Merge tag 'for-linus-5.9-ofs1' of git://git.kernel.org/pub/scm/linux/kernel/git/hubca...
[linux-2.6-microblaze.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85
86 #include "internal.h"
87
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96
97 /*
98  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99  * inode->i_private (with i_mutex making sure that it has only one user at
100  * a time): we would prefer not to enlarge the shmem inode just for that.
101  */
102 struct shmem_falloc {
103         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104         pgoff_t start;          /* start of range currently being fallocated */
105         pgoff_t next;           /* the next page offset to be fallocated */
106         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
107         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
108 };
109
110 struct shmem_options {
111         unsigned long long blocks;
112         unsigned long long inodes;
113         struct mempolicy *mpol;
114         kuid_t uid;
115         kgid_t gid;
116         umode_t mode;
117         bool full_inums;
118         int huge;
119         int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129         return totalram_pages() / 2;
130 }
131
132 static unsigned long shmem_default_max_inodes(void)
133 {
134         unsigned long nr_pages = totalram_pages();
135
136         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142                                 struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144                              struct page **pagep, enum sgp_type sgp,
145                              gfp_t gfp, struct vm_area_struct *vma,
146                              vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148                 struct page **pagep, enum sgp_type sgp,
149                 gfp_t gfp, struct vm_area_struct *vma,
150                 struct vm_fault *vmf, vm_fault_t *fault_type);
151
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153                 struct page **pagep, enum sgp_type sgp)
154 {
155         return shmem_getpage_gfp(inode, index, pagep, sgp,
156                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161         return sb->s_fs_info;
162 }
163
164 /*
165  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166  * for shared memory and for shared anonymous (/dev/zero) mappings
167  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168  * consistent with the pre-accounting of private mappings ...
169  */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172         return (flags & VM_NORESERVE) ?
173                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178         if (!(flags & VM_NORESERVE))
179                 vm_unacct_memory(VM_ACCT(size));
180 }
181
182 static inline int shmem_reacct_size(unsigned long flags,
183                 loff_t oldsize, loff_t newsize)
184 {
185         if (!(flags & VM_NORESERVE)) {
186                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187                         return security_vm_enough_memory_mm(current->mm,
188                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
189                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191         }
192         return 0;
193 }
194
195 /*
196  * ... whereas tmpfs objects are accounted incrementally as
197  * pages are allocated, in order to allow large sparse files.
198  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200  */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203         if (!(flags & VM_NORESERVE))
204                 return 0;
205
206         return security_vm_enough_memory_mm(current->mm,
207                         pages * VM_ACCT(PAGE_SIZE));
208 }
209
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212         if (flags & VM_NORESERVE)
213                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218         struct shmem_inode_info *info = SHMEM_I(inode);
219         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220
221         if (shmem_acct_block(info->flags, pages))
222                 return false;
223
224         if (sbinfo->max_blocks) {
225                 if (percpu_counter_compare(&sbinfo->used_blocks,
226                                            sbinfo->max_blocks - pages) > 0)
227                         goto unacct;
228                 percpu_counter_add(&sbinfo->used_blocks, pages);
229         }
230
231         return true;
232
233 unacct:
234         shmem_unacct_blocks(info->flags, pages);
235         return false;
236 }
237
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240         struct shmem_inode_info *info = SHMEM_I(inode);
241         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242
243         if (sbinfo->max_blocks)
244                 percpu_counter_sub(&sbinfo->used_blocks, pages);
245         shmem_unacct_blocks(info->flags, pages);
246 }
247
248 static const struct super_operations shmem_ops;
249 static const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259         return vma->vm_ops == &shmem_vm_ops;
260 }
261
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264
265 /*
266  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267  * produces a novel ino for the newly allocated inode.
268  *
269  * It may also be called when making a hard link to permit the space needed by
270  * each dentry. However, in that case, no new inode number is needed since that
271  * internally draws from another pool of inode numbers (currently global
272  * get_next_ino()). This case is indicated by passing NULL as inop.
