Merge tag '5.17-rc-part1-smb3-fixes' of git://git.samba.org/sfrench/cifs-2.6
[linux-2.6-microblaze.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42
43 static struct vfsmount *shm_mnt;
44
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81
82 #include <linux/uaccess.h>
83
84 #include "internal.h"
85
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_rwsem making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102         pgoff_t start;          /* start of range currently being fallocated */
103         pgoff_t next;           /* the next page offset to be fallocated */
104         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
105         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
106 };
107
108 struct shmem_options {
109         unsigned long long blocks;
110         unsigned long long inodes;
111         struct mempolicy *mpol;
112         kuid_t uid;
113         kgid_t gid;
114         umode_t mode;
115         bool full_inums;
116         int huge;
117         int seen;
118 #define SHMEM_SEEN_BLOCKS 1
119 #define SHMEM_SEEN_INODES 2
120 #define SHMEM_SEEN_HUGE 4
121 #define SHMEM_SEEN_INUMS 8
122 };
123
124 #ifdef CONFIG_TMPFS
125 static unsigned long shmem_default_max_blocks(void)
126 {
127         return totalram_pages() / 2;
128 }
129
130 static unsigned long shmem_default_max_inodes(void)
131 {
132         unsigned long nr_pages = totalram_pages();
133
134         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
135 }
136 #endif
137
138 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
139                              struct page **pagep, enum sgp_type sgp,
140                              gfp_t gfp, struct vm_area_struct *vma,
141                              vm_fault_t *fault_type);
142 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
143                 struct page **pagep, enum sgp_type sgp,
144                 gfp_t gfp, struct vm_area_struct *vma,
145                 struct vm_fault *vmf, vm_fault_t *fault_type);
146
147 int shmem_getpage(struct inode *inode, pgoff_t index,
148                 struct page **pagep, enum sgp_type sgp)
149 {
150         return shmem_getpage_gfp(inode, index, pagep, sgp,
151                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
152 }
153
154 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
155 {
156         return sb->s_fs_info;
157 }
158
159 /*
160  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
161  * for shared memory and for shared anonymous (/dev/zero) mappings
162  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
163  * consistent with the pre-accounting of private mappings ...
164  */
165 static inline int shmem_acct_size(unsigned long flags, loff_t size)
166 {
167         return (flags & VM_NORESERVE) ?
168                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
169 }
170
171 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
172 {
173         if (!(flags & VM_NORESERVE))
174                 vm_unacct_memory(VM_ACCT(size));
175 }
176
177 static inline int shmem_reacct_size(unsigned long flags,
178                 loff_t oldsize, loff_t newsize)
179 {
180         if (!(flags & VM_NORESERVE)) {
181                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
182                         return security_vm_enough_memory_mm(current->mm,
183                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
184                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
185                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
186         }
187         return 0;
188 }
189
190 /*
191  * ... whereas tmpfs objects are accounted incrementally as
192  * pages are allocated, in order to allow large sparse files.
193  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
194  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
195  */
196 static inline int shmem_acct_block(unsigned long flags, long pages)
197 {
198         if (!(flags & VM_NORESERVE))
199                 return 0;
200
201         return security_vm_enough_memory_mm(current->mm,
202                         pages * VM_ACCT(PAGE_SIZE));
203 }
204
205 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
206 {
207         if (flags & VM_NORESERVE)
208                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
209 }
210
211 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
212 {
213         struct shmem_inode_info *info = SHMEM_I(inode);
214         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
215
216         if (shmem_acct_block(info->flags, pages))
217                 return false;
218
219         if (sbinfo->max_blocks) {
220                 if (percpu_counter_compare(&sbinfo->used_blocks,
221                                            sbinfo->max_blocks - pages) > 0)
222                         goto unacct;
223                 percpu_counter_add(&sbinfo->used_blocks, pages);
224         }
225
226         return true;
227
228 unacct:
229         shmem_unacct_blocks(info->flags, pages);
230         return false;
231 }
232
233 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
234 {
235         struct shmem_inode_info *info = SHMEM_I(inode);
236         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
237
238         if (sbinfo->max_blocks)
239                 percpu_counter_sub(&sbinfo->used_blocks, pages);
240         shmem_unacct_blocks(info->flags, pages);
241 }
242
243 static const struct super_operations shmem_ops;
244 const struct address_space_operations shmem_aops;
245 static const struct file_operations shmem_file_operations;
246 static const struct inode_operations shmem_inode_operations;
247 static const struct inode_operations shmem_dir_inode_operations;
248 static const struct inode_operations shmem_special_inode_operations;
249 static const struct vm_operations_struct shmem_vm_ops;
250 static struct file_system_type shmem_fs_type;
251
252 bool vma_is_shmem(struct vm_area_struct *vma)
253 {
254         return vma->vm_ops == &shmem_vm_ops;
255 }
256
257 static LIST_HEAD(shmem_swaplist);
258 static DEFINE_MUTEX(shmem_swaplist_mutex);
259
260 /*
261  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
262  * produces a novel ino for the newly allocated inode.
263  *
264  * It may also be called when making a hard link to permit the space needed by
265  * each dentry. However, in that case, no new inode number is needed since that
266  * internally draws from another pool of inode numbers (currently global
267  * get_next_ino()). This case is indicated by passing NULL as inop.
268  */
269 #define SHMEM_INO_BATCH 1024
270 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
271 {
272         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
273         ino_t ino;
274
275         if (!(sb->s_flags & SB_KERNMOUNT)) {
276                 raw_spin_lock(&sbinfo->stat_lock);
277                 if (sbinfo->max_inodes) {
278                         if (!sbinfo->free_inodes) {
279                                 raw_spin_unlock(&sbinfo->stat_lock);
280                                 return -ENOSPC;
281                         }
282                         sbinfo->free_inodes--;
283                 }
284                 if (inop) {
285                         ino = sbinfo->next_ino++;
286                         if (unlikely(is_zero_ino(ino)))
287                                 ino = sbinfo->next_ino++;
288                         if (unlikely(!sbinfo->full_inums &&
289                                      ino > UINT_MAX)) {
290                                 /*
291                                  * Emulate get_next_ino uint wraparound for
292                                  * compatibility
293                                  */
294                                 if (IS_ENABLED(CONFIG_64BIT))
295                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
296                                                 __func__, MINOR(sb->s_dev));
297                                 sbinfo->next_ino = 1;
298                                 ino = sbinfo->next_ino++;
299                         }
300                         *inop = ino;
301                 }
302                 raw_spin_unlock(&sbinfo->stat_lock);
303         } else if (inop) {
304                 /*
305                  * __shmem_file_setup, one of our callers, is lock-free: it
306                  * doesn't hold stat_lock in shmem_reserve_inode since
307                  * max_inodes is always 0, and is called from potentially
308                  * unknown contexts. As such, use a per-cpu batched allocator
309                  * which doesn't require the per-sb stat_lock unless we are at
310                  * the batch boundary.
311                  *
312                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
313                  * shmem mounts are not exposed to userspace, so we don't need
314                  * to worry about things like glibc compatibility.
315                  */
316                 ino_t *next_ino;
317
318                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
319                 ino = *next_ino;
320                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
321                         raw_spin_lock(&sbinfo->stat_lock);
322                         ino = sbinfo->next_ino;
323                         sbinfo->next_ino += SHMEM_INO_BATCH;
324                         raw_spin_unlock(&sbinfo->stat_lock);
325                         if (unlikely(is_zero_ino(ino)))
326                                 ino++;
327                 }
328                 *inop = ino;
329                 *next_ino = ++ino;
330                 put_cpu();
331         }
332
333         return 0;
334 }
335
336 static void shmem_free_inode(struct super_block *sb)
337 {
338         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339         if (sbinfo->max_inodes) {
340                 raw_spin_lock(&sbinfo->stat_lock);
341                 sbinfo->free_inodes++;
342                 raw_spin_unlock(&sbinfo->stat_lock);
343         }
344 }
345
346 /**
347  * shmem_recalc_inode - recalculate the block usage of an inode
348  * @inode: inode to recalc
349  *
350  * We have to calculate the free blocks since the mm can drop
351  * undirtied hole pages behind our back.
352  *
353  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
354  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
355  *
356  * It has to be called with the spinlock held.
357  */
358 static void shmem_recalc_inode(struct inode *inode)
359 {
360         struct shmem_inode_info *info = SHMEM_I(inode);
361         long freed;
362
363         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
364         if (freed > 0) {
365                 info->alloced -= freed;
366                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
367                 shmem_inode_unacct_blocks(inode, freed);
368         }
369 }
370
371 bool shmem_charge(struct inode *inode, long pages)
372 {
373         struct shmem_inode_info *info = SHMEM_I(inode);
374         unsigned long flags;
375
376         if (!shmem_inode_acct_block(inode, pages))
377                 return false;
378
379         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
380         inode->i_mapping->nrpages += pages;
381
382         spin_lock_irqsave(&info->lock, flags);
383         info->alloced += pages;
384         inode->i_blocks += pages * BLOCKS_PER_PAGE;
385         shmem_recalc_inode(inode);
386         spin_unlock_irqrestore(&info->lock, flags);
387
388         return true;
389 }
390
391 void shmem_uncharge(struct inode *inode, long pages)
392 {
393         struct shmem_inode_info *info = SHMEM_I(inode);
394         unsigned long flags;
395
396         /* nrpages adjustment done by __delete_from_page_cache() or caller */
397
398         spin_lock_irqsave(&info->lock, flags);
399         info->alloced -= pages;
400         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
401         shmem_recalc_inode(inode);
402         spin_unlock_irqrestore(&info->lock, flags);
403
404         shmem_inode_unacct_blocks(inode, pages);
405 }
406
407 /*
408  * Replace item expected in xarray by a new item, while holding xa_lock.
409  */
410 static int shmem_replace_entry(struct address_space *mapping,
411                         pgoff_t index, void *expected, void *replacement)
412 {
413         XA_STATE(xas, &mapping->i_pages, index);
414         void *item;
415
416         VM_BUG_ON(!expected);
417         VM_BUG_ON(!replacement);
418         item = xas_load(&xas);
419         if (item != expected)
420                 return -ENOENT;
421         xas_store(&xas, replacement);
422         return 0;
423 }
424
425 /*
426  * Sometimes, before we decide whether to proceed or to fail, we must check
427  * that an entry was not already brought back from swap by a racing thread.
428  *
429  * Checking page is not enough: by the time a SwapCache page is locked, it
430  * might be reused, and again be SwapCache, using the same swap as before.
431  */
432 static bool shmem_confirm_swap(struct address_space *mapping,
433                                pgoff_t index, swp_entry_t swap)
434 {
435         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
436 }
437
438 /*
439  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
440  *
441  * SHMEM_HUGE_NEVER:
442  *      disables huge pages for the mount;
443  * SHMEM_HUGE_ALWAYS:
444  *      enables huge pages for the mount;
445  * SHMEM_HUGE_WITHIN_SIZE:
446  *      only allocate huge pages if the page will be fully within i_size,
447  *      also respect fadvise()/madvise() hints;
448  * SHMEM_HUGE_ADVISE:
449  *      only allocate huge pages if requested with fadvise()/madvise();
450  */
451
452 #define SHMEM_HUGE_NEVER        0
453 #define SHMEM_HUGE_ALWAYS       1
454 #define SHMEM_HUGE_WITHIN_SIZE  2
455 #define SHMEM_HUGE_ADVISE       3
456
457 /*
458  * Special values.
459  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
460  *
461  * SHMEM_HUGE_DENY:
462  *      disables huge on shm_mnt and all mounts, for emergency use;
463  * SHMEM_HUGE_FORCE:
464  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
465  *
466  */
467 #define SHMEM_HUGE_DENY         (-1)
468 #define SHMEM_HUGE_FORCE        (-2)
469
470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
471 /* ifdef here to avoid bloating shmem.o when not necessary */
472
473 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
474
475 bool shmem_is_huge(struct vm_area_struct *vma,
476                    struct inode *inode, pgoff_t index)
477 {
478         loff_t i_size;
479
480         if (shmem_huge == SHMEM_HUGE_DENY)
481                 return false;
482         if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
483             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
484                 return false;
485         if (shmem_huge == SHMEM_HUGE_FORCE)
486                 return true;
487
488         switch (SHMEM_SB(inode->i_sb)->huge) {
489         case SHMEM_HUGE_ALWAYS:
490                 return true;
491         case SHMEM_HUGE_WITHIN_SIZE:
492                 index = round_up(index + 1, HPAGE_PMD_NR);
493                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
494                 if (i_size >> PAGE_SHIFT >= index)
495                         return true;
496                 fallthrough;
497         case SHMEM_HUGE_ADVISE:
498                 if (vma && (vma->vm_flags & VM_HUGEPAGE))
499                         return true;
500                 fallthrough;
501         default:
502                 return false;
503         }
504 }
505
506 #if defined(CONFIG_SYSFS)
507 static int shmem_parse_huge(const char *str)
508 {
509         if (!strcmp(str, "never"))
510                 return SHMEM_HUGE_NEVER;
511         if (!strcmp(str, "always"))
512                 return SHMEM_HUGE_ALWAYS;
513         if (!strcmp(str, "within_size"))
514                 return SHMEM_HUGE_WITHIN_SIZE;
515         if (!strcmp(str, "advise"))
516                 return SHMEM_HUGE_ADVISE;
517         if (!strcmp(str, "deny"))
518                 return SHMEM_HUGE_DENY;
519         if (!strcmp(str, "force"))
520                 return SHMEM_HUGE_FORCE;
521         return -EINVAL;
522 }
523 #endif
524
525 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
526 static const char *shmem_format_huge(int huge)
527 {
528         switch (huge) {
529         case SHMEM_HUGE_NEVER:
530                 return "never";
531         case SHMEM_HUGE_ALWAYS:
532                 return "always";
533         case SHMEM_HUGE_WITHIN_SIZE:
534                 return "within_size";
535         case SHMEM_HUGE_ADVISE:
536                 return "advise";
537         case SHMEM_HUGE_DENY:
538                 return "deny";
539         case SHMEM_HUGE_FORCE:
540                 return "force";
541         default:
542                 VM_BUG_ON(1);
543                 return "bad_val";
544         }
545 }
546 #endif
547
548 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
549                 struct shrink_control *sc, unsigned long nr_to_split)
550 {
551         LIST_HEAD(list), *pos, *next;
552         LIST_HEAD(to_remove);
553         struct inode *inode;
554         struct shmem_inode_info *info;
555         struct page *page;
556         unsigned long batch = sc ? sc->nr_to_scan : 128;
557         int split = 0;
558
559         if (list_empty(&sbinfo->shrinklist))
560                 return SHRINK_STOP;
561
562         spin_lock(&sbinfo->shrinklist_lock);
563         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
564                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
565
566                 /* pin the inode */
567                 inode = igrab(&info->vfs_inode);
568
569                 /* inode is about to be evicted */
570                 if (!inode) {
571                         list_del_init(&info->shrinklist);
572                         goto next;
573                 }
574
575                 /* Check if there's anything to gain */
576                 if (round_up(inode->i_size, PAGE_SIZE) ==
577                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
578                         list_move(&info->shrinklist, &to_remove);
579                         goto next;
580                 }
581
582                 list_move(&info->shrinklist, &list);
583 next:
584                 sbinfo->shrinklist_len--;
585                 if (!--batch)
586                         break;
587         }
588         spin_unlock(&sbinfo->shrinklist_lock);
589
590         list_for_each_safe(pos, next, &to_remove) {
591                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
592                 inode = &info->vfs_inode;
593                 list_del_init(&info->shrinklist);
594                 iput(inode);
595         }
596
597         list_for_each_safe(pos, next, &list) {
598                 int ret;
599
600                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
601                 inode = &info->vfs_inode;
602
603                 if (nr_to_split && split >= nr_to_split)
604                         goto move_back;
605
606                 page = find_get_page(inode->i_mapping,
607                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
608                 if (!page)
609                         goto drop;
610
611                 /* No huge page at the end of the file: nothing to split */
612                 if (!PageTransHuge(page)) {
613                         put_page(page);
614                         goto drop;
615                 }
616
617                 /*
618                  * Move the inode on the list back to shrinklist if we failed
619                  * to lock the page at this time.
