(page));
682
683         page_ref_add(page, nr);
684         page->mapping = mapping;
685         page->index = index;
686
687         if (!PageSwapCache(page)) {
688                 error = mem_cgroup_charge(page, charge_mm, gfp);
689                 if (error) {
690                         if (PageTransHuge(page)) {
691                                 count_vm_event(THP_FILE_FALLBACK);
692                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
693                         }
694                         goto error;
695                 }
696         }
697         cgroup_throttle_swaprate(page, gfp);
698
699         do {
700                 void *entry;
701                 xas_lock_irq(&xas);
702                 entry = xas_find_conflict(&xas);
703                 if (entry != expected)
704                         xas_set_err(&xas, -EEXIST);
705                 xas_create_range(&xas);
706                 if (xas_error(&xas))
707                         goto unlock;
708 next:
709                 xas_store(&xas, page);
710                 if (++i < nr) {
711                         xas_next(&xas);
712                         goto next;
713                 }
714                 if (PageTransHuge(page)) {
715                         count_vm_event(THP_FILE_ALLOC);
716                         __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
717                 }
718                 mapping->nrpages += nr;
719                 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
720                 __mod_lruvec_page_state(page, NR_SHMEM, nr);
721 unlock:
722                 xas_unlock_irq(&xas);
723         } while (xas_nomem(&xas, gfp));
724
725         if (xas_error(&xas)) {
726                 error = xas_error(&xas);
727                 goto error;
728         }
729
730         return 0;
731 error:
732         page->mapping = NULL;
733         page_ref_sub(page, nr);
734         return error;
735 }
736
737 /*
738  * Like delete_from_page_cache, but substitutes swap for page.
739  */
740 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
741 {
742         struct address_space *mapping = page->mapping;
743         int error;
744
745         VM_BUG_ON_PAGE(PageCompound(page), page);
746
747         xa_lock_irq(&mapping->i_pages);
748         error = shmem_replace_entry(mapping, page->index, page, radswap);
749         page->mapping = NULL;
750         mapping->nrpages--;
751         __dec_lruvec_page_state(page, NR_FILE_PAGES);
752         __dec_lruvec_page_state(page, NR_SHMEM);
753         xa_unlock_irq(&mapping->i_pages);
754         put_page(page);
755         BUG_ON(error);
756 }
757
758 /*
759  * Remove swap entry from page cache, free the swap and its page cache.
760  */
761 static int shmem_free_swap(struct address_space *mapping,
762                            pgoff_t index, void *radswap)
763 {
764         void *old;
765
766         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
767         if (old != radswap)
768                 return -ENOENT;
769         free_swap_and_cache(radix_to_swp_entry(radswap));
770         return 0;
771 }
772
773 /*
774  * Determine (in bytes) how many of the shmem object's pages mapped by the
775  * given offsets are swapped out.
776  *
777  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
778  * as long as the inode doesn't go away and racy results are not a problem.
779  */
780 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
781                                                 pgoff_t start, pgoff_t end)
782 {
783         XA_STATE(xas, &mapping->i_pages, start);
784         struct page *page;
785         unsigned long swapped = 0;
786
787         rcu_read_lock();
788         xas_for_each(&xas, page, end - 1) {
789                 if (xas_retry(&xas, page))
790                         continue;
791                 if (xa_is_value(page))
792                         swapped++;
793
794                 if (need_resched()) {
795                         xas_pause(&xas);
796                         cond_resched_rcu();
797                 }
798         }
799
800         rcu_read_unlock();
801
802         return swapped << PAGE_SHIFT;
803 }
804
805 /*
806  * Determine (in bytes) how many of the shmem object's pages mapped by the
807  * given vma is swapped out.
808  *
809  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
810  * as long as the inode doesn't go away and racy results are not a problem.
811  */
812 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
813 {
814         struct inode *inode = file_inode(vma->vm_file);
815         struct shmem_inode_info *info = SHMEM_I(inode);
816         struct address_space *mapping = inode->i_mapping;
817         unsigned long swapped;
818
819         /* Be careful as we don't hold info->lock */
820         swapped = READ_ONCE(info->swapped);
821
822         /*
823          * The easier cases are when the shmem object has nothing in swap, or
824          * the vma maps it whole. Then we can simply use the stats that we
825          * already track.
826          */
827         if (!swapped)
828                 return 0;
829
830         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
831                 return swapped << PAGE_SHIFT;
832
833         /* Here comes the more involved part */
834         return shmem_partial_swap_usage(mapping,
835                         linear_page_index(vma, vma->vm_start),
836                         linear_page_index(vma, vma->vm_end));
837 }
838
839 /*
840  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
841  */
842 void shmem_unlock_mapping(struct address_space *mapping)
843 {
844         struct pagevec pvec;
845         pgoff_t index = 0;
846
847         pagevec_init(&pvec);
848         /*
849          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
850          */
851         while (!mapping_unevictable(mapping)) {
852                 if (!pagevec_lookup(&pvec, mapping, &index))
853                         break;
854                 check_move_unevictable_pages(&pvec);
855                 pagevec_release(&pvec);
856                 cond_resched();
857         }
858 }
859
860 /*
861  * Check whether a hole-punch or truncation needs to split a huge page,
862  * returning true if no split was required, or the split has been successful.
863  *
864  * Eviction (or truncation to 0 size) should never need to split a huge page;
865  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
866  * head, and then succeeded to trylock on tail.
867  *
868  * A split can only succeed when there are no additional references on the
869  * huge page: so the split below relies upon find_get_entries() having stopped
870  * when it found a subpage of the huge page, without getting further references.
871  */
872 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
873 {
874         if (!PageTransCompound(page))
875                 return true;
876
877         /* Just proceed to delete a huge page wholly within the range punched */
878         if (PageHead(page) &&
879             page->index >= start && page->index + HPAGE_PMD_NR <= end)
880                 return true;
881
882         /* Try to split huge page, so we can truly punch the hole or truncate */
883         return split_huge_page(page) >= 0;
884 }
885
886 /*
887  * Remove range of pages and swap entries from page cache, and free them.
888  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
889  */
890 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
891                                                                  bool unfalloc)
892 {
893         struct address_space *mapping = inode->i_mapping;
894         struct shmem_inode_info *info = SHMEM_I(inode);
895         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
896         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
897         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
898         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
899         struct pagevec pvec;
900         pgoff_t indices[PAGEVEC_SIZE];
901         long nr_swaps_freed = 0;
902         pgoff_t index;
903         int i;
904
905         if (lend == -1)
906                 end = -1;       /* unsigned, so actually very big */
907
908         pagevec_init(&pvec);
909         index = start;
910         while (index < end && find_lock_entries(mapping, index, end - 1,
911                         &pvec, indices)) {
912                 for (i = 0; i < pagevec_count(&pvec); i++) {
913                         struct page *page = pvec.pages[i];
914
915                         index = indices[i];
916                         if (index >= end)
917                                 break;
918
919                         if (xa_is_value(page)) {
920                                 if (unfalloc)
921                                         continue;
922                                 nr_swaps_freed += !shmem_free_swap(mapping,
923                                                                 index, page);
924                                 continue;
925                         }
926                         index += thp_nr_pages(page) - 1;
927
928                         if (!unfalloc || !PageUptodate(page))
929                                 truncate_inode_page(mapping, page);
930                         unlock_page(page);
931                 }
932                 pagevec_remove_exceptionals(&pvec);
933                 pagevec_release(&pvec);
934                 cond_resched();
935                 index++;
936         }
937
938         if (partial_start) {
939                 struct page *page = NULL;
940                 shmem_getpage(inode, start - 1, &page, SGP_READ);
941                 if (page) {
942                         unsigned int top = PAGE_SIZE;
943                         if (start > end) {
944                                 top = partial_end;
945                                 partial_end = 0;
946                         }
947                         zero_user_segment(page, partial_start, top);
948                         set_page_dirty(page);
949                         unlock_page(page);
950                         put_page(page);
951                 }
952         }
953         if (partial_end) {
954                 struct page *page = NULL;
955                 shmem_getpage(inode, end, &page, SGP_READ);
956                 if (page) {
957                         zero_user_segment(page, 0, partial_end);
958                         set_page_dirty(page);
959                         unlock_page(page);
960                         put_page(page);
961                 }
962         }
963         if (start >= end)
964                 return;
965
966         index = start;
967         while (index < end) {
968                 cond_resched();
969
970                 pvec.nr = find_get_entries(mapping, index,
971                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
972                                 pvec.pages, indices);
973                 if (!pvec.nr) {
974                         /* If all gone or hole-punch or unfalloc, we're done */
975                         if (index == start || end != -1)
976                                 break;
977                         /* But if truncating, restart to make sure all gone */
978                         index = start;
979                         continue;
980                 }
981                 for (i = 0; i < pagevec_count(&pvec); i++) {
982                         struct page *page = pvec.pages[i];
983
984                         index = indices[i];
985                         if (index >= end)
986                                 break;
987
988                         if (xa_is_value(page)) {
989                                 if (unfalloc)
990                                         continue;
991                                 if (shmem_free_swap(mapping, index, page)) {
992                                         /* Swap was replaced by page: retry */
993                                         index--;
994                                         break;
995                                 }
996                                 nr_swaps_freed++;
997                                 continue;
998                         }
999
1000                         lock_page(page);
1001
1002                         if (!unfalloc || !PageUptodate(page)) {
1003                                 if (page_mapping(page) != mapping) {
1004                                         /* Page was replaced by swap: retry */
1005                                         unlock_page(page);
1006                                         index--;
1007                                         break;
1008                                 }
1009                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1010                                 if (shmem_punch_compound(page, start, end))
1011                                         truncate_inode_page(mapping, page);
1012                                 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1013                                         /* Wipe the page and don't get stuck */
1014                                         clear_highpage(page);
1015                                         flush_dcache_page(page);
1016                                         set_page_dirty(page);
1017                                         if (index <
1018                                             round_up(start, HPAGE_PMD_NR))
1019                                                 start = index + 1;
1020                                 }
1021                         }
1022                         unlock_page(page);
1023                 }
1024                 pagevec_remove_exceptionals(&pvec);
1025                 pagevec_release(&pvec);
1026                 index++;
1027         }
1028
1029         spin_lock_irq(&info->lock);
1030         info->swapped -= nr_swaps_freed;
1031         shmem_recalc_inode(inode);
1032         spin_unlock_irq(&info->lock);
1033 }
1034
1035 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1036 {
1037         shmem_undo_range(inode, lstart, lend, false);
1038         inode->i_ctime = inode->i_mtime = current_time(inode);
1039 }
1040 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1041
1042 static int shmem_getattr(struct user_namespace *mnt_userns,
1043                          const struct path *path, struct kstat *stat,
1044                          u32 request_mask, unsigned int query_flags)
1045 {
1046         struct inode *inode = path->dentry->d_inode;
1047         struct shmem_inode_info *info = SHMEM_I(inode);
1048         struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1049
1050         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1051                 spin_lock_irq(&info->lock);
1052                 shmem_recalc_inode(inode);
1053                 spin_unlock_irq(&info->lock);
1054         }
1055         generic_fillattr(&init_user_ns, inode, stat);
1056
1057         if (is_huge_enabled(sb_info))
1058                 stat->blksize = HPAGE_PMD_SIZE;
1059
1060         return 0;
1061 }
1062
1063 static int shmem_setattr(struct user_namespace *mnt_userns,
1064                          struct dentry *dentry, struct iattr *attr)
1065 {
1066         struct inode *inode = d_inode(dentry);
1067         struct shmem_inode_info *info = SHMEM_I(inode);
1068         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1069         int error;
1070
1071         error = setattr_prepare(&init_user_ns, dentry, attr);
1072         if (error)
1073                 return error;
1074
1075         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1076                 loff_t oldsize = inode->i_size;
1077                 loff_t newsize = attr->ia_size;
1078
1079                 /* protected by i_mutex */
1080                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1081                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1082                         return -EPERM;
1083
1084                 if (newsize != oldsize) {
1085                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1086                                         oldsize, newsize);
1087                         if (error)
1088                                 return error;
1089                         i_size_write(inode, newsize);
1090                         inode->i_ctime = inode->i_mtime = current_time(inode);
1091                 }
1092                 if (newsize <= oldsize) {
1093                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1094                         if (oldsize > holebegin)
1095                                 unmap_mapping_range(inode->i_mapping,
1096                                                         holebegin, 0, 1);
1097                         if (info->alloced)
1098                                 shmem_truncate_range(inode,
1099                                                         newsize, (loff_t)-1);
1100                         /* unmap again to remove racily COWed private pages */
1101                         if (oldsize > holebegin)
1102                                 unmap_mapping_range(inode->i_mapping,
1103                                                         holebegin, 0, 1);
1104
1105                         /*
1106                          * Part of the huge page can be beyond i_size: subject
1107                          * to shrink under memory pressure.
