f841c7adb8b2db334737da689e88285b712eeec0
[linux-2.6-microblaze.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42
43 static struct vfsmount *shm_mnt;
44
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/blkdev.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82
83 #include <linux/uaccess.h>
84
85 #include "internal.h"
86
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_mutex making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103         pgoff_t start;          /* start of range currently being fallocated */
104         pgoff_t next;           /* the next page offset to be fallocated */
105         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
106         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
107 };
108
109 struct shmem_options {
110         unsigned long long blocks;
111         unsigned long long inodes;
112         struct mempolicy *mpol;
113         kuid_t uid;
114         kgid_t gid;
115         umode_t mode;
116         bool full_inums;
117         int huge;
118         int seen;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
122 #define SHMEM_SEEN_INUMS 8
123 };
124
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128         return totalram_pages() / 2;
129 }
130
131 static unsigned long shmem_default_max_inodes(void)
132 {
133         unsigned long nr_pages = totalram_pages();
134
135         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138
139 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
140                              struct page **pagep, enum sgp_type sgp,
141                              gfp_t gfp, struct vm_area_struct *vma,
142                              vm_fault_t *fault_type);
143 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
144                 struct page **pagep, enum sgp_type sgp,
145                 gfp_t gfp, struct vm_area_struct *vma,
146                 struct vm_fault *vmf, vm_fault_t *fault_type);
147
148 int shmem_getpage(struct inode *inode, pgoff_t index,
149                 struct page **pagep, enum sgp_type sgp)
150 {
151         return shmem_getpage_gfp(inode, index, pagep, sgp,
152                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
153 }
154
155 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
156 {
157         return sb->s_fs_info;
158 }
159
160 /*
161  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
162  * for shared memory and for shared anonymous (/dev/zero) mappings
163  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
164  * consistent with the pre-accounting of private mappings ...
165  */
166 static inline int shmem_acct_size(unsigned long flags, loff_t size)
167 {
168         return (flags & VM_NORESERVE) ?
169                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
170 }
171
172 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
173 {
174         if (!(flags & VM_NORESERVE))
175                 vm_unacct_memory(VM_ACCT(size));
176 }
177
178 static inline int shmem_reacct_size(unsigned long flags,
179                 loff_t oldsize, loff_t newsize)
180 {
181         if (!(flags & VM_NORESERVE)) {
182                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
183                         return security_vm_enough_memory_mm(current->mm,
184                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
185                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
186                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
187         }
188         return 0;
189 }
190
191 /*
192  * ... whereas tmpfs objects are accounted incrementally as
193  * pages are allocated, in order to allow large sparse files.
194  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
195  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
196  */
197 static inline int shmem_acct_block(unsigned long flags, long pages)
198 {
199         if (!(flags & VM_NORESERVE))
200                 return 0;
201
202         return security_vm_enough_memory_mm(current->mm,
203                         pages * VM_ACCT(PAGE_SIZE));
204 }
205
206 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
207 {
208         if (flags & VM_NORESERVE)
209                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
210 }
211
212 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
213 {
214         struct shmem_inode_info *info = SHMEM_I(inode);
215         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
216
217         if (shmem_acct_block(info->flags, pages))
218                 return false;
219
220         if (sbinfo->max_blocks) {
221                 if (percpu_counter_compare(&sbinfo->used_blocks,
222                                            sbinfo->max_blocks - pages) > 0)
223                         goto unacct;
224                 percpu_counter_add(&sbinfo->used_blocks, pages);
225         }
226
227         return true;
228
229 unacct:
230         shmem_unacct_blocks(info->flags, pages);
231         return false;
232 }
233
234 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
235 {
236         struct shmem_inode_info *info = SHMEM_I(inode);
237         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
238
239         if (sbinfo->max_blocks)
240                 percpu_counter_sub(&sbinfo->used_blocks, pages);
241         shmem_unacct_blocks(info->flags, pages);
242 }
243
244 static const struct super_operations shmem_ops;
245 const struct address_space_operations shmem_aops;
246 static const struct file_operations shmem_file_operations;
247 static const struct inode_operations shmem_inode_operations;
248 static const struct inode_operations shmem_dir_inode_operations;
249 static const struct inode_operations shmem_special_inode_operations;
250 static const struct vm_operations_struct shmem_vm_ops;
251 static struct file_system_type shmem_fs_type;
252
253 bool vma_is_shmem(struct vm_area_struct *vma)
254 {
255         return vma->vm_ops == &shmem_vm_ops;
256 }
257
258 static LIST_HEAD(shmem_swaplist);
259 static DEFINE_MUTEX(shmem_swaplist_mutex);
260
261 /*
262  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
263  * produces a novel ino for the newly allocated inode.
264  *
265  * It may also be called when making a hard link to permit the space needed by
266  * each dentry. However, in that case, no new inode number is needed since that
267  * internally draws from another pool of inode numbers (currently global
268  * get_next_ino()). This case is indicated by passing NULL as inop.
269  */
270 #define SHMEM_INO_BATCH 1024
271 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
272 {
273         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
274         ino_t ino;
275
276         if (!(sb->s_flags & SB_KERNMOUNT)) {
277                 raw_spin_lock(&sbinfo->stat_lock);
278                 if (sbinfo->max_inodes) {
279                         if (!sbinfo->free_inodes) {
280                                 raw_spin_unlock(&sbinfo->stat_lock);
281                                 return -ENOSPC;
282                         }
283                         sbinfo->free_inodes--;
284                 }
285                 if (inop) {
286                         ino = sbinfo->next_ino++;
287                         if (unlikely(is_zero_ino(ino)))
288                                 ino = sbinfo->next_ino++;
289                         if (unlikely(!sbinfo->full_inums &&
290                                      ino > UINT_MAX)) {
291                                 /*
292                                  * Emulate get_next_ino uint wraparound for
293                                  * compatibility
294                                  */
295                                 if (IS_ENABLED(CONFIG_64BIT))
296                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
297                                                 __func__, MINOR(sb->s_dev));
298                                 sbinfo->next_ino = 1;
299                                 ino = sbinfo->next_ino++;
300                         }
301                         *inop = ino;
302                 }
303                 raw_spin_unlock(&sbinfo->stat_lock);
304         } else if (inop) {
305                 /*
306                  * __shmem_file_setup, one of our callers, is lock-free: it
307                  * doesn't hold stat_lock in shmem_reserve_inode since
308                  * max_inodes is always 0, and is called from potentially
309                  * unknown contexts. As such, use a per-cpu batched allocator
310                  * which doesn't require the per-sb stat_lock unless we are at
311                  * the batch boundary.
312                  *
313                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
314                  * shmem mounts are not exposed to userspace, so we don't need
315                  * to worry about things like glibc compatibility.
316                  */
317                 ino_t *next_ino;
318
319                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
320                 ino = *next_ino;
321                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
322                         raw_spin_lock(&sbinfo->stat_lock);
323                         ino = sbinfo->next_ino;
324                         sbinfo->next_ino += SHMEM_INO_BATCH;
325                         raw_spin_unlock(&sbinfo->stat_lock);
326                         if (unlikely(is_zero_ino(ino)))
327                                 ino++;
328                 }
329                 *inop = ino;
330                 *next_ino = ++ino;
331                 put_cpu();
332         }
333
334         return 0;
335 }
336
337 static void shmem_free_inode(struct super_block *sb)
338 {
339         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
340         if (sbinfo->max_inodes) {
341                 raw_spin_lock(&sbinfo->stat_lock);
342                 sbinfo->free_inodes++;
343                 raw_spin_unlock(&sbinfo->stat_lock);
344         }
345 }
346
347 /**
348  * shmem_recalc_inode - recalculate the block usage of an inode
349  * @inode: inode to recalc
350  *
351  * We have to calculate the free blocks since the mm can drop
352  * undirtied hole pages behind our back.
353  *
354  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
355  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
356  *
357  * It has to be called with the spinlock held.
358  */
359 static void shmem_recalc_inode(struct inode *inode)
360 {
361         struct shmem_inode_info *info = SHMEM_I(inode);
362         long freed;
363
364         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
365         if (freed > 0) {
366                 info->alloced -= freed;
367                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
368                 shmem_inode_unacct_blocks(inode, freed);
369         }
370 }
371
372 bool shmem_charge(struct inode *inode, long pages)
373 {
374         struct shmem_inode_info *info = SHMEM_I(inode);
375         unsigned long flags;
376
377         if (!shmem_inode_acct_block(inode, pages))
378                 return false;
379
380         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
381         inode->i_mapping->nrpages += pages;
382
383         spin_lock_irqsave(&info->lock, flags);
384         info->alloced += pages;
385         inode->i_blocks += pages * BLOCKS_PER_PAGE;
386         shmem_recalc_inode(inode);
387         spin_unlock_irqrestore(&info->lock, flags);
388
389         return true;
390 }
391
392 void shmem_uncharge(struct inode *inode, long pages)
393 {
394         struct shmem_inode_info *info = SHMEM_I(inode);
395         unsigned long flags;
396
397         /* nrpages adjustment done by __delete_from_page_cache() or caller */
398
399         spin_lock_irqsave(&info->lock, flags);
400         info->alloced -= pages;
401         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
402         shmem_recalc_inode(inode);
403         spin_unlock_irqrestore(&info->lock, flags);
404
405         shmem_inode_unacct_blocks(inode, pages);
406 }
407
408 /*
409  * Replace item expected in xarray by a new item, while holding xa_lock.
410  */
411 static int shmem_replace_entry(struct address_space *mapping,
412                         pgoff_t index, void *expected, void *replacement)
413 {
414         XA_STATE(xas, &mapping->i_pages, index);
415         void *item;
416
417         VM_BUG_ON(!expected);
418         VM_BUG_ON(!replacement);
419         item = xas_load(&xas);
420         if (item != expected)
421                 return -ENOENT;
422         xas_store(&xas, replacement);
423         return 0;
424 }
425
426 /*
427  * Sometimes, before we decide whether to proceed or to fail, we must check
428  * that an entry was not already brought back from swap by a racing thread.
429  *
430  * Checking page is not enough: by the time a SwapCache page is locked, it
431  * might be reused, and again be SwapCache, using the same swap as before.
432  */
433 static bool shmem_confirm_swap(struct address_space *mapping,
434                                pgoff_t index, swp_entry_t swap)
435 {
436         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
437 }
438
439 /*
440  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
441  *
442  * SHMEM_HUGE_NEVER:
443  *      disables huge pages for the mount;
444  * SHMEM_HUGE_ALWAYS:
445  *      enables huge pages for the mount;
446  * SHMEM_HUGE_WITHIN_SIZE:
447  *      only allocate huge pages if the page will be fully within i_size,
448  *      also respect fadvise()/madvise() hints;
449  * SHMEM_HUGE_ADVISE:
450  *      only allocate huge pages if requested with fadvise()/madvise();
451  */
452
453 #define SHMEM_HUGE_NEVER        0
454 #define SHMEM_HUGE_ALWAYS       1
455 #define SHMEM_HUGE_WITHIN_SIZE  2
456 #define SHMEM_HUGE_ADVISE       3
457
458 /*
459  * Special values.
460  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
461  *
462  * SHMEM_HUGE_DENY:
463  *      disables huge on shm_mnt and all mounts, for emergency use;
464  * SHMEM_HUGE_FORCE:
465  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
466  *
467  */
468 #define SHMEM_HUGE_DENY         (-1)
469 #define SHMEM_HUGE_FORCE        (-2)
470
471 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
472 /* ifdef here to avoid bloating shmem.o when not necessary */
473
474 static int shmem_huge __read_mostly;
475
476 #if defined(CONFIG_SYSFS)
477 static int shmem_parse_huge(const char *str)
478 {
479         if (!strcmp(str, "never"))
480                 return SHMEM_HUGE_NEVER;
481         if (!strcmp(str, "always"))
482                 return SHMEM_HUGE_ALWAYS;
483         if (!strcmp(str, "within_size"))
484                 return SHMEM_HUGE_WITHIN_SIZE;
485         if (!strcmp(str, "advise"))
486                 return SHMEM_HUGE_ADVISE;
487         if (!strcmp(str, "deny"))
488                 return SHMEM_HUGE_DENY;
489         if (!strcmp(str, "force"))
490                 return SHMEM_HUGE_FORCE;
491         return -EINVAL;
492 }
493 #endif
494
495 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
496 static const char *shmem_format_huge(int huge)
497 {
498         switch (huge) {
499         case SHMEM_HUGE_NEVER:
500                 return "never";
501         case SHMEM_HUGE_ALWAYS:
502                 return "always";
503         case SHMEM_HUGE_WITHIN_SIZE:
504                 return "within_size";
505         case SHMEM_HUGE_ADVISE:
506                 return "advise";
507         case SHMEM_HUGE_DENY:
508                 return "deny";
509         case SHMEM_HUGE_FORCE:
510                 return "force";
511         default:
512                 VM_BUG_ON(1);
513                 return "bad_val";
514         }
515 }
516 #endif
517
518 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
519                 struct shrink_control *sc, unsigned long nr_to_split)
520 {
521         LIST_HEAD(list), *pos, *next;
522         LIST_HEAD(to_remove);
523         struct inode *inode;
524         struct shmem_inode_info *info;
525         struct page *page;
526         unsigned long batch = sc ? sc->nr_to_scan : 128;
527         int removed = 0, split = 0;
528
529         if (list_empty(&sbinfo->shrinklist))
530                 return SHRINK_STOP;
531
532         spin_lock(&sbinfo->shrinklist_lock);
533         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
534                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
535
536                 /* pin the inode */
537                 inode = igrab(&info->vfs_inode);
538
539                 /* inode is about to be evicted */
540                 if (!inode) {
541                         list_del_init(&info->shrinklist);
542                         removed++;
543                         goto next;
544                 }
545
546                 /* Check if there's anything to gain */
547                 if (round_up(inode->i_size, PAGE_SIZE) ==
548                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
549                         list_move(&info->shrinklist, &to_remove);
550                         removed++;
551                         goto next;
552                 }
553
554                 list_move(&info->shrinklist, &list);
555 next:
556                 if (!--batch)
557                         break;
558         }
559         spin_unlock(&sbinfo->shrinklist_lock);
560
561         list_for_each_safe(pos, next, &to_remove) {
562                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
563                 inode = &info->vfs_inode;
564                 list_del_init(&info->shrinklist);
565                 iput(inode);
566         }
567
568         list_for_each_safe(pos, next, &list) {
569                 int ret;
570
571                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
572                 inode = &info->vfs_inode;
573
574                 if (nr_to_split && split >= nr_to_split)
575                         goto leave;
576
577                 page = find_get_page(inode->i_mapping,
578                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
579                 if (!page)
580                         goto drop;
581
582                 /* No huge page at the end of the file: nothing to split */
583                 if (!PageTransHuge(page)) {
584                         put_page(page);
585                         goto drop;
586                 }
587
588                 /*
589                  * Leave the inode on the list if we failed to lock
590                  * the page at this time.
591                  *
592                  * Waiting for the lock may lead to deadlock in the
593                  * reclaim path.
594                  */
595                 if (!trylock_page(page)) {
596                         put_page(page);
597                         goto leave;
598                 }
599
600                 ret = split_huge_page(page);
601                 unlock_page(page);
602                 put_page(page);
603
604                 /* If split failed leave the inode on the list */
605                 if (ret)
606                         goto leave;
607
608                 split++;
609 drop:
610                 list_del_init(&info->shrinklist);
611                 removed++;
612 leave:
613                 iput(inode);
614         }
615
616         spin_lock(&sbinfo->shrinklist_lock);
617         list_splice_tail(&list, &sbinfo->shrinklist);
618         sbinfo->shrinklist_len -= removed;
619         spin_unlock(&sbinfo->shrinklist_lock);
620
621         return split;
622 }
623
624 static long shmem_unused_huge_scan(struct super_block *sb,
625                 struct shrink_control *sc)
626 {
627         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
628
629         if (!READ_ONCE(sbinfo->shrinklist_len))
630                 return SHRINK_STOP;
631
632         return shmem_unused_huge_shrink(sbinfo, sc, 0);
633 }
634
635 static long shmem_unused_huge_count(struct super_block *sb,
636                 struct shrink_control *sc)
637 {
638         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
639         return READ_ONCE(sbinfo->shrinklist_len);
640 }
641 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
642
643 #define shmem_huge SHMEM_HUGE_DENY
644
645 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
646                 struct shrink_control *sc, unsigned long nr_to_split)
647 {
648         return 0;
649 }
650 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
651
652 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
653 {
654         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
655             (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
656             shmem_huge != SHMEM_HUGE_DENY)
657                 return true;
658         return false;
659 }
660
661 /*
662  * Like add_to_page_cache_locked, but error if expected item has gone.
