Merge tag 'hardening-v5.19-rc1-fix1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/hugetlb.h>
38 #include <linux/fs_parser.h>
39 #include <linux/swapfile.h>
40 #include "swap.h"
41
42 static struct vfsmount *shm_mnt;
43
44 #ifdef CONFIG_SHMEM
45 /*
46  * This virtual memory filesystem is heavily based on the ramfs. It
47  * extends ramfs by the ability to use swap and honor resource limits
48  * which makes it a completely usable filesystem.
49  */
50
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80
81 #include <linux/uaccess.h>
82
83 #include "internal.h"
84
85 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
86 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
87
88 /* Pretend that each entry is of this size in directory's i_size */
89 #define BOGO_DIRENT_SIZE 20
90
91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92 #define SHORT_SYMLINK_LEN 128
93
94 /*
95  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
96  * inode->i_private (with i_rwsem making sure that it has only one user at
97  * a time): we would prefer not to enlarge the shmem inode just for that.
98  */
99 struct shmem_falloc {
100         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
101         pgoff_t start;          /* start of range currently being fallocated */
102         pgoff_t next;           /* the next page offset to be fallocated */
103         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
104         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
105 };
106
107 struct shmem_options {
108         unsigned long long blocks;
109         unsigned long long inodes;
110         struct mempolicy *mpol;
111         kuid_t uid;
112         kgid_t gid;
113         umode_t mode;
114         bool full_inums;
115         int huge;
116         int seen;
117 #define SHMEM_SEEN_BLOCKS 1
118 #define SHMEM_SEEN_INODES 2
119 #define SHMEM_SEEN_HUGE 4
120 #define SHMEM_SEEN_INUMS 8
121 };
122
123 #ifdef CONFIG_TMPFS
124 static unsigned long shmem_default_max_blocks(void)
125 {
126         return totalram_pages() / 2;
127 }
128
129 static unsigned long shmem_default_max_inodes(void)
130 {
131         unsigned long nr_pages = totalram_pages();
132
133         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
134 }
135 #endif
136
137 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
138                              struct folio **foliop, enum sgp_type sgp,
139                              gfp_t gfp, struct vm_area_struct *vma,
140                              vm_fault_t *fault_type);
141 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
142                 struct page **pagep, enum sgp_type sgp,
143                 gfp_t gfp, struct vm_area_struct *vma,
144                 struct vm_fault *vmf, vm_fault_t *fault_type);
145
146 int shmem_getpage(struct inode *inode, pgoff_t index,
147                 struct page **pagep, enum sgp_type sgp)
148 {
149         return shmem_getpage_gfp(inode, index, pagep, sgp,
150                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
151 }
152
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155         return sb->s_fs_info;
156 }
157
158 /*
159  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160  * for shared memory and for shared anonymous (/dev/zero) mappings
161  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162  * consistent with the pre-accounting of private mappings ...
163  */
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166         return (flags & VM_NORESERVE) ?
167                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168 }
169
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172         if (!(flags & VM_NORESERVE))
173                 vm_unacct_memory(VM_ACCT(size));
174 }
175
176 static inline int shmem_reacct_size(unsigned long flags,
177                 loff_t oldsize, loff_t newsize)
178 {
179         if (!(flags & VM_NORESERVE)) {
180                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181                         return security_vm_enough_memory_mm(current->mm,
182                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
183                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185         }
186         return 0;
187 }
188
189 /*
190  * ... whereas tmpfs objects are accounted incrementally as
191  * pages are allocated, in order to allow large sparse files.
192  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194  */
195 static inline int shmem_acct_block(unsigned long flags, long pages)
196 {
197         if (!(flags & VM_NORESERVE))
198                 return 0;
199
200         return security_vm_enough_memory_mm(current->mm,
201                         pages * VM_ACCT(PAGE_SIZE));
202 }
203
204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205 {
206         if (flags & VM_NORESERVE)
207                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208 }
209
210 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
211 {
212         struct shmem_inode_info *info = SHMEM_I(inode);
213         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214
215         if (shmem_acct_block(info->flags, pages))
216                 return false;
217
218         if (sbinfo->max_blocks) {
219                 if (percpu_counter_compare(&sbinfo->used_blocks,
220                                            sbinfo->max_blocks - pages) > 0)
221                         goto unacct;
222                 percpu_counter_add(&sbinfo->used_blocks, pages);
223         }
224
225         return true;
226
227 unacct:
228         shmem_unacct_blocks(info->flags, pages);
229         return false;
230 }
231
232 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
233 {
234         struct shmem_inode_info *info = SHMEM_I(inode);
235         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
236
237         if (sbinfo->max_blocks)
238                 percpu_counter_sub(&sbinfo->used_blocks, pages);
239         shmem_unacct_blocks(info->flags, pages);
240 }
241
242 static const struct super_operations shmem_ops;
243 const struct address_space_operations shmem_aops;
244 static const struct file_operations shmem_file_operations;
245 static const struct inode_operations shmem_inode_operations;
246 static const struct inode_operations shmem_dir_inode_operations;
247 static const struct inode_operations shmem_special_inode_operations;
248 static const struct vm_operations_struct shmem_vm_ops;
249 static struct file_system_type shmem_fs_type;
250
251 bool vma_is_shmem(struct vm_area_struct *vma)
252 {
253         return vma->vm_ops == &shmem_vm_ops;
254 }
255
256 static LIST_HEAD(shmem_swaplist);
257 static DEFINE_MUTEX(shmem_swaplist_mutex);
258
259 /*
260  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
261  * produces a novel ino for the newly allocated inode.
262  *
263  * It may also be called when making a hard link to permit the space needed by
264  * each dentry. However, in that case, no new inode number is needed since that
265  * internally draws from another pool of inode numbers (currently global
266  * get_next_ino()). This case is indicated by passing NULL as inop.
267  */
268 #define SHMEM_INO_BATCH 1024
269 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
270 {
271         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
272         ino_t ino;
273
274         if (!(sb->s_flags & SB_KERNMOUNT)) {
275                 raw_spin_lock(&sbinfo->stat_lock);
276                 if (sbinfo->max_inodes) {
277                         if (!sbinfo->free_inodes) {
278                                 raw_spin_unlock(&sbinfo->stat_lock);
279                                 return -ENOSPC;
280                         }
281                         sbinfo->free_inodes--;
282                 }
283                 if (inop) {
284                         ino = sbinfo->next_ino++;
285                         if (unlikely(is_zero_ino(ino)))
286                                 ino = sbinfo->next_ino++;
287                         if (unlikely(!sbinfo->full_inums &&
288                                      ino > UINT_MAX)) {
289                                 /*
290                                  * Emulate get_next_ino uint wraparound for
291                                  * compatibility
292                                  */
293                                 if (IS_ENABLED(CONFIG_64BIT))
294                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
295                                                 __func__, MINOR(sb->s_dev));
296                                 sbinfo->next_ino = 1;
297                                 ino = sbinfo->next_ino++;
298                         }
299                         *inop = ino;
300                 }
301                 raw_spin_unlock(&sbinfo->stat_lock);
302         } else if (inop) {
303                 /*
304                  * __shmem_file_setup, one of our callers, is lock-free: it
305                  * doesn't hold stat_lock in shmem_reserve_inode since
306                  * max_inodes is always 0, and is called from potentially
307                  * unknown contexts. As such, use a per-cpu batched allocator
308                  * which doesn't require the per-sb stat_lock unless we are at
309                  * the batch boundary.
310                  *
311                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
312                  * shmem mounts are not exposed to userspace, so we don't need
313                  * to worry about things like glibc compatibility.
314                  */
315                 ino_t *next_ino;
316
317                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
318                 ino = *next_ino;
319                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
320                         raw_spin_lock(&sbinfo->stat_lock);
321                         ino = sbinfo->next_ino;
322                         sbinfo->next_ino += SHMEM_INO_BATCH;
323                         raw_spin_unlock(&sbinfo->stat_lock);
324                         if (unlikely(is_zero_ino(ino)))
325                                 ino++;
326                 }
327                 *inop = ino;
328                 *next_ino = ++ino;
329                 put_cpu();
330         }
331
332         return 0;
333 }
334
335 static void shmem_free_inode(struct super_block *sb)
336 {
337         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
338         if (sbinfo->max_inodes) {
339                 raw_spin_lock(&sbinfo->stat_lock);
340                 sbinfo->free_inodes++;
341                 raw_spin_unlock(&sbinfo->stat_lock);
342         }
343 }
344
345 /**
346  * shmem_recalc_inode - recalculate the block usage of an inode
347  * @inode: inode to recalc
348  *
349  * We have to calculate the free blocks since the mm can drop
350  * undirtied hole pages behind our back.
351  *
352  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
353  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
354  *
355  * It has to be called with the spinlock held.
356  */
357 static void shmem_recalc_inode(struct inode *inode)
358 {
359         struct shmem_inode_info *info = SHMEM_I(inode);
360         long freed;
361
362         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
363         if (freed > 0) {
364                 info->alloced -= freed;
365                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
366                 shmem_inode_unacct_blocks(inode, freed);
367         }
368 }
369
370 bool shmem_charge(struct inode *inode, long pages)
371 {
372         struct shmem_inode_info *info = SHMEM_I(inode);
373         unsigned long flags;
374
375         if (!shmem_inode_acct_block(inode, pages))
376                 return false;
377
378         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
379         inode->i_mapping->nrpages += pages;
380
381         spin_lock_irqsave(&info->lock, flags);
382         info->alloced += pages;
383         inode->i_blocks += pages * BLOCKS_PER_PAGE;
384         shmem_recalc_inode(inode);
385         spin_unlock_irqrestore(&info->lock, flags);
386
387         return true;
388 }
389
390 void shmem_uncharge(struct inode *inode, long pages)
391 {
392         struct shmem_inode_info *info = SHMEM_I(inode);
393         unsigned long flags;
394
395         /* nrpages adjustment done by __delete_from_page_cache() or caller */
396
397         spin_lock_irqsave(&info->lock, flags);
398         info->alloced -= pages;
399         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
400         shmem_recalc_inode(inode);
401         spin_unlock_irqrestore(&info->lock, flags);
402
403         shmem_inode_unacct_blocks(inode, pages);
404 }
405
406 /*
407  * Replace item expected in xarray by a new item, while holding xa_lock.
408  */
409 static int shmem_replace_entry(struct address_space *mapping,
410                         pgoff_t index, void *expected, void *replacement)
411 {
412         XA_STATE(xas, &mapping->i_pages, index);
413         void *item;
414
415         VM_BUG_ON(!expected);
416         VM_BUG_ON(!replacement);
417         item = xas_load(&xas);
418         if (item != expected)
419                 return -ENOENT;
420         xas_store(&xas, replacement);
421         return 0;
422 }
423
424 /*
425  * Sometimes, before we decide whether to proceed or to fail, we must check
426  * that an entry was not already brought back from swap by a racing thread.
427  *
428  * Checking page is not enough: by the time a SwapCache page is locked, it
429  * might be reused, and again be SwapCache, using the same swap as before.
430  */
431 static bool shmem_confirm_swap(struct address_space *mapping,
432                                pgoff_t index, swp_entry_t swap)
433 {
434         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
435 }
436
437 /*
438  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
439  *
440  * SHMEM_HUGE_NEVER:
441  *      disables huge pages for the mount;
442  * SHMEM_HUGE_ALWAYS:
443  *      enables huge pages for the mount;
444  * SHMEM_HUGE_WITHIN_SIZE:
445  *      only allocate huge pages if the page will be fully within i_size,
446  *      also respect fadvise()/madvise() hints;
447  * SHMEM_HUGE_ADVISE:
448  *      only allocate huge pages if requested with fadvise()/madvise();
449  */
450
451 #define SHMEM_HUGE_NEVER        0
452 #define SHMEM_HUGE_ALWAYS       1
453 #define SHMEM_HUGE_WITHIN_SIZE  2
454 #define SHMEM_HUGE_ADVISE       3
455
456 /*
457  * Special values.
458  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
459  *
460  * SHMEM_HUGE_DENY:
461  *      disables huge on shm_mnt and all mounts, for emergency use;
462  * SHMEM_HUGE_FORCE:
463  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
464  *
465  */
466 #define SHMEM_HUGE_DENY         (-1)
467 #define SHMEM_HUGE_FORCE        (-2)
468
469 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
470 /* ifdef here to avoid bloating shmem.o when not necessary */
471
472 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
473
474 bool shmem_is_huge(struct vm_area_struct *vma,
475                    struct inode *inode, pgoff_t index)
476 {
477         loff_t i_size;
478
479         if (!S_ISREG(inode->i_mode))
480                 return false;
481         if (shmem_huge == SHMEM_HUGE_DENY)
482                 return false;
483         if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
484             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
485                 return false;
486         if (shmem_huge == SHMEM_HUGE_FORCE)
487                 return true;
488
489         switch (SHMEM_SB(inode->i_sb)->huge) {
490         case SHMEM_HUGE_ALWAYS:
491                 return true;
492         case SHMEM_HUGE_WITHIN_SIZE:
493                 index = round_up(index + 1, HPAGE_PMD_NR);
494                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
495                 if (i_size >> PAGE_SHIFT >= index)
496                         return true;
497                 fallthrough;
498         case SHMEM_HUGE_ADVISE:
499                 if (vma && (vma->vm_flags & VM_HUGEPAGE))
500                         return true;
501                 fallthrough;
502         default:
503                 return false;
504         }
505 }
506
507 #if defined(CONFIG_SYSFS)
508 static int shmem_parse_huge(const char *str)
509 {
510         if (!strcmp(str, "never"))
511                 return SHMEM_HUGE_NEVER;
512         if (!strcmp(str, "always"))
513                 return SHMEM_HUGE_ALWAYS;
514         if (!strcmp(str, "within_size"))
515                 return SHMEM_HUGE_WITHIN_SIZE;
516         if (!strcmp(str, "advise"))
517                 return SHMEM_HUGE_ADVISE;
518         if (!strcmp(str, "deny"))
519                 return SHMEM_HUGE_DENY;
520         if (!strcmp(str, "force"))
521                 return SHMEM_HUGE_FORCE;
522         return -EINVAL;
523 }
524 #endif
525
526 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
527 static const char *shmem_format_huge(int huge)
528 {
529         switch (huge) {
530         case SHMEM_HUGE_NEVER:
531                 return "never";
532         case SHMEM_HUGE_ALWAYS:
533                 return "always";
534         case SHMEM_HUGE_WITHIN_SIZE:
535                 return "within_size";
536         case SHMEM_HUGE_ADVISE:
537                 return "advise";
538         case SHMEM_HUGE_DENY:
539                 return "deny";
540         case SHMEM_HUGE_FORCE:
541                 return "force";
542         default:
543                 VM_BUG_ON(1);
544                 return "bad_val";
545         }
546 }
547 #endif
548
549 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
550                 struct shrink_control *sc, unsigned long nr_to_split)
551 {
552         LIST_HEAD(list), *pos, *next;
553         LIST_HEAD(to_remove);
554         struct inode *inode;
555         struct shmem_inode_info *info;
556         struct folio *folio;
557         unsigned long batch = sc ? sc->nr_to_scan : 128;
558         int split = 0;
559
560         if (list_empty(&sbinfo->shrinklist))
561                 return SHRINK_STOP;
562
563         spin_lock(&sbinfo->shrinklist_lock);
564         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
565                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566
567                 /* pin the inode */
568                 inode = igrab(&info->vfs_inode);
569
570                 /* inode is about to be evicted */
571                 if (!inode) {
572                         list_del_init(&info->shrinklist);
573                         goto next;
574                 }
575
576                 /* Check if there's anything to gain */
577                 if (round_up(inode->i_size, PAGE_SIZE) ==
578                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
579                         list_move(&info->shrinklist, &to_remove);
580                         goto next;
581                 }
582
583                 list_move(&info->shrinklist, &list);
584 next:
585                 sbinfo->shrinklist_len--;
586                 if (!--batch)
587                         break;
588         }
589         spin_unlock(&sbinfo->shrinklist_lock);
590
591         list_for_each_safe(pos, next, &to_remove) {
592                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
593                 inode = &info->vfs_inode;
594                 list_del_init(&info->shrinklist);
595                 iput(inode);
596         }
597
598         list_for_each_safe(pos, next, &list) {
599                 int ret;
600                 pgoff_t index;
601
602                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
603                 inode = &info->vfs_inode;
604
605                 if (nr_to_split && split >= nr_to_split)
606                         goto move_back;
607
608                 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
609                 folio = filemap_get_folio(inode->i_mapping, index);
610                 if (!folio)
611                         goto drop;
612
613                 /* No huge page at the end of the file: nothing to split */
614                 if (!folio_test_large(folio)) {
615                         folio_put(folio);
616                         goto drop;
617                 }
618
619                 /*
620                  * Move the inode on the list back to shrinklist if we failed
621                  * to lock the page at this time.