620                  *
621                  * Waiting for the lock may lead to deadlock in the
622                  * reclaim path.
623                  */
624                 if (!trylock_page(page)) {
625                         put_page(page);
626                         goto move_back;
627                 }
628
629                 ret = split_huge_page(page);
630                 unlock_page(page);
631                 put_page(page);
632
633                 /* If split failed move the inode on the list back to shrinklist */
634                 if (ret)
635                         goto move_back;
636
637                 split++;
638 drop:
639                 list_del_init(&info->shrinklist);
640                 goto put;
641 move_back:
642                 /*
643                  * Make sure the inode is either on the global list or deleted
644                  * from any local list before iput() since it could be deleted
645                  * in another thread once we put the inode (then the local list
646                  * is corrupted).
647                  */
648                 spin_lock(&sbinfo->shrinklist_lock);
649                 list_move(&info->shrinklist, &sbinfo->shrinklist);
650                 sbinfo->shrinklist_len++;
651                 spin_unlock(&sbinfo->shrinklist_lock);
652 put:
653                 iput(inode);
654         }
655
656         return split;
657 }
658
659 static long shmem_unused_huge_scan(struct super_block *sb,
660                 struct shrink_control *sc)
661 {
662         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
663
664         if (!READ_ONCE(sbinfo->shrinklist_len))
665                 return SHRINK_STOP;
666
667         return shmem_unused_huge_shrink(sbinfo, sc, 0);
668 }
669
670 static long shmem_unused_huge_count(struct super_block *sb,
671                 struct shrink_control *sc)
672 {
673         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
674         return READ_ONCE(sbinfo->shrinklist_len);
675 }
676 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
677
678 #define shmem_huge SHMEM_HUGE_DENY
679
680 bool shmem_is_huge(struct vm_area_struct *vma,
681                    struct inode *inode, pgoff_t index)
682 {
683         return false;
684 }
685
686 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
687                 struct shrink_control *sc, unsigned long nr_to_split)
688 {
689         return 0;
690 }
691 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
692
693 /*
694  * Like add_to_page_cache_locked, but error if expected item has gone.
695  */
696 static int shmem_add_to_page_cache(struct page *page,
697                                    struct address_space *mapping,
698                                    pgoff_t index, void *expected, gfp_t gfp,
699                                    struct mm_struct *charge_mm)
700 {
701         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
702         unsigned long nr = compound_nr(page);
703         int error;
704
705         VM_BUG_ON_PAGE(PageTail(page), page);
706         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
707         VM_BUG_ON_PAGE(!PageLocked(page), page);
708         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
709         VM_BUG_ON(expected && PageTransHuge(page));
710
711         page_ref_add(page, nr);
712         page->mapping = mapping;
713         page->index = index;
714
715         if (!PageSwapCache(page)) {
716                 error = mem_cgroup_charge(page_folio(page), charge_mm, gfp);
717                 if (error) {
718                         if (PageTransHuge(page)) {
719                                 count_vm_event(THP_FILE_FALLBACK);
720                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
721                         }
722                         goto error;
723                 }
724         }
725         cgroup_throttle_swaprate(page, gfp);
726
727         do {
728                 xas_lock_irq(&xas);
729                 if (expected != xas_find_conflict(&xas)) {
730                         xas_set_err(&xas, -EEXIST);
731                         goto unlock;
732                 }
733                 if (expected && xas_find_conflict(&xas)) {
734                         xas_set_err(&xas, -EEXIST);
735                         goto unlock;
736                 }
737                 xas_store(&xas, page);
738                 if (xas_error(&xas))
739                         goto unlock;
740                 if (PageTransHuge(page)) {
741                         count_vm_event(THP_FILE_ALLOC);
742                         __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
743                 }
744                 mapping->nrpages += nr;
745                 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
746                 __mod_lruvec_page_state(page, NR_SHMEM, nr);
747 unlock:
748                 xas_unlock_irq(&xas);
749         } while (xas_nomem(&xas, gfp));
750
751         if (xas_error(&xas)) {
752                 error = xas_error(&xas);
753                 goto error;
754         }
755
756         return 0;
757 error:
758         page->mapping = NULL;
759         page_ref_sub(page, nr);
760         return error;
761 }
762
763 /*
764  * Like delete_from_page_cache, but substitutes swap for page.
765  */
766 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
767 {
768         struct address_space *mapping = page->mapping;
769         int error;
770
771         VM_BUG_ON_PAGE(PageCompound(page), page);
772
773         xa_lock_irq(&mapping->i_pages);
774         error = shmem_replace_entry(mapping, page->index, page, radswap);
775         page->mapping = NULL;
776         mapping->nrpages--;
777         __dec_lruvec_page_state(page, NR_FILE_PAGES);
778         __dec_lruvec_page_state(page, NR_SHMEM);
779         xa_unlock_irq(&mapping->i_pages);
780         put_page(page);
781         BUG_ON(error);
782 }
783
784 /*
785  * Remove swap entry from page cache, free the swap and its page cache.
786  */
787 static int shmem_free_swap(struct address_space *mapping,
788                            pgoff_t index, void *radswap)
789 {
790         void *old;
791
792         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
793         if (old != radswap)
794                 return -ENOENT;
795         free_swap_and_cache(radix_to_swp_entry(radswap));
796         return 0;
797 }
798
799 /*
800  * Determine (in bytes) how many of the shmem object's pages mapped by the
801  * given offsets are swapped out.
802  *
803  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
804  * as long as the inode doesn't go away and racy results are not a problem.
805  */
806 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
807                                                 pgoff_t start, pgoff_t end)
808 {
809         XA_STATE(xas, &mapping->i_pages, start);
810         struct page *page;
811         unsigned long swapped = 0;
812
813         rcu_read_lock();
814         xas_for_each(&xas, page, end - 1) {
815                 if (xas_retry(&xas, page))
816                         continue;
817                 if (xa_is_value(page))
818                         swapped++;
819
820                 if (need_resched()) {
821                         xas_pause(&xas);
822                         cond_resched_rcu();
823                 }
824         }
825
826         rcu_read_unlock();
827
828         return swapped << PAGE_SHIFT;
829 }
830
831 /*
832  * Determine (in bytes) how many of the shmem object's pages mapped by the
833  * given vma is swapped out.
834  *
835  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
836  * as long as the inode doesn't go away and racy results are not a problem.
837  */
838 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
839 {
840         struct inode *inode = file_inode(vma->vm_file);
841         struct shmem_inode_info *info = SHMEM_I(inode);
842         struct address_space *mapping = inode->i_mapping;
843         unsigned long swapped;
844
845         /* Be careful as we don't hold info->lock */
846         swapped = READ_ONCE(info->swapped);
847
848         /*
849          * The easier cases are when the shmem object has nothing in swap, or
850          * the vma maps it whole. Then we can simply use the stats that we
851          * already track.
852          */
853         if (!swapped)
854                 return 0;
855
856         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
857                 return swapped << PAGE_SHIFT;
858
859         /* Here comes the more involved part */
860         return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
861                                         vma->vm_pgoff + vma_pages(vma));
862 }
863
864 /*
865  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
866  */
867 void shmem_unlock_mapping(struct address_space *mapping)
868 {
869         struct pagevec pvec;
870         pgoff_t index = 0;
871
872         pagevec_init(&pvec);
873         /*
874          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
875          */
876         while (!mapping_unevictable(mapping)) {
877                 if (!pagevec_lookup(&pvec, mapping, &index))
878                         break;
879                 check_move_unevictable_pages(&pvec);
880                 pagevec_release(&pvec);
881                 cond_resched();
882         }
883 }
884
885 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
886 {
887         struct folio *folio;
888         struct page *page;
889
890         /*
891          * At first avoid shmem_getpage(,,,SGP_READ): that fails
892          * beyond i_size, and reports fallocated pages as holes.
893          */
894         folio = __filemap_get_folio(inode->i_mapping, index,
895                                         FGP_ENTRY | FGP_LOCK, 0);
896         if (!xa_is_value(folio))
897                 return folio;
898         /*
899          * But read a page back from swap if any of it is within i_size
900          * (although in some cases this is just a waste of time).
901          */
902         page = NULL;
903         shmem_getpage(inode, index, &page, SGP_READ);
904         return page ? page_folio(page) : NULL;
905 }
906
907 /*
908  * Remove range of pages and swap entries from page cache, and free them.
909  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
910  */
911 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
912                                                                  bool unfalloc)
913 {
914         struct address_space *mapping = inode->i_mapping;
915         struct shmem_inode_info *info = SHMEM_I(inode);
916         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
917         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
918         struct folio_batch fbatch;
919         pgoff_t indices[PAGEVEC_SIZE];
920         struct folio *folio;
921         bool same_folio;
922         long nr_swaps_freed = 0;
923         pgoff_t index;
924         int i;
925
926         if (lend == -1)
927                 end = -1;       /* unsigned, so actually very big */
928
929         if (info->fallocend > start && info->fallocend <= end && !unfalloc)
930                 info->fallocend = start;
931
932         folio_batch_init(&fbatch);
933         index = start;
934         while (index < end && find_lock_entries(mapping, index, end - 1,
935                         &fbatch, indices)) {
936                 for (i = 0; i < folio_batch_count(&fbatch); i++) {
937                         folio = fbatch.folios[i];
938
939                         index = indices[i];
940
941                         if (xa_is_value(folio)) {
942                                 if (unfalloc)
943                                         continue;
944                                 nr_swaps_freed += !shmem_free_swap(mapping,
945                                                                 index, folio);
946                                 continue;
947                         }
948                         index += folio_nr_pages(folio) - 1;
949
950                         if (!unfalloc || !folio_test_uptodate(folio))
951                                 truncate_inode_folio(mapping, folio);
952                         folio_unlock(folio);
953                 }
954                 folio_batch_remove_exceptionals(&fbatch);
955                 folio_batch_release(&fbatch);
956                 cond_resched();
957                 index++;
958         }
959
960         same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
961         folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
962         if (folio) {
963                 same_folio = lend < folio_pos(folio) + folio_size(folio);
964                 folio_mark_dirty(folio);
965                 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
966                         start = folio->index + folio_nr_pages(folio);
967                         if (same_folio)
968                                 end = folio->index;
969                 }
970                 folio_unlock(folio);
971                 folio_put(folio);
972                 folio = NULL;
973         }
974
975         if (!same_folio)
976                 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
977         if (folio) {
978                 folio_mark_dirty(folio);
979                 if (!truncate_inode_partial_folio(folio, lstart, lend))
980                         end = folio->index;
981                 folio_unlock(folio);
982                 folio_put(folio);
983         }
984
985         index = start;
986         while (index < end) {
987                 cond_resched();
988
989                 if (!find_get_entries(mapping, index, end - 1, &fbatch,
990                                 indices)) {
991                         /* If all gone or hole-punch or unfalloc, we're done */
992                         if (index == start || end != -1)
993                                 break;
994                         /* But if truncating, restart to make sure all gone */
995                         index = start;
996                         continue;
997                 }
998                 for (i = 0; i < folio_batch_count(&fbatch); i++) {
999                         folio = fbatch.folios[i];
1000
1001                         index = indices[i];
1002                         if (xa_is_value(folio)) {
1003                                 if (unfalloc)
1004                                         continue;
1005                                 if (shmem_free_swap(mapping, index, folio)) {
1006                                         /* Swap was replaced by page: retry */
1007                                         index--;
1008                                         break;
1009                                 }
1010                                 nr_swaps_freed++;
1011                                 continue;
1012                         }
1013
1014                         folio_lock(folio);
1015
1016                         if (!unfalloc || !folio_test_uptodate(folio)) {
1017                                 if (folio_mapping(folio) != mapping) {
1018                                         /* Page was replaced by swap: retry */
1019                                         folio_unlock(folio);
1020                                         index--;
1021                                         break;
1022                                 }
1023                                 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1024                                                 folio);
1025                                 truncate_inode_folio(mapping, folio);
1026                         }
1027                         index = folio->index + folio_nr_pages(folio) - 1;
1028                         folio_unlock(folio);
1029                 }
1030                 folio_batch_remove_exceptionals(&fbatch);
1031                 folio_batch_release(&fbatch);
1032                 index++;
1033         }
1034
1035         spin_lock_irq(&info->lock);
1036         info->swapped -= nr_swaps_freed;
1037         shmem_recalc_inode(inode);
1038         spin_unlock_irq(&info->lock);
1039 }
1040
1041 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1042 {
1043         shmem_undo_range(inode, lstart, lend, false);
1044         inode->i_ctime = inode->i_mtime = current_time(inode);
1045 }
1046 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1047
1048 static int shmem_getattr(struct user_namespace *mnt_userns,
1049                          const struct path *path, struct kstat *stat,
1050                          u32 request_mask, unsigned int query_flags)
1051 {
1052         struct inode *inode = path->dentry->d_inode;
1053         struct shmem_inode_info *info = SHMEM_I(inode);
1054
1055         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1056                 spin_lock_irq(&info->lock);
1057                 shmem_recalc_inode(inode);
1058                 spin_unlock_irq(&info->lock);
1059         }
1060         generic_fillattr(&init_user_ns, inode, stat);
1061
1062         if (shmem_is_huge(NULL, inode, 0))
1063                 stat->blksize = HPAGE_PMD_SIZE;
1064
1065         return 0;
1066 }
1067
1068 static int shmem_setattr(struct user_namespace *mnt_userns,
1069                          struct dentry *dentry, struct iattr *attr)
1070 {
1071         struct inode *inode = d_inode(dentry);
1072         struct shmem_inode_info *info = SHMEM_I(inode);
1073         int error;
1074
1075         error = setattr_prepare(&init_user_ns, dentry, attr);
1076         if (error)
1077                 return error;
1078
1079         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1080                 loff_t oldsize = inode->i_size;
1081                 loff_t newsize = attr->ia_size;
1082
1083                 /* protected by i_rwsem */
1084                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1085                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1086                         return -EPERM;
1087
1088                 if (newsize != oldsize) {
1089                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1090                                         oldsize, newsize);
1091                         if (error)
1092                                 return error;
1093                         i_size_write(inode, newsize);
1094                         inode->i_ctime = inode->i_mtime = current_time(inode);
1095                 }
1096                 if (newsize <= oldsize) {
1097                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1098                         if (oldsize > holebegin)
1099                                 unmap_mapping_range(inode->i_mapping,
1100                                                         holebegin, 0, 1);
1101                         if (info->alloced)
1102                                 shmem_truncate_range(inode,
1103                                                         newsize, (loff_t)-1);
1104                         /* unmap again to remove racily COWed private pages */
1105                         if (oldsize > holebegin)
1106                                 unmap_mapping_range(inode->i_mapping,
1107                                                         holebegin, 0, 1);
1108                 }
1109         }
1110
1111         setattr_copy(&init_user_ns, inode, attr);
1112         if (attr->ia_valid & ATTR_MODE)
1113                 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1114         return error;
1115 }
1116
1117 static void shmem_evict_inode(struct inode *inode)
1118 {
1119         struct shmem_inode_info *info = SHMEM_I(inode);
1120         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1121
1122         if (shmem_mapping(inode->i_mapping)) {
1123                 shmem_unacct_size(info->flags, inode->i_size);
1124                 inode->i_size = 0;
1125                 shmem_truncate_range(inode, 0, (loff_t)-1);
1126                 if (!list_empty(&info->shrinklist)) {
1127                         spin_lock(&sbinfo->shrinklist_lock);
1128                         if (!list_empty(&info->shrinklist)) {
1129                                 list_del_init(&info->shrinklist);
1130                                 sbinfo->shrinklist_len--;
1131                         }
1132                         spin_unlock(&sbinfo->shrinklist_lock);
1133                 }
1134                 while (!list_empty(&info->swaplist)) {
1135                         /* Wait while shmem_unuse() is scanning this inode... */
1136                         wait_var_event(&info->stop_eviction,
1137                                        !atomic_read(&info->stop_eviction));
1138                         mutex_lock(&shmem_swaplist_mutex);
1139                         /* ...but beware of the race if we peeked too early */
1140                         if (!atomic_read(&info->stop_eviction))
1141                                 list_del_init(&info->swaplist);
1142                         mutex_unlock(&shmem_swaplist_mutex);
1143                 }
1144         }
1145
1146         simple_xattrs_free(&info->xattrs);
1147         WARN_ON(inode->i_blocks);
1148         shmem_free_inode(inode->i_sb);
1149         clear_inode(inode);
1150 }
1151
1152 static int shmem_find_swap_entries(struct address_space *mapping,
1153                                    pgoff_t start, unsigned int nr_entries,
1154                                    struct page **entries, pgoff_t *indices,
1155                                    unsigned int type, bool frontswap)
1156 {
1157         XA_STATE(xas, &mapping->i_pages, start);
1158         struct page *page;
1159         swp_entry_t entry;
1160         unsigned int ret = 0;
1161
1162         if (!nr_entries)
1163                 return 0;
1164
1165         rcu_read_lock();
1166         xas_for_each(&xas, page, ULONG_MAX) {
1167                 if (xas_retry(&xas, page))
1168                         continue;
1169
1170                 if (!xa_is_value(page))
1171                         continue;
1172
1173                 entry = radix_to_swp_entry(page);
1174                 if (swp_type(entry) != type)
1175                         continue;
1176                 if (frontswap &&
1177                     !frontswap_test(swap_info[type], swp_offset(entry)))
1178                         continue;
1179
1180                 indices[ret] = xas.xa_index;
1181                 entries[ret] = page;
1182
1183                 if (need_resched()) {
1184                         xas_pause(&xas);
1185                         cond_resched_rcu();
1186                 }
1187                 if (++ret == nr_entries)
1188                         break;
1189         }
1190         rcu_read_unlock();
1191
1192         return ret;
1193 }
1194
1195 /*
1196  * Move the swapped pages for an inode to page cache. Returns the count
1197  * of pages swapped in, or the error in case of failure.
