fd374f74d99fa82adf948ba282525be8fac97ab9
[linux-2.6-microblaze.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75
76 #include "internal.h"
77
78 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
79 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
80
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
83
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
86
87 /*
88  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89  * inode->i_private (with i_mutex making sure that it has only one user at
90  * a time): we would prefer not to enlarge the shmem inode just for that.
91  */
92 struct shmem_falloc {
93         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94         pgoff_t start;          /* start of range currently being fallocated */
95         pgoff_t next;           /* the next page offset to be fallocated */
96         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
97         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
98 };
99
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102         SGP_READ,       /* don't exceed i_size, don't allocate page */
103         SGP_CACHE,      /* don't exceed i_size, may allocate page */
104         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
105         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
106 };
107
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111         return totalram_pages / 2;
112 }
113
114 static unsigned long shmem_default_max_inodes(void)
115 {
116         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122                                 struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124                 struct page **pagep, enum sgp_type sgp,
125                 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
126
127 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128                 struct page **pagep, enum sgp_type sgp)
129 {
130         return shmem_getpage_gfp(inode, index, pagep, sgp,
131                 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
132 }
133
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136         return sb->s_fs_info;
137 }
138
139 /*
140  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141  * for shared memory and for shared anonymous (/dev/zero) mappings
142  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143  * consistent with the pre-accounting of private mappings ...
144  */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147         return (flags & VM_NORESERVE) ?
148                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153         if (!(flags & VM_NORESERVE))
154                 vm_unacct_memory(VM_ACCT(size));
155 }
156
157 static inline int shmem_reacct_size(unsigned long flags,
158                 loff_t oldsize, loff_t newsize)
159 {
160         if (!(flags & VM_NORESERVE)) {
161                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162                         return security_vm_enough_memory_mm(current->mm,
163                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
164                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166         }
167         return 0;
168 }
169
170 /*
171  * ... whereas tmpfs objects are accounted incrementally as
172  * pages are allocated, in order to allow large sparse files.
173  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175  */
176 static inline int shmem_acct_block(unsigned long flags)
177 {
178         return (flags & VM_NORESERVE) ?
179                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_SIZE)) : 0;
180 }
181
182 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183 {
184         if (flags & VM_NORESERVE)
185                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
186 }
187
188 static const struct super_operations shmem_ops;
189 static const struct address_space_operations shmem_aops;
190 static const struct file_operations shmem_file_operations;
191 static const struct inode_operations shmem_inode_operations;
192 static const struct inode_operations shmem_dir_inode_operations;
193 static const struct inode_operations shmem_special_inode_operations;
194 static const struct vm_operations_struct shmem_vm_ops;
195
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202         if (sbinfo->max_inodes) {
203                 spin_lock(&sbinfo->stat_lock);
204                 if (!sbinfo->free_inodes) {
205                         spin_unlock(&sbinfo->stat_lock);
206                         return -ENOSPC;
207                 }
208                 sbinfo->free_inodes--;
209                 spin_unlock(&sbinfo->stat_lock);
210         }
211         return 0;
212 }
213
214 static void shmem_free_inode(struct super_block *sb)
215 {
216         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217         if (sbinfo->max_inodes) {
218                 spin_lock(&sbinfo->stat_lock);
219                 sbinfo->free_inodes++;
220                 spin_unlock(&sbinfo->stat_lock);
221         }
222 }
223
224 /**
225  * shmem_recalc_inode - recalculate the block usage of an inode
226  * @inode: inode to recalc
227  *
228  * We have to calculate the free blocks since the mm can drop
229  * undirtied hole pages behind our back.
230  *
231  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
232  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233  *
234  * It has to be called with the spinlock held.
235  */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238         struct shmem_inode_info *info = SHMEM_I(inode);
239         long freed;
240
241         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242         if (freed > 0) {
243                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244                 if (sbinfo->max_blocks)
245                         percpu_counter_add(&sbinfo->used_blocks, -freed);
246                 info->alloced -= freed;
247                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248                 shmem_unacct_blocks(info->flags, freed);
249         }
250 }
251
252 /*
253  * Replace item expected in radix tree by a new item, while holding tree lock.
254  */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256                         pgoff_t index, void *expected, void *replacement)
257 {
258         void **pslot;
259         void *item;
260
261         VM_BUG_ON(!expected);
262         VM_BUG_ON(!replacement);
263         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264         if (!pslot)
265                 return -ENOENT;
266         item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267         if (item != expected)
268                 return -ENOENT;
269         radix_tree_replace_slot(pslot, replacement);
270         return 0;
271 }
272
273 /*
274  * Sometimes, before we decide whether to proceed or to fail, we must check
275  * that an entry was not already brought back from swap by a racing thread.
276  *
277  * Checking page is not enough: by the time a SwapCache page is locked, it
278  * might be reused, and again be SwapCache, using the same swap as before.
279  */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281                                pgoff_t index, swp_entry_t swap)
282 {
283         void *item;
284
285         rcu_read_lock();
286         item = radix_tree_lookup(&mapping->page_tree, index);
287         rcu_read_unlock();
288         return item == swp_to_radix_entry(swap);
289 }
290
291 /*
292  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
293  *
294  * SHMEM_HUGE_NEVER:
295  *      disables huge pages for the mount;
296  * SHMEM_HUGE_ALWAYS:
297  *      enables huge pages for the mount;
298  * SHMEM_HUGE_WITHIN_SIZE:
299  *      only allocate huge pages if the page will be fully within i_size,
300  *      also respect fadvise()/madvise() hints;
301  * SHMEM_HUGE_ADVISE:
302  *      only allocate huge pages if requested with fadvise()/madvise();
303  */
304
305 #define SHMEM_HUGE_NEVER        0
306 #define SHMEM_HUGE_ALWAYS       1
307 #define SHMEM_HUGE_WITHIN_SIZE  2
308 #define SHMEM_HUGE_ADVISE       3
309
310 /*
311  * Special values.
312  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
313  *
314  * SHMEM_HUGE_DENY:
315  *      disables huge on shm_mnt and all mounts, for emergency use;
316  * SHMEM_HUGE_FORCE:
317  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
318  *
319  */
320 #define SHMEM_HUGE_DENY         (-1)
321 #define SHMEM_HUGE_FORCE        (-2)
322
323 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
324 /* ifdef here to avoid bloating shmem.o when not necessary */
325
326 int shmem_huge __read_mostly;
327
328 static int shmem_parse_huge(const char *str)
329 {
330         if (!strcmp(str, "never"))
331                 return SHMEM_HUGE_NEVER;
332         if (!strcmp(str, "always"))
333                 return SHMEM_HUGE_ALWAYS;
334         if (!strcmp(str, "within_size"))
335                 return SHMEM_HUGE_WITHIN_SIZE;
336         if (!strcmp(str, "advise"))
337                 return SHMEM_HUGE_ADVISE;
338         if (!strcmp(str, "deny"))
339                 return SHMEM_HUGE_DENY;
340         if (!strcmp(str, "force"))
341                 return SHMEM_HUGE_FORCE;
342         return -EINVAL;
343 }
344
345 static const char *shmem_format_huge(int huge)
346 {
347         switch (huge) {
348         case SHMEM_HUGE_NEVER:
349                 return "never";
350         case SHMEM_HUGE_ALWAYS:
351                 return "always";
352         case SHMEM_HUGE_WITHIN_SIZE:
353                 return "within_size";
354         case SHMEM_HUGE_ADVISE:
355                 return "advise";
356         case SHMEM_HUGE_DENY:
357                 return "deny";
358         case SHMEM_HUGE_FORCE:
359                 return "force";
360         default:
361                 VM_BUG_ON(1);
362                 return "bad_val";
363         }
364 }
365
366 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
367
368 #define shmem_huge SHMEM_HUGE_DENY
369
370 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
371
372 /*
373  * Like add_to_page_cache_locked, but error if expected item has gone.
374  */
375 static int shmem_add_to_page_cache(struct page *page,
376                                    struct address_space *mapping,
377                                    pgoff_t index, void *expected)
378 {
379         int error;
380
381         VM_BUG_ON_PAGE(!PageLocked(page), page);
382         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
383
384         get_page(page);
385         page->mapping = mapping;
386         page->index = index;
387
388         spin_lock_irq(&mapping->tree_lock);
389         if (!expected)
390                 error = radix_tree_insert(&mapping->page_tree, index, page);
391         else
392                 error = shmem_radix_tree_replace(mapping, index, expected,
393                                                                  page);
394         if (!error) {
395                 mapping->nrpages++;
396                 __inc_zone_page_state(page, NR_FILE_PAGES);
397                 __inc_zone_page_state(page, NR_SHMEM);
398                 spin_unlock_irq(&mapping->tree_lock);
399         } else {
400                 page->mapping = NULL;
401                 spin_unlock_irq(&mapping->tree_lock);
402                 put_page(page);
403         }
404         return error;
405 }
406
407 /*
408  * Like delete_from_page_cache, but substitutes swap for page.
409  */
410 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
411 {
412         struct address_space *mapping = page->mapping;
413         int error;
414
415         spin_lock_irq(&mapping->tree_lock);
416         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
417         page->mapping = NULL;
418         mapping->nrpages--;
419         __dec_zone_page_state(page, NR_FILE_PAGES);
420         __dec_zone_page_state(page, NR_SHMEM);
421         spin_unlock_irq(&mapping->tree_lock);
422         put_page(page);
423         BUG_ON(error);
424 }
425
426 /*
427  * Remove swap entry from radix tree, free the swap and its page cache.
428  */
429 static int shmem_free_swap(struct address_space *mapping,
430                            pgoff_t index, void *radswap)
431 {
432         void *old;
433
434         spin_lock_irq(&mapping->tree_lock);
435         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
436         spin_unlock_irq(&mapping->tree_lock);
437         if (old != radswap)
438                 return -ENOENT;
439         free_swap_and_cache(radix_to_swp_entry(radswap));
440         return 0;
441 }
442
443 /*
444  * Determine (in bytes) how many of the shmem object's pages mapped by the
445  * given offsets are swapped out.
446  *
447  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
448  * as long as the inode doesn't go away and racy results are not a problem.
449  */
450 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
451                                                 pgoff_t start, pgoff_t end)
452 {
453         struct radix_tree_iter iter;
454         void **slot;
455         struct page *page;
456         unsigned long swapped = 0;
457
458         rcu_read_lock();
459
460         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
461                 if (iter.index >= end)
462                         break;
463
464                 page = radix_tree_deref_slot(slot);
465
466                 if (radix_tree_deref_retry(page)) {
467                         slot = radix_tree_iter_retry(&iter);
468                         continue;
469                 }
470
471                 if (radix_tree_exceptional_entry(page))
472                         swapped++;
473
474                 if (need_resched()) {
475                         cond_resched_rcu();
476                         slot = radix_tree_iter_next(&iter);
477                 }
478         }
479
480         rcu_read_unlock();
481
482         return swapped << PAGE_SHIFT;
483 }
484
485 /*
486  * Determine (in bytes) how many of the shmem object's pages mapped by the
487  * given vma is swapped out.
488  *
489  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
490  * as long as the inode doesn't go away and racy results are not a problem.
491  */
492 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
493 {
494         struct inode *inode = file_inode(vma->vm_file);
495         struct shmem_inode_info *info = SHMEM_I(inode);
496         struct address_space *mapping = inode->i_mapping;
497         unsigned long swapped;
498
499         /* Be careful as we don't hold info->lock */
500         swapped = READ_ONCE(info->swapped);
501
502         /*
503          * The easier cases are when the shmem object has nothing in swap, or
504          * the vma maps it whole. Then we can simply use the stats that we
505          * already track.
506          */
507         if (!swapped)
508                 return 0;
509
510         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
511                 return swapped << PAGE_SHIFT;
512
513         /* Here comes the more involved part */
514         return shmem_partial_swap_usage(mapping,
515                         linear_page_index(vma, vma->vm_start),
516                         linear_page_index(vma, vma->vm_end));
517 }
518
519 /*
520  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
521  */
522 void shmem_unlock_mapping(struct address_space *mapping)
523 {
524         struct pagevec pvec;
525         pgoff_t indices[PAGEVEC_SIZE];
526         pgoff_t index = 0;
527
528         pagevec_init(&pvec, 0);
529         /*
530          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
531          */
532         while (!mapping_unevictable(mapping)) {
533                 /*
534                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
535                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
536                  */
537                 pvec.nr = find_get_entries(mapping, index,
538                                            PAGEVEC_SIZE, pvec.pages, indices);
539                 if (!pvec.nr)
540                         break;
541                 index = indices[pvec.nr - 1] + 1;
542                 pagevec_remove_exceptionals(&pvec);
543                 check_move_unevictable_pages(pvec.pages, pvec.nr);
544                 pagevec_release(&pvec);
545                 cond_resched();
546         }
547 }
548
549 /*
550  * Remove range of pages and swap entries from radix tree, and free them.