622                  *
623                  * Waiting for the lock may lead to deadlock in the
624                  * reclaim path.
625                  */
626                 if (!folio_trylock(folio)) {
627                         folio_put(folio);
628                         goto move_back;
629                 }
630
631                 ret = split_huge_page(&folio->page);
632                 folio_unlock(folio);
633                 folio_put(folio);
634
635                 /* If split failed move the inode on the list back to shrinklist */
636                 if (ret)
637                         goto move_back;
638
639                 split++;
640 drop:
641                 list_del_init(&info->shrinklist);
642                 goto put;
643 move_back:
644                 /*
645                  * Make sure the inode is either on the global list or deleted
646                  * from any local list before iput() since it could be deleted
647                  * in another thread once we put the inode (then the local list
648                  * is corrupted).
649                  */
650                 spin_lock(&sbinfo->shrinklist_lock);
651                 list_move(&info->shrinklist, &sbinfo->shrinklist);
652                 sbinfo->shrinklist_len++;
653                 spin_unlock(&sbinfo->shrinklist_lock);
654 put:
655                 iput(inode);
656         }
657
658         return split;
659 }
660
661 static long shmem_unused_huge_scan(struct super_block *sb,
662                 struct shrink_control *sc)
663 {
664         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
665
666         if (!READ_ONCE(sbinfo->shrinklist_len))
667                 return SHRINK_STOP;
668
669         return shmem_unused_huge_shrink(sbinfo, sc, 0);
670 }
671
672 static long shmem_unused_huge_count(struct super_block *sb,
673                 struct shrink_control *sc)
674 {
675         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
676         return READ_ONCE(sbinfo->shrinklist_len);
677 }
678 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
679
680 #define shmem_huge SHMEM_HUGE_DENY
681
682 bool shmem_is_huge(struct vm_area_struct *vma,
683                    struct inode *inode, pgoff_t index)
684 {
685         return false;
686 }
687
688 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
689                 struct shrink_control *sc, unsigned long nr_to_split)
690 {
691         return 0;
692 }
693 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
694
695 /*
696  * Like add_to_page_cache_locked, but error if expected item has gone.
697  */
698 static int shmem_add_to_page_cache(struct folio *folio,
699                                    struct address_space *mapping,
700                                    pgoff_t index, void *expected, gfp_t gfp,
701                                    struct mm_struct *charge_mm)
702 {
703         XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
704         long nr = folio_nr_pages(folio);
705         int error;
706
707         VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
708         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
709         VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
710         VM_BUG_ON(expected && folio_test_large(folio));
711
712         folio_ref_add(folio, nr);
713         folio->mapping = mapping;
714         folio->index = index;
715
716         if (!folio_test_swapcache(folio)) {
717                 error = mem_cgroup_charge(folio, charge_mm, gfp);
718                 if (error) {
719                         if (folio_test_pmd_mappable(folio)) {
720                                 count_vm_event(THP_FILE_FALLBACK);
721                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
722                         }
723                         goto error;
724                 }
725         }
726         folio_throttle_swaprate(folio, gfp);
727
728         do {
729                 xas_lock_irq(&xas);
730                 if (expected != xas_find_conflict(&xas)) {
731                         xas_set_err(&xas, -EEXIST);
732                         goto unlock;
733                 }
734                 if (expected && xas_find_conflict(&xas)) {
735                         xas_set_err(&xas, -EEXIST);
736                         goto unlock;
737                 }
738                 xas_store(&xas, folio);
739                 if (xas_error(&xas))
740                         goto unlock;
741                 if (folio_test_pmd_mappable(folio)) {
742                         count_vm_event(THP_FILE_ALLOC);
743                         __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
744                 }
745                 mapping->nrpages += nr;
746                 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
747                 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
748 unlock:
749                 xas_unlock_irq(&xas);
750         } while (xas_nomem(&xas, gfp));
751
752         if (xas_error(&xas)) {
753                 error = xas_error(&xas);
754                 goto error;
755         }
756
757         return 0;
758 error:
759         folio->mapping = NULL;
760         folio_ref_sub(folio, nr);
761         return error;
762 }
763
764 /*
765  * Like delete_from_page_cache, but substitutes swap for page.
766  */
767 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
768 {
769         struct address_space *mapping = page->mapping;
770         int error;
771
772         VM_BUG_ON_PAGE(PageCompound(page), page);
773
774         xa_lock_irq(&mapping->i_pages);
775         error = shmem_replace_entry(mapping, page->index, page, radswap);
776         page->mapping = NULL;
777         mapping->nrpages--;
778         __dec_lruvec_page_state(page, NR_FILE_PAGES);
779         __dec_lruvec_page_state(page, NR_SHMEM);
780         xa_unlock_irq(&mapping->i_pages);
781         put_page(page);
782         BUG_ON(error);
783 }
784
785 /*
786  * Remove swap entry from page cache, free the swap and its page cache.
787  */
788 static int shmem_free_swap(struct address_space *mapping,
789                            pgoff_t index, void *radswap)
790 {
791         void *old;
792
793         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
794         if (old != radswap)
795                 return -ENOENT;
796         free_swap_and_cache(radix_to_swp_entry(radswap));
797         return 0;
798 }
799
800 /*
801  * Determine (in bytes) how many of the shmem object's pages mapped by the
802  * given offsets are swapped out.
803  *
804  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
805  * as long as the inode doesn't go away and racy results are not a problem.
806  */
807 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
808                                                 pgoff_t start, pgoff_t end)
809 {
810         XA_STATE(xas, &mapping->i_pages, start);
811         struct page *page;
812         unsigned long swapped = 0;
813
814         rcu_read_lock();
815         xas_for_each(&xas, page, end - 1) {
816                 if (xas_retry(&xas, page))
817                         continue;
818                 if (xa_is_value(page))
819                         swapped++;
820
821                 if (need_resched()) {
822                         xas_pause(&xas);
823                         cond_resched_rcu();
824                 }
825         }
826
827         rcu_read_unlock();
828
829         return swapped << PAGE_SHIFT;
830 }
831
832 /*
833  * Determine (in bytes) how many of the shmem object's pages mapped by the
834  * given vma is swapped out.
835  *
836  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
837  * as long as the inode doesn't go away and racy results are not a problem.
838  */
839 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
840 {
841         struct inode *inode = file_inode(vma->vm_file);
842         struct shmem_inode_info *info = SHMEM_I(inode);
843         struct address_space *mapping = inode->i_mapping;
844         unsigned long swapped;
845
846         /* Be careful as we don't hold info->lock */
847         swapped = READ_ONCE(info->swapped);
848
849         /*
850          * The easier cases are when the shmem object has nothing in swap, or
851          * the vma maps it whole. Then we can simply use the stats that we
852          * already track.
853          */
854         if (!swapped)
855                 return 0;
856
857         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
858                 return swapped << PAGE_SHIFT;
859
860         /* Here comes the more involved part */
861         return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
862                                         vma->vm_pgoff + vma_pages(vma));
863 }
864
865 /*
866  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
867  */
868 void shmem_unlock_mapping(struct address_space *mapping)
869 {
870         struct pagevec pvec;
871         pgoff_t index = 0;
872
873         pagevec_init(&pvec);
874         /*
875          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
876          */
877         while (!mapping_unevictable(mapping)) {
878                 if (!pagevec_lookup(&pvec, mapping, &index))
879                         break;
880                 check_move_unevictable_pages(&pvec);
881                 pagevec_release(&pvec);
882                 cond_resched();
883         }
884 }
885
886 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
887 {
888         struct folio *folio;
889         struct page *page;
890
891         /*
892          * At first avoid shmem_getpage(,,,SGP_READ): that fails
893          * beyond i_size, and reports fallocated pages as holes.
894          */
895         folio = __filemap_get_folio(inode->i_mapping, index,
896                                         FGP_ENTRY | FGP_LOCK, 0);
897         if (!xa_is_value(folio))
898                 return folio;
899         /*
900          * But read a page back from swap if any of it is within i_size
901          * (although in some cases this is just a waste of time).
902          */
903         page = NULL;
904         shmem_getpage(inode, index, &page, SGP_READ);
905         return page ? page_folio(page) : NULL;
906 }
907
908 /*
909  * Remove range of pages and swap entries from page cache, and free them.
910  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
911  */
912 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
913                                                                  bool unfalloc)
914 {
915         struct address_space *mapping = inode->i_mapping;
916         struct shmem_inode_info *info = SHMEM_I(inode);
917         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
918         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
919         struct folio_batch fbatch;
920         pgoff_t indices[PAGEVEC_SIZE];
921         struct folio *folio;
922         bool same_folio;
923         long nr_swaps_freed = 0;
924         pgoff_t index;
925         int i;
926
927         if (lend == -1)
928                 end = -1;       /* unsigned, so actually very big */
929
930         if (info->fallocend > start && info->fallocend <= end && !unfalloc)
931                 info->fallocend = start;
932
933         folio_batch_init(&fbatch);
934         index = start;
935         while (index < end && find_lock_entries(mapping, index, end - 1,
936                         &fbatch, indices)) {
937                 for (i = 0; i < folio_batch_count(&fbatch); i++) {
938                         folio = fbatch.folios[i];
939
940                         index = indices[i];
941
942                         if (xa_is_value(folio)) {
943                                 if (unfalloc)
944                                         continue;
945                                 nr_swaps_freed += !shmem_free_swap(mapping,
946                                                                 index, folio);
947                                 continue;
948                         }
949                         index += folio_nr_pages(folio) - 1;
950
951                         if (!unfalloc || !folio_test_uptodate(folio))
952                                 truncate_inode_folio(mapping, folio);
953                         folio_unlock(folio);
954                 }
955                 folio_batch_remove_exceptionals(&fbatch);
956                 folio_batch_release(&fbatch);
957                 cond_resched();
958                 index++;
959         }
960
961         same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
962         folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
963         if (folio) {
964                 same_folio = lend < folio_pos(folio) + folio_size(folio);
965                 folio_mark_dirty(folio);
966                 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
967                         start = folio->index + folio_nr_pages(folio);
968                         if (same_folio)
969                                 end = folio->index;
970                 }
971                 folio_unlock(folio);
972                 folio_put(folio);
973                 folio = NULL;
974         }
975
976         if (!same_folio)
977                 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
978         if (folio) {
979                 folio_mark_dirty(folio);
980                 if (!truncate_inode_partial_folio(folio, lstart, lend))
981                         end = folio->index;
982                 folio_unlock(folio);
983                 folio_put(folio);
984         }
985
986         index = start;
987         while (index < end) {
988                 cond_resched();
989
990                 if (!find_get_entries(mapping, index, end - 1, &fbatch,
991                                 indices)) {
992                         /* If all gone or hole-punch or unfalloc, we're done */
993                         if (index == start || end != -1)
994                                 break;
995                         /* But if truncating, restart to make sure all gone */
996                         index = start;
997                         continue;
998                 }
999                 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1000                         folio = fbatch.folios[i];
1001
1002                         index = indices[i];
1003                         if (xa_is_value(folio)) {
1004                                 if (unfalloc)
1005                                         continue;
1006                                 if (shmem_free_swap(mapping, index, folio)) {
1007                                         /* Swap was replaced by page: retry */
1008                                         index--;
1009                                         break;
1010                                 }
1011                                 nr_swaps_freed++;
1012                                 continue;
1013                         }
1014
1015                         folio_lock(folio);
1016
1017                         if (!unfalloc || !folio_test_uptodate(folio)) {
1018                                 if (folio_mapping(folio) != mapping) {
1019                                         /* Page was replaced by swap: retry */
1020                                         folio_unlock(folio);
1021                                         index--;
1022                                         break;
1023                                 }
1024                                 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1025                                                 folio);
1026                                 truncate_inode_folio(mapping, folio);
1027                         }
1028                         index = folio->index + folio_nr_pages(folio) - 1;
1029                         folio_unlock(folio);
1030                 }
1031                 folio_batch_remove_exceptionals(&fbatch);
1032                 folio_batch_release(&fbatch);
1033                 index++;
1034         }
1035
1036         spin_lock_irq(&info->lock);
1037         info->swapped -= nr_swaps_freed;
1038         shmem_recalc_inode(inode);
1039         spin_unlock_irq(&info->lock);
1040 }
1041
1042 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1043 {
1044         shmem_undo_range(inode, lstart, lend, false);
1045         inode->i_ctime = inode->i_mtime = current_time(inode);
1046 }
1047 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1048
1049 static int shmem_getattr(struct user_namespace *mnt_userns,
1050                          const struct path *path, struct kstat *stat,
1051                          u32 request_mask, unsigned int query_flags)
1052 {
1053         struct inode *inode = path->dentry->d_inode;
1054         struct shmem_inode_info *info = SHMEM_I(inode);
1055
1056         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1057                 spin_lock_irq(&info->lock);
1058                 shmem_recalc_inode(inode);
1059                 spin_unlock_irq(&info->lock);
1060         }
1061         generic_fillattr(&init_user_ns, inode, stat);
1062
1063         if (shmem_is_huge(NULL, inode, 0))
1064                 stat->blksize = HPAGE_PMD_SIZE;
1065
1066         if (request_mask & STATX_BTIME) {
1067                 stat->result_mask |= STATX_BTIME;
1068                 stat->btime.tv_sec = info->i_crtime.tv_sec;
1069                 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1070         }
1071
1072         return 0;
1073 }
1074
1075 static int shmem_setattr(struct user_namespace *mnt_userns,
1076                          struct dentry *dentry, struct iattr *attr)
1077 {
1078         struct inode *inode = d_inode(dentry);
1079         struct shmem_inode_info *info = SHMEM_I(inode);
1080         int error;
1081
1082         error = setattr_prepare(&init_user_ns, dentry, attr);
1083         if (error)
1084                 return error;
1085
1086         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1087                 loff_t oldsize = inode->i_size;
1088                 loff_t newsize = attr->ia_size;
1089
1090                 /* protected by i_rwsem */
1091                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1092                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1093                         return -EPERM;
1094
1095                 if (newsize != oldsize) {
1096                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1097                                         oldsize, newsize);
1098                         if (error)
1099                                 return error;
1100                         i_size_write(inode, newsize);
1101                         inode->i_ctime = inode->i_mtime = current_time(inode);
1102                 }
1103                 if (newsize <= oldsize) {
1104                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1105                         if (oldsize > holebegin)
1106                                 unmap_mapping_range(inode->i_mapping,
1107                                                         holebegin, 0, 1);
1108                         if (info->alloced)
1109                                 shmem_truncate_range(inode,
1110                                                         newsize, (loff_t)-1);
1111                         /* unmap again to remove racily COWed private pages */
1112                         if (oldsize > holebegin)
1113                                 unmap_mapping_range(inode->i_mapping,
1114                                                         holebegin, 0, 1);
1115                 }
1116         }
1117
1118         setattr_copy(&init_user_ns, inode, attr);
1119         if (attr->ia_valid & ATTR_MODE)
1120                 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1121         return error;
1122 }
1123
1124 static void shmem_evict_inode(struct inode *inode)
1125 {
1126         struct shmem_inode_info *info = SHMEM_I(inode);
1127         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1128
1129         if (shmem_mapping(inode->i_mapping)) {
1130                 shmem_unacct_size(info->flags, inode->i_size);
1131                 inode->i_size = 0;
1132                 mapping_set_exiting(inode->i_mapping);
1133                 shmem_truncate_range(inode, 0, (loff_t)-1);
1134                 if (!list_empty(&info->shrinklist)) {
1135                         spin_lock(&sbinfo->shrinklist_lock);
1136                         if (!list_empty(&info->shrinklist)) {
1137                                 list_del_init(&info->shrinklist);
1138                                 sbinfo->shrinklist_len--;
1139                         }
1140                         spin_unlock(&sbinfo->shrinklist_lock);
1141                 }
1142                 while (!list_empty(&info->swaplist)) {
1143                         /* Wait while shmem_unuse() is scanning this inode... */
1144                         wait_var_event(&info->stop_eviction,
1145                                        !atomic_read(&info->stop_eviction));
1146                         mutex_lock(&shmem_swaplist_mutex);
1147                         /* ...but beware of the race if we peeked too early */
1148                         if (!atomic_read(&info->stop_eviction))
1149                                 list_del_init(&info->swaplist);
1150                         mutex_unlock(&shmem_swaplist_mutex);
1151                 }
1152         }
1153
1154         simple_xattrs_free(&info->xattrs);
1155         WARN_ON(inode->i_blocks);
1156         shmem_free_inode(inode->i_sb);
1157         clear_inode(inode);
1158 }
1159
1160 static int shmem_find_swap_entries(struct address_space *mapping,
1161                                    pgoff_t start, struct folio_batch *fbatch,
1162                                    pgoff_t *indices, unsigned int type)
1163 {
1164         XA_STATE(xas, &mapping->i_pages, start);
1165         struct folio *folio;
1166         swp_entry_t entry;
1167
1168         rcu_read_lock();
1169         xas_for_each(&xas, folio, ULONG_MAX) {
1170                 if (xas_retry(&xas, folio))
1171                         continue;
1172
1173                 if (!xa_is_value(folio))
1174                         continue;
1175
1176                 entry = radix_to_swp_entry(folio);
1177                 if (swp_type(entry) != type)
1178                         continue;
1179
1180                 indices[folio_batch_count(fbatch)] = xas.xa_index;
1181                 if (!folio_batch_add(fbatch, folio))
1182                         break;
1183
1184                 if (need_resched()) {
1185                         xas_pause(&xas);
1186                         cond_resched_rcu();
1187                 }
1188         }
1189         rcu_read_unlock();
1190
1191         return xas.xa_index;
1192 }
1193
1194 /*
1195  * Move the swapped pages for an inode to page cache. Returns the count
1196  * of pages swapped in, or the error in case of failure.