1198  */
1199 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1200                                     pgoff_t *indices)
1201 {
1202         int i = 0;
1203         int ret = 0;
1204         int error = 0;
1205         struct address_space *mapping = inode->i_mapping;
1206
1207         for (i = 0; i < pvec.nr; i++) {
1208                 struct page *page = pvec.pages[i];
1209
1210                 if (!xa_is_value(page))
1211                         continue;
1212                 error = shmem_swapin_page(inode, indices[i],
1213                                           &page, SGP_CACHE,
1214                                           mapping_gfp_mask(mapping),
1215                                           NULL, NULL);
1216                 if (error == 0) {
1217                         unlock_page(page);
1218                         put_page(page);
1219                         ret++;
1220                 }
1221                 if (error == -ENOMEM)
1222                         break;
1223                 error = 0;
1224         }
1225         return error ? error : ret;
1226 }
1227
1228 /*
1229  * If swap found in inode, free it and move page from swapcache to filecache.
1230  */
1231 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1232                              bool frontswap, unsigned long *fs_pages_to_unuse)
1233 {
1234         struct address_space *mapping = inode->i_mapping;
1235         pgoff_t start = 0;
1236         struct pagevec pvec;
1237         pgoff_t indices[PAGEVEC_SIZE];
1238         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1239         int ret = 0;
1240
1241         pagevec_init(&pvec);
1242         do {
1243                 unsigned int nr_entries = PAGEVEC_SIZE;
1244
1245                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1246                         nr_entries = *fs_pages_to_unuse;
1247
1248                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1249                                                   pvec.pages, indices,
1250                                                   type, frontswap);
1251                 if (pvec.nr == 0) {
1252                         ret = 0;
1253                         break;
1254                 }
1255
1256                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1257                 if (ret < 0)
1258                         break;
1259
1260                 if (frontswap_partial) {
1261                         *fs_pages_to_unuse -= ret;
1262                         if (*fs_pages_to_unuse == 0) {
1263                                 ret = FRONTSWAP_PAGES_UNUSED;
1264                                 break;
1265                         }
1266                 }
1267
1268                 start = indices[pvec.nr - 1];
1269         } while (true);
1270
1271         return ret;
1272 }
1273
1274 /*
1275  * Read all the shared memory data that resides in the swap
1276  * device 'type' back into memory, so the swap device can be
1277  * unused.
1278  */
1279 int shmem_unuse(unsigned int type, bool frontswap,
1280                 unsigned long *fs_pages_to_unuse)
1281 {
1282         struct shmem_inode_info *info, *next;
1283         int error = 0;
1284
1285         if (list_empty(&shmem_swaplist))
1286                 return 0;
1287
1288         mutex_lock(&shmem_swaplist_mutex);
1289         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1290                 if (!info->swapped) {
1291                         list_del_init(&info->swaplist);
1292                         continue;
1293                 }
1294                 /*
1295                  * Drop the swaplist mutex while searching the inode for swap;
1296                  * but before doing so, make sure shmem_evict_inode() will not
1297                  * remove placeholder inode from swaplist, nor let it be freed
1298                  * (igrab() would protect from unlink, but not from unmount).
1299                  */
1300                 atomic_inc(&info->stop_eviction);
1301                 mutex_unlock(&shmem_swaplist_mutex);
1302
1303                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1304                                           fs_pages_to_unuse);
1305                 cond_resched();
1306
1307                 mutex_lock(&shmem_swaplist_mutex);
1308                 next = list_next_entry(info, swaplist);
1309                 if (!info->swapped)
1310                         list_del_init(&info->swaplist);
1311                 if (atomic_dec_and_test(&info->stop_eviction))
1312                         wake_up_var(&info->stop_eviction);
1313                 if (error)
1314                         break;
1315         }
1316         mutex_unlock(&shmem_swaplist_mutex);
1317
1318         return error;
1319 }
1320
1321 /*
1322  * Move the page from the page cache to the swap cache.
1323  */
1324 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1325 {
1326         struct shmem_inode_info *info;
1327         struct address_space *mapping;
1328         struct inode *inode;
1329         swp_entry_t swap;
1330         pgoff_t index;
1331
1332         /*
1333          * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1334          * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1335          * and its shmem_writeback() needs them to be split when swapping.
1336          */
1337         if (PageTransCompound(page)) {
1338                 /* Ensure the subpages are still dirty */
1339                 SetPageDirty(page);
1340                 if (split_huge_page(page) < 0)
1341                         goto redirty;
1342                 ClearPageDirty(page);
1343         }
1344
1345         BUG_ON(!PageLocked(page));
1346         mapping = page->mapping;
1347         index = page->index;
1348         inode = mapping->host;
1349         info = SHMEM_I(inode);
1350         if (info->flags & VM_LOCKED)
1351                 goto redirty;
1352         if (!total_swap_pages)
1353                 goto redirty;
1354
1355         /*
1356          * Our capabilities prevent regular writeback or sync from ever calling
1357          * shmem_writepage; but a stacking filesystem might use ->writepage of
1358          * its underlying filesystem, in which case tmpfs should write out to
1359          * swap only in response to memory pressure, and not for the writeback
1360          * threads or sync.
1361          */
1362         if (!wbc->for_reclaim) {
1363                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1364                 goto redirty;
1365         }
1366
1367         /*
1368          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1369          * value into swapfile.c, the only way we can correctly account for a
1370          * fallocated page arriving here is now to initialize it and write it.
1371          *
1372          * That's okay for a page already fallocated earlier, but if we have
1373          * not yet completed the fallocation, then (a) we want to keep track
1374          * of this page in case we have to undo it, and (b) it may not be a
1375          * good idea to continue anyway, once we're pushing into swap.  So
1376          * reactivate the page, and let shmem_fallocate() quit when too many.
1377          */
1378         if (!PageUptodate(page)) {
1379                 if (inode->i_private) {
1380                         struct shmem_falloc *shmem_falloc;
1381                         spin_lock(&inode->i_lock);
1382                         shmem_falloc = inode->i_private;
1383                         if (shmem_falloc &&
1384                             !shmem_falloc->waitq &&
1385                             index >= shmem_falloc->start &&
1386                             index < shmem_falloc->next)
1387                                 shmem_falloc->nr_unswapped++;
1388                         else
1389                                 shmem_falloc = NULL;
1390                         spin_unlock(&inode->i_lock);
1391                         if (shmem_falloc)
1392                                 goto redirty;
1393                 }
1394                 clear_highpage(page);
1395                 flush_dcache_page(page);
1396                 SetPageUptodate(page);
1397         }
1398
1399         swap = get_swap_page(page);
1400         if (!swap.val)
1401                 goto redirty;
1402
1403         /*
1404          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1405          * if it's not already there.  Do it now before the page is
1406          * moved to swap cache, when its pagelock no longer protects
1407          * the inode from eviction.  But don't unlock the mutex until
1408          * we've incremented swapped, because shmem_unuse_inode() will
1409          * prune a !swapped inode from the swaplist under this mutex.
1410          */
1411         mutex_lock(&shmem_swaplist_mutex);
1412         if (list_empty(&info->swaplist))
1413                 list_add(&info->swaplist, &shmem_swaplist);
1414
1415         if (add_to_swap_cache(page, swap,
1416                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1417                         NULL) == 0) {
1418                 spin_lock_irq(&info->lock);
1419                 shmem_recalc_inode(inode);
1420                 info->swapped++;
1421                 spin_unlock_irq(&info->lock);
1422
1423                 swap_shmem_alloc(swap);
1424                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1425
1426                 mutex_unlock(&shmem_swaplist_mutex);
1427                 BUG_ON(page_mapped(page));
1428                 swap_writepage(page, wbc);
1429                 return 0;
1430         }
1431
1432         mutex_unlock(&shmem_swaplist_mutex);
1433         put_swap_page(page, swap);
1434 redirty:
1435         set_page_dirty(page);
1436         if (wbc->for_reclaim)
1437                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1438         unlock_page(page);
1439         return 0;
1440 }
1441
1442 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1443 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1444 {
1445         char buffer[64];
1446
1447         if (!mpol || mpol->mode == MPOL_DEFAULT)
1448                 return;         /* show nothing */
1449
1450         mpol_to_str(buffer, sizeof(buffer), mpol);
1451
1452         seq_printf(seq, ",mpol=%s", buffer);
1453 }
1454
1455 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1456 {
1457         struct mempolicy *mpol = NULL;
1458         if (sbinfo->mpol) {
1459                 raw_spin_lock(&sbinfo->stat_lock);      /* prevent replace/use races */
1460                 mpol = sbinfo->mpol;
1461                 mpol_get(mpol);
1462                 raw_spin_unlock(&sbinfo->stat_lock);
1463         }
1464         return mpol;
1465 }
1466 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1467 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1468 {
1469 }
1470 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1471 {
1472         return NULL;
1473 }
1474 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1475 #ifndef CONFIG_NUMA
1476 #define vm_policy vm_private_data
1477 #endif
1478
1479 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1480                 struct shmem_inode_info *info, pgoff_t index)
1481 {
1482         /* Create a pseudo vma that just contains the policy */
1483         vma_init(vma, NULL);
1484         /* Bias interleave by inode number to distribute better across nodes */
1485         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1486         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1487 }
1488
1489 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1490 {
1491         /* Drop reference taken by mpol_shared_policy_lookup() */
1492         mpol_cond_put(vma->vm_policy);
1493 }
1494
1495 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1496                         struct shmem_inode_info *info, pgoff_t index)
1497 {
1498         struct vm_area_struct pvma;
1499         struct page *page;
1500         struct vm_fault vmf = {
1501                 .vma = &pvma,
1502         };
1503
1504         shmem_pseudo_vma_init(&pvma, info, index);
1505         page = swap_cluster_readahead(swap, gfp, &vmf);
1506         shmem_pseudo_vma_destroy(&pvma);
1507
1508         return page;
1509 }
1510
1511 /*
1512  * Make sure huge_gfp is always more limited than limit_gfp.
1513  * Some of the flags set permissions, while others set limitations.
1514  */
1515 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1516 {
1517         gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1518         gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1519         gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1520         gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1521
1522         /* Allow allocations only from the originally specified zones. */
1523         result |= zoneflags;
1524
1525         /*
1526          * Minimize the result gfp by taking the union with the deny flags,
1527          * and the intersection of the allow flags.
1528          */
1529         result |= (limit_gfp & denyflags);
1530         result |= (huge_gfp & limit_gfp) & allowflags;
1531
1532         return result;
1533 }
1534
1535 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1536                 struct shmem_inode_info *info, pgoff_t index)
1537 {
1538         struct vm_area_struct pvma;
1539         struct address_space *mapping = info->vfs_inode.i_mapping;
1540         pgoff_t hindex;
1541         struct page *page;
1542
1543         hindex = round_down(index, HPAGE_PMD_NR);
1544         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1545                                                                 XA_PRESENT))
1546                 return NULL;
1547
1548         shmem_pseudo_vma_init(&pvma, info, hindex);
1549         page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1550         shmem_pseudo_vma_destroy(&pvma);
1551         if (page)
1552                 prep_transhuge_page(page);
1553         else
1554                 count_vm_event(THP_FILE_FALLBACK);
1555         return page;
1556 }
1557
1558 static struct page *shmem_alloc_page(gfp_t gfp,
1559                         struct shmem_inode_info *info, pgoff_t index)
1560 {
1561         struct vm_area_struct pvma;
1562         struct page *page;
1563
1564         shmem_pseudo_vma_init(&pvma, info, index);
1565         page = alloc_page_vma(gfp, &pvma, 0);
1566         shmem_pseudo_vma_destroy(&pvma);
1567
1568         return page;
1569 }
1570
1571 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1572                 struct inode *inode,
1573                 pgoff_t index, bool huge)
1574 {
1575         struct shmem_inode_info *info = SHMEM_I(inode);
1576         struct page *page;
1577         int nr;
1578         int err = -ENOSPC;
1579
1580         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1581                 huge = false;
1582         nr = huge ? HPAGE_PMD_NR : 1;
1583
1584         if (!shmem_inode_acct_block(inode, nr))
1585                 goto failed;
1586
1587         if (huge)
1588                 page = shmem_alloc_hugepage(gfp, info, index);
1589         else
1590                 page = shmem_alloc_page(gfp, info, index);
1591         if (page) {
1592                 __SetPageLocked(page);
1593                 __SetPageSwapBacked(page);
1594                 return page;
1595         }
1596
1597         err = -ENOMEM;
1598         shmem_inode_unacct_blocks(inode, nr);
1599 failed:
1600         return ERR_PTR(err);
1601 }
1602
1603 /*
1604  * When a page is moved from swapcache to shmem filecache (either by the
1605  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1606  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1607  * ignorance of the mapping it belongs to.  If that mapping has special
1608  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1609  * we may need to copy to a suitable page before moving to filecache.
1610  *
1611  * In a future release, this may well be extended to respect cpuset and
1612  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1613  * but for now it is a simple matter of zone.
1614  */
1615 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1616 {
1617         return page_zonenum(page) > gfp_zone(gfp);
1618 }
1619
1620 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1621                                 struct shmem_inode_info *info, pgoff_t index)
1622 {
1623         struct page *oldpage, *newpage;
1624         struct folio *old, *new;
1625         struct address_space *swap_mapping;
1626         swp_entry_t entry;
1627         pgoff_t swap_index;
1628         int error;
1629
1630         oldpage = *pagep;
1631         entry.val = page_private(oldpage);
1632         swap_index = swp_offset(entry);
1633         swap_mapping = page_mapping(oldpage);
1634
1635         /*
1636          * We have arrived here because our zones are constrained, so don't
1637          * limit chance of success by further cpuset and node constraints.
1638          */
1639         gfp &= ~GFP_CONSTRAINT_MASK;
1640         newpage = shmem_alloc_page(gfp, info, index);
1641         if (!newpage)
1642                 return -ENOMEM;
1643
1644         get_page(newpage);
1645         copy_highpage(newpage, oldpage);
1646         flush_dcache_page(newpage);
1647
1648         __SetPageLocked(newpage);
1649         __SetPageSwapBacked(newpage);
1650         SetPageUptodate(newpage);
1651         set_page_private(newpage, entry.val);
1652         SetPageSwapCache(newpage);
1653
1654         /*
1655          * Our caller will very soon move newpage out of swapcache, but it's
1656          * a nice clean interface for us to replace oldpage by newpage there.