551  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
552  */
553 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
554                                                                  bool unfalloc)
555 {
556         struct address_space *mapping = inode->i_mapping;
557         struct shmem_inode_info *info = SHMEM_I(inode);
558         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
559         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
560         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
561         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
562         struct pagevec pvec;
563         pgoff_t indices[PAGEVEC_SIZE];
564         long nr_swaps_freed = 0;
565         pgoff_t index;
566         int i;
567
568         if (lend == -1)
569                 end = -1;       /* unsigned, so actually very big */
570
571         pagevec_init(&pvec, 0);
572         index = start;
573         while (index < end) {
574                 pvec.nr = find_get_entries(mapping, index,
575                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
576                         pvec.pages, indices);
577                 if (!pvec.nr)
578                         break;
579                 for (i = 0; i < pagevec_count(&pvec); i++) {
580                         struct page *page = pvec.pages[i];
581
582                         index = indices[i];
583                         if (index >= end)
584                                 break;
585
586                         if (radix_tree_exceptional_entry(page)) {
587                                 if (unfalloc)
588                                         continue;
589                                 nr_swaps_freed += !shmem_free_swap(mapping,
590                                                                 index, page);
591                                 continue;
592                         }
593
594                         if (!trylock_page(page))
595                                 continue;
596                         if (!unfalloc || !PageUptodate(page)) {
597                                 if (page->mapping == mapping) {
598                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
599                                         truncate_inode_page(mapping, page);
600                                 }
601                         }
602                         unlock_page(page);
603                 }
604                 pagevec_remove_exceptionals(&pvec);
605                 pagevec_release(&pvec);
606                 cond_resched();
607                 index++;
608         }
609
610         if (partial_start) {
611                 struct page *page = NULL;
612                 shmem_getpage(inode, start - 1, &page, SGP_READ);
613                 if (page) {
614                         unsigned int top = PAGE_SIZE;
615                         if (start > end) {
616                                 top = partial_end;
617                                 partial_end = 0;
618                         }
619                         zero_user_segment(page, partial_start, top);
620                         set_page_dirty(page);
621                         unlock_page(page);
622                         put_page(page);
623                 }
624         }
625         if (partial_end) {
626                 struct page *page = NULL;
627                 shmem_getpage(inode, end, &page, SGP_READ);
628                 if (page) {
629                         zero_user_segment(page, 0, partial_end);
630                         set_page_dirty(page);
631                         unlock_page(page);
632                         put_page(page);
633                 }
634         }
635         if (start >= end)
636                 return;
637
638         index = start;
639         while (index < end) {
640                 cond_resched();
641
642                 pvec.nr = find_get_entries(mapping, index,
643                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
644                                 pvec.pages, indices);
645                 if (!pvec.nr) {
646                         /* If all gone or hole-punch or unfalloc, we're done */
647                         if (index == start || end != -1)
648                                 break;
649                         /* But if truncating, restart to make sure all gone */
650                         index = start;
651                         continue;
652                 }
653                 for (i = 0; i < pagevec_count(&pvec); i++) {
654                         struct page *page = pvec.pages[i];
655
656                         index = indices[i];
657                         if (index >= end)
658                                 break;
659
660                         if (radix_tree_exceptional_entry(page)) {
661                                 if (unfalloc)
662                                         continue;
663                                 if (shmem_free_swap(mapping, index, page)) {
664                                         /* Swap was replaced by page: retry */
665                                         index--;
666                                         break;
667                                 }
668                                 nr_swaps_freed++;
669                                 continue;
670                         }
671
672                         lock_page(page);
673                         if (!unfalloc || !PageUptodate(page)) {
674                                 if (page->mapping == mapping) {
675                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
676                                         truncate_inode_page(mapping, page);
677                                 } else {
678                                         /* Page was replaced by swap: retry */
679                                         unlock_page(page);
680                                         index--;
681                                         break;
682                                 }
683                         }
684                         unlock_page(page);
685                 }
686                 pagevec_remove_exceptionals(&pvec);
687                 pagevec_release(&pvec);
688                 index++;
689         }
690
691         spin_lock(&info->lock);
692         info->swapped -= nr_swaps_freed;
693         shmem_recalc_inode(inode);
694         spin_unlock(&info->lock);
695 }
696
697 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
698 {
699         shmem_undo_range(inode, lstart, lend, false);
700         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
701 }
702 EXPORT_SYMBOL_GPL(shmem_truncate_range);
703
704 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
705                          struct kstat *stat)
706 {
707         struct inode *inode = dentry->d_inode;
708         struct shmem_inode_info *info = SHMEM_I(inode);
709
710         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
711                 spin_lock(&info->lock);
712                 shmem_recalc_inode(inode);
713                 spin_unlock(&info->lock);
714         }
715         generic_fillattr(inode, stat);
716         return 0;
717 }
718
719 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
720 {
721         struct inode *inode = d_inode(dentry);
722         struct shmem_inode_info *info = SHMEM_I(inode);
723         int error;
724
725         error = inode_change_ok(inode, attr);
726         if (error)
727                 return error;
728
729         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
730                 loff_t oldsize = inode->i_size;
731                 loff_t newsize = attr->ia_size;
732
733                 /* protected by i_mutex */
734                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
735                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
736                         return -EPERM;
737
738                 if (newsize != oldsize) {
739                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
740                                         oldsize, newsize);
741                         if (error)
742                                 return error;
743                         i_size_write(inode, newsize);
744                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
745                 }
746                 if (newsize <= oldsize) {
747                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
748                         if (oldsize > holebegin)
749                                 unmap_mapping_range(inode->i_mapping,
750                                                         holebegin, 0, 1);
751                         if (info->alloced)
752                                 shmem_truncate_range(inode,
753                                                         newsize, (loff_t)-1);
754                         /* unmap again to remove racily COWed private pages */
755                         if (oldsize > holebegin)
756                                 unmap_mapping_range(inode->i_mapping,
757                                                         holebegin, 0, 1);
758                 }
759         }
760
761         setattr_copy(inode, attr);
762         if (attr->ia_valid & ATTR_MODE)
763                 error = posix_acl_chmod(inode, inode->i_mode);
764         return error;
765 }
766
767 static void shmem_evict_inode(struct inode *inode)
768 {
769         struct shmem_inode_info *info = SHMEM_I(inode);
770
771         if (inode->i_mapping->a_ops == &shmem_aops) {
772                 shmem_unacct_size(info->flags, inode->i_size);
773                 inode->i_size = 0;
774                 shmem_truncate_range(inode, 0, (loff_t)-1);
775                 if (!list_empty(&info->swaplist)) {
776                         mutex_lock(&shmem_swaplist_mutex);
777                         list_del_init(&info->swaplist);
778                         mutex_unlock(&shmem_swaplist_mutex);
779                 }
780         }
781
782         simple_xattrs_free(&info->xattrs);
783         WARN_ON(inode->i_blocks);
784         shmem_free_inode(inode->i_sb);
785         clear_inode(inode);
786 }
787
788 /*
789  * If swap found in inode, free it and move page from swapcache to filecache.
790  */
791 static int shmem_unuse_inode(struct shmem_inode_info *info,
792                              swp_entry_t swap, struct page **pagep)
793 {
794         struct address_space *mapping = info->vfs_inode.i_mapping;
795         void *radswap;
796         pgoff_t index;
797         gfp_t gfp;
798         int error = 0;
799
800         radswap = swp_to_radix_entry(swap);
801         index = radix_tree_locate_item(&mapping->page_tree, radswap);
802         if (index == -1)
803                 return -EAGAIN; /* tell shmem_unuse we found nothing */
804
805         /*
806          * Move _head_ to start search for next from here.
807          * But be careful: shmem_evict_inode checks list_empty without taking
808          * mutex, and there's an instant in list_move_tail when info->swaplist
809          * would appear empty, if it were the only one on shmem_swaplist.
810          */
811         if (shmem_swaplist.next != &info->swaplist)
812                 list_move_tail(&shmem_swaplist, &info->swaplist);
813
814         gfp = mapping_gfp_mask(mapping);
815         if (shmem_should_replace_page(*pagep, gfp)) {
816                 mutex_unlock(&shmem_swaplist_mutex);
817                 error = shmem_replace_page(pagep, gfp, info, index);
818                 mutex_lock(&shmem_swaplist_mutex);
819                 /*
820                  * We needed to drop mutex to make that restrictive page
821                  * allocation, but the inode might have been freed while we
822                  * dropped it: although a racing shmem_evict_inode() cannot
823                  * complete without emptying the radix_tree, our page lock
824                  * on this swapcache page is not enough to prevent that -
825                  * free_swap_and_cache() of our swap entry will only
826                  * trylock_page(), removing swap from radix_tree whatever.
827                  *
828                  * We must not proceed to shmem_add_to_page_cache() if the
829                  * inode has been freed, but of course we cannot rely on
830                  * inode or mapping or info to check that.  However, we can
831                  * safely check if our swap entry is still in use (and here
832                  * it can't have got reused for another page): if it's still
833                  * in use, then the inode cannot have been freed yet, and we
834                  * can safely proceed (if it's no longer in use, that tells
835                  * nothing about the inode, but we don't need to unuse swap).
836                  */
837                 if (!page_swapcount(*pagep))
838                         error = -ENOENT;
839         }
840
841         /*
842          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
843          * but also to hold up shmem_evict_inode(): so inode cannot be freed
844          * beneath us (pagelock doesn't help until the page is in pagecache).
845          */
846         if (!error)
847                 error = shmem_add_to_page_cache(*pagep, mapping, index,
848                                                 radswap);
849         if (error != -ENOMEM) {
850                 /*
851                  * Truncation and eviction use free_swap_and_cache(), which
852                  * only does trylock page: if we raced, best clean up here.
853                  */
854                 delete_from_swap_cache(*pagep);
855                 set_page_dirty(*pagep);
856                 if (!error) {
857                         spin_lock(&info->lock);
858                         info->swapped--;
859                         spin_unlock(&info->lock);
860                         swap_free(swap);
861                 }
862         }
863         return error;
864 }
865
866 /*
867  * Search through swapped inodes to find and replace swap by page.
868  */
869 int shmem_unuse(swp_entry_t swap, struct page *page)
870 {
871         struct list_head *this, *next;
872         struct shmem_inode_info *info;
873         struct mem_cgroup *memcg;
874         int error = 0;
875
876         /*
877          * There's a faint possibility that swap page was replaced before
878          * caller locked it: caller will come back later with the right page.
879          */
880         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
881                 goto out;
882
883         /*
884          * Charge page using GFP_KERNEL while we can wait, before taking
885          * the shmem_swaplist_mutex which might hold up shmem_writepage().
886          * Charged back to the user (not to caller) when swap account is used.
887          */
888         error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
889                         false);
890         if (error)
891                 goto out;
892         /* No radix_tree_preload: swap entry keeps a place for page in tree */
893         error = -EAGAIN;
894
895         mutex_lock(&shmem_swaplist_mutex);
896         list_for_each_safe(this, next, &shmem_swaplist) {
897                 info = list_entry(this, struct shmem_inode_info, swaplist);
898                 if (info->swapped)
899                         error = shmem_unuse_inode(info, swap, &page);
900                 else
901                         list_del_init(&info->swaplist);
902                 cond_resched();
903                 if (error != -EAGAIN)
904                         break;
905                 /* found nothing in this: move on to search the next */
906         }
907         mutex_unlock(&shmem_swaplist_mutex);
908
909         if (error) {
910                 if (error != -ENOMEM)
911                         error = 0;
912                 mem_cgroup_cancel_charge(page, memcg, false);
913         } else
914                 mem_cgroup_commit_charge(page, memcg, true, false);
915 out:
916         unlock_page(page);
917         put_page(page);
918         return error;
919 }
920
921 /*
922  * Move the page from the page cache to the swap cache.
923  */
924 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
925 {
926         struct shmem_inode_info *info;
927         struct address_space *mapping;
928         struct inode *inode;
929         swp_entry_t swap;
930         pgoff_t index;
931
932         BUG_ON(!PageLocked(page));
933         mapping = page->mapping;
934         index = page->index;
935         inode = mapping->host;
936         info = SHMEM_I(inode);
937         if (info->flags & VM_LOCKED)
938                 goto redirty;
939         if (!total_swap_pages)
940                 goto redirty;
941
942         /*
943          * Our capabilities prevent regular writeback or sync from ever calling
944          * shmem_writepage; but a stacking filesystem might use ->writepage of
945          * its underlying filesystem, in which case tmpfs should write out to
946          * swap only in response to memory pressure, and not for the writeback
947          * threads or sync.
948          */
949         if (!wbc->for_reclaim) {
950                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
951                 goto redirty;
952         }
953
954         /*
955          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
956          * value into swapfile.c, the only way we can correctly account for a
957          * fallocated page arriving here is now to initialize it and write it.
958          *
959          * That's okay for a page already fallocated earlier, but if we have
960          * not yet completed the fallocation, then (a) we want to keep track
961          * of this page in case we have to undo it, and (b) it may not be a
962          * good idea to continue anyway, once we're pushing into swap.  So
963          * reactivate the page, and let shmem_fallocate() quit when too many.
964          */
965         if (!PageUptodate(page)) {
966                 if (inode->i_private) {
967                         struct shmem_falloc *shmem_falloc;
968                         spin_lock(&inode->i_lock);
969                         shmem_falloc = inode->i_private;
970                         if (shmem_falloc &&
971                             !shmem_falloc->waitq &&
972                             index >= shmem_falloc->start &&
973                             index < shmem_falloc->next)
974                                 shmem_falloc->nr_unswapped++;
975                         else
976                                 shmem_falloc = NULL;
977                         spin_unlock(&inode->i_lock);
978                         if (shmem_falloc)
979                                 goto redirty;
980                 }
981                 clear_highpage(page);
982                 flush_dcache_page(page);
983                 SetPageUptodate(page);
984         }
985
986         swap = get_swap_page();
987         if (!swap.val)
988                 goto redirty;
989
990         if (mem_cgroup_try_charge_swap(page, swap))
991                 goto free_swap;
992
993         /*
994          * Add inode to shmem_unuse()'s list of swapped-out inodes,
995          * if it's not already there.  Do it now before the page is
996          * moved to swap cache, when its pagelock no longer protects
997          * the inode from eviction.  But don't unlock the mutex until
998          * we've incremented swapped, because shmem_unuse_inode() will
999          * prune a !swapped inode from the swaplist under this mutex.