663  */
664 static int shmem_add_to_page_cache(struct page *page,
665                                    struct address_space *mapping,
666                                    pgoff_t index, void *expected, gfp_t gfp,
667                                    struct mm_struct *charge_mm)
668 {
669         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
670         unsigned long i = 0;
671         unsigned long nr = compound_nr(page);
672         int error;
673
674         VM_BUG_ON_PAGE(PageTail(page), page);
675         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
676         VM_BUG_ON_PAGE(!PageLocked(page), page);
677         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
678         VM_BUG_ON(expected && PageTransHuge(page));
679
680         page_ref_add(page, nr);
681         page->mapping = mapping;
682         page->index = index;
683
684         if (!PageSwapCache(page)) {
685                 error = mem_cgroup_charge(page, charge_mm, gfp);
686                 if (error) {
687                         if (PageTransHuge(page)) {
688                                 count_vm_event(THP_FILE_FALLBACK);
689                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
690                         }
691                         goto error;
692                 }
693         }
694         cgroup_throttle_swaprate(page, gfp);
695
696         do {
697                 void *entry;
698                 xas_lock_irq(&xas);
699                 entry = xas_find_conflict(&xas);
700                 if (entry != expected)
701                         xas_set_err(&xas, -EEXIST);
702                 xas_create_range(&xas);
703                 if (xas_error(&xas))
704                         goto unlock;
705 next:
706                 xas_store(&xas, page);
707                 if (++i < nr) {
708                         xas_next(&xas);
709                         goto next;
710                 }
711                 if (PageTransHuge(page)) {
712                         count_vm_event(THP_FILE_ALLOC);
713                         __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
714                 }
715                 mapping->nrpages += nr;
716                 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
717                 __mod_lruvec_page_state(page, NR_SHMEM, nr);
718 unlock:
719                 xas_unlock_irq(&xas);
720         } while (xas_nomem(&xas, gfp));
721
722         if (xas_error(&xas)) {
723                 error = xas_error(&xas);
724                 goto error;
725         }
726
727         return 0;
728 error:
729         page->mapping = NULL;
730         page_ref_sub(page, nr);
731         return error;
732 }
733
734 /*
735  * Like delete_from_page_cache, but substitutes swap for page.
736  */
737 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
738 {
739         struct address_space *mapping = page->mapping;
740         int error;
741
742         VM_BUG_ON_PAGE(PageCompound(page), page);
743
744         xa_lock_irq(&mapping->i_pages);
745         error = shmem_replace_entry(mapping, page->index, page, radswap);
746         page->mapping = NULL;
747         mapping->nrpages--;
748         __dec_lruvec_page_state(page, NR_FILE_PAGES);
749         __dec_lruvec_page_state(page, NR_SHMEM);
750         xa_unlock_irq(&mapping->i_pages);
751         put_page(page);
752         BUG_ON(error);
753 }
754
755 /*
756  * Remove swap entry from page cache, free the swap and its page cache.
757  */
758 static int shmem_free_swap(struct address_space *mapping,
759                            pgoff_t index, void *radswap)
760 {
761         void *old;
762
763         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
764         if (old != radswap)
765                 return -ENOENT;
766         free_swap_and_cache(radix_to_swp_entry(radswap));
767         return 0;
768 }
769
770 /*
771  * Determine (in bytes) how many of the shmem object's pages mapped by the
772  * given offsets are swapped out.
773  *
774  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
775  * as long as the inode doesn't go away and racy results are not a problem.
776  */
777 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
778                                                 pgoff_t start, pgoff_t end)
779 {
780         XA_STATE(xas, &mapping->i_pages, start);
781         struct page *page;
782         unsigned long swapped = 0;
783
784         rcu_read_lock();
785         xas_for_each(&xas, page, end - 1) {
786                 if (xas_retry(&xas, page))
787                         continue;
788                 if (xa_is_value(page))
789                         swapped++;
790
791                 if (need_resched()) {
792                         xas_pause(&xas);
793                         cond_resched_rcu();
794                 }
795         }
796
797         rcu_read_unlock();
798
799         return swapped << PAGE_SHIFT;
800 }
801
802 /*
803  * Determine (in bytes) how many of the shmem object's pages mapped by the
804  * given vma is swapped out.
805  *
806  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
807  * as long as the inode doesn't go away and racy results are not a problem.
808  */
809 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
810 {
811         struct inode *inode = file_inode(vma->vm_file);
812         struct shmem_inode_info *info = SHMEM_I(inode);
813         struct address_space *mapping = inode->i_mapping;
814         unsigned long swapped;
815
816         /* Be careful as we don't hold info->lock */
817         swapped = READ_ONCE(info->swapped);
818
819         /*
820          * The easier cases are when the shmem object has nothing in swap, or
821          * the vma maps it whole. Then we can simply use the stats that we
822          * already track.
823          */
824         if (!swapped)
825                 return 0;
826
827         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
828                 return swapped << PAGE_SHIFT;
829
830         /* Here comes the more involved part */
831         return shmem_partial_swap_usage(mapping,
832                         linear_page_index(vma, vma->vm_start),
833                         linear_page_index(vma, vma->vm_end));
834 }
835
836 /*
837  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
838  */
839 void shmem_unlock_mapping(struct address_space *mapping)
840 {
841         struct pagevec pvec;
842         pgoff_t index = 0;
843
844         pagevec_init(&pvec);
845         /*
846          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
847          */
848         while (!mapping_unevictable(mapping)) {
849                 if (!pagevec_lookup(&pvec, mapping, &index))
850                         break;
851                 check_move_unevictable_pages(&pvec);
852                 pagevec_release(&pvec);
853                 cond_resched();
854         }
855 }
856
857 /*
858  * Check whether a hole-punch or truncation needs to split a huge page,
859  * returning true if no split was required, or the split has been successful.
860  *
861  * Eviction (or truncation to 0 size) should never need to split a huge page;
862  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
863  * head, and then succeeded to trylock on tail.
864  *
865  * A split can only succeed when there are no additional references on the
866  * huge page: so the split below relies upon find_get_entries() having stopped
867  * when it found a subpage of the huge page, without getting further references.
868  */
869 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
870 {
871         if (!PageTransCompound(page))
872                 return true;
873
874         /* Just proceed to delete a huge page wholly within the range punched */
875         if (PageHead(page) &&
876             page->index >= start && page->index + HPAGE_PMD_NR <= end)
877                 return true;
878
879         /* Try to split huge page, so we can truly punch the hole or truncate */
880         return split_huge_page(page) >= 0;
881 }
882
883 /*
884  * Remove range of pages and swap entries from page cache, and free them.
885  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
886  */
887 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
888                                                                  bool unfalloc)
889 {
890         struct address_space *mapping = inode->i_mapping;
891         struct shmem_inode_info *info = SHMEM_I(inode);
892         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
893         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
894         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
895         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
896         struct pagevec pvec;
897         pgoff_t indices[PAGEVEC_SIZE];
898         long nr_swaps_freed = 0;
899         pgoff_t index;
900         int i;
901
902         if (lend == -1)
903                 end = -1;       /* unsigned, so actually very big */
904
905         pagevec_init(&pvec);
906         index = start;
907         while (index < end && find_lock_entries(mapping, index, end - 1,
908                         &pvec, indices)) {
909                 for (i = 0; i < pagevec_count(&pvec); i++) {
910                         struct page *page = pvec.pages[i];
911
912                         index = indices[i];
913
914                         if (xa_is_value(page)) {
915                                 if (unfalloc)
916                                         continue;
917                                 nr_swaps_freed += !shmem_free_swap(mapping,
918                                                                 index, page);
919                                 continue;
920                         }
921                         index += thp_nr_pages(page) - 1;
922
923                         if (!unfalloc || !PageUptodate(page))
924                                 truncate_inode_page(mapping, page);
925                         unlock_page(page);
926                 }
927                 pagevec_remove_exceptionals(&pvec);
928                 pagevec_release(&pvec);
929                 cond_resched();
930                 index++;
931         }
932
933         if (partial_start) {
934                 struct page *page = NULL;
935                 shmem_getpage(inode, start - 1, &page, SGP_READ);
936                 if (page) {
937                         unsigned int top = PAGE_SIZE;
938                         if (start > end) {
939                                 top = partial_end;
940                                 partial_end = 0;
941                         }
942                         zero_user_segment(page, partial_start, top);
943                         set_page_dirty(page);
944                         unlock_page(page);
945                         put_page(page);
946                 }
947         }
948         if (partial_end) {
949                 struct page *page = NULL;
950                 shmem_getpage(inode, end, &page, SGP_READ);
951                 if (page) {
952                         zero_user_segment(page, 0, partial_end);
953                         set_page_dirty(page);
954                         unlock_page(page);
955                         put_page(page);
956                 }
957         }
958         if (start >= end)
959                 return;
960
961         index = start;
962         while (index < end) {
963                 cond_resched();
964
965                 if (!find_get_entries(mapping, index, end - 1, &pvec,
966                                 indices)) {
967                         /* If all gone or hole-punch or unfalloc, we're done */
968                         if (index == start || end != -1)
969                                 break;
970                         /* But if truncating, restart to make sure all gone */
971                         index = start;
972                         continue;
973                 }
974                 for (i = 0; i < pagevec_count(&pvec); i++) {
975                         struct page *page = pvec.pages[i];
976
977                         index = indices[i];
978                         if (xa_is_value(page)) {
979                                 if (unfalloc)
980                                         continue;
981                                 if (shmem_free_swap(mapping, index, page)) {
982                                         /* Swap was replaced by page: retry */
983                                         index--;
984                                         break;
985                                 }
986                                 nr_swaps_freed++;
987                                 continue;
988                         }
989
990                         lock_page(page);
991
992                         if (!unfalloc || !PageUptodate(page)) {
993                                 if (page_mapping(page) != mapping) {
994                                         /* Page was replaced by swap: retry */
995                                         unlock_page(page);
996                                         index--;
997                                         break;
998                                 }
999                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1000                                 if (shmem_punch_compound(page, start, end))
1001                                         truncate_inode_page(mapping, page);
1002                                 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1003                                         /* Wipe the page and don't get stuck */
1004                                         clear_highpage(page);
1005                                         flush_dcache_page(page);
1006                                         set_page_dirty(page);
1007                                         if (index <
1008                                             round_up(start, HPAGE_PMD_NR))
1009                                                 start = index + 1;
1010                                 }
1011                         }
1012                         unlock_page(page);
1013                 }
1014                 pagevec_remove_exceptionals(&pvec);
1015                 pagevec_release(&pvec);
1016                 index++;
1017         }
1018
1019         spin_lock_irq(&info->lock);
1020         info->swapped -= nr_swaps_freed;
1021         shmem_recalc_inode(inode);
1022         spin_unlock_irq(&info->lock);
1023 }
1024
1025 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1026 {
1027         shmem_undo_range(inode, lstart, lend, false);
1028         inode->i_ctime = inode->i_mtime = current_time(inode);
1029 }
1030 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1031
1032 static int shmem_getattr(struct user_namespace *mnt_userns,
1033                          const struct path *path, struct kstat *stat,
1034                          u32 request_mask, unsigned int query_flags)
1035 {
1036         struct inode *inode = path->dentry->d_inode;
1037         struct shmem_inode_info *info = SHMEM_I(inode);
1038         struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1039
1040         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1041                 spin_lock_irq(&info->lock);
1042                 shmem_recalc_inode(inode);
1043                 spin_unlock_irq(&info->lock);
1044         }
1045         generic_fillattr(&init_user_ns, inode, stat);
1046
1047         if (is_huge_enabled(sb_info))
1048                 stat->blksize = HPAGE_PMD_SIZE;
1049
1050         return 0;
1051 }
1052
1053 static int shmem_setattr(struct user_namespace *mnt_userns,
1054                          struct dentry *dentry, struct iattr *attr)
1055 {
1056         struct inode *inode = d_inode(dentry);
1057         struct shmem_inode_info *info = SHMEM_I(inode);
1058         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1059         int error;
1060
1061         error = setattr_prepare(&init_user_ns, dentry, attr);
1062         if (error)
1063                 return error;
1064
1065         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1066                 loff_t oldsize = inode->i_size;
1067                 loff_t newsize = attr->ia_size;
1068
1069                 /* protected by i_mutex */
1070                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1071                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1072                         return -EPERM;
1073
1074                 if (newsize != oldsize) {
1075                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1076                                         oldsize, newsize);
1077                         if (error)
1078                                 return error;
1079                         i_size_write(inode, newsize);
1080                         inode->i_ctime = inode->i_mtime = current_time(inode);
1081                 }
1082                 if (newsize <= oldsize) {
1083                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1084                         if (oldsize > holebegin)
1085                                 unmap_mapping_range(inode->i_mapping,
1086                                                         holebegin, 0, 1);
1087                         if (info->alloced)
1088                                 shmem_truncate_range(inode,
1089                                                         newsize, (loff_t)-1);
1090                         /* unmap again to remove racily COWed private pages */
1091                         if (oldsize > holebegin)
1092                                 unmap_mapping_range(inode->i_mapping,
1093                                                         holebegin, 0, 1);
1094
1095                         /*
1096                          * Part of the huge page can be beyond i_size: subject
1097                          * to shrink under memory pressure.
1098                          */
1099                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1100                                 spin_lock(&sbinfo->shrinklist_lock);
1101                                 /*
1102                                  * _careful to defend against unlocked access to
1103                                  * ->shrink_list in shmem_unused_huge_shrink()
1104                                  */
1105                                 if (list_empty_careful(&info->shrinklist)) {
1106                                         list_add_tail(&info->shrinklist,
1107                                                         &sbinfo->shrinklist);
1108                                         sbinfo->shrinklist_len++;
1109                                 }
1110                                 spin_unlock(&sbinfo->shrinklist_lock);
1111                         }
1112                 }
1113         }
1114
1115         setattr_copy(&init_user_ns, inode, attr);
1116         if (attr->ia_valid & ATTR_MODE)
1117                 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1118         return error;
1119 }
1120
1121 static void shmem_evict_inode(struct inode *inode)
1122 {
1123         struct shmem_inode_info *info = SHMEM_I(inode);
1124         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1125
1126         if (shmem_mapping(inode->i_mapping)) {
1127                 shmem_unacct_size(info->flags, inode->i_size);
1128                 inode->i_size = 0;
1129                 shmem_truncate_range(inode, 0, (loff_t)-1);
1130                 if (!list_empty(&info->shrinklist)) {
1131                         spin_lock(&sbinfo->shrinklist_lock);
1132                         if (!list_empty(&info->shrinklist)) {
1133                                 list_del_init(&info->shrinklist);
1134                                 sbinfo->shrinklist_len--;
1135                         }
1136                         spin_unlock(&sbinfo->shrinklist_lock);
1137                 }
1138                 while (!list_empty(&info->swaplist)) {
1139                         /* Wait while shmem_unuse() is scanning this inode... */
1140                         wait_var_event(&info->stop_eviction,
1141                                        !atomic_read(&info->stop_eviction));
1142                         mutex_lock(&shmem_swaplist_mutex);
1143                         /* ...but beware of the race if we peeked too early */
1144                         if (!atomic_read(&info->stop_eviction))
1145                                 list_del_init(&info->swaplist);
1146                         mutex_unlock(&shmem_swaplist_mutex);
1147                 }
1148         }
1149
1150         simple_xattrs_free(&info->xattrs);
1151         WARN_ON(inode->i_blocks);
1152         shmem_free_inode(inode->i_sb);
1153         clear_inode(inode);
1154 }
1155
1156 static int shmem_find_swap_entries(struct address_space *mapping,
1157                                    pgoff_t start, unsigned int nr_entries,
1158                                    struct page **entries, pgoff_t *indices,
1159                                    unsigned int type, bool frontswap)
1160 {
1161         XA_STATE(xas, &mapping->i_pages, start);
1162         struct page *page;
1163         swp_entry_t entry;
1164         unsigned int ret = 0;
1165
1166         if (!nr_entries)
1167                 return 0;
1168
1169         rcu_read_lock();
1170         xas_for_each(&xas, page, ULONG_MAX) {
1171                 if (xas_retry(&xas, page))
1172                         continue;
1173
1174                 if (!xa_is_value(page))
1175                         continue;
1176
1177                 entry = radix_to_swp_entry(page);
1178                 if (swp_type(entry) != type)
1179                         continue;
1180                 if (frontswap &&
1181                     !frontswap_test(swap_info[type], swp_offset(entry)))
1182                         continue;
1183
1184                 indices[ret] = xas.xa_index;
1185                 entries[ret] = page;
1186
1187                 if (need_resched()) {
1188                         xas_pause(&xas);
1189                         cond_resched_rcu();
1190                 }
1191                 if (++ret == nr_entries)
1192                         break;
1193         }
1194         rcu_read_unlock();
1195
1196         return ret;
1197 }
1198
1199 /*
1200  * Move the swapped pages for an inode to page cache. Returns the count
1201  * of pages swapped in, or the error in case of failure.