1657          */
1658         xa_lock_irq(&swap_mapping->i_pages);
1659         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1660         if (!error) {
1661                 old = page_folio(oldpage);
1662                 new = page_folio(newpage);
1663                 mem_cgroup_migrate(old, new);
1664                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1665                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1666         }
1667         xa_unlock_irq(&swap_mapping->i_pages);
1668
1669         if (unlikely(error)) {
1670                 /*
1671                  * Is this possible?  I think not, now that our callers check
1672                  * both PageSwapCache and page_private after getting page lock;
1673                  * but be defensive.  Reverse old to newpage for clear and free.
1674                  */
1675                 oldpage = newpage;
1676         } else {
1677                 lru_cache_add(newpage);
1678                 *pagep = newpage;
1679         }
1680
1681         ClearPageSwapCache(oldpage);
1682         set_page_private(oldpage, 0);
1683
1684         unlock_page(oldpage);
1685         put_page(oldpage);
1686         put_page(oldpage);
1687         return error;
1688 }
1689
1690 /*
1691  * Swap in the page pointed to by *pagep.
1692  * Caller has to make sure that *pagep contains a valid swapped page.
1693  * Returns 0 and the page in pagep if success. On failure, returns the
1694  * error code and NULL in *pagep.
1695  */
1696 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1697                              struct page **pagep, enum sgp_type sgp,
1698                              gfp_t gfp, struct vm_area_struct *vma,
1699                              vm_fault_t *fault_type)
1700 {
1701         struct address_space *mapping = inode->i_mapping;
1702         struct shmem_inode_info *info = SHMEM_I(inode);
1703         struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1704         struct page *page;
1705         swp_entry_t swap;
1706         int error;
1707
1708         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1709         swap = radix_to_swp_entry(*pagep);
1710         *pagep = NULL;
1711
1712         /* Look it up and read it in.. */
1713         page = lookup_swap_cache(swap, NULL, 0);
1714         if (!page) {
1715                 /* Or update major stats only when swapin succeeds?? */
1716                 if (fault_type) {
1717                         *fault_type |= VM_FAULT_MAJOR;
1718                         count_vm_event(PGMAJFAULT);
1719                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1720                 }
1721                 /* Here we actually start the io */
1722                 page = shmem_swapin(swap, gfp, info, index);
1723                 if (!page) {
1724                         error = -ENOMEM;
1725                         goto failed;
1726                 }
1727         }
1728
1729         /* We have to do this with page locked to prevent races */
1730         lock_page(page);
1731         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1732             !shmem_confirm_swap(mapping, index, swap)) {
1733                 error = -EEXIST;
1734                 goto unlock;
1735         }
1736         if (!PageUptodate(page)) {
1737                 error = -EIO;
1738                 goto failed;
1739         }
1740         wait_on_page_writeback(page);
1741
1742         /*
1743          * Some architectures may have to restore extra metadata to the
1744          * physical page after reading from swap.
1745          */
1746         arch_swap_restore(swap, page);
1747
1748         if (shmem_should_replace_page(page, gfp)) {
1749                 error = shmem_replace_page(&page, gfp, info, index);
1750                 if (error)
1751                         goto failed;
1752         }
1753
1754         error = shmem_add_to_page_cache(page, mapping, index,
1755                                         swp_to_radix_entry(swap), gfp,
1756                                         charge_mm);
1757         if (error)
1758                 goto failed;
1759
1760         spin_lock_irq(&info->lock);
1761         info->swapped--;
1762         shmem_recalc_inode(inode);
1763         spin_unlock_irq(&info->lock);
1764
1765         if (sgp == SGP_WRITE)
1766                 mark_page_accessed(page);
1767
1768         delete_from_swap_cache(page);
1769         set_page_dirty(page);
1770         swap_free(swap);
1771
1772         *pagep = page;
1773         return 0;
1774 failed:
1775         if (!shmem_confirm_swap(mapping, index, swap))
1776                 error = -EEXIST;
1777 unlock:
1778         if (page) {
1779                 unlock_page(page);
1780                 put_page(page);
1781         }
1782
1783         return error;
1784 }
1785
1786 /*
1787  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1788  *
1789  * If we allocate a new one we do not mark it dirty. That's up to the
1790  * vm. If we swap it in we mark it dirty since we also free the swap
1791  * entry since a page cannot live in both the swap and page cache.
1792  *
1793  * vma, vmf, and fault_type are only supplied by shmem_fault:
1794  * otherwise they are NULL.
1795  */
1796 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1797         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1798         struct vm_area_struct *vma, struct vm_fault *vmf,
1799                         vm_fault_t *fault_type)
1800 {
1801         struct address_space *mapping = inode->i_mapping;
1802         struct shmem_inode_info *info = SHMEM_I(inode);
1803         struct shmem_sb_info *sbinfo;
1804         struct mm_struct *charge_mm;
1805         struct page *page;
1806         pgoff_t hindex = index;
1807         gfp_t huge_gfp;
1808         int error;
1809         int once = 0;
1810         int alloced = 0;
1811
1812         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1813                 return -EFBIG;
1814 repeat:
1815         if (sgp <= SGP_CACHE &&
1816             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1817                 return -EINVAL;
1818         }
1819
1820         sbinfo = SHMEM_SB(inode->i_sb);
1821         charge_mm = vma ? vma->vm_mm : NULL;
1822
1823         page = pagecache_get_page(mapping, index,
1824                                         FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1825
1826         if (page && vma && userfaultfd_minor(vma)) {
1827                 if (!xa_is_value(page)) {
1828                         unlock_page(page);
1829                         put_page(page);
1830                 }
1831                 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1832                 return 0;
1833         }
1834
1835         if (xa_is_value(page)) {
1836                 error = shmem_swapin_page(inode, index, &page,
1837                                           sgp, gfp, vma, fault_type);
1838                 if (error == -EEXIST)
1839                         goto repeat;
1840
1841                 *pagep = page;
1842                 return error;
1843         }
1844
1845         if (page) {
1846                 hindex = page->index;
1847                 if (sgp == SGP_WRITE)
1848                         mark_page_accessed(page);
1849                 if (PageUptodate(page))
1850                         goto out;
1851                 /* fallocated page */
1852                 if (sgp != SGP_READ)
1853                         goto clear;
1854                 unlock_page(page);
1855                 put_page(page);
1856         }
1857
1858         /*
1859          * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1860          * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1861          */
1862         *pagep = NULL;
1863         if (sgp == SGP_READ)
1864                 return 0;
1865         if (sgp == SGP_NOALLOC)
1866                 return -ENOENT;
1867
1868         /*
1869          * Fast cache lookup and swap lookup did not find it: allocate.
1870          */
1871
1872         if (vma && userfaultfd_missing(vma)) {
1873                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1874                 return 0;
1875         }
1876
1877         /* Never use a huge page for shmem_symlink() */
1878         if (S_ISLNK(inode->i_mode))
1879                 goto alloc_nohuge;
1880         if (!shmem_is_huge(vma, inode, index))
1881                 goto alloc_nohuge;
1882
1883         huge_gfp = vma_thp_gfp_mask(vma);
1884         huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1885         page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1886         if (IS_ERR(page)) {
1887 alloc_nohuge:
1888                 page = shmem_alloc_and_acct_page(gfp, inode,
1889                                                  index, false);
1890         }
1891         if (IS_ERR(page)) {
1892                 int retry = 5;
1893
1894                 error = PTR_ERR(page);
1895                 page = NULL;
1896                 if (error != -ENOSPC)
1897                         goto unlock;
1898                 /*
1899                  * Try to reclaim some space by splitting a huge page
1900                  * beyond i_size on the filesystem.
1901                  */
1902                 while (retry--) {
1903                         int ret;
1904
1905                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1906                         if (ret == SHRINK_STOP)
1907                                 break;
1908                         if (ret)
1909                                 goto alloc_nohuge;
1910                 }
1911                 goto unlock;
1912         }
1913
1914         if (PageTransHuge(page))
1915                 hindex = round_down(index, HPAGE_PMD_NR);
1916         else
1917                 hindex = index;
1918
1919         if (sgp == SGP_WRITE)
1920                 __SetPageReferenced(page);
1921
1922         error = shmem_add_to_page_cache(page, mapping, hindex,
1923                                         NULL, gfp & GFP_RECLAIM_MASK,
1924                                         charge_mm);
1925         if (error)
1926                 goto unacct;
1927         lru_cache_add(page);
1928
1929         spin_lock_irq(&info->lock);
1930         info->alloced += compound_nr(page);
1931         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1932         shmem_recalc_inode(inode);
1933         spin_unlock_irq(&info->lock);
1934         alloced = true;
1935
1936         if (PageTransHuge(page) &&
1937             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1938                         hindex + HPAGE_PMD_NR - 1) {
1939                 /*
1940                  * Part of the huge page is beyond i_size: subject
1941                  * to shrink under memory pressure.
1942                  */
1943                 spin_lock(&sbinfo->shrinklist_lock);
1944                 /*
1945                  * _careful to defend against unlocked access to
1946                  * ->shrink_list in shmem_unused_huge_shrink()
1947                  */
1948                 if (list_empty_careful(&info->shrinklist)) {
1949                         list_add_tail(&info->shrinklist,
1950                                       &sbinfo->shrinklist);
1951                         sbinfo->shrinklist_len++;
1952                 }
1953                 spin_unlock(&sbinfo->shrinklist_lock);
1954         }
1955
1956         /*
1957          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1958          */
1959         if (sgp == SGP_FALLOC)
1960                 sgp = SGP_WRITE;
1961 clear:
1962         /*
1963          * Let SGP_WRITE caller clear ends if write does not fill page;
1964          * but SGP_FALLOC on a page fallocated earlier must initialize
1965          * it now, lest undo on failure cancel our earlier guarantee.
1966          */
1967         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1968                 int i;
1969
1970                 for (i = 0; i < compound_nr(page); i++) {
1971                         clear_highpage(page + i);
1972                         flush_dcache_page(page + i);
1973                 }
1974                 SetPageUptodate(page);
1975         }
1976
1977         /* Perhaps the file has been truncated since we checked */
1978         if (sgp <= SGP_CACHE &&
1979             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1980                 if (alloced) {
1981                         ClearPageDirty(page);
1982                         delete_from_page_cache(page);
1983                         spin_lock_irq(&info->lock);
1984                         shmem_recalc_inode(inode);
1985                         spin_unlock_irq(&info->lock);
1986                 }
1987                 error = -EINVAL;
1988                 goto unlock;
1989         }
1990 out:
1991         *pagep = page + index - hindex;
1992         return 0;
1993
1994         /*
1995          * Error recovery.
1996          */
1997 unacct:
1998         shmem_inode_unacct_blocks(inode, compound_nr(page));
1999
2000         if (PageTransHuge(page)) {
2001                 unlock_page(page);
2002                 put_page(page);
2003                 goto alloc_nohuge;
2004         }
2005 unlock:
2006         if (page) {
2007                 unlock_page(page);
2008                 put_page(page);
2009         }
2010         if (error == -ENOSPC && !once++) {
2011                 spin_lock_irq(&info->lock);
2012                 shmem_recalc_inode(inode);
2013                 spin_unlock_irq(&info->lock);
2014                 goto repeat;
2015         }
2016         if (error == -EEXIST)
2017                 goto repeat;
2018         return error;
2019 }
2020
2021 /*
2022  * This is like autoremove_wake_function, but it removes the wait queue
2023  * entry unconditionally - even if something else had already woken the
2024  * target.
2025  */
2026 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2027 {
2028         int ret = default_wake_function(wait, mode, sync, key);
2029         list_del_init(&wait->entry);
2030         return ret;
2031 }
2032
2033 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2034 {
2035         struct vm_area_struct *vma = vmf->vma;
2036         struct inode *inode = file_inode(vma->vm_file);
2037         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2038         int err;
2039         vm_fault_t ret = VM_FAULT_LOCKED;
2040
2041         /*
2042          * Trinity finds that probing a hole which tmpfs is punching can
2043          * prevent the hole-punch from ever completing: which in turn
2044          * locks writers out with its hold on i_rwsem.  So refrain from
2045          * faulting pages into the hole while it's being punched.  Although
2046          * shmem_undo_range() does remove the additions, it may be unable to
2047          * keep up, as each new page needs its own unmap_mapping_range() call,
2048          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2049          *
2050          * It does not matter if we sometimes reach this check just before the
2051          * hole-punch begins, so that one fault then races with the punch:
2052          * we just need to make racing faults a rare case.
2053          *
2054          * The implementation below would be much simpler if we just used a
2055          * standard mutex or completion: but we cannot take i_rwsem in fault,
2056          * and bloating every shmem inode for this unlikely case would be sad.
2057          */
2058         if (unlikely(inode->i_private)) {
2059                 struct shmem_falloc *shmem_falloc;
2060
2061                 spin_lock(&inode->i_lock);
2062                 shmem_falloc = inode->i_private;
2063                 if (shmem_falloc &&
2064                     shmem_falloc->waitq &&
2065                     vmf->pgoff >= shmem_falloc->start &&
2066                     vmf->pgoff < shmem_falloc->next) {
2067                         struct file *fpin;
2068                         wait_queue_head_t *shmem_falloc_waitq;
2069                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2070
2071                         ret = VM_FAULT_NOPAGE;
2072                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2073                         if (fpin)
2074                                 ret = VM_FAULT_RETRY;
2075
2076                         shmem_falloc_waitq = shmem_falloc->waitq;
2077                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2078                                         TASK_UNINTERRUPTIBLE);
2079                         spin_unlock(&inode->i_lock);
2080                         schedule();
2081
2082                         /*
2083                          * shmem_falloc_waitq points into the shmem_fallocate()
2084                          * stack of the hole-punching task: shmem_falloc_waitq
2085                          * is usually invalid by the time we reach here, but
2086                          * finish_wait() does not dereference it in that case;
2087                          * though i_lock needed lest racing with wake_up_all().
2088                          */
2089                         spin_lock(&inode->i_lock);
2090                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2091                         spin_unlock(&inode->i_lock);
2092
2093                         if (fpin)
2094                                 fput(fpin);
2095                         return ret;
2096                 }
2097                 spin_unlock(&inode->i_lock);
2098         }
2099
2100         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2101                                   gfp, vma, vmf, &ret);
2102         if (err)
2103                 return vmf_error(err);
2104         return ret;
2105 }
2106
2107 unsigned long shmem_get_unmapped_area(struct file *file,
2108                                       unsigned long uaddr, unsigned long len,
2109                                       unsigned long pgoff, unsigned long flags)
2110 {
2111         unsigned long (*get_area)(struct file *,
2112                 unsigned long, unsigned long, unsigned long, unsigned long);
2113         unsigned long addr;
2114         unsigned long offset;
2115         unsigned long inflated_len;
2116         unsigned long inflated_addr;
2117         unsigned long inflated_offset;
2118
2119         if (len > TASK_SIZE)
2120                 return -ENOMEM;
2121
2122         get_area = current->mm->get_unmapped_area;
2123         addr = get_area(file, uaddr, len, pgoff, flags);
2124
2125         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2126                 return addr;
2127         if (IS_ERR_VALUE(addr))
2128                 return addr;
2129         if (addr & ~PAGE_MASK)
2130                 return addr;
2131         if (addr > TASK_SIZE - len)
2132                 return addr;
2133
2134         if (shmem_huge == SHMEM_HUGE_DENY)
2135                 return addr;
2136         if (len < HPAGE_PMD_SIZE)
2137                 return addr;
2138         if (flags & MAP_FIXED)
2139                 return addr;
2140         /*
2141          * Our priority is to support MAP_SHARED mapped hugely;
2142          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2143          * But if caller specified an address hint and we allocated area there
2144          * successfully, respect that as before.
2145          */
2146         if (uaddr == addr)
2147                 return addr;
2148
2149         if (shmem_huge != SHMEM_HUGE_FORCE) {
2150                 struct super_block *sb;
2151
2152                 if (file) {
2153                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2154                         sb = file_inode(file)->i_sb;
2155                 } else {
2156                         /*
2157                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2158                          * for "/dev/zero", to create a shared anonymous object.