273  */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278         ino_t ino;
279
280         if (!(sb->s_flags & SB_KERNMOUNT)) {
281                 spin_lock(&sbinfo->stat_lock);
282                 if (!sbinfo->free_inodes) {
283                         spin_unlock(&sbinfo->stat_lock);
284                         return -ENOSPC;
285                 }
286                 sbinfo->free_inodes--;
287                 if (inop) {
288                         ino = sbinfo->next_ino++;
289                         if (unlikely(is_zero_ino(ino)))
290                                 ino = sbinfo->next_ino++;
291                         if (unlikely(!sbinfo->full_inums &&
292                                      ino > UINT_MAX)) {
293                                 /*
294                                  * Emulate get_next_ino uint wraparound for
295                                  * compatibility
296                                  */
297                                 if (IS_ENABLED(CONFIG_64BIT))
298                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
299                                                 __func__, MINOR(sb->s_dev));
300                                 sbinfo->next_ino = 1;
301                                 ino = sbinfo->next_ino++;
302                         }
303                         *inop = ino;
304                 }
305                 spin_unlock(&sbinfo->stat_lock);
306         } else if (inop) {
307                 /*
308                  * __shmem_file_setup, one of our callers, is lock-free: it
309                  * doesn't hold stat_lock in shmem_reserve_inode since
310                  * max_inodes is always 0, and is called from potentially
311                  * unknown contexts. As such, use a per-cpu batched allocator
312                  * which doesn't require the per-sb stat_lock unless we are at
313                  * the batch boundary.
314                  *
315                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
316                  * shmem mounts are not exposed to userspace, so we don't need
317                  * to worry about things like glibc compatibility.
318                  */
319                 ino_t *next_ino;
320                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
321                 ino = *next_ino;
322                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
323                         spin_lock(&sbinfo->stat_lock);
324                         ino = sbinfo->next_ino;
325                         sbinfo->next_ino += SHMEM_INO_BATCH;
326                         spin_unlock(&sbinfo->stat_lock);
327                         if (unlikely(is_zero_ino(ino)))
328                                 ino++;
329                 }
330                 *inop = ino;
331                 *next_ino = ++ino;
332                 put_cpu();
333         }
334
335         return 0;
336 }
337
338 static void shmem_free_inode(struct super_block *sb)
339 {
340         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
341         if (sbinfo->max_inodes) {
342                 spin_lock(&sbinfo->stat_lock);
343                 sbinfo->free_inodes++;
344                 spin_unlock(&sbinfo->stat_lock);
345         }
346 }
347
348 /**
349  * shmem_recalc_inode - recalculate the block usage of an inode
350  * @inode: inode to recalc
351  *
352  * We have to calculate the free blocks since the mm can drop
353  * undirtied hole pages behind our back.
354  *
355  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
356  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
357  *
358  * It has to be called with the spinlock held.
359  */
360 static void shmem_recalc_inode(struct inode *inode)
361 {
362         struct shmem_inode_info *info = SHMEM_I(inode);
363         long freed;
364
365         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
366         if (freed > 0) {
367                 info->alloced -= freed;
368                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
369                 shmem_inode_unacct_blocks(inode, freed);
370         }
371 }
372
373 bool shmem_charge(struct inode *inode, long pages)
374 {
375         struct shmem_inode_info *info = SHMEM_I(inode);
376         unsigned long flags;
377
378         if (!shmem_inode_acct_block(inode, pages))
379                 return false;
380
381         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
382         inode->i_mapping->nrpages += pages;
383
384         spin_lock_irqsave(&info->lock, flags);
385         info->alloced += pages;
386         inode->i_blocks += pages * BLOCKS_PER_PAGE;
387         shmem_recalc_inode(inode);
388         spin_unlock_irqrestore(&info->lock, flags);
389
390         return true;
391 }
392
393 void shmem_uncharge(struct inode *inode, long pages)
394 {
395         struct shmem_inode_info *info = SHMEM_I(inode);
396         unsigned long flags;
397
398         /* nrpages adjustment done by __delete_from_page_cache() or caller */
399
400         spin_lock_irqsave(&info->lock, flags);
401         info->alloced -= pages;
402         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
403         shmem_recalc_inode(inode);
404         spin_unlock_irqrestore(&info->lock, flags);
405
406         shmem_inode_unacct_blocks(inode, pages);
407 }
408
409 /*
410  * Replace item expected in xarray by a new item, while holding xa_lock.