1202  */
1203 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1204                                     pgoff_t *indices)
1205 {
1206         int i = 0;
1207         int ret = 0;
1208         int error = 0;
1209         struct address_space *mapping = inode->i_mapping;
1210
1211         for (i = 0; i < pvec.nr; i++) {
1212                 struct page *page = pvec.pages[i];
1213
1214                 if (!xa_is_value(page))
1215                         continue;
1216                 error = shmem_swapin_page(inode, indices[i],
1217                                           &page, SGP_CACHE,
1218                                           mapping_gfp_mask(mapping),
1219                                           NULL, NULL);
1220                 if (error == 0) {
1221                         unlock_page(page);
1222                         put_page(page);
1223                         ret++;
1224                 }
1225                 if (error == -ENOMEM)
1226                         break;
1227                 error = 0;
1228         }
1229         return error ? error : ret;
1230 }
1231
1232 /*
1233  * If swap found in inode, free it and move page from swapcache to filecache.
1234  */
1235 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1236                              bool frontswap, unsigned long *fs_pages_to_unuse)
1237 {
1238         struct address_space *mapping = inode->i_mapping;
1239         pgoff_t start = 0;
1240         struct pagevec pvec;
1241         pgoff_t indices[PAGEVEC_SIZE];
1242         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1243         int ret = 0;
1244
1245         pagevec_init(&pvec);
1246         do {
1247                 unsigned int nr_entries = PAGEVEC_SIZE;
1248
1249                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1250                         nr_entries = *fs_pages_to_unuse;
1251
1252                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1253                                                   pvec.pages, indices,
1254                                                   type, frontswap);
1255                 if (pvec.nr == 0) {
1256                         ret = 0;
1257                         break;
1258                 }
1259
1260                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1261                 if (ret < 0)
1262                         break;
1263
1264                 if (frontswap_partial) {
1265                         *fs_pages_to_unuse -= ret;
1266                         if (*fs_pages_to_unuse == 0) {
1267                                 ret = FRONTSWAP_PAGES_UNUSED;
1268                                 break;
1269                         }
1270                 }
1271
1272                 start = indices[pvec.nr - 1];
1273         } while (true);
1274
1275         return ret;
1276 }
1277
1278 /*
1279  * Read all the shared memory data that resides in the swap
1280  * device 'type' back into memory, so the swap device can be
1281  * unused.
1282  */
1283 int shmem_unuse(unsigned int type, bool frontswap,
1284                 unsigned long *fs_pages_to_unuse)
1285 {
1286         struct shmem_inode_info *info, *next;
1287         int error = 0;
1288
1289         if (list_empty(&shmem_swaplist))
1290                 return 0;
1291
1292         mutex_lock(&shmem_swaplist_mutex);
1293         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1294                 if (!info->swapped) {
1295                         list_del_init(&info->swaplist);
1296                         continue;
1297                 }
1298                 /*
1299                  * Drop the swaplist mutex while searching the inode for swap;
1300                  * but before doing so, make sure shmem_evict_inode() will not
1301                  * remove placeholder inode from swaplist, nor let it be freed
1302                  * (igrab() would protect from unlink, but not from unmount).
1303                  */
1304                 atomic_inc(&info->stop_eviction);
1305                 mutex_unlock(&shmem_swaplist_mutex);
1306
1307                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1308                                           fs_pages_to_unuse);
1309                 cond_resched();
1310
1311                 mutex_lock(&shmem_swaplist_mutex);
1312                 next = list_next_entry(info, swaplist);
1313                 if (!info->swapped)
1314                         list_del_init(&info->swaplist);
1315                 if (atomic_dec_and_test(&info->stop_eviction))
1316                         wake_up_var(&info->stop_eviction);
1317                 if (error)
1318                         break;
1319         }
1320         mutex_unlock(&shmem_swaplist_mutex);
1321
1322         return error;
1323 }
1324
1325 /*
1326  * Move the page from the page cache to the swap cache.
1327  */
1328 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1329 {
1330         struct shmem_inode_info *info;
1331         struct address_space *mapping;
1332         struct inode *inode;
1333         swp_entry_t swap;
1334         pgoff_t index;
1335
1336         VM_BUG_ON_PAGE(PageCompound(page), page);
1337         BUG_ON(!PageLocked(page));
1338         mapping = page->mapping;
1339         index = page->index;
1340         inode = mapping->host;
1341         info = SHMEM_I(inode);
1342         if (info->flags & VM_LOCKED)
1343                 goto redirty;
1344         if (!total_swap_pages)
1345                 goto redirty;
1346
1347         /*
1348          * Our capabilities prevent regular writeback or sync from ever calling
1349          * shmem_writepage; but a stacking filesystem might use ->writepage of
1350          * its underlying filesystem, in which case tmpfs should write out to
1351          * swap only in response to memory pressure, and not for the writeback
1352          * threads or sync.
1353          */
1354         if (!wbc->for_reclaim) {
1355                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1356                 goto redirty;
1357         }
1358
1359         /*
1360          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1361          * value into swapfile.c, the only way we can correctly account for a
1362          * fallocated page arriving here is now to initialize it and write it.
1363          *
1364          * That's okay for a page already fallocated earlier, but if we have
1365          * not yet completed the fallocation, then (a) we want to keep track
1366          * of this page in case we have to undo it, and (b) it may not be a
1367          * good idea to continue anyway, once we're pushing into swap.  So
1368          * reactivate the page, and let shmem_fallocate() quit when too many.
1369          */
1370         if (!PageUptodate(page)) {
1371                 if (inode->i_private) {
1372                         struct shmem_falloc *shmem_falloc;
1373                         spin_lock(&inode->i_lock);
1374                         shmem_falloc = inode->i_private;
1375                         if (shmem_falloc &&
1376                             !shmem_falloc->waitq &&
1377                             index >= shmem_falloc->start &&
1378                             index < shmem_falloc->next)
1379                                 shmem_falloc->nr_unswapped++;
1380                         else
1381                                 shmem_falloc = NULL;
1382                         spin_unlock(&inode->i_lock);
1383                         if (shmem_falloc)
1384                                 goto redirty;
1385                 }
1386                 clear_highpage(page);
1387                 flush_dcache_page(page);
1388                 SetPageUptodate(page);
1389         }
1390
1391         swap = get_swap_page(page);
1392         if (!swap.val)
1393                 goto redirty;
1394
1395         /*
1396          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1397          * if it's not already there.  Do it now before the page is
1398          * moved to swap cache, when its pagelock no longer protects
1399          * the inode from eviction.  But don't unlock the mutex until
1400          * we've incremented swapped, because shmem_unuse_inode() will
1401          * prune a !swapped inode from the swaplist under this mutex.
1402          */
1403         mutex_lock(&shmem_swaplist_mutex);
1404         if (list_empty(&info->swaplist))
1405                 list_add(&info->swaplist, &shmem_swaplist);
1406
1407         if (add_to_swap_cache(page, swap,
1408                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1409                         NULL) == 0) {
1410                 spin_lock_irq(&info->lock);
1411                 shmem_recalc_inode(inode);
1412                 info->swapped++;
1413                 spin_unlock_irq(&info->lock);
1414
1415                 swap_shmem_alloc(swap);
1416                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1417
1418                 mutex_unlock(&shmem_swaplist_mutex);
1419                 BUG_ON(page_mapped(page));
1420                 swap_writepage(page, wbc);
1421                 return 0;
1422         }
1423
1424         mutex_unlock(&shmem_swaplist_mutex);
1425         put_swap_page(page, swap);
1426 redirty:
1427         set_page_dirty(page);
1428         if (wbc->for_reclaim)
1429                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1430         unlock_page(page);
1431         return 0;
1432 }
1433
1434 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1435 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1436 {
1437         char buffer[64];
1438
1439         if (!mpol || mpol->mode == MPOL_DEFAULT)
1440                 return;         /* show nothing */
1441
1442         mpol_to_str(buffer, sizeof(buffer), mpol);
1443
1444         seq_printf(seq, ",mpol=%s", buffer);
1445 }
1446
1447 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1448 {
1449         struct mempolicy *mpol = NULL;
1450         if (sbinfo->mpol) {
1451                 raw_spin_lock(&sbinfo->stat_lock);      /* prevent replace/use races */
1452                 mpol = sbinfo->mpol;
1453                 mpol_get(mpol);
1454                 raw_spin_unlock(&sbinfo->stat_lock);
1455         }
1456         return mpol;
1457 }
1458 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1459 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1460 {
1461 }
1462 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1463 {
1464         return NULL;
1465 }
1466 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1467 #ifndef CONFIG_NUMA
1468 #define vm_policy vm_private_data
1469 #endif
1470
1471 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1472                 struct shmem_inode_info *info, pgoff_t index)
1473 {
1474         /* Create a pseudo vma that just contains the policy */
1475         vma_init(vma, NULL);
1476         /* Bias interleave by inode number to distribute better across nodes */
1477         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1478         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1479 }
1480
1481 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1482 {
1483         /* Drop reference taken by mpol_shared_policy_lookup() */
1484         mpol_cond_put(vma->vm_policy);
1485 }
1486
1487 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1488                         struct shmem_inode_info *info, pgoff_t index)
1489 {
1490         struct vm_area_struct pvma;
1491         struct page *page;
1492         struct vm_fault vmf = {
1493                 .vma = &pvma,
1494         };
1495
1496         shmem_pseudo_vma_init(&pvma, info, index);
1497         page = swap_cluster_readahead(swap, gfp, &vmf);
1498         shmem_pseudo_vma_destroy(&pvma);
1499
1500         return page;
1501 }
1502
1503 /*
1504  * Make sure huge_gfp is always more limited than limit_gfp.
1505  * Some of the flags set permissions, while others set limitations.
1506  */
1507 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1508 {
1509         gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1510         gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1511         gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1512         gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1513
1514         /* Allow allocations only from the originally specified zones. */
1515         result |= zoneflags;
1516
1517         /*
1518          * Minimize the result gfp by taking the union with the deny flags,
1519          * and the intersection of the allow flags.
1520          */
1521         result |= (limit_gfp & denyflags);
1522         result |= (huge_gfp & limit_gfp) & allowflags;
1523
1524         return result;
1525 }
1526
1527 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1528                 struct shmem_inode_info *info, pgoff_t index)
1529 {
1530         struct vm_area_struct pvma;
1531         struct address_space *mapping = info->vfs_inode.i_mapping;
1532         pgoff_t hindex;
1533         struct page *page;
1534
1535         hindex = round_down(index, HPAGE_PMD_NR);
1536         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1537                                                                 XA_PRESENT))
1538                 return NULL;
1539
1540         shmem_pseudo_vma_init(&pvma, info, hindex);
1541         page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1542                                true);
1543         shmem_pseudo_vma_destroy(&pvma);
1544         if (page)
1545                 prep_transhuge_page(page);
1546         else
1547                 count_vm_event(THP_FILE_FALLBACK);
1548         return page;
1549 }
1550
1551 static struct page *shmem_alloc_page(gfp_t gfp,
1552                         struct shmem_inode_info *info, pgoff_t index)
1553 {
1554         struct vm_area_struct pvma;
1555         struct page *page;
1556
1557         shmem_pseudo_vma_init(&pvma, info, index);
1558         page = alloc_page_vma(gfp, &pvma, 0);
1559         shmem_pseudo_vma_destroy(&pvma);
1560
1561         return page;
1562 }
1563
1564 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1565                 struct inode *inode,
1566                 pgoff_t index, bool huge)
1567 {
1568         struct shmem_inode_info *info = SHMEM_I(inode);
1569         struct page *page;
1570         int nr;
1571         int err = -ENOSPC;
1572
1573         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1574                 huge = false;
1575         nr = huge ? HPAGE_PMD_NR : 1;
1576
1577         if (!shmem_inode_acct_block(inode, nr))
1578                 goto failed;
1579
1580         if (huge)
1581                 page = shmem_alloc_hugepage(gfp, info, index);
1582         else
1583                 page = shmem_alloc_page(gfp, info, index);
1584         if (page) {
1585                 __SetPageLocked(page);
1586                 __SetPageSwapBacked(page);
1587                 return page;
1588         }
1589
1590         err = -ENOMEM;
1591         shmem_inode_unacct_blocks(inode, nr);
1592 failed:
1593         return ERR_PTR(err);
1594 }
1595
1596 /*
1597  * When a page is moved from swapcache to shmem filecache (either by the
1598  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1599  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1600  * ignorance of the mapping it belongs to.  If that mapping has special
1601  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1602  * we may need to copy to a suitable page before moving to filecache.
1603  *
1604  * In a future release, this may well be extended to respect cpuset and
1605  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1606  * but for now it is a simple matter of zone.
1607  */
1608 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1609 {
1610         return page_zonenum(page) > gfp_zone(gfp);
1611 }
1612
1613 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1614                                 struct shmem_inode_info *info, pgoff_t index)
1615 {
1616         struct page *oldpage, *newpage;
1617         struct address_space *swap_mapping;
1618         swp_entry_t entry;
1619         pgoff_t swap_index;
1620         int error;
1621
1622         oldpage = *pagep;
1623         entry.val = page_private(oldpage);
1624         swap_index = swp_offset(entry);
1625         swap_mapping = page_mapping(oldpage);
1626
1627         /*
1628          * We have arrived here because our zones are constrained, so don't
1629          * limit chance of success by further cpuset and node constraints.
1630          */
1631         gfp &= ~GFP_CONSTRAINT_MASK;
1632         newpage = shmem_alloc_page(gfp, info, index);
1633         if (!newpage)
1634                 return -ENOMEM;
1635
1636         get_page(newpage);
1637         copy_highpage(newpage, oldpage);
1638         flush_dcache_page(newpage);
1639
1640         __SetPageLocked(newpage);
1641         __SetPageSwapBacked(newpage);
1642         SetPageUptodate(newpage);
1643         set_page_private(newpage, entry.val);
1644         SetPageSwapCache(newpage);
1645
1646         /*
1647          * Our caller will very soon move newpage out of swapcache, but it's
1648          * a nice clean interface for us to replace oldpage by newpage there.
1649          */
1650         xa_lock_irq(&swap_mapping->i_pages);
1651         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1652         if (!error) {
1653                 mem_cgroup_migrate(oldpage, newpage);
1654                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1655                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1656         }
1657         xa_unlock_irq(&swap_mapping->i_pages);
1658
1659         if (unlikely(error)) {
1660                 /*
1661                  * Is this possible?  I think not, now that our callers check
1662                  * both PageSwapCache and page_private after getting page lock;
1663                  * but be defensive.  Reverse old to newpage for clear and free.
1664                  */
1665                 oldpage = newpage;
1666         } else {
1667                 lru_cache_add(newpage);
1668                 *pagep = newpage;
1669         }
1670
1671         ClearPageSwapCache(oldpage);
1672         set_page_private(oldpage, 0);
1673
1674         unlock_page(oldpage);
1675         put_page(oldpage);
1676         put_page(oldpage);
1677         return error;
1678 }
1679
1680 /*
1681  * Swap in the page pointed to by *pagep.