1108                          */
1109                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1110                                 spin_lock(&sbinfo->shrinklist_lock);
1111                                 /*
1112                                  * _careful to defend against unlocked access to
1113                                  * ->shrink_list in shmem_unused_huge_shrink()
1114                                  */
1115                                 if (list_empty_careful(&info->shrinklist)) {
1116                                         list_add_tail(&info->shrinklist,
1117                                                         &sbinfo->shrinklist);
1118                                         sbinfo->shrinklist_len++;
1119                                 }
1120                                 spin_unlock(&sbinfo->shrinklist_lock);
1121                         }
1122                 }
1123         }
1124
1125         setattr_copy(&init_user_ns, inode, attr);
1126         if (attr->ia_valid & ATTR_MODE)
1127                 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1128         return error;
1129 }
1130
1131 static void shmem_evict_inode(struct inode *inode)
1132 {
1133         struct shmem_inode_info *info = SHMEM_I(inode);
1134         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1135
1136         if (shmem_mapping(inode->i_mapping)) {
1137                 shmem_unacct_size(info->flags, inode->i_size);
1138                 inode->i_size = 0;
1139                 shmem_truncate_range(inode, 0, (loff_t)-1);
1140                 if (!list_empty(&info->shrinklist)) {
1141                         spin_lock(&sbinfo->shrinklist_lock);
1142                         if (!list_empty(&info->shrinklist)) {
1143                                 list_del_init(&info->shrinklist);
1144                                 sbinfo->shrinklist_len--;
1145                         }
1146                         spin_unlock(&sbinfo->shrinklist_lock);
1147                 }
1148                 while (!list_empty(&info->swaplist)) {
1149                         /* Wait while shmem_unuse() is scanning this inode... */
1150                         wait_var_event(&info->stop_eviction,
1151                                        !atomic_read(&info->stop_eviction));
1152                         mutex_lock(&shmem_swaplist_mutex);
1153                         /* ...but beware of the race if we peeked too early */
1154                         if (!atomic_read(&info->stop_eviction))
1155                                 list_del_init(&info->swaplist);
1156                         mutex_unlock(&shmem_swaplist_mutex);
1157                 }
1158         }
1159
1160         simple_xattrs_free(&info->xattrs);
1161         WARN_ON(inode->i_blocks);
1162         shmem_free_inode(inode->i_sb);
1163         clear_inode(inode);
1164 }
1165
1166 extern struct swap_info_struct *swap_info[];
1167
1168 static int shmem_find_swap_entries(struct address_space *mapping,
1169                                    pgoff_t start, unsigned int nr_entries,
1170                                    struct page **entries, pgoff_t *indices,
1171                                    unsigned int type, bool frontswap)
1172 {
1173         XA_STATE(xas, &mapping->i_pages, start);
1174         struct page *page;
1175         swp_entry_t entry;
1176         unsigned int ret = 0;
1177
1178         if (!nr_entries)
1179                 return 0;
1180
1181         rcu_read_lock();
1182         xas_for_each(&xas, page, ULONG_MAX) {
1183                 if (xas_retry(&xas, page))
1184                         continue;
1185
1186                 if (!xa_is_value(page))
1187                         continue;
1188
1189                 entry = radix_to_swp_entry(page);
1190                 if (swp_type(entry) != type)
1191                         continue;
1192                 if (frontswap &&
1193                     !frontswap_test(swap_info[type], swp_offset(entry)))
1194                         continue;
1195
1196                 indices[ret] = xas.xa_index;
1197                 entries[ret] = page;
1198
1199                 if (need_resched()) {
1200                         xas_pause(&xas);
1201                         cond_resched_rcu();
1202                 }
1203                 if (++ret == nr_entries)
1204                         break;
1205         }
1206         rcu_read_unlock();
1207
1208         return ret;
1209 }
1210
1211 /*
1212  * Move the swapped pages for an inode to page cache. Returns the count
1213  * of pages swapped in, or the error in case of failure.
1214  */
1215 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1216                                     pgoff_t *indices)
1217 {
1218         int i = 0;
1219         int ret = 0;
1220         int error = 0;
1221         struct address_space *mapping = inode->i_mapping;
1222
1223         for (i = 0; i < pvec.nr; i++) {
1224                 struct page *page = pvec.pages[i];
1225
1226                 if (!xa_is_value(page))
1227                         continue;
1228                 error = shmem_swapin_page(inode, indices[i],
1229                                           &page, SGP_CACHE,
1230                                           mapping_gfp_mask(mapping),
1231                                           NULL, NULL);
1232                 if (error == 0) {
1233                         unlock_page(page);
1234                         put_page(page);
1235                         ret++;
1236                 }
1237                 if (error == -ENOMEM)
1238                         break;
1239                 error = 0;
1240         }
1241         return error ? error : ret;
1242 }
1243
1244 /*
1245  * If swap found in inode, free it and move page from swapcache to filecache.
1246  */
1247 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1248                              bool frontswap, unsigned long *fs_pages_to_unuse)
1249 {
1250         struct address_space *mapping = inode->i_mapping;
1251         pgoff_t start = 0;
1252         struct pagevec pvec;
1253         pgoff_t indices[PAGEVEC_SIZE];
1254         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1255         int ret = 0;
1256
1257         pagevec_init(&pvec);
1258         do {
1259                 unsigned int nr_entries = PAGEVEC_SIZE;
1260
1261                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1262                         nr_entries = *fs_pages_to_unuse;
1263
1264                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1265                                                   pvec.pages, indices,
1266                                                   type, frontswap);
1267                 if (pvec.nr == 0) {
1268                         ret = 0;
1269                         break;
1270                 }
1271
1272                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1273                 if (ret < 0)
1274                         break;
1275
1276                 if (frontswap_partial) {
1277                         *fs_pages_to_unuse -= ret;
1278                         if (*fs_pages_to_unuse == 0) {
1279                                 ret = FRONTSWAP_PAGES_UNUSED;
1280                                 break;
1281                         }
1282                 }
1283
1284                 start = indices[pvec.nr - 1];
1285         } while (true);
1286
1287         return ret;
1288 }
1289
1290 /*
1291  * Read all the shared memory data that resides in the swap
1292  * device 'type' back into memory, so the swap device can be
1293  * unused.
1294  */
1295 int shmem_unuse(unsigned int type, bool frontswap,
1296                 unsigned long *fs_pages_to_unuse)
1297 {
1298         struct shmem_inode_info *info, *next;
1299         int error = 0;
1300
1301         if (list_empty(&shmem_swaplist))
1302                 return 0;
1303
1304         mutex_lock(&shmem_swaplist_mutex);
1305         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1306                 if (!info->swapped) {
1307                         list_del_init(&info->swaplist);
1308                         continue;
1309                 }
1310                 /*
1311                  * Drop the swaplist mutex while searching the inode for swap;
1312                  * but before doing so, make sure shmem_evict_inode() will not
1313                  * remove placeholder inode from swaplist, nor let it be freed
1314                  * (igrab() would protect from unlink, but not from unmount).
1315                  */
1316                 atomic_inc(&info->stop_eviction);
1317                 mutex_unlock(&shmem_swaplist_mutex);
1318
1319                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1320                                           fs_pages_to_unuse);
1321                 cond_resched();
1322
1323                 mutex_lock(&shmem_swaplist_mutex);
1324                 next = list_next_entry(info, swaplist);
1325                 if (!info->swapped)
1326                         list_del_init(&info->swaplist);
1327                 if (atomic_dec_and_test(&info->stop_eviction))
1328                         wake_up_var(&info->stop_eviction);
1329                 if (error)
1330                         break;
1331         }
1332         mutex_unlock(&shmem_swaplist_mutex);
1333
1334         return error;
1335 }
1336
1337 /*
1338  * Move the page from the page cache to the swap cache.
1339  */
1340 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1341 {
1342         struct shmem_inode_info *info;
1343         struct address_space *mapping;
1344         struct inode *inode;
1345         swp_entry_t swap;
1346         pgoff_t index;
1347
1348         VM_BUG_ON_PAGE(PageCompound(page), page);
1349         BUG_ON(!PageLocked(page));
1350         mapping = page->mapping;
1351         index = page->index;
1352         inode = mapping->host;
1353         info = SHMEM_I(inode);
1354         if (info->flags & VM_LOCKED)
1355                 goto redirty;
1356         if (!total_swap_pages)
1357                 goto redirty;
1358
1359         /*
1360          * Our capabilities prevent regular writeback or sync from ever calling
1361          * shmem_writepage; but a stacking filesystem might use ->writepage of
1362          * its underlying filesystem, in which case tmpfs should write out to
1363          * swap only in response to memory pressure, and not for the writeback
1364          * threads or sync.
1365          */
1366         if (!wbc->for_reclaim) {
1367                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1368                 goto redirty;
1369         }
1370
1371         /*
1372          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1373          * value into swapfile.c, the only way we can correctly account for a
1374          * fallocated page arriving here is now to initialize it and write it.
1375          *
1376          * That's okay for a page already fallocated earlier, but if we have
1377          * not yet completed the fallocation, then (a) we want to keep track
1378          * of this page in case we have to undo it, and (b) it may not be a
1379          * good idea to continue anyway, once we're pushing into swap.  So
1380          * reactivate the page, and let shmem_fallocate() quit when too many.
1381          */
1382         if (!PageUptodate(page)) {
1383                 if (inode->i_private) {
1384                         struct shmem_falloc *shmem_falloc;
1385                         spin_lock(&inode->i_lock);
1386                         shmem_falloc = inode->i_private;
1387                         if (shmem_falloc &&
1388                             !shmem_falloc->waitq &&
1389                             index >= shmem_falloc->start &&
1390                             index < shmem_falloc->next)
1391                                 shmem_falloc->nr_unswapped++;
1392                         else
1393                                 shmem_falloc = NULL;
1394                         spin_unlock(&inode->i_lock);
1395                         if (shmem_falloc)
1396                                 goto redirty;
1397                 }
1398                 clear_highpage(page);
1399                 flush_dcache_page(page);
1400                 SetPageUptodate(page);
1401         }
1402
1403         swap = get_swap_page(page);
1404         if (!swap.val)
1405                 goto redirty;
1406
1407         /*
1408          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1409          * if it's not already there.  Do it now before the page is
1410          * moved to swap cache, when its pagelock no longer protects
1411          * the inode from eviction.  But don't unlock the mutex until
1412          * we've incremented swapped, because shmem_unuse_inode() will
1413          * prune a !swapped inode from the swaplist under this mutex.
1414          */
1415         mutex_lock(&shmem_swaplist_mutex);
1416         if (list_empty(&info->swaplist))
1417                 list_add(&info->swaplist, &shmem_swaplist);
1418
1419         if (add_to_swap_cache(page, swap,
1420                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1421                         NULL) == 0) {
1422                 spin_lock_irq(&info->lock);
1423                 shmem_recalc_inode(inode);
1424                 info->swapped++;
1425                 spin_unlock_irq(&info->lock);
1426
1427                 swap_shmem_alloc(swap);
1428                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1429
1430                 mutex_unlock(&shmem_swaplist_mutex);
1431                 BUG_ON(page_mapped(page));
1432                 swap_writepage(page, wbc);
1433                 return 0;
1434         }
1435
1436         mutex_unlock(&shmem_swaplist_mutex);
1437         put_swap_page(page, swap);
1438 redirty:
1439         set_page_dirty(page);
1440         if (wbc->for_reclaim)
1441                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1442         unlock_page(page);
1443         return 0;
1444 }
1445
1446 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1447 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1448 {
1449         char buffer[64];
1450
1451         if (!mpol || mpol->mode == MPOL_DEFAULT)
1452                 return;         /* show nothing */
1453
1454         mpol_to_str(buffer, sizeof(buffer), mpol);
1455
1456         seq_printf(seq, ",mpol=%s", buffer);
1457 }
1458
1459 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1460 {
1461         struct mempolicy *mpol = NULL;
1462         if (sbinfo->mpol) {
1463                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1464                 mpol = sbinfo->mpol;
1465                 mpol_get(mpol);
1466                 spin_unlock(&sbinfo->stat_lock);
1467         }
1468         return mpol;
1469 }
1470 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1471 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1472 {
1473 }
1474 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1475 {
1476         return NULL;
1477 }
1478 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1479 #ifndef CONFIG_NUMA
1480 #define vm_policy vm_private_data
1481 #endif
1482
1483 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1484                 struct shmem_inode_info *info, pgoff_t index)
1485 {
1486         /* Create a pseudo vma that just contains the policy */
1487         vma_init(vma, NULL);
1488         /* Bias interleave by inode number to distribute better across nodes */
1489         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1490         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1491 }
1492
1493 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1494 {
1495         /* Drop reference taken by mpol_shared_policy_lookup() */
1496         mpol_cond_put(vma->vm_policy);
1497 }
1498
1499 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1500                         struct shmem_inode_info *info, pgoff_t index)
1501 {
1502         struct vm_area_struct pvma;
1503         struct page *page;
1504         struct vm_fault vmf = {
1505                 .vma = &pvma,
1506         };
1507
1508         shmem_pseudo_vma_init(&pvma, info, index);
1509         page = swap_cluster_readahead(swap, gfp, &vmf);
1510         shmem_pseudo_vma_destroy(&pvma);
1511
1512         return page;
1513 }
1514
1515 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1516                 struct shmem_inode_info *info, pgoff_t index)
1517 {
1518         struct vm_area_struct pvma;
1519         struct address_space *mapping = info->vfs_inode.i_mapping;
1520         pgoff_t hindex;
1521         struct page *page;
1522
1523         hindex = round_down(index, HPAGE_PMD_NR);
1524         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1525                                                                 XA_PRESENT))
1526                 return NULL;
1527
1528         shmem_pseudo_vma_init(&pvma, info, hindex);
1529         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1530                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1531         shmem_pseudo_vma_destroy(&pvma);
1532         if (page)
1533                 prep_transhuge_page(page);
1534         else
1535                 count_vm_event(THP_FILE_FALLBACK);
1536         return page;
1537 }
1538
1539 static struct page *shmem_alloc_page(gfp_t gfp,
1540                         struct shmem_inode_info *info, pgoff_t index)
1541 {
1542         struct vm_area_struct pvma;
1543         struct page *page;
1544
1545         shmem_pseudo_vma_init(&pvma, info, index);
1546         page = alloc_page_vma(gfp, &pvma, 0);
1547         shmem_pseudo_vma_destroy(&pvma);
1548
1549         return page;
1550 }
1551
1552 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1553                 struct inode *inode,
1554                 pgoff_t index, bool huge)
1555 {
1556         struct shmem_inode_info *info = SHMEM_I(inode);
1557         struct page *page;
1558         int nr;
1559         int err = -ENOSPC;
1560
1561         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1562                 huge = false;
1563         nr = huge ? HPAGE_PMD_NR : 1;
1564
1565         if (!shmem_inode_acct_block(inode, nr))
1566                 goto failed;
1567
1568         if (huge)
1569                 page = shmem_alloc_hugepage(gfp, info, index);
1570         else
1571                 page = shmem_alloc_page(gfp, info, index);
1572         if (page) {
1573                 __SetPageLocked(page);
1574                 __SetPageSwapBacked(page);
1575                 return page;
1576         }
1577
1578         err = -ENOMEM;
1579         shmem_inode_unacct_blocks(inode, nr);
1580 failed:
1581         return ERR_PTR(err);
1582 }
1583
1584 /*
1585  * When a page is moved from swapcache to shmem filecache (either by the
1586  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1587  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1588  * ignorance of the mapping it belongs to.  If that mapping has special
1589  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1590  * we may need to copy to a suitable page before moving to filecache.