2159                          */
2160                         if (IS_ERR(shm_mnt))
2161                                 return addr;
2162                         sb = shm_mnt->mnt_sb;
2163                 }
2164                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2165                         return addr;
2166         }
2167
2168         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2169         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2170                 return addr;
2171         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2172                 return addr;
2173
2174         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2175         if (inflated_len > TASK_SIZE)
2176                 return addr;
2177         if (inflated_len < len)
2178                 return addr;
2179
2180         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2181         if (IS_ERR_VALUE(inflated_addr))
2182                 return addr;
2183         if (inflated_addr & ~PAGE_MASK)
2184                 return addr;
2185
2186         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2187         inflated_addr += offset - inflated_offset;
2188         if (inflated_offset > offset)
2189                 inflated_addr += HPAGE_PMD_SIZE;
2190
2191         if (inflated_addr > TASK_SIZE - len)
2192                 return addr;
2193         return inflated_addr;
2194 }
2195
2196 #ifdef CONFIG_NUMA
2197 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2198 {
2199         struct inode *inode = file_inode(vma->vm_file);
2200         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2201 }
2202
2203 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2204                                           unsigned long addr)
2205 {
2206         struct inode *inode = file_inode(vma->vm_file);
2207         pgoff_t index;
2208
2209         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2210         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2211 }
2212 #endif
2213
2214 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2215 {
2216         struct inode *inode = file_inode(file);
2217         struct shmem_inode_info *info = SHMEM_I(inode);
2218         int retval = -ENOMEM;
2219
2220         /*
2221          * What serializes the accesses to info->flags?
2222          * ipc_lock_object() when called from shmctl_do_lock(),
2223          * no serialization needed when called from shm_destroy().
2224          */
2225         if (lock && !(info->flags & VM_LOCKED)) {
2226                 if (!user_shm_lock(inode->i_size, ucounts))
2227                         goto out_nomem;
2228                 info->flags |= VM_LOCKED;
2229                 mapping_set_unevictable(file->f_mapping);
2230         }
2231         if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2232                 user_shm_unlock(inode->i_size, ucounts);
2233                 info->flags &= ~VM_LOCKED;
2234                 mapping_clear_unevictable(file->f_mapping);
2235         }
2236         retval = 0;
2237
2238 out_nomem:
2239         return retval;
2240 }
2241
2242 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2243 {
2244         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2245         int ret;
2246
2247         ret = seal_check_future_write(info->seals, vma);
2248         if (ret)
2249                 return ret;
2250
2251         /* arm64 - allow memory tagging on RAM-based files */
2252         vma->vm_flags |= VM_MTE_ALLOWED;
2253
2254         file_accessed(file);
2255         vma->vm_ops = &shmem_vm_ops;
2256         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2257                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2258                         (vma->vm_end & HPAGE_PMD_MASK)) {
2259                 khugepaged_enter(vma, vma->vm_flags);
2260         }
2261         return 0;
2262 }
2263
2264 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2265                                      umode_t mode, dev_t dev, unsigned long flags)
2266 {
2267         struct inode *inode;
2268         struct shmem_inode_info *info;
2269         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2270         ino_t ino;
2271
2272         if (shmem_reserve_inode(sb, &ino))
2273                 return NULL;
2274
2275         inode = new_inode(sb);
2276         if (inode) {
2277                 inode->i_ino = ino;
2278                 inode_init_owner(&init_user_ns, inode, dir, mode);
2279                 inode->i_blocks = 0;
2280                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2281                 inode->i_generation = prandom_u32();
2282                 info = SHMEM_I(inode);
2283                 memset(info, 0, (char *)inode - (char *)info);
2284                 spin_lock_init(&info->lock);
2285                 atomic_set(&info->stop_eviction, 0);
2286                 info->seals = F_SEAL_SEAL;
2287                 info->flags = flags & VM_NORESERVE;
2288                 INIT_LIST_HEAD(&info->shrinklist);
2289                 INIT_LIST_HEAD(&info->swaplist);
2290                 simple_xattrs_init(&info->xattrs);
2291                 cache_no_acl(inode);
2292                 mapping_set_large_folios(inode->i_mapping);
2293
2294                 switch (mode & S_IFMT) {
2295                 default:
2296                         inode->i_op = &shmem_special_inode_operations;
2297                         init_special_inode(inode, mode, dev);
2298                         break;
2299                 case S_IFREG:
2300                         inode->i_mapping->a_ops = &shmem_aops;
2301                         inode->i_op = &shmem_inode_operations;
2302                         inode->i_fop = &shmem_file_operations;
2303                         mpol_shared_policy_init(&info->policy,
2304                                                  shmem_get_sbmpol(sbinfo));
2305                         break;
2306                 case S_IFDIR:
2307                         inc_nlink(inode);
2308                         /* Some things misbehave if size == 0 on a directory */
2309                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2310                         inode->i_op = &shmem_dir_inode_operations;
2311                         inode->i_fop = &simple_dir_operations;
2312                         break;
2313                 case S_IFLNK:
2314                         /*
2315                          * Must not load anything in the rbtree,
2316                          * mpol_free_shared_policy will not be called.
2317                          */
2318                         mpol_shared_policy_init(&info->policy, NULL);
2319                         break;
2320                 }
2321
2322                 lockdep_annotate_inode_mutex_key(inode);
2323         } else
2324                 shmem_free_inode(sb);
2325         return inode;
2326 }
2327
2328 #ifdef CONFIG_USERFAULTFD
2329 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2330                            pmd_t *dst_pmd,
2331                            struct vm_area_struct *dst_vma,
2332                            unsigned long dst_addr,
2333                            unsigned long src_addr,
2334                            bool zeropage,
2335                            struct page **pagep)
2336 {
2337         struct inode *inode = file_inode(dst_vma->vm_file);
2338         struct shmem_inode_info *info = SHMEM_I(inode);
2339         struct address_space *mapping = inode->i_mapping;
2340         gfp_t gfp = mapping_gfp_mask(mapping);
2341         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2342         void *page_kaddr;
2343         struct page *page;
2344         int ret;
2345         pgoff_t max_off;
2346
2347         if (!shmem_inode_acct_block(inode, 1)) {
2348                 /*
2349                  * We may have got a page, returned -ENOENT triggering a retry,
2350                  * and now we find ourselves with -ENOMEM. Release the page, to
2351                  * avoid a BUG_ON in our caller.
2352                  */
2353                 if (unlikely(*pagep)) {
2354                         put_page(*pagep);
2355                         *pagep = NULL;
2356                 }
2357                 return -ENOMEM;
2358         }
2359
2360         if (!*pagep) {
2361                 ret = -ENOMEM;
2362                 page = shmem_alloc_page(gfp, info, pgoff);
2363                 if (!page)
2364                         goto out_unacct_blocks;
2365
2366                 if (!zeropage) {        /* COPY */
2367                         page_kaddr = kmap_atomic(page);
2368                         ret = copy_from_user(page_kaddr,
2369                                              (const void __user *)src_addr,
2370                                              PAGE_SIZE);
2371                         kunmap_atomic(page_kaddr);
2372
2373                         /* fallback to copy_from_user outside mmap_lock */
2374                         if (unlikely(ret)) {
2375                                 *pagep = page;
2376                                 ret = -ENOENT;
2377                                 /* don't free the page */
2378                                 goto out_unacct_blocks;
2379                         }
2380                 } else {                /* ZEROPAGE */
2381                         clear_highpage(page);
2382                 }
2383         } else {
2384                 page = *pagep;
2385                 *pagep = NULL;
2386         }
2387
2388         VM_BUG_ON(PageLocked(page));
2389         VM_BUG_ON(PageSwapBacked(page));
2390         __SetPageLocked(page);
2391         __SetPageSwapBacked(page);
2392         __SetPageUptodate(page);
2393
2394         ret = -EFAULT;
2395         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2396         if (unlikely(pgoff >= max_off))
2397                 goto out_release;
2398
2399         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2400                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2401         if (ret)
2402                 goto out_release;
2403
2404         ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2405                                        page, true, false);
2406         if (ret)
2407                 goto out_delete_from_cache;
2408
2409         spin_lock_irq(&info->lock);
2410         info->alloced++;
2411         inode->i_blocks += BLOCKS_PER_PAGE;
2412         shmem_recalc_inode(inode);
2413         spin_unlock_irq(&info->lock);
2414
2415         unlock_page(page);
2416         return 0;
2417 out_delete_from_cache:
2418         delete_from_page_cache(page);
2419 out_release:
2420         unlock_page(page);
2421         put_page(page);
2422 out_unacct_blocks:
2423         shmem_inode_unacct_blocks(inode, 1);
2424         return ret;
2425 }
2426 #endif /* CONFIG_USERFAULTFD */
2427
2428 #ifdef CONFIG_TMPFS
2429 static const struct inode_operations shmem_symlink_inode_operations;
2430 static const struct inode_operations shmem_short_symlink_operations;
2431
2432 #ifdef CONFIG_TMPFS_XATTR
2433 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2434 #else
2435 #define shmem_initxattrs NULL
2436 #endif
2437
2438 static int
2439 shmem_write_begin(struct file *file, struct address_space *mapping,
2440                         loff_t pos, unsigned len, unsigned flags,
2441                         struct page **pagep, void **fsdata)
2442 {
2443         struct inode *inode = mapping->host;
2444         struct shmem_inode_info *info = SHMEM_I(inode);
2445         pgoff_t index = pos >> PAGE_SHIFT;
2446         int ret = 0;
2447
2448         /* i_rwsem is held by caller */
2449         if (unlikely(info->seals & (F_SEAL_GROW |
2450                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2451                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2452                         return -EPERM;
2453                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2454                         return -EPERM;
2455         }
2456
2457         ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2458
2459         if (ret)
2460                 return ret;
2461
2462         if (PageHWPoison(*pagep)) {
2463                 unlock_page(*pagep);
2464                 put_page(*pagep);
2465                 *pagep = NULL;
2466                 return -EIO;
2467         }
2468
2469         return 0;
2470 }
2471
2472 static int
2473 shmem_write_end(struct file *file, struct address_space *mapping,
2474                         loff_t pos, unsigned len, unsigned copied,
2475                         struct page *page, void *fsdata)
2476 {
2477         struct inode *inode = mapping->host;
2478
2479         if (pos + copied > inode->i_size)
2480                 i_size_write(inode, pos + copied);
2481
2482         if (!PageUptodate(page)) {
2483                 struct page *head = compound_head(page);
2484                 if (PageTransCompound(page)) {
2485                         int i;
2486
2487                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2488                                 if (head + i == page)
2489                                         continue;
2490                                 clear_highpage(head + i);
2491                                 flush_dcache_page(head + i);
2492                         }
2493                 }
2494                 if (copied < PAGE_SIZE) {
2495                         unsigned from = pos & (PAGE_SIZE - 1);
2496                         zero_user_segments(page, 0, from,
2497                                         from + copied, PAGE_SIZE);
2498                 }
2499                 SetPageUptodate(head);
2500         }
2501         set_page_dirty(page);
2502         unlock_page(page);
2503         put_page(page);
2504
2505         return copied;
2506 }
2507
2508 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2509 {
2510         struct file *file = iocb->ki_filp;
2511         struct inode *inode = file_inode(file);
2512         struct address_space *mapping = inode->i_mapping;
2513         pgoff_t index;
2514         unsigned long offset;
2515         enum sgp_type sgp = SGP_READ;
2516         int error = 0;
2517         ssize_t retval = 0;
2518         loff_t *ppos = &iocb->ki_pos;
2519
2520         /*
2521          * Might this read be for a stacking filesystem?  Then when reading
2522          * holes of a sparse file, we actually need to allocate those pages,
2523          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2524          */
2525         if (!iter_is_iovec(to))
2526                 sgp = SGP_CACHE;
2527
2528         index = *ppos >> PAGE_SHIFT;
2529         offset = *ppos & ~PAGE_MASK;
2530
2531         for (;;) {
2532                 struct page *page = NULL;
2533                 pgoff_t end_index;
2534                 unsigned long nr, ret;
2535                 loff_t i_size = i_size_read(inode);
2536
2537                 end_index = i_size >> PAGE_SHIFT;
2538                 if (index > end_index)
2539                         break;
2540                 if (index == end_index) {
2541                         nr = i_size & ~PAGE_MASK;
2542                         if (nr <= offset)
2543                                 break;
2544                 }
2545
2546                 error = shmem_getpage(inode, index, &page, sgp);
2547                 if (error) {
2548                         if (error == -EINVAL)
2549                                 error = 0;
2550                         break;
2551                 }
2552                 if (page) {
2553                         if (sgp == SGP_CACHE)
2554                                 set_page_dirty(page);
2555                         unlock_page(page);
2556
2557                         if (PageHWPoison(page)) {
2558                                 put_page(page);
2559                                 error = -EIO;
2560                                 break;
2561                         }
2562                 }
2563
2564                 /*
2565                  * We must evaluate after, since reads (unlike writes)
2566                  * are called without i_rwsem protection against truncate
2567                  */
2568                 nr = PAGE_SIZE;
2569                 i_size = i_size_read(inode);
2570                 end_index = i_size >> PAGE_SHIFT;
2571                 if (index == end_index) {
2572                         nr = i_size & ~PAGE_MASK;
2573                         if (nr <= offset) {
2574                                 if (page)
2575                                         put_page(page);
2576                                 break;
2577                         }
2578                 }
2579                 nr -= offset;
2580
2581                 if (page) {
2582                         /*
2583                          * If users can be writing to this page using arbitrary
2584                          * virtual addresses, take care about potential aliasing
2585                          * before reading the page on the kernel side.
2586                          */
2587                         if (mapping_writably_mapped(mapping))
2588                                 flush_dcache_page(page);
2589                         /*
2590                          * Mark the page accessed if we read the beginning.
2591                          */
2592                         if (!offset)
2593                                 mark_page_accessed(page);
2594                 } else {
2595                         page = ZERO_PAGE(0);
2596                         get_page(page);
2597                 }
2598
2599                 /*
2600                  * Ok, we have the page, and it's up-to-date, so
2601                  * now we can copy it to user space...
2602                  */
2603                 ret = copy_page_to_iter(page, offset, nr, to);
2604                 retval += ret;
2605                 offset += ret;
2606                 index += offset >> PAGE_SHIFT;
2607                 offset &= ~PAGE_MASK;
2608
2609                 put_page(page);
2610                 if (!iov_iter_count(to))
2611                         break;
2612                 if (ret < nr) {
2613                         error = -EFAULT;
2614                         break;
2615                 }
2616                 cond_resched();
2617         }
2618
2619         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2620         file_accessed(file);
2621         return retval ? retval : error;
2622 }
2623
2624 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2625 {
2626         struct address_space *mapping = file->f_mapping;
2627         struct inode *inode = mapping->host;
2628
2629         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2630                 return generic_file_llseek_size(file, offset, whence,
2631                                         MAX_LFS_FILESIZE, i_size_read(inode));
2632         if (offset < 0)
2633                 return -ENXIO;
2634
2635         inode_lock(inode);
2636         /* We're holding i_rwsem so we can access i_size directly */
2637         offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2638         if (offset >= 0)
2639                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2640         inode_unlock(inode);
2641         return offset;
2642 }
2643
2644 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2645                                                          loff_t len)
2646 {
2647         struct inode *inode = file_inode(file);
2648         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2649         struct shmem_inode_info *info = SHMEM_I(inode);
2650         struct shmem_falloc shmem_falloc;
2651         pgoff_t start, index, end, undo_fallocend;
2652         int error;
2653
2654         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2655                 return -EOPNOTSUPP;
2656
2657         inode_lock(inode);
2658
2659         if (mode & FALLOC_FL_PUNCH_HOLE) {
2660                 struct address_space *mapping = file->f_mapping;
2661                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2662                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2663                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2664
2665                 /* protected by i_rwsem */
2666                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2667                         error = -EPERM;
2668                         goto out;
2669                 }
2670
2671                 shmem_falloc.waitq = &shmem_falloc_waitq;
2672                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2673                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2674                 spin_lock(&inode->i_lock);
2675                 inode->i_private = &shmem_falloc;
2676                 spin_unlock(&inode->i_lock);
2677
2678                 if ((u64)unmap_end > (u64)unmap_start)
2679                         unmap_mapping_range(mapping, unmap_start,
2680                                             1 + unmap_end - unmap_start, 0);
2681                 shmem_truncate_range(inode, offset, offset + len - 1);
2682                 /* No need to unmap again: hole-punching leaves COWed pages */
2683
2684                 spin_lock(&inode->i_lock);
2685                 inode->i_private = NULL;
2686                 wake_up_all(&shmem_falloc_waitq);
2687                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2688                 spin_unlock(&inode->i_lock);
2689                 error = 0;
2690                 goto out;
2691         }
2692
2693         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2694         error = inode_newsize_ok(inode, offset + len);
2695         if (error)
2696                 goto out;
2697
2698         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2699                 error = -EPERM;
2700                 goto out;
2701         }
2702
2703         start = offset >> PAGE_SHIFT;
2704         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2705         /* Try to avoid a swapstorm if len is impossible to satisfy */
2706         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2707                 error = -ENOSPC;
2708                 goto out;
2709         }
2710
2711         shmem_falloc.waitq = NULL;
2712         shmem_falloc.start = start;
2713         shmem_falloc.next  = start;
2714         shmem_falloc.nr_falloced = 0;
2715         shmem_falloc.nr_unswapped = 0;
2716         spin_lock(&inode->i_lock);
2717         inode->i_private = &shmem_falloc;
2718         spin_unlock(&inode->i_lock);
2719
2720         /*
2721          * info->fallocend is only relevant when huge pages might be
2722          * involved: to prevent split_huge_page() freeing fallocated
2723          * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2724          */
2725         undo_fallocend = info->fallocend;
2726         if (info->fallocend < end)
2727                 info->fallocend = end;
2728
2729         for (index = start; index < end; ) {
2730                 struct page *page;
2731
2732                 /*
2733                  * Good, the fallocate(2) manpage permits EINTR: we may have
2734                  * been interrupted because we are using up too much memory.