1682  * Caller has to make sure that *pagep contains a valid swapped page.
1683  * Returns 0 and the page in pagep if success. On failure, returns the
1684  * error code and NULL in *pagep.
1685  */
1686 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1687                              struct page **pagep, enum sgp_type sgp,
1688                              gfp_t gfp, struct vm_area_struct *vma,
1689                              vm_fault_t *fault_type)
1690 {
1691         struct address_space *mapping = inode->i_mapping;
1692         struct shmem_inode_info *info = SHMEM_I(inode);
1693         struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1694         struct page *page;
1695         swp_entry_t swap;
1696         int error;
1697
1698         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1699         swap = radix_to_swp_entry(*pagep);
1700         *pagep = NULL;
1701
1702         /* Look it up and read it in.. */
1703         page = lookup_swap_cache(swap, NULL, 0);
1704         if (!page) {
1705                 /* Or update major stats only when swapin succeeds?? */
1706                 if (fault_type) {
1707                         *fault_type |= VM_FAULT_MAJOR;
1708                         count_vm_event(PGMAJFAULT);
1709                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1710                 }
1711                 /* Here we actually start the io */
1712                 page = shmem_swapin(swap, gfp, info, index);
1713                 if (!page) {
1714                         error = -ENOMEM;
1715                         goto failed;
1716                 }
1717         }
1718
1719         /* We have to do this with page locked to prevent races */
1720         lock_page(page);
1721         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1722             !shmem_confirm_swap(mapping, index, swap)) {
1723                 error = -EEXIST;
1724                 goto unlock;
1725         }
1726         if (!PageUptodate(page)) {
1727                 error = -EIO;
1728                 goto failed;
1729         }
1730         wait_on_page_writeback(page);
1731
1732         /*
1733          * Some architectures may have to restore extra metadata to the
1734          * physical page after reading from swap.
1735          */
1736         arch_swap_restore(swap, page);
1737
1738         if (shmem_should_replace_page(page, gfp)) {
1739                 error = shmem_replace_page(&page, gfp, info, index);
1740                 if (error)
1741                         goto failed;
1742         }
1743
1744         error = shmem_add_to_page_cache(page, mapping, index,
1745                                         swp_to_radix_entry(swap), gfp,
1746                                         charge_mm);
1747         if (error)
1748                 goto failed;
1749
1750         spin_lock_irq(&info->lock);
1751         info->swapped--;
1752         shmem_recalc_inode(inode);
1753         spin_unlock_irq(&info->lock);
1754
1755         if (sgp == SGP_WRITE)
1756                 mark_page_accessed(page);
1757
1758         delete_from_swap_cache(page);
1759         set_page_dirty(page);
1760         swap_free(swap);
1761
1762         *pagep = page;
1763         return 0;
1764 failed:
1765         if (!shmem_confirm_swap(mapping, index, swap))
1766                 error = -EEXIST;
1767 unlock:
1768         if (page) {
1769                 unlock_page(page);
1770                 put_page(page);
1771         }
1772
1773         return error;
1774 }
1775
1776 /*
1777  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1778  *
1779  * If we allocate a new one we do not mark it dirty. That's up to the
1780  * vm. If we swap it in we mark it dirty since we also free the swap
1781  * entry since a page cannot live in both the swap and page cache.
1782  *
1783  * vma, vmf, and fault_type are only supplied by shmem_fault:
1784  * otherwise they are NULL.
1785  */
1786 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1787         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1788         struct vm_area_struct *vma, struct vm_fault *vmf,
1789                         vm_fault_t *fault_type)
1790 {
1791         struct address_space *mapping = inode->i_mapping;
1792         struct shmem_inode_info *info = SHMEM_I(inode);
1793         struct shmem_sb_info *sbinfo;
1794         struct mm_struct *charge_mm;
1795         struct page *page;
1796         enum sgp_type sgp_huge = sgp;
1797         pgoff_t hindex = index;
1798         gfp_t huge_gfp;
1799         int error;
1800         int once = 0;
1801         int alloced = 0;
1802
1803         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1804                 return -EFBIG;
1805         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1806                 sgp = SGP_CACHE;
1807 repeat:
1808         if (sgp <= SGP_CACHE &&
1809             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1810                 return -EINVAL;
1811         }
1812
1813         sbinfo = SHMEM_SB(inode->i_sb);
1814         charge_mm = vma ? vma->vm_mm : NULL;
1815
1816         page = pagecache_get_page(mapping, index,
1817                                         FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1818
1819         if (page && vma && userfaultfd_minor(vma)) {
1820                 if (!xa_is_value(page)) {
1821                         unlock_page(page);
1822                         put_page(page);
1823                 }
1824                 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1825                 return 0;
1826         }
1827
1828         if (xa_is_value(page)) {
1829                 error = shmem_swapin_page(inode, index, &page,
1830                                           sgp, gfp, vma, fault_type);
1831                 if (error == -EEXIST)
1832                         goto repeat;
1833
1834                 *pagep = page;
1835                 return error;
1836         }
1837
1838         if (page)
1839                 hindex = page->index;
1840         if (page && sgp == SGP_WRITE)
1841                 mark_page_accessed(page);
1842
1843         /* fallocated page? */
1844         if (page && !PageUptodate(page)) {
1845                 if (sgp != SGP_READ)
1846                         goto clear;
1847                 unlock_page(page);
1848                 put_page(page);
1849                 page = NULL;
1850                 hindex = index;
1851         }
1852         if (page || sgp == SGP_READ)
1853                 goto out;
1854
1855         /*
1856          * Fast cache lookup did not find it:
1857          * bring it back from swap or allocate.
1858          */
1859
1860         if (vma && userfaultfd_missing(vma)) {
1861                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1862                 return 0;
1863         }
1864
1865         /* shmem_symlink() */
1866         if (!shmem_mapping(mapping))
1867                 goto alloc_nohuge;
1868         if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1869                 goto alloc_nohuge;
1870         if (shmem_huge == SHMEM_HUGE_FORCE)
1871                 goto alloc_huge;
1872         switch (sbinfo->huge) {
1873         case SHMEM_HUGE_NEVER:
1874                 goto alloc_nohuge;
1875         case SHMEM_HUGE_WITHIN_SIZE: {
1876                 loff_t i_size;
1877                 pgoff_t off;
1878
1879                 off = round_up(index, HPAGE_PMD_NR);
1880                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1881                 if (i_size >= HPAGE_PMD_SIZE &&
1882                     i_size >> PAGE_SHIFT >= off)
1883                         goto alloc_huge;
1884
1885                 fallthrough;
1886         }
1887         case SHMEM_HUGE_ADVISE:
1888                 if (sgp_huge == SGP_HUGE)
1889                         goto alloc_huge;
1890                 /* TODO: implement fadvise() hints */
1891                 goto alloc_nohuge;
1892         }
1893
1894 alloc_huge:
1895         huge_gfp = vma_thp_gfp_mask(vma);
1896         huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1897         page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1898         if (IS_ERR(page)) {
1899 alloc_nohuge:
1900                 page = shmem_alloc_and_acct_page(gfp, inode,
1901                                                  index, false);
1902         }
1903         if (IS_ERR(page)) {
1904                 int retry = 5;
1905
1906                 error = PTR_ERR(page);
1907                 page = NULL;
1908                 if (error != -ENOSPC)
1909                         goto unlock;
1910                 /*
1911                  * Try to reclaim some space by splitting a huge page
1912                  * beyond i_size on the filesystem.
1913                  */
1914                 while (retry--) {
1915                         int ret;
1916
1917                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1918                         if (ret == SHRINK_STOP)
1919                                 break;
1920                         if (ret)
1921                                 goto alloc_nohuge;
1922                 }
1923                 goto unlock;
1924         }
1925
1926         if (PageTransHuge(page))
1927                 hindex = round_down(index, HPAGE_PMD_NR);
1928         else
1929                 hindex = index;
1930
1931         if (sgp == SGP_WRITE)
1932                 __SetPageReferenced(page);
1933
1934         error = shmem_add_to_page_cache(page, mapping, hindex,
1935                                         NULL, gfp & GFP_RECLAIM_MASK,
1936                                         charge_mm);
1937         if (error)
1938                 goto unacct;
1939         lru_cache_add(page);
1940
1941         spin_lock_irq(&info->lock);
1942         info->alloced += compound_nr(page);
1943         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1944         shmem_recalc_inode(inode);
1945         spin_unlock_irq(&info->lock);
1946         alloced = true;
1947
1948         if (PageTransHuge(page) &&
1949             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1950                         hindex + HPAGE_PMD_NR - 1) {
1951                 /*
1952                  * Part of the huge page is beyond i_size: subject
1953                  * to shrink under memory pressure.
1954                  */
1955                 spin_lock(&sbinfo->shrinklist_lock);
1956                 /*
1957                  * _careful to defend against unlocked access to
1958                  * ->shrink_list in shmem_unused_huge_shrink()
1959                  */
1960                 if (list_empty_careful(&info->shrinklist)) {
1961                         list_add_tail(&info->shrinklist,
1962                                       &sbinfo->shrinklist);
1963                         sbinfo->shrinklist_len++;
1964                 }
1965                 spin_unlock(&sbinfo->shrinklist_lock);
1966         }
1967
1968         /*
1969          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1970          */
1971         if (sgp == SGP_FALLOC)
1972                 sgp = SGP_WRITE;
1973 clear:
1974         /*
1975          * Let SGP_WRITE caller clear ends if write does not fill page;
1976          * but SGP_FALLOC on a page fallocated earlier must initialize
1977          * it now, lest undo on failure cancel our earlier guarantee.
1978          */
1979         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1980                 int i;
1981
1982                 for (i = 0; i < compound_nr(page); i++) {
1983                         clear_highpage(page + i);
1984                         flush_dcache_page(page + i);
1985                 }
1986                 SetPageUptodate(page);
1987         }
1988
1989         /* Perhaps the file has been truncated since we checked */
1990         if (sgp <= SGP_CACHE &&
1991             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1992                 if (alloced) {
1993                         ClearPageDirty(page);
1994                         delete_from_page_cache(page);
1995                         spin_lock_irq(&info->lock);
1996                         shmem_recalc_inode(inode);
1997                         spin_unlock_irq(&info->lock);
1998                 }
1999                 error = -EINVAL;
2000                 goto unlock;
2001         }
2002 out:
2003         *pagep = page + index - hindex;
2004         return 0;
2005
2006         /*
2007          * Error recovery.
2008          */
2009 unacct:
2010         shmem_inode_unacct_blocks(inode, compound_nr(page));
2011
2012         if (PageTransHuge(page)) {
2013                 unlock_page(page);
2014                 put_page(page);
2015                 goto alloc_nohuge;
2016         }
2017 unlock:
2018         if (page) {
2019                 unlock_page(page);
2020                 put_page(page);
2021         }
2022         if (error == -ENOSPC && !once++) {
2023                 spin_lock_irq(&info->lock);
2024                 shmem_recalc_inode(inode);
2025                 spin_unlock_irq(&info->lock);
2026                 goto repeat;
2027         }
2028         if (error == -EEXIST)
2029                 goto repeat;
2030         return error;
2031 }
2032
2033 /*
2034  * This is like autoremove_wake_function, but it removes the wait queue
2035  * entry unconditionally - even if something else had already woken the
2036  * target.
2037  */
2038 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2039 {
2040         int ret = default_wake_function(wait, mode, sync, key);
2041         list_del_init(&wait->entry);
2042         return ret;
2043 }
2044
2045 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2046 {
2047         struct vm_area_struct *vma = vmf->vma;
2048         struct inode *inode = file_inode(vma->vm_file);
2049         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2050         enum sgp_type sgp;
2051         int err;
2052         vm_fault_t ret = VM_FAULT_LOCKED;
2053
2054         /*
2055          * Trinity finds that probing a hole which tmpfs is punching can
2056          * prevent the hole-punch from ever completing: which in turn
2057          * locks writers out with its hold on i_mutex.  So refrain from
2058          * faulting pages into the hole while it's being punched.  Although
2059          * shmem_undo_range() does remove the additions, it may be unable to
2060          * keep up, as each new page needs its own unmap_mapping_range() call,
2061          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2062          *
2063          * It does not matter if we sometimes reach this check just before the
2064          * hole-punch begins, so that one fault then races with the punch:
2065          * we just need to make racing faults a rare case.
2066          *
2067          * The implementation below would be much simpler if we just used a
2068          * standard mutex or completion: but we cannot take i_mutex in fault,
2069          * and bloating every shmem inode for this unlikely case would be sad.
2070          */
2071         if (unlikely(inode->i_private)) {
2072                 struct shmem_falloc *shmem_falloc;
2073
2074                 spin_lock(&inode->i_lock);
2075                 shmem_falloc = inode->i_private;
2076                 if (shmem_falloc &&
2077                     shmem_falloc->waitq &&
2078                     vmf->pgoff >= shmem_falloc->start &&
2079                     vmf->pgoff < shmem_falloc->next) {
2080                         struct file *fpin;
2081                         wait_queue_head_t *shmem_falloc_waitq;
2082                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2083
2084                         ret = VM_FAULT_NOPAGE;
2085                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2086                         if (fpin)
2087                                 ret = VM_FAULT_RETRY;
2088
2089                         shmem_falloc_waitq = shmem_falloc->waitq;
2090                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2091                                         TASK_UNINTERRUPTIBLE);
2092                         spin_unlock(&inode->i_lock);
2093                         schedule();
2094
2095                         /*
2096                          * shmem_falloc_waitq points into the shmem_fallocate()
2097                          * stack of the hole-punching task: shmem_falloc_waitq
2098                          * is usually invalid by the time we reach here, but
2099                          * finish_wait() does not dereference it in that case;
2100                          * though i_lock needed lest racing with wake_up_all().
2101                          */
2102                         spin_lock(&inode->i_lock);
2103                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2104                         spin_unlock(&inode->i_lock);
2105
2106                         if (fpin)
2107                                 fput(fpin);
2108                         return ret;
2109                 }
2110                 spin_unlock(&inode->i_lock);
2111         }
2112
2113         sgp = SGP_CACHE;
2114
2115         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2116             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2117                 sgp = SGP_NOHUGE;
2118         else if (vma->vm_flags & VM_HUGEPAGE)
2119                 sgp = SGP_HUGE;
2120
2121         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2122                                   gfp, vma, vmf, &ret);
2123         if (err)
2124                 return vmf_error(err);
2125         return ret;
2126 }
2127
2128 unsigned long shmem_get_unmapped_area(struct file *file,
2129                                       unsigned long uaddr, unsigned long len,
2130                                       unsigned long pgoff, unsigned long flags)
2131 {
2132         unsigned long (*get_area)(struct file *,
2133                 unsigned long, unsigned long, unsigned long, unsigned long);
2134         unsigned long addr;
2135         unsigned long offset;
2136         unsigned long inflated_len;
2137         unsigned long inflated_addr;
2138         unsigned long inflated_offset;
2139
2140         if (len > TASK_SIZE)
2141                 return -ENOMEM;
2142
2143         get_area = current->mm->get_unmapped_area;
2144         addr = get_area(file, uaddr, len, pgoff, flags);
2145
2146         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2147                 return addr;
2148         if (IS_ERR_VALUE(addr))
2149                 return addr;
2150         if (addr & ~PAGE_MASK)
2151                 return addr;
2152         if (addr > TASK_SIZE - len)
2153                 return addr;
2154
2155         if (shmem_huge == SHMEM_HUGE_DENY)
2156                 return addr;
2157         if (len < HPAGE_PMD_SIZE)
2158                 return addr;
2159         if (flags & MAP_FIXED)
2160                 return addr;
2161         /*
2162          * Our priority is to support MAP_SHARED mapped hugely;
2163          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2164          * But if caller specified an address hint and we allocated area there
2165          * successfully, respect that as before.
2166          */
2167         if (uaddr == addr)
2168                 return addr;
2169
2170         if (shmem_huge != SHMEM_HUGE_FORCE) {
2171                 struct super_block *sb;
2172
2173                 if (file) {
2174                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2175                         sb = file_inode(file)->i_sb;
2176                 } else {
2177                         /*
2178                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2179                          * for "/dev/zero", to create a shared anonymous object.