1591  *
1592  * In a future release, this may well be extended to respect cpuset and
1593  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1594  * but for now it is a simple matter of zone.
1595  */
1596 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1597 {
1598         return page_zonenum(page) > gfp_zone(gfp);
1599 }
1600
1601 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1602                                 struct shmem_inode_info *info, pgoff_t index)
1603 {
1604         struct page *oldpage, *newpage;
1605         struct address_space *swap_mapping;
1606         swp_entry_t entry;
1607         pgoff_t swap_index;
1608         int error;
1609
1610         oldpage = *pagep;
1611         entry.val = page_private(oldpage);
1612         swap_index = swp_offset(entry);
1613         swap_mapping = page_mapping(oldpage);
1614
1615         /*
1616          * We have arrived here because our zones are constrained, so don't
1617          * limit chance of success by further cpuset and node constraints.
1618          */
1619         gfp &= ~GFP_CONSTRAINT_MASK;
1620         newpage = shmem_alloc_page(gfp, info, index);
1621         if (!newpage)
1622                 return -ENOMEM;
1623
1624         get_page(newpage);
1625         copy_highpage(newpage, oldpage);
1626         flush_dcache_page(newpage);
1627
1628         __SetPageLocked(newpage);
1629         __SetPageSwapBacked(newpage);
1630         SetPageUptodate(newpage);
1631         set_page_private(newpage, entry.val);
1632         SetPageSwapCache(newpage);
1633
1634         /*
1635          * Our caller will very soon move newpage out of swapcache, but it's
1636          * a nice clean interface for us to replace oldpage by newpage there.
1637          */
1638         xa_lock_irq(&swap_mapping->i_pages);
1639         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1640         if (!error) {
1641                 mem_cgroup_migrate(oldpage, newpage);
1642                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1643                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1644         }
1645         xa_unlock_irq(&swap_mapping->i_pages);
1646
1647         if (unlikely(error)) {
1648                 /*
1649                  * Is this possible?  I think not, now that our callers check
1650                  * both PageSwapCache and page_private after getting page lock;
1651                  * but be defensive.  Reverse old to newpage for clear and free.
1652                  */
1653                 oldpage = newpage;
1654         } else {
1655                 lru_cache_add(newpage);
1656                 *pagep = newpage;
1657         }
1658
1659         ClearPageSwapCache(oldpage);
1660         set_page_private(oldpage, 0);
1661
1662         unlock_page(oldpage);
1663         put_page(oldpage);
1664         put_page(oldpage);
1665         return error;
1666 }
1667
1668 /*
1669  * Swap in the page pointed to by *pagep.
1670  * Caller has to make sure that *pagep contains a valid swapped page.
1671  * Returns 0 and the page in pagep if success. On failure, returns the
1672  * error code and NULL in *pagep.
1673  */
1674 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1675                              struct page **pagep, enum sgp_type sgp,
1676                              gfp_t gfp, struct vm_area_struct *vma,
1677                              vm_fault_t *fault_type)
1678 {
1679         struct address_space *mapping = inode->i_mapping;
1680         struct shmem_inode_info *info = SHMEM_I(inode);
1681         struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1682         struct page *page;
1683         swp_entry_t swap;
1684         int error;
1685
1686         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1687         swap = radix_to_swp_entry(*pagep);
1688         *pagep = NULL;
1689
1690         /* Look it up and read it in.. */
1691         page = lookup_swap_cache(swap, NULL, 0);
1692         if (!page) {
1693                 /* Or update major stats only when swapin succeeds?? */
1694                 if (fault_type) {
1695                         *fault_type |= VM_FAULT_MAJOR;
1696                         count_vm_event(PGMAJFAULT);
1697                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1698                 }
1699                 /* Here we actually start the io */
1700                 page = shmem_swapin(swap, gfp, info, index);
1701                 if (!page) {
1702                         error = -ENOMEM;
1703                         goto failed;
1704                 }
1705         }
1706
1707         /* We have to do this with page locked to prevent races */
1708         lock_page(page);
1709         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1710             !shmem_confirm_swap(mapping, index, swap)) {
1711                 error = -EEXIST;
1712                 goto unlock;
1713         }
1714         if (!PageUptodate(page)) {
1715                 error = -EIO;
1716                 goto failed;
1717         }
1718         wait_on_page_writeback(page);
1719
1720         /*
1721          * Some architectures may have to restore extra metadata to the
1722          * physical page after reading from swap.
1723          */
1724         arch_swap_restore(swap, page);
1725
1726         if (shmem_should_replace_page(page, gfp)) {
1727                 error = shmem_replace_page(&page, gfp, info, index);
1728                 if (error)
1729                         goto failed;
1730         }
1731
1732         error = shmem_add_to_page_cache(page, mapping, index,
1733                                         swp_to_radix_entry(swap), gfp,
1734                                         charge_mm);
1735         if (error)
1736                 goto failed;
1737
1738         spin_lock_irq(&info->lock);
1739         info->swapped--;
1740         shmem_recalc_inode(inode);
1741         spin_unlock_irq(&info->lock);
1742
1743         if (sgp == SGP_WRITE)
1744                 mark_page_accessed(page);
1745
1746         delete_from_swap_cache(page);
1747         set_page_dirty(page);
1748         swap_free(swap);
1749
1750         *pagep = page;
1751         return 0;
1752 failed:
1753         if (!shmem_confirm_swap(mapping, index, swap))
1754                 error = -EEXIST;
1755 unlock:
1756         if (page) {
1757                 unlock_page(page);
1758                 put_page(page);
1759         }
1760
1761         return error;
1762 }
1763
1764 /*
1765  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1766  *
1767  * If we allocate a new one we do not mark it dirty. That's up to the
1768  * vm. If we swap it in we mark it dirty since we also free the swap
1769  * entry since a page cannot live in both the swap and page cache.
1770  *
1771  * vmf and fault_type are only supplied by shmem_fault:
1772  * otherwise they are NULL.
1773  */
1774 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1775         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1776         struct vm_area_struct *vma, struct vm_fault *vmf,
1777                         vm_fault_t *fault_type)
1778 {
1779         struct address_space *mapping = inode->i_mapping;
1780         struct shmem_inode_info *info = SHMEM_I(inode);
1781         struct shmem_sb_info *sbinfo;
1782         struct mm_struct *charge_mm;
1783         struct page *page;
1784         enum sgp_type sgp_huge = sgp;
1785         pgoff_t hindex = index;
1786         int error;
1787         int once = 0;
1788         int alloced = 0;
1789
1790         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1791                 return -EFBIG;
1792         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1793                 sgp = SGP_CACHE;
1794 repeat:
1795         if (sgp <= SGP_CACHE &&
1796             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1797                 return -EINVAL;
1798         }
1799
1800         sbinfo = SHMEM_SB(inode->i_sb);
1801         charge_mm = vma ? vma->vm_mm : current->mm;
1802
1803         page = pagecache_get_page(mapping, index,
1804                                         FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1805         if (xa_is_value(page)) {
1806                 error = shmem_swapin_page(inode, index, &page,
1807                                           sgp, gfp, vma, fault_type);
1808                 if (error == -EEXIST)
1809                         goto repeat;
1810
1811                 *pagep = page;
1812                 return error;
1813         }
1814
1815         if (page)
1816                 hindex = page->index;
1817         if (page && sgp == SGP_WRITE)
1818                 mark_page_accessed(page);
1819
1820         /* fallocated page? */
1821         if (page && !PageUptodate(page)) {
1822                 if (sgp != SGP_READ)
1823                         goto clear;
1824                 unlock_page(page);
1825                 put_page(page);
1826                 page = NULL;
1827                 hindex = index;
1828         }
1829         if (page || sgp == SGP_READ)
1830                 goto out;
1831
1832         /*
1833          * Fast cache lookup did not find it:
1834          * bring it back from swap or allocate.
1835          */
1836
1837         if (vma && userfaultfd_missing(vma)) {
1838                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1839                 return 0;
1840         }
1841
1842         /* shmem_symlink() */
1843         if (!shmem_mapping(mapping))
1844                 goto alloc_nohuge;
1845         if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1846                 goto alloc_nohuge;
1847         if (shmem_huge == SHMEM_HUGE_FORCE)
1848                 goto alloc_huge;
1849         switch (sbinfo->huge) {
1850         case SHMEM_HUGE_NEVER:
1851                 goto alloc_nohuge;
1852         case SHMEM_HUGE_WITHIN_SIZE: {
1853                 loff_t i_size;
1854                 pgoff_t off;
1855
1856                 off = round_up(index, HPAGE_PMD_NR);
1857                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1858                 if (i_size >= HPAGE_PMD_SIZE &&
1859                     i_size >> PAGE_SHIFT >= off)
1860                         goto alloc_huge;
1861
1862                 fallthrough;
1863         }
1864         case SHMEM_HUGE_ADVISE:
1865                 if (sgp_huge == SGP_HUGE)
1866                         goto alloc_huge;
1867                 /* TODO: implement fadvise() hints */
1868                 goto alloc_nohuge;
1869         }
1870
1871 alloc_huge:
1872         page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1873         if (IS_ERR(page)) {
1874 alloc_nohuge:
1875                 page = shmem_alloc_and_acct_page(gfp, inode,
1876                                                  index, false);
1877         }
1878         if (IS_ERR(page)) {
1879                 int retry = 5;
1880
1881                 error = PTR_ERR(page);
1882                 page = NULL;
1883                 if (error != -ENOSPC)
1884                         goto unlock;
1885                 /*
1886                  * Try to reclaim some space by splitting a huge page
1887                  * beyond i_size on the filesystem.
1888                  */
1889                 while (retry--) {
1890                         int ret;
1891
1892                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1893                         if (ret == SHRINK_STOP)
1894                                 break;
1895                         if (ret)
1896                                 goto alloc_nohuge;
1897                 }
1898                 goto unlock;
1899         }
1900
1901         if (PageTransHuge(page))
1902                 hindex = round_down(index, HPAGE_PMD_NR);
1903         else
1904                 hindex = index;
1905
1906         if (sgp == SGP_WRITE)
1907                 __SetPageReferenced(page);
1908
1909         error = shmem_add_to_page_cache(page, mapping, hindex,
1910                                         NULL, gfp & GFP_RECLAIM_MASK,
1911                                         charge_mm);
1912         if (error)
1913                 goto unacct;
1914         lru_cache_add(page);
1915
1916         spin_lock_irq(&info->lock);
1917         info->alloced += compound_nr(page);
1918         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1919         shmem_recalc_inode(inode);
1920         spin_unlock_irq(&info->lock);
1921         alloced = true;
1922
1923         if (PageTransHuge(page) &&
1924             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1925                         hindex + HPAGE_PMD_NR - 1) {
1926                 /*
1927                  * Part of the huge page is beyond i_size: subject
1928                  * to shrink under memory pressure.
1929                  */
1930                 spin_lock(&sbinfo->shrinklist_lock);
1931                 /*
1932                  * _careful to defend against unlocked access to
1933                  * ->shrink_list in shmem_unused_huge_shrink()
1934                  */
1935                 if (list_empty_careful(&info->shrinklist)) {
1936                         list_add_tail(&info->shrinklist,
1937                                       &sbinfo->shrinklist);
1938                         sbinfo->shrinklist_len++;
1939                 }
1940                 spin_unlock(&sbinfo->shrinklist_lock);
1941         }
1942
1943         /*
1944          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1945          */
1946         if (sgp == SGP_FALLOC)
1947                 sgp = SGP_WRITE;
1948 clear:
1949         /*
1950          * Let SGP_WRITE caller clear ends if write does not fill page;
1951          * but SGP_FALLOC on a page fallocated earlier must initialize
1952          * it now, lest undo on failure cancel our earlier guarantee.
1953          */
1954         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1955                 int i;
1956
1957                 for (i = 0; i < compound_nr(page); i++) {
1958                         clear_highpage(page + i);
1959                         flush_dcache_page(page + i);
1960                 }
1961                 SetPageUptodate(page);
1962         }
1963
1964         /* Perhaps the file has been truncated since we checked */
1965         if (sgp <= SGP_CACHE &&
1966             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1967                 if (alloced) {
1968                         ClearPageDirty(page);
1969                         delete_from_page_cache(page);
1970                         spin_lock_irq(&info->lock);
1971                         shmem_recalc_inode(inode);
1972                         spin_unlock_irq(&info->lock);
1973                 }
1974                 error = -EINVAL;
1975                 goto unlock;
1976         }
1977 out:
1978         *pagep = page + index - hindex;
1979         return 0;
1980
1981         /*
1982          * Error recovery.
1983          */
1984 unacct:
1985         shmem_inode_unacct_blocks(inode, compound_nr(page));
1986
1987         if (PageTransHuge(page)) {
1988                 unlock_page(page);
1989                 put_page(page);
1990                 goto alloc_nohuge;
1991         }
1992 unlock:
1993         if (page) {
1994                 unlock_page(page);
1995                 put_page(page);
1996         }
1997         if (error == -ENOSPC && !once++) {
1998                 spin_lock_irq(&info->lock);
1999                 shmem_recalc_inode(inode);
2000                 spin_unlock_irq(&info->lock);
2001                 goto repeat;
2002         }
2003         if (error == -EEXIST)
2004                 goto repeat;
2005         return error;
2006 }
2007
2008 /*
2009  * This is like autoremove_wake_function, but it removes the wait queue
2010  * entry unconditionally - even if something else had already woken the
2011  * target.
2012  */
2013 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2014 {
2015         int ret = default_wake_function(wait, mode, sync, key);
2016         list_del_init(&wait->entry);
2017         return ret;
2018 }
2019
2020 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2021 {
2022         struct vm_area_struct *vma = vmf->vma;
2023         struct inode *inode = file_inode(vma->vm_file);
2024         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2025         enum sgp_type sgp;
2026         int err;
2027         vm_fault_t ret = VM_FAULT_LOCKED;
2028
2029         /*
2030          * Trinity finds that probing a hole which tmpfs is punching can
2031          * prevent the hole-punch from ever completing: which in turn
2032          * locks writers out with its hold on i_mutex.  So refrain from
2033          * faulting pages into the hole while it's being punched.  Although
2034          * shmem_undo_range() does remove the additions, it may be unable to
2035          * keep up, as each new page needs its own unmap_mapping_range() call,
2036          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2037          *
2038          * It does not matter if we sometimes reach this check just before the
2039          * hole-punch begins, so that one fault then races with the punch:
2040          * we just need to make racing faults a rare case.