411  */
412 static int shmem_replace_entry(struct address_space *mapping,
413                         pgoff_t index, void *expected, void *replacement)
414 {
415         XA_STATE(xas, &mapping->i_pages, index);
416         void *item;
417
418         VM_BUG_ON(!expected);
419         VM_BUG_ON(!replacement);
420         item = xas_load(&xas);
421         if (item != expected)
422                 return -ENOENT;
423         xas_store(&xas, replacement);
424         return 0;
425 }
426
427 /*
428  * Sometimes, before we decide whether to proceed or to fail, we must check
429  * that an entry was not already brought back from swap by a racing thread.
430  *
431  * Checking page is not enough: by the time a SwapCache page is locked, it
432  * might be reused, and again be SwapCache, using the same swap as before.
433  */
434 static bool shmem_confirm_swap(struct address_space *mapping,
435                                pgoff_t index, swp_entry_t swap)
436 {
437         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
438 }
439
440 /*
441  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
442  *
443  * SHMEM_HUGE_NEVER:
444  *      disables huge pages for the mount;
445  * SHMEM_HUGE_ALWAYS:
446  *      enables huge pages for the mount;
447  * SHMEM_HUGE_WITHIN_SIZE:
448  *      only allocate huge pages if the page will be fully within i_size,
449  *      also respect fadvise()/madvise() hints;
450  * SHMEM_HUGE_ADVISE:
451  *      only allocate huge pages if requested with fadvise()/madvise();
452  */
453
454 #define SHMEM_HUGE_NEVER        0
455 #define SHMEM_HUGE_ALWAYS       1
456 #define SHMEM_HUGE_WITHIN_SIZE  2
457 #define SHMEM_HUGE_ADVISE       3
458
459 /*
460  * Special values.
461  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
462  *
463  * SHMEM_HUGE_DENY:
464  *      disables huge on shm_mnt and all mounts, for emergency use;
465  * SHMEM_HUGE_FORCE:
466  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
467  *
468  */
469 #define SHMEM_HUGE_DENY         (-1)
470 #define SHMEM_HUGE_FORCE        (-2)
471
472 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
473 /* ifdef here to avoid bloating shmem.o when not necessary */
474
475 static int shmem_huge __read_mostly;
476
477 #if defined(CONFIG_SYSFS)
478 static int shmem_parse_huge(const char *str)
479 {
480         if (!strcmp(str, "never"))
481                 return SHMEM_HUGE_NEVER;
482         if (!strcmp(str, "always"))
483                 return SHMEM_HUGE_ALWAYS;
484         if (!strcmp(str, "within_size"))
485                 return SHMEM_HUGE_WITHIN_SIZE;
486         if (!strcmp(str, "advise"))
487                 return SHMEM_HUGE_ADVISE;
488         if (!strcmp(str, "deny"))
489                 return SHMEM_HUGE_DENY;
490         if (!strcmp(str, "force"))
491                 return SHMEM_HUGE_FORCE;
492         return -EINVAL;
493 }
494 #endif
495
496 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
497 static const char *shmem_format_huge(int huge)
498 {
499         switch (huge) {
500         case SHMEM_HUGE_NEVER:
501                 return "never";
502         case SHMEM_HUGE_ALWAYS:
503                 return "always";
504         case SHMEM_HUGE_WITHIN_SIZE:
505                 return "within_size";
506         case SHMEM_HUGE_ADVISE:
507                 return "advise";
508         case SHMEM_HUGE_DENY:
509                 return "deny";
510         case SHMEM_HUGE_FORCE:
511                 return "force";
512         default:
513                 VM_BUG_ON(1);
514                 return "bad_val";
515         }
516 }
517 #endif
518
519 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
520                 struct shrink_control *sc, unsigned long nr_to_split)
521 {
522         LIST_HEAD(list), *pos, *next;
523         LIST_HEAD(to_remove);
524         struct inode *inode;
525         struct shmem_inode_info *info;
526         struct page *page;
527         unsigned long batch = sc ? sc->nr_to_scan : 128;
528         int removed = 0, split = 0;
529
530         if (list_empty(&sbinfo->shrinklist))
531                 return SHRINK_STOP;
532
533         spin_lock(&sbinfo->shrinklist_lock);
534         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
535                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
536
537                 /* pin the inode */