2180                          */
2181                         if (IS_ERR(shm_mnt))
2182                                 return addr;
2183                         sb = shm_mnt->mnt_sb;
2184                 }
2185                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2186                         return addr;
2187         }
2188
2189         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2190         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2191                 return addr;
2192         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2193                 return addr;
2194
2195         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2196         if (inflated_len > TASK_SIZE)
2197                 return addr;
2198         if (inflated_len < len)
2199                 return addr;
2200
2201         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2202         if (IS_ERR_VALUE(inflated_addr))
2203                 return addr;
2204         if (inflated_addr & ~PAGE_MASK)
2205                 return addr;
2206
2207         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2208         inflated_addr += offset - inflated_offset;
2209         if (inflated_offset > offset)
2210                 inflated_addr += HPAGE_PMD_SIZE;
2211
2212         if (inflated_addr > TASK_SIZE - len)
2213                 return addr;
2214         return inflated_addr;
2215 }
2216
2217 #ifdef CONFIG_NUMA
2218 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2219 {
2220         struct inode *inode = file_inode(vma->vm_file);
2221         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2222 }
2223
2224 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2225                                           unsigned long addr)
2226 {
2227         struct inode *inode = file_inode(vma->vm_file);
2228         pgoff_t index;
2229
2230         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2231         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2232 }
2233 #endif
2234
2235 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2236 {
2237         struct inode *inode = file_inode(file);
2238         struct shmem_inode_info *info = SHMEM_I(inode);
2239         int retval = -ENOMEM;
2240
2241         /*
2242          * What serializes the accesses to info->flags?
2243          * ipc_lock_object() when called from shmctl_do_lock(),
2244          * no serialization needed when called from shm_destroy().
2245          */
2246         if (lock && !(info->flags & VM_LOCKED)) {
2247                 if (!user_shm_lock(inode->i_size, ucounts))
2248                         goto out_nomem;
2249                 info->flags |= VM_LOCKED;
2250                 mapping_set_unevictable(file->f_mapping);
2251         }
2252         if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2253                 user_shm_unlock(inode->i_size, ucounts);
2254                 info->flags &= ~VM_LOCKED;
2255                 mapping_clear_unevictable(file->f_mapping);
2256         }
2257         retval = 0;
2258
2259 out_nomem:
2260         return retval;
2261 }
2262
2263 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2264 {
2265         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2266         int ret;
2267
2268         ret = seal_check_future_write(info->seals, vma);
2269         if (ret)
2270                 return ret;
2271
2272         /* arm64 - allow memory tagging on RAM-based files */
2273         vma->vm_flags |= VM_MTE_ALLOWED;
2274
2275         file_accessed(file);
2276         vma->vm_ops = &shmem_vm_ops;
2277         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2278                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2279                         (vma->vm_end & HPAGE_PMD_MASK)) {
2280                 khugepaged_enter(vma, vma->vm_flags);
2281         }
2282         return 0;
2283 }
2284
2285 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2286                                      umode_t mode, dev_t dev, unsigned long flags)
2287 {
2288         struct inode *inode;
2289         struct shmem_inode_info *info;
2290         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2291         ino_t ino;
2292
2293         if (shmem_reserve_inode(sb, &ino))
2294                 return NULL;
2295
2296         inode = new_inode(sb);
2297         if (inode) {
2298                 inode->i_ino = ino;
2299                 inode_init_owner(&init_user_ns, inode, dir, mode);
2300                 inode->i_blocks = 0;
2301                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2302                 inode->i_generation = prandom_u32();
2303                 info = SHMEM_I(inode);
2304                 memset(info, 0, (char *)inode - (char *)info);
2305                 spin_lock_init(&info->lock);
2306                 atomic_set(&info->stop_eviction, 0);
2307                 info->seals = F_SEAL_SEAL;
2308                 info->flags = flags & VM_NORESERVE;
2309                 INIT_LIST_HEAD(&info->shrinklist);
2310                 INIT_LIST_HEAD(&info->swaplist);
2311                 simple_xattrs_init(&info->xattrs);
2312                 cache_no_acl(inode);
2313
2314                 switch (mode & S_IFMT) {
2315                 default:
2316                         inode->i_op = &shmem_special_inode_operations;
2317                         init_special_inode(inode, mode, dev);
2318                         break;
2319                 case S_IFREG:
2320                         inode->i_mapping->a_ops = &shmem_aops;
2321                         inode->i_op = &shmem_inode_operations;
2322                         inode->i_fop = &shmem_file_operations;
2323                         mpol_shared_policy_init(&info->policy,
2324                                                  shmem_get_sbmpol(sbinfo));
2325                         break;
2326                 case S_IFDIR:
2327                         inc_nlink(inode);
2328                         /* Some things misbehave if size == 0 on a directory */
2329                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2330                         inode->i_op = &shmem_dir_inode_operations;
2331                         inode->i_fop = &simple_dir_operations;
2332                         break;
2333                 case S_IFLNK:
2334                         /*
2335                          * Must not load anything in the rbtree,
2336                          * mpol_free_shared_policy will not be called.
2337                          */
2338                         mpol_shared_policy_init(&info->policy, NULL);
2339                         break;
2340                 }
2341
2342                 lockdep_annotate_inode_mutex_key(inode);
2343         } else
2344                 shmem_free_inode(sb);
2345         return inode;
2346 }
2347
2348 #ifdef CONFIG_USERFAULTFD
2349 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2350                            pmd_t *dst_pmd,
2351                            struct vm_area_struct *dst_vma,
2352                            unsigned long dst_addr,
2353                            unsigned long src_addr,
2354                            bool zeropage,
2355                            struct page **pagep)
2356 {
2357         struct inode *inode = file_inode(dst_vma->vm_file);
2358         struct shmem_inode_info *info = SHMEM_I(inode);
2359         struct address_space *mapping = inode->i_mapping;
2360         gfp_t gfp = mapping_gfp_mask(mapping);
2361         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2362         void *page_kaddr;
2363         struct page *page;
2364         int ret;
2365         pgoff_t max_off;
2366
2367         if (!shmem_inode_acct_block(inode, 1)) {
2368                 /*
2369                  * We may have got a page, returned -ENOENT triggering a retry,
2370                  * and now we find ourselves with -ENOMEM. Release the page, to
2371                  * avoid a BUG_ON in our caller.
2372                  */
2373                 if (unlikely(*pagep)) {
2374                         put_page(*pagep);
2375                         *pagep = NULL;
2376                 }
2377                 return -ENOMEM;
2378         }
2379
2380         if (!*pagep) {
2381                 ret = -ENOMEM;
2382                 page = shmem_alloc_page(gfp, info, pgoff);
2383                 if (!page)
2384                         goto out_unacct_blocks;
2385
2386                 if (!zeropage) {        /* COPY */
2387                         page_kaddr = kmap_atomic(page);
2388                         ret = copy_from_user(page_kaddr,
2389                                              (const void __user *)src_addr,
2390                                              PAGE_SIZE);
2391                         kunmap_atomic(page_kaddr);
2392
2393                         /* fallback to copy_from_user outside mmap_lock */
2394                         if (unlikely(ret)) {
2395                                 *pagep = page;
2396                                 ret = -ENOENT;
2397                                 /* don't free the page */
2398                                 goto out_unacct_blocks;
2399                         }
2400                 } else {                /* ZEROPAGE */
2401                         clear_highpage(page);
2402                 }
2403         } else {
2404                 page = *pagep;
2405                 *pagep = NULL;
2406         }
2407
2408         VM_BUG_ON(PageLocked(page));
2409         VM_BUG_ON(PageSwapBacked(page));
2410         __SetPageLocked(page);
2411         __SetPageSwapBacked(page);
2412         __SetPageUptodate(page);
2413
2414         ret = -EFAULT;
2415         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2416         if (unlikely(pgoff >= max_off))
2417                 goto out_release;
2418
2419         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2420                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2421         if (ret)
2422                 goto out_release;
2423
2424         ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2425                                        page, true, false);
2426         if (ret)
2427                 goto out_delete_from_cache;
2428
2429         spin_lock_irq(&info->lock);
2430         info->alloced++;
2431         inode->i_blocks += BLOCKS_PER_PAGE;
2432         shmem_recalc_inode(inode);
2433         spin_unlock_irq(&info->lock);
2434
2435         SetPageDirty(page);
2436         unlock_page(page);
2437         return 0;
2438 out_delete_from_cache:
2439         delete_from_page_cache(page);
2440 out_release:
2441         unlock_page(page);
2442         put_page(page);
2443 out_unacct_blocks:
2444         shmem_inode_unacct_blocks(inode, 1);
2445         return ret;
2446 }
2447 #endif /* CONFIG_USERFAULTFD */
2448
2449 #ifdef CONFIG_TMPFS
2450 static const struct inode_operations shmem_symlink_inode_operations;
2451 static const struct inode_operations shmem_short_symlink_operations;
2452
2453 #ifdef CONFIG_TMPFS_XATTR
2454 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2455 #else
2456 #define shmem_initxattrs NULL
2457 #endif
2458
2459 static int
2460 shmem_write_begin(struct file *file, struct address_space *mapping,
2461                         loff_t pos, unsigned len, unsigned flags,
2462                         struct page **pagep, void **fsdata)
2463 {
2464         struct inode *inode = mapping->host;
2465         struct shmem_inode_info *info = SHMEM_I(inode);
2466         pgoff_t index = pos >> PAGE_SHIFT;
2467
2468         /* i_mutex is held by caller */
2469         if (unlikely(info->seals & (F_SEAL_GROW |
2470                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2471                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2472                         return -EPERM;
2473                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2474                         return -EPERM;
2475         }
2476
2477         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2478 }
2479
2480 static int
2481 shmem_write_end(struct file *file, struct address_space *mapping,
2482                         loff_t pos, unsigned len, unsigned copied,
2483                         struct page *page, void *fsdata)
2484 {
2485         struct inode *inode = mapping->host;
2486
2487         if (pos + copied > inode->i_size)
2488                 i_size_write(inode, pos + copied);
2489
2490         if (!PageUptodate(page)) {
2491                 struct page *head = compound_head(page);
2492                 if (PageTransCompound(page)) {
2493                         int i;
2494
2495                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2496                                 if (head + i == page)
2497                                         continue;
2498                                 clear_highpage(head + i);
2499                                 flush_dcache_page(head + i);
2500                         }
2501                 }
2502                 if (copied < PAGE_SIZE) {
2503                         unsigned from = pos & (PAGE_SIZE - 1);
2504                         zero_user_segments(page, 0, from,
2505                                         from + copied, PAGE_SIZE);
2506                 }
2507                 SetPageUptodate(head);
2508         }
2509         set_page_dirty(page);
2510         unlock_page(page);
2511         put_page(page);
2512
2513         return copied;
2514 }
2515
2516 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2517 {
2518         struct file *file = iocb->ki_filp;
2519         struct inode *inode = file_inode(file);
2520         struct address_space *mapping = inode->i_mapping;
2521         pgoff_t index;
2522         unsigned long offset;
2523         enum sgp_type sgp = SGP_READ;
2524         int error = 0;
2525         ssize_t retval = 0;
2526         loff_t *ppos = &iocb->ki_pos;
2527
2528         /*
2529          * Might this read be for a stacking filesystem?  Then when reading
2530          * holes of a sparse file, we actually need to allocate those pages,
2531          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2532          */
2533         if (!iter_is_iovec(to))
2534                 sgp = SGP_CACHE;
2535
2536         index = *ppos >> PAGE_SHIFT;
2537         offset = *ppos & ~PAGE_MASK;
2538
2539         for (;;) {
2540                 struct page *page = NULL;
2541                 pgoff_t end_index;
2542                 unsigned long nr, ret;
2543                 loff_t i_size = i_size_read(inode);
2544
2545                 end_index = i_size >> PAGE_SHIFT;
2546                 if (index > end_index)
2547                         break;
2548                 if (index == end_index) {
2549                         nr = i_size & ~PAGE_MASK;
2550                         if (nr <= offset)
2551                                 break;
2552                 }
2553
2554                 error = shmem_getpage(inode, index, &page, sgp);
2555                 if (error) {
2556                         if (error == -EINVAL)
2557                                 error = 0;
2558                         break;
2559                 }
2560                 if (page) {
2561                         if (sgp == SGP_CACHE)
2562                                 set_page_dirty(page);
2563                         unlock_page(page);
2564                 }
2565
2566                 /*
2567                  * We must evaluate after, since reads (unlike writes)
2568                  * are called without i_mutex protection against truncate
2569                  */
2570                 nr = PAGE_SIZE;
2571                 i_size = i_size_read(inode);
2572                 end_index = i_size >> PAGE_SHIFT;
2573                 if (index == end_index) {
2574                         nr = i_size & ~PAGE_MASK;
2575                         if (nr <= offset) {
2576                                 if (page)
2577                                         put_page(page);
2578                                 break;
2579                         }
2580                 }
2581                 nr -= offset;
2582
2583                 if (page) {
2584                         /*
2585                          * If users can be writing to this page using arbitrary
2586                          * virtual addresses, take care about potential aliasing
2587                          * before reading the page on the kernel side.
2588                          */
2589                         if (mapping_writably_mapped(mapping))
2590                                 flush_dcache_page(page);
2591                         /*
2592                          * Mark the page accessed if we read the beginning.
2593                          */
2594                         if (!offset)
2595                                 mark_page_accessed(page);
2596                 } else {
2597                         page = ZERO_PAGE(0);
2598                         get_page(page);
2599                 }
2600
2601                 /*
2602                  * Ok, we have the page, and it's up-to-date, so
2603                  * now we can copy it to user space...
2604                  */
2605                 ret = copy_page_to_iter(page, offset, nr, to);
2606                 retval += ret;
2607                 offset += ret;
2608                 index += offset >> PAGE_SHIFT;
2609                 offset &= ~PAGE_MASK;
2610
2611                 put_page(page);
2612                 if (!iov_iter_count(to))
2613                         break;
2614                 if (ret < nr) {
2615                         error = -EFAULT;
2616                         break;
2617                 }
2618                 cond_resched();
2619         }
2620
2621         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2622         file_accessed(file);
2623         return retval ? retval : error;
2624 }
2625
2626 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2627 {
2628         struct address_space *mapping = file->f_mapping;
2629         struct inode *inode = mapping->host;
2630
2631         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2632                 return generic_file_llseek_size(file, offset, whence,
2633                                         MAX_LFS_FILESIZE, i_size_read(inode));
2634         if (offset < 0)
2635                 return -ENXIO;
2636
2637         inode_lock(inode);
2638         /* We're holding i_mutex so we can access i_size directly */
2639         offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2640         if (offset >= 0)
2641                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2642         inode_unlock(inode);
2643         return offset;
2644 }
2645
2646 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2647                                                          loff_t len)
2648 {
2649         struct inode *inode = file_inode(file);
2650         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2651         struct shmem_inode_info *info = SHMEM_I(inode);
2652         struct shmem_falloc shmem_falloc;
2653         pgoff_t start, index, end;
2654         int error;
2655
2656         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2657                 return -EOPNOTSUPP;
2658
2659         inode_lock(inode);
2660
2661         if (mode & FALLOC_FL_PUNCH_HOLE) {
2662                 struct address_space *mapping = file->f_mapping;
2663                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2664                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2665                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2666
2667                 /* protected by i_mutex */
2668                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2669                         error = -EPERM;
2670                         goto out;
2671                 }
2672
2673                 shmem_falloc.waitq = &shmem_falloc_waitq;
2674                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2675                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2676                 spin_lock(&inode->i_lock);
2677                 inode->i_private = &shmem_falloc;
2678                 spin_unlock(&inode->i_lock);
2679
2680                 if ((u64)unmap_end > (u64)unmap_start)
2681                         unmap_mapping_range(mapping, unmap_start,
2682                                             1 + unmap_end - unmap_start, 0);
2683                 shmem_truncate_range(inode, offset, offset + len - 1);
2684                 /* No need to unmap again: hole-punching leaves COWed pages */
2685
2686                 spin_lock(&inode->i_lock);
2687                 inode->i_private = NULL;
2688                 wake_up_all(&shmem_falloc_waitq);
2689                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2690                 spin_unlock(&inode->i_lock);
2691                 error = 0;
2692                 goto out;
2693         }
2694
2695         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2696         error = inode_newsize_ok(inode, offset + len);
2697         if (error)
2698                 goto out;
2699
2700         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2701                 error = -EPERM;
2702                 goto out;
2703         }
2704
2705         start = offset >> PAGE_SHIFT;
2706         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2707         /* Try to avoid a swapstorm if len is impossible to satisfy */
2708         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2709                 error = -ENOSPC;
2710                 goto out;
2711         }
2712
2713         shmem_falloc.waitq = NULL;
2714         shmem_falloc.start = start;
2715         shmem_falloc.next  = start;
2716         shmem_falloc.nr_falloced = 0;
2717         shmem_falloc.nr_unswapped = 0;
2718         spin_lock(&inode->i_lock);
2719         inode->i_private = &shmem_falloc;
2720         spin_unlock(&inode->i_lock);
2721
2722         for (index = start; index < end; index++) {
2723                 struct page *page;
2724
2725                 /*
2726                  * Good, the fallocate(2) manpage permits EINTR: we may have
2727                  * been interrupted because we are using up too much memory.