2735                  */
2736                 if (signal_pending(current))
2737                         error = -EINTR;
2738                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2739                         error = -ENOMEM;
2740                 else
2741                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2742                 if (error) {
2743                         info->fallocend = undo_fallocend;
2744                         /* Remove the !PageUptodate pages we added */
2745                         if (index > start) {
2746                                 shmem_undo_range(inode,
2747                                     (loff_t)start << PAGE_SHIFT,
2748                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2749                         }
2750                         goto undone;
2751                 }
2752
2753                 index++;
2754                 /*
2755                  * Here is a more important optimization than it appears:
2756                  * a second SGP_FALLOC on the same huge page will clear it,
2757                  * making it PageUptodate and un-undoable if we fail later.
2758                  */
2759                 if (PageTransCompound(page)) {
2760                         index = round_up(index, HPAGE_PMD_NR);
2761                         /* Beware 32-bit wraparound */
2762                         if (!index)
2763                                 index--;
2764                 }
2765
2766                 /*
2767                  * Inform shmem_writepage() how far we have reached.
2768                  * No need for lock or barrier: we have the page lock.
2769                  */
2770                 if (!PageUptodate(page))
2771                         shmem_falloc.nr_falloced += index - shmem_falloc.next;
2772                 shmem_falloc.next = index;
2773
2774                 /*
2775                  * If !PageUptodate, leave it that way so that freeable pages
2776                  * can be recognized if we need to rollback on error later.
2777                  * But set_page_dirty so that memory pressure will swap rather
2778                  * than free the pages we are allocating (and SGP_CACHE pages
2779                  * might still be clean: we now need to mark those dirty too).
2780                  */
2781                 set_page_dirty(page);
2782                 unlock_page(page);
2783                 put_page(page);
2784                 cond_resched();
2785         }
2786
2787         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2788                 i_size_write(inode, offset + len);
2789         inode->i_ctime = current_time(inode);
2790 undone:
2791         spin_lock(&inode->i_lock);
2792         inode->i_private = NULL;
2793         spin_unlock(&inode->i_lock);
2794 out:
2795         inode_unlock(inode);
2796         return error;
2797 }
2798
2799 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2800 {
2801         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2802
2803         buf->f_type = TMPFS_MAGIC;
2804         buf->f_bsize = PAGE_SIZE;
2805         buf->f_namelen = NAME_MAX;
2806         if (sbinfo->max_blocks) {
2807                 buf->f_blocks = sbinfo->max_blocks;
2808                 buf->f_bavail =
2809                 buf->f_bfree  = sbinfo->max_blocks -
2810                                 percpu_counter_sum(&sbinfo->used_blocks);
2811         }
2812         if (sbinfo->max_inodes) {
2813                 buf->f_files = sbinfo->max_inodes;
2814                 buf->f_ffree = sbinfo->free_inodes;
2815         }
2816         /* else leave those fields 0 like simple_statfs */
2817
2818         buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2819
2820         return 0;
2821 }
2822
2823 /*
2824  * File creation. Allocate an inode, and we're done..
2825  */
2826 static int
2827 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2828             struct dentry *dentry, umode_t mode, dev_t dev)
2829 {
2830         struct inode *inode;
2831         int error = -ENOSPC;
2832
2833         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2834         if (inode) {
2835                 error = simple_acl_create(dir, inode);
2836                 if (error)
2837                         goto out_iput;
2838                 error = security_inode_init_security(inode, dir,
2839                                                      &dentry->d_name,
2840                                                      shmem_initxattrs, NULL);
2841                 if (error && error != -EOPNOTSUPP)
2842                         goto out_iput;
2843
2844                 error = 0;
2845                 dir->i_size += BOGO_DIRENT_SIZE;
2846                 dir->i_ctime = dir->i_mtime = current_time(dir);
2847                 d_instantiate(dentry, inode);
2848                 dget(dentry); /* Extra count - pin the dentry in core */
2849         }
2850         return error;
2851 out_iput:
2852         iput(inode);
2853         return error;
2854 }
2855
2856 static int
2857 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2858               struct dentry *dentry, umode_t mode)
2859 {
2860         struct inode *inode;
2861         int error = -ENOSPC;
2862
2863         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2864         if (inode) {
2865                 error = security_inode_init_security(inode, dir,
2866                                                      NULL,
2867                                                      shmem_initxattrs, NULL);
2868                 if (error && error != -EOPNOTSUPP)
2869                         goto out_iput;
2870                 error = simple_acl_create(dir, inode);
2871                 if (error)
2872                         goto out_iput;
2873                 d_tmpfile(dentry, inode);
2874         }
2875         return error;
2876 out_iput:
2877         iput(inode);
2878         return error;
2879 }
2880
2881 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2882                        struct dentry *dentry, umode_t mode)
2883 {
2884         int error;
2885
2886         if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2887                                  mode | S_IFDIR, 0)))
2888                 return error;
2889         inc_nlink(dir);
2890         return 0;
2891 }
2892
2893 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2894                         struct dentry *dentry, umode_t mode, bool excl)
2895 {
2896         return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2897 }
2898
2899 /*
2900  * Link a file..
2901  */
2902 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2903 {
2904         struct inode *inode = d_inode(old_dentry);
2905         int ret = 0;
2906
2907         /*
2908          * No ordinary (disk based) filesystem counts links as inodes;
2909          * but each new link needs a new dentry, pinning lowmem, and
2910          * tmpfs dentries cannot be pruned until they are unlinked.
2911          * But if an O_TMPFILE file is linked into the tmpfs, the
2912          * first link must skip that, to get the accounting right.
2913          */
2914         if (inode->i_nlink) {
2915                 ret = shmem_reserve_inode(inode->i_sb, NULL);
2916                 if (ret)
2917                         goto out;
2918         }
2919
2920         dir->i_size += BOGO_DIRENT_SIZE;
2921         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2922         inc_nlink(inode);
2923         ihold(inode);   /* New dentry reference */
2924         dget(dentry);           /* Extra pinning count for the created dentry */
2925         d_instantiate(dentry, inode);
2926 out:
2927         return ret;
2928 }
2929
2930 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2931 {
2932         struct inode *inode = d_inode(dentry);
2933
2934         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2935                 shmem_free_inode(inode->i_sb);
2936
2937         dir->i_size -= BOGO_DIRENT_SIZE;
2938         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2939         drop_nlink(inode);
2940         dput(dentry);   /* Undo the count from "create" - this does all the work */
2941         return 0;
2942 }
2943
2944 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2945 {
2946         if (!simple_empty(dentry))
2947                 return -ENOTEMPTY;
2948
2949         drop_nlink(d_inode(dentry));
2950         drop_nlink(dir);
2951         return shmem_unlink(dir, dentry);
2952 }
2953
2954 static int shmem_whiteout(struct user_namespace *mnt_userns,
2955                           struct inode *old_dir, struct dentry *old_dentry)
2956 {
2957         struct dentry *whiteout;
2958         int error;
2959
2960         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2961         if (!whiteout)
2962                 return -ENOMEM;
2963
2964         error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2965                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2966         dput(whiteout);
2967         if (error)
2968                 return error;
2969
2970         /*
2971          * Cheat and hash the whiteout while the old dentry is still in
2972          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2973          *
2974          * d_lookup() will consistently find one of them at this point,
2975          * not sure which one, but that isn't even important.
2976          */
2977         d_rehash(whiteout);
2978         return 0;
2979 }
2980
2981 /*
2982  * The VFS layer already does all the dentry stuff for rename,
2983  * we just have to decrement the usage count for the target if
2984  * it exists so that the VFS layer correctly free's it when it
2985  * gets overwritten.
2986  */
2987 static int shmem_rename2(struct user_namespace *mnt_userns,
2988                          struct inode *old_dir, struct dentry *old_dentry,
2989                          struct inode *new_dir, struct dentry *new_dentry,
2990                          unsigned int flags)
2991 {
2992         struct inode *inode = d_inode(old_dentry);
2993         int they_are_dirs = S_ISDIR(inode->i_mode);
2994
2995         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2996                 return -EINVAL;
2997
2998         if (flags & RENAME_EXCHANGE)
2999                 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3000
3001         if (!simple_empty(new_dentry))
3002                 return -ENOTEMPTY;
3003
3004         if (flags & RENAME_WHITEOUT) {
3005                 int error;
3006
3007                 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3008                 if (error)
3009                         return error;
3010         }
3011
3012         if (d_really_is_positive(new_dentry)) {
3013                 (void) shmem_unlink(new_dir, new_dentry);
3014                 if (they_are_dirs) {
3015                         drop_nlink(d_inode(new_dentry));
3016                         drop_nlink(old_dir);
3017                 }
3018         } else if (they_are_dirs) {
3019                 drop_nlink(old_dir);
3020                 inc_nlink(new_dir);
3021         }
3022
3023         old_dir->i_size -= BOGO_DIRENT_SIZE;
3024         new_dir->i_size += BOGO_DIRENT_SIZE;
3025         old_dir->i_ctime = old_dir->i_mtime =
3026         new_dir->i_ctime = new_dir->i_mtime =
3027         inode->i_ctime = current_time(old_dir);
3028         return 0;
3029 }
3030
3031 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3032                          struct dentry *dentry, const char *symname)
3033 {
3034         int error;
3035         int len;
3036         struct inode *inode;
3037         struct page *page;
3038
3039         len = strlen(symname) + 1;
3040         if (len > PAGE_SIZE)
3041                 return -ENAMETOOLONG;
3042
3043         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3044                                 VM_NORESERVE);
3045         if (!inode)
3046                 return -ENOSPC;
3047
3048         error = security_inode_init_security(inode, dir, &dentry->d_name,
3049                                              shmem_initxattrs, NULL);
3050         if (error && error != -EOPNOTSUPP) {
3051                 iput(inode);
3052                 return error;
3053         }
3054
3055         inode->i_size = len-1;
3056         if (len <= SHORT_SYMLINK_LEN) {
3057                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3058                 if (!inode->i_link) {
3059                         iput(inode);
3060                         return -ENOMEM;
3061                 }
3062                 inode->i_op = &shmem_short_symlink_operations;
3063         } else {
3064                 inode_nohighmem(inode);
3065                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3066                 if (error) {
3067                         iput(inode);
3068                         return error;
3069                 }
3070                 inode->i_mapping->a_ops = &shmem_aops;
3071                 inode->i_op = &shmem_symlink_inode_operations;
3072                 memcpy(page_address(page), symname, len);
3073                 SetPageUptodate(page);
3074                 set_page_dirty(page);
3075                 unlock_page(page);
3076                 put_page(page);
3077         }
3078         dir->i_size += BOGO_DIRENT_SIZE;
3079         dir->i_ctime = dir->i_mtime = current_time(dir);
3080         d_instantiate(dentry, inode);
3081         dget(dentry);
3082         return 0;
3083 }
3084
3085 static void shmem_put_link(void *arg)
3086 {
3087         mark_page_accessed(arg);
3088         put_page(arg);
3089 }
3090
3091 static const char *shmem_get_link(struct dentry *dentry,
3092                                   struct inode *inode,
3093                                   struct delayed_call *done)
3094 {
3095         struct page *page = NULL;
3096         int error;
3097         if (!dentry) {
3098                 page = find_get_page(inode->i_mapping, 0);
3099                 if (!page)
3100                         return ERR_PTR(-ECHILD);
3101                 if (PageHWPoison(page) ||
3102                     !PageUptodate(page)) {
3103                         put_page(page);
3104                         return ERR_PTR(-ECHILD);
3105                 }
3106         } else {
3107                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3108                 if (error)
3109                         return ERR_PTR(error);
3110                 if (!page)
3111                         return ERR_PTR(-ECHILD);
3112                 if (PageHWPoison(page)) {
3113                         unlock_page(page);
3114                         put_page(page);
3115                         return ERR_PTR(-ECHILD);
3116                 }
3117                 unlock_page(page);
3118         }
3119         set_delayed_call(done, shmem_put_link, page);
3120         return page_address(page);
3121 }
3122
3123 #ifdef CONFIG_TMPFS_XATTR
3124 /*
3125  * Superblocks without xattr inode operations may get some security.* xattr
3126  * support from the LSM "for free". As soon as we have any other xattrs
3127  * like ACLs, we also need to implement the security.* handlers at
3128  * filesystem level, though.
3129  */
3130
3131 /*
3132  * Callback for security_inode_init_security() for acquiring xattrs.