2041          *
2042          * The implementation below would be much simpler if we just used a
2043          * standard mutex or completion: but we cannot take i_mutex in fault,
2044          * and bloating every shmem inode for this unlikely case would be sad.
2045          */
2046         if (unlikely(inode->i_private)) {
2047                 struct shmem_falloc *shmem_falloc;
2048
2049                 spin_lock(&inode->i_lock);
2050                 shmem_falloc = inode->i_private;
2051                 if (shmem_falloc &&
2052                     shmem_falloc->waitq &&
2053                     vmf->pgoff >= shmem_falloc->start &&
2054                     vmf->pgoff < shmem_falloc->next) {
2055                         struct file *fpin;
2056                         wait_queue_head_t *shmem_falloc_waitq;
2057                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2058
2059                         ret = VM_FAULT_NOPAGE;
2060                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2061                         if (fpin)
2062                                 ret = VM_FAULT_RETRY;
2063
2064                         shmem_falloc_waitq = shmem_falloc->waitq;
2065                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2066                                         TASK_UNINTERRUPTIBLE);
2067                         spin_unlock(&inode->i_lock);
2068                         schedule();
2069
2070                         /*
2071                          * shmem_falloc_waitq points into the shmem_fallocate()
2072                          * stack of the hole-punching task: shmem_falloc_waitq
2073                          * is usually invalid by the time we reach here, but
2074                          * finish_wait() does not dereference it in that case;
2075                          * though i_lock needed lest racing with wake_up_all().
2076                          */
2077                         spin_lock(&inode->i_lock);
2078                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2079                         spin_unlock(&inode->i_lock);
2080
2081                         if (fpin)
2082                                 fput(fpin);
2083                         return ret;
2084                 }
2085                 spin_unlock(&inode->i_lock);
2086         }
2087
2088         sgp = SGP_CACHE;
2089
2090         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2091             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2092                 sgp = SGP_NOHUGE;
2093         else if (vma->vm_flags & VM_HUGEPAGE)
2094                 sgp = SGP_HUGE;
2095
2096         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2097                                   gfp, vma, vmf, &ret);
2098         if (err)
2099                 return vmf_error(err);
2100         return ret;
2101 }
2102
2103 unsigned long shmem_get_unmapped_area(struct file *file,
2104                                       unsigned long uaddr, unsigned long len,
2105                                       unsigned long pgoff, unsigned long flags)
2106 {
2107         unsigned long (*get_area)(struct file *,
2108                 unsigned long, unsigned long, unsigned long, unsigned long);
2109         unsigned long addr;
2110         unsigned long offset;
2111         unsigned long inflated_len;
2112         unsigned long inflated_addr;
2113         unsigned long inflated_offset;
2114
2115         if (len > TASK_SIZE)
2116                 return -ENOMEM;
2117
2118         get_area = current->mm->get_unmapped_area;
2119         addr = get_area(file, uaddr, len, pgoff, flags);
2120
2121         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2122                 return addr;
2123         if (IS_ERR_VALUE(addr))
2124                 return addr;
2125         if (addr & ~PAGE_MASK)
2126                 return addr;
2127         if (addr > TASK_SIZE - len)
2128                 return addr;
2129
2130         if (shmem_huge == SHMEM_HUGE_DENY)
2131                 return addr;
2132         if (len < HPAGE_PMD_SIZE)
2133                 return addr;
2134         if (flags & MAP_FIXED)
2135                 return addr;
2136         /*
2137          * Our priority is to support MAP_SHARED mapped hugely;
2138          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2139          * But if caller specified an address hint and we allocated area there
2140          * successfully, respect that as before.
2141          */
2142         if (uaddr == addr)
2143                 return addr;
2144
2145         if (shmem_huge != SHMEM_HUGE_FORCE) {
2146                 struct super_block *sb;
2147
2148                 if (file) {
2149                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2150                         sb = file_inode(file)->i_sb;
2151                 } else {
2152                         /*
2153                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2154                          * for "/dev/zero", to create a shared anonymous object.
2155                          */
2156                         if (IS_ERR(shm_mnt))
2157                                 return addr;
2158                         sb = shm_mnt->mnt_sb;
2159                 }
2160                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2161                         return addr;
2162         }
2163
2164         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2165         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2166                 return addr;
2167         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2168                 return addr;
2169
2170         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2171         if (inflated_len > TASK_SIZE)
2172                 return addr;
2173         if (inflated_len < len)
2174                 return addr;
2175
2176         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2177         if (IS_ERR_VALUE(inflated_addr))
2178                 return addr;
2179         if (inflated_addr & ~PAGE_MASK)
2180                 return addr;
2181
2182         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2183         inflated_addr += offset - inflated_offset;
2184         if (inflated_offset > offset)
2185                 inflated_addr += HPAGE_PMD_SIZE;
2186
2187         if (inflated_addr > TASK_SIZE - len)
2188                 return addr;
2189         return inflated_addr;
2190 }
2191
2192 #ifdef CONFIG_NUMA
2193 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2194 {
2195         struct inode *inode = file_inode(vma->vm_file);
2196         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2197 }
2198
2199 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2200                                           unsigned long addr)
2201 {
2202         struct inode *inode = file_inode(vma->vm_file);
2203         pgoff_t index;
2204
2205         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2206         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2207 }
2208 #endif
2209
2210 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2211 {
2212         struct inode *inode = file_inode(file);
2213         struct shmem_inode_info *info = SHMEM_I(inode);
2214         int retval = -ENOMEM;
2215
2216         /*
2217          * What serializes the accesses to info->flags?
2218          * ipc_lock_object() when called from shmctl_do_lock(),
2219          * no serialization needed when called from shm_destroy().
2220          */
2221         if (lock && !(info->flags & VM_LOCKED)) {
2222                 if (!user_shm_lock(inode->i_size, user))
2223                         goto out_nomem;
2224                 info->flags |= VM_LOCKED;
2225                 mapping_set_unevictable(file->f_mapping);
2226         }
2227         if (!lock && (info->flags & VM_LOCKED) && user) {
2228                 user_shm_unlock(inode->i_size, user);
2229                 info->flags &= ~VM_LOCKED;
2230                 mapping_clear_unevictable(file->f_mapping);
2231         }
2232         retval = 0;
2233
2234 out_nomem:
2235         return retval;
2236 }
2237
2238 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2239 {
2240         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2241
2242         if (info->seals & F_SEAL_FUTURE_WRITE) {
2243                 /*
2244                  * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2245                  * "future write" seal active.
2246                  */
2247                 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2248                         return -EPERM;
2249
2250                 /*
2251                  * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2252                  * MAP_SHARED and read-only, take care to not allow mprotect to
2253                  * revert protections on such mappings. Do this only for shared
2254                  * mappings. For private mappings, don't need to mask
2255                  * VM_MAYWRITE as we still want them to be COW-writable.
2256                  */
2257                 if (vma->vm_flags & VM_SHARED)
2258                         vma->vm_flags &= ~(VM_MAYWRITE);
2259         }
2260
2261         /* arm64 - allow memory tagging on RAM-based files */
2262         vma->vm_flags |= VM_MTE_ALLOWED;
2263
2264         file_accessed(file);
2265         vma->vm_ops = &shmem_vm_ops;
2266         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2267                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2268                         (vma->vm_end & HPAGE_PMD_MASK)) {
2269                 khugepaged_enter(vma, vma->vm_flags);
2270         }
2271         return 0;
2272 }
2273
2274 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2275                                      umode_t mode, dev_t dev, unsigned long flags)
2276 {
2277         struct inode *inode;
2278         struct shmem_inode_info *info;
2279         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2280         ino_t ino;
2281
2282         if (shmem_reserve_inode(sb, &ino))
2283                 return NULL;
2284
2285         inode = new_inode(sb);
2286         if (inode) {
2287                 inode->i_ino = ino;
2288                 inode_init_owner(&init_user_ns, inode, dir, mode);
2289                 inode->i_blocks = 0;
2290                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2291                 inode->i_generation = prandom_u32();
2292                 info = SHMEM_I(inode);
2293                 memset(info, 0, (char *)inode - (char *)info);
2294                 spin_lock_init(&info->lock);
2295                 atomic_set(&info->stop_eviction, 0);
2296                 info->seals = F_SEAL_SEAL;
2297                 info->flags = flags & VM_NORESERVE;
2298                 INIT_LIST_HEAD(&info->shrinklist);
2299                 INIT_LIST_HEAD(&info->swaplist);
2300                 simple_xattrs_init(&info->xattrs);
2301                 cache_no_acl(inode);
2302
2303                 switch (mode & S_IFMT) {
2304                 default:
2305                         inode->i_op = &shmem_special_inode_operations;
2306                         init_special_inode(inode, mode, dev);
2307                         break;
2308                 case S_IFREG:
2309                         inode->i_mapping->a_ops = &shmem_aops;
2310                         inode->i_op = &shmem_inode_operations;
2311                         inode->i_fop = &shmem_file_operations;
2312                         mpol_shared_policy_init(&info->policy,
2313                                                  shmem_get_sbmpol(sbinfo));
2314                         break;
2315                 case S_IFDIR:
2316                         inc_nlink(inode);
2317                         /* Some things misbehave if size == 0 on a directory */
2318                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2319                         inode->i_op = &shmem_dir_inode_operations;
2320                         inode->i_fop = &simple_dir_operations;
2321                         break;
2322                 case S_IFLNK:
2323                         /*
2324                          * Must not load anything in the rbtree,
2325                          * mpol_free_shared_policy will not be called.
2326                          */
2327                         mpol_shared_policy_init(&info->policy, NULL);
2328                         break;
2329                 }
2330
2331                 lockdep_annotate_inode_mutex_key(inode);
2332         } else
2333                 shmem_free_inode(sb);
2334         return inode;
2335 }
2336
2337 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2338                                   pmd_t *dst_pmd,
2339                                   struct vm_area_struct *dst_vma,
2340                                   unsigned long dst_addr,
2341                                   unsigned long src_addr,
2342                                   bool zeropage,
2343                                   struct page **pagep)
2344 {
2345         struct inode *inode = file_inode(dst_vma->vm_file);
2346         struct shmem_inode_info *info = SHMEM_I(inode);
2347         struct address_space *mapping = inode->i_mapping;
2348         gfp_t gfp = mapping_gfp_mask(mapping);
2349         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2350         spinlock_t *ptl;
2351         void *page_kaddr;
2352         struct page *page;
2353         pte_t _dst_pte, *dst_pte;
2354         int ret;
2355         pgoff_t offset, max_off;
2356
2357         ret = -ENOMEM;
2358         if (!shmem_inode_acct_block(inode, 1))
2359                 goto out;
2360
2361         if (!*pagep) {
2362                 page = shmem_alloc_page(gfp, info, pgoff);
2363                 if (!page)
2364                         goto out_unacct_blocks;
2365
2366                 if (!zeropage) {        /* mcopy_atomic */
2367                         page_kaddr = kmap_atomic(page);
2368                         ret = copy_from_user(page_kaddr,
2369                                              (const void __user *)src_addr,
2370                                              PAGE_SIZE);
2371                         kunmap_atomic(page_kaddr);
2372
2373                         /* fallback to copy_from_user outside mmap_lock */
2374                         if (unlikely(ret)) {
2375                                 *pagep = page;
2376                                 shmem_inode_unacct_blocks(inode, 1);
2377                                 /* don't free the page */
2378                                 return -ENOENT;
2379                         }
2380                 } else {                /* mfill_zeropage_atomic */
2381                         clear_highpage(page);
2382                 }
2383         } else {
2384                 page = *pagep;
2385                 *pagep = NULL;
2386         }
2387
2388         VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2389         __SetPageLocked(page);
2390         __SetPageSwapBacked(page);
2391         __SetPageUptodate(page);
2392
2393         ret = -EFAULT;
2394         offset = linear_page_index(dst_vma, dst_addr);
2395         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2396         if (unlikely(offset >= max_off))
2397                 goto out_release;
2398
2399         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2400                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2401         if (ret)
2402                 goto out_release;
2403
2404         _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2405         if (dst_vma->vm_flags & VM_WRITE)
2406                 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2407         else {
2408                 /*
2409                  * We don't set the pte dirty if the vma has no
2410                  * VM_WRITE permission, so mark the page dirty or it
2411                  * could be freed from under us. We could do it
2412                  * unconditionally before unlock_page(), but doing it
2413                  * only if VM_WRITE is not set is faster.