2728                  */
2729                 if (signal_pending(current))
2730                         error = -EINTR;
2731                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2732                         error = -ENOMEM;
2733                 else
2734                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2735                 if (error) {
2736                         /* Remove the !PageUptodate pages we added */
2737                         if (index > start) {
2738                                 shmem_undo_range(inode,
2739                                     (loff_t)start << PAGE_SHIFT,
2740                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2741                         }
2742                         goto undone;
2743                 }
2744
2745                 /*
2746                  * Inform shmem_writepage() how far we have reached.
2747                  * No need for lock or barrier: we have the page lock.
2748                  */
2749                 shmem_falloc.next++;
2750                 if (!PageUptodate(page))
2751                         shmem_falloc.nr_falloced++;
2752
2753                 /*
2754                  * If !PageUptodate, leave it that way so that freeable pages
2755                  * can be recognized if we need to rollback on error later.
2756                  * But set_page_dirty so that memory pressure will swap rather
2757                  * than free the pages we are allocating (and SGP_CACHE pages
2758                  * might still be clean: we now need to mark those dirty too).
2759                  */
2760                 set_page_dirty(page);
2761                 unlock_page(page);
2762                 put_page(page);
2763                 cond_resched();
2764         }
2765
2766         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2767                 i_size_write(inode, offset + len);
2768         inode->i_ctime = current_time(inode);
2769 undone:
2770         spin_lock(&inode->i_lock);
2771         inode->i_private = NULL;
2772         spin_unlock(&inode->i_lock);
2773 out:
2774         inode_unlock(inode);
2775         return error;
2776 }
2777
2778 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2779 {
2780         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2781
2782         buf->f_type = TMPFS_MAGIC;
2783         buf->f_bsize = PAGE_SIZE;
2784         buf->f_namelen = NAME_MAX;
2785         if (sbinfo->max_blocks) {
2786                 buf->f_blocks = sbinfo->max_blocks;
2787                 buf->f_bavail =
2788                 buf->f_bfree  = sbinfo->max_blocks -
2789                                 percpu_counter_sum(&sbinfo->used_blocks);
2790         }
2791         if (sbinfo->max_inodes) {
2792                 buf->f_files = sbinfo->max_inodes;
2793                 buf->f_ffree = sbinfo->free_inodes;
2794         }
2795         /* else leave those fields 0 like simple_statfs */
2796
2797         buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2798
2799         return 0;
2800 }
2801
2802 /*
2803  * File creation. Allocate an inode, and we're done..
2804  */
2805 static int
2806 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2807             struct dentry *dentry, umode_t mode, dev_t dev)
2808 {
2809         struct inode *inode;
2810         int error = -ENOSPC;
2811
2812         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2813         if (inode) {
2814                 error = simple_acl_create(dir, inode);
2815                 if (error)
2816                         goto out_iput;
2817                 error = security_inode_init_security(inode, dir,
2818                                                      &dentry->d_name,
2819                                                      shmem_initxattrs, NULL);
2820                 if (error && error != -EOPNOTSUPP)
2821                         goto out_iput;
2822
2823                 error = 0;
2824                 dir->i_size += BOGO_DIRENT_SIZE;
2825                 dir->i_ctime = dir->i_mtime = current_time(dir);
2826                 d_instantiate(dentry, inode);
2827                 dget(dentry); /* Extra count - pin the dentry in core */
2828         }
2829         return error;
2830 out_iput:
2831         iput(inode);
2832         return error;
2833 }
2834
2835 static int
2836 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2837               struct dentry *dentry, umode_t mode)
2838 {
2839         struct inode *inode;
2840         int error = -ENOSPC;
2841
2842         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2843         if (inode) {
2844                 error = security_inode_init_security(inode, dir,
2845                                                      NULL,
2846                                                      shmem_initxattrs, NULL);
2847                 if (error && error != -EOPNOTSUPP)
2848                         goto out_iput;
2849                 error = simple_acl_create(dir, inode);
2850                 if (error)
2851                         goto out_iput;
2852                 d_tmpfile(dentry, inode);
2853         }
2854         return error;
2855 out_iput:
2856         iput(inode);
2857         return error;
2858 }
2859
2860 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2861                        struct dentry *dentry, umode_t mode)
2862 {
2863         int error;
2864
2865         if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2866                                  mode | S_IFDIR, 0)))
2867                 return error;
2868         inc_nlink(dir);
2869         return 0;
2870 }
2871
2872 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2873                         struct dentry *dentry, umode_t mode, bool excl)
2874 {
2875         return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2876 }
2877
2878 /*
2879  * Link a file..
2880  */
2881 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2882 {
2883         struct inode *inode = d_inode(old_dentry);
2884         int ret = 0;
2885
2886         /*
2887          * No ordinary (disk based) filesystem counts links as inodes;
2888          * but each new link needs a new dentry, pinning lowmem, and
2889          * tmpfs dentries cannot be pruned until they are unlinked.
2890          * But if an O_TMPFILE file is linked into the tmpfs, the
2891          * first link must skip that, to get the accounting right.
2892          */
2893         if (inode->i_nlink) {
2894                 ret = shmem_reserve_inode(inode->i_sb, NULL);
2895                 if (ret)
2896                         goto out;
2897         }
2898
2899         dir->i_size += BOGO_DIRENT_SIZE;
2900         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2901         inc_nlink(inode);
2902         ihold(inode);   /* New dentry reference */
2903         dget(dentry);           /* Extra pinning count for the created dentry */
2904         d_instantiate(dentry, inode);
2905 out:
2906         return ret;
2907 }
2908
2909 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2910 {
2911         struct inode *inode = d_inode(dentry);
2912
2913         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2914                 shmem_free_inode(inode->i_sb);
2915
2916         dir->i_size -= BOGO_DIRENT_SIZE;
2917         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2918         drop_nlink(inode);
2919         dput(dentry);   /* Undo the count from "create" - this does all the work */
2920         return 0;
2921 }
2922
2923 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2924 {
2925         if (!simple_empty(dentry))
2926                 return -ENOTEMPTY;
2927
2928         drop_nlink(d_inode(dentry));
2929         drop_nlink(dir);
2930         return shmem_unlink(dir, dentry);
2931 }
2932
2933 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2934 {
2935         bool old_is_dir = d_is_dir(old_dentry);
2936         bool new_is_dir = d_is_dir(new_dentry);
2937
2938         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2939                 if (old_is_dir) {
2940                         drop_nlink(old_dir);
2941                         inc_nlink(new_dir);
2942                 } else {
2943                         drop_nlink(new_dir);
2944                         inc_nlink(old_dir);
2945                 }
2946         }
2947         old_dir->i_ctime = old_dir->i_mtime =
2948         new_dir->i_ctime = new_dir->i_mtime =
2949         d_inode(old_dentry)->i_ctime =
2950         d_inode(new_dentry)->i_ctime = current_time(old_dir);
2951
2952         return 0;
2953 }
2954
2955 static int shmem_whiteout(struct user_namespace *mnt_userns,
2956                           struct inode *old_dir, struct dentry *old_dentry)
2957 {
2958         struct dentry *whiteout;
2959         int error;
2960
2961         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2962         if (!whiteout)
2963                 return -ENOMEM;
2964
2965         error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2966                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2967         dput(whiteout);
2968         if (error)
2969                 return error;
2970
2971         /*
2972          * Cheat and hash the whiteout while the old dentry is still in
2973          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2974          *
2975          * d_lookup() will consistently find one of them at this point,
2976          * not sure which one, but that isn't even important.
2977          */
2978         d_rehash(whiteout);
2979         return 0;
2980 }
2981
2982 /*
2983  * The VFS layer already does all the dentry stuff for rename,
2984  * we just have to decrement the usage count for the target if
2985  * it exists so that the VFS layer correctly free's it when it
2986  * gets overwritten.
2987  */
2988 static int shmem_rename2(struct user_namespace *mnt_userns,
2989                          struct inode *old_dir, struct dentry *old_dentry,
2990                          struct inode *new_dir, struct dentry *new_dentry,
2991                          unsigned int flags)
2992 {
2993         struct inode *inode = d_inode(old_dentry);
2994         int they_are_dirs = S_ISDIR(inode->i_mode);
2995
2996         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2997                 return -EINVAL;
2998
2999         if (flags & RENAME_EXCHANGE)
3000                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3001
3002         if (!simple_empty(new_dentry))
3003                 return -ENOTEMPTY;
3004
3005         if (flags & RENAME_WHITEOUT) {
3006                 int error;
3007
3008                 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3009                 if (error)
3010                         return error;
3011         }
3012
3013         if (d_really_is_positive(new_dentry)) {
3014                 (void) shmem_unlink(new_dir, new_dentry);
3015                 if (they_are_dirs) {
3016                         drop_nlink(d_inode(new_dentry));
3017                         drop_nlink(old_dir);
3018                 }
3019         } else if (they_are_dirs) {
3020                 drop_nlink(old_dir);
3021                 inc_nlink(new_dir);
3022         }
3023
3024         old_dir->i_size -= BOGO_DIRENT_SIZE;
3025         new_dir->i_size += BOGO_DIRENT_SIZE;
3026         old_dir->i_ctime = old_dir->i_mtime =
3027         new_dir->i_ctime = new_dir->i_mtime =
3028         inode->i_ctime = current_time(old_dir);
3029         return 0;
3030 }
3031
3032 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3033                          struct dentry *dentry, const char *symname)
3034 {
3035         int error;
3036         int len;
3037         struct inode *inode;
3038         struct page *page;
3039
3040         len = strlen(symname) + 1;
3041         if (len > PAGE_SIZE)
3042                 return -ENAMETOOLONG;
3043
3044         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3045                                 VM_NORESERVE);
3046         if (!inode)
3047                 return -ENOSPC;
3048
3049         error = security_inode_init_security(inode, dir, &dentry->d_name,
3050                                              shmem_initxattrs, NULL);
3051         if (error && error != -EOPNOTSUPP) {
3052                 iput(inode);
3053                 return error;
3054         }
3055
3056         inode->i_size = len-1;
3057         if (len <= SHORT_SYMLINK_LEN) {
3058                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3059                 if (!inode->i_link) {
3060                         iput(inode);
3061                         return -ENOMEM;
3062                 }
3063                 inode->i_op = &shmem_short_symlink_operations;
3064         } else {
3065                 inode_nohighmem(inode);
3066                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3067                 if (error) {
3068                         iput(inode);
3069                         return error;
3070                 }
3071                 inode->i_mapping->a_ops = &shmem_aops;
3072                 inode->i_op = &shmem_symlink_inode_operations;
3073                 memcpy(page_address(page), symname, len);
3074                 SetPageUptodate(page);
3075                 set_page_dirty(page);
3076                 unlock_page(page);
3077                 put_page(page);
3078         }
3079         dir->i_size += BOGO_DIRENT_SIZE;
3080         dir->i_ctime = dir->i_mtime = current_time(dir);
3081         d_instantiate(dentry, inode);
3082         dget(dentry);
3083         return 0;
3084 }
3085
3086 static void shmem_put_link(void *arg)
3087 {
3088         mark_page_accessed(arg);
3089         put_page(arg);
3090 }
3091
3092 static const char *shmem_get_link(struct dentry *dentry,
3093                                   struct inode *inode,
3094                                   struct delayed_call *done)
3095 {
3096         struct page *page = NULL;
3097         int error;
3098         if (!dentry) {
3099                 page = find_get_page(inode->i_mapping, 0);
3100                 if (!page)
3101                         return ERR_PTR(-ECHILD);
3102                 if (!PageUptodate(page)) {
3103                         put_page(page);
3104                         return ERR_PTR(-ECHILD);
3105                 }
3106         } else {
3107                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3108                 if (error)
3109                         return ERR_PTR(error);
3110                 unlock_page(page);
3111         }
3112         set_delayed_call(done, shmem_put_link, page);
3113         return page_address(page);
3114 }
3115
3116 #ifdef CONFIG_TMPFS_XATTR
3117 /*
3118  * Superblocks without xattr inode operations may get some security.* xattr
3119  * support from the LSM "for free". As soon as we have any other xattrs
3120  * like ACLs, we also need to implement the security.* handlers at
3121  * filesystem level, though.
3122  */
3123
3124 /*
3125  * Callback for security_inode_init_security() for acquiring xattrs.