1000          */
1001         mutex_lock(&shmem_swaplist_mutex);
1002         if (list_empty(&info->swaplist))
1003                 list_add_tail(&info->swaplist, &shmem_swaplist);
1004
1005         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1006                 spin_lock(&info->lock);
1007                 shmem_recalc_inode(inode);
1008                 info->swapped++;
1009                 spin_unlock(&info->lock);
1010
1011                 swap_shmem_alloc(swap);
1012                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1013
1014                 mutex_unlock(&shmem_swaplist_mutex);
1015                 BUG_ON(page_mapped(page));
1016                 swap_writepage(page, wbc);
1017                 return 0;
1018         }
1019
1020         mutex_unlock(&shmem_swaplist_mutex);
1021 free_swap:
1022         swapcache_free(swap);
1023 redirty:
1024         set_page_dirty(page);
1025         if (wbc->for_reclaim)
1026                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1027         unlock_page(page);
1028         return 0;
1029 }
1030
1031 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1032 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1033 {
1034         char buffer[64];
1035
1036         if (!mpol || mpol->mode == MPOL_DEFAULT)
1037                 return;         /* show nothing */
1038
1039         mpol_to_str(buffer, sizeof(buffer), mpol);
1040
1041         seq_printf(seq, ",mpol=%s", buffer);
1042 }
1043
1044 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1045 {
1046         struct mempolicy *mpol = NULL;
1047         if (sbinfo->mpol) {
1048                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1049                 mpol = sbinfo->mpol;
1050                 mpol_get(mpol);
1051                 spin_unlock(&sbinfo->stat_lock);
1052         }
1053         return mpol;
1054 }
1055 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1056 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1057 {
1058 }
1059 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1060 {
1061         return NULL;
1062 }
1063 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1064 #ifndef CONFIG_NUMA
1065 #define vm_policy vm_private_data
1066 #endif
1067
1068 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1069                         struct shmem_inode_info *info, pgoff_t index)
1070 {
1071         struct vm_area_struct pvma;
1072         struct page *page;
1073
1074         /* Create a pseudo vma that just contains the policy */
1075         pvma.vm_start = 0;
1076         /* Bias interleave by inode number to distribute better across nodes */
1077         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1078         pvma.vm_ops = NULL;
1079         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1080
1081         page = swapin_readahead(swap, gfp, &pvma, 0);
1082
1083         /* Drop reference taken by mpol_shared_policy_lookup() */
1084         mpol_cond_put(pvma.vm_policy);
1085
1086         return page;
1087 }
1088
1089 static struct page *shmem_alloc_page(gfp_t gfp,
1090                         struct shmem_inode_info *info, pgoff_t index)
1091 {
1092         struct vm_area_struct pvma;
1093         struct page *page;
1094
1095         /* Create a pseudo vma that just contains the policy */
1096         pvma.vm_start = 0;
1097         /* Bias interleave by inode number to distribute better across nodes */
1098         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1099         pvma.vm_ops = NULL;
1100         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1101
1102         page = alloc_pages_vma(gfp, 0, &pvma, 0, numa_node_id(), false);
1103         if (page) {
1104                 __SetPageLocked(page);
1105                 __SetPageSwapBacked(page);
1106         }
1107
1108         /* Drop reference taken by mpol_shared_policy_lookup() */
1109         mpol_cond_put(pvma.vm_policy);
1110
1111         return page;
1112 }
1113
1114 /*
1115  * When a page is moved from swapcache to shmem filecache (either by the
1116  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1117  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1118  * ignorance of the mapping it belongs to.  If that mapping has special
1119  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1120  * we may need to copy to a suitable page before moving to filecache.
1121  *
1122  * In a future release, this may well be extended to respect cpuset and
1123  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1124  * but for now it is a simple matter of zone.
1125  */
1126 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1127 {
1128         return page_zonenum(page) > gfp_zone(gfp);
1129 }
1130
1131 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1132                                 struct shmem_inode_info *info, pgoff_t index)
1133 {
1134         struct page *oldpage, *newpage;
1135         struct address_space *swap_mapping;
1136         pgoff_t swap_index;
1137         int error;
1138
1139         oldpage = *pagep;
1140         swap_index = page_private(oldpage);
1141         swap_mapping = page_mapping(oldpage);
1142
1143         /*
1144          * We have arrived here because our zones are constrained, so don't
1145          * limit chance of success by further cpuset and node constraints.
1146          */
1147         gfp &= ~GFP_CONSTRAINT_MASK;
1148         newpage = shmem_alloc_page(gfp, info, index);
1149         if (!newpage)
1150                 return -ENOMEM;
1151
1152         get_page(newpage);
1153         copy_highpage(newpage, oldpage);
1154         flush_dcache_page(newpage);
1155
1156         SetPageUptodate(newpage);
1157         set_page_private(newpage, swap_index);
1158         SetPageSwapCache(newpage);
1159
1160         /*
1161          * Our caller will very soon move newpage out of swapcache, but it's
1162          * a nice clean interface for us to replace oldpage by newpage there.
1163          */
1164         spin_lock_irq(&swap_mapping->tree_lock);
1165         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1166                                                                    newpage);
1167         if (!error) {
1168                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1169                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1170         }
1171         spin_unlock_irq(&swap_mapping->tree_lock);
1172
1173         if (unlikely(error)) {
1174                 /*
1175                  * Is this possible?  I think not, now that our callers check
1176                  * both PageSwapCache and page_private after getting page lock;
1177                  * but be defensive.  Reverse old to newpage for clear and free.
1178                  */
1179                 oldpage = newpage;
1180         } else {
1181                 mem_cgroup_migrate(oldpage, newpage);
1182                 lru_cache_add_anon(newpage);
1183                 *pagep = newpage;
1184         }
1185
1186         ClearPageSwapCache(oldpage);
1187         set_page_private(oldpage, 0);
1188
1189         unlock_page(oldpage);
1190         put_page(oldpage);
1191         put_page(oldpage);
1192         return error;
1193 }
1194
1195 /*
1196  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1197  *
1198  * If we allocate a new one we do not mark it dirty. That's up to the
1199  * vm. If we swap it in we mark it dirty since we also free the swap
1200  * entry since a page cannot live in both the swap and page cache.
1201  *
1202  * fault_mm and fault_type are only supplied by shmem_fault:
1203  * otherwise they are NULL.
1204  */
1205 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1206         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1207         struct mm_struct *fault_mm, int *fault_type)
1208 {
1209         struct address_space *mapping = inode->i_mapping;
1210         struct shmem_inode_info *info;
1211         struct shmem_sb_info *sbinfo;
1212         struct mm_struct *charge_mm;
1213         struct mem_cgroup *memcg;
1214         struct page *page;
1215         swp_entry_t swap;
1216         int error;
1217         int once = 0;
1218         int alloced = 0;
1219
1220         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1221                 return -EFBIG;
1222 repeat:
1223         swap.val = 0;
1224         page = find_lock_entry(mapping, index);
1225         if (radix_tree_exceptional_entry(page)) {
1226                 swap = radix_to_swp_entry(page);
1227                 page = NULL;
1228         }
1229
1230         if (sgp <= SGP_CACHE &&
1231             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1232                 error = -EINVAL;
1233                 goto unlock;
1234         }
1235
1236         if (page && sgp == SGP_WRITE)
1237                 mark_page_accessed(page);
1238
1239         /* fallocated page? */
1240         if (page && !PageUptodate(page)) {
1241                 if (sgp != SGP_READ)
1242                         goto clear;
1243                 unlock_page(page);
1244                 put_page(page);
1245                 page = NULL;
1246         }
1247         if (page || (sgp == SGP_READ && !swap.val)) {
1248                 *pagep = page;
1249                 return 0;
1250         }
1251
1252         /*
1253          * Fast cache lookup did not find it:
1254          * bring it back from swap or allocate.
1255          */
1256         info = SHMEM_I(inode);
1257         sbinfo = SHMEM_SB(inode->i_sb);
1258         charge_mm = fault_mm ? : current->mm;
1259
1260         if (swap.val) {
1261                 /* Look it up and read it in.. */
1262                 page = lookup_swap_cache(swap);
1263                 if (!page) {
1264                         /* Or update major stats only when swapin succeeds?? */
1265                         if (fault_type) {
1266                                 *fault_type |= VM_FAULT_MAJOR;
1267                                 count_vm_event(PGMAJFAULT);
1268                                 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1269                         }
1270                         /* Here we actually start the io */
1271                         page = shmem_swapin(swap, gfp, info, index);
1272                         if (!page) {
1273                                 error = -ENOMEM;
1274                                 goto failed;
1275                         }
1276                 }
1277
1278                 /* We have to do this with page locked to prevent races */
1279                 lock_page(page);
1280                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1281                     !shmem_confirm_swap(mapping, index, swap)) {
1282                         error = -EEXIST;        /* try again */
1283                         goto unlock;
1284                 }
1285                 if (!PageUptodate(page)) {
1286                         error = -EIO;
1287                         goto failed;
1288                 }
1289                 wait_on_page_writeback(page);
1290
1291                 if (shmem_should_replace_page(page, gfp)) {
1292                         error = shmem_replace_page(&page, gfp, info, index);
1293                         if (error)
1294                                 goto failed;
1295                 }
1296
1297                 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1298                                 false);
1299                 if (!error) {
1300                         error = shmem_add_to_page_cache(page, mapping, index,
1301                                                 swp_to_radix_entry(swap));
1302                         /*
1303                          * We already confirmed swap under page lock, and make
1304                          * no memory allocation here, so usually no possibility
1305                          * of error; but free_swap_and_cache() only trylocks a
1306                          * page, so it is just possible that the entry has been
1307                          * truncated or holepunched since swap was confirmed.
1308                          * shmem_undo_range() will have done some of the
1309                          * unaccounting, now delete_from_swap_cache() will do
1310                          * the rest.
1311                          * Reset swap.val? No, leave it so "failed" goes back to
1312                          * "repeat": reading a hole and writing should succeed.
1313                          */
1314                         if (error) {
1315                                 mem_cgroup_cancel_charge(page, memcg, false);
1316                                 delete_from_swap_cache(page);
1317                         }
1318                 }
1319                 if (error)
1320                         goto failed;
1321
1322                 mem_cgroup_commit_charge(page, memcg, true, false);
1323
1324                 spin_lock(&info->lock);
1325                 info->swapped--;
1326                 shmem_recalc_inode(inode);
1327                 spin_unlock(&info->lock);
1328
1329                 if (sgp == SGP_WRITE)
1330                         mark_page_accessed(page);
1331
1332                 delete_from_swap_cache(page);
1333                 set_page_dirty(page);
1334                 swap_free(swap);
1335
1336         } else {
1337                 if (shmem_acct_block(info->flags)) {
1338                         error = -ENOSPC;
1339                         goto failed;
1340                 }
1341                 if (sbinfo->max_blocks) {
1342                         if (percpu_counter_compare(&sbinfo->used_blocks,
1343                                                 sbinfo->max_blocks) >= 0) {
1344                                 error = -ENOSPC;
1345                                 goto unacct;
1346                         }
1347                         percpu_counter_inc(&sbinfo->used_blocks);
1348                 }
1349
1350                 page = shmem_alloc_page(gfp, info, index);
1351                 if (!page) {
1352                         error = -ENOMEM;
1353                         goto decused;
1354                 }
1355                 if (sgp == SGP_WRITE)
1356                         __SetPageReferenced(page);
1357
1358                 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1359                                 false);
1360                 if (error)
1361                         goto decused;
1362                 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1363                 if (!error) {
1364                         error = shmem_add_to_page_cache(page, mapping, index,
1365                                                         NULL);
1366                         radix_tree_preload_end();
1367                 }
1368                 if (error) {
1369                         mem_cgroup_cancel_charge(page, memcg, false);
1370                         goto decused;
1371                 }
1372                 mem_cgroup_commit_charge(page, memcg, false, false);
1373                 lru_cache_add_anon(page);
1374
1375                 spin_lock(&info->lock);
1376                 info->alloced++;
1377                 inode->i_blocks += BLOCKS_PER_PAGE;
1378                 shmem_recalc_inode(inode);
1379                 spin_unlock(&info->lock);
1380                 alloced = true;
1381
1382                 /*
1383                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1384                  */
1385                 if (sgp == SGP_FALLOC)
1386                         sgp = SGP_WRITE;
1387 clear:
1388                 /*
1389                  * Let SGP_WRITE caller clear ends if write does not fill page;
1390                  * but SGP_FALLOC on a page fallocated earlier must initialize
1391                  * it now, lest undo on failure cancel our earlier guarantee.
1392                  */
1393                 if (sgp != SGP_WRITE) {
1394                         clear_highpage(page);
1395                         flush_dcache_page(page);
1396                         SetPageUptodate(page);
1397                 }
1398         }
1399
1400         /* Perhaps the file has been truncated since we checked */
1401         if (sgp <= SGP_CACHE &&
1402             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1403                 if (alloced) {
1404                         ClearPageDirty(page);
1405                         delete_from_page_cache(page);
1406                         spin_lock(&info->lock);
1407                         shmem_recalc_inode(inode);
1408                         spin_unlock(&info->lock);
1409                 }
1410                 error = -EINVAL;
1411                 goto unlock;
1412         }
1413         *pagep = page;
1414         return 0;
1415
1416         /*
1417          * Error recovery.
1418          */
1419 decused:
1420         if (sbinfo->max_blocks)
1421                 percpu_counter_add(&sbinfo->used_blocks, -1);
1422 unacct:
1423         shmem_unacct_blocks(info->flags, 1);
1424 failed:
1425         if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1426                 error = -EEXIST;
1427 unlock:
1428         if (page) {
1429                 unlock_page(page);
1430                 put_page(page);
1431         }
1432         if (error == -ENOSPC && !once++) {
1433                 info = SHMEM_I(inode);
1434                 spin_lock(&info->lock);
1435                 shmem_recalc_inode(inode);
1436                 spin_unlock(&info->lock);
1437                 goto repeat;
1438         }
1439         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1440                 goto repeat;
1441         return error;
1442 }
1443
1444 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1445 {
1446         struct inode *inode = file_inode(vma->vm_file);
1447         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1448         int error;
1449         int ret = VM_FAULT_LOCKED;
1450
1451         /*
1452          * Trinity finds that probing a hole which tmpfs is punching can
1453          * prevent the hole-punch from ever completing: which in turn
1454          * locks writers out with its hold on i_mutex.  So refrain from
1455          * faulting pages into the hole while it's being punched.  Although
1456          * shmem_undo_range() does remove the additions, it may be unable to
1457          * keep up, as each new page needs its own unmap_mapping_range() call,
1458          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1459          *
1460          * It does not matter if we sometimes reach this check just before the
1461          * hole-punch begins, so that one fault then races with the punch:
1462          * we just need to make racing faults a rare case.