2414                  */
2415                 set_page_dirty(page);
2416         }
2417
2418         dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2419
2420         ret = -EFAULT;
2421         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2422         if (unlikely(offset >= max_off))
2423                 goto out_release_unlock;
2424
2425         ret = -EEXIST;
2426         if (!pte_none(*dst_pte))
2427                 goto out_release_unlock;
2428
2429         lru_cache_add(page);
2430
2431         spin_lock_irq(&info->lock);
2432         info->alloced++;
2433         inode->i_blocks += BLOCKS_PER_PAGE;
2434         shmem_recalc_inode(inode);
2435         spin_unlock_irq(&info->lock);
2436
2437         inc_mm_counter(dst_mm, mm_counter_file(page));
2438         page_add_file_rmap(page, false);
2439         set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2440
2441         /* No need to invalidate - it was non-present before */
2442         update_mmu_cache(dst_vma, dst_addr, dst_pte);
2443         pte_unmap_unlock(dst_pte, ptl);
2444         unlock_page(page);
2445         ret = 0;
2446 out:
2447         return ret;
2448 out_release_unlock:
2449         pte_unmap_unlock(dst_pte, ptl);
2450         ClearPageDirty(page);
2451         delete_from_page_cache(page);
2452 out_release:
2453         unlock_page(page);
2454         put_page(page);
2455 out_unacct_blocks:
2456         shmem_inode_unacct_blocks(inode, 1);
2457         goto out;
2458 }
2459
2460 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2461                            pmd_t *dst_pmd,
2462                            struct vm_area_struct *dst_vma,
2463                            unsigned long dst_addr,
2464                            unsigned long src_addr,
2465                            struct page **pagep)
2466 {
2467         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2468                                       dst_addr, src_addr, false, pagep);
2469 }
2470
2471 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2472                              pmd_t *dst_pmd,
2473                              struct vm_area_struct *dst_vma,
2474                              unsigned long dst_addr)
2475 {
2476         struct page *page = NULL;
2477
2478         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2479                                       dst_addr, 0, true, &page);
2480 }
2481
2482 #ifdef CONFIG_TMPFS
2483 static const struct inode_operations shmem_symlink_inode_operations;
2484 static const struct inode_operations shmem_short_symlink_operations;
2485
2486 #ifdef CONFIG_TMPFS_XATTR
2487 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2488 #else
2489 #define shmem_initxattrs NULL
2490 #endif
2491
2492 static int
2493 shmem_write_begin(struct file *file, struct address_space *mapping,
2494                         loff_t pos, unsigned len, unsigned flags,
2495                         struct page **pagep, void **fsdata)
2496 {
2497         struct inode *inode = mapping->host;
2498         struct shmem_inode_info *info = SHMEM_I(inode);
2499         pgoff_t index = pos >> PAGE_SHIFT;
2500
2501         /* i_mutex is held by caller */
2502         if (unlikely(info->seals & (F_SEAL_GROW |
2503                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2504                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2505                         return -EPERM;
2506                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2507                         return -EPERM;
2508         }
2509
2510         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2511 }
2512
2513 static int
2514 shmem_write_end(struct file *file, struct address_space *mapping,
2515                         loff_t pos, unsigned len, unsigned copied,
2516                         struct page *page, void *fsdata)
2517 {
2518         struct inode *inode = mapping->host;
2519
2520         if (pos + copied > inode->i_size)
2521                 i_size_write(inode, pos + copied);
2522
2523         if (!PageUptodate(page)) {
2524                 struct page *head = compound_head(page);
2525                 if (PageTransCompound(page)) {
2526                         int i;
2527
2528                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2529                                 if (head + i == page)
2530                                         continue;
2531                                 clear_highpage(head + i);
2532                                 flush_dcache_page(head + i);
2533                         }
2534                 }
2535                 if (copied < PAGE_SIZE) {
2536                         unsigned from = pos & (PAGE_SIZE - 1);
2537                         zero_user_segments(page, 0, from,
2538                                         from + copied, PAGE_SIZE);
2539                 }
2540                 SetPageUptodate(head);
2541         }
2542         set_page_dirty(page);
2543         unlock_page(page);
2544         put_page(page);
2545
2546         return copied;
2547 }
2548
2549 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2550 {
2551         struct file *file = iocb->ki_filp;
2552         struct inode *inode = file_inode(file);
2553         struct address_space *mapping = inode->i_mapping;
2554         pgoff_t index;
2555         unsigned long offset;
2556         enum sgp_type sgp = SGP_READ;
2557         int error = 0;
2558         ssize_t retval = 0;
2559         loff_t *ppos = &iocb->ki_pos;
2560
2561         /*
2562          * Might this read be for a stacking filesystem?  Then when reading
2563          * holes of a sparse file, we actually need to allocate those pages,
2564          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2565          */
2566         if (!iter_is_iovec(to))
2567                 sgp = SGP_CACHE;
2568
2569         index = *ppos >> PAGE_SHIFT;
2570         offset = *ppos & ~PAGE_MASK;
2571
2572         for (;;) {
2573                 struct page *page = NULL;
2574                 pgoff_t end_index;
2575                 unsigned long nr, ret;
2576                 loff_t i_size = i_size_read(inode);
2577
2578                 end_index = i_size >> PAGE_SHIFT;
2579                 if (index > end_index)
2580                         break;
2581                 if (index == end_index) {
2582                         nr = i_size & ~PAGE_MASK;
2583                         if (nr <= offset)
2584                                 break;
2585                 }
2586
2587                 error = shmem_getpage(inode, index, &page, sgp);
2588                 if (error) {
2589                         if (error == -EINVAL)
2590                                 error = 0;
2591                         break;
2592                 }
2593                 if (page) {
2594                         if (sgp == SGP_CACHE)
2595                                 set_page_dirty(page);
2596                         unlock_page(page);
2597                 }
2598
2599                 /*
2600                  * We must evaluate after, since reads (unlike writes)
2601                  * are called without i_mutex protection against truncate
2602                  */
2603                 nr = PAGE_SIZE;
2604                 i_size = i_size_read(inode);
2605                 end_index = i_size >> PAGE_SHIFT;
2606                 if (index == end_index) {
2607                         nr = i_size & ~PAGE_MASK;
2608                         if (nr <= offset) {
2609                                 if (page)
2610                                         put_page(page);
2611                                 break;
2612                         }
2613                 }
2614                 nr -= offset;
2615
2616                 if (page) {
2617                         /*
2618                          * If users can be writing to this page using arbitrary
2619                          * virtual addresses, take care about potential aliasing
2620                          * before reading the page on the kernel side.
2621                          */
2622                         if (mapping_writably_mapped(mapping))
2623                                 flush_dcache_page(page);
2624                         /*
2625                          * Mark the page accessed if we read the beginning.
2626                          */
2627                         if (!offset)
2628                                 mark_page_accessed(page);
2629                 } else {
2630                         page = ZERO_PAGE(0);
2631                         get_page(page);
2632                 }
2633
2634                 /*
2635                  * Ok, we have the page, and it's up-to-date, so
2636                  * now we can copy it to user space...
2637                  */
2638                 ret = copy_page_to_iter(page, offset, nr, to);
2639                 retval += ret;
2640                 offset += ret;
2641                 index += offset >> PAGE_SHIFT;
2642                 offset &= ~PAGE_MASK;
2643
2644                 put_page(page);
2645                 if (!iov_iter_count(to))
2646                         break;
2647                 if (ret < nr) {
2648                         error = -EFAULT;
2649                         break;
2650                 }
2651                 cond_resched();
2652         }
2653
2654         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2655         file_accessed(file);
2656         return retval ? retval : error;
2657 }
2658
2659 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2660 {
2661         struct address_space *mapping = file->f_mapping;
2662         struct inode *inode = mapping->host;
2663
2664         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2665                 return generic_file_llseek_size(file, offset, whence,
2666                                         MAX_LFS_FILESIZE, i_size_read(inode));
2667         if (offset < 0)
2668                 return -ENXIO;
2669
2670         inode_lock(inode);
2671         /* We're holding i_mutex so we can access i_size directly */
2672         offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2673         if (offset >= 0)
2674                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2675         inode_unlock(inode);
2676         return offset;
2677 }
2678
2679 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2680                                                          loff_t len)
2681 {
2682         struct inode *inode = file_inode(file);
2683         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2684         struct shmem_inode_info *info = SHMEM_I(inode);
2685         struct shmem_falloc shmem_falloc;
2686         pgoff_t start, index, end;
2687         int error;
2688
2689         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2690                 return -EOPNOTSUPP;
2691
2692         inode_lock(inode);
2693
2694         if (mode & FALLOC_FL_PUNCH_HOLE) {
2695                 struct address_space *mapping = file->f_mapping;
2696                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2697                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2698                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2699
2700                 /* protected by i_mutex */
2701                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2702                         error = -EPERM;
2703                         goto out;
2704                 }
2705
2706                 shmem_falloc.waitq = &shmem_falloc_waitq;
2707                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2708                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2709                 spin_lock(&inode->i_lock);
2710                 inode->i_private = &shmem_falloc;
2711                 spin_unlock(&inode->i_lock);
2712
2713                 if ((u64)unmap_end > (u64)unmap_start)
2714                         unmap_mapping_range(mapping, unmap_start,
2715                                             1 + unmap_end - unmap_start, 0);
2716                 shmem_truncate_range(inode, offset, offset + len - 1);
2717                 /* No need to unmap again: hole-punching leaves COWed pages */
2718
2719                 spin_lock(&inode->i_lock);
2720                 inode->i_private = NULL;
2721                 wake_up_all(&shmem_falloc_waitq);
2722                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2723                 spin_unlock(&inode->i_lock);
2724                 error = 0;
2725                 goto out;
2726         }
2727
2728         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2729         error = inode_newsize_ok(inode, offset + len);
2730         if (error)
2731                 goto out;
2732
2733         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2734                 error = -EPERM;
2735                 goto out;
2736         }
2737
2738         start = offset >> PAGE_SHIFT;
2739         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2740         /* Try to avoid a swapstorm if len is impossible to satisfy */
2741         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2742                 error = -ENOSPC;
2743                 goto out;
2744         }
2745
2746         shmem_falloc.waitq = NULL;
2747         shmem_falloc.start = start;
2748         shmem_falloc.next  = start;
2749         shmem_falloc.nr_falloced = 0;
2750         shmem_falloc.nr_unswapped = 0;
2751         spin_lock(&inode->i_lock);
2752         inode->i_private = &shmem_falloc;
2753         spin_unlock(&inode->i_lock);
2754
2755         for (index = start; index < end; index++) {
2756                 struct page *page;
2757
2758                 /*
2759                  * Good, the fallocate(2) manpage permits EINTR: we may have
2760                  * been interrupted because we are using up too much memory.
2761                  */
2762                 if (signal_pending(current))
2763                         error = -EINTR;
2764                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2765                         error = -ENOMEM;
2766                 else
2767                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2768                 if (error) {
2769                         /* Remove the !PageUptodate pages we added */
2770                         if (index > start) {
2771                                 shmem_undo_range(inode,
2772                                     (loff_t)start << PAGE_SHIFT,
2773                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2774                         }
2775                         goto undone;
2776                 }
2777
2778                 /*
2779                  * Inform shmem_writepage() how far we have reached.
2780                  * No need for lock or barrier: we have the page lock.
2781                  */
2782                 shmem_falloc.next++;
2783                 if (!PageUptodate(page))
2784                         shmem_falloc.nr_falloced++;
2785
2786                 /*
2787                  * If !PageUptodate, leave it that way so that freeable pages
2788                  * can be recognized if we need to rollback on error later.
2789                  * But set_page_dirty so that memory pressure will swap rather
2790                  * than free the pages we are allocating (and SGP_CACHE pages
2791                  * might still be clean: we now need to mark those dirty too).
2792                  */
2793                 set_page_dirty(page);
2794                 unlock_page(page);
2795                 put_page(page);
2796                 cond_resched();
2797         }
2798
2799         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2800                 i_size_write(inode, offset + len);
2801         inode->i_ctime = current_time(inode);
2802 undone:
2803         spin_lock(&inode->i_lock);
2804         inode->i_private = NULL;
2805         spin_unlock(&inode->i_lock);
2806 out:
2807         inode_unlock(inode);
2808         return error;
2809 }
2810
2811 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2812 {
2813         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2814
2815         buf->f_type = TMPFS_MAGIC;
2816         buf->f_bsize = PAGE_SIZE;
2817         buf->f_namelen = NAME_MAX;
2818         if (sbinfo->max_blocks) {
2819                 buf->f_blocks = sbinfo->max_blocks;
2820                 buf->f_bavail =
2821                 buf->f_bfree  = sbinfo->max_blocks -
2822                                 percpu_counter_sum(&sbinfo->used_blocks);
2823         }
2824         if (sbinfo->max_inodes) {
2825                 buf->f_files = sbinfo->max_inodes;
2826                 buf->f_ffree = sbinfo->free_inodes;
2827         }
2828         /* else leave those fields 0 like simple_statfs */
2829         return 0;
2830 }
2831
2832 /*
2833  * File creation. Allocate an inode, and we're done..
2834  */
2835 static int
2836 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2837             struct dentry *dentry, umode_t mode, dev_t dev)
2838 {
2839         struct inode *inode;
2840         int error = -ENOSPC;
2841
2842         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2843         if (inode) {
2844                 error = simple_acl_create(dir, inode);
2845                 if (error)
2846                         goto out_iput;
2847                 error = security_inode_init_security(inode, dir,
2848                                                      &dentry->d_name,
2849                                                      shmem_initxattrs, NULL);
2850                 if (error && error != -EOPNOTSUPP)
2851                         goto out_iput;
2852
2853                 error = 0;
2854                 dir->i_size += BOGO_DIRENT_SIZE;
2855                 dir->i_ctime = dir->i_mtime = current_time(dir);
2856                 d_instantiate(dentry, inode);
2857                 dget(dentry); /* Extra count - pin the dentry in core */
2858         }
2859         return error;
2860 out_iput:
2861         iput(inode);
2862         return error;
2863 }
2864
2865 static int
2866 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2867               struct dentry *dentry, umode_t mode)
2868 {
2869         struct inode *inode;
2870         int error = -ENOSPC;
2871
2872         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2873         if (inode) {
2874                 error = security_inode_init_security(inode, dir,
2875                                                      NULL,
2876                                                      shmem_initxattrs, NULL);
2877                 if (error && error != -EOPNOTSUPP)
2878                         goto out_iput;
2879                 error = simple_acl_create(dir, inode);
2880                 if (error)
2881                         goto out_iput;
2882                 d_tmpfile(dentry, inode);
2883         }
2884         return error;
2885 out_iput:
2886         iput(inode);
2887         return error;
2888 }
2889
2890 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2891                        struct dentry *dentry, umode_t mode)
2892 {
2893         int error;
2894
2895         if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2896                                  mode | S_IFDIR, 0)))
2897                 return error;
2898         inc_nlink(dir);
2899         return 0;
2900 }
2901
2902 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2903                         struct dentry *dentry, umode_t mode, bool excl)
2904 {
2905         return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2906 }
2907
2908 /*
2909  * Link a file..
2910  */
2911 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2912 {
2913         struct inode *inode = d_inode(old_dentry);
2914         int ret = 0;
2915
2916         /*
2917          * No ordinary (disk based) filesystem counts links as inodes;
2918          * but each new link needs a new dentry, pinning lowmem, and
2919          * tmpfs dentries cannot be pruned until they are unlinked.
2920          * But if an O_TMPFILE file is linked into the tmpfs, the
2921          * first link must skip that, to get the accounting right.