3126  */
3127 static int shmem_initxattrs(struct inode *inode,
3128                             const struct xattr *xattr_array,
3129                             void *fs_info)
3130 {
3131         struct shmem_inode_info *info = SHMEM_I(inode);
3132         const struct xattr *xattr;
3133         struct simple_xattr *new_xattr;
3134         size_t len;
3135
3136         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3137                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3138                 if (!new_xattr)
3139                         return -ENOMEM;
3140
3141                 len = strlen(xattr->name) + 1;
3142                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3143                                           GFP_KERNEL);
3144                 if (!new_xattr->name) {
3145                         kvfree(new_xattr);
3146                         return -ENOMEM;
3147                 }
3148
3149                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3150                        XATTR_SECURITY_PREFIX_LEN);
3151                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3152                        xattr->name, len);
3153
3154                 simple_xattr_list_add(&info->xattrs, new_xattr);
3155         }
3156
3157         return 0;
3158 }
3159
3160 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3161                                    struct dentry *unused, struct inode *inode,
3162                                    const char *name, void *buffer, size_t size)
3163 {
3164         struct shmem_inode_info *info = SHMEM_I(inode);
3165
3166         name = xattr_full_name(handler, name);
3167         return simple_xattr_get(&info->xattrs, name, buffer, size);
3168 }
3169
3170 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3171                                    struct user_namespace *mnt_userns,
3172                                    struct dentry *unused, struct inode *inode,
3173                                    const char *name, const void *value,
3174                                    size_t size, int flags)
3175 {
3176         struct shmem_inode_info *info = SHMEM_I(inode);
3177
3178         name = xattr_full_name(handler, name);
3179         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3180 }
3181
3182 static const struct xattr_handler shmem_security_xattr_handler = {
3183         .prefix = XATTR_SECURITY_PREFIX,
3184         .get = shmem_xattr_handler_get,
3185         .set = shmem_xattr_handler_set,
3186 };
3187
3188 static const struct xattr_handler shmem_trusted_xattr_handler = {
3189         .prefix = XATTR_TRUSTED_PREFIX,
3190         .get = shmem_xattr_handler_get,
3191         .set = shmem_xattr_handler_set,
3192 };
3193
3194 static const struct xattr_handler *shmem_xattr_handlers[] = {
3195 #ifdef CONFIG_TMPFS_POSIX_ACL
3196         &posix_acl_access_xattr_handler,
3197         &posix_acl_default_xattr_handler,
3198 #endif
3199         &shmem_security_xattr_handler,
3200         &shmem_trusted_xattr_handler,
3201         NULL
3202 };
3203
3204 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3205 {
3206         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3207         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3208 }
3209 #endif /* CONFIG_TMPFS_XATTR */
3210
3211 static const struct inode_operations shmem_short_symlink_operations = {
3212         .get_link       = simple_get_link,
3213 #ifdef CONFIG_TMPFS_XATTR
3214         .listxattr      = shmem_listxattr,
3215 #endif
3216 };
3217
3218 static const struct inode_operations shmem_symlink_inode_operations = {
3219         .get_link       = shmem_get_link,
3220 #ifdef CONFIG_TMPFS_XATTR
3221         .listxattr      = shmem_listxattr,
3222 #endif
3223 };
3224
3225 static struct dentry *shmem_get_parent(struct dentry *child)
3226 {
3227         return ERR_PTR(-ESTALE);
3228 }
3229
3230 static int shmem_match(struct inode *ino, void *vfh)
3231 {
3232         __u32 *fh = vfh;
3233         __u64 inum = fh[2];
3234         inum = (inum << 32) | fh[1];
3235         return ino->i_ino == inum && fh[0] == ino->i_generation;
3236 }
3237
3238 /* Find any alias of inode, but prefer a hashed alias */
3239 static struct dentry *shmem_find_alias(struct inode *inode)
3240 {
3241         struct dentry *alias = d_find_alias(inode);
3242
3243         return alias ?: d_find_any_alias(inode);
3244 }
3245
3246
3247 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3248                 struct fid *fid, int fh_len, int fh_type)
3249 {
3250         struct inode *inode;
3251         struct dentry *dentry = NULL;
3252         u64 inum;
3253
3254         if (fh_len < 3)
3255                 return NULL;
3256
3257         inum = fid->raw[2];
3258         inum = (inum << 32) | fid->raw[1];
3259
3260         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3261                         shmem_match, fid->raw);
3262         if (inode) {
3263                 dentry = shmem_find_alias(inode);
3264                 iput(inode);
3265         }
3266
3267         return dentry;
3268 }
3269
3270 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3271                                 struct inode *parent)
3272 {
3273         if (*len < 3) {
3274                 *len = 3;
3275                 return FILEID_INVALID;
3276         }
3277
3278         if (inode_unhashed(inode)) {
3279                 /* Unfortunately insert_inode_hash is not idempotent,
3280                  * so as we hash inodes here rather than at creation
3281                  * time, we need a lock to ensure we only try
3282                  * to do it once
3283                  */
3284                 static DEFINE_SPINLOCK(lock);
3285                 spin_lock(&lock);
3286                 if (inode_unhashed(inode))
3287                         __insert_inode_hash(inode,
3288                                             inode->i_ino + inode->i_generation);
3289                 spin_unlock(&lock);
3290         }
3291
3292         fh[0] = inode->i_generation;
3293         fh[1] = inode->i_ino;
3294         fh[2] = ((__u64)inode->i_ino) >> 32;
3295
3296         *len = 3;
3297         return 1;
3298 }
3299
3300 static const struct export_operations shmem_export_ops = {
3301         .get_parent     = shmem_get_parent,
3302         .encode_fh      = shmem_encode_fh,
3303         .fh_to_dentry   = shmem_fh_to_dentry,
3304 };
3305
3306 enum shmem_param {
3307         Opt_gid,
3308         Opt_huge,
3309         Opt_mode,
3310         Opt_mpol,
3311         Opt_nr_blocks,
3312         Opt_nr_inodes,
3313         Opt_size,
3314         Opt_uid,
3315         Opt_inode32,
3316         Opt_inode64,
3317 };
3318
3319 static const struct constant_table shmem_param_enums_huge[] = {
3320         {"never",       SHMEM_HUGE_NEVER },
3321         {"always",      SHMEM_HUGE_ALWAYS },
3322         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3323         {"advise",      SHMEM_HUGE_ADVISE },
3324         {}
3325 };
3326
3327 const struct fs_parameter_spec shmem_fs_parameters[] = {
3328         fsparam_u32   ("gid",           Opt_gid),
3329         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3330         fsparam_u32oct("mode",          Opt_mode),
3331         fsparam_string("mpol",          Opt_mpol),
3332         fsparam_string("nr_blocks",     Opt_nr_blocks),
3333         fsparam_string("nr_inodes",     Opt_nr_inodes),
3334         fsparam_string("size",          Opt_size),
3335         fsparam_u32   ("uid",           Opt_uid),
3336         fsparam_flag  ("inode32",       Opt_inode32),
3337         fsparam_flag  ("inode64",       Opt_inode64),
3338         {}
3339 };
3340
3341 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3342 {
3343         struct shmem_options *ctx = fc->fs_private;
3344         struct fs_parse_result result;
3345         unsigned long long size;
3346         char *rest;
3347         int opt;
3348
3349         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3350         if (opt < 0)
3351                 return opt;
3352
3353         switch (opt) {
3354         case Opt_size:
3355                 size = memparse(param->string, &rest);
3356                 if (*rest == '%') {
3357                         size <<= PAGE_SHIFT;
3358                         size *= totalram_pages();
3359                         do_div(size, 100);
3360                         rest++;
3361                 }
3362                 if (*rest)
3363                         goto bad_value;
3364                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3365                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3366                 break;
3367         case Opt_nr_blocks:
3368                 ctx->blocks = memparse(param->string, &rest);
3369                 if (*rest)
3370                         goto bad_value;
3371                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3372                 break;
3373         case Opt_nr_inodes:
3374                 ctx->inodes = memparse(param->string, &rest);
3375                 if (*rest)
3376                         goto bad_value;
3377                 ctx->seen |= SHMEM_SEEN_INODES;
3378                 break;
3379         case Opt_mode:
3380                 ctx->mode = result.uint_32 & 07777;
3381                 break;
3382         case Opt_uid:
3383                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3384                 if (!uid_valid(ctx->uid))
3385                         goto bad_value;
3386                 break;
3387         case Opt_gid:
3388                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3389                 if (!gid_valid(ctx->gid))
3390                         goto bad_value;
3391                 break;
3392         case Opt_huge:
3393                 ctx->huge = result.uint_32;
3394                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3395                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3396                       has_transparent_hugepage()))
3397                         goto unsupported_parameter;
3398                 ctx->seen |= SHMEM_SEEN_HUGE;
3399                 break;
3400         case Opt_mpol:
3401                 if (IS_ENABLED(CONFIG_NUMA)) {
3402                         mpol_put(ctx->mpol);
3403                         ctx->mpol = NULL;
3404                         if (mpol_parse_str(param->string, &ctx->mpol))
3405                                 goto bad_value;
3406                         break;
3407                 }
3408                 goto unsupported_parameter;
3409         case Opt_inode32:
3410                 ctx->full_inums = false;
3411                 ctx->seen |= SHMEM_SEEN_INUMS;
3412                 break;
3413         case Opt_inode64:
3414                 if (sizeof(ino_t) < 8) {
3415                         return invalfc(fc,
3416                                        "Cannot use inode64 with <64bit inums in kernel\n");
3417                 }
3418                 ctx->full_inums = true;
3419                 ctx->seen |= SHMEM_SEEN_INUMS;
3420                 break;
3421         }
3422         return 0;
3423
3424 unsupported_parameter:
3425         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3426 bad_value:
3427         return invalfc(fc, "Bad value for '%s'", param->key);
3428 }
3429
3430 static int shmem_parse_options(struct fs_context *fc, void *data)
3431 {
3432         char *options = data;
3433
3434         if (options) {
3435                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3436                 if (err)
3437                         return err;
3438         }
3439
3440         while (options != NULL) {
3441                 char *this_char = options;
3442                 for (;;) {
3443                         /*
3444                          * NUL-terminate this option: unfortunately,
3445                          * mount options form a comma-separated list,
3446                          * but mpol's nodelist may also contain commas.
3447                          */
3448                         options = strchr(options, ',');
3449                         if (options == NULL)
3450                                 break;
3451                         options++;
3452                         if (!isdigit(*options)) {
3453                                 options[-1] = '\0';
3454                                 break;
3455                         }
3456                 }
3457                 if (*this_char) {
3458                         char *value = strchr(this_char, '=');
3459                         size_t len = 0;
3460                         int err;
3461
3462                         if (value) {
3463                                 *value++ = '\0';
3464                                 len = strlen(value);
3465                         }
3466                         err = vfs_parse_fs_string(fc, this_char, value, len);
3467                         if (err < 0)
3468                                 return err;
3469                 }
3470         }
3471         return 0;
3472 }
3473
3474 /*
3475  * Reconfigure a shmem filesystem.
3476  *
3477  * Note that we disallow change from limited->unlimited blocks/inodes while any
3478  * are in use; but we must separately disallow unlimited->limited, because in
3479  * that case we have no record of how much is already in use.
3480  */
3481 static int shmem_reconfigure(struct fs_context *fc)
3482 {
3483         struct shmem_options *ctx = fc->fs_private;
3484         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3485         unsigned long inodes;
3486         struct mempolicy *mpol = NULL;
3487         const char *err;
3488
3489         raw_spin_lock(&sbinfo->stat_lock);
3490         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3491         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3492                 if (!sbinfo->max_blocks) {
3493                         err = "Cannot retroactively limit size";
3494                         goto out;
3495                 }
3496                 if (percpu_counter_compare(&sbinfo->used_blocks,
3497                                            ctx->blocks) > 0) {
3498                         err = "Too small a size for current use";
3499                         goto out;
3500                 }
3501         }
3502         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3503                 if (!sbinfo->max_inodes) {
3504                         err = "Cannot retroactively limit inodes";
3505                         goto out;
3506                 }
3507                 if (ctx->inodes < inodes) {
3508                         err = "Too few inodes for current use";
3509                         goto out;
3510                 }
3511         }
3512
3513         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3514             sbinfo->next_ino > UINT_MAX) {
3515                 err = "Current inum too high to switch to 32-bit inums";
3516                 goto out;
3517         }
3518
3519         if (ctx->seen & SHMEM_SEEN_HUGE)
3520                 sbinfo->huge = ctx->huge;
3521         if (ctx->seen & SHMEM_SEEN_INUMS)
3522                 sbinfo->full_inums = ctx->full_inums;
3523         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3524                 sbinfo->max_blocks  = ctx->blocks;
3525         if (ctx->seen & SHMEM_SEEN_INODES) {
3526                 sbinfo->max_inodes  = ctx->inodes;
3527                 sbinfo->free_inodes = ctx->inodes - inodes;
3528         }
3529
3530         /*
3531          * Preserve previous mempolicy unless mpol remount option was specified.
3532          */
3533         if (ctx->mpol) {
3534                 mpol = sbinfo->mpol;
3535                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3536                 ctx->mpol = NULL;
3537         }
3538         raw_spin_unlock(&sbinfo->stat_lock);
3539         mpol_put(mpol);
3540         return 0;
3541 out:
3542         raw_spin_unlock(&sbinfo->stat_lock);
3543         return invalfc(fc, "%s", err);
3544 }
3545
3546 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3547 {
3548         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3549
3550         if (sbinfo->max_blocks != shmem_default_max_blocks())
3551                 seq_printf(seq, ",size=%luk",
3552                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3553         if (sbinfo->max_inodes != shmem_default_max_inodes())
3554                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3555         if (sbinfo->mode != (0777 | S_ISVTX))
3556                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3557         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3558                 seq_printf(seq, ",uid=%u",
3559                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3560         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3561                 seq_printf(seq, ",gid=%u",
3562                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3563
3564         /*
3565          * Showing inode{64,32} might be useful even if it's the system default,
3566          * since then people don't have to resort to checking both here and
3567          * /proc/config.gz to confirm 64-bit inums were successfully applied
3568          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3569          *
3570          * We hide it when inode64 isn't the default and we are using 32-bit
3571          * inodes, since that probably just means the feature isn't even under
3572          * consideration.
3573          *
3574          * As such:
3575          *
3576          *                     +-----------------+-----------------+
3577          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3578          *  +------------------+-----------------+-----------------+
3579          *  | full_inums=true  | show            | show            |
3580          *  | full_inums=false | show            | hide            |
3581          *  +------------------+-----------------+-----------------+
3582          *
3583          */
3584         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3585                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3586 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3587         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3588         if (sbinfo->huge)
3589                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3590 #endif
3591         shmem_show_mpol(seq, sbinfo->mpol);
3592         return 0;
3593 }
3594
3595 #endif /* CONFIG_TMPFS */
3596
3597 static void shmem_put_super(struct super_block *sb)
3598 {
3599         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3600
3601         free_percpu(sbinfo->ino_batch);
3602         percpu_counter_destroy(&sbinfo->used_blocks);
3603         mpol_put(sbinfo->mpol);
3604         kfree(sbinfo);
3605         sb->s_fs_info = NULL;
3606 }
3607
3608 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3609 {
3610         struct shmem_options *ctx = fc->fs_private;
3611         struct inode *inode;
3612         struct shmem_sb_info *sbinfo;
3613
3614         /* Round up to L1_CACHE_BYTES to resist false sharing */
3615         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3616                                 L1_CACHE_BYTES), GFP_KERNEL);
3617         if (!sbinfo)
3618                 return -ENOMEM;
3619
3620         sb->s_fs_info = sbinfo;
3621
3622 #ifdef CONFIG_TMPFS
3623         /*
3624          * Per default we only allow half of the physical ram per
3625          * tmpfs instance, limiting inodes to one per page of lowmem;
3626          * but the internal instance is left unlimited.