538                 inode = igrab(&info->vfs_inode);
539
540                 /* inode is about to be evicted */
541                 if (!inode) {
542                         list_del_init(&info->shrinklist);
543                         removed++;
544                         goto next;
545                 }
546
547                 /* Check if there's anything to gain */
548                 if (round_up(inode->i_size, PAGE_SIZE) ==
549                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
550                         list_move(&info->shrinklist, &to_remove);
551                         removed++;
552                         goto next;
553                 }
554
555                 list_move(&info->shrinklist, &list);
556 next:
557                 if (!--batch)
558                         break;
559         }
560         spin_unlock(&sbinfo->shrinklist_lock);
561
562         list_for_each_safe(pos, next, &to_remove) {
563                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
564                 inode = &info->vfs_inode;
565                 list_del_init(&info->shrinklist);
566                 iput(inode);
567         }
568
569         list_for_each_safe(pos, next, &list) {
570                 int ret;
571
572                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
573                 inode = &info->vfs_inode;
574
575                 if (nr_to_split && split >= nr_to_split)
576                         goto leave;
577
578                 page = find_get_page(inode->i_mapping,
579                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
580                 if (!page)
581                         goto drop;
582
583                 /* No huge page at the end of the file: nothing to split */
584                 if (!PageTransHuge(page)) {
585                         put_page(page);
586                         goto drop;
587                 }
588
589                 /*
590                  * Leave the inode on the list if we failed to lock
591                  * the page at this time.
592                  *
593                  * Waiting for the lock may lead to deadlock in the
594                  * reclaim path.
595                  */
596                 if (!trylock_page(page)) {
597                         put_page(page);
598                         goto leave;
599                 }
600
601                 ret = split_huge_page(page);
602                 unlock_page(page);
603                 put_page(page);
604
605                 /* If split failed leave the inode on the list */
606                 if (ret)
607                         goto leave;
608
609                 split++;
610 drop:
611                 list_del_init(&info->shrinklist);
612                 removed++;
613 leave:
614                 iput(inode);
615         }
616
617         spin_lock(&sbinfo->shrinklist_lock);
618         list_splice_tail(&list, &sbinfo->shrinklist);
619         sbinfo->shrinklist_len -= removed;
620         spin_unlock(&sbinfo->shrinklist_lock);
621
622         return split;
623 }
624
625 static long shmem_unused_huge_scan(struct super_block *sb,
626                 struct shrink_control *sc)
627 {
628         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
629
630         if (!READ_ONCE(sbinfo->shrinklist_len))
631                 return SHRINK_STOP;
632
633         return shmem_unused_huge_shrink(sbinfo, sc, 0);
634 }
635
636 static long shmem_unused_huge_count(struct super_block *sb,
637                 struct shrink_control *sc)
638 {
639         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
640         return READ_ONCE(sbinfo->shrinklist_len);
641 }
642 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
643
644 #define shmem_huge SHMEM_HUGE_DENY
645
646 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
647                 struct shrink_control *sc, unsigned long nr_to_split)
648 {
649         return 0;
650 }
651 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
652
653 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
654 {
655         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
656             (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
657             shmem_huge != SHMEM_HUGE_DENY)
658                 return true;
659         return false;
660 }
661
662 /*
663  * Like add_to_page_cache_locked, but error if expected item has gone.