2922          */
2923         if (inode->i_nlink) {
2924                 ret = shmem_reserve_inode(inode->i_sb, NULL);
2925                 if (ret)
2926                         goto out;
2927         }
2928
2929         dir->i_size += BOGO_DIRENT_SIZE;
2930         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2931         inc_nlink(inode);
2932         ihold(inode);   /* New dentry reference */
2933         dget(dentry);           /* Extra pinning count for the created dentry */
2934         d_instantiate(dentry, inode);
2935 out:
2936         return ret;
2937 }
2938
2939 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2940 {
2941         struct inode *inode = d_inode(dentry);
2942
2943         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2944                 shmem_free_inode(inode->i_sb);
2945
2946         dir->i_size -= BOGO_DIRENT_SIZE;
2947         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2948         drop_nlink(inode);
2949         dput(dentry);   /* Undo the count from "create" - this does all the work */
2950         return 0;
2951 }
2952
2953 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2954 {
2955         if (!simple_empty(dentry))
2956                 return -ENOTEMPTY;
2957
2958         drop_nlink(d_inode(dentry));
2959         drop_nlink(dir);
2960         return shmem_unlink(dir, dentry);
2961 }
2962
2963 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2964 {
2965         bool old_is_dir = d_is_dir(old_dentry);
2966         bool new_is_dir = d_is_dir(new_dentry);
2967
2968         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2969                 if (old_is_dir) {
2970                         drop_nlink(old_dir);
2971                         inc_nlink(new_dir);
2972                 } else {
2973                         drop_nlink(new_dir);
2974                         inc_nlink(old_dir);
2975                 }
2976         }
2977         old_dir->i_ctime = old_dir->i_mtime =
2978         new_dir->i_ctime = new_dir->i_mtime =
2979         d_inode(old_dentry)->i_ctime =
2980         d_inode(new_dentry)->i_ctime = current_time(old_dir);
2981
2982         return 0;
2983 }
2984
2985 static int shmem_whiteout(struct user_namespace *mnt_userns,
2986                           struct inode *old_dir, struct dentry *old_dentry)
2987 {
2988         struct dentry *whiteout;
2989         int error;
2990
2991         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2992         if (!whiteout)
2993                 return -ENOMEM;
2994
2995         error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2996                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2997         dput(whiteout);
2998         if (error)
2999                 return error;
3000
3001         /*
3002          * Cheat and hash the whiteout while the old dentry is still in
3003          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3004          *
3005          * d_lookup() will consistently find one of them at this point,
3006          * not sure which one, but that isn't even important.
3007          */
3008         d_rehash(whiteout);
3009         return 0;
3010 }
3011
3012 /*
3013  * The VFS layer already does all the dentry stuff for rename,
3014  * we just have to decrement the usage count for the target if
3015  * it exists so that the VFS layer correctly free's it when it
3016  * gets overwritten.
3017  */
3018 static int shmem_rename2(struct user_namespace *mnt_userns,
3019                          struct inode *old_dir, struct dentry *old_dentry,
3020                          struct inode *new_dir, struct dentry *new_dentry,
3021                          unsigned int flags)
3022 {
3023         struct inode *inode = d_inode(old_dentry);
3024         int they_are_dirs = S_ISDIR(inode->i_mode);
3025
3026         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3027                 return -EINVAL;
3028
3029         if (flags & RENAME_EXCHANGE)
3030                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3031
3032         if (!simple_empty(new_dentry))
3033                 return -ENOTEMPTY;
3034
3035         if (flags & RENAME_WHITEOUT) {
3036                 int error;
3037
3038                 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3039                 if (error)
3040                         return error;
3041         }
3042
3043         if (d_really_is_positive(new_dentry)) {
3044                 (void) shmem_unlink(new_dir, new_dentry);
3045                 if (they_are_dirs) {
3046                         drop_nlink(d_inode(new_dentry));
3047                         drop_nlink(old_dir);
3048                 }
3049         } else if (they_are_dirs) {
3050                 drop_nlink(old_dir);
3051                 inc_nlink(new_dir);
3052         }
3053
3054         old_dir->i_size -= BOGO_DIRENT_SIZE;
3055         new_dir->i_size += BOGO_DIRENT_SIZE;
3056         old_dir->i_ctime = old_dir->i_mtime =
3057         new_dir->i_ctime = new_dir->i_mtime =
3058         inode->i_ctime = current_time(old_dir);
3059         return 0;
3060 }
3061
3062 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3063                          struct dentry *dentry, const char *symname)
3064 {
3065         int error;
3066         int len;
3067         struct inode *inode;
3068         struct page *page;
3069
3070         len = strlen(symname) + 1;
3071         if (len > PAGE_SIZE)
3072                 return -ENAMETOOLONG;
3073
3074         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3075                                 VM_NORESERVE);
3076         if (!inode)
3077                 return -ENOSPC;
3078
3079         error = security_inode_init_security(inode, dir, &dentry->d_name,
3080                                              shmem_initxattrs, NULL);
3081         if (error && error != -EOPNOTSUPP) {
3082                 iput(inode);
3083                 return error;
3084         }
3085
3086         inode->i_size = len-1;
3087         if (len <= SHORT_SYMLINK_LEN) {
3088                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3089                 if (!inode->i_link) {
3090                         iput(inode);
3091                         return -ENOMEM;
3092                 }
3093                 inode->i_op = &shmem_short_symlink_operations;
3094         } else {
3095                 inode_nohighmem(inode);
3096                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3097                 if (error) {
3098                         iput(inode);
3099                         return error;
3100                 }
3101                 inode->i_mapping->a_ops = &shmem_aops;
3102                 inode->i_op = &shmem_symlink_inode_operations;
3103                 memcpy(page_address(page), symname, len);
3104                 SetPageUptodate(page);
3105                 set_page_dirty(page);
3106                 unlock_page(page);
3107                 put_page(page);
3108         }
3109         dir->i_size += BOGO_DIRENT_SIZE;
3110         dir->i_ctime = dir->i_mtime = current_time(dir);
3111         d_instantiate(dentry, inode);
3112         dget(dentry);
3113         return 0;
3114 }
3115
3116 static void shmem_put_link(void *arg)
3117 {
3118         mark_page_accessed(arg);
3119         put_page(arg);
3120 }
3121
3122 static const char *shmem_get_link(struct dentry *dentry,
3123                                   struct inode *inode,
3124                                   struct delayed_call *done)
3125 {
3126         struct page *page = NULL;
3127         int error;
3128         if (!dentry) {
3129                 page = find_get_page(inode->i_mapping, 0);
3130                 if (!page)
3131                         return ERR_PTR(-ECHILD);
3132                 if (!PageUptodate(page)) {
3133                         put_page(page);
3134                         return ERR_PTR(-ECHILD);
3135                 }
3136         } else {
3137                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3138                 if (error)
3139                         return ERR_PTR(error);
3140                 unlock_page(page);
3141         }
3142         set_delayed_call(done, shmem_put_link, page);
3143         return page_address(page);
3144 }
3145
3146 #ifdef CONFIG_TMPFS_XATTR
3147 /*
3148  * Superblocks without xattr inode operations may get some security.* xattr
3149  * support from the LSM "for free". As soon as we have any other xattrs
3150  * like ACLs, we also need to implement the security.* handlers at
3151  * filesystem level, though.
3152  */
3153
3154 /*
3155  * Callback for security_inode_init_security() for acquiring xattrs.
3156  */
3157 static int shmem_initxattrs(struct inode *inode,
3158                             const struct xattr *xattr_array,
3159                             void *fs_info)
3160 {
3161         struct shmem_inode_info *info = SHMEM_I(inode);
3162         const struct xattr *xattr;
3163         struct simple_xattr *new_xattr;
3164         size_t len;
3165
3166         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3167                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3168                 if (!new_xattr)
3169                         return -ENOMEM;
3170
3171                 len = strlen(xattr->name) + 1;
3172                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3173                                           GFP_KERNEL);
3174                 if (!new_xattr->name) {
3175                         kvfree(new_xattr);
3176                         return -ENOMEM;
3177                 }
3178
3179                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3180                        XATTR_SECURITY_PREFIX_LEN);
3181                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3182                        xattr->name, len);
3183
3184                 simple_xattr_list_add(&info->xattrs, new_xattr);
3185         }
3186
3187         return 0;
3188 }
3189
3190 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3191                                    struct dentry *unused, struct inode *inode,
3192                                    const char *name, void *buffer, size_t size)
3193 {
3194         struct shmem_inode_info *info = SHMEM_I(inode);
3195
3196         name = xattr_full_name(handler, name);
3197         return simple_xattr_get(&info->xattrs, name, buffer, size);
3198 }
3199
3200 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3201                                    struct user_namespace *mnt_userns,
3202                                    struct dentry *unused, struct inode *inode,
3203                                    const char *name, const void *value,
3204                                    size_t size, int flags)
3205 {
3206         struct shmem_inode_info *info = SHMEM_I(inode);
3207
3208         name = xattr_full_name(handler, name);
3209         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3210 }
3211
3212 static const struct xattr_handler shmem_security_xattr_handler = {
3213         .prefix = XATTR_SECURITY_PREFIX,
3214         .get = shmem_xattr_handler_get,
3215         .set = shmem_xattr_handler_set,
3216 };
3217
3218 static const struct xattr_handler shmem_trusted_xattr_handler = {
3219         .prefix = XATTR_TRUSTED_PREFIX,
3220         .get = shmem_xattr_handler_get,
3221         .set = shmem_xattr_handler_set,
3222 };
3223
3224 static const struct xattr_handler *shmem_xattr_handlers[] = {
3225 #ifdef CONFIG_TMPFS_POSIX_ACL
3226         &posix_acl_access_xattr_handler,
3227         &posix_acl_default_xattr_handler,
3228 #endif
3229         &shmem_security_xattr_handler,
3230         &shmem_trusted_xattr_handler,
3231         NULL
3232 };
3233
3234 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3235 {
3236         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3237         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3238 }
3239 #endif /* CONFIG_TMPFS_XATTR */
3240
3241 static const struct inode_operations shmem_short_symlink_operations = {
3242         .get_link       = simple_get_link,
3243 #ifdef CONFIG_TMPFS_XATTR
3244         .listxattr      = shmem_listxattr,
3245 #endif
3246 };
3247
3248 static const struct inode_operations shmem_symlink_inode_operations = {
3249         .get_link       = shmem_get_link,
3250 #ifdef CONFIG_TMPFS_XATTR
3251         .listxattr      = shmem_listxattr,
3252 #endif
3253 };
3254
3255 static struct dentry *shmem_get_parent(struct dentry *child)
3256 {
3257         return ERR_PTR(-ESTALE);
3258 }
3259
3260 static int shmem_match(struct inode *ino, void *vfh)
3261 {
3262         __u32 *fh = vfh;
3263         __u64 inum = fh[2];
3264         inum = (inum << 32) | fh[1];
3265         return ino->i_ino == inum && fh[0] == ino->i_generation;
3266 }
3267
3268 /* Find any alias of inode, but prefer a hashed alias */
3269 static struct dentry *shmem_find_alias(struct inode *inode)
3270 {
3271         struct dentry *alias = d_find_alias(inode);
3272
3273         return alias ?: d_find_any_alias(inode);
3274 }
3275
3276
3277 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3278                 struct fid *fid, int fh_len, int fh_type)
3279 {
3280         struct inode *inode;
3281         struct dentry *dentry = NULL;
3282         u64 inum;
3283
3284         if (fh_len < 3)
3285                 return NULL;
3286
3287         inum = fid->raw[2];
3288         inum = (inum << 32) | fid->raw[1];
3289
3290         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3291                         shmem_match, fid->raw);
3292         if (inode) {
3293                 dentry = shmem_find_alias(inode);
3294                 iput(inode);
3295         }
3296
3297         return dentry;
3298 }
3299
3300 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3301                                 struct inode *parent)
3302 {
3303         if (*len < 3) {
3304                 *len = 3;
3305                 return FILEID_INVALID;
3306         }
3307
3308         if (inode_unhashed(inode)) {
3309                 /* Unfortunately insert_inode_hash is not idempotent,
3310                  * so as we hash inodes here rather than at creation
3311                  * time, we need a lock to ensure we only try
3312                  * to do it once
3313                  */
3314                 static DEFINE_SPINLOCK(lock);
3315                 spin_lock(&lock);
3316                 if (inode_unhashed(inode))
3317                         __insert_inode_hash(inode,
3318                                             inode->i_ino + inode->i_generation);
3319                 spin_unlock(&lock);
3320         }
3321
3322         fh[0] = inode->i_generation;
3323         fh[1] = inode->i_ino;
3324         fh[2] = ((__u64)inode->i_ino) >> 32;
3325
3326         *len = 3;
3327         return 1;
3328 }
3329
3330 static const struct export_operations shmem_export_ops = {
3331         .get_parent     = shmem_get_parent,
3332         .encode_fh      = shmem_encode_fh,
3333         .fh_to_dentry   = shmem_fh_to_dentry,
3334 };
3335
3336 enum shmem_param {
3337         Opt_gid,
3338         Opt_huge,
3339         Opt_mode,
3340         Opt_mpol,
3341         Opt_nr_blocks,
3342         Opt_nr_inodes,
3343         Opt_size,
3344         Opt_uid,
3345         Opt_inode32,
3346         Opt_inode64,
3347 };
3348
3349 static const struct constant_table shmem_param_enums_huge[] = {
3350         {"never",       SHMEM_HUGE_NEVER },
3351         {"always",      SHMEM_HUGE_ALWAYS },
3352         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3353         {"advise",      SHMEM_HUGE_ADVISE },
3354         {}
3355 };
3356
3357 const struct fs_parameter_spec shmem_fs_parameters[] = {
3358         fsparam_u32   ("gid",           Opt_gid),
3359         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3360         fsparam_u32oct("mode",          Opt_mode),
3361         fsparam_string("mpol",          Opt_mpol),
3362         fsparam_string("nr_blocks",     Opt_nr_blocks),
3363         fsparam_string("nr_inodes",     Opt_nr_inodes),
3364         fsparam_string("size",          Opt_size),
3365         fsparam_u32   ("uid",           Opt_uid),
3366         fsparam_flag  ("inode32",       Opt_inode32),
3367         fsparam_flag  ("inode64",       Opt_inode64),
3368         {}
3369 };
3370
3371 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3372 {
3373         struct shmem_options *ctx = fc->fs_private;
3374         struct fs_parse_result result;
3375         unsigned long long size;
3376         char *rest;
3377         int opt;
3378
3379         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3380         if (opt < 0)
3381                 return opt;
3382
3383         switch (opt) {
3384         case Opt_size:
3385                 size = memparse(param->string, &rest);
3386                 if (*rest == '%') {
3387                         size <<= PAGE_SHIFT;
3388                         size *= totalram_pages();
3389                         do_div(size, 100);
3390                         rest++;
3391                 }
3392                 if (*rest)
3393                         goto bad_value;
3394                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3395                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3396                 break;
3397         case Opt_nr_blocks:
3398                 ctx->blocks = memparse(param->string, &rest);
3399                 if (*rest)
3400                         goto bad_value;
3401                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3402                 break;
3403         case Opt_nr_inodes:
3404                 ctx->inodes = memparse(param->string, &rest);
3405                 if (*rest)
3406                         goto bad_value;
3407                 ctx->seen |= SHMEM_SEEN_INODES;
3408                 break;
3409         case Opt_mode:
3410                 ctx->mode = result.uint_32 & 07777;
3411                 break;
3412         case Opt_uid:
3413                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3414                 if (!uid_valid(ctx->uid))
3415                         goto bad_value;
3416                 break;
3417         case Opt_gid:
3418                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3419                 if (!gid_valid(ctx->gid))
3420                         goto bad_value;
3421                 break;
3422         case Opt_huge:
3423                 ctx->huge = result.uint_32;
3424                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3425                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3426                       has_transparent_hugepage()))
3427                         goto unsupported_parameter;
3428                 ctx->seen |= SHMEM_SEEN_HUGE;
3429                 break;
3430         case Opt_mpol:
3431                 if (IS_ENABLED(CONFIG_NUMA)) {
3432                         mpol_put(ctx->mpol);
3433                         ctx->mpol = NULL;
3434                         if (mpol_parse_str(param->string, &ctx->mpol))
3435                                 goto bad_value;
3436                         break;
3437                 }
3438                 goto unsupported_parameter;
3439         case Opt_inode32:
3440                 ctx->full_inums = false;
3441                 ctx->seen |= SHMEM_SEEN_INUMS;
3442                 break;
3443         case Opt_inode64:
3444                 if (sizeof(ino_t) < 8) {
3445                         return invalfc(fc,
3446                                        "Cannot use inode64 with <64bit inums in kernel\n");
3447                 }
3448                 ctx->full_inums = true;
3449                 ctx->seen |= SHMEM_SEEN_INUMS;
3450                 break;
3451         }
3452         return 0;
3453
3454 unsupported_parameter:
3455         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3456 bad_value:
3457         return invalfc(fc, "Bad value for '%s'", param->key);
3458 }
3459
3460 static int shmem_parse_options(struct fs_context *fc, void *data)
3461 {
3462         char *options = data;
3463
3464         if (options) {
3465                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3466                 if (err)
3467                         return err;
3468         }
3469
3470         while (options != NULL) {
3471                 char *this_char = options;
3472                 for (;;) {
3473                         /*
3474                          * NUL-terminate this option: unfortunately,
3475                          * mount options form a comma-separated list,
3476                          * but mpol's nodelist may also contain commas.