1197  */
1198 static int shmem_unuse_swap_entries(struct inode *inode,
1199                 struct folio_batch *fbatch, pgoff_t *indices)
1200 {
1201         int i = 0;
1202         int ret = 0;
1203         int error = 0;
1204         struct address_space *mapping = inode->i_mapping;
1205
1206         for (i = 0; i < folio_batch_count(fbatch); i++) {
1207                 struct folio *folio = fbatch->folios[i];
1208
1209                 if (!xa_is_value(folio))
1210                         continue;
1211                 error = shmem_swapin_folio(inode, indices[i],
1212                                           &folio, SGP_CACHE,
1213                                           mapping_gfp_mask(mapping),
1214                                           NULL, NULL);
1215                 if (error == 0) {
1216                         folio_unlock(folio);
1217                         folio_put(folio);
1218                         ret++;
1219                 }
1220                 if (error == -ENOMEM)
1221                         break;
1222                 error = 0;
1223         }
1224         return error ? error : ret;
1225 }
1226
1227 /*
1228  * If swap found in inode, free it and move page from swapcache to filecache.
1229  */
1230 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1231 {
1232         struct address_space *mapping = inode->i_mapping;
1233         pgoff_t start = 0;
1234         struct folio_batch fbatch;
1235         pgoff_t indices[PAGEVEC_SIZE];
1236         int ret = 0;
1237
1238         do {
1239                 folio_batch_init(&fbatch);
1240                 shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1241                 if (folio_batch_count(&fbatch) == 0) {
1242                         ret = 0;
1243                         break;
1244                 }
1245
1246                 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1247                 if (ret < 0)
1248                         break;
1249
1250                 start = indices[folio_batch_count(&fbatch) - 1];
1251         } while (true);
1252
1253         return ret;
1254 }
1255
1256 /*
1257  * Read all the shared memory data that resides in the swap
1258  * device 'type' back into memory, so the swap device can be
1259  * unused.
1260  */
1261 int shmem_unuse(unsigned int type)
1262 {
1263         struct shmem_inode_info *info, *next;
1264         int error = 0;
1265
1266         if (list_empty(&shmem_swaplist))
1267                 return 0;
1268
1269         mutex_lock(&shmem_swaplist_mutex);
1270         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1271                 if (!info->swapped) {
1272                         list_del_init(&info->swaplist);
1273                         continue;
1274                 }
1275                 /*
1276                  * Drop the swaplist mutex while searching the inode for swap;
1277                  * but before doing so, make sure shmem_evict_inode() will not
1278                  * remove placeholder inode from swaplist, nor let it be freed
1279                  * (igrab() would protect from unlink, but not from unmount).
1280                  */
1281                 atomic_inc(&info->stop_eviction);
1282                 mutex_unlock(&shmem_swaplist_mutex);
1283
1284                 error = shmem_unuse_inode(&info->vfs_inode, type);
1285                 cond_resched();
1286
1287                 mutex_lock(&shmem_swaplist_mutex);
1288                 next = list_next_entry(info, swaplist);
1289                 if (!info->swapped)
1290                         list_del_init(&info->swaplist);
1291                 if (atomic_dec_and_test(&info->stop_eviction))
1292                         wake_up_var(&info->stop_eviction);
1293                 if (error)
1294                         break;
1295         }
1296         mutex_unlock(&shmem_swaplist_mutex);
1297
1298         return error;
1299 }
1300
1301 /*
1302  * Move the page from the page cache to the swap cache.
1303  */
1304 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1305 {
1306         struct folio *folio = page_folio(page);
1307         struct shmem_inode_info *info;
1308         struct address_space *mapping;
1309         struct inode *inode;
1310         swp_entry_t swap;
1311         pgoff_t index;
1312
1313         /*
1314          * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1315          * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1316          * and its shmem_writeback() needs them to be split when swapping.
1317          */
1318         if (PageTransCompound(page)) {
1319                 /* Ensure the subpages are still dirty */
1320                 SetPageDirty(page);
1321                 if (split_huge_page(page) < 0)
1322                         goto redirty;
1323                 ClearPageDirty(page);
1324         }
1325
1326         BUG_ON(!PageLocked(page));
1327         mapping = page->mapping;
1328         index = page->index;
1329         inode = mapping->host;
1330         info = SHMEM_I(inode);
1331         if (info->flags & VM_LOCKED)
1332                 goto redirty;
1333         if (!total_swap_pages)
1334                 goto redirty;
1335
1336         /*
1337          * Our capabilities prevent regular writeback or sync from ever calling
1338          * shmem_writepage; but a stacking filesystem might use ->writepage of
1339          * its underlying filesystem, in which case tmpfs should write out to
1340          * swap only in response to memory pressure, and not for the writeback
1341          * threads or sync.
1342          */
1343         if (!wbc->for_reclaim) {
1344                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1345                 goto redirty;
1346         }
1347
1348         /*
1349          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1350          * value into swapfile.c, the only way we can correctly account for a
1351          * fallocated page arriving here is now to initialize it and write it.
1352          *
1353          * That's okay for a page already fallocated earlier, but if we have
1354          * not yet completed the fallocation, then (a) we want to keep track
1355          * of this page in case we have to undo it, and (b) it may not be a
1356          * good idea to continue anyway, once we're pushing into swap.  So
1357          * reactivate the page, and let shmem_fallocate() quit when too many.
1358          */
1359         if (!PageUptodate(page)) {
1360                 if (inode->i_private) {
1361                         struct shmem_falloc *shmem_falloc;
1362                         spin_lock(&inode->i_lock);
1363                         shmem_falloc = inode->i_private;
1364                         if (shmem_falloc &&
1365                             !shmem_falloc->waitq &&
1366                             index >= shmem_falloc->start &&
1367                             index < shmem_falloc->next)
1368                                 shmem_falloc->nr_unswapped++;
1369                         else
1370                                 shmem_falloc = NULL;
1371                         spin_unlock(&inode->i_lock);
1372                         if (shmem_falloc)
1373                                 goto redirty;
1374                 }
1375                 clear_highpage(page);
1376                 flush_dcache_page(page);
1377                 SetPageUptodate(page);
1378         }
1379
1380         swap = folio_alloc_swap(folio);
1381         if (!swap.val)
1382                 goto redirty;
1383
1384         /*
1385          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1386          * if it's not already there.  Do it now before the page is
1387          * moved to swap cache, when its pagelock no longer protects
1388          * the inode from eviction.  But don't unlock the mutex until
1389          * we've incremented swapped, because shmem_unuse_inode() will
1390          * prune a !swapped inode from the swaplist under this mutex.
1391          */
1392         mutex_lock(&shmem_swaplist_mutex);
1393         if (list_empty(&info->swaplist))
1394                 list_add(&info->swaplist, &shmem_swaplist);
1395
1396         if (add_to_swap_cache(page, swap,
1397                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1398                         NULL) == 0) {
1399                 spin_lock_irq(&info->lock);
1400                 shmem_recalc_inode(inode);
1401                 info->swapped++;
1402                 spin_unlock_irq(&info->lock);
1403
1404                 swap_shmem_alloc(swap);
1405                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1406
1407                 mutex_unlock(&shmem_swaplist_mutex);
1408                 BUG_ON(page_mapped(page));
1409                 swap_writepage(page, wbc);
1410                 return 0;
1411         }
1412
1413         mutex_unlock(&shmem_swaplist_mutex);
1414         put_swap_page(page, swap);
1415 redirty:
1416         set_page_dirty(page);
1417         if (wbc->for_reclaim)
1418                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1419         unlock_page(page);
1420         return 0;
1421 }
1422
1423 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1424 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1425 {
1426         char buffer[64];
1427
1428         if (!mpol || mpol->mode == MPOL_DEFAULT)
1429                 return;         /* show nothing */
1430
1431         mpol_to_str(buffer, sizeof(buffer), mpol);
1432
1433         seq_printf(seq, ",mpol=%s", buffer);
1434 }
1435
1436 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1437 {
1438         struct mempolicy *mpol = NULL;
1439         if (sbinfo->mpol) {
1440                 raw_spin_lock(&sbinfo->stat_lock);      /* prevent replace/use races */
1441                 mpol = sbinfo->mpol;
1442                 mpol_get(mpol);
1443                 raw_spin_unlock(&sbinfo->stat_lock);
1444         }
1445         return mpol;
1446 }
1447 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1448 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1449 {
1450 }
1451 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1452 {
1453         return NULL;
1454 }
1455 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1456 #ifndef CONFIG_NUMA
1457 #define vm_policy vm_private_data
1458 #endif
1459
1460 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1461                 struct shmem_inode_info *info, pgoff_t index)
1462 {
1463         /* Create a pseudo vma that just contains the policy */
1464         vma_init(vma, NULL);
1465         /* Bias interleave by inode number to distribute better across nodes */
1466         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1467         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1468 }
1469
1470 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1471 {
1472         /* Drop reference taken by mpol_shared_policy_lookup() */
1473         mpol_cond_put(vma->vm_policy);
1474 }
1475
1476 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1477                         struct shmem_inode_info *info, pgoff_t index)
1478 {
1479         struct vm_area_struct pvma;
1480         struct page *page;
1481         struct vm_fault vmf = {
1482                 .vma = &pvma,
1483         };
1484
1485         shmem_pseudo_vma_init(&pvma, info, index);
1486         page = swap_cluster_readahead(swap, gfp, &vmf);
1487         shmem_pseudo_vma_destroy(&pvma);
1488
1489         return page;
1490 }
1491
1492 /*
1493  * Make sure huge_gfp is always more limited than limit_gfp.
1494  * Some of the flags set permissions, while others set limitations.
1495  */
1496 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1497 {
1498         gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1499         gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1500         gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1501         gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1502
1503         /* Allow allocations only from the originally specified zones. */
1504         result |= zoneflags;
1505
1506         /*
1507          * Minimize the result gfp by taking the union with the deny flags,
1508          * and the intersection of the allow flags.
1509          */
1510         result |= (limit_gfp & denyflags);
1511         result |= (huge_gfp & limit_gfp) & allowflags;
1512
1513         return result;
1514 }
1515
1516 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1517                 struct shmem_inode_info *info, pgoff_t index)
1518 {
1519         struct vm_area_struct pvma;
1520         struct address_space *mapping = info->vfs_inode.i_mapping;
1521         pgoff_t hindex;
1522         struct folio *folio;
1523
1524         hindex = round_down(index, HPAGE_PMD_NR);
1525         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1526                                                                 XA_PRESENT))
1527                 return NULL;
1528
1529         shmem_pseudo_vma_init(&pvma, info, hindex);
1530         folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1531         shmem_pseudo_vma_destroy(&pvma);
1532         if (!folio)
1533                 count_vm_event(THP_FILE_FALLBACK);
1534         return folio;
1535 }
1536
1537 static struct folio *shmem_alloc_folio(gfp_t gfp,
1538                         struct shmem_inode_info *info, pgoff_t index)
1539 {
1540         struct vm_area_struct pvma;
1541         struct folio *folio;
1542
1543         shmem_pseudo_vma_init(&pvma, info, index);
1544         folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1545         shmem_pseudo_vma_destroy(&pvma);
1546
1547         return folio;
1548 }
1549
1550 static struct page *shmem_alloc_page(gfp_t gfp,
1551                         struct shmem_inode_info *info, pgoff_t index)
1552 {
1553         return &shmem_alloc_folio(gfp, info, index)->page;
1554 }
1555
1556 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1557                 pgoff_t index, bool huge)
1558 {
1559         struct shmem_inode_info *info = SHMEM_I(inode);
1560         struct folio *folio;
1561         int nr;
1562         int err = -ENOSPC;
1563
1564         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1565                 huge = false;
1566         nr = huge ? HPAGE_PMD_NR : 1;
1567
1568         if (!shmem_inode_acct_block(inode, nr))
1569                 goto failed;
1570
1571         if (huge)
1572                 folio = shmem_alloc_hugefolio(gfp, info, index);
1573         else
1574                 folio = shmem_alloc_folio(gfp, info, index);
1575         if (folio) {
1576                 __folio_set_locked(folio);
1577                 __folio_set_swapbacked(folio);
1578                 return folio;
1579         }
1580
1581         err = -ENOMEM;
1582         shmem_inode_unacct_blocks(inode, nr);
1583 failed:
1584         return ERR_PTR(err);
1585 }
1586
1587 /*
1588  * When a page is moved from swapcache to shmem filecache (either by the
1589  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1590  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1591  * ignorance of the mapping it belongs to.  If that mapping has special
1592  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1593  * we may need to copy to a suitable page before moving to filecache.
1594  *
1595  * In a future release, this may well be extended to respect cpuset and
1596  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1597  * but for now it is a simple matter of zone.
1598  */
1599 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1600 {
1601         return folio_zonenum(folio) > gfp_zone(gfp);
1602 }
1603
1604 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1605                                 struct shmem_inode_info *info, pgoff_t index)
1606 {
1607         struct page *oldpage, *newpage;
1608         struct folio *old, *new;
1609         struct address_space *swap_mapping;
1610         swp_entry_t entry;
1611         pgoff_t swap_index;
1612         int error;
1613
1614         oldpage = *pagep;
1615         entry.val = page_private(oldpage);
1616         swap_index = swp_offset(entry);
1617         swap_mapping = page_mapping(oldpage);
1618
1619         /*
1620          * We have arrived here because our zones are constrained, so don't
1621          * limit chance of success by further cpuset and node constraints.
1622          */
1623         gfp &= ~GFP_CONSTRAINT_MASK;
1624         newpage = shmem_alloc_page(gfp, info, index);
1625         if (!newpage)
1626                 return -ENOMEM;
1627
1628         get_page(newpage);
1629         copy_highpage(newpage, oldpage);
1630         flush_dcache_page(newpage);
1631
1632         __SetPageLocked(newpage);
1633         __SetPageSwapBacked(newpage);
1634         SetPageUptodate(newpage);
1635         set_page_private(newpage, entry.val);
1636         SetPageSwapCache(newpage);
1637
1638         /*
1639          * Our caller will very soon move newpage out of swapcache, but it's
1640          * a nice clean interface for us to replace oldpage by newpage there.