1463          *
1464          * The implementation below would be much simpler if we just used a
1465          * standard mutex or completion: but we cannot take i_mutex in fault,
1466          * and bloating every shmem inode for this unlikely case would be sad.
1467          */
1468         if (unlikely(inode->i_private)) {
1469                 struct shmem_falloc *shmem_falloc;
1470
1471                 spin_lock(&inode->i_lock);
1472                 shmem_falloc = inode->i_private;
1473                 if (shmem_falloc &&
1474                     shmem_falloc->waitq &&
1475                     vmf->pgoff >= shmem_falloc->start &&
1476                     vmf->pgoff < shmem_falloc->next) {
1477                         wait_queue_head_t *shmem_falloc_waitq;
1478                         DEFINE_WAIT(shmem_fault_wait);
1479
1480                         ret = VM_FAULT_NOPAGE;
1481                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1482                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1483                                 /* It's polite to up mmap_sem if we can */
1484                                 up_read(&vma->vm_mm->mmap_sem);
1485                                 ret = VM_FAULT_RETRY;
1486                         }
1487
1488                         shmem_falloc_waitq = shmem_falloc->waitq;
1489                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1490                                         TASK_UNINTERRUPTIBLE);
1491                         spin_unlock(&inode->i_lock);
1492                         schedule();
1493
1494                         /*
1495                          * shmem_falloc_waitq points into the shmem_fallocate()
1496                          * stack of the hole-punching task: shmem_falloc_waitq
1497                          * is usually invalid by the time we reach here, but
1498                          * finish_wait() does not dereference it in that case;
1499                          * though i_lock needed lest racing with wake_up_all().
1500                          */
1501                         spin_lock(&inode->i_lock);
1502                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1503                         spin_unlock(&inode->i_lock);
1504                         return ret;
1505                 }
1506                 spin_unlock(&inode->i_lock);
1507         }
1508
1509         error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
1510                                   gfp, vma->vm_mm, &ret);
1511         if (error)
1512                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1513         return ret;
1514 }
1515
1516 #ifdef CONFIG_NUMA
1517 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1518 {
1519         struct inode *inode = file_inode(vma->vm_file);
1520         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1521 }
1522
1523 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1524                                           unsigned long addr)
1525 {
1526         struct inode *inode = file_inode(vma->vm_file);
1527         pgoff_t index;
1528
1529         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1530         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1531 }
1532 #endif
1533
1534 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1535 {
1536         struct inode *inode = file_inode(file);
1537         struct shmem_inode_info *info = SHMEM_I(inode);
1538         int retval = -ENOMEM;
1539
1540         spin_lock(&info->lock);
1541         if (lock && !(info->flags & VM_LOCKED)) {
1542                 if (!user_shm_lock(inode->i_size, user))
1543                         goto out_nomem;
1544                 info->flags |= VM_LOCKED;
1545                 mapping_set_unevictable(file->f_mapping);
1546         }
1547         if (!lock && (info->flags & VM_LOCKED) && user) {
1548                 user_shm_unlock(inode->i_size, user);
1549                 info->flags &= ~VM_LOCKED;
1550                 mapping_clear_unevictable(file->f_mapping);
1551         }
1552         retval = 0;
1553
1554 out_nomem:
1555         spin_unlock(&info->lock);
1556         return retval;
1557 }
1558
1559 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1560 {
1561         file_accessed(file);
1562         vma->vm_ops = &shmem_vm_ops;
1563         return 0;
1564 }
1565
1566 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1567                                      umode_t mode, dev_t dev, unsigned long flags)
1568 {
1569         struct inode *inode;
1570         struct shmem_inode_info *info;
1571         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1572
1573         if (shmem_reserve_inode(sb))
1574                 return NULL;
1575
1576         inode = new_inode(sb);
1577         if (inode) {
1578                 inode->i_ino = get_next_ino();
1579                 inode_init_owner(inode, dir, mode);
1580                 inode->i_blocks = 0;
1581                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1582                 inode->i_generation = get_seconds();
1583                 info = SHMEM_I(inode);
1584                 memset(info, 0, (char *)inode - (char *)info);
1585                 spin_lock_init(&info->lock);
1586                 info->seals = F_SEAL_SEAL;
1587                 info->flags = flags & VM_NORESERVE;
1588                 INIT_LIST_HEAD(&info->swaplist);
1589                 simple_xattrs_init(&info->xattrs);
1590                 cache_no_acl(inode);
1591
1592                 switch (mode & S_IFMT) {
1593                 default:
1594                         inode->i_op = &shmem_special_inode_operations;
1595                         init_special_inode(inode, mode, dev);
1596                         break;
1597                 case S_IFREG:
1598                         inode->i_mapping->a_ops = &shmem_aops;
1599                         inode->i_op = &shmem_inode_operations;
1600                         inode->i_fop = &shmem_file_operations;
1601                         mpol_shared_policy_init(&info->policy,
1602                                                  shmem_get_sbmpol(sbinfo));
1603                         break;
1604                 case S_IFDIR:
1605                         inc_nlink(inode);
1606                         /* Some things misbehave if size == 0 on a directory */
1607                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1608                         inode->i_op = &shmem_dir_inode_operations;
1609                         inode->i_fop = &simple_dir_operations;
1610                         break;
1611                 case S_IFLNK:
1612                         /*
1613                          * Must not load anything in the rbtree,
1614                          * mpol_free_shared_policy will not be called.
1615                          */
1616                         mpol_shared_policy_init(&info->policy, NULL);
1617                         break;
1618                 }
1619         } else
1620                 shmem_free_inode(sb);
1621         return inode;
1622 }
1623
1624 bool shmem_mapping(struct address_space *mapping)
1625 {
1626         if (!mapping->host)
1627                 return false;
1628
1629         return mapping->host->i_sb->s_op == &shmem_ops;
1630 }
1631
1632 #ifdef CONFIG_TMPFS
1633 static const struct inode_operations shmem_symlink_inode_operations;
1634 static const struct inode_operations shmem_short_symlink_operations;
1635
1636 #ifdef CONFIG_TMPFS_XATTR
1637 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1638 #else
1639 #define shmem_initxattrs NULL
1640 #endif
1641
1642 static int
1643 shmem_write_begin(struct file *file, struct address_space *mapping,
1644                         loff_t pos, unsigned len, unsigned flags,
1645                         struct page **pagep, void **fsdata)
1646 {
1647         struct inode *inode = mapping->host;
1648         struct shmem_inode_info *info = SHMEM_I(inode);
1649         pgoff_t index = pos >> PAGE_SHIFT;
1650
1651         /* i_mutex is held by caller */
1652         if (unlikely(info->seals)) {
1653                 if (info->seals & F_SEAL_WRITE)
1654                         return -EPERM;
1655                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1656                         return -EPERM;
1657         }
1658
1659         return shmem_getpage(inode, index, pagep, SGP_WRITE);
1660 }
1661
1662 static int
1663 shmem_write_end(struct file *file, struct address_space *mapping,
1664                         loff_t pos, unsigned len, unsigned copied,
1665                         struct page *page, void *fsdata)
1666 {
1667         struct inode *inode = mapping->host;
1668
1669         if (pos + copied > inode->i_size)
1670                 i_size_write(inode, pos + copied);
1671
1672         if (!PageUptodate(page)) {
1673                 if (copied < PAGE_SIZE) {
1674                         unsigned from = pos & (PAGE_SIZE - 1);
1675                         zero_user_segments(page, 0, from,
1676                                         from + copied, PAGE_SIZE);
1677                 }
1678                 SetPageUptodate(page);
1679         }
1680         set_page_dirty(page);
1681         unlock_page(page);
1682         put_page(page);
1683
1684         return copied;
1685 }
1686
1687 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1688 {
1689         struct file *file = iocb->ki_filp;
1690         struct inode *inode = file_inode(file);
1691         struct address_space *mapping = inode->i_mapping;
1692         pgoff_t index;
1693         unsigned long offset;
1694         enum sgp_type sgp = SGP_READ;
1695         int error = 0;
1696         ssize_t retval = 0;
1697         loff_t *ppos = &iocb->ki_pos;
1698
1699         /*
1700          * Might this read be for a stacking filesystem?  Then when reading
1701          * holes of a sparse file, we actually need to allocate those pages,
1702          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1703          */
1704         if (!iter_is_iovec(to))
1705                 sgp = SGP_CACHE;
1706
1707         index = *ppos >> PAGE_SHIFT;
1708         offset = *ppos & ~PAGE_MASK;
1709
1710         for (;;) {
1711                 struct page *page = NULL;
1712                 pgoff_t end_index;
1713                 unsigned long nr, ret;
1714                 loff_t i_size = i_size_read(inode);
1715
1716                 end_index = i_size >> PAGE_SHIFT;
1717                 if (index > end_index)
1718                         break;
1719                 if (index == end_index) {
1720                         nr = i_size & ~PAGE_MASK;
1721                         if (nr <= offset)
1722                                 break;
1723                 }
1724
1725                 error = shmem_getpage(inode, index, &page, sgp);
1726                 if (error) {
1727                         if (error == -EINVAL)
1728                                 error = 0;
1729                         break;
1730                 }
1731                 if (page) {
1732                         if (sgp == SGP_CACHE)
1733                                 set_page_dirty(page);
1734                         unlock_page(page);
1735                 }
1736
1737                 /*
1738                  * We must evaluate after, since reads (unlike writes)
1739                  * are called without i_mutex protection against truncate
1740                  */
1741                 nr = PAGE_SIZE;
1742                 i_size = i_size_read(inode);
1743                 end_index = i_size >> PAGE_SHIFT;
1744                 if (index == end_index) {
1745                         nr = i_size & ~PAGE_MASK;
1746                         if (nr <= offset) {
1747                                 if (page)
1748                                         put_page(page);
1749                                 break;
1750                         }
1751                 }
1752                 nr -= offset;
1753
1754                 if (page) {
1755                         /*
1756                          * If users can be writing to this page using arbitrary
1757                          * virtual addresses, take care about potential aliasing
1758                          * before reading the page on the kernel side.
1759                          */
1760                         if (mapping_writably_mapped(mapping))
1761                                 flush_dcache_page(page);
1762                         /*
1763                          * Mark the page accessed if we read the beginning.
1764                          */
1765                         if (!offset)
1766                                 mark_page_accessed(page);
1767                 } else {
1768                         page = ZERO_PAGE(0);
1769                         get_page(page);
1770                 }
1771
1772                 /*
1773                  * Ok, we have the page, and it's up-to-date, so
1774                  * now we can copy it to user space...