3477                          */
3478                         options = strchr(options, ',');
3479                         if (options == NULL)
3480                                 break;
3481                         options++;
3482                         if (!isdigit(*options)) {
3483                                 options[-1] = '\0';
3484                                 break;
3485                         }
3486                 }
3487                 if (*this_char) {
3488                         char *value = strchr(this_char,'=');
3489                         size_t len = 0;
3490                         int err;
3491
3492                         if (value) {
3493                                 *value++ = '\0';
3494                                 len = strlen(value);
3495                         }
3496                         err = vfs_parse_fs_string(fc, this_char, value, len);
3497                         if (err < 0)
3498                                 return err;
3499                 }
3500         }
3501         return 0;
3502 }
3503
3504 /*
3505  * Reconfigure a shmem filesystem.
3506  *
3507  * Note that we disallow change from limited->unlimited blocks/inodes while any
3508  * are in use; but we must separately disallow unlimited->limited, because in
3509  * that case we have no record of how much is already in use.
3510  */
3511 static int shmem_reconfigure(struct fs_context *fc)
3512 {
3513         struct shmem_options *ctx = fc->fs_private;
3514         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3515         unsigned long inodes;
3516         const char *err;
3517
3518         spin_lock(&sbinfo->stat_lock);
3519         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3520         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3521                 if (!sbinfo->max_blocks) {
3522                         err = "Cannot retroactively limit size";
3523                         goto out;
3524                 }
3525                 if (percpu_counter_compare(&sbinfo->used_blocks,
3526                                            ctx->blocks) > 0) {
3527                         err = "Too small a size for current use";
3528                         goto out;
3529                 }
3530         }
3531         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3532                 if (!sbinfo->max_inodes) {
3533                         err = "Cannot retroactively limit inodes";
3534                         goto out;
3535                 }
3536                 if (ctx->inodes < inodes) {
3537                         err = "Too few inodes for current use";
3538                         goto out;
3539                 }
3540         }
3541
3542         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3543             sbinfo->next_ino > UINT_MAX) {
3544                 err = "Current inum too high to switch to 32-bit inums";
3545                 goto out;
3546         }
3547
3548         if (ctx->seen & SHMEM_SEEN_HUGE)
3549                 sbinfo->huge = ctx->huge;
3550         if (ctx->seen & SHMEM_SEEN_INUMS)
3551                 sbinfo->full_inums = ctx->full_inums;
3552         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3553                 sbinfo->max_blocks  = ctx->blocks;
3554         if (ctx->seen & SHMEM_SEEN_INODES) {
3555                 sbinfo->max_inodes  = ctx->inodes;
3556                 sbinfo->free_inodes = ctx->inodes - inodes;
3557         }
3558
3559         /*
3560          * Preserve previous mempolicy unless mpol remount option was specified.
3561          */
3562         if (ctx->mpol) {
3563                 mpol_put(sbinfo->mpol);
3564                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3565                 ctx->mpol = NULL;
3566         }
3567         spin_unlock(&sbinfo->stat_lock);
3568         return 0;
3569 out:
3570         spin_unlock(&sbinfo->stat_lock);
3571         return invalfc(fc, "%s", err);
3572 }
3573
3574 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3575 {
3576         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3577
3578         if (sbinfo->max_blocks != shmem_default_max_blocks())
3579                 seq_printf(seq, ",size=%luk",
3580                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3581         if (sbinfo->max_inodes != shmem_default_max_inodes())
3582                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3583         if (sbinfo->mode != (0777 | S_ISVTX))
3584                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3585         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3586                 seq_printf(seq, ",uid=%u",
3587                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3588         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3589                 seq_printf(seq, ",gid=%u",
3590                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3591
3592         /*
3593          * Showing inode{64,32} might be useful even if it's the system default,
3594          * since then people don't have to resort to checking both here and
3595          * /proc/config.gz to confirm 64-bit inums were successfully applied
3596          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3597          *
3598          * We hide it when inode64 isn't the default and we are using 32-bit
3599          * inodes, since that probably just means the feature isn't even under
3600          * consideration.
3601          *
3602          * As such:
3603          *
3604          *                     +-----------------+-----------------+
3605          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3606          *  +------------------+-----------------+-----------------+
3607          *  | full_inums=true  | show            | show            |
3608          *  | full_inums=false | show            | hide            |
3609          *  +------------------+-----------------+-----------------+
3610          *
3611          */
3612         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3613                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3614 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3615         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3616         if (sbinfo->huge)
3617                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3618 #endif
3619         shmem_show_mpol(seq, sbinfo->mpol);
3620         return 0;
3621 }
3622
3623 #endif /* CONFIG_TMPFS */
3624
3625 static void shmem_put_super(struct super_block *sb)
3626 {
3627         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3628
3629         free_percpu(sbinfo->ino_batch);
3630         percpu_counter_destroy(&sbinfo->used_blocks);
3631         mpol_put(sbinfo->mpol);
3632         kfree(sbinfo);
3633         sb->s_fs_info = NULL;
3634 }
3635
3636 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3637 {
3638         struct shmem_options *ctx = fc->fs_private;
3639         struct inode *inode;
3640         struct shmem_sb_info *sbinfo;
3641         int err = -ENOMEM;
3642
3643         /* Round up to L1_CACHE_BYTES to resist false sharing */
3644         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3645                                 L1_CACHE_BYTES), GFP_KERNEL);
3646         if (!sbinfo)
3647                 return -ENOMEM;
3648
3649         sb->s_fs_info = sbinfo;
3650
3651 #ifdef CONFIG_TMPFS
3652         /*
3653          * Per default we only allow half of the physical ram per
3654          * tmpfs instance, limiting inodes to one per page of lowmem;
3655          * but the internal instance is left unlimited.
3656          */
3657         if (!(sb->s_flags & SB_KERNMOUNT)) {
3658                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3659                         ctx->blocks = shmem_default_max_blocks();
3660                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3661                         ctx->inodes = shmem_default_max_inodes();
3662                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3663                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3664         } else {
3665                 sb->s_flags |= SB_NOUSER;
3666         }
3667         sb->s_export_op = &shmem_export_ops;
3668         sb->s_flags |= SB_NOSEC;
3669 #else
3670         sb->s_flags |= SB_NOUSER;
3671 #endif
3672         sbinfo->max_blocks = ctx->blocks;
3673         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3674         if (sb->s_flags & SB_KERNMOUNT) {
3675                 sbinfo->ino_batch = alloc_percpu(ino_t);
3676                 if (!sbinfo->ino_batch)
3677                         goto failed;
3678         }
3679         sbinfo->uid = ctx->uid;
3680         sbinfo->gid = ctx->gid;
3681         sbinfo->full_inums = ctx->full_inums;
3682         sbinfo->mode = ctx->mode;
3683         sbinfo->huge = ctx->huge;
3684         sbinfo->mpol = ctx->mpol;
3685         ctx->mpol = NULL;
3686
3687         spin_lock_init(&sbinfo->stat_lock);
3688         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3689                 goto failed;
3690         spin_lock_init(&sbinfo->shrinklist_lock);
3691         INIT_LIST_HEAD(&sbinfo->shrinklist);
3692
3693         sb->s_maxbytes = MAX_LFS_FILESIZE;
3694         sb->s_blocksize = PAGE_SIZE;
3695         sb->s_blocksize_bits = PAGE_SHIFT;
3696         sb->s_magic = TMPFS_MAGIC;
3697         sb->s_op = &shmem_ops;
3698         sb->s_time_gran = 1;
3699 #ifdef CONFIG_TMPFS_XATTR
3700         sb->s_xattr = shmem_xattr_handlers;
3701 #endif
3702 #ifdef CONFIG_TMPFS_POSIX_ACL
3703         sb->s_flags |= SB_POSIXACL;
3704 #endif
3705         uuid_gen(&sb->s_uuid);
3706
3707         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3708         if (!inode)
3709                 goto failed;
3710         inode->i_uid = sbinfo->uid;
3711         inode->i_gid = sbinfo->gid;
3712         sb->s_root = d_make_root(inode);
3713         if (!sb->s_root)
3714                 goto failed;
3715         return 0;
3716
3717 failed:
3718         shmem_put_super(sb);
3719         return err;
3720 }
3721
3722 static int shmem_get_tree(struct fs_context *fc)
3723 {
3724         return get_tree_nodev(fc, shmem_fill_super);
3725 }
3726
3727 static void shmem_free_fc(struct fs_context *fc)
3728 {
3729         struct shmem_options *ctx = fc->fs_private;
3730
3731         if (ctx) {
3732                 mpol_put(ctx->mpol);
3733                 kfree(ctx);
3734         }
3735 }
3736
3737 static const struct fs_context_operations shmem_fs_context_ops = {
3738         .free                   = shmem_free_fc,
3739         .get_tree               = shmem_get_tree,
3740 #ifdef CONFIG_TMPFS
3741         .parse_monolithic       = shmem_parse_options,
3742         .parse_param            = shmem_parse_one,
3743         .reconfigure            = shmem_reconfigure,
3744 #endif
3745 };
3746
3747 static struct kmem_cache *shmem_inode_cachep;
3748
3749 static struct inode *shmem_alloc_inode(struct super_block *sb)
3750 {
3751         struct shmem_inode_info *info;
3752         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3753         if (!info)
3754                 return NULL;
3755         return &info->vfs_inode;
3756 }
3757
3758 static void shmem_free_in_core_inode(struct inode *inode)
3759 {
3760         if (S_ISLNK(inode->i_mode))
3761                 kfree(inode->i_link);
3762         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3763 }
3764
3765 static void shmem_destroy_inode(struct inode *inode)
3766 {
3767         if (S_ISREG(inode->i_mode))
3768                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3769 }
3770
3771 static void shmem_init_inode(void *foo)
3772 {
3773         struct shmem_inode_info *info = foo;
3774         inode_init_once(&info->vfs_inode);
3775 }
3776
3777 static void shmem_init_inodecache(void)
3778 {
3779         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3780                                 sizeof(struct shmem_inode_info),
3781                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3782 }
3783
3784 static void shmem_destroy_inodecache(void)
3785 {
3786         kmem_cache_destroy(shmem_inode_cachep);
3787 }
3788
3789 const struct address_space_operations shmem_aops = {
3790         .writepage      = shmem_writepage,
3791         .set_page_dirty = __set_page_dirty_no_writeback,
3792 #ifdef CONFIG_TMPFS
3793         .write_begin    = shmem_write_begin,
3794         .write_end      = shmem_write_end,
3795 #endif
3796 #ifdef CONFIG_MIGRATION
3797         .migratepage    = migrate_page,
3798 #endif
3799         .error_remove_page = generic_error_remove_page,
3800 };
3801 EXPORT_SYMBOL(shmem_aops);
3802
3803 static const struct file_operations shmem_file_operations = {
3804         .mmap           = shmem_mmap,
3805         .get_unmapped_area = shmem_get_unmapped_area,
3806 #ifdef CONFIG_TMPFS
3807         .llseek         = shmem_file_llseek,
3808         .read_iter      = shmem_file_read_iter,
3809         .write_iter     = generic_file_write_iter,
3810         .fsync          = noop_fsync,
3811         .splice_read    = generic_file_splice_read,
3812         .splice_write   = iter_file_splice_write,
3813         .fallocate      = shmem_fallocate,
3814 #endif
3815 };
3816
3817 static const struct inode_operations shmem_inode_operations = {
3818         .getattr        = shmem_getattr,
3819         .setattr        = shmem_setattr,
3820 #ifdef CONFIG_TMPFS_XATTR
3821         .listxattr      = shmem_listxattr,
3822         .set_acl        = simple_set_acl,
3823 #endif
3824 };
3825
3826 static const struct inode_operations shmem_dir_inode_operations = {
3827 #ifdef CONFIG_TMPFS
3828         .create         = shmem_create,
3829         .lookup         = simple_lookup,
3830         .link           = shmem_link,
3831         .unlink         = shmem_unlink,
3832         .symlink        = shmem_symlink,
3833         .mkdir          = shmem_mkdir,
3834         .rmdir          = shmem_rmdir,
3835         .mknod          = shmem_mknod,
3836         .rename         = shmem_rename2,
3837         .tmpfile        = shmem_tmpfile,
3838 #endif
3839 #ifdef CONFIG_TMPFS_XATTR
3840         .listxattr      = shmem_listxattr,
3841 #endif
3842 #ifdef CONFIG_TMPFS_POSIX_ACL
3843         .setattr        = shmem_setattr,
3844         .set_acl        = simple_set_acl,
3845 #endif
3846 };
3847
3848 static const struct inode_operations shmem_special_inode_operations = {
3849 #ifdef CONFIG_TMPFS_XATTR
3850         .listxattr      = shmem_listxattr,
3851 #endif
3852 #ifdef CONFIG_TMPFS_POSIX_ACL
3853         .setattr        = shmem_setattr,
3854         .set_acl        = simple_set_acl,