664  */
665 static int shmem_add_to_page_cache(struct page *page,
666                                    struct address_space *mapping,
667                                    pgoff_t index, void *expected, gfp_t gfp,
668                                    struct mm_struct *charge_mm)
669 {
670         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
671         unsigned long i = 0;
672         unsigned long nr = compound_nr(page);
673         int error;
674
675         VM_BUG_ON_PAGE(PageTail(page), page);
676         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
677         VM_BUG_ON_PAGE(!PageLocked(page), page);
678         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
679         VM_BUG_ON(expected && PageTransHuge(page));
680
681         page_ref_add(page, nr);
682         page->mapping = mapping;
683         page->index = index;
684
685         if (!PageSwapCache(page)) {
686                 error = mem_cgroup_charge(page, charge_mm, gfp);
687                 if (error) {
688                         if (PageTransHuge(page)) {
689                                 count_vm_event(THP_FILE_FALLBACK);
690                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
691                         }
692                         goto error;
693                 }
694         }
695         cgroup_throttle_swaprate(page, gfp);
696
697         do {
698                 void *entry;
699                 xas_lock_irq(&xas);
700                 entry = xas_find_conflict(&xas);
701                 if (entry != expected)
702                         xas_set_err(&xas, -EEXIST);
703                 xas_create_range(&xas);
704                 if (xas_error(&xas))
705                         goto unlock;
706 next:
707                 xas_store(&xas, page);
708                 if (++i < nr) {
709                         xas_next(&xas);
710                         goto next;
711                 }
712                 if (PageTransHuge(page)) {
713                         count_vm_event(THP_FILE_ALLOC);
714                         __inc_node_page_state(page, NR_SHMEM_THPS);
715                 }
716                 mapping->nrpages += nr;
717                 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
718                 __mod_lruvec_page_state(page, NR_SHMEM, nr);
719 unlock:
720                 xas_unlock_irq(&xas);
721         } while (xas_nomem(&xas, gfp));
722
723         if (xas_error(&xas)) {
724                 error = xas_error(&xas);
725                 goto error;
726         }
727
728         return 0;
729 error:
730         page->mapping = NULL;
731         page_ref_sub(page, nr);
732         return error;
733 }
734
735 /*
736  * Like delete_from_page_cache, but substitutes swap for page.
737  */
738 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
739 {
740         struct address_space *mapping = page->mapping;
741         int error;
742
743         VM_BUG_ON_PAGE(PageCompound(page), page);
744
745         xa_lock_irq(&mapping->i_pages);
746         error = shmem_replace_entry(mapping, page->index, page, radswap);
747         page->mapping = NULL;
748         mapping->nrpages--;
749         __dec_lruvec_page_state(page, NR_FILE_PAGES);
750         __dec_lruvec_page_state(page, NR_SHMEM);
751         xa_unlock_irq(&mapping->i_pages);
752         put_page(page);
753         BUG_ON(error);
754 }
755
756 /*
757  * Remove swap entry from page cache, free the swap and its page cache.
758  */
759 static int shmem_free_swap(struct address_space *mapping,
760                            pgoff_t index, void *radswap)
761 {
762         void *old;
763
764         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
765         if (old != radswap)
766                 return -ENOENT;
767         free_swap_and_cache(radix_to_swp_entry(radswap));
768         return 0;
769 }
770
771 /*
772  * Determine (in bytes) how many of the shmem object's pages mapped by the
773  * given offsets are swapped out.
774  *
775  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
776  * as long as the inode doesn't go away and racy results are not a problem.