3627          */
3628         if (!(sb->s_flags & SB_KERNMOUNT)) {
3629                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3630                         ctx->blocks = shmem_default_max_blocks();
3631                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3632                         ctx->inodes = shmem_default_max_inodes();
3633                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3634                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3635         } else {
3636                 sb->s_flags |= SB_NOUSER;
3637         }
3638         sb->s_export_op = &shmem_export_ops;
3639         sb->s_flags |= SB_NOSEC;
3640 #else
3641         sb->s_flags |= SB_NOUSER;
3642 #endif
3643         sbinfo->max_blocks = ctx->blocks;
3644         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3645         if (sb->s_flags & SB_KERNMOUNT) {
3646                 sbinfo->ino_batch = alloc_percpu(ino_t);
3647                 if (!sbinfo->ino_batch)
3648                         goto failed;
3649         }
3650         sbinfo->uid = ctx->uid;
3651         sbinfo->gid = ctx->gid;
3652         sbinfo->full_inums = ctx->full_inums;
3653         sbinfo->mode = ctx->mode;
3654         sbinfo->huge = ctx->huge;
3655         sbinfo->mpol = ctx->mpol;
3656         ctx->mpol = NULL;
3657
3658         raw_spin_lock_init(&sbinfo->stat_lock);
3659         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3660                 goto failed;
3661         spin_lock_init(&sbinfo->shrinklist_lock);
3662         INIT_LIST_HEAD(&sbinfo->shrinklist);
3663
3664         sb->s_maxbytes = MAX_LFS_FILESIZE;
3665         sb->s_blocksize = PAGE_SIZE;
3666         sb->s_blocksize_bits = PAGE_SHIFT;
3667         sb->s_magic = TMPFS_MAGIC;
3668         sb->s_op = &shmem_ops;
3669         sb->s_time_gran = 1;
3670 #ifdef CONFIG_TMPFS_XATTR
3671         sb->s_xattr = shmem_xattr_handlers;
3672 #endif
3673 #ifdef CONFIG_TMPFS_POSIX_ACL
3674         sb->s_flags |= SB_POSIXACL;
3675 #endif
3676         uuid_gen(&sb->s_uuid);
3677
3678         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3679         if (!inode)
3680                 goto failed;
3681         inode->i_uid = sbinfo->uid;
3682         inode->i_gid = sbinfo->gid;
3683         sb->s_root = d_make_root(inode);
3684         if (!sb->s_root)
3685                 goto failed;
3686         return 0;
3687
3688 failed:
3689         shmem_put_super(sb);
3690         return -ENOMEM;
3691 }
3692
3693 static int shmem_get_tree(struct fs_context *fc)
3694 {
3695         return get_tree_nodev(fc, shmem_fill_super);
3696 }
3697
3698 static void shmem_free_fc(struct fs_context *fc)
3699 {
3700         struct shmem_options *ctx = fc->fs_private;
3701
3702         if (ctx) {
3703                 mpol_put(ctx->mpol);
3704                 kfree(ctx);
3705         }
3706 }
3707
3708 static const struct fs_context_operations shmem_fs_context_ops = {
3709         .free                   = shmem_free_fc,
3710         .get_tree               = shmem_get_tree,
3711 #ifdef CONFIG_TMPFS
3712         .parse_monolithic       = shmem_parse_options,
3713         .parse_param            = shmem_parse_one,
3714         .reconfigure            = shmem_reconfigure,
3715 #endif
3716 };
3717
3718 static struct kmem_cache *shmem_inode_cachep;
3719
3720 static struct inode *shmem_alloc_inode(struct super_block *sb)
3721 {
3722         struct shmem_inode_info *info;
3723         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3724         if (!info)
3725                 return NULL;
3726         return &info->vfs_inode;
3727 }
3728
3729 static void shmem_free_in_core_inode(struct inode *inode)
3730 {
3731         if (S_ISLNK(inode->i_mode))
3732                 kfree(inode->i_link);
3733         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3734 }
3735
3736 static void shmem_destroy_inode(struct inode *inode)
3737 {
3738         if (S_ISREG(inode->i_mode))
3739                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3740 }
3741
3742 static void shmem_init_inode(void *foo)
3743 {
3744         struct shmem_inode_info *info = foo;
3745         inode_init_once(&info->vfs_inode);
3746 }
3747
3748 static void shmem_init_inodecache(void)
3749 {
3750         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3751                                 sizeof(struct shmem_inode_info),
3752                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3753 }
3754
3755 static void shmem_destroy_inodecache(void)
3756 {
3757         kmem_cache_destroy(shmem_inode_cachep);
3758 }
3759
3760 const struct address_space_operations shmem_aops = {
3761         .writepage      = shmem_writepage,
3762         .set_page_dirty = __set_page_dirty_no_writeback,
3763 #ifdef CONFIG_TMPFS
3764         .write_begin    = shmem_write_begin,
3765         .write_end      = shmem_write_end,
3766 #endif
3767 #ifdef CONFIG_MIGRATION
3768         .migratepage    = migrate_page,
3769 #endif
3770         .error_remove_page = generic_error_remove_page,
3771 };
3772 EXPORT_SYMBOL(shmem_aops);
3773
3774 static const struct file_operations shmem_file_operations = {
3775         .mmap           = shmem_mmap,
3776         .get_unmapped_area = shmem_get_unmapped_area,
3777 #ifdef CONFIG_TMPFS
3778         .llseek         = shmem_file_llseek,
3779         .read_iter      = shmem_file_read_iter,
3780         .write_iter     = generic_file_write_iter,
3781         .fsync          = noop_fsync,
3782         .splice_read    = generic_file_splice_read,
3783         .splice_write   = iter_file_splice_write,
3784         .fallocate      = shmem_fallocate,
3785 #endif
3786 };
3787
3788 static const struct inode_operations shmem_inode_operations = {
3789         .getattr        = shmem_getattr,
3790         .setattr        = shmem_setattr,
3791 #ifdef CONFIG_TMPFS_XATTR
3792         .listxattr      = shmem_listxattr,
3793         .set_acl        = simple_set_acl,
3794 #endif
3795 };
3796
3797 static const struct inode_operations shmem_dir_inode_operations = {
3798 #ifdef CONFIG_TMPFS
3799         .create         = shmem_create,
3800         .lookup         = simple_lookup,
3801         .link           = shmem_link,
3802         .unlink         = shmem_unlink,
3803         .symlink        = shmem_symlink,
3804         .mkdir          = shmem_mkdir,
3805         .rmdir          = shmem_rmdir,
3806         .mknod          = shmem_mknod,
3807         .rename         = shmem_rename2,
3808         .tmpfile        = shmem_tmpfile,
3809 #endif
3810 #ifdef CONFIG_TMPFS_XATTR
3811         .listxattr      = shmem_listxattr,
3812 #endif
3813 #ifdef CONFIG_TMPFS_POSIX_ACL
3814         .setattr        = shmem_setattr,
3815         .set_acl        = simple_set_acl,
3816 #endif
3817 };
3818
3819 static const struct inode_operations shmem_special_inode_operations = {
3820 #ifdef CONFIG_TMPFS_XATTR
3821         .listxattr      = shmem_listxattr,
3822 #endif
3823 #ifdef CONFIG_TMPFS_POSIX_ACL
3824         .setattr        = shmem_setattr,
3825         .set_acl        = simple_set_acl,
3826 #endif
3827 };
3828
3829 static const struct super_operations shmem_ops = {
3830         .alloc_inode    = shmem_alloc_inode,
3831         .free_inode     = shmem_free_in_core_inode,
3832         .destroy_inode  = shmem_destroy_inode,
3833 #ifdef CONFIG_TMPFS
3834         .statfs         = shmem_statfs,
3835         .show_options   = shmem_show_options,
3836 #endif
3837         .evict_inode    = shmem_evict_inode,
3838         .drop_inode     = generic_delete_inode,
3839         .put_super      = shmem_put_super,
3840 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3841         .nr_cached_objects      = shmem_unused_huge_count,
3842         .free_cached_objects    = shmem_unused_huge_scan,
3843 #endif
3844 };
3845
3846 static const struct vm_operations_struct shmem_vm_ops = {
3847         .fault          = shmem_fault,
3848         .map_pages      = filemap_map_pages,
3849 #ifdef CONFIG_NUMA
3850         .set_policy     = shmem_set_policy,
3851         .get_policy     = shmem_get_policy,
3852 #endif
3853 };
3854
3855 int shmem_init_fs_context(struct fs_context *fc)
3856 {
3857         struct shmem_options *ctx;
3858
3859         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3860         if (!ctx)
3861                 return -ENOMEM;
3862
3863         ctx->mode = 0777 | S_ISVTX;
3864         ctx->uid = current_fsuid();
3865         ctx->gid = current_fsgid();
3866
3867         fc->fs_private = ctx;
3868         fc->ops = &shmem_fs_context_ops;
3869         return 0;
3870 }
3871
3872 static struct file_system_type shmem_fs_type = {
3873         .owner          = THIS_MODULE,
3874         .name           = "tmpfs",
3875         .init_fs_context = shmem_init_fs_context,
3876 #ifdef CONFIG_TMPFS
3877         .parameters     = shmem_fs_parameters,
3878 #endif
3879         .kill_sb        = kill_litter_super,
3880         .fs_flags       = FS_USERNS_MOUNT | FS_THP_SUPPORT,
3881 };
3882
3883 int __init shmem_init(void)
3884 {
3885         int error;
3886
3887         shmem_init_inodecache();
3888
3889         error = register_filesystem(&shmem_fs_type);
3890         if (error) {
3891                 pr_err("Could not register tmpfs\n");
3892                 goto out2;
3893         }
3894
3895         shm_mnt = kern_mount(&shmem_fs_type);
3896         if (IS_ERR(shm_mnt)) {
3897                 error = PTR_ERR(shm_mnt);
3898                 pr_err("Could not kern_mount tmpfs\n");
3899                 goto out1;
3900         }
3901
3902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3903         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3904                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3905         else
3906                 shmem_huge = 0; /* just in case it was patched */
3907 #endif
3908         return 0;
3909
3910 out1:
3911         unregister_filesystem(&shmem_fs_type);
3912 out2:
3913         shmem_destroy_inodecache();
3914         shm_mnt = ERR_PTR(error);
3915         return error;
3916 }
3917
3918 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3919 static ssize_t shmem_enabled_show(struct kobject *kobj,
3920                                   struct kobj_attribute *attr, char *buf)
3921 {
3922         static const int values[] = {
3923                 SHMEM_HUGE_ALWAYS,
3924                 SHMEM_HUGE_WITHIN_SIZE,
3925                 SHMEM_HUGE_ADVISE,
3926                 SHMEM_HUGE_NEVER,
3927                 SHMEM_HUGE_DENY,
3928                 SHMEM_HUGE_FORCE,
3929         };
3930         int len = 0;
3931         int i;
3932
3933         for (i = 0; i < ARRAY_SIZE(values); i++) {
3934                 len += sysfs_emit_at(buf, len,
3935                                      shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3936                                      i ? " " : "",
3937                                      shmem_format_huge(values[i]));
3938         }
3939
3940         len += sysfs_emit_at(buf, len, "\n");
3941
3942         return len;
3943 }
3944
3945 static ssize_t shmem_enabled_store(struct kobject *kobj,
3946                 struct kobj_attribute *attr, const char *buf, size_t count)
3947 {
3948         char tmp[16];
3949         int huge;
3950
3951         if (count + 1 > sizeof(tmp))
3952                 return -EINVAL;
3953         memcpy(tmp, buf, count);
3954         tmp[count] = '\0';
3955         if (count && tmp[count - 1] == '\n')
3956                 tmp[count - 1] = '\0';
3957
3958         huge = shmem_parse_huge(tmp);
3959         if (huge == -EINVAL)
3960                 return -EINVAL;
3961         if (!has_transparent_hugepage() &&
3962                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3963                 return -EINVAL;
3964
3965         shmem_huge = huge;
3966         if (shmem_huge > SHMEM_HUGE_DENY)
3967                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3968         return count;
3969 }
3970
3971 struct kobj_attribute shmem_enabled_attr =
3972         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3973 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3974
3975 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3976 bool shmem_huge_enabled(struct vm_area_struct *vma)
3977 {
3978         struct inode *inode = file_inode(vma->vm_file);
3979         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3980         loff_t i_size;
3981         pgoff_t off;
3982
3983         if (!transhuge_vma_enabled(vma, vma->vm_flags))
3984                 return false;
3985         if (shmem_huge == SHMEM_HUGE_FORCE)
3986                 return true;
3987         if (shmem_huge == SHMEM_HUGE_DENY)
3988                 return false;
3989         switch (sbinfo->huge) {
3990                 case SHMEM_HUGE_NEVER:
3991                         return false;
3992                 case SHMEM_HUGE_ALWAYS:
3993                         return true;
3994                 case SHMEM_HUGE_WITHIN_SIZE:
3995                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3996                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
3997                         if (i_size >= HPAGE_PMD_SIZE &&
3998                                         i_size >> PAGE_SHIFT >= off)
3999                                 return true;
4000                         fallthrough;
4001                 case SHMEM_HUGE_ADVISE:
4002                         /* TODO: implement fadvise() hints */
4003                         return (vma->vm_flags & VM_HUGEPAGE);
4004                 default:
4005                         VM_BUG_ON(1);
4006                         return false;
4007         }
4008 }
4009 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4010
4011 #else /* !CONFIG_SHMEM */
4012
4013 /*
4014  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4015  *
4016  * This is intended for small system where the benefits of the full
4017  * shmem code (swap-backed and resource-limited) are outweighed by
4018  * their complexity. On systems without swap this code should be
4019  * effectively equivalent, but much lighter weight.
4020  */
4021
4022 static struct file_system_type shmem_fs_type = {
4023         .name           = "tmpfs",
4024         .init_fs_context = ramfs_init_fs_context,
4025         .parameters     = ramfs_fs_parameters,
4026         .kill_sb        = kill_litter_super,
4027         .fs_flags       = FS_USERNS_MOUNT,
4028 };
4029
4030 int __init shmem_init(void)
4031 {
4032         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4033
4034         shm_mnt = kern_mount(&shmem_fs_type);
4035         BUG_ON(IS_ERR(shm_mnt));
4036
4037         return 0;
4038 }
4039
4040 int shmem_unuse(unsigned int type, bool frontswap,
4041                 unsigned long *fs_pages_to_unuse)
4042 {
4043         return 0;
4044 }
4045
4046 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4047 {
4048         return 0;
4049 }
4050
4051 void shmem_unlock_mapping(struct address_space *mapping)
4052 {
4053 }
4054
4055 #ifdef CONFIG_MMU
4056 unsigned long shmem_get_unmapped_area(struct file *file,
4057                                       unsigned long addr, unsigned long len,
4058                                       unsigned long pgoff, unsigned long flags)
4059 {
4060         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4061 }
4062 #endif
4063
4064 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4065 {
4066         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4067 }
4068 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4069
4070 #define shmem_vm_ops                            generic_file_vm_ops
4071 #define shmem_file_operations                   ramfs_file_operations
4072 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4073 #define shmem_acct_size(flags, size)            0
4074 #define shmem_unacct_size(flags, size)          do {} while (0)
4075
4076 #endif /* CONFIG_SHMEM */
4077
4078 /* common code */
4079
4080 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4081                                        unsigned long flags, unsigned int i_flags)
4082 {
4083         struct inode *inode;
4084         struct file *res;
4085
4086         if (IS_ERR(mnt))
4087                 return ERR_CAST(mnt);
4088
4089         if (size < 0 || size > MAX_LFS_FILESIZE)
4090                 return ERR_PTR(-EINVAL);
4091
4092         if (shmem_acct_size(flags, size))
4093                 return ERR_PTR(-ENOMEM);
4094
4095         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4096                                 flags);
4097         if (unlikely(!inode)) {
4098                 shmem_unacct_size(flags, size);
4099                 return ERR_PTR(-ENOSPC);
4100         }
4101         inode->i_flags |= i_flags;
4102         inode->i_size = size;
4103         clear_nlink(inode);     /* It is unlinked */
4104         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4105         if (!IS_ERR(res))
4106                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4107                                 &shmem_file_operations);
4108         if (IS_ERR(res))
4109                 iput(inode);
4110         return res;
4111 }
4112
4113 /**
4114  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4115  *      kernel internal.  There will be NO LSM permission checks against the
4116  *      underlying inode.  So users of this interface must do LSM checks at a
4117  *      higher layer.  The users are the big_key and shm implementations.  LSM
4118  *      checks are provided at the key or shm level rather than the inode.
4119  * @name: name for dentry (to be seen in /proc/<pid>/maps
4120  * @size: size to be set for the file
4121  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4122  */
4123 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4124 {
4125         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4126 }
4127
4128 /**
4129  * shmem_file_setup - get an unlinked file living in tmpfs
4130  * @name: name for dentry (to be seen in /proc/<pid>/maps
4131  * @size: size to be set for the file
4132  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4133  */
4134 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4135 {
4136         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4137 }
4138 EXPORT_SYMBOL_GPL(shmem_file_setup);
4139
4140 /**
4141  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4142  * @mnt: the tmpfs mount where the file will be created
4143  * @name: name for dentry (to be seen in /proc/<pid>/maps
4144  * @size: size to be set for the file
4145  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4146  */
4147 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4148                                        loff_t size, unsigned long flags)
4149 {
4150         return __shmem_file_setup(mnt, name, size, flags, 0);
4151 }
4152 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4153
4154 /**
4155  * shmem_zero_setup - setup a shared anonymous mapping
4156  * @vma: the vma to be mmapped is prepared by do_mmap
4157  */
4158 int shmem_zero_setup(struct vm_area_struct *vma)
4159 {
4160         struct file *file;
4161         loff_t size = vma->vm_end - vma->vm_start;
4162
4163         /*
4164          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4165          * between XFS directory reading and selinux: since this file is only
4166          * accessible to the user through its mapping, use S_PRIVATE flag to
4167          * bypass file security, in the same way as shmem_kernel_file_setup().
4168          */
4169         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4170         if (IS_ERR(file))
4171                 return PTR_ERR(file);
4172
4173         if (vma->vm_file)
4174                 fput(vma->vm_file);
4175         vma->vm_file = file;
4176         vma->vm_ops = &shmem_vm_ops;
4177
4178         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4179                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4180                         (vma->vm_end & HPAGE_PMD_MASK)) {
4181                 khugepaged_enter(vma, vma->vm_flags);
4182         }
4183
4184         return 0;
4185 }
4186
4187 /**
4188  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4189  * @mapping:    the page's address_space
4190  * @index:      the page index
4191  * @gfp:        the page allocator flags to use if allocating
4192  *
4193  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4194  * with any new page allocations done using the specified allocation flags.
4195  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4196  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4197  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4198  *
4199  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4200  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4201  */
4202 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4203                                          pgoff_t index, gfp_t gfp)
4204 {
4205 #ifdef CONFIG_SHMEM
4206         struct inode *inode = mapping->host;
4207         struct page *page;
4208         int error;
4209
4210         BUG_ON(!shmem_mapping(mapping));
4211         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4212                                   gfp, NULL, NULL, NULL);
4213         if (error)
4214                 page = ERR_PTR(error);
4215         else
4216                 unlock_page(page);
4217         return page;
4218 #else
4219         /*
4220          * The tiny !SHMEM case uses ramfs without swap
4221          */
4222         return read_cache_page_gfp(mapping, index, gfp);
4223 #endif
4224 }
4225 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);