1775                  */
1776                 ret = copy_page_to_iter(page, offset, nr, to);
1777                 retval += ret;
1778                 offset += ret;
1779                 index += offset >> PAGE_SHIFT;
1780                 offset &= ~PAGE_MASK;
1781
1782                 put_page(page);
1783                 if (!iov_iter_count(to))
1784                         break;
1785                 if (ret < nr) {
1786                         error = -EFAULT;
1787                         break;
1788                 }
1789                 cond_resched();
1790         }
1791
1792         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
1793         file_accessed(file);
1794         return retval ? retval : error;
1795 }
1796
1797 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1798                                 struct pipe_inode_info *pipe, size_t len,
1799                                 unsigned int flags)
1800 {
1801         struct address_space *mapping = in->f_mapping;
1802         struct inode *inode = mapping->host;
1803         unsigned int loff, nr_pages, req_pages;
1804         struct page *pages[PIPE_DEF_BUFFERS];
1805         struct partial_page partial[PIPE_DEF_BUFFERS];
1806         struct page *page;
1807         pgoff_t index, end_index;
1808         loff_t isize, left;
1809         int error, page_nr;
1810         struct splice_pipe_desc spd = {
1811                 .pages = pages,
1812                 .partial = partial,
1813                 .nr_pages_max = PIPE_DEF_BUFFERS,
1814                 .flags = flags,
1815                 .ops = &page_cache_pipe_buf_ops,
1816                 .spd_release = spd_release_page,
1817         };
1818
1819         isize = i_size_read(inode);
1820         if (unlikely(*ppos >= isize))
1821                 return 0;
1822
1823         left = isize - *ppos;
1824         if (unlikely(left < len))
1825                 len = left;
1826
1827         if (splice_grow_spd(pipe, &spd))
1828                 return -ENOMEM;
1829
1830         index = *ppos >> PAGE_SHIFT;
1831         loff = *ppos & ~PAGE_MASK;
1832         req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
1833         nr_pages = min(req_pages, spd.nr_pages_max);
1834
1835         spd.nr_pages = find_get_pages_contig(mapping, index,
1836                                                 nr_pages, spd.pages);
1837         index += spd.nr_pages;
1838         error = 0;
1839
1840         while (spd.nr_pages < nr_pages) {
1841                 error = shmem_getpage(inode, index, &page, SGP_CACHE);
1842                 if (error)
1843                         break;
1844                 unlock_page(page);
1845                 spd.pages[spd.nr_pages++] = page;
1846                 index++;
1847         }
1848
1849         index = *ppos >> PAGE_SHIFT;
1850         nr_pages = spd.nr_pages;
1851         spd.nr_pages = 0;
1852
1853         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1854                 unsigned int this_len;
1855
1856                 if (!len)
1857                         break;
1858
1859                 this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
1860                 page = spd.pages[page_nr];
1861
1862                 if (!PageUptodate(page) || page->mapping != mapping) {
1863                         error = shmem_getpage(inode, index, &page, SGP_CACHE);
1864                         if (error)
1865                                 break;
1866                         unlock_page(page);
1867                         put_page(spd.pages[page_nr]);
1868                         spd.pages[page_nr] = page;
1869                 }
1870
1871                 isize = i_size_read(inode);
1872                 end_index = (isize - 1) >> PAGE_SHIFT;
1873                 if (unlikely(!isize || index > end_index))
1874                         break;
1875
1876                 if (end_index == index) {
1877                         unsigned int plen;
1878
1879                         plen = ((isize - 1) & ~PAGE_MASK) + 1;
1880                         if (plen <= loff)
1881                                 break;
1882
1883                         this_len = min(this_len, plen - loff);
1884                         len = this_len;
1885                 }
1886
1887                 spd.partial[page_nr].offset = loff;
1888                 spd.partial[page_nr].len = this_len;
1889                 len -= this_len;
1890                 loff = 0;
1891                 spd.nr_pages++;
1892                 index++;
1893         }
1894
1895         while (page_nr < nr_pages)
1896                 put_page(spd.pages[page_nr++]);
1897
1898         if (spd.nr_pages)
1899                 error = splice_to_pipe(pipe, &spd);
1900
1901         splice_shrink_spd(&spd);
1902
1903         if (error > 0) {
1904                 *ppos += error;
1905                 file_accessed(in);
1906         }
1907         return error;
1908 }
1909
1910 /*
1911  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1912  */
1913 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1914                                     pgoff_t index, pgoff_t end, int whence)
1915 {
1916         struct page *page;
1917         struct pagevec pvec;
1918         pgoff_t indices[PAGEVEC_SIZE];
1919         bool done = false;
1920         int i;
1921
1922         pagevec_init(&pvec, 0);
1923         pvec.nr = 1;            /* start small: we may be there already */
1924         while (!done) {
1925                 pvec.nr = find_get_entries(mapping, index,
1926                                         pvec.nr, pvec.pages, indices);
1927                 if (!pvec.nr) {
1928                         if (whence == SEEK_DATA)
1929                                 index = end;
1930                         break;
1931                 }
1932                 for (i = 0; i < pvec.nr; i++, index++) {
1933                         if (index < indices[i]) {
1934                                 if (whence == SEEK_HOLE) {
1935                                         done = true;
1936                                         break;
1937                                 }
1938                                 index = indices[i];
1939                         }
1940                         page = pvec.pages[i];
1941                         if (page && !radix_tree_exceptional_entry(page)) {
1942                                 if (!PageUptodate(page))
1943                                         page = NULL;
1944                         }
1945                         if (index >= end ||
1946                             (page && whence == SEEK_DATA) ||
1947                             (!page && whence == SEEK_HOLE)) {
1948                                 done = true;
1949                                 break;
1950                         }
1951                 }
1952                 pagevec_remove_exceptionals(&pvec);
1953                 pagevec_release(&pvec);
1954                 pvec.nr = PAGEVEC_SIZE;
1955                 cond_resched();
1956         }
1957         return index;
1958 }
1959
1960 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1961 {
1962         struct address_space *mapping = file->f_mapping;
1963         struct inode *inode = mapping->host;
1964         pgoff_t start, end;
1965         loff_t new_offset;
1966
1967         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1968                 return generic_file_llseek_size(file, offset, whence,
1969                                         MAX_LFS_FILESIZE, i_size_read(inode));
1970         inode_lock(inode);
1971         /* We're holding i_mutex so we can access i_size directly */
1972
1973         if (offset < 0)
1974                 offset = -EINVAL;
1975         else if (offset >= inode->i_size)
1976                 offset = -ENXIO;
1977         else {
1978                 start = offset >> PAGE_SHIFT;
1979                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1980                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1981                 new_offset <<= PAGE_SHIFT;
1982                 if (new_offset > offset) {
1983                         if (new_offset < inode->i_size)
1984                                 offset = new_offset;
1985                         else if (whence == SEEK_DATA)
1986                                 offset = -ENXIO;
1987                         else
1988                                 offset = inode->i_size;
1989                 }
1990         }
1991
1992         if (offset >= 0)
1993                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1994         inode_unlock(inode);
1995         return offset;
1996 }
1997
1998 /*
1999  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2000  * so reuse a tag which we firmly believe is never set or cleared on shmem.
2001  */
2002 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2003 #define LAST_SCAN               4       /* about 150ms max */
2004
2005 static void shmem_tag_pins(struct address_space *mapping)
2006 {
2007         struct radix_tree_iter iter;
2008         void **slot;
2009         pgoff_t start;
2010         struct page *page;
2011
2012         lru_add_drain();
2013         start = 0;
2014         rcu_read_lock();
2015
2016         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2017                 page = radix_tree_deref_slot(slot);
2018                 if (!page || radix_tree_exception(page)) {
2019                         if (radix_tree_deref_retry(page)) {
2020                                 slot = radix_tree_iter_retry(&iter);
2021                                 continue;
2022                         }
2023                 } else if (page_count(page) - page_mapcount(page) > 1) {
2024                         spin_lock_irq(&mapping->tree_lock);
2025                         radix_tree_tag_set(&mapping->page_tree, iter.index,
2026                                            SHMEM_TAG_PINNED);
2027                         spin_unlock_irq(&mapping->tree_lock);
2028                 }
2029
2030                 if (need_resched()) {
2031                         cond_resched_rcu();
2032                         slot = radix_tree_iter_next(&iter);
2033                 }
2034         }
2035         rcu_read_unlock();
2036 }
2037
2038 /*
2039  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2040  * via get_user_pages(), drivers might have some pending I/O without any active
2041  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2042  * and see whether it has an elevated ref-count. If so, we tag them and wait for
2043  * them to be dropped.
2044  * The caller must guarantee that no new user will acquire writable references
2045  * to those pages to avoid races.
2046  */
2047 static int shmem_wait_for_pins(struct address_space *mapping)
2048 {
2049         struct radix_tree_iter iter;
2050         void **slot;
2051         pgoff_t start;
2052         struct page *page;
2053         int error, scan;
2054
2055         shmem_tag_pins(mapping);
2056
2057         error = 0;
2058         for (scan = 0; scan <= LAST_SCAN; scan++) {
2059                 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2060                         break;
2061
2062                 if (!scan)
2063                         lru_add_drain_all();
2064                 else if (schedule_timeout_killable((HZ << scan) / 200))
2065                         scan = LAST_SCAN;
2066
2067                 start = 0;
2068                 rcu_read_lock();
2069                 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2070                                            start, SHMEM_TAG_PINNED) {
2071
2072                         page = radix_tree_deref_slot(slot);
2073                         if (radix_tree_exception(page)) {
2074                                 if (radix_tree_deref_retry(page)) {
2075                                         slot = radix_tree_iter_retry(&iter);
2076                                         continue;
2077                                 }
2078
2079                                 page = NULL;
2080                         }
2081
2082                         if (page &&
2083                             page_count(page) - page_mapcount(page) != 1) {
2084                                 if (scan < LAST_SCAN)
2085                                         goto continue_resched;
2086
2087                                 /*
2088                                  * On the last scan, we clean up all those tags
2089                                  * we inserted; but make a note that we still
2090                                  * found pages pinned.
2091                                  */
2092                                 error = -EBUSY;
2093                         }
2094
2095                         spin_lock_irq(&mapping->tree_lock);
2096                         radix_tree_tag_clear(&mapping->page_tree,
2097                                              iter.index, SHMEM_TAG_PINNED);
2098                         spin_unlock_irq(&mapping->tree_lock);
2099 continue_resched:
2100                         if (need_resched()) {
2101                                 cond_resched_rcu();
2102                                 slot = radix_tree_iter_next(&iter);
2103                         }
2104                 }
2105                 rcu_read_unlock();
2106         }
2107
2108         return error;
2109 }
2110
2111 #define F_ALL_SEALS (F_SEAL_SEAL | \
2112                      F_SEAL_SHRINK | \
2113                      F_SEAL_GROW | \
2114                      F_SEAL_WRITE)
2115
2116 int shmem_add_seals(struct file *file, unsigned int seals)
2117 {
2118         struct inode *inode = file_inode(file);
2119         struct shmem_inode_info *info = SHMEM_I(inode);
2120         int error;
2121
2122         /*
2123          * SEALING
2124          * Sealing allows multiple parties to share a shmem-file but restrict
2125          * access to a specific subset of file operations. Seals can only be
2126          * added, but never removed. This way, mutually untrusted parties can
2127          * share common memory regions with a well-defined policy. A malicious
2128          * peer can thus never perform unwanted operations on a shared object.
2129          *
2130          * Seals are only supported on special shmem-files and always affect
2131          * the whole underlying inode. Once a seal is set, it may prevent some
2132          * kinds of access to the file. Currently, the following seals are
2133          * defined:
2134          *   SEAL_SEAL: Prevent further seals from being set on this file
2135          *   SEAL_SHRINK: Prevent the file from shrinking
2136          *   SEAL_GROW: Prevent the file from growing
2137          *   SEAL_WRITE: Prevent write access to the file
2138          *
2139          * As we don't require any trust relationship between two parties, we
2140          * must prevent seals from being removed. Therefore, sealing a file
2141          * only adds a given set of seals to the file, it never touches
2142          * existing seals. Furthermore, the "setting seals"-operation can be
2143          * sealed itself, which basically prevents any further seal from being
2144          * added.
2145          *
2146          * Semantics of sealing are only defined on volatile files. Only
2147          * anonymous shmem files support sealing. More importantly, seals are
2148          * never written to disk. Therefore, there's no plan to support it on
2149          * other file types.
2150          */
2151
2152         if (file->f_op != &shmem_file_operations)
2153                 return -EINVAL;
2154         if (!(file->f_mode & FMODE_WRITE))
2155                 return -EPERM;
2156         if (seals & ~(unsigned int)F_ALL_SEALS)
2157                 return -EINVAL;
2158
2159         inode_lock(inode);
2160
2161         if (info->seals & F_SEAL_SEAL) {
2162                 error = -EPERM;
2163                 goto unlock;
2164         }
2165
2166         if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2167                 error = mapping_deny_writable(file->f_mapping);
2168                 if (error)
2169                         goto unlock;
2170
2171                 error = shmem_wait_for_pins(file->f_mapping);
2172                 if (error) {
2173                         mapping_allow_writable(file->f_mapping);
2174                         goto unlock;
2175                 }
2176         }
2177
2178         info->seals |= seals;
2179         error = 0;
2180
2181 unlock:
2182         inode_unlock(inode);
2183         return error;
2184 }
2185 EXPORT_SYMBOL_GPL(shmem_add_seals);
2186
2187 int shmem_get_seals(struct file *file)
2188 {
2189         if (file->f_op != &shmem_file_operations)
2190                 return -EINVAL;
2191
2192         return SHMEM_I(file_inode(file))->seals;
2193 }
2194 EXPORT_SYMBOL_GPL(shmem_get_seals);
2195
2196 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2197 {
2198         long error;
2199
2200         switch (cmd) {
2201         case F_ADD_SEALS:
2202                 /* disallow upper 32bit */
2203                 if (arg > UINT_MAX)
2204                         return -EINVAL;
2205
2206                 error = shmem_add_seals(file, arg);
2207                 break;
2208         case F_GET_SEALS:
2209                 error = shmem_get_seals(file);
2210                 break;
2211         default:
2212                 error = -EINVAL;
2213                 break;
2214         }
2215
2216         return error;
2217 }
2218
2219 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2220                                                          loff_t len)
2221 {
2222         struct inode *inode = file_inode(file);
2223         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2224         struct shmem_inode_info *info = SHMEM_I(inode);
2225         struct shmem_falloc shmem_falloc;
2226         pgoff_t start, index, end;
2227         int error;
2228
2229         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2230                 return -EOPNOTSUPP;
2231
2232         inode_lock(inode);
2233
2234         if (mode & FALLOC_FL_PUNCH_HOLE) {
2235                 struct address_space *mapping = file->f_mapping;
2236                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2237                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2238                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2239
2240                 /* protected by i_mutex */
2241                 if (info->seals & F_SEAL_WRITE) {
2242                         error = -EPERM;
2243                         goto out;
2244                 }
2245
2246                 shmem_falloc.waitq = &shmem_falloc_waitq;
2247                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2248                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2249                 spin_lock(&inode->i_lock);
2250                 inode->i_private = &shmem_falloc;
2251                 spin_unlock(&inode->i_lock);
2252
2253                 if ((u64)unmap_end > (u64)unmap_start)
2254                         unmap_mapping_range(mapping, unmap_start,
2255                                             1 + unmap_end - unmap_start, 0);
2256                 shmem_truncate_range(inode, offset, offset + len - 1);
2257                 /* No need to unmap again: hole-punching leaves COWed pages */
2258
2259                 spin_lock(&inode->i_lock);
2260                 inode->i_private = NULL;
2261                 wake_up_all(&shmem_falloc_waitq);
2262                 spin_unlock(&inode->i_lock);
2263                 error = 0;
2264                 goto out;
2265         }
2266
2267         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2268         error = inode_newsize_ok(inode, offset + len);
2269         if (error)
2270                 goto out;
2271
2272         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2273                 error = -EPERM;
2274                 goto out;
2275         }
2276
2277         start = offset >> PAGE_SHIFT;
2278         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2279         /* Try to avoid a swapstorm if len is impossible to satisfy */
2280         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2281                 error = -ENOSPC;
2282                 goto out;
2283         }
2284
2285         shmem_falloc.waitq = NULL;
2286         shmem_falloc.start = start;
2287         shmem_falloc.next  = start;
2288         shmem_falloc.nr_falloced = 0;
2289         shmem_falloc.nr_unswapped = 0;
2290         spin_lock(&inode->i_lock);
2291         inode->i_private = &shmem_falloc;
2292         spin_unlock(&inode->i_lock);
2293
2294         for (index = start; index < end; index++) {
2295                 struct page *page;
2296
2297                 /*
2298                  * Good, the fallocate(2) manpage permits EINTR: we may have
2299                  * been interrupted because we are using up too much memory.
2300                  */
2301                 if (signal_pending(current))
2302                         error = -EINTR;
2303                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2304                         error = -ENOMEM;
2305                 else
2306                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2307                 if (error) {
2308                         /* Remove the !PageUptodate pages we added */
2309                         if (index > start) {
2310                                 shmem_undo_range(inode,
2311                                     (loff_t)start << PAGE_SHIFT,
2312                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2313                         }
2314                         goto undone;
2315                 }
2316
2317                 /*
2318                  * Inform shmem_writepage() how far we have reached.
2319                  * No need for lock or barrier: we have the page lock.