1641          */
1642         xa_lock_irq(&swap_mapping->i_pages);
1643         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1644         if (!error) {
1645                 old = page_folio(oldpage);
1646                 new = page_folio(newpage);
1647                 mem_cgroup_migrate(old, new);
1648                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1649                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1650         }
1651         xa_unlock_irq(&swap_mapping->i_pages);
1652
1653         if (unlikely(error)) {
1654                 /*
1655                  * Is this possible?  I think not, now that our callers check
1656                  * both PageSwapCache and page_private after getting page lock;
1657                  * but be defensive.  Reverse old to newpage for clear and free.
1658                  */
1659                 oldpage = newpage;
1660         } else {
1661                 lru_cache_add(newpage);
1662                 *pagep = newpage;
1663         }
1664
1665         ClearPageSwapCache(oldpage);
1666         set_page_private(oldpage, 0);
1667
1668         unlock_page(oldpage);
1669         put_page(oldpage);
1670         put_page(oldpage);
1671         return error;
1672 }
1673
1674 /*
1675  * Swap in the page pointed to by *pagep.
1676  * Caller has to make sure that *pagep contains a valid swapped page.
1677  * Returns 0 and the page in pagep if success. On failure, returns the
1678  * error code and NULL in *pagep.
1679  */
1680 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1681                              struct folio **foliop, enum sgp_type sgp,
1682                              gfp_t gfp, struct vm_area_struct *vma,
1683                              vm_fault_t *fault_type)
1684 {
1685         struct address_space *mapping = inode->i_mapping;
1686         struct shmem_inode_info *info = SHMEM_I(inode);
1687         struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1688         struct page *page;
1689         struct folio *folio = NULL;
1690         swp_entry_t swap;
1691         int error;
1692
1693         VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1694         swap = radix_to_swp_entry(*foliop);
1695         *foliop = NULL;
1696
1697         /* Look it up and read it in.. */
1698         page = lookup_swap_cache(swap, NULL, 0);
1699         if (!page) {
1700                 /* Or update major stats only when swapin succeeds?? */
1701                 if (fault_type) {
1702                         *fault_type |= VM_FAULT_MAJOR;
1703                         count_vm_event(PGMAJFAULT);
1704                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1705                 }
1706                 /* Here we actually start the io */
1707                 page = shmem_swapin(swap, gfp, info, index);
1708                 if (!page) {
1709                         error = -ENOMEM;
1710                         goto failed;
1711                 }
1712         }
1713         folio = page_folio(page);
1714
1715         /* We have to do this with page locked to prevent races */
1716         folio_lock(folio);
1717         if (!folio_test_swapcache(folio) ||
1718             folio_swap_entry(folio).val != swap.val ||
1719             !shmem_confirm_swap(mapping, index, swap)) {
1720                 error = -EEXIST;
1721                 goto unlock;
1722         }
1723         if (!folio_test_uptodate(folio)) {
1724                 error = -EIO;
1725                 goto failed;
1726         }
1727         folio_wait_writeback(folio);
1728
1729         /*
1730          * Some architectures may have to restore extra metadata to the
1731          * folio after reading from swap.
1732          */
1733         arch_swap_restore(swap, folio);
1734
1735         if (shmem_should_replace_folio(folio, gfp)) {
1736                 error = shmem_replace_page(&page, gfp, info, index);
1737                 if (error)
1738                         goto failed;
1739         }
1740
1741         error = shmem_add_to_page_cache(folio, mapping, index,
1742                                         swp_to_radix_entry(swap), gfp,
1743                                         charge_mm);
1744         if (error)
1745                 goto failed;
1746
1747         spin_lock_irq(&info->lock);
1748         info->swapped--;
1749         shmem_recalc_inode(inode);
1750         spin_unlock_irq(&info->lock);
1751
1752         if (sgp == SGP_WRITE)
1753                 folio_mark_accessed(folio);
1754
1755         delete_from_swap_cache(&folio->page);
1756         folio_mark_dirty(folio);
1757         swap_free(swap);
1758
1759         *foliop = folio;
1760         return 0;
1761 failed:
1762         if (!shmem_confirm_swap(mapping, index, swap))
1763                 error = -EEXIST;
1764 unlock:
1765         if (folio) {
1766                 folio_unlock(folio);
1767                 folio_put(folio);
1768         }
1769
1770         return error;
1771 }
1772
1773 /*
1774  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1775  *
1776  * If we allocate a new one we do not mark it dirty. That's up to the
1777  * vm. If we swap it in we mark it dirty since we also free the swap
1778  * entry since a page cannot live in both the swap and page cache.
1779  *
1780  * vma, vmf, and fault_type are only supplied by shmem_fault:
1781  * otherwise they are NULL.
1782  */
1783 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1784         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1785         struct vm_area_struct *vma, struct vm_fault *vmf,
1786                         vm_fault_t *fault_type)
1787 {
1788         struct address_space *mapping = inode->i_mapping;
1789         struct shmem_inode_info *info = SHMEM_I(inode);
1790         struct shmem_sb_info *sbinfo;
1791         struct mm_struct *charge_mm;
1792         struct folio *folio;
1793         pgoff_t hindex = index;
1794         gfp_t huge_gfp;
1795         int error;
1796         int once = 0;
1797         int alloced = 0;
1798
1799         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1800                 return -EFBIG;
1801 repeat:
1802         if (sgp <= SGP_CACHE &&
1803             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1804                 return -EINVAL;
1805         }
1806
1807         sbinfo = SHMEM_SB(inode->i_sb);
1808         charge_mm = vma ? vma->vm_mm : NULL;
1809
1810         folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1811         if (folio && vma && userfaultfd_minor(vma)) {
1812                 if (!xa_is_value(folio)) {
1813                         folio_unlock(folio);
1814                         folio_put(folio);
1815                 }
1816                 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1817                 return 0;
1818         }
1819
1820         if (xa_is_value(folio)) {
1821                 error = shmem_swapin_folio(inode, index, &folio,
1822                                           sgp, gfp, vma, fault_type);
1823                 if (error == -EEXIST)
1824                         goto repeat;
1825
1826                 *pagep = &folio->page;
1827                 return error;
1828         }
1829
1830         if (folio) {
1831                 hindex = folio->index;
1832                 if (sgp == SGP_WRITE)
1833                         folio_mark_accessed(folio);
1834                 if (folio_test_uptodate(folio))
1835                         goto out;
1836                 /* fallocated page */
1837                 if (sgp != SGP_READ)
1838                         goto clear;
1839                 folio_unlock(folio);
1840                 folio_put(folio);
1841         }
1842
1843         /*
1844          * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1845          * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1846          */
1847         *pagep = NULL;
1848         if (sgp == SGP_READ)
1849                 return 0;
1850         if (sgp == SGP_NOALLOC)
1851                 return -ENOENT;
1852
1853         /*
1854          * Fast cache lookup and swap lookup did not find it: allocate.
1855          */
1856
1857         if (vma && userfaultfd_missing(vma)) {
1858                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1859                 return 0;
1860         }
1861
1862         if (!shmem_is_huge(vma, inode, index))
1863                 goto alloc_nohuge;
1864
1865         huge_gfp = vma_thp_gfp_mask(vma);
1866         huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1867         folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1868         if (IS_ERR(folio)) {
1869 alloc_nohuge:
1870                 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1871         }
1872         if (IS_ERR(folio)) {
1873                 int retry = 5;
1874
1875                 error = PTR_ERR(folio);
1876                 folio = NULL;
1877                 if (error != -ENOSPC)
1878                         goto unlock;
1879                 /*
1880                  * Try to reclaim some space by splitting a huge page
1881                  * beyond i_size on the filesystem.
1882                  */
1883                 while (retry--) {
1884                         int ret;
1885
1886                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1887                         if (ret == SHRINK_STOP)
1888                                 break;
1889                         if (ret)
1890                                 goto alloc_nohuge;
1891                 }
1892                 goto unlock;
1893         }
1894
1895         hindex = round_down(index, folio_nr_pages(folio));
1896
1897         if (sgp == SGP_WRITE)
1898                 __folio_set_referenced(folio);
1899
1900         error = shmem_add_to_page_cache(folio, mapping, hindex,
1901                                         NULL, gfp & GFP_RECLAIM_MASK,
1902                                         charge_mm);
1903         if (error)
1904                 goto unacct;
1905         folio_add_lru(folio);
1906
1907         spin_lock_irq(&info->lock);
1908         info->alloced += folio_nr_pages(folio);
1909         inode->i_blocks += BLOCKS_PER_PAGE << folio_order(folio);
1910         shmem_recalc_inode(inode);
1911         spin_unlock_irq(&info->lock);
1912         alloced = true;
1913
1914         if (folio_test_pmd_mappable(folio) &&
1915             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1916                         hindex + HPAGE_PMD_NR - 1) {
1917                 /*
1918                  * Part of the huge page is beyond i_size: subject
1919                  * to shrink under memory pressure.
1920                  */
1921                 spin_lock(&sbinfo->shrinklist_lock);
1922                 /*
1923                  * _careful to defend against unlocked access to
1924                  * ->shrink_list in shmem_unused_huge_shrink()
1925                  */
1926                 if (list_empty_careful(&info->shrinklist)) {
1927                         list_add_tail(&info->shrinklist,
1928                                       &sbinfo->shrinklist);
1929                         sbinfo->shrinklist_len++;
1930                 }
1931                 spin_unlock(&sbinfo->shrinklist_lock);
1932         }
1933
1934         /*
1935          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1936          */
1937         if (sgp == SGP_FALLOC)
1938                 sgp = SGP_WRITE;
1939 clear:
1940         /*
1941          * Let SGP_WRITE caller clear ends if write does not fill page;
1942          * but SGP_FALLOC on a page fallocated earlier must initialize
1943          * it now, lest undo on failure cancel our earlier guarantee.
1944          */
1945         if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
1946                 long i, n = folio_nr_pages(folio);
1947
1948                 for (i = 0; i < n; i++)
1949                         clear_highpage(folio_page(folio, i));
1950                 flush_dcache_folio(folio);
1951                 folio_mark_uptodate(folio);
1952         }
1953
1954         /* Perhaps the file has been truncated since we checked */
1955         if (sgp <= SGP_CACHE &&
1956             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1957                 if (alloced) {
1958                         folio_clear_dirty(folio);
1959                         filemap_remove_folio(folio);
1960                         spin_lock_irq(&info->lock);
1961                         shmem_recalc_inode(inode);
1962                         spin_unlock_irq(&info->lock);
1963                 }
1964                 error = -EINVAL;
1965                 goto unlock;
1966         }
1967 out:
1968         *pagep = folio_page(folio, index - hindex);
1969         return 0;
1970
1971         /*
1972          * Error recovery.
1973          */
1974 unacct:
1975         shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
1976
1977         if (folio_test_large(folio)) {
1978                 folio_unlock(folio);
1979                 folio_put(folio);
1980                 goto alloc_nohuge;
1981         }
1982 unlock:
1983         if (folio) {
1984                 folio_unlock(folio);
1985                 folio_put(folio);
1986         }
1987         if (error == -ENOSPC && !once++) {
1988                 spin_lock_irq(&info->lock);
1989                 shmem_recalc_inode(inode);
1990                 spin_unlock_irq(&info->lock);
1991                 goto repeat;
1992         }
1993         if (error == -EEXIST)
1994                 goto repeat;
1995         return error;
1996 }
1997
1998 /*
1999  * This is like autoremove_wake_function, but it removes the wait queue
2000  * entry unconditionally - even if something else had already woken the
2001  * target.
2002  */
2003 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2004 {
2005         int ret = default_wake_function(wait, mode, sync, key);
2006         list_del_init(&wait->entry);
2007         return ret;
2008 }
2009
2010 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2011 {
2012         struct vm_area_struct *vma = vmf->vma;
2013         struct inode *inode = file_inode(vma->vm_file);
2014         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2015         int err;
2016         vm_fault_t ret = VM_FAULT_LOCKED;
2017
2018         /*
2019          * Trinity finds that probing a hole which tmpfs is punching can
2020          * prevent the hole-punch from ever completing: which in turn
2021          * locks writers out with its hold on i_rwsem.  So refrain from
2022          * faulting pages into the hole while it's being punched.  Although
2023          * shmem_undo_range() does remove the additions, it may be unable to
2024          * keep up, as each new page needs its own unmap_mapping_range() call,
2025          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2026          *
2027          * It does not matter if we sometimes reach this check just before the
2028          * hole-punch begins, so that one fault then races with the punch:
2029          * we just need to make racing faults a rare case.
2030          *
2031          * The implementation below would be much simpler if we just used a
2032          * standard mutex or completion: but we cannot take i_rwsem in fault,
2033          * and bloating every shmem inode for this unlikely case would be sad.
2034          */
2035         if (unlikely(inode->i_private)) {
2036                 struct shmem_falloc *shmem_falloc;
2037
2038                 spin_lock(&inode->i_lock);
2039                 shmem_falloc = inode->i_private;
2040                 if (shmem_falloc &&
2041                     shmem_falloc->waitq &&
2042                     vmf->pgoff >= shmem_falloc->start &&
2043                     vmf->pgoff < shmem_falloc->next) {
2044                         struct file *fpin;
2045                         wait_queue_head_t *shmem_falloc_waitq;
2046                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2047
2048                         ret = VM_FAULT_NOPAGE;
2049                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2050                         if (fpin)
2051                                 ret = VM_FAULT_RETRY;
2052
2053                         shmem_falloc_waitq = shmem_falloc->waitq;
2054                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2055                                         TASK_UNINTERRUPTIBLE);
2056                         spin_unlock(&inode->i_lock);
2057                         schedule();
2058
2059                         /*
2060                          * shmem_falloc_waitq points into the shmem_fallocate()
2061                          * stack of the hole-punching task: shmem_falloc_waitq
2062                          * is usually invalid by the time we reach here, but
2063                          * finish_wait() does not dereference it in that case;
2064                          * though i_lock needed lest racing with wake_up_all().
2065                          */
2066                         spin_lock(&inode->i_lock);
2067                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2068                         spin_unlock(&inode->i_lock);
2069
2070                         if (fpin)
2071                                 fput(fpin);
2072                         return ret;
2073                 }
2074                 spin_unlock(&inode->i_lock);
2075         }
2076
2077         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2078                                   gfp, vma, vmf, &ret);
2079         if (err)
2080                 return vmf_error(err);
2081         return ret;
2082 }
2083
2084 unsigned long shmem_get_unmapped_area(struct file *file,
2085                                       unsigned long uaddr, unsigned long len,
2086                                       unsigned long pgoff, unsigned long flags)
2087 {
2088         unsigned long (*get_area)(struct file *,
2089                 unsigned long, unsigned long, unsigned long, unsigned long);
2090         unsigned long addr;
2091         unsigned long offset;
2092         unsigned long inflated_len;
2093         unsigned long inflated_addr;
2094         unsigned long inflated_offset;
2095
2096         if (len > TASK_SIZE)
2097                 return -ENOMEM;
2098
2099         get_area = current->mm->get_unmapped_area;
2100         addr = get_area(file, uaddr, len, pgoff, flags);
2101
2102         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2103                 return addr;
2104         if (IS_ERR_VALUE(addr))
2105                 return addr;
2106         if (addr & ~PAGE_MASK)
2107                 return addr;
2108         if (addr > TASK_SIZE - len)
2109                 return addr;
2110
2111         if (shmem_huge == SHMEM_HUGE_DENY)
2112                 return addr;
2113         if (len < HPAGE_PMD_SIZE)
2114                 return addr;
2115         if (flags & MAP_FIXED)
2116                 return addr;
2117         /*
2118          * Our priority is to support MAP_SHARED mapped hugely;
2119          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2120          * But if caller specified an address hint and we allocated area there
2121          * successfully, respect that as before.
2122          */
2123         if (uaddr == addr)
2124                 return addr;
2125
2126         if (shmem_huge != SHMEM_HUGE_FORCE) {
2127                 struct super_block *sb;
2128
2129                 if (file) {
2130                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2131                         sb = file_inode(file)->i_sb;
2132                 } else {
2133                         /*
2134                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2135                          * for "/dev/zero", to create a shared anonymous object.