3855 #endif
3856 };
3857
3858 static const struct super_operations shmem_ops = {
3859         .alloc_inode    = shmem_alloc_inode,
3860         .free_inode     = shmem_free_in_core_inode,
3861         .destroy_inode  = shmem_destroy_inode,
3862 #ifdef CONFIG_TMPFS
3863         .statfs         = shmem_statfs,
3864         .show_options   = shmem_show_options,
3865 #endif
3866         .evict_inode    = shmem_evict_inode,
3867         .drop_inode     = generic_delete_inode,
3868         .put_super      = shmem_put_super,
3869 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3870         .nr_cached_objects      = shmem_unused_huge_count,
3871         .free_cached_objects    = shmem_unused_huge_scan,
3872 #endif
3873 };
3874
3875 static const struct vm_operations_struct shmem_vm_ops = {
3876         .fault          = shmem_fault,
3877         .map_pages      = filemap_map_pages,
3878 #ifdef CONFIG_NUMA
3879         .set_policy     = shmem_set_policy,
3880         .get_policy     = shmem_get_policy,
3881 #endif
3882 };
3883
3884 int shmem_init_fs_context(struct fs_context *fc)
3885 {
3886         struct shmem_options *ctx;
3887
3888         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3889         if (!ctx)
3890                 return -ENOMEM;
3891
3892         ctx->mode = 0777 | S_ISVTX;
3893         ctx->uid = current_fsuid();
3894         ctx->gid = current_fsgid();
3895
3896         fc->fs_private = ctx;
3897         fc->ops = &shmem_fs_context_ops;
3898         return 0;
3899 }
3900
3901 static struct file_system_type shmem_fs_type = {
3902         .owner          = THIS_MODULE,
3903         .name           = "tmpfs",
3904         .init_fs_context = shmem_init_fs_context,
3905 #ifdef CONFIG_TMPFS
3906         .parameters     = shmem_fs_parameters,
3907 #endif
3908         .kill_sb        = kill_litter_super,
3909         .fs_flags       = FS_USERNS_MOUNT | FS_THP_SUPPORT,
3910 };
3911
3912 int __init shmem_init(void)
3913 {
3914         int error;
3915
3916         shmem_init_inodecache();
3917
3918         error = register_filesystem(&shmem_fs_type);
3919         if (error) {
3920                 pr_err("Could not register tmpfs\n");
3921                 goto out2;
3922         }
3923
3924         shm_mnt = kern_mount(&shmem_fs_type);
3925         if (IS_ERR(shm_mnt)) {
3926                 error = PTR_ERR(shm_mnt);
3927                 pr_err("Could not kern_mount tmpfs\n");
3928                 goto out1;
3929         }
3930
3931 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3932         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3933                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3934         else
3935                 shmem_huge = 0; /* just in case it was patched */
3936 #endif
3937         return 0;
3938
3939 out1:
3940         unregister_filesystem(&shmem_fs_type);
3941 out2:
3942         shmem_destroy_inodecache();
3943         shm_mnt = ERR_PTR(error);
3944         return error;
3945 }
3946
3947 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3948 static ssize_t shmem_enabled_show(struct kobject *kobj,
3949                                   struct kobj_attribute *attr, char *buf)
3950 {
3951         static const int values[] = {
3952                 SHMEM_HUGE_ALWAYS,
3953                 SHMEM_HUGE_WITHIN_SIZE,
3954                 SHMEM_HUGE_ADVISE,
3955                 SHMEM_HUGE_NEVER,
3956                 SHMEM_HUGE_DENY,
3957                 SHMEM_HUGE_FORCE,
3958         };
3959         int len = 0;
3960         int i;
3961
3962         for (i = 0; i < ARRAY_SIZE(values); i++) {
3963                 len += sysfs_emit_at(buf, len,
3964                                      shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3965                                      i ? " " : "",
3966                                      shmem_format_huge(values[i]));
3967         }
3968
3969         len += sysfs_emit_at(buf, len, "\n");
3970
3971         return len;
3972 }
3973
3974 static ssize_t shmem_enabled_store(struct kobject *kobj,
3975                 struct kobj_attribute *attr, const char *buf, size_t count)
3976 {
3977         char tmp[16];
3978         int huge;
3979
3980         if (count + 1 > sizeof(tmp))
3981                 return -EINVAL;
3982         memcpy(tmp, buf, count);
3983         tmp[count] = '\0';
3984         if (count && tmp[count - 1] == '\n')
3985                 tmp[count - 1] = '\0';
3986
3987         huge = shmem_parse_huge(tmp);
3988         if (huge == -EINVAL)
3989                 return -EINVAL;
3990         if (!has_transparent_hugepage() &&
3991                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3992                 return -EINVAL;
3993
3994         shmem_huge = huge;
3995         if (shmem_huge > SHMEM_HUGE_DENY)
3996                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3997         return count;
3998 }
3999
4000 struct kobj_attribute shmem_enabled_attr =
4001         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4002 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4003
4004 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4005 bool shmem_huge_enabled(struct vm_area_struct *vma)
4006 {
4007         struct inode *inode = file_inode(vma->vm_file);
4008         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4009         loff_t i_size;
4010         pgoff_t off;
4011
4012         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4013             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4014                 return false;
4015         if (shmem_huge == SHMEM_HUGE_FORCE)
4016                 return true;
4017         if (shmem_huge == SHMEM_HUGE_DENY)
4018                 return false;
4019         switch (sbinfo->huge) {
4020                 case SHMEM_HUGE_NEVER:
4021                         return false;
4022                 case SHMEM_HUGE_ALWAYS:
4023                         return true;
4024                 case SHMEM_HUGE_WITHIN_SIZE:
4025                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4026                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
4027                         if (i_size >= HPAGE_PMD_SIZE &&
4028                                         i_size >> PAGE_SHIFT >= off)
4029                                 return true;
4030                         fallthrough;
4031                 case SHMEM_HUGE_ADVISE:
4032                         /* TODO: implement fadvise() hints */
4033                         return (vma->vm_flags & VM_HUGEPAGE);
4034                 default:
4035                         VM_BUG_ON(1);
4036                         return false;
4037         }
4038 }
4039 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4040
4041 #else /* !CONFIG_SHMEM */
4042
4043 /*
4044  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4045  *
4046  * This is intended for small system where the benefits of the full
4047  * shmem code (swap-backed and resource-limited) are outweighed by
4048  * their complexity. On systems without swap this code should be
4049  * effectively equivalent, but much lighter weight.
4050  */
4051
4052 static struct file_system_type shmem_fs_type = {
4053         .name           = "tmpfs",
4054         .init_fs_context = ramfs_init_fs_context,
4055         .parameters     = ramfs_fs_parameters,
4056         .kill_sb        = kill_litter_super,
4057         .fs_flags       = FS_USERNS_MOUNT,
4058 };
4059
4060 int __init shmem_init(void)
4061 {
4062         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4063
4064         shm_mnt = kern_mount(&shmem_fs_type);
4065         BUG_ON(IS_ERR(shm_mnt));
4066
4067         return 0;
4068 }
4069
4070 int shmem_unuse(unsigned int type, bool frontswap,
4071                 unsigned long *fs_pages_to_unuse)
4072 {
4073         return 0;
4074 }
4075
4076 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4077 {
4078         return 0;
4079 }
4080
4081 void shmem_unlock_mapping(struct address_space *mapping)
4082 {
4083 }
4084
4085 #ifdef CONFIG_MMU
4086 unsigned long shmem_get_unmapped_area(struct file *file,
4087                                       unsigned long addr, unsigned long len,
4088                                       unsigned long pgoff, unsigned long flags)
4089 {
4090         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4091 }
4092 #endif
4093
4094 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4095 {
4096         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4097 }
4098 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4099
4100 #define shmem_vm_ops                            generic_file_vm_ops
4101 #define shmem_file_operations                   ramfs_file_operations
4102 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4103 #define shmem_acct_size(flags, size)            0
4104 #define shmem_unacct_size(flags, size)          do {} while (0)
4105
4106 #endif /* CONFIG_SHMEM */
4107
4108 /* common code */
4109
4110 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4111                                        unsigned long flags, unsigned int i_flags)
4112 {
4113         struct inode *inode;
4114         struct file *res;
4115
4116         if (IS_ERR(mnt))
4117                 return ERR_CAST(mnt);
4118
4119         if (size < 0 || size > MAX_LFS_FILESIZE)
4120                 return ERR_PTR(-EINVAL);
4121
4122         if (shmem_acct_size(flags, size))
4123                 return ERR_PTR(-ENOMEM);
4124
4125         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4126                                 flags);
4127         if (unlikely(!inode)) {
4128                 shmem_unacct_size(flags, size);
4129                 return ERR_PTR(-ENOSPC);
4130         }
4131         inode->i_flags |= i_flags;
4132         inode->i_size = size;
4133         clear_nlink(inode);     /* It is unlinked */
4134         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4135         if (!IS_ERR(res))
4136                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4137                                 &shmem_file_operations);
4138         if (IS_ERR(res))
4139                 iput(inode);
4140         return res;
4141 }
4142
4143 /**
4144  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4145  *      kernel internal.  There will be NO LSM permission checks against the
4146  *      underlying inode.  So users of this interface must do LSM checks at a
4147  *      higher layer.  The users are the big_key and shm implementations.  LSM
4148  *      checks are provided at the key or shm level rather than the inode.
4149  * @name: name for dentry (to be seen in /proc/<pid>/maps
4150  * @size: size to be set for the file
4151  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4152  */
4153 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4154 {
4155         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4156 }
4157
4158 /**
4159  * shmem_file_setup - get an unlinked file living in tmpfs
4160  * @name: name for dentry (to be seen in /proc/<pid>/maps
4161  * @size: size to be set for the file
4162  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4163  */
4164 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4165 {
4166         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4167 }
4168 EXPORT_SYMBOL_GPL(shmem_file_setup);
4169
4170 /**
4171  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4172  * @mnt: the tmpfs mount where the file will be created
4173  * @name: name for dentry (to be seen in /proc/<pid>/maps
4174  * @size: size to be set for the file
4175  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4176  */
4177 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4178                                        loff_t size, unsigned long flags)
4179 {
4180         return __shmem_file_setup(mnt, name, size, flags, 0);
4181 }
4182 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4183
4184 /**
4185  * shmem_zero_setup - setup a shared anonymous mapping
4186  * @vma: the vma to be mmapped is prepared by do_mmap
4187  */
4188 int shmem_zero_setup(struct vm_area_struct *vma)
4189 {
4190         struct file *file;
4191         loff_t size = vma->vm_end - vma->vm_start;
4192
4193         /*
4194          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4195          * between XFS directory reading and selinux: since this file is only
4196          * accessible to the user through its mapping, use S_PRIVATE flag to
4197          * bypass file security, in the same way as shmem_kernel_file_setup().
4198          */
4199         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4200         if (IS_ERR(file))
4201                 return PTR_ERR(file);
4202
4203         if (vma->vm_file)
4204                 fput(vma->vm_file);
4205         vma->vm_file = file;
4206         vma->vm_ops = &shmem_vm_ops;
4207
4208         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4209                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4210                         (vma->vm_end & HPAGE_PMD_MASK)) {
4211                 khugepaged_enter(vma, vma->vm_flags);
4212         }
4213
4214         return 0;
4215 }
4216
4217 /**
4218  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4219  * @mapping:    the page's address_space
4220  * @index:      the page index
4221  * @gfp:        the page allocator flags to use if allocating
4222  *
4223  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4224  * with any new page allocations done using the specified allocation flags.
4225  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4226  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4227  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4228  *
4229  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4230  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4231  */
4232 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4233                                          pgoff_t index, gfp_t gfp)
4234 {
4235 #ifdef CONFIG_SHMEM
4236         struct inode *inode = mapping->host;
4237         struct page *page;
4238         int error;
4239
4240         BUG_ON(!shmem_mapping(mapping));
4241         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4242                                   gfp, NULL, NULL, NULL);
4243         if (error)
4244                 page = ERR_PTR(error);
4245         else
4246                 unlock_page(page);
4247         return page;
4248 #else
4249         /*
4250          * The tiny !SHMEM case uses ramfs without swap
4251          */
4252         return read_cache_page_gfp(mapping, index, gfp);
4253 #endif
4254 }
4255 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);