3133  */
3134 static int shmem_initxattrs(struct inode *inode,
3135                             const struct xattr *xattr_array,
3136                             void *fs_info)
3137 {
3138         struct shmem_inode_info *info = SHMEM_I(inode);
3139         const struct xattr *xattr;
3140         struct simple_xattr *new_xattr;
3141         size_t len;
3142
3143         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3144                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3145                 if (!new_xattr)
3146                         return -ENOMEM;
3147
3148                 len = strlen(xattr->name) + 1;
3149                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3150                                           GFP_KERNEL);
3151                 if (!new_xattr->name) {
3152                         kvfree(new_xattr);
3153                         return -ENOMEM;
3154                 }
3155
3156                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3157                        XATTR_SECURITY_PREFIX_LEN);
3158                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3159                        xattr->name, len);
3160
3161                 simple_xattr_list_add(&info->xattrs, new_xattr);
3162         }
3163
3164         return 0;
3165 }
3166
3167 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3168                                    struct dentry *unused, struct inode *inode,
3169                                    const char *name, void *buffer, size_t size)
3170 {
3171         struct shmem_inode_info *info = SHMEM_I(inode);
3172
3173         name = xattr_full_name(handler, name);
3174         return simple_xattr_get(&info->xattrs, name, buffer, size);
3175 }
3176
3177 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3178                                    struct user_namespace *mnt_userns,
3179                                    struct dentry *unused, struct inode *inode,
3180                                    const char *name, const void *value,
3181                                    size_t size, int flags)
3182 {
3183         struct shmem_inode_info *info = SHMEM_I(inode);
3184
3185         name = xattr_full_name(handler, name);
3186         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3187 }
3188
3189 static const struct xattr_handler shmem_security_xattr_handler = {
3190         .prefix = XATTR_SECURITY_PREFIX,
3191         .get = shmem_xattr_handler_get,
3192         .set = shmem_xattr_handler_set,
3193 };
3194
3195 static const struct xattr_handler shmem_trusted_xattr_handler = {
3196         .prefix = XATTR_TRUSTED_PREFIX,
3197         .get = shmem_xattr_handler_get,
3198         .set = shmem_xattr_handler_set,
3199 };
3200
3201 static const struct xattr_handler *shmem_xattr_handlers[] = {
3202 #ifdef CONFIG_TMPFS_POSIX_ACL
3203         &posix_acl_access_xattr_handler,
3204         &posix_acl_default_xattr_handler,
3205 #endif
3206         &shmem_security_xattr_handler,
3207         &shmem_trusted_xattr_handler,
3208         NULL
3209 };
3210
3211 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3212 {
3213         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3214         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3215 }
3216 #endif /* CONFIG_TMPFS_XATTR */
3217
3218 static const struct inode_operations shmem_short_symlink_operations = {
3219         .get_link       = simple_get_link,
3220 #ifdef CONFIG_TMPFS_XATTR
3221         .listxattr      = shmem_listxattr,
3222 #endif
3223 };
3224
3225 static const struct inode_operations shmem_symlink_inode_operations = {
3226         .get_link       = shmem_get_link,
3227 #ifdef CONFIG_TMPFS_XATTR
3228         .listxattr      = shmem_listxattr,
3229 #endif
3230 };
3231
3232 static struct dentry *shmem_get_parent(struct dentry *child)
3233 {
3234         return ERR_PTR(-ESTALE);
3235 }
3236
3237 static int shmem_match(struct inode *ino, void *vfh)
3238 {
3239         __u32 *fh = vfh;
3240         __u64 inum = fh[2];
3241         inum = (inum << 32) | fh[1];
3242         return ino->i_ino == inum && fh[0] == ino->i_generation;
3243 }
3244
3245 /* Find any alias of inode, but prefer a hashed alias */
3246 static struct dentry *shmem_find_alias(struct inode *inode)
3247 {
3248         struct dentry *alias = d_find_alias(inode);
3249
3250         return alias ?: d_find_any_alias(inode);
3251 }
3252
3253
3254 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3255                 struct fid *fid, int fh_len, int fh_type)
3256 {
3257         struct inode *inode;
3258         struct dentry *dentry = NULL;
3259         u64 inum;
3260
3261         if (fh_len < 3)
3262                 return NULL;
3263
3264         inum = fid->raw[2];
3265         inum = (inum << 32) | fid->raw[1];
3266
3267         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3268                         shmem_match, fid->raw);
3269         if (inode) {
3270                 dentry = shmem_find_alias(inode);
3271                 iput(inode);
3272         }
3273
3274         return dentry;
3275 }
3276
3277 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3278                                 struct inode *parent)
3279 {
3280         if (*len < 3) {
3281                 *len = 3;
3282                 return FILEID_INVALID;
3283         }
3284
3285         if (inode_unhashed(inode)) {
3286                 /* Unfortunately insert_inode_hash is not idempotent,
3287                  * so as we hash inodes here rather than at creation
3288                  * time, we need a lock to ensure we only try
3289                  * to do it once
3290                  */
3291                 static DEFINE_SPINLOCK(lock);
3292                 spin_lock(&lock);
3293                 if (inode_unhashed(inode))
3294                         __insert_inode_hash(inode,
3295                                             inode->i_ino + inode->i_generation);
3296                 spin_unlock(&lock);
3297         }
3298
3299         fh[0] = inode->i_generation;
3300         fh[1] = inode->i_ino;
3301         fh[2] = ((__u64)inode->i_ino) >> 32;
3302
3303         *len = 3;
3304         return 1;
3305 }
3306
3307 static const struct export_operations shmem_export_ops = {
3308         .get_parent     = shmem_get_parent,
3309         .encode_fh      = shmem_encode_fh,
3310         .fh_to_dentry   = shmem_fh_to_dentry,
3311 };
3312
3313 enum shmem_param {
3314         Opt_gid,
3315         Opt_huge,
3316         Opt_mode,
3317         Opt_mpol,
3318         Opt_nr_blocks,
3319         Opt_nr_inodes,
3320         Opt_size,
3321         Opt_uid,
3322         Opt_inode32,
3323         Opt_inode64,
3324 };
3325
3326 static const struct constant_table shmem_param_enums_huge[] = {
3327         {"never",       SHMEM_HUGE_NEVER },
3328         {"always",      SHMEM_HUGE_ALWAYS },
3329         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3330         {"advise",      SHMEM_HUGE_ADVISE },
3331         {}
3332 };
3333
3334 const struct fs_parameter_spec shmem_fs_parameters[] = {
3335         fsparam_u32   ("gid",           Opt_gid),
3336         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3337         fsparam_u32oct("mode",          Opt_mode),
3338         fsparam_string("mpol",          Opt_mpol),
3339         fsparam_string("nr_blocks",     Opt_nr_blocks),
3340         fsparam_string("nr_inodes",     Opt_nr_inodes),
3341         fsparam_string("size",          Opt_size),
3342         fsparam_u32   ("uid",           Opt_uid),
3343         fsparam_flag  ("inode32",       Opt_inode32),
3344         fsparam_flag  ("inode64",       Opt_inode64),
3345         {}
3346 };
3347
3348 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3349 {
3350         struct shmem_options *ctx = fc->fs_private;
3351         struct fs_parse_result result;
3352         unsigned long long size;
3353         char *rest;
3354         int opt;
3355
3356         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3357         if (opt < 0)
3358                 return opt;
3359
3360         switch (opt) {
3361         case Opt_size:
3362                 size = memparse(param->string, &rest);
3363                 if (*rest == '%') {
3364                         size <<= PAGE_SHIFT;
3365                         size *= totalram_pages();
3366                         do_div(size, 100);
3367                         rest++;
3368                 }
3369                 if (*rest)
3370                         goto bad_value;
3371                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3372                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3373                 break;
3374         case Opt_nr_blocks:
3375                 ctx->blocks = memparse(param->string, &rest);
3376                 if (*rest)
3377                         goto bad_value;
3378                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3379                 break;
3380         case Opt_nr_inodes:
3381                 ctx->inodes = memparse(param->string, &rest);
3382                 if (*rest)
3383                         goto bad_value;
3384                 ctx->seen |= SHMEM_SEEN_INODES;
3385                 break;
3386         case Opt_mode:
3387                 ctx->mode = result.uint_32 & 07777;
3388                 break;
3389         case Opt_uid:
3390                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3391                 if (!uid_valid(ctx->uid))
3392                         goto bad_value;
3393                 break;
3394         case Opt_gid:
3395                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3396                 if (!gid_valid(ctx->gid))
3397                         goto bad_value;
3398                 break;
3399         case Opt_huge:
3400                 ctx->huge = result.uint_32;
3401                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3402                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3403                       has_transparent_hugepage()))
3404                         goto unsupported_parameter;
3405                 ctx->seen |= SHMEM_SEEN_HUGE;
3406                 break;
3407         case Opt_mpol:
3408                 if (IS_ENABLED(CONFIG_NUMA)) {
3409                         mpol_put(ctx->mpol);
3410                         ctx->mpol = NULL;
3411                         if (mpol_parse_str(param->string, &ctx->mpol))
3412                                 goto bad_value;
3413                         break;
3414                 }
3415                 goto unsupported_parameter;
3416         case Opt_inode32:
3417                 ctx->full_inums = false;
3418                 ctx->seen |= SHMEM_SEEN_INUMS;
3419                 break;
3420         case Opt_inode64:
3421                 if (sizeof(ino_t) < 8) {
3422                         return invalfc(fc,
3423                                        "Cannot use inode64 with <64bit inums in kernel\n");
3424                 }
3425                 ctx->full_inums = true;
3426                 ctx->seen |= SHMEM_SEEN_INUMS;
3427                 break;
3428         }
3429         return 0;
3430
3431 unsupported_parameter:
3432         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3433 bad_value:
3434         return invalfc(fc, "Bad value for '%s'", param->key);
3435 }
3436
3437 static int shmem_parse_options(struct fs_context *fc, void *data)
3438 {
3439         char *options = data;
3440
3441         if (options) {
3442                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3443                 if (err)
3444                         return err;
3445         }
3446
3447         while (options != NULL) {
3448                 char *this_char = options;
3449                 for (;;) {
3450                         /*
3451                          * NUL-terminate this option: unfortunately,
3452                          * mount options form a comma-separated list,
3453                          * but mpol's nodelist may also contain commas.
3454                          */
3455                         options = strchr(options, ',');
3456                         if (options == NULL)
3457                                 break;
3458                         options++;
3459                         if (!isdigit(*options)) {
3460                                 options[-1] = '\0';
3461                                 break;
3462                         }
3463                 }
3464                 if (*this_char) {
3465                         char *value = strchr(this_char, '=');
3466                         size_t len = 0;
3467                         int err;
3468
3469                         if (value) {
3470                                 *value++ = '\0';
3471                                 len = strlen(value);
3472                         }
3473                         err = vfs_parse_fs_string(fc, this_char, value, len);
3474                         if (err < 0)
3475                                 return err;
3476                 }
3477         }
3478         return 0;
3479 }
3480
3481 /*
3482  * Reconfigure a shmem filesystem.
3483  *
3484  * Note that we disallow change from limited->unlimited blocks/inodes while any
3485  * are in use; but we must separately disallow unlimited->limited, because in
3486  * that case we have no record of how much is already in use.
3487  */
3488 static int shmem_reconfigure(struct fs_context *fc)
3489 {
3490         struct shmem_options *ctx = fc->fs_private;
3491         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3492         unsigned long inodes;
3493         struct mempolicy *mpol = NULL;
3494         const char *err;
3495
3496         raw_spin_lock(&sbinfo->stat_lock);
3497         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3498         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3499                 if (!sbinfo->max_blocks) {
3500                         err = "Cannot retroactively limit size";
3501                         goto out;
3502                 }
3503                 if (percpu_counter_compare(&sbinfo->used_blocks,
3504                                            ctx->blocks) > 0) {
3505                         err = "Too small a size for current use";
3506                         goto out;
3507                 }
3508         }
3509         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3510                 if (!sbinfo->max_inodes) {
3511                         err = "Cannot retroactively limit inodes";
3512                         goto out;
3513                 }
3514                 if (ctx->inodes < inodes) {
3515                         err = "Too few inodes for current use";
3516                         goto out;
3517                 }
3518         }
3519
3520         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3521             sbinfo->next_ino > UINT_MAX) {
3522                 err = "Current inum too high to switch to 32-bit inums";
3523                 goto out;
3524         }
3525
3526         if (ctx->seen & SHMEM_SEEN_HUGE)
3527                 sbinfo->huge = ctx->huge;
3528         if (ctx->seen & SHMEM_SEEN_INUMS)
3529                 sbinfo->full_inums = ctx->full_inums;
3530         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3531                 sbinfo->max_blocks  = ctx->blocks;
3532         if (ctx->seen & SHMEM_SEEN_INODES) {
3533                 sbinfo->max_inodes  = ctx->inodes;
3534                 sbinfo->free_inodes = ctx->inodes - inodes;
3535         }
3536
3537         /*
3538          * Preserve previous mempolicy unless mpol remount option was specified.
3539          */
3540         if (ctx->mpol) {
3541                 mpol = sbinfo->mpol;
3542                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3543                 ctx->mpol = NULL;
3544         }
3545         raw_spin_unlock(&sbinfo->stat_lock);
3546         mpol_put(mpol);
3547         return 0;
3548 out:
3549         raw_spin_unlock(&sbinfo->stat_lock);
3550         return invalfc(fc, "%s", err);
3551 }
3552
3553 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3554 {
3555         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3556
3557         if (sbinfo->max_blocks != shmem_default_max_blocks())
3558                 seq_printf(seq, ",size=%luk",
3559                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3560         if (sbinfo->max_inodes != shmem_default_max_inodes())
3561                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3562         if (sbinfo->mode != (0777 | S_ISVTX))
3563                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3564         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3565                 seq_printf(seq, ",uid=%u",
3566                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3567         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3568                 seq_printf(seq, ",gid=%u",
3569                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3570
3571         /*
3572          * Showing inode{64,32} might be useful even if it's the system default,
3573          * since then people don't have to resort to checking both here and
3574          * /proc/config.gz to confirm 64-bit inums were successfully applied
3575          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3576          *
3577          * We hide it when inode64 isn't the default and we are using 32-bit
3578          * inodes, since that probably just means the feature isn't even under
3579          * consideration.
3580          *
3581          * As such:
3582          *
3583          *                     +-----------------+-----------------+
3584          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3585          *  +------------------+-----------------+-----------------+
3586          *  | full_inums=true  | show            | show            |
3587          *  | full_inums=false | show            | hide            |
3588          *  +------------------+-----------------+-----------------+
3589          *
3590          */
3591         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3592                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3593 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3594         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3595         if (sbinfo->huge)
3596                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3597 #endif
3598         shmem_show_mpol(seq, sbinfo->mpol);
3599         return 0;
3600 }
3601
3602 #endif /* CONFIG_TMPFS */
3603
3604 static void shmem_put_super(struct super_block *sb)
3605 {
3606         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3607
3608         free_percpu(sbinfo->ino_batch);
3609         percpu_counter_destroy(&sbinfo->used_blocks);
3610         mpol_put(sbinfo->mpol);
3611         kfree(sbinfo);
3612         sb->s_fs_info = NULL;
3613 }
3614
3615 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3616 {
3617         struct shmem_options *ctx = fc->fs_private;
3618         struct inode *inode;
3619         struct shmem_sb_info *sbinfo;
3620
3621         /* Round up to L1_CACHE_BYTES to resist false sharing */
3622         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3623                                 L1_CACHE_BYTES), GFP_KERNEL);
3624         if (!sbinfo)
3625                 return -ENOMEM;
3626
3627         sb->s_fs_info = sbinfo;
3628
3629 #ifdef CONFIG_TMPFS
3630         /*
3631          * Per default we only allow half of the physical ram per
3632          * tmpfs instance, limiting inodes to one per page of lowmem;
3633          * but the internal instance is left unlimited.