2136                          */
2137                         if (IS_ERR(shm_mnt))
2138                                 return addr;
2139                         sb = shm_mnt->mnt_sb;
2140                 }
2141                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2142                         return addr;
2143         }
2144
2145         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2146         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2147                 return addr;
2148         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2149                 return addr;
2150
2151         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2152         if (inflated_len > TASK_SIZE)
2153                 return addr;
2154         if (inflated_len < len)
2155                 return addr;
2156
2157         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2158         if (IS_ERR_VALUE(inflated_addr))
2159                 return addr;
2160         if (inflated_addr & ~PAGE_MASK)
2161                 return addr;
2162
2163         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2164         inflated_addr += offset - inflated_offset;
2165         if (inflated_offset > offset)
2166                 inflated_addr += HPAGE_PMD_SIZE;
2167
2168         if (inflated_addr > TASK_SIZE - len)
2169                 return addr;
2170         return inflated_addr;
2171 }
2172
2173 #ifdef CONFIG_NUMA
2174 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2175 {
2176         struct inode *inode = file_inode(vma->vm_file);
2177         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2178 }
2179
2180 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2181                                           unsigned long addr)
2182 {
2183         struct inode *inode = file_inode(vma->vm_file);
2184         pgoff_t index;
2185
2186         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2187         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2188 }
2189 #endif
2190
2191 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2192 {
2193         struct inode *inode = file_inode(file);
2194         struct shmem_inode_info *info = SHMEM_I(inode);
2195         int retval = -ENOMEM;
2196
2197         /*
2198          * What serializes the accesses to info->flags?
2199          * ipc_lock_object() when called from shmctl_do_lock(),
2200          * no serialization needed when called from shm_destroy().
2201          */
2202         if (lock && !(info->flags & VM_LOCKED)) {
2203                 if (!user_shm_lock(inode->i_size, ucounts))
2204                         goto out_nomem;
2205                 info->flags |= VM_LOCKED;
2206                 mapping_set_unevictable(file->f_mapping);
2207         }
2208         if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2209                 user_shm_unlock(inode->i_size, ucounts);
2210                 info->flags &= ~VM_LOCKED;
2211                 mapping_clear_unevictable(file->f_mapping);
2212         }
2213         retval = 0;
2214
2215 out_nomem:
2216         return retval;
2217 }
2218
2219 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2220 {
2221         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2222         int ret;
2223
2224         ret = seal_check_future_write(info->seals, vma);
2225         if (ret)
2226                 return ret;
2227
2228         /* arm64 - allow memory tagging on RAM-based files */
2229         vma->vm_flags |= VM_MTE_ALLOWED;
2230
2231         file_accessed(file);
2232         vma->vm_ops = &shmem_vm_ops;
2233         return 0;
2234 }
2235
2236 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2237                                      umode_t mode, dev_t dev, unsigned long flags)
2238 {
2239         struct inode *inode;
2240         struct shmem_inode_info *info;
2241         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2242         ino_t ino;
2243
2244         if (shmem_reserve_inode(sb, &ino))
2245                 return NULL;
2246
2247         inode = new_inode(sb);
2248         if (inode) {
2249                 inode->i_ino = ino;
2250                 inode_init_owner(&init_user_ns, inode, dir, mode);
2251                 inode->i_blocks = 0;
2252                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2253                 inode->i_generation = prandom_u32();
2254                 info = SHMEM_I(inode);
2255                 memset(info, 0, (char *)inode - (char *)info);
2256                 spin_lock_init(&info->lock);
2257                 atomic_set(&info->stop_eviction, 0);
2258                 info->seals = F_SEAL_SEAL;
2259                 info->flags = flags & VM_NORESERVE;
2260                 info->i_crtime = inode->i_mtime;
2261                 INIT_LIST_HEAD(&info->shrinklist);
2262                 INIT_LIST_HEAD(&info->swaplist);
2263                 simple_xattrs_init(&info->xattrs);
2264                 cache_no_acl(inode);
2265                 mapping_set_large_folios(inode->i_mapping);
2266
2267                 switch (mode & S_IFMT) {
2268                 default:
2269                         inode->i_op = &shmem_special_inode_operations;
2270                         init_special_inode(inode, mode, dev);
2271                         break;
2272                 case S_IFREG:
2273                         inode->i_mapping->a_ops = &shmem_aops;
2274                         inode->i_op = &shmem_inode_operations;
2275                         inode->i_fop = &shmem_file_operations;
2276                         mpol_shared_policy_init(&info->policy,
2277                                                  shmem_get_sbmpol(sbinfo));
2278                         break;
2279                 case S_IFDIR:
2280                         inc_nlink(inode);
2281                         /* Some things misbehave if size == 0 on a directory */
2282                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2283                         inode->i_op = &shmem_dir_inode_operations;
2284                         inode->i_fop = &simple_dir_operations;
2285                         break;
2286                 case S_IFLNK:
2287                         /*
2288                          * Must not load anything in the rbtree,
2289                          * mpol_free_shared_policy will not be called.
2290                          */
2291                         mpol_shared_policy_init(&info->policy, NULL);
2292                         break;
2293                 }
2294
2295                 lockdep_annotate_inode_mutex_key(inode);
2296         } else
2297                 shmem_free_inode(sb);
2298         return inode;
2299 }
2300
2301 #ifdef CONFIG_USERFAULTFD
2302 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2303                            pmd_t *dst_pmd,
2304                            struct vm_area_struct *dst_vma,
2305                            unsigned long dst_addr,
2306                            unsigned long src_addr,
2307                            bool zeropage, bool wp_copy,
2308                            struct page **pagep)
2309 {
2310         struct inode *inode = file_inode(dst_vma->vm_file);
2311         struct shmem_inode_info *info = SHMEM_I(inode);
2312         struct address_space *mapping = inode->i_mapping;
2313         gfp_t gfp = mapping_gfp_mask(mapping);
2314         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2315         void *page_kaddr;
2316         struct folio *folio;
2317         struct page *page;
2318         int ret;
2319         pgoff_t max_off;
2320
2321         if (!shmem_inode_acct_block(inode, 1)) {
2322                 /*
2323                  * We may have got a page, returned -ENOENT triggering a retry,
2324                  * and now we find ourselves with -ENOMEM. Release the page, to
2325                  * avoid a BUG_ON in our caller.
2326                  */
2327                 if (unlikely(*pagep)) {
2328                         put_page(*pagep);
2329                         *pagep = NULL;
2330                 }
2331                 return -ENOMEM;
2332         }
2333
2334         if (!*pagep) {
2335                 ret = -ENOMEM;
2336                 page = shmem_alloc_page(gfp, info, pgoff);
2337                 if (!page)
2338                         goto out_unacct_blocks;
2339
2340                 if (!zeropage) {        /* COPY */
2341                         page_kaddr = kmap_atomic(page);
2342                         ret = copy_from_user(page_kaddr,
2343                                              (const void __user *)src_addr,
2344                                              PAGE_SIZE);
2345                         kunmap_atomic(page_kaddr);
2346
2347                         /* fallback to copy_from_user outside mmap_lock */
2348                         if (unlikely(ret)) {
2349                                 *pagep = page;
2350                                 ret = -ENOENT;
2351                                 /* don't free the page */
2352                                 goto out_unacct_blocks;
2353                         }
2354
2355                         flush_dcache_page(page);
2356                 } else {                /* ZEROPAGE */
2357                         clear_user_highpage(page, dst_addr);
2358                 }
2359         } else {
2360                 page = *pagep;
2361                 *pagep = NULL;
2362         }
2363
2364         VM_BUG_ON(PageLocked(page));
2365         VM_BUG_ON(PageSwapBacked(page));
2366         __SetPageLocked(page);
2367         __SetPageSwapBacked(page);
2368         __SetPageUptodate(page);
2369
2370         ret = -EFAULT;
2371         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2372         if (unlikely(pgoff >= max_off))
2373                 goto out_release;
2374
2375         folio = page_folio(page);
2376         ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2377                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2378         if (ret)
2379                 goto out_release;
2380
2381         ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2382                                        page, true, wp_copy);
2383         if (ret)
2384                 goto out_delete_from_cache;
2385
2386         spin_lock_irq(&info->lock);
2387         info->alloced++;
2388         inode->i_blocks += BLOCKS_PER_PAGE;
2389         shmem_recalc_inode(inode);
2390         spin_unlock_irq(&info->lock);
2391
2392         unlock_page(page);
2393         return 0;
2394 out_delete_from_cache:
2395         delete_from_page_cache(page);
2396 out_release:
2397         unlock_page(page);
2398         put_page(page);
2399 out_unacct_blocks:
2400         shmem_inode_unacct_blocks(inode, 1);
2401         return ret;
2402 }
2403 #endif /* CONFIG_USERFAULTFD */
2404
2405 #ifdef CONFIG_TMPFS
2406 static const struct inode_operations shmem_symlink_inode_operations;
2407 static const struct inode_operations shmem_short_symlink_operations;
2408
2409 #ifdef CONFIG_TMPFS_XATTR
2410 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2411 #else
2412 #define shmem_initxattrs NULL
2413 #endif
2414
2415 static int
2416 shmem_write_begin(struct file *file, struct address_space *mapping,
2417                         loff_t pos, unsigned len,
2418                         struct page **pagep, void **fsdata)
2419 {
2420         struct inode *inode = mapping->host;
2421         struct shmem_inode_info *info = SHMEM_I(inode);
2422         pgoff_t index = pos >> PAGE_SHIFT;
2423         int ret = 0;
2424
2425         /* i_rwsem is held by caller */
2426         if (unlikely(info->seals & (F_SEAL_GROW |
2427                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2428                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2429                         return -EPERM;
2430                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2431                         return -EPERM;
2432         }
2433
2434         ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2435
2436         if (ret)
2437                 return ret;
2438
2439         if (PageHWPoison(*pagep)) {
2440                 unlock_page(*pagep);
2441                 put_page(*pagep);
2442                 *pagep = NULL;
2443                 return -EIO;
2444         }
2445
2446         return 0;
2447 }
2448
2449 static int
2450 shmem_write_end(struct file *file, struct address_space *mapping,
2451                         loff_t pos, unsigned len, unsigned copied,
2452                         struct page *page, void *fsdata)
2453 {
2454         struct inode *inode = mapping->host;
2455
2456         if (pos + copied > inode->i_size)
2457                 i_size_write(inode, pos + copied);
2458
2459         if (!PageUptodate(page)) {
2460                 struct page *head = compound_head(page);
2461                 if (PageTransCompound(page)) {
2462                         int i;
2463
2464                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2465                                 if (head + i == page)
2466                                         continue;
2467                                 clear_highpage(head + i);
2468                                 flush_dcache_page(head + i);
2469                         }
2470                 }
2471                 if (copied < PAGE_SIZE) {
2472                         unsigned from = pos & (PAGE_SIZE - 1);
2473                         zero_user_segments(page, 0, from,
2474                                         from + copied, PAGE_SIZE);
2475                 }
2476                 SetPageUptodate(head);
2477         }
2478         set_page_dirty(page);
2479         unlock_page(page);
2480         put_page(page);
2481
2482         return copied;
2483 }
2484
2485 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2486 {
2487         struct file *file = iocb->ki_filp;
2488         struct inode *inode = file_inode(file);
2489         struct address_space *mapping = inode->i_mapping;
2490         pgoff_t index;
2491         unsigned long offset;
2492         int error = 0;
2493         ssize_t retval = 0;
2494         loff_t *ppos = &iocb->ki_pos;
2495
2496         index = *ppos >> PAGE_SHIFT;
2497         offset = *ppos & ~PAGE_MASK;
2498
2499         for (;;) {
2500                 struct page *page = NULL;
2501                 pgoff_t end_index;
2502                 unsigned long nr, ret;
2503                 loff_t i_size = i_size_read(inode);
2504
2505                 end_index = i_size >> PAGE_SHIFT;
2506                 if (index > end_index)
2507                         break;
2508                 if (index == end_index) {
2509                         nr = i_size & ~PAGE_MASK;
2510                         if (nr <= offset)
2511                                 break;
2512                 }
2513
2514                 error = shmem_getpage(inode, index, &page, SGP_READ);
2515                 if (error) {
2516                         if (error == -EINVAL)
2517                                 error = 0;
2518                         break;
2519                 }
2520                 if (page) {
2521                         unlock_page(page);
2522
2523                         if (PageHWPoison(page)) {
2524                                 put_page(page);
2525                                 error = -EIO;
2526                                 break;
2527                         }
2528                 }
2529
2530                 /*
2531                  * We must evaluate after, since reads (unlike writes)
2532                  * are called without i_rwsem protection against truncate
2533                  */
2534                 nr = PAGE_SIZE;
2535                 i_size = i_size_read(inode);
2536                 end_index = i_size >> PAGE_SHIFT;
2537                 if (index == end_index) {
2538                         nr = i_size & ~PAGE_MASK;
2539                         if (nr <= offset) {
2540                                 if (page)
2541                                         put_page(page);
2542                                 break;
2543                         }
2544                 }
2545                 nr -= offset;
2546
2547                 if (page) {
2548                         /*
2549                          * If users can be writing to this page using arbitrary
2550                          * virtual addresses, take care about potential aliasing
2551                          * before reading the page on the kernel side.
2552                          */
2553                         if (mapping_writably_mapped(mapping))
2554                                 flush_dcache_page(page);
2555                         /*
2556                          * Mark the page accessed if we read the beginning.
2557                          */
2558                         if (!offset)
2559                                 mark_page_accessed(page);
2560                         /*
2561                          * Ok, we have the page, and it's up-to-date, so
2562                          * now we can copy it to user space...
2563                          */
2564                         ret = copy_page_to_iter(page, offset, nr, to);
2565                         put_page(page);
2566
2567                 } else if (iter_is_iovec(to)) {
2568                         /*
2569                          * Copy to user tends to be so well optimized, but
2570                          * clear_user() not so much, that it is noticeably
2571                          * faster to copy the zero page instead of clearing.
2572                          */
2573                         ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2574                 } else {
2575                         /*
2576                          * But submitting the same page twice in a row to
2577                          * splice() - or others? - can result in confusion:
2578                          * so don't attempt that optimization on pipes etc.
2579                          */
2580                         ret = iov_iter_zero(nr, to);
2581                 }
2582
2583                 retval += ret;
2584                 offset += ret;
2585                 index += offset >> PAGE_SHIFT;
2586                 offset &= ~PAGE_MASK;
2587
2588                 if (!iov_iter_count(to))
2589                         break;
2590                 if (ret < nr) {
2591                         error = -EFAULT;
2592                         break;
2593                 }
2594                 cond_resched();
2595         }
2596
2597         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2598         file_accessed(file);
2599         return retval ? retval : error;
2600 }
2601
2602 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2603 {
2604         struct address_space *mapping = file->f_mapping;
2605         struct inode *inode = mapping->host;
2606
2607         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2608                 return generic_file_llseek_size(file, offset, whence,
2609                                         MAX_LFS_FILESIZE, i_size_read(inode));
2610         if (offset < 0)
2611                 return -ENXIO;
2612
2613         inode_lock(inode);
2614         /* We're holding i_rwsem so we can access i_size directly */
2615         offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2616         if (offset >= 0)
2617                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2618         inode_unlock(inode);
2619         return offset;
2620 }
2621
2622 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2623                                                          loff_t len)
2624 {
2625         struct inode *inode = file_inode(file);
2626         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2627         struct shmem_inode_info *info = SHMEM_I(inode);
2628         struct shmem_falloc shmem_falloc;
2629         pgoff_t start, index, end, undo_fallocend;
2630         int error;
2631
2632         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2633                 return -EOPNOTSUPP;
2634
2635         inode_lock(inode);
2636
2637         if (mode & FALLOC_FL_PUNCH_HOLE) {
2638                 struct address_space *mapping = file->f_mapping;
2639                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2640                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2641                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2642
2643                 /* protected by i_rwsem */
2644                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2645                         error = -EPERM;
2646                         goto out;
2647                 }
2648
2649                 shmem_falloc.waitq = &shmem_falloc_waitq;
2650                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2651                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2652                 spin_lock(&inode->i_lock);
2653                 inode->i_private = &shmem_falloc;
2654                 spin_unlock(&inode->i_lock);
2655
2656                 if ((u64)unmap_end > (u64)unmap_start)
2657                         unmap_mapping_range(mapping, unmap_start,
2658                                             1 + unmap_end - unmap_start, 0);
2659                 shmem_truncate_range(inode, offset, offset + len - 1);
2660                 /* No need to unmap again: hole-punching leaves COWed pages */
2661
2662                 spin_lock(&inode->i_lock);
2663                 inode->i_private = NULL;
2664                 wake_up_all(&shmem_falloc_waitq);
2665                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2666                 spin_unlock(&inode->i_lock);
2667                 error = 0;
2668                 goto out;
2669         }
2670
2671         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2672         error = inode_newsize_ok(inode, offset + len);
2673         if (error)
2674                 goto out;
2675
2676         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2677                 error = -EPERM;
2678                 goto out;
2679         }
2680
2681         start = offset >> PAGE_SHIFT;
2682         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2683         /* Try to avoid a swapstorm if len is impossible to satisfy */
2684         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2685                 error = -ENOSPC;
2686                 goto out;
2687         }
2688
2689         shmem_falloc.waitq = NULL;
2690         shmem_falloc.start = start;
2691         shmem_falloc.next  = start;
2692         shmem_falloc.nr_falloced = 0;
2693         shmem_falloc.nr_unswapped = 0;
2694         spin_lock(&inode->i_lock);
2695         inode->i_private = &shmem_falloc;
2696         spin_unlock(&inode->i_lock);
2697
2698         /*
2699          * info->fallocend is only relevant when huge pages might be
2700          * involved: to prevent split_huge_page() freeing fallocated
2701          * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2702          */
2703         undo_fallocend = info->fallocend;
2704         if (info->fallocend < end)
2705                 info->fallocend = end;
2706
2707         for (index = start; index < end; ) {
2708                 struct page *page;
2709
2710                 /*
2711                  * Good, the fallocate(2) manpage permits EINTR: we may have
2712                  * been interrupted because we are using up too much memory.