2320                  */
2321                 shmem_falloc.next++;
2322                 if (!PageUptodate(page))
2323                         shmem_falloc.nr_falloced++;
2324
2325                 /*
2326                  * If !PageUptodate, leave it that way so that freeable pages
2327                  * can be recognized if we need to rollback on error later.
2328                  * But set_page_dirty so that memory pressure will swap rather
2329                  * than free the pages we are allocating (and SGP_CACHE pages
2330                  * might still be clean: we now need to mark those dirty too).
2331                  */
2332                 set_page_dirty(page);
2333                 unlock_page(page);
2334                 put_page(page);
2335                 cond_resched();
2336         }
2337
2338         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2339                 i_size_write(inode, offset + len);
2340         inode->i_ctime = CURRENT_TIME;
2341 undone:
2342         spin_lock(&inode->i_lock);
2343         inode->i_private = NULL;
2344         spin_unlock(&inode->i_lock);
2345 out:
2346         inode_unlock(inode);
2347         return error;
2348 }
2349
2350 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2351 {
2352         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2353
2354         buf->f_type = TMPFS_MAGIC;
2355         buf->f_bsize = PAGE_SIZE;
2356         buf->f_namelen = NAME_MAX;
2357         if (sbinfo->max_blocks) {
2358                 buf->f_blocks = sbinfo->max_blocks;
2359                 buf->f_bavail =
2360                 buf->f_bfree  = sbinfo->max_blocks -
2361                                 percpu_counter_sum(&sbinfo->used_blocks);
2362         }
2363         if (sbinfo->max_inodes) {
2364                 buf->f_files = sbinfo->max_inodes;
2365                 buf->f_ffree = sbinfo->free_inodes;
2366         }
2367         /* else leave those fields 0 like simple_statfs */
2368         return 0;
2369 }
2370
2371 /*
2372  * File creation. Allocate an inode, and we're done..
2373  */
2374 static int
2375 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2376 {
2377         struct inode *inode;
2378         int error = -ENOSPC;
2379
2380         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2381         if (inode) {
2382                 error = simple_acl_create(dir, inode);
2383                 if (error)
2384                         goto out_iput;
2385                 error = security_inode_init_security(inode, dir,
2386                                                      &dentry->d_name,
2387                                                      shmem_initxattrs, NULL);
2388                 if (error && error != -EOPNOTSUPP)
2389                         goto out_iput;
2390
2391                 error = 0;
2392                 dir->i_size += BOGO_DIRENT_SIZE;
2393                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2394                 d_instantiate(dentry, inode);
2395                 dget(dentry); /* Extra count - pin the dentry in core */
2396         }
2397         return error;
2398 out_iput:
2399         iput(inode);
2400         return error;
2401 }
2402
2403 static int
2404 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2405 {
2406         struct inode *inode;
2407         int error = -ENOSPC;
2408
2409         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2410         if (inode) {
2411                 error = security_inode_init_security(inode, dir,
2412                                                      NULL,
2413                                                      shmem_initxattrs, NULL);
2414                 if (error && error != -EOPNOTSUPP)
2415                         goto out_iput;
2416                 error = simple_acl_create(dir, inode);
2417                 if (error)
2418                         goto out_iput;
2419                 d_tmpfile(dentry, inode);
2420         }
2421         return error;
2422 out_iput:
2423         iput(inode);
2424         return error;
2425 }
2426
2427 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2428 {
2429         int error;
2430
2431         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2432                 return error;
2433         inc_nlink(dir);
2434         return 0;
2435 }
2436
2437 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2438                 bool excl)
2439 {
2440         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2441 }
2442
2443 /*
2444  * Link a file..
2445  */
2446 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2447 {
2448         struct inode *inode = d_inode(old_dentry);
2449         int ret;
2450
2451         /*
2452          * No ordinary (disk based) filesystem counts links as inodes;
2453          * but each new link needs a new dentry, pinning lowmem, and
2454          * tmpfs dentries cannot be pruned until they are unlinked.
2455          */
2456         ret = shmem_reserve_inode(inode->i_sb);
2457         if (ret)
2458                 goto out;
2459
2460         dir->i_size += BOGO_DIRENT_SIZE;
2461         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2462         inc_nlink(inode);
2463         ihold(inode);   /* New dentry reference */
2464         dget(dentry);           /* Extra pinning count for the created dentry */
2465         d_instantiate(dentry, inode);
2466 out:
2467         return ret;
2468 }
2469
2470 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2471 {
2472         struct inode *inode = d_inode(dentry);
2473
2474         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2475                 shmem_free_inode(inode->i_sb);
2476
2477         dir->i_size -= BOGO_DIRENT_SIZE;
2478         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2479         drop_nlink(inode);
2480         dput(dentry);   /* Undo the count from "create" - this does all the work */
2481         return 0;
2482 }
2483
2484 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2485 {
2486         if (!simple_empty(dentry))
2487                 return -ENOTEMPTY;
2488
2489         drop_nlink(d_inode(dentry));
2490         drop_nlink(dir);
2491         return shmem_unlink(dir, dentry);
2492 }
2493
2494 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2495 {
2496         bool old_is_dir = d_is_dir(old_dentry);
2497         bool new_is_dir = d_is_dir(new_dentry);
2498
2499         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2500                 if (old_is_dir) {
2501                         drop_nlink(old_dir);
2502                         inc_nlink(new_dir);
2503                 } else {
2504                         drop_nlink(new_dir);
2505                         inc_nlink(old_dir);
2506                 }
2507         }
2508         old_dir->i_ctime = old_dir->i_mtime =
2509         new_dir->i_ctime = new_dir->i_mtime =
2510         d_inode(old_dentry)->i_ctime =
2511         d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2512
2513         return 0;
2514 }
2515
2516 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2517 {
2518         struct dentry *whiteout;
2519         int error;
2520
2521         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2522         if (!whiteout)
2523                 return -ENOMEM;
2524
2525         error = shmem_mknod(old_dir, whiteout,
2526                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2527         dput(whiteout);
2528         if (error)
2529                 return error;
2530
2531         /*
2532          * Cheat and hash the whiteout while the old dentry is still in
2533          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2534          *
2535          * d_lookup() will consistently find one of them at this point,
2536          * not sure which one, but that isn't even important.
2537          */
2538         d_rehash(whiteout);
2539         return 0;
2540 }
2541
2542 /*
2543  * The VFS layer already does all the dentry stuff for rename,
2544  * we just have to decrement the usage count for the target if
2545  * it exists so that the VFS layer correctly free's it when it
2546  * gets overwritten.
2547  */
2548 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2549 {
2550         struct inode *inode = d_inode(old_dentry);
2551         int they_are_dirs = S_ISDIR(inode->i_mode);
2552
2553         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2554                 return -EINVAL;
2555
2556         if (flags & RENAME_EXCHANGE)
2557                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2558
2559         if (!simple_empty(new_dentry))
2560                 return -ENOTEMPTY;
2561
2562         if (flags & RENAME_WHITEOUT) {
2563                 int error;
2564
2565                 error = shmem_whiteout(old_dir, old_dentry);
2566                 if (error)
2567                         return error;
2568         }
2569
2570         if (d_really_is_positive(new_dentry)) {
2571                 (void) shmem_unlink(new_dir, new_dentry);
2572                 if (they_are_dirs) {
2573                         drop_nlink(d_inode(new_dentry));
2574                         drop_nlink(old_dir);
2575                 }
2576         } else if (they_are_dirs) {
2577                 drop_nlink(old_dir);
2578                 inc_nlink(new_dir);
2579         }
2580
2581         old_dir->i_size -= BOGO_DIRENT_SIZE;
2582         new_dir->i_size += BOGO_DIRENT_SIZE;
2583         old_dir->i_ctime = old_dir->i_mtime =
2584         new_dir->i_ctime = new_dir->i_mtime =
2585         inode->i_ctime = CURRENT_TIME;
2586         return 0;
2587 }
2588
2589 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2590 {
2591         int error;
2592         int len;
2593         struct inode *inode;
2594         struct page *page;
2595         struct shmem_inode_info *info;
2596
2597         len = strlen(symname) + 1;
2598         if (len > PAGE_SIZE)
2599                 return -ENAMETOOLONG;
2600
2601         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2602         if (!inode)
2603                 return -ENOSPC;
2604
2605         error = security_inode_init_security(inode, dir, &dentry->d_name,
2606                                              shmem_initxattrs, NULL);
2607         if (error) {
2608                 if (error != -EOPNOTSUPP) {
2609                         iput(inode);
2610                         return error;
2611                 }
2612                 error = 0;
2613         }
2614
2615         info = SHMEM_I(inode);
2616         inode->i_size = len-1;
2617         if (len <= SHORT_SYMLINK_LEN) {
2618                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2619                 if (!inode->i_link) {
2620                         iput(inode);
2621                         return -ENOMEM;
2622                 }
2623                 inode->i_op = &shmem_short_symlink_operations;
2624         } else {
2625                 inode_nohighmem(inode);
2626                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
2627                 if (error) {
2628                         iput(inode);
2629                         return error;
2630                 }
2631                 inode->i_mapping->a_ops = &shmem_aops;
2632                 inode->i_op = &shmem_symlink_inode_operations;
2633                 memcpy(page_address(page), symname, len);
2634                 SetPageUptodate(page);
2635                 set_page_dirty(page);
2636                 unlock_page(page);
2637                 put_page(page);
2638         }
2639         dir->i_size += BOGO_DIRENT_SIZE;
2640         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2641         d_instantiate(dentry, inode);
2642         dget(dentry);
2643         return 0;
2644 }
2645
2646 static void shmem_put_link(void *arg)
2647 {
2648         mark_page_accessed(arg);
2649         put_page(arg);
2650 }
2651
2652 static const char *shmem_get_link(struct dentry *dentry,
2653                                   struct inode *inode,
2654                                   struct delayed_call *done)
2655 {
2656         struct page *page = NULL;
2657         int error;
2658         if (!dentry) {
2659                 page = find_get_page(inode->i_mapping, 0);
2660                 if (!page)
2661                         return ERR_PTR(-ECHILD);
2662                 if (!PageUptodate(page)) {
2663                         put_page(page);
2664                         return ERR_PTR(-ECHILD);
2665                 }
2666         } else {
2667                 error = shmem_getpage(inode, 0, &page, SGP_READ);
2668                 if (error)
2669                         return ERR_PTR(error);
2670                 unlock_page(page);
2671         }
2672         set_delayed_call(done, shmem_put_link, page);
2673         return page_address(page);
2674 }
2675
2676 #ifdef CONFIG_TMPFS_XATTR
2677 /*
2678  * Superblocks without xattr inode operations may get some security.* xattr
2679  * support from the LSM "for free". As soon as we have any other xattrs
2680  * like ACLs, we also need to implement the security.* handlers at
2681  * filesystem level, though.
2682  */
2683
2684 /*
2685  * Callback for security_inode_init_security() for acquiring xattrs.
2686  */
2687 static int shmem_initxattrs(struct inode *inode,
2688                             const struct xattr *xattr_array,
2689                             void *fs_info)
2690 {
2691         struct shmem_inode_info *info = SHMEM_I(inode);
2692         const struct xattr *xattr;
2693         struct simple_xattr *new_xattr;
2694         size_t len;
2695
2696         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2697                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2698                 if (!new_xattr)
2699                         return -ENOMEM;
2700
2701                 len = strlen(xattr->name) + 1;
2702                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2703                                           GFP_KERNEL);
2704                 if (!new_xattr->name) {
2705                         kfree(new_xattr);
2706                         return -ENOMEM;
2707                 }
2708
2709                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2710                        XATTR_SECURITY_PREFIX_LEN);
2711                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2712                        xattr->name, len);
2713
2714                 simple_xattr_list_add(&info->xattrs, new_xattr);
2715         }
2716
2717         return 0;
2718 }
2719
2720 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2721                                    struct dentry *unused, struct inode *inode,
2722                                    const char *name, void *buffer, size_t size)
2723 {
2724         struct shmem_inode_info *info = SHMEM_I(inode);
2725
2726         name = xattr_full_name(handler, name);
2727         return simple_xattr_get(&info->xattrs, name, buffer, size);
2728 }
2729
2730 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2731                                    struct dentry *unused, struct inode *inode,
2732                                    const char *name, const void *value,
2733                                    size_t size, int flags)
2734 {
2735         struct shmem_inode_info *info = SHMEM_I(inode);
2736
2737         name = xattr_full_name(handler, name);
2738         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2739 }
2740
2741 static const struct xattr_handler shmem_security_xattr_handler = {
2742         .prefix = XATTR_SECURITY_PREFIX,
2743         .get = shmem_xattr_handler_get,
2744         .set = shmem_xattr_handler_set,
2745 };
2746
2747 static const struct xattr_handler shmem_trusted_xattr_handler = {
2748         .prefix = XATTR_TRUSTED_PREFIX,
2749         .get = shmem_xattr_handler_get,
2750         .set = shmem_xattr_handler_set,
2751 };
2752
2753 static const struct xattr_handler *shmem_xattr_handlers[] = {
2754 #ifdef CONFIG_TMPFS_POSIX_ACL
2755         &posix_acl_access_xattr_handler,
2756         &posix_acl_default_xattr_handler,
2757 #endif
2758         &shmem_security_xattr_handler,
2759         &shmem_trusted_xattr_handler,
2760         NULL
2761 };
2762
2763 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2764 {
2765         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2766         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
2767 }
2768 #endif /* CONFIG_TMPFS_XATTR */
2769
2770 static const struct inode_operations shmem_short_symlink_operations = {
2771         .readlink       = generic_readlink,
2772         .get_link       = simple_get_link,
2773 #ifdef CONFIG_TMPFS_XATTR
2774         .setxattr       = generic_setxattr,
2775         .getxattr       = generic_getxattr,
2776         .listxattr      = shmem_listxattr,
2777         .removexattr    = generic_removexattr,
2778 #endif
2779 };
2780
2781 static const struct inode_operations shmem_symlink_inode_operations = {
2782         .readlink       = generic_readlink,
2783         .get_link       = shmem_get_link,
2784 #ifdef CONFIG_TMPFS_XATTR
2785         .setxattr       = generic_setxattr,
2786         .getxattr       = generic_getxattr,
2787         .listxattr      = shmem_listxattr,
2788         .removexattr    = generic_removexattr,
2789 #endif
2790 };
2791
2792 static struct dentry *shmem_get_parent(struct dentry *child)
2793 {
2794         return ERR_PTR(-ESTALE);
2795 }
2796
2797 static int shmem_match(struct inode *ino, void *vfh)
2798 {
2799         __u32 *fh = vfh;
2800         __u64 inum = fh[2];
2801         inum = (inum << 32) | fh[1];
2802         return ino->i_ino == inum && fh[0] == ino->i_generation;
2803 }
2804
2805 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2806                 struct fid *fid, int fh_len, int fh_type)
2807 {
2808         struct inode *inode;
2809         struct dentry *dentry = NULL;
2810         u64 inum;
2811
2812         if (fh_len < 3)
2813                 return NULL;
2814
2815         inum = fid->raw[2];
2816         inum = (inum << 32) | fid->raw[1];
2817
2818         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2819                         shmem_match, fid->raw);
2820         if (inode) {
2821                 dentry = d_find_alias(inode);
2822                 iput(inode);
2823         }
2824
2825         return dentry;
2826 }
2827
2828 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2829                                 struct inode *parent)
2830 {
2831         if (*len < 3) {
2832                 *len = 3;
2833                 return FILEID_INVALID;
2834         }
2835
2836         if (inode_unhashed(inode)) {
2837                 /* Unfortunately insert_inode_hash is not idempotent,
2838                  * so as we hash inodes here rather than at creation
2839                  * time, we need a lock to ensure we only try
2840                  * to do it once
2841                  */
2842                 static DEFINE_SPINLOCK(lock);
2843                 spin_lock(&lock);
2844                 if (inode_unhashed(inode))
2845                         __insert_inode_hash(inode,
2846                                             inode->i_ino + inode->i_generation);
2847                 spin_unlock(&lock);
2848         }
2849
2850         fh[0] = inode->i_generation;
2851         fh[1] = inode->i_ino;
2852         fh[2] = ((__u64)inode->i_ino) >> 32;
2853
2854         *len = 3;
2855         return 1;
2856 }
2857
2858 static const struct export_operations shmem_export_ops = {
2859         .get_parent     = shmem_get_parent,
2860         .encode_fh      = shmem_encode_fh,
2861         .fh_to_dentry   = shmem_fh_to_dentry,
2862 };
2863
2864 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2865                                bool remount)
2866 {
2867         char *this_char, *value, *rest;
2868         struct mempolicy *mpol = NULL;
2869         uid_t uid;
2870         gid_t gid;
2871
2872         while (options != NULL) {
2873                 this_char = options;
2874                 for (;;) {
2875                         /*
2876                          * NUL-terminate this option: unfortunately,
2877                          * mount options form a comma-separated list,
2878                          * but mpol's nodelist may also contain commas.