3634          */
3635         if (!(sb->s_flags & SB_KERNMOUNT)) {
3636                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3637                         ctx->blocks = shmem_default_max_blocks();
3638                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3639                         ctx->inodes = shmem_default_max_inodes();
3640                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3641                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3642         } else {
3643                 sb->s_flags |= SB_NOUSER;
3644         }
3645         sb->s_export_op = &shmem_export_ops;
3646         sb->s_flags |= SB_NOSEC;
3647 #else
3648         sb->s_flags |= SB_NOUSER;
3649 #endif
3650         sbinfo->max_blocks = ctx->blocks;
3651         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3652         if (sb->s_flags & SB_KERNMOUNT) {
3653                 sbinfo->ino_batch = alloc_percpu(ino_t);
3654                 if (!sbinfo->ino_batch)
3655                         goto failed;
3656         }
3657         sbinfo->uid = ctx->uid;
3658         sbinfo->gid = ctx->gid;
3659         sbinfo->full_inums = ctx->full_inums;
3660         sbinfo->mode = ctx->mode;
3661         sbinfo->huge = ctx->huge;
3662         sbinfo->mpol = ctx->mpol;
3663         ctx->mpol = NULL;
3664
3665         raw_spin_lock_init(&sbinfo->stat_lock);
3666         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3667                 goto failed;
3668         spin_lock_init(&sbinfo->shrinklist_lock);
3669         INIT_LIST_HEAD(&sbinfo->shrinklist);
3670
3671         sb->s_maxbytes = MAX_LFS_FILESIZE;
3672         sb->s_blocksize = PAGE_SIZE;
3673         sb->s_blocksize_bits = PAGE_SHIFT;
3674         sb->s_magic = TMPFS_MAGIC;
3675         sb->s_op = &shmem_ops;
3676         sb->s_time_gran = 1;
3677 #ifdef CONFIG_TMPFS_XATTR
3678         sb->s_xattr = shmem_xattr_handlers;
3679 #endif
3680 #ifdef CONFIG_TMPFS_POSIX_ACL
3681         sb->s_flags |= SB_POSIXACL;
3682 #endif
3683         uuid_gen(&sb->s_uuid);
3684
3685         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3686         if (!inode)
3687                 goto failed;
3688         inode->i_uid = sbinfo->uid;
3689         inode->i_gid = sbinfo->gid;
3690         sb->s_root = d_make_root(inode);
3691         if (!sb->s_root)
3692                 goto failed;
3693         return 0;
3694
3695 failed:
3696         shmem_put_super(sb);
3697         return -ENOMEM;
3698 }
3699
3700 static int shmem_get_tree(struct fs_context *fc)
3701 {
3702         return get_tree_nodev(fc, shmem_fill_super);
3703 }
3704
3705 static void shmem_free_fc(struct fs_context *fc)
3706 {
3707         struct shmem_options *ctx = fc->fs_private;
3708
3709         if (ctx) {
3710                 mpol_put(ctx->mpol);
3711                 kfree(ctx);
3712         }
3713 }
3714
3715 static const struct fs_context_operations shmem_fs_context_ops = {
3716         .free                   = shmem_free_fc,
3717         .get_tree               = shmem_get_tree,
3718 #ifdef CONFIG_TMPFS
3719         .parse_monolithic       = shmem_parse_options,
3720         .parse_param            = shmem_parse_one,
3721         .reconfigure            = shmem_reconfigure,
3722 #endif
3723 };
3724
3725 static struct kmem_cache *shmem_inode_cachep;
3726
3727 static struct inode *shmem_alloc_inode(struct super_block *sb)
3728 {
3729         struct shmem_inode_info *info;
3730         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3731         if (!info)
3732                 return NULL;
3733         return &info->vfs_inode;
3734 }
3735
3736 static void shmem_free_in_core_inode(struct inode *inode)
3737 {
3738         if (S_ISLNK(inode->i_mode))
3739                 kfree(inode->i_link);
3740         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3741 }
3742
3743 static void shmem_destroy_inode(struct inode *inode)
3744 {
3745         if (S_ISREG(inode->i_mode))
3746                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3747 }
3748
3749 static void shmem_init_inode(void *foo)
3750 {
3751         struct shmem_inode_info *info = foo;
3752         inode_init_once(&info->vfs_inode);
3753 }
3754
3755 static void shmem_init_inodecache(void)
3756 {
3757         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3758                                 sizeof(struct shmem_inode_info),
3759                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3760 }
3761
3762 static void shmem_destroy_inodecache(void)
3763 {
3764         kmem_cache_destroy(shmem_inode_cachep);
3765 }
3766
3767 /* Keep the page in page cache instead of truncating it */
3768 static int shmem_error_remove_page(struct address_space *mapping,
3769                                    struct page *page)
3770 {
3771         return 0;
3772 }
3773
3774 const struct address_space_operations shmem_aops = {
3775         .writepage      = shmem_writepage,
3776         .set_page_dirty = __set_page_dirty_no_writeback,
3777 #ifdef CONFIG_TMPFS
3778         .write_begin    = shmem_write_begin,
3779         .write_end      = shmem_write_end,
3780 #endif
3781 #ifdef CONFIG_MIGRATION
3782         .migratepage    = migrate_page,
3783 #endif
3784         .error_remove_page = shmem_error_remove_page,
3785 };
3786 EXPORT_SYMBOL(shmem_aops);
3787
3788 static const struct file_operations shmem_file_operations = {
3789         .mmap           = shmem_mmap,
3790         .get_unmapped_area = shmem_get_unmapped_area,
3791 #ifdef CONFIG_TMPFS
3792         .llseek         = shmem_file_llseek,
3793         .read_iter      = shmem_file_read_iter,
3794         .write_iter     = generic_file_write_iter,
3795         .fsync          = noop_fsync,
3796         .splice_read    = generic_file_splice_read,
3797         .splice_write   = iter_file_splice_write,
3798         .fallocate      = shmem_fallocate,
3799 #endif
3800 };
3801
3802 static const struct inode_operations shmem_inode_operations = {
3803         .getattr        = shmem_getattr,
3804         .setattr        = shmem_setattr,
3805 #ifdef CONFIG_TMPFS_XATTR
3806         .listxattr      = shmem_listxattr,
3807         .set_acl        = simple_set_acl,
3808 #endif
3809 };
3810
3811 static const struct inode_operations shmem_dir_inode_operations = {
3812 #ifdef CONFIG_TMPFS
3813         .create         = shmem_create,
3814         .lookup         = simple_lookup,
3815         .link           = shmem_link,
3816         .unlink         = shmem_unlink,
3817         .symlink        = shmem_symlink,
3818         .mkdir          = shmem_mkdir,
3819         .rmdir          = shmem_rmdir,
3820         .mknod          = shmem_mknod,
3821         .rename         = shmem_rename2,
3822         .tmpfile        = shmem_tmpfile,
3823 #endif
3824 #ifdef CONFIG_TMPFS_XATTR
3825         .listxattr      = shmem_listxattr,
3826 #endif
3827 #ifdef CONFIG_TMPFS_POSIX_ACL
3828         .setattr        = shmem_setattr,
3829         .set_acl        = simple_set_acl,
3830 #endif
3831 };
3832
3833 static const struct inode_operations shmem_special_inode_operations = {
3834 #ifdef CONFIG_TMPFS_XATTR
3835         .listxattr      = shmem_listxattr,
3836 #endif
3837 #ifdef CONFIG_TMPFS_POSIX_ACL
3838         .setattr        = shmem_setattr,
3839         .set_acl        = simple_set_acl,
3840 #endif
3841 };
3842
3843 static const struct super_operations shmem_ops = {
3844         .alloc_inode    = shmem_alloc_inode,
3845         .free_inode     = shmem_free_in_core_inode,
3846         .destroy_inode  = shmem_destroy_inode,
3847 #ifdef CONFIG_TMPFS
3848         .statfs         = shmem_statfs,
3849         .show_options   = shmem_show_options,
3850 #endif
3851         .evict_inode    = shmem_evict_inode,
3852         .drop_inode     = generic_delete_inode,
3853         .put_super      = shmem_put_super,
3854 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3855         .nr_cached_objects      = shmem_unused_huge_count,
3856         .free_cached_objects    = shmem_unused_huge_scan,
3857 #endif
3858 };
3859
3860 static const struct vm_operations_struct shmem_vm_ops = {
3861         .fault          = shmem_fault,
3862         .map_pages      = filemap_map_pages,
3863 #ifdef CONFIG_NUMA
3864         .set_policy     = shmem_set_policy,
3865         .get_policy     = shmem_get_policy,
3866 #endif
3867 };
3868
3869 int shmem_init_fs_context(struct fs_context *fc)
3870 {
3871         struct shmem_options *ctx;
3872
3873         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3874         if (!ctx)
3875                 return -ENOMEM;
3876
3877         ctx->mode = 0777 | S_ISVTX;
3878         ctx->uid = current_fsuid();
3879         ctx->gid = current_fsgid();
3880
3881         fc->fs_private = ctx;
3882         fc->ops = &shmem_fs_context_ops;
3883         return 0;
3884 }
3885
3886 static struct file_system_type shmem_fs_type = {
3887         .owner          = THIS_MODULE,
3888         .name           = "tmpfs",
3889         .init_fs_context = shmem_init_fs_context,
3890 #ifdef CONFIG_TMPFS
3891         .parameters     = shmem_fs_parameters,
3892 #endif
3893         .kill_sb        = kill_litter_super,
3894         .fs_flags       = FS_USERNS_MOUNT,
3895 };
3896
3897 int __init shmem_init(void)
3898 {
3899         int error;
3900
3901         shmem_init_inodecache();
3902
3903         error = register_filesystem(&shmem_fs_type);
3904         if (error) {
3905                 pr_err("Could not register tmpfs\n");
3906                 goto out2;
3907         }
3908
3909         shm_mnt = kern_mount(&shmem_fs_type);
3910         if (IS_ERR(shm_mnt)) {
3911                 error = PTR_ERR(shm_mnt);
3912                 pr_err("Could not kern_mount tmpfs\n");
3913                 goto out1;
3914         }
3915
3916 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3917         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3918                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3919         else
3920                 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3921 #endif
3922         return 0;
3923
3924 out1:
3925         unregister_filesystem(&shmem_fs_type);
3926 out2:
3927         shmem_destroy_inodecache();
3928         shm_mnt = ERR_PTR(error);
3929         return error;
3930 }
3931
3932 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3933 static ssize_t shmem_enabled_show(struct kobject *kobj,
3934                                   struct kobj_attribute *attr, char *buf)
3935 {
3936         static const int values[] = {
3937                 SHMEM_HUGE_ALWAYS,
3938                 SHMEM_HUGE_WITHIN_SIZE,
3939                 SHMEM_HUGE_ADVISE,
3940                 SHMEM_HUGE_NEVER,
3941                 SHMEM_HUGE_DENY,
3942                 SHMEM_HUGE_FORCE,
3943         };
3944         int len = 0;
3945         int i;
3946
3947         for (i = 0; i < ARRAY_SIZE(values); i++) {
3948                 len += sysfs_emit_at(buf, len,
3949                                      shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3950                                      i ? " " : "",
3951                                      shmem_format_huge(values[i]));
3952         }
3953
3954         len += sysfs_emit_at(buf, len, "\n");
3955
3956         return len;
3957 }
3958
3959 static ssize_t shmem_enabled_store(struct kobject *kobj,
3960                 struct kobj_attribute *attr, const char *buf, size_t count)
3961 {
3962         char tmp[16];
3963         int huge;
3964
3965         if (count + 1 > sizeof(tmp))
3966                 return -EINVAL;
3967         memcpy(tmp, buf, count);
3968         tmp[count] = '\0';
3969         if (count && tmp[count - 1] == '\n')
3970                 tmp[count - 1] = '\0';
3971
3972         huge = shmem_parse_huge(tmp);
3973         if (huge == -EINVAL)
3974                 return -EINVAL;
3975         if (!has_transparent_hugepage() &&
3976                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3977                 return -EINVAL;
3978
3979         shmem_huge = huge;
3980         if (shmem_huge > SHMEM_HUGE_DENY)
3981                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3982         return count;
3983 }
3984
3985 struct kobj_attribute shmem_enabled_attr =
3986         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3987 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3988
3989 #else /* !CONFIG_SHMEM */
3990
3991 /*
3992  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3993  *
3994  * This is intended for small system where the benefits of the full
3995  * shmem code (swap-backed and resource-limited) are outweighed by
3996  * their complexity. On systems without swap this code should be
3997  * effectively equivalent, but much lighter weight.
3998  */
3999
4000 static struct file_system_type shmem_fs_type = {
4001         .name           = "tmpfs",
4002         .init_fs_context = ramfs_init_fs_context,
4003         .parameters     = ramfs_fs_parameters,
4004         .kill_sb        = kill_litter_super,
4005         .fs_flags       = FS_USERNS_MOUNT,
4006 };
4007
4008 int __init shmem_init(void)
4009 {
4010         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4011
4012         shm_mnt = kern_mount(&shmem_fs_type);
4013         BUG_ON(IS_ERR(shm_mnt));
4014
4015         return 0;
4016 }
4017
4018 int shmem_unuse(unsigned int type, bool frontswap,
4019                 unsigned long *fs_pages_to_unuse)
4020 {
4021         return 0;
4022 }
4023
4024 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4025 {
4026         return 0;
4027 }
4028
4029 void shmem_unlock_mapping(struct address_space *mapping)
4030 {
4031 }
4032
4033 #ifdef CONFIG_MMU
4034 unsigned long shmem_get_unmapped_area(struct file *file,
4035                                       unsigned long addr, unsigned long len,
4036                                       unsigned long pgoff, unsigned long flags)
4037 {
4038         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4039 }
4040 #endif
4041
4042 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4043 {
4044         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4045 }
4046 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4047
4048 #define shmem_vm_ops                            generic_file_vm_ops
4049 #define shmem_file_operations                   ramfs_file_operations
4050 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4051 #define shmem_acct_size(flags, size)            0
4052 #define shmem_unacct_size(flags, size)          do {} while (0)
4053
4054 #endif /* CONFIG_SHMEM */
4055
4056 /* common code */
4057
4058 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4059                                        unsigned long flags, unsigned int i_flags)
4060 {
4061         struct inode *inode;
4062         struct file *res;
4063
4064         if (IS_ERR(mnt))
4065                 return ERR_CAST(mnt);
4066
4067         if (size < 0 || size > MAX_LFS_FILESIZE)
4068                 return ERR_PTR(-EINVAL);
4069
4070         if (shmem_acct_size(flags, size))
4071                 return ERR_PTR(-ENOMEM);
4072
4073         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4074                                 flags);
4075         if (unlikely(!inode)) {
4076                 shmem_unacct_size(flags, size);
4077                 return ERR_PTR(-ENOSPC);
4078         }
4079         inode->i_flags |= i_flags;
4080         inode->i_size = size;
4081         clear_nlink(inode);     /* It is unlinked */
4082         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4083         if (!IS_ERR(res))
4084                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4085                                 &shmem_file_operations);
4086         if (IS_ERR(res))
4087                 iput(inode);
4088         return res;
4089 }
4090
4091 /**
4092  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4093  *      kernel internal.  There will be NO LSM permission checks against the
4094  *      underlying inode.  So users of this interface must do LSM checks at a
4095  *      higher layer.  The users are the big_key and shm implementations.  LSM
4096  *      checks are provided at the key or shm level rather than the inode.
4097  * @name: name for dentry (to be seen in /proc/<pid>/maps
4098  * @size: size to be set for the file
4099  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4100  */
4101 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4102 {
4103         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4104 }
4105
4106 /**
4107  * shmem_file_setup - get an unlinked file living in tmpfs
4108  * @name: name for dentry (to be seen in /proc/<pid>/maps
4109  * @size: size to be set for the file
4110  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4111  */
4112 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4113 {
4114         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4115 }
4116 EXPORT_SYMBOL_GPL(shmem_file_setup);
4117
4118 /**
4119  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4120  * @mnt: the tmpfs mount where the file will be created
4121  * @name: name for dentry (to be seen in /proc/<pid>/maps
4122  * @size: size to be set for the file
4123  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4124  */
4125 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4126                                        loff_t size, unsigned long flags)
4127 {
4128         return __shmem_file_setup(mnt, name, size, flags, 0);
4129 }
4130 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4131
4132 /**
4133  * shmem_zero_setup - setup a shared anonymous mapping
4134  * @vma: the vma to be mmapped is prepared by do_mmap
4135  */
4136 int shmem_zero_setup(struct vm_area_struct *vma)
4137 {
4138         struct file *file;
4139         loff_t size = vma->vm_end - vma->vm_start;
4140
4141         /*
4142          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4143          * between XFS directory reading and selinux: since this file is only
4144          * accessible to the user through its mapping, use S_PRIVATE flag to
4145          * bypass file security, in the same way as shmem_kernel_file_setup().
4146          */
4147         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4148         if (IS_ERR(file))
4149                 return PTR_ERR(file);
4150
4151         if (vma->vm_file)
4152                 fput(vma->vm_file);
4153         vma->vm_file = file;
4154         vma->vm_ops = &shmem_vm_ops;
4155
4156         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4157                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4158                         (vma->vm_end & HPAGE_PMD_MASK)) {
4159                 khugepaged_enter(vma, vma->vm_flags);
4160         }
4161
4162         return 0;
4163 }
4164
4165 /**
4166  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4167  * @mapping:    the page's address_space
4168  * @index:      the page index
4169  * @gfp:        the page allocator flags to use if allocating
4170  *
4171  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4172  * with any new page allocations done using the specified allocation flags.
4173  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4174  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4175  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4176  *
4177  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4178  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4179  */
4180 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4181                                          pgoff_t index, gfp_t gfp)
4182 {
4183 #ifdef CONFIG_SHMEM
4184         struct inode *inode = mapping->host;
4185         struct page *page;
4186         int error;
4187
4188         BUG_ON(!shmem_mapping(mapping));
4189         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4190                                   gfp, NULL, NULL, NULL);
4191         if (error)
4192                 return ERR_PTR(error);
4193
4194         unlock_page(page);
4195         if (PageHWPoison(page)) {
4196                 put_page(page);
4197                 return ERR_PTR(-EIO);
4198         }
4199
4200         return page;
4201 #else
4202         /*
4203          * The tiny !SHMEM case uses ramfs without swap
4204          */
4205         return read_cache_page_gfp(mapping, index, gfp);
4206 #endif
4207 }
4208 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);