777  */
778 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
779                                                 pgoff_t start, pgoff_t end)
780 {
781         XA_STATE(xas, &mapping->i_pages, start);
782         struct page *page;
783         unsigned long swapped = 0;
784
785         rcu_read_lock();
786         xas_for_each(&xas, page, end - 1) {
787                 if (xas_retry(&xas, page))
788                         continue;
789                 if (xa_is_value(page))
790                         swapped++;
791
792                 if (need_resched()) {
793                         xas_pause(&xas);
794                         cond_resched_rcu();
795                 }
796         }
797
798         rcu_read_unlock();
799
800         return swapped << PAGE_SHIFT;
801 }
802
803 /*
804  * Determine (in bytes) how many of the shmem object's pages mapped by the
805  * given vma is swapped out.
806  *
807  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
808  * as long as the inode doesn't go away and racy results are not a problem.
809  */
810 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
811 {
812         struct inode *inode = file_inode(vma->vm_file);
813         struct shmem_inode_info *info = SHMEM_I(inode);
814         struct address_space *mapping = inode->i_mapping;
815         unsigned long swapped;
816
817         /* Be careful as we don't hold info->lock */
818         swapped = READ_ONCE(info->swapped);
819
820         /*
821          * The easier cases are when the shmem object has nothing in swap, or
822          * the vma maps it whole. Then we can simply use the stats that we
823          * already track.
824          */
825         if (!swapped)
826                 return 0;
827
828         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
829                 return swapped << PAGE_SHIFT;
830
831         /* Here comes the more involved part */
832         return shmem_partial_swap_usage(mapping,
833                         linear_page_index(vma, vma->vm_start),
834                         linear_page_index(vma, vma->vm_end));
835 }
836
837 /*
838  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
839  */
840 void shmem_unlock_mapping(struct address_space *mapping)
841 {
842         struct pagevec pvec;
843         pgoff_t indices[PAGEVEC_SIZE];
844         pgoff_t index = 0;
845
846         pagevec_init(&pvec);
847         /*
848          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
849          */
850         while (!mapping_unevictable(mapping)) {
851                 /*
852                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
853                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
854                  */
855                 pvec.nr = find_get_entries(mapping, index,
856                                            PAGEVEC_SIZE, pvec.pages, indices);
857                 if (!pvec.nr)
858                         break;
859                 index = indices[pvec.nr - 1] + 1;
860                 pagevec_remove_exceptionals(&pvec);
861                 check_move_unevictable_pages(&pvec);
862                 pagevec_release(&pvec);
863                 cond_resched();
864         }
865 }
866
867 /*
868  * Check whether a hole-punch or truncation needs to split a huge page,
869  * returning true if no split was required, or the split has been successful.
870  *
871  * Eviction (or truncation to 0 size) should never need to split a huge page;
872  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
873  * head, and then succeeded to trylock on tail.
874  *
875  * A split can only succeed when there are no additional references on the
876  * huge page: so the split below relies upon find_get_entries() having stopped
877  * when it found a subpage of the huge page, without getting further references.
878  */
879 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
880 {
881         if (!PageTransCompound(page))
882                 return true;
883
884         /* Just proceed to delete a huge page wholly within the range punched */
885         if (PageHead(page) &&
886             page->index >= start && page->index + HPAGE_PMD_NR <= end)
887                 return true;
888
889         /* Try to split huge page, so we can truly punch the hole or truncate */
890         return split_huge_page(page) >= 0;
891 }
892
893 /*
894  * Remove range of pages and swap entries from page cache, and free them.