2879                          */
2880                         options = strchr(options, ',');
2881                         if (options == NULL)
2882                                 break;
2883                         options++;
2884                         if (!isdigit(*options)) {
2885                                 options[-1] = '\0';
2886                                 break;
2887                         }
2888                 }
2889                 if (!*this_char)
2890                         continue;
2891                 if ((value = strchr(this_char,'=')) != NULL) {
2892                         *value++ = 0;
2893                 } else {
2894                         pr_err("tmpfs: No value for mount option '%s'\n",
2895                                this_char);
2896                         goto error;
2897                 }
2898
2899                 if (!strcmp(this_char,"size")) {
2900                         unsigned long long size;
2901                         size = memparse(value,&rest);
2902                         if (*rest == '%') {
2903                                 size <<= PAGE_SHIFT;
2904                                 size *= totalram_pages;
2905                                 do_div(size, 100);
2906                                 rest++;
2907                         }
2908                         if (*rest)
2909                                 goto bad_val;
2910                         sbinfo->max_blocks =
2911                                 DIV_ROUND_UP(size, PAGE_SIZE);
2912                 } else if (!strcmp(this_char,"nr_blocks")) {
2913                         sbinfo->max_blocks = memparse(value, &rest);
2914                         if (*rest)
2915                                 goto bad_val;
2916                 } else if (!strcmp(this_char,"nr_inodes")) {
2917                         sbinfo->max_inodes = memparse(value, &rest);
2918                         if (*rest)
2919                                 goto bad_val;
2920                 } else if (!strcmp(this_char,"mode")) {
2921                         if (remount)
2922                                 continue;
2923                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2924                         if (*rest)
2925                                 goto bad_val;
2926                 } else if (!strcmp(this_char,"uid")) {
2927                         if (remount)
2928                                 continue;
2929                         uid = simple_strtoul(value, &rest, 0);
2930                         if (*rest)
2931                                 goto bad_val;
2932                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2933                         if (!uid_valid(sbinfo->uid))
2934                                 goto bad_val;
2935                 } else if (!strcmp(this_char,"gid")) {
2936                         if (remount)
2937                                 continue;
2938                         gid = simple_strtoul(value, &rest, 0);
2939                         if (*rest)
2940                                 goto bad_val;
2941                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2942                         if (!gid_valid(sbinfo->gid))
2943                                 goto bad_val;
2944 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2945                 } else if (!strcmp(this_char, "huge")) {
2946                         int huge;
2947                         huge = shmem_parse_huge(value);
2948                         if (huge < 0)
2949                                 goto bad_val;
2950                         if (!has_transparent_hugepage() &&
2951                                         huge != SHMEM_HUGE_NEVER)
2952                                 goto bad_val;
2953                         sbinfo->huge = huge;
2954 #endif
2955 #ifdef CONFIG_NUMA
2956                 } else if (!strcmp(this_char,"mpol")) {
2957                         mpol_put(mpol);
2958                         mpol = NULL;
2959                         if (mpol_parse_str(value, &mpol))
2960                                 goto bad_val;
2961 #endif
2962                 } else {
2963                         pr_err("tmpfs: Bad mount option %s\n", this_char);
2964                         goto error;
2965                 }
2966         }
2967         sbinfo->mpol = mpol;
2968         return 0;
2969
2970 bad_val:
2971         pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
2972                value, this_char);
2973 error:
2974         mpol_put(mpol);
2975         return 1;
2976
2977 }
2978
2979 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2980 {
2981         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2982         struct shmem_sb_info config = *sbinfo;
2983         unsigned long inodes;
2984         int error = -EINVAL;
2985
2986         config.mpol = NULL;
2987         if (shmem_parse_options(data, &config, true))
2988                 return error;
2989
2990         spin_lock(&sbinfo->stat_lock);
2991         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2992         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2993                 goto out;
2994         if (config.max_inodes < inodes)
2995                 goto out;
2996         /*
2997          * Those tests disallow limited->unlimited while any are in use;
2998          * but we must separately disallow unlimited->limited, because
2999          * in that case we have no record of how much is already in use.
3000          */
3001         if (config.max_blocks && !sbinfo->max_blocks)
3002                 goto out;
3003         if (config.max_inodes && !sbinfo->max_inodes)
3004                 goto out;
3005
3006         error = 0;
3007         sbinfo->huge = config.huge;
3008         sbinfo->max_blocks  = config.max_blocks;
3009         sbinfo->max_inodes  = config.max_inodes;
3010         sbinfo->free_inodes = config.max_inodes - inodes;
3011
3012         /*
3013          * Preserve previous mempolicy unless mpol remount option was specified.
3014          */
3015         if (config.mpol) {
3016                 mpol_put(sbinfo->mpol);
3017                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
3018         }
3019 out:
3020         spin_unlock(&sbinfo->stat_lock);
3021         return error;
3022 }
3023
3024 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3025 {
3026         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3027
3028         if (sbinfo->max_blocks != shmem_default_max_blocks())
3029                 seq_printf(seq, ",size=%luk",
3030                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3031         if (sbinfo->max_inodes != shmem_default_max_inodes())
3032                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3033         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3034                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3035         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3036                 seq_printf(seq, ",uid=%u",
3037                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3038         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3039                 seq_printf(seq, ",gid=%u",
3040                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3041 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3042         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3043         if (sbinfo->huge)
3044                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3045 #endif
3046         shmem_show_mpol(seq, sbinfo->mpol);
3047         return 0;
3048 }
3049
3050 #define MFD_NAME_PREFIX "memfd:"
3051 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3052 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3053
3054 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3055
3056 SYSCALL_DEFINE2(memfd_create,
3057                 const char __user *, uname,
3058                 unsigned int, flags)
3059 {
3060         struct shmem_inode_info *info;
3061         struct file *file;
3062         int fd, error;
3063         char *name;
3064         long len;
3065
3066         if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3067                 return -EINVAL;
3068
3069         /* length includes terminating zero */
3070         len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3071         if (len <= 0)
3072                 return -EFAULT;
3073         if (len > MFD_NAME_MAX_LEN + 1)
3074                 return -EINVAL;
3075
3076         name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3077         if (!name)
3078                 return -ENOMEM;
3079
3080         strcpy(name, MFD_NAME_PREFIX);
3081         if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3082                 error = -EFAULT;
3083                 goto err_name;
3084         }
3085
3086         /* terminating-zero may have changed after strnlen_user() returned */
3087         if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3088                 error = -EFAULT;
3089                 goto err_name;
3090         }
3091
3092         fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3093         if (fd < 0) {
3094                 error = fd;
3095                 goto err_name;
3096         }
3097
3098         file = shmem_file_setup(name, 0, VM_NORESERVE);
3099         if (IS_ERR(file)) {
3100                 error = PTR_ERR(file);
3101                 goto err_fd;
3102         }
3103         info = SHMEM_I(file_inode(file));
3104         file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3105         file->f_flags |= O_RDWR | O_LARGEFILE;
3106         if (flags & MFD_ALLOW_SEALING)
3107                 info->seals &= ~F_SEAL_SEAL;
3108
3109         fd_install(fd, file);
3110         kfree(name);
3111         return fd;
3112
3113 err_fd:
3114         put_unused_fd(fd);
3115 err_name:
3116         kfree(name);
3117         return error;
3118 }
3119
3120 #endif /* CONFIG_TMPFS */
3121
3122 static void shmem_put_super(struct super_block *sb)
3123 {
3124         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3125
3126         percpu_counter_destroy(&sbinfo->used_blocks);
3127         mpol_put(sbinfo->mpol);
3128         kfree(sbinfo);
3129         sb->s_fs_info = NULL;
3130 }
3131
3132 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3133 {
3134         struct inode *inode;
3135         struct shmem_sb_info *sbinfo;
3136         int err = -ENOMEM;
3137
3138         /* Round up to L1_CACHE_BYTES to resist false sharing */
3139         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3140                                 L1_CACHE_BYTES), GFP_KERNEL);
3141         if (!sbinfo)
3142                 return -ENOMEM;
3143
3144         sbinfo->mode = S_IRWXUGO | S_ISVTX;
3145         sbinfo->uid = current_fsuid();
3146         sbinfo->gid = current_fsgid();
3147         sb->s_fs_info = sbinfo;
3148
3149 #ifdef CONFIG_TMPFS
3150         /*
3151          * Per default we only allow half of the physical ram per
3152          * tmpfs instance, limiting inodes to one per page of lowmem;
3153          * but the internal instance is left unlimited.