2713                  */
2714                 if (signal_pending(current))
2715                         error = -EINTR;
2716                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2717                         error = -ENOMEM;
2718                 else
2719                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2720                 if (error) {
2721                         info->fallocend = undo_fallocend;
2722                         /* Remove the !PageUptodate pages we added */
2723                         if (index > start) {
2724                                 shmem_undo_range(inode,
2725                                     (loff_t)start << PAGE_SHIFT,
2726                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2727                         }
2728                         goto undone;
2729                 }
2730
2731                 index++;
2732                 /*
2733                  * Here is a more important optimization than it appears:
2734                  * a second SGP_FALLOC on the same huge page will clear it,
2735                  * making it PageUptodate and un-undoable if we fail later.
2736                  */
2737                 if (PageTransCompound(page)) {
2738                         index = round_up(index, HPAGE_PMD_NR);
2739                         /* Beware 32-bit wraparound */
2740                         if (!index)
2741                                 index--;
2742                 }
2743
2744                 /*
2745                  * Inform shmem_writepage() how far we have reached.
2746                  * No need for lock or barrier: we have the page lock.
2747                  */
2748                 if (!PageUptodate(page))
2749                         shmem_falloc.nr_falloced += index - shmem_falloc.next;
2750                 shmem_falloc.next = index;
2751
2752                 /*
2753                  * If !PageUptodate, leave it that way so that freeable pages
2754                  * can be recognized if we need to rollback on error later.
2755                  * But set_page_dirty so that memory pressure will swap rather
2756                  * than free the pages we are allocating (and SGP_CACHE pages
2757                  * might still be clean: we now need to mark those dirty too).
2758                  */
2759                 set_page_dirty(page);
2760                 unlock_page(page);
2761                 put_page(page);
2762                 cond_resched();
2763         }
2764
2765         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2766                 i_size_write(inode, offset + len);
2767         inode->i_ctime = current_time(inode);
2768 undone:
2769         spin_lock(&inode->i_lock);
2770         inode->i_private = NULL;
2771         spin_unlock(&inode->i_lock);
2772 out:
2773         inode_unlock(inode);
2774         return error;
2775 }
2776
2777 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2778 {
2779         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2780
2781         buf->f_type = TMPFS_MAGIC;
2782         buf->f_bsize = PAGE_SIZE;
2783         buf->f_namelen = NAME_MAX;
2784         if (sbinfo->max_blocks) {
2785                 buf->f_blocks = sbinfo->max_blocks;
2786                 buf->f_bavail =
2787                 buf->f_bfree  = sbinfo->max_blocks -
2788                                 percpu_counter_sum(&sbinfo->used_blocks);
2789         }
2790         if (sbinfo->max_inodes) {
2791                 buf->f_files = sbinfo->max_inodes;
2792                 buf->f_ffree = sbinfo->free_inodes;
2793         }
2794         /* else leave those fields 0 like simple_statfs */
2795
2796         buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2797
2798         return 0;
2799 }
2800
2801 /*
2802  * File creation. Allocate an inode, and we're done..
2803  */
2804 static int
2805 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2806             struct dentry *dentry, umode_t mode, dev_t dev)
2807 {
2808         struct inode *inode;
2809         int error = -ENOSPC;
2810
2811         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2812         if (inode) {
2813                 error = simple_acl_create(dir, inode);
2814                 if (error)
2815                         goto out_iput;
2816                 error = security_inode_init_security(inode, dir,
2817                                                      &dentry->d_name,
2818                                                      shmem_initxattrs, NULL);
2819                 if (error && error != -EOPNOTSUPP)
2820                         goto out_iput;
2821
2822                 error = 0;
2823                 dir->i_size += BOGO_DIRENT_SIZE;
2824                 dir->i_ctime = dir->i_mtime = current_time(dir);
2825                 d_instantiate(dentry, inode);
2826                 dget(dentry); /* Extra count - pin the dentry in core */
2827         }
2828         return error;
2829 out_iput:
2830         iput(inode);
2831         return error;
2832 }
2833
2834 static int
2835 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2836               struct dentry *dentry, umode_t mode)
2837 {
2838         struct inode *inode;
2839         int error = -ENOSPC;
2840
2841         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2842         if (inode) {
2843                 error = security_inode_init_security(inode, dir,
2844                                                      NULL,
2845                                                      shmem_initxattrs, NULL);
2846                 if (error && error != -EOPNOTSUPP)
2847                         goto out_iput;
2848                 error = simple_acl_create(dir, inode);
2849                 if (error)
2850                         goto out_iput;
2851                 d_tmpfile(dentry, inode);
2852         }
2853         return error;
2854 out_iput:
2855         iput(inode);
2856         return error;
2857 }
2858
2859 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2860                        struct dentry *dentry, umode_t mode)
2861 {
2862         int error;
2863
2864         if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2865                                  mode | S_IFDIR, 0)))
2866                 return error;
2867         inc_nlink(dir);
2868         return 0;
2869 }
2870
2871 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2872                         struct dentry *dentry, umode_t mode, bool excl)
2873 {
2874         return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2875 }
2876
2877 /*
2878  * Link a file..
2879  */
2880 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2881 {
2882         struct inode *inode = d_inode(old_dentry);
2883         int ret = 0;
2884
2885         /*
2886          * No ordinary (disk based) filesystem counts links as inodes;
2887          * but each new link needs a new dentry, pinning lowmem, and
2888          * tmpfs dentries cannot be pruned until they are unlinked.
2889          * But if an O_TMPFILE file is linked into the tmpfs, the
2890          * first link must skip that, to get the accounting right.
2891          */
2892         if (inode->i_nlink) {
2893                 ret = shmem_reserve_inode(inode->i_sb, NULL);
2894                 if (ret)
2895                         goto out;
2896         }
2897
2898         dir->i_size += BOGO_DIRENT_SIZE;
2899         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2900         inc_nlink(inode);
2901         ihold(inode);   /* New dentry reference */
2902         dget(dentry);           /* Extra pinning count for the created dentry */
2903         d_instantiate(dentry, inode);
2904 out:
2905         return ret;
2906 }
2907
2908 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2909 {
2910         struct inode *inode = d_inode(dentry);
2911
2912         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2913                 shmem_free_inode(inode->i_sb);
2914
2915         dir->i_size -= BOGO_DIRENT_SIZE;
2916         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2917         drop_nlink(inode);
2918         dput(dentry);   /* Undo the count from "create" - this does all the work */
2919         return 0;
2920 }
2921
2922 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2923 {
2924         if (!simple_empty(dentry))
2925                 return -ENOTEMPTY;
2926
2927         drop_nlink(d_inode(dentry));
2928         drop_nlink(dir);
2929         return shmem_unlink(dir, dentry);
2930 }
2931
2932 static int shmem_whiteout(struct user_namespace *mnt_userns,
2933                           struct inode *old_dir, struct dentry *old_dentry)
2934 {
2935         struct dentry *whiteout;
2936         int error;
2937
2938         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2939         if (!whiteout)
2940                 return -ENOMEM;
2941
2942         error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2943                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2944         dput(whiteout);
2945         if (error)
2946                 return error;
2947
2948         /*
2949          * Cheat and hash the whiteout while the old dentry is still in
2950          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2951          *
2952          * d_lookup() will consistently find one of them at this point,
2953          * not sure which one, but that isn't even important.
2954          */
2955         d_rehash(whiteout);
2956         return 0;
2957 }
2958
2959 /*
2960  * The VFS layer already does all the dentry stuff for rename,
2961  * we just have to decrement the usage count for the target if
2962  * it exists so that the VFS layer correctly free's it when it
2963  * gets overwritten.
2964  */
2965 static int shmem_rename2(struct user_namespace *mnt_userns,
2966                          struct inode *old_dir, struct dentry *old_dentry,
2967                          struct inode *new_dir, struct dentry *new_dentry,
2968                          unsigned int flags)
2969 {
2970         struct inode *inode = d_inode(old_dentry);
2971         int they_are_dirs = S_ISDIR(inode->i_mode);
2972
2973         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2974                 return -EINVAL;
2975
2976         if (flags & RENAME_EXCHANGE)
2977                 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
2978
2979         if (!simple_empty(new_dentry))
2980                 return -ENOTEMPTY;
2981
2982         if (flags & RENAME_WHITEOUT) {
2983                 int error;
2984
2985                 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
2986                 if (error)
2987                         return error;
2988         }
2989
2990         if (d_really_is_positive(new_dentry)) {
2991                 (void) shmem_unlink(new_dir, new_dentry);
2992                 if (they_are_dirs) {
2993                         drop_nlink(d_inode(new_dentry));
2994                         drop_nlink(old_dir);
2995                 }
2996         } else if (they_are_dirs) {
2997                 drop_nlink(old_dir);
2998                 inc_nlink(new_dir);
2999         }
3000
3001         old_dir->i_size -= BOGO_DIRENT_SIZE;
3002         new_dir->i_size += BOGO_DIRENT_SIZE;
3003         old_dir->i_ctime = old_dir->i_mtime =
3004         new_dir->i_ctime = new_dir->i_mtime =
3005         inode->i_ctime = current_time(old_dir);
3006         return 0;
3007 }
3008
3009 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3010                          struct dentry *dentry, const char *symname)
3011 {
3012         int error;
3013         int len;
3014         struct inode *inode;
3015         struct page *page;
3016
3017         len = strlen(symname) + 1;
3018         if (len > PAGE_SIZE)
3019                 return -ENAMETOOLONG;
3020
3021         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3022                                 VM_NORESERVE);
3023         if (!inode)
3024                 return -ENOSPC;
3025
3026         error = security_inode_init_security(inode, dir, &dentry->d_name,
3027                                              shmem_initxattrs, NULL);
3028         if (error && error != -EOPNOTSUPP) {
3029                 iput(inode);
3030                 return error;
3031         }
3032
3033         inode->i_size = len-1;
3034         if (len <= SHORT_SYMLINK_LEN) {
3035                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3036                 if (!inode->i_link) {
3037                         iput(inode);
3038                         return -ENOMEM;
3039                 }
3040                 inode->i_op = &shmem_short_symlink_operations;
3041         } else {
3042                 inode_nohighmem(inode);
3043                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3044                 if (error) {
3045                         iput(inode);
3046                         return error;
3047                 }
3048                 inode->i_mapping->a_ops = &shmem_aops;
3049                 inode->i_op = &shmem_symlink_inode_operations;
3050                 memcpy(page_address(page), symname, len);
3051                 SetPageUptodate(page);
3052                 set_page_dirty(page);
3053                 unlock_page(page);
3054                 put_page(page);
3055         }
3056         dir->i_size += BOGO_DIRENT_SIZE;
3057         dir->i_ctime = dir->i_mtime = current_time(dir);
3058         d_instantiate(dentry, inode);
3059         dget(dentry);
3060         return 0;
3061 }
3062
3063 static void shmem_put_link(void *arg)
3064 {
3065         mark_page_accessed(arg);
3066         put_page(arg);
3067 }
3068
3069 static const char *shmem_get_link(struct dentry *dentry,
3070                                   struct inode *inode,
3071                                   struct delayed_call *done)
3072 {
3073         struct page *page = NULL;
3074         int error;
3075         if (!dentry) {
3076                 page = find_get_page(inode->i_mapping, 0);
3077                 if (!page)
3078                         return ERR_PTR(-ECHILD);
3079                 if (PageHWPoison(page) ||
3080                     !PageUptodate(page)) {
3081                         put_page(page);
3082                         return ERR_PTR(-ECHILD);
3083                 }
3084         } else {
3085                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3086                 if (error)
3087                         return ERR_PTR(error);
3088                 if (!page)
3089                         return ERR_PTR(-ECHILD);
3090                 if (PageHWPoison(page)) {
3091                         unlock_page(page);
3092                         put_page(page);
3093                         return ERR_PTR(-ECHILD);
3094                 }
3095                 unlock_page(page);
3096         }
3097         set_delayed_call(done, shmem_put_link, page);
3098         return page_address(page);
3099 }
3100
3101 #ifdef CONFIG_TMPFS_XATTR
3102 /*
3103  * Superblocks without xattr inode operations may get some security.* xattr
3104  * support from the LSM "for free". As soon as we have any other xattrs
3105  * like ACLs, we also need to implement the security.* handlers at
3106  * filesystem level, though.
3107  */
3108
3109 /*
3110  * Callback for security_inode_init_security() for acquiring xattrs.