3154          */
3155         if (!(sb->s_flags & MS_KERNMOUNT)) {
3156                 sbinfo->max_blocks = shmem_default_max_blocks();
3157                 sbinfo->max_inodes = shmem_default_max_inodes();
3158                 if (shmem_parse_options(data, sbinfo, false)) {
3159                         err = -EINVAL;
3160                         goto failed;
3161                 }
3162         } else {
3163                 sb->s_flags |= MS_NOUSER;
3164         }
3165         sb->s_export_op = &shmem_export_ops;
3166         sb->s_flags |= MS_NOSEC;
3167 #else
3168         sb->s_flags |= MS_NOUSER;
3169 #endif
3170
3171         spin_lock_init(&sbinfo->stat_lock);
3172         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3173                 goto failed;
3174         sbinfo->free_inodes = sbinfo->max_inodes;
3175
3176         sb->s_maxbytes = MAX_LFS_FILESIZE;
3177         sb->s_blocksize = PAGE_SIZE;
3178         sb->s_blocksize_bits = PAGE_SHIFT;
3179         sb->s_magic = TMPFS_MAGIC;
3180         sb->s_op = &shmem_ops;
3181         sb->s_time_gran = 1;
3182 #ifdef CONFIG_TMPFS_XATTR
3183         sb->s_xattr = shmem_xattr_handlers;
3184 #endif
3185 #ifdef CONFIG_TMPFS_POSIX_ACL
3186         sb->s_flags |= MS_POSIXACL;
3187 #endif
3188
3189         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3190         if (!inode)
3191                 goto failed;
3192         inode->i_uid = sbinfo->uid;
3193         inode->i_gid = sbinfo->gid;
3194         sb->s_root = d_make_root(inode);
3195         if (!sb->s_root)
3196                 goto failed;
3197         return 0;
3198
3199 failed:
3200         shmem_put_super(sb);
3201         return err;
3202 }
3203
3204 static struct kmem_cache *shmem_inode_cachep;
3205
3206 static struct inode *shmem_alloc_inode(struct super_block *sb)
3207 {
3208         struct shmem_inode_info *info;
3209         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3210         if (!info)
3211                 return NULL;
3212         return &info->vfs_inode;
3213 }
3214
3215 static void shmem_destroy_callback(struct rcu_head *head)
3216 {
3217         struct inode *inode = container_of(head, struct inode, i_rcu);
3218         if (S_ISLNK(inode->i_mode))
3219                 kfree(inode->i_link);
3220         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3221 }
3222
3223 static void shmem_destroy_inode(struct inode *inode)
3224 {
3225         if (S_ISREG(inode->i_mode))
3226                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3227         call_rcu(&inode->i_rcu, shmem_destroy_callback);
3228 }
3229
3230 static void shmem_init_inode(void *foo)
3231 {
3232         struct shmem_inode_info *info = foo;
3233         inode_init_once(&info->vfs_inode);
3234 }
3235
3236 static int shmem_init_inodecache(void)
3237 {
3238         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3239                                 sizeof(struct shmem_inode_info),
3240                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3241         return 0;
3242 }
3243
3244 static void shmem_destroy_inodecache(void)
3245 {
3246         kmem_cache_destroy(shmem_inode_cachep);
3247 }
3248
3249 static const struct address_space_operations shmem_aops = {
3250         .writepage      = shmem_writepage,
3251         .set_page_dirty = __set_page_dirty_no_writeback,
3252 #ifdef CONFIG_TMPFS
3253         .write_begin    = shmem_write_begin,
3254         .write_end      = shmem_write_end,
3255 #endif
3256 #ifdef CONFIG_MIGRATION
3257         .migratepage    = migrate_page,
3258 #endif
3259         .error_remove_page = generic_error_remove_page,
3260 };
3261
3262 static const struct file_operations shmem_file_operations = {
3263         .mmap           = shmem_mmap,
3264 #ifdef CONFIG_TMPFS
3265         .llseek         = shmem_file_llseek,
3266         .read_iter      = shmem_file_read_iter,
3267         .write_iter     = generic_file_write_iter,
3268         .fsync          = noop_fsync,
3269         .splice_read    = shmem_file_splice_read,
3270         .splice_write   = iter_file_splice_write,
3271         .fallocate      = shmem_fallocate,
3272 #endif
3273 };
3274
3275 static const struct inode_operations shmem_inode_operations = {
3276         .getattr        = shmem_getattr,
3277         .setattr        = shmem_setattr,
3278 #ifdef CONFIG_TMPFS_XATTR
3279         .setxattr       = generic_setxattr,
3280         .getxattr       = generic_getxattr,
3281         .listxattr      = shmem_listxattr,
3282         .removexattr    = generic_removexattr,
3283         .set_acl        = simple_set_acl,
3284 #endif
3285 };
3286
3287 static const struct inode_operations shmem_dir_inode_operations = {
3288 #ifdef CONFIG_TMPFS
3289         .create         = shmem_create,
3290         .lookup         = simple_lookup,
3291         .link           = shmem_link,
3292         .unlink         = shmem_unlink,
3293         .symlink        = shmem_symlink,
3294         .mkdir          = shmem_mkdir,
3295         .rmdir          = shmem_rmdir,
3296         .mknod          = shmem_mknod,
3297         .rename2        = shmem_rename2,
3298         .tmpfile        = shmem_tmpfile,
3299 #endif
3300 #ifdef CONFIG_TMPFS_XATTR
3301         .setxattr       = generic_setxattr,
3302         .getxattr       = generic_getxattr,
3303         .listxattr      = shmem_listxattr,
3304         .removexattr    = generic_removexattr,
3305 #endif
3306 #ifdef CONFIG_TMPFS_POSIX_ACL
3307         .setattr        = shmem_setattr,
3308         .set_acl        = simple_set_acl,
3309 #endif
3310 };
3311
3312 static const struct inode_operations shmem_special_inode_operations = {
3313 #ifdef CONFIG_TMPFS_XATTR
3314         .setxattr       = generic_setxattr,
3315         .getxattr       = generic_getxattr,
3316         .listxattr      = shmem_listxattr,
3317         .removexattr    = generic_removexattr,
3318 #endif
3319 #ifdef CONFIG_TMPFS_POSIX_ACL
3320         .setattr        = shmem_setattr,
3321         .set_acl        = simple_set_acl,
3322 #endif
3323 };
3324
3325 static const struct super_operations shmem_ops = {
3326         .alloc_inode    = shmem_alloc_inode,
3327         .destroy_inode  = shmem_destroy_inode,
3328 #ifdef CONFIG_TMPFS
3329         .statfs         = shmem_statfs,
3330         .remount_fs     = shmem_remount_fs,
3331         .show_options   = shmem_show_options,
3332 #endif
3333         .evict_inode    = shmem_evict_inode,
3334         .drop_inode     = generic_delete_inode,
3335         .put_super      = shmem_put_super,
3336 };
3337
3338 static const struct vm_operations_struct shmem_vm_ops = {
3339         .fault          = shmem_fault,
3340         .map_pages      = filemap_map_pages,
3341 #ifdef CONFIG_NUMA
3342         .set_policy     = shmem_set_policy,
3343         .get_policy     = shmem_get_policy,
3344 #endif
3345 };
3346
3347 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3348         int flags, const char *dev_name, void *data)
3349 {
3350         return mount_nodev(fs_type, flags, data, shmem_fill_super);
3351 }
3352
3353 static struct file_system_type shmem_fs_type = {
3354         .owner          = THIS_MODULE,
3355         .name           = "tmpfs",
3356         .mount          = shmem_mount,
3357         .kill_sb        = kill_litter_super,
3358         .fs_flags       = FS_USERNS_MOUNT,
3359 };
3360
3361 int __init shmem_init(void)
3362 {
3363         int error;
3364
3365         /* If rootfs called this, don't re-init */
3366         if (shmem_inode_cachep)
3367                 return 0;
3368
3369         error = shmem_init_inodecache();
3370         if (error)
3371                 goto out3;
3372
3373         error = register_filesystem(&shmem_fs_type);
3374         if (error) {
3375                 pr_err("Could not register tmpfs\n");
3376                 goto out2;
3377         }
3378
3379         shm_mnt = kern_mount(&shmem_fs_type);
3380         if (IS_ERR(shm_mnt)) {
3381                 error = PTR_ERR(shm_mnt);
3382                 pr_err("Could not kern_mount tmpfs\n");
3383                 goto out1;
3384         }
3385
3386 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3387         if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3388                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3389         else
3390                 shmem_huge = 0; /* just in case it was patched */
3391 #endif
3392         return 0;
3393
3394 out1:
3395         unregister_filesystem(&shmem_fs_type);
3396 out2:
3397         shmem_destroy_inodecache();
3398 out3:
3399         shm_mnt = ERR_PTR(error);
3400         return error;
3401 }
3402
3403 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3404 static ssize_t shmem_enabled_show(struct kobject *kobj,
3405                 struct kobj_attribute *attr, char *buf)
3406 {
3407         int values[] = {
3408                 SHMEM_HUGE_ALWAYS,
3409                 SHMEM_HUGE_WITHIN_SIZE,
3410                 SHMEM_HUGE_ADVISE,
3411                 SHMEM_HUGE_NEVER,
3412                 SHMEM_HUGE_DENY,
3413                 SHMEM_HUGE_FORCE,
3414         };
3415         int i, count;
3416
3417         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3418                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3419
3420                 count += sprintf(buf + count, fmt,
3421                                 shmem_format_huge(values[i]));
3422         }
3423         buf[count - 1] = '\n';
3424         return count;
3425 }
3426
3427 static ssize_t shmem_enabled_store(struct kobject *kobj,
3428                 struct kobj_attribute *attr, const char *buf, size_t count)
3429 {
3430         char tmp[16];
3431         int huge;
3432
3433         if (count + 1 > sizeof(tmp))
3434                 return -EINVAL;
3435         memcpy(tmp, buf, count);
3436         tmp[count] = '\0';
3437         if (count && tmp[count - 1] == '\n')
3438                 tmp[count - 1] = '\0';
3439
3440         huge = shmem_parse_huge(tmp);
3441         if (huge == -EINVAL)
3442                 return -EINVAL;
3443         if (!has_transparent_hugepage() &&
3444                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3445                 return -EINVAL;
3446
3447         shmem_huge = huge;
3448         if (shmem_huge < SHMEM_HUGE_DENY)
3449                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3450         return count;
3451 }
3452
3453 struct kobj_attribute shmem_enabled_attr =
3454         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3455 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3456
3457 #else /* !CONFIG_SHMEM */
3458
3459 /*
3460  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3461  *
3462  * This is intended for small system where the benefits of the full
3463  * shmem code (swap-backed and resource-limited) are outweighed by
3464  * their complexity. On systems without swap this code should be
3465  * effectively equivalent, but much lighter weight.
3466  */
3467
3468 static struct file_system_type shmem_fs_type = {
3469         .name           = "tmpfs",
3470         .mount          = ramfs_mount,
3471         .kill_sb        = kill_litter_super,
3472         .fs_flags       = FS_USERNS_MOUNT,
3473 };
3474
3475 int __init shmem_init(void)
3476 {
3477         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3478
3479         shm_mnt = kern_mount(&shmem_fs_type);
3480         BUG_ON(IS_ERR(shm_mnt));
3481
3482         return 0;
3483 }
3484
3485 int shmem_unuse(swp_entry_t swap, struct page *page)
3486 {
3487         return 0;
3488 }
3489
3490 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3491 {
3492         return 0;
3493 }
3494
3495 void shmem_unlock_mapping(struct address_space *mapping)
3496 {
3497 }
3498
3499 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3500 {
3501         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3502 }
3503 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3504
3505 #define shmem_vm_ops                            generic_file_vm_ops
3506 #define shmem_file_operations                   ramfs_file_operations
3507 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
3508 #define shmem_acct_size(flags, size)            0
3509 #define shmem_unacct_size(flags, size)          do {} while (0)
3510
3511 #endif /* CONFIG_SHMEM */
3512
3513 /* common code */
3514
3515 static struct dentry_operations anon_ops = {
3516         .d_dname = simple_dname
3517 };
3518
3519 static struct file *__shmem_file_setup(const char *name, loff_t size,
3520                                        unsigned long flags, unsigned int i_flags)
3521 {
3522         struct file *res;
3523         struct inode *inode;
3524         struct path path;
3525         struct super_block *sb;
3526         struct qstr this;
3527
3528         if (IS_ERR(shm_mnt))
3529                 return ERR_CAST(shm_mnt);
3530
3531         if (size < 0 || size > MAX_LFS_FILESIZE)
3532                 return ERR_PTR(-EINVAL);
3533
3534         if (shmem_acct_size(flags, size))
3535                 return ERR_PTR(-ENOMEM);
3536
3537         res = ERR_PTR(-ENOMEM);
3538         this.name = name;
3539         this.len = strlen(name);
3540         this.hash = 0; /* will go */
3541         sb = shm_mnt->mnt_sb;
3542         path.mnt = mntget(shm_mnt);
3543         path.dentry = d_alloc_pseudo(sb, &this);
3544         if (!path.dentry)
3545                 goto put_memory;
3546         d_set_d_op(path.dentry, &anon_ops);
3547
3548         res = ERR_PTR(-ENOSPC);
3549         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3550         if (!inode)
3551                 goto put_memory;
3552
3553         inode->i_flags |= i_flags;
3554         d_instantiate(path.dentry, inode);
3555         inode->i_size = size;
3556         clear_nlink(inode);     /* It is unlinked */
3557         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3558         if (IS_ERR(res))
3559                 goto put_path;
3560
3561         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3562                   &shmem_file_operations);
3563         if (IS_ERR(res))
3564                 goto put_path;
3565
3566         return res;
3567
3568 put_memory:
3569         shmem_unacct_size(flags, size);
3570 put_path:
3571         path_put(&path);
3572         return res;
3573 }
3574
3575 /**
3576  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3577  *      kernel internal.  There will be NO LSM permission checks against the
3578  *      underlying inode.  So users of this interface must do LSM checks at a
3579  *      higher layer.  The users are the big_key and shm implementations.  LSM
3580  *      checks are provided at the key or shm level rather than the inode.
3581  * @name: name for dentry (to be seen in /proc/<pid>/maps
3582  * @size: size to be set for the file
3583  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3584  */
3585 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3586 {
3587         return __shmem_file_setup(name, size, flags, S_PRIVATE);
3588 }
3589
3590 /**
3591  * shmem_file_setup - get an unlinked file living in tmpfs
3592  * @name: name for dentry (to be seen in /proc/<pid>/maps
3593  * @size: size to be set for the file
3594  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3595  */
3596 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3597 {
3598         return __shmem_file_setup(name, size, flags, 0);
3599 }
3600 EXPORT_SYMBOL_GPL(shmem_file_setup);
3601
3602 /**
3603  * shmem_zero_setup - setup a shared anonymous mapping
3604  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3605  */
3606 int shmem_zero_setup(struct vm_area_struct *vma)
3607 {
3608         struct file *file;
3609         loff_t size = vma->vm_end - vma->vm_start;
3610
3611         /*
3612          * Cloning a new file under mmap_sem leads to a lock ordering conflict
3613          * between XFS directory reading and selinux: since this file is only
3614          * accessible to the user through its mapping, use S_PRIVATE flag to
3615          * bypass file security, in the same way as shmem_kernel_file_setup().
3616          */
3617         file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3618         if (IS_ERR(file))
3619                 return PTR_ERR(file);
3620
3621         if (vma->vm_file)
3622                 fput(vma->vm_file);
3623         vma->vm_file = file;
3624         vma->vm_ops = &shmem_vm_ops;
3625         return 0;
3626 }
3627
3628 /**
3629  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3630  * @mapping:    the page's address_space
3631  * @index:      the page index
3632  * @gfp:        the page allocator flags to use if allocating
3633  *
3634  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3635  * with any new page allocations done using the specified allocation flags.
3636  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3637  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3638  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3639  *
3640  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3641  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3642  */
3643 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3644                                          pgoff_t index, gfp_t gfp)
3645 {
3646 #ifdef CONFIG_SHMEM
3647         struct inode *inode = mapping->host;
3648         struct page *page;
3649         int error;
3650
3651         BUG_ON(mapping->a_ops != &shmem_aops);
3652         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
3653                                   gfp, NULL, NULL);
3654         if (error)
3655                 page = ERR_PTR(error);
3656         else
3657                 unlock_page(page);
3658         return page;
3659 #else
3660         /*
3661          * The tiny !SHMEM case uses ramfs without swap
3662          */
3663         return read_cache_page_gfp(mapping, index, gfp);
3664 #endif
3665 }
3666 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);