3111  */
3112 static int shmem_initxattrs(struct inode *inode,
3113                             const struct xattr *xattr_array,
3114                             void *fs_info)
3115 {
3116         struct shmem_inode_info *info = SHMEM_I(inode);
3117         const struct xattr *xattr;
3118         struct simple_xattr *new_xattr;
3119         size_t len;
3120
3121         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3122                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3123                 if (!new_xattr)
3124                         return -ENOMEM;
3125
3126                 len = strlen(xattr->name) + 1;
3127                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3128                                           GFP_KERNEL);
3129                 if (!new_xattr->name) {
3130                         kvfree(new_xattr);
3131                         return -ENOMEM;
3132                 }
3133
3134                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3135                        XATTR_SECURITY_PREFIX_LEN);
3136                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3137                        xattr->name, len);
3138
3139                 simple_xattr_list_add(&info->xattrs, new_xattr);
3140         }
3141
3142         return 0;
3143 }
3144
3145 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3146                                    struct dentry *unused, struct inode *inode,
3147                                    const char *name, void *buffer, size_t size)
3148 {
3149         struct shmem_inode_info *info = SHMEM_I(inode);
3150
3151         name = xattr_full_name(handler, name);
3152         return simple_xattr_get(&info->xattrs, name, buffer, size);
3153 }
3154
3155 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3156                                    struct user_namespace *mnt_userns,
3157                                    struct dentry *unused, struct inode *inode,
3158                                    const char *name, const void *value,
3159                                    size_t size, int flags)
3160 {
3161         struct shmem_inode_info *info = SHMEM_I(inode);
3162
3163         name = xattr_full_name(handler, name);
3164         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3165 }
3166
3167 static const struct xattr_handler shmem_security_xattr_handler = {
3168         .prefix = XATTR_SECURITY_PREFIX,
3169         .get = shmem_xattr_handler_get,
3170         .set = shmem_xattr_handler_set,
3171 };
3172
3173 static const struct xattr_handler shmem_trusted_xattr_handler = {
3174         .prefix = XATTR_TRUSTED_PREFIX,
3175         .get = shmem_xattr_handler_get,
3176         .set = shmem_xattr_handler_set,
3177 };
3178
3179 static const struct xattr_handler *shmem_xattr_handlers[] = {
3180 #ifdef CONFIG_TMPFS_POSIX_ACL
3181         &posix_acl_access_xattr_handler,
3182         &posix_acl_default_xattr_handler,
3183 #endif
3184         &shmem_security_xattr_handler,
3185         &shmem_trusted_xattr_handler,
3186         NULL
3187 };
3188
3189 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3190 {
3191         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3192         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3193 }
3194 #endif /* CONFIG_TMPFS_XATTR */
3195
3196 static const struct inode_operations shmem_short_symlink_operations = {
3197         .getattr        = shmem_getattr,
3198         .get_link       = simple_get_link,
3199 #ifdef CONFIG_TMPFS_XATTR
3200         .listxattr      = shmem_listxattr,
3201 #endif
3202 };
3203
3204 static const struct inode_operations shmem_symlink_inode_operations = {
3205         .getattr        = shmem_getattr,
3206         .get_link       = shmem_get_link,
3207 #ifdef CONFIG_TMPFS_XATTR
3208         .listxattr      = shmem_listxattr,
3209 #endif
3210 };
3211
3212 static struct dentry *shmem_get_parent(struct dentry *child)
3213 {
3214         return ERR_PTR(-ESTALE);
3215 }
3216
3217 static int shmem_match(struct inode *ino, void *vfh)
3218 {
3219         __u32 *fh = vfh;
3220         __u64 inum = fh[2];
3221         inum = (inum << 32) | fh[1];
3222         return ino->i_ino == inum && fh[0] == ino->i_generation;
3223 }
3224
3225 /* Find any alias of inode, but prefer a hashed alias */
3226 static struct dentry *shmem_find_alias(struct inode *inode)
3227 {
3228         struct dentry *alias = d_find_alias(inode);
3229
3230         return alias ?: d_find_any_alias(inode);
3231 }
3232
3233
3234 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3235                 struct fid *fid, int fh_len, int fh_type)
3236 {
3237         struct inode *inode;
3238         struct dentry *dentry = NULL;
3239         u64 inum;
3240
3241         if (fh_len < 3)
3242                 return NULL;
3243
3244         inum = fid->raw[2];
3245         inum = (inum << 32) | fid->raw[1];
3246
3247         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3248                         shmem_match, fid->raw);
3249         if (inode) {
3250                 dentry = shmem_find_alias(inode);
3251                 iput(inode);
3252         }
3253
3254         return dentry;
3255 }
3256
3257 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3258                                 struct inode *parent)
3259 {
3260         if (*len < 3) {
3261                 *len = 3;
3262                 return FILEID_INVALID;
3263         }
3264
3265         if (inode_unhashed(inode)) {
3266                 /* Unfortunately insert_inode_hash is not idempotent,
3267                  * so as we hash inodes here rather than at creation
3268                  * time, we need a lock to ensure we only try
3269                  * to do it once
3270                  */
3271                 static DEFINE_SPINLOCK(lock);
3272                 spin_lock(&lock);
3273                 if (inode_unhashed(inode))
3274                         __insert_inode_hash(inode,
3275                                             inode->i_ino + inode->i_generation);
3276                 spin_unlock(&lock);
3277         }
3278
3279         fh[0] = inode->i_generation;
3280         fh[1] = inode->i_ino;
3281         fh[2] = ((__u64)inode->i_ino) >> 32;
3282
3283         *len = 3;
3284         return 1;
3285 }
3286
3287 static const struct export_operations shmem_export_ops = {
3288         .get_parent     = shmem_get_parent,
3289         .encode_fh      = shmem_encode_fh,
3290         .fh_to_dentry   = shmem_fh_to_dentry,
3291 };
3292
3293 enum shmem_param {
3294         Opt_gid,
3295         Opt_huge,
3296         Opt_mode,
3297         Opt_mpol,
3298         Opt_nr_blocks,
3299         Opt_nr_inodes,
3300         Opt_size,
3301         Opt_uid,
3302         Opt_inode32,
3303         Opt_inode64,
3304 };
3305
3306 static const struct constant_table shmem_param_enums_huge[] = {
3307         {"never",       SHMEM_HUGE_NEVER },
3308         {"always",      SHMEM_HUGE_ALWAYS },
3309         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3310         {"advise",      SHMEM_HUGE_ADVISE },
3311         {}
3312 };
3313
3314 const struct fs_parameter_spec shmem_fs_parameters[] = {
3315         fsparam_u32   ("gid",           Opt_gid),
3316         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3317         fsparam_u32oct("mode",          Opt_mode),
3318         fsparam_string("mpol",          Opt_mpol),
3319         fsparam_string("nr_blocks",     Opt_nr_blocks),
3320         fsparam_string("nr_inodes",     Opt_nr_inodes),
3321         fsparam_string("size",          Opt_size),
3322         fsparam_u32   ("uid",           Opt_uid),
3323         fsparam_flag  ("inode32",       Opt_inode32),
3324         fsparam_flag  ("inode64",       Opt_inode64),
3325         {}
3326 };
3327
3328 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3329 {
3330         struct shmem_options *ctx = fc->fs_private;
3331         struct fs_parse_result result;
3332         unsigned long long size;
3333         char *rest;
3334         int opt;
3335
3336         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3337         if (opt < 0)
3338                 return opt;
3339
3340         switch (opt) {
3341         case Opt_size:
3342                 size = memparse(param->string, &rest);
3343                 if (*rest == '%') {
3344                         size <<= PAGE_SHIFT;
3345                         size *= totalram_pages();
3346                         do_div(size, 100);
3347                         rest++;
3348                 }
3349                 if (*rest)
3350                         goto bad_value;
3351                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3352                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3353                 break;
3354         case Opt_nr_blocks:
3355                 ctx->blocks = memparse(param->string, &rest);
3356                 if (*rest)
3357                         goto bad_value;
3358                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3359                 break;
3360         case Opt_nr_inodes:
3361                 ctx->inodes = memparse(param->string, &rest);
3362                 if (*rest)
3363                         goto bad_value;
3364                 ctx->seen |= SHMEM_SEEN_INODES;
3365                 break;
3366         case Opt_mode:
3367                 ctx->mode = result.uint_32 & 07777;
3368                 break;
3369         case Opt_uid:
3370                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3371                 if (!uid_valid(ctx->uid))
3372                         goto bad_value;
3373                 break;
3374         case Opt_gid:
3375                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3376                 if (!gid_valid(ctx->gid))
3377                         goto bad_value;
3378                 break;
3379         case Opt_huge:
3380                 ctx->huge = result.uint_32;
3381                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3382                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3383                       has_transparent_hugepage()))
3384                         goto unsupported_parameter;
3385                 ctx->seen |= SHMEM_SEEN_HUGE;
3386                 break;
3387         case Opt_mpol:
3388                 if (IS_ENABLED(CONFIG_NUMA)) {
3389                         mpol_put(ctx->mpol);
3390                         ctx->mpol = NULL;
3391                         if (mpol_parse_str(param->string, &ctx->mpol))
3392                                 goto bad_value;
3393                         break;
3394                 }
3395                 goto unsupported_parameter;
3396         case Opt_inode32:
3397                 ctx->full_inums = false;
3398                 ctx->seen |= SHMEM_SEEN_INUMS;
3399                 break;
3400         case Opt_inode64:
3401                 if (sizeof(ino_t) < 8) {
3402                         return invalfc(fc,
3403                                        "Cannot use inode64 with <64bit inums in kernel\n");
3404                 }
3405                 ctx->full_inums = true;
3406                 ctx->seen |= SHMEM_SEEN_INUMS;
3407                 break;
3408         }
3409         return 0;
3410
3411 unsupported_parameter:
3412         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3413 bad_value:
3414         return invalfc(fc, "Bad value for '%s'", param->key);
3415 }
3416
3417 static int shmem_parse_options(struct fs_context *fc, void *data)
3418 {
3419         char *options = data;
3420
3421         if (options) {
3422                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3423                 if (err)
3424                         return err;
3425         }
3426
3427         while (options != NULL) {
3428                 char *this_char = options;
3429                 for (;;) {
3430                         /*
3431                          * NUL-terminate this option: unfortunately,
3432                          * mount options form a comma-separated list,
3433                          * but mpol's nodelist may also contain commas.
3434                          */
3435                         options = strchr(options, ',');
3436                         if (options == NULL)
3437                                 break;
3438                         options++;
3439                         if (!isdigit(*options)) {
3440                                 options[-1] = '\0';
3441                                 break;
3442                         }
3443                 }
3444                 if (*this_char) {
3445                         char *value = strchr(this_char, '=');
3446                         size_t len = 0;
3447                         int err;
3448
3449                         if (value) {
3450                                 *value++ = '\0';
3451                                 len = strlen(value);
3452                         }
3453                         err = vfs_parse_fs_string(fc, this_char, value, len);
3454                         if (err < 0)
3455                                 return err;
3456                 }
3457         }
3458         return 0;
3459 }
3460
3461 /*
3462  * Reconfigure a shmem filesystem.
3463  *
3464  * Note that we disallow change from limited->unlimited blocks/inodes while any
3465  * are in use; but we must separately disallow unlimited->limited, because in
3466  * that case we have no record of how much is already in use.
3467  */
3468 static int shmem_reconfigure(struct fs_context *fc)
3469 {
3470         struct shmem_options *ctx = fc->fs_private;
3471         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3472         unsigned long inodes;
3473         struct mempolicy *mpol = NULL;
3474         const char *err;
3475
3476         raw_spin_lock(&sbinfo->stat_lock);
3477         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3478         if (ctx->blocks > S64_MAX) {
3479                 err = "Number of blocks too large";
3480                 goto out;
3481         }
3482         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3483                 if (!sbinfo->max_blocks) {
3484                         err = "Cannot retroactively limit size";
3485                         goto out;
3486                 }
3487                 if (percpu_counter_compare(&sbinfo->used_blocks,
3488                                            ctx->blocks) > 0) {
3489                         err = "Too small a size for current use";
3490                         goto out;
3491                 }
3492         }
3493         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3494                 if (!sbinfo->max_inodes) {
3495                         err = "Cannot retroactively limit inodes";
3496                         goto out;
3497                 }
3498                 if (ctx->inodes < inodes) {
3499                         err = "Too few inodes for current use";
3500                         goto out;
3501                 }
3502         }
3503
3504         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3505             sbinfo->next_ino > UINT_MAX) {
3506                 err = "Current inum too high to switch to 32-bit inums";
3507                 goto out;
3508         }
3509
3510         if (ctx->seen & SHMEM_SEEN_HUGE)
3511                 sbinfo->huge = ctx->huge;
3512         if (ctx->seen & SHMEM_SEEN_INUMS)
3513                 sbinfo->full_inums = ctx->full_inums;
3514         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3515                 sbinfo->max_blocks  = ctx->blocks;
3516         if (ctx->seen & SHMEM_SEEN_INODES) {
3517                 sbinfo->max_inodes  = ctx->inodes;
3518                 sbinfo->free_inodes = ctx->inodes - inodes;
3519         }
3520
3521         /*
3522          * Preserve previous mempolicy unless mpol remount option was specified.
3523          */
3524         if (ctx->mpol) {
3525                 mpol = sbinfo->mpol;
3526                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3527                 ctx->mpol = NULL;
3528         }
3529         raw_spin_unlock(&sbinfo->stat_lock);
3530         mpol_put(mpol);
3531         return 0;
3532 out:
3533         raw_spin_unlock(&sbinfo->stat_lock);
3534         return invalfc(fc, "%s", err);
3535 }
3536
3537 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3538 {
3539         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3540
3541         if (sbinfo->max_blocks != shmem_default_max_blocks())
3542                 seq_printf(seq, ",size=%luk",
3543                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3544         if (sbinfo->max_inodes != shmem_default_max_inodes())
3545                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3546         if (sbinfo->mode != (0777 | S_ISVTX))
3547                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3548         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3549                 seq_printf(seq, ",uid=%u",
3550                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3551         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3552                 seq_printf(seq, ",gid=%u",
3553                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3554
3555         /*
3556          * Showing inode{64,32} might be useful even if it's the system default,
3557          * since then people don't have to resort to checking both here and
3558          * /proc/config.gz to confirm 64-bit inums were successfully applied
3559          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3560          *
3561          * We hide it when inode64 isn't the default and we are using 32-bit
3562          * inodes, since that probably just means the feature isn't even under
3563          * consideration.
3564          *
3565          * As such:
3566          *
3567          *                     +-----------------+-----------------+
3568          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3569          *  +------------------+-----------------+-----------------+
3570          *  | full_inums=true  | show            | show            |
3571          *  | full_inums=false | show            | hide            |
3572          *  +------------------+-----------------+-----------------+
3573          *
3574          */
3575         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3576                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3577 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3578         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3579         if (sbinfo->huge)
3580                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3581 #endif
3582         shmem_show_mpol(seq, sbinfo->mpol);
3583         return 0;
3584 }
3585
3586 #endif /* CONFIG_TMPFS */
3587
3588 static void shmem_put_super(struct super_block *sb)
3589 {
3590         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3591
3592         free_percpu(sbinfo->ino_batch);
3593         percpu_counter_destroy(&sbinfo->used_blocks);
3594         mpol_put(sbinfo->mpol);
3595         kfree(sbinfo);
3596         sb->s_fs_info = NULL;
3597 }
3598
3599 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3600 {
3601         struct shmem_options *ctx = fc->fs_private;
3602         struct inode *inode;
3603         struct shmem_sb_info *sbinfo;
3604
3605         /* Round up to L1_CACHE_BYTES to resist false sharing */
3606         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3607                                 L1_CACHE_BYTES), GFP_KERNEL);
3608         if (!sbinfo)
3609                 return -ENOMEM;
3610
3611         sb->s_fs_info = sbinfo;
3612
3613 #ifdef CONFIG_TMPFS
3614         /*
3615          * Per default we only allow half of the physical ram per
3616          * tmpfs instance, limiting inodes to one per page of lowmem;
3617          * but the internal instance is left unlimited.
3618          */
3619         if (!(sb->s_flags & SB_KERNMOUNT)) {
3620                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3621                         ctx->blocks = shmem_default_max_blocks();
3622                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3623                         ctx->inodes = shmem_default_max_inodes();
3624                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3625                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3626         } else {
3627                 sb->s_flags |= SB_NOUSER;
3628         }
3629         sb->s_export_op = &shmem_export_ops;
3630         sb->s_flags |= SB_NOSEC;
3631 #else
3632         sb->s_flags |= SB_NOUSER;
3633 #endif
3634         sbinfo->max_blocks = ctx->blocks;
3635         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3636         if (sb->s_flags & SB_KERNMOUNT) {
3637                 sbinfo->ino_batch = alloc_percpu(ino_t);
3638                 if (!sbinfo->ino_batch)
3639                         goto failed;
3640         }
3641         sbinfo->uid = ctx->uid;
3642         sbinfo->gid = ctx->gid;
3643         sbinfo->full_inums = ctx->full_inums;
3644         sbinfo->mode = ctx->mode;
3645         sbinfo->huge = ctx->huge;
3646         sbinfo->mpol = ctx->mpol;
3647         ctx->mpol = NULL;
3648
3649         raw_spin_lock_init(&sbinfo->stat_lock);
3650         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3651                 goto failed;
3652         spin_lock_init(&sbinfo->shrinklist_lock);
3653         INIT_LIST_HEAD(&sbinfo->shrinklist);
3654
3655         sb->s_maxbytes = MAX_LFS_FILESIZE;
3656         sb->s_blocksize = PAGE_SIZE;
3657         sb->s_blocksize_bits = PAGE_SHIFT;
3658         sb->s_magic = TMPFS_MAGIC;
3659         sb->s_op = &shmem_ops;
3660         sb->s_time_gran = 1;
3661 #ifdef CONFIG_TMPFS_XATTR
3662         sb->s_xattr = shmem_xattr_handlers;
3663 #endif
3664 #ifdef CONFIG_TMPFS_POSIX_ACL
3665         sb->s_flags |= SB_POSIXACL;
3666 #endif
3667         uuid_gen(&sb->s_uuid);
3668
3669         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3670         if (!inode)
3671                 goto failed;
3672         inode->i_uid = sbinfo->uid;
3673         inode->i_gid = sbinfo->gid;
3674         sb->s_root = d_make_root(inode);
3675         if (!sb->s_root)
3676                 goto failed;
3677         return 0;
3678
3679 failed:
3680         shmem_put_super(sb);
3681         return -ENOMEM;
3682 }
3683
3684 static int shmem_get_tree(struct fs_context *fc)
3685 {
3686         return get_tree_nodev(fc, shmem_fill_super);
3687 }
3688
3689 static void shmem_free_fc(struct fs_context *fc)
3690 {
3691         struct shmem_options *ctx = fc->fs_private;
3692
3693         if (ctx) {
3694                 mpol_put(ctx->mpol);
3695                 kfree(ctx);
3696         }
3697 }
3698
3699 static const struct fs_context_operations shmem_fs_context_ops = {
3700         .free                   = shmem_free_fc,
3701         .get_tree               = shmem_get_tree,
3702 #ifdef CONFIG_TMPFS
3703         .parse_monolithic       = shmem_parse_options,
3704         .parse_param            = shmem_parse_one,
3705         .reconfigure            = shmem_reconfigure,
3706 #endif
3707 };
3708
3709 static struct kmem_cache *shmem_inode_cachep;
3710
3711 static struct inode *shmem_alloc_inode(struct super_block *sb)
3712 {
3713         struct shmem_inode_info *info;
3714         info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3715         if (!info)
3716                 return NULL;
3717         return &info->vfs_inode;
3718 }
3719
3720 static void shmem_free_in_core_inode(struct inode *inode)
3721 {
3722         if (S_ISLNK(inode->i_mode))
3723                 kfree(inode->i_link);
3724         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3725 }
3726
3727 static void shmem_destroy_inode(struct inode *inode)
3728 {
3729         if (S_ISREG(inode->i_mode))
3730                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3731 }
3732
3733 static void shmem_init_inode(void *foo)
3734 {
3735         struct shmem_inode_info *info = foo;
3736         inode_init_once(&info->vfs_inode);
3737 }
3738
3739 static void shmem_init_inodecache(void)
3740 {
3741         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3742                                 sizeof(struct shmem_inode_info),
3743                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3744 }
3745
3746 static void shmem_destroy_inodecache(void)
3747 {
3748         kmem_cache_destroy(shmem_inode_cachep);
3749 }
3750
3751 /* Keep the page in page cache instead of truncating it */
3752 static int shmem_error_remove_page(struct address_space *mapping,
3753                                    struct page *page)
3754 {
3755         return 0;
3756 }
3757
3758 const struct address_space_operations shmem_aops = {
3759         .writepage      = shmem_writepage,
3760         .dirty_folio    = noop_dirty_folio,
3761 #ifdef CONFIG_TMPFS
3762         .write_begin    = shmem_write_begin,
3763         .write_end      = shmem_write_end,
3764 #endif
3765 #ifdef CONFIG_MIGRATION
3766         .migratepage    = migrate_page,
3767 #endif
3768         .error_remove_page = shmem_error_remove_page,
3769 };
3770 EXPORT_SYMBOL(shmem_aops);
3771
3772 static const struct file_operations shmem_file_operations = {
3773         .mmap           = shmem_mmap,
3774         .get_unmapped_area = shmem_get_unmapped_area,
3775 #ifdef CONFIG_TMPFS
3776         .llseek         = shmem_file_llseek,
3777         .read_iter      = shmem_file_read_iter,
3778         .write_iter     = generic_file_write_iter,
3779         .fsync          = noop_fsync,
3780         .splice_read    = generic_file_splice_read,
3781         .splice_write   = iter_file_splice_write,
3782         .fallocate      = shmem_fallocate,
3783 #endif
3784 };
3785
3786 static const struct inode_operations shmem_inode_operations = {
3787         .getattr        = shmem_getattr,
3788         .setattr        = shmem_setattr,
3789 #ifdef CONFIG_TMPFS_XATTR
3790         .listxattr      = shmem_listxattr,
3791         .set_acl        = simple_set_acl,
3792 #endif
3793 };
3794
3795 static const struct inode_operations shmem_dir_inode_operations = {
3796 #ifdef CONFIG_TMPFS
3797         .getattr        = shmem_getattr,
3798         .create         = shmem_create,
3799         .lookup         = simple_lookup,
3800         .link           = shmem_link,
3801         .unlink         = shmem_unlink,
3802         .symlink        = shmem_symlink,
3803         .mkdir          = shmem_mkdir,
3804         .rmdir          = shmem_rmdir,
3805         .mknod          = shmem_mknod,
3806         .rename         = shmem_rename2,
3807         .tmpfile        = shmem_tmpfile,
3808 #endif
3809 #ifdef CONFIG_TMPFS_XATTR
3810         .listxattr      = shmem_listxattr,
3811 #endif
3812 #ifdef CONFIG_TMPFS_POSIX_ACL
3813         .setattr        = shmem_setattr,
3814         .set_acl        = simple_set_acl,
3815 #endif
3816 };
3817
3818 static const struct inode_operations shmem_special_inode_operations = {
3819         .getattr        = shmem_getattr,
3820 #ifdef CONFIG_TMPFS_XATTR
3821         .listxattr      = shmem_listxattr,
3822 #endif
3823 #ifdef CONFIG_TMPFS_POSIX_ACL
3824         .setattr        = shmem_setattr,
3825         .set_acl        = simple_set_acl,
3826 #endif
3827 };
3828
3829 static const struct super_operations shmem_ops = {
3830         .alloc_inode    = shmem_alloc_inode,
3831         .free_inode     = shmem_free_in_core_inode,
3832         .destroy_inode  = shmem_destroy_inode,
3833 #ifdef CONFIG_TMPFS
3834         .statfs         = shmem_statfs,
3835         .show_options   = shmem_show_options,
3836 #endif
3837         .evict_inode    = shmem_evict_inode,
3838         .drop_inode     = generic_delete_inode,
3839         .put_super      = shmem_put_super,
3840 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3841         .nr_cached_objects      = shmem_unused_huge_count,
3842         .free_cached_objects    = shmem_unused_huge_scan,
3843 #endif
3844 };
3845
3846 static const struct vm_operations_struct shmem_vm_ops = {
3847         .fault          = shmem_fault,
3848         .map_pages      = filemap_map_pages,
3849 #ifdef CONFIG_NUMA
3850         .set_policy     = shmem_set_policy,
3851         .get_policy     = shmem_get_policy,
3852 #endif
3853 };
3854
3855 int shmem_init_fs_context(struct fs_context *fc)
3856 {
3857         struct shmem_options *ctx;
3858
3859         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3860         if (!ctx)
3861                 return -ENOMEM;
3862
3863         ctx->mode = 0777 | S_ISVTX;
3864         ctx->uid = current_fsuid();
3865         ctx->gid = current_fsgid();
3866
3867         fc->fs_private = ctx;
3868         fc->ops = &shmem_fs_context_ops;
3869         return 0;
3870 }
3871
3872 static struct file_system_type shmem_fs_type = {
3873         .owner          = THIS_MODULE,
3874         .name           = "tmpfs",
3875         .init_fs_context = shmem_init_fs_context,
3876 #ifdef CONFIG_TMPFS
3877         .parameters     = shmem_fs_parameters,
3878 #endif
3879         .kill_sb        = kill_litter_super,
3880         .fs_flags       = FS_USERNS_MOUNT,
3881 };
3882
3883 void __init shmem_init(void)
3884 {
3885         int error;
3886
3887         shmem_init_inodecache();
3888
3889         error = register_filesystem(&shmem_fs_type);
3890         if (error) {
3891                 pr_err("Could not register tmpfs\n");
3892                 goto out2;
3893         }
3894
3895         shm_mnt = kern_mount(&shmem_fs_type);
3896         if (IS_ERR(shm_mnt)) {
3897                 error = PTR_ERR(shm_mnt);
3898                 pr_err("Could not kern_mount tmpfs\n");
3899                 goto out1;
3900         }
3901
3902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3903         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3904                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3905         else
3906                 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3907 #endif
3908         return;
3909
3910 out1:
3911         unregister_filesystem(&shmem_fs_type);
3912 out2:
3913         shmem_destroy_inodecache();
3914         shm_mnt = ERR_PTR(error);
3915 }
3916
3917 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3918 static ssize_t shmem_enabled_show(struct kobject *kobj,
3919                                   struct kobj_attribute *attr, char *buf)
3920 {
3921         static const int values[] = {
3922                 SHMEM_HUGE_ALWAYS,
3923                 SHMEM_HUGE_WITHIN_SIZE,
3924                 SHMEM_HUGE_ADVISE,
3925                 SHMEM_HUGE_NEVER,
3926                 SHMEM_HUGE_DENY,
3927                 SHMEM_HUGE_FORCE,
3928         };
3929         int len = 0;
3930         int i;
3931
3932         for (i = 0; i < ARRAY_SIZE(values); i++) {
3933                 len += sysfs_emit_at(buf, len,
3934                                      shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3935                                      i ? " " : "",
3936                                      shmem_format_huge(values[i]));
3937         }
3938
3939         len += sysfs_emit_at(buf, len, "\n");
3940
3941         return len;
3942 }
3943
3944 static ssize_t shmem_enabled_store(struct kobject *kobj,
3945                 struct kobj_attribute *attr, const char *buf, size_t count)
3946 {
3947         char tmp[16];
3948         int huge;
3949
3950         if (count + 1 > sizeof(tmp))
3951                 return -EINVAL;
3952         memcpy(tmp, buf, count);
3953         tmp[count] = '\0';
3954         if (count && tmp[count - 1] == '\n')
3955                 tmp[count - 1] = '\0';
3956
3957         huge = shmem_parse_huge(tmp);
3958         if (huge == -EINVAL)
3959                 return -EINVAL;
3960         if (!has_transparent_hugepage() &&
3961                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3962                 return -EINVAL;
3963
3964         shmem_huge = huge;
3965         if (shmem_huge > SHMEM_HUGE_DENY)
3966                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3967         return count;
3968 }
3969
3970 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
3971 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3972
3973 #else /* !CONFIG_SHMEM */
3974
3975 /*
3976  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3977  *
3978  * This is intended for small system where the benefits of the full
3979  * shmem code (swap-backed and resource-limited) are outweighed by
3980  * their complexity. On systems without swap this code should be
3981  * effectively equivalent, but much lighter weight.
3982  */
3983
3984 static struct file_system_type shmem_fs_type = {
3985         .name           = "tmpfs",
3986         .init_fs_context = ramfs_init_fs_context,
3987         .parameters     = ramfs_fs_parameters,
3988         .kill_sb        = kill_litter_super,
3989         .fs_flags       = FS_USERNS_MOUNT,
3990 };
3991
3992 void __init shmem_init(void)
3993 {
3994         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3995
3996         shm_mnt = kern_mount(&shmem_fs_type);
3997         BUG_ON(IS_ERR(shm_mnt));
3998 }
3999
4000 int shmem_unuse(unsigned int type)
4001 {
4002         return 0;
4003 }
4004
4005 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4006 {
4007         return 0;
4008 }
4009
4010 void shmem_unlock_mapping(struct address_space *mapping)
4011 {
4012 }
4013
4014 #ifdef CONFIG_MMU
4015 unsigned long shmem_get_unmapped_area(struct file *file,
4016                                       unsigned long addr, unsigned long len,
4017                                       unsigned long pgoff, unsigned long flags)
4018 {
4019         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4020 }
4021 #endif
4022
4023 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4024 {
4025         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4026 }
4027 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4028
4029 #define shmem_vm_ops                            generic_file_vm_ops
4030 #define shmem_file_operations                   ramfs_file_operations
4031 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4032 #define shmem_acct_size(flags, size)            0
4033 #define shmem_unacct_size(flags, size)          do {} while (0)
4034
4035 #endif /* CONFIG_SHMEM */
4036
4037 /* common code */
4038
4039 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4040                                        unsigned long flags, unsigned int i_flags)
4041 {
4042         struct inode *inode;
4043         struct file *res;
4044
4045         if (IS_ERR(mnt))
4046                 return ERR_CAST(mnt);
4047
4048         if (size < 0 || size > MAX_LFS_FILESIZE)
4049                 return ERR_PTR(-EINVAL);
4050
4051         if (shmem_acct_size(flags, size))
4052                 return ERR_PTR(-ENOMEM);
4053
4054         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4055                                 flags);
4056         if (unlikely(!inode)) {
4057                 shmem_unacct_size(flags, size);
4058                 return ERR_PTR(-ENOSPC);
4059         }
4060         inode->i_flags |= i_flags;
4061         inode->i_size = size;
4062         clear_nlink(inode);     /* It is unlinked */
4063         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4064         if (!IS_ERR(res))
4065                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4066                                 &shmem_file_operations);
4067         if (IS_ERR(res))
4068                 iput(inode);
4069         return res;
4070 }
4071
4072 /**
4073  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4074  *      kernel internal.  There will be NO LSM permission checks against the
4075  *      underlying inode.  So users of this interface must do LSM checks at a
4076  *      higher layer.  The users are the big_key and shm implementations.  LSM
4077  *      checks are provided at the key or shm level rather than the inode.
4078  * @name: name for dentry (to be seen in /proc/<pid>/maps
4079  * @size: size to be set for the file
4080  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4081  */
4082 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4083 {
4084         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4085 }
4086
4087 /**
4088  * shmem_file_setup - get an unlinked file living in tmpfs
4089  * @name: name for dentry (to be seen in /proc/<pid>/maps
4090  * @size: size to be set for the file
4091  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4092  */
4093 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4094 {
4095         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4096 }
4097 EXPORT_SYMBOL_GPL(shmem_file_setup);
4098
4099 /**
4100  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4101  * @mnt: the tmpfs mount where the file will be created
4102  * @name: name for dentry (to be seen in /proc/<pid>/maps
4103  * @size: size to be set for the file
4104  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4105  */
4106 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4107                                        loff_t size, unsigned long flags)
4108 {
4109         return __shmem_file_setup(mnt, name, size, flags, 0);
4110 }
4111 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4112
4113 /**
4114  * shmem_zero_setup - setup a shared anonymous mapping
4115  * @vma: the vma to be mmapped is prepared by do_mmap
4116  */
4117 int shmem_zero_setup(struct vm_area_struct *vma)
4118 {
4119         struct file *file;
4120         loff_t size = vma->vm_end - vma->vm_start;
4121
4122         /*
4123          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4124          * between XFS directory reading and selinux: since this file is only
4125          * accessible to the user through its mapping, use S_PRIVATE flag to
4126          * bypass file security, in the same way as shmem_kernel_file_setup().
4127          */
4128         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4129         if (IS_ERR(file))
4130                 return PTR_ERR(file);
4131
4132         if (vma->vm_file)
4133                 fput(vma->vm_file);
4134         vma->vm_file = file;
4135         vma->vm_ops = &shmem_vm_ops;
4136
4137         return 0;
4138 }
4139
4140 /**
4141  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4142  * @mapping:    the page's address_space
4143  * @index:      the page index
4144  * @gfp:        the page allocator flags to use if allocating
4145  *
4146  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4147  * with any new page allocations done using the specified allocation flags.
4148  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4149  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4150  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4151  *
4152  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4153  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4154  */
4155 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4156                                          pgoff_t index, gfp_t gfp)
4157 {
4158 #ifdef CONFIG_SHMEM
4159         struct inode *inode = mapping->host;
4160         struct page *page;
4161         int error;
4162
4163         BUG_ON(!shmem_mapping(mapping));
4164         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4165                                   gfp, NULL, NULL, NULL);
4166         if (error)
4167                 return ERR_PTR(error);
4168
4169         unlock_page(page);
4170         if (PageHWPoison(page)) {
4171                 put_page(page);
4172                 return ERR_PTR(-EIO);
4173         }
4174
4175         return page;
4176 #else
4177         /*
4178          * The tiny !SHMEM case uses ramfs without swap
4179          */
4180         return read_cache_page_gfp(mapping, index, gfp);
4181 #endif
4182 }
4183 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);