895  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
896  */
897 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
898                                                                  bool unfalloc)
899 {
900         struct address_space *mapping = inode->i_mapping;
901         struct shmem_inode_info *info = SHMEM_I(inode);
902         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
903         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
904         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
905         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
906         struct pagevec pvec;
907         pgoff_t indices[PAGEVEC_SIZE];
908         long nr_swaps_freed = 0;
909         pgoff_t index;
910         int i;
911
912         if (lend == -1)
913                 end = -1;       /* unsigned, so actually very big */
914
915         pagevec_init(&pvec);
916         index = start;
917         while (index < end) {
918                 pvec.nr = find_get_entries(mapping, index,
919                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
920                         pvec.pages, indices);
921                 if (!pvec.nr)
922                         break;
923                 for (i = 0; i < pagevec_count(&pvec); i++) {
924                         struct page *page = pvec.pages[i];
925
926                         index = indices[i];
927                         if (index >= end)
928                                 break;
929
930                         if (xa_is_value(page)) {
931                                 if (unfalloc)
932                                         continue;
933                                 nr_swaps_freed += !shmem_free_swap(mapping,
934                                                                 index, page);
935                                 continue;
936                         }
937
938                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
939
940                         if (!trylock_page(page))
941                                 continue;
942
943                         if ((!unfalloc || !PageUptodate(page)) &&
944                             page_mapping(page) == mapping) {
945                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
946                                 if (shmem_punch_compound(page, start, end))
947                                         truncate_inode_page(mapping, page);
948                         }
949                         unlock_page(page);
950                 }
951                 pagevec_remove_exceptionals(&pvec);
952                 pagevec_release(&pvec);
953                 cond_resched();
954                 index++;
955         }
956
957         if (partial_start) {
958                 struct page *page = NULL;
959                 shmem_getpage(inode, start - 1, &page, SGP_READ);
960                 if (page) {
961                         unsigned int top = PAGE_SIZE;
962                         if (start > end) {
963                                 top = partial_end;
964                                 partial_end = 0;
965                         }
966                         zero_user_segment(page, partial_start, top);
967                         set_page_dirty(page);
968                         unlock_page(page);
969                         put_page(page);
970                 }
971         }
972         if (partial_end) {
973                 struct page *page = NULL;
974                 shmem_getpage(inode, end, &page, SGP_READ);
975                 if (page) {
976                         zero_user_segment(page, 0, partial_end);
977                         set_page_dirty(page);
978                         unlock_page(page);
979                         put_page(page);
980                 }
981         }
982         if (start >= end)
983                 return;
984
985         index = start;
986         while (index < end) {
987                 cond_resched();
988
989                 pvec.nr = find_get_entries(mapping, index,
990                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
991                                 pvec.pages, indices);
992                 if (!pvec.nr) {
993                         /* If all gone or hole-punch or unfalloc, we're done */
994                         if (index == start || end != -1)
995                                 break;
996                         /* But if truncating, restart to make sure all gone */
997                         index = start;
998                         continue;
999                 }
1000                 for (i = 0; i < pagevec_count(&pvec); i++) {
1001                         struct page *page = pvec.pages[i];
1002
1003                         index = indices[i];
1004                         if (index >= end)
1005                                 break;
1006
1007                         if (xa_is_value(page)) {
1008                                 if (unfalloc)
1009                                         continue;
1010                                 if (shmem_free_swap(mapping, index, page)) {
1011                                         /* Swap was replaced by page: retry */
1012                                         index--;
1013                                         break;
1014                                 }
1015                                 nr_swaps_freed++;
1016                                 continue;
1017                         }
1018
1019                         lock_page(page);
1020
1021                         if (!unfalloc || !PageUptodate(page)) {
1022                                 if (page_mapping(page) != mapping) {
1023                                         /* Page was replaced by swap: retry */
1024                                         unlock_page(page);
1025                                         index--;
1026                                         break;
1027                                 }
1028                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1029                                 if (shmem_punch_compound(page, start, end))
1030                                         truncate_inode_page(mapping, page);
1031                                 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1032                                         /* Wipe the page and don't get stuck */
1033                                         clear_highpage(page);
1034                                         flush_dcache_page(page);
1035                                         set_page_dirty(page);
1036                                         if (index <
1037                                             round_up(start, HPAGE_PMD_NR))
1038                                                 start = index + 1;
1039                                 }
1040                         }
1041                         unlock_page(page);
1042                 }
1043                 pagevec_remove_exceptionals(&pvec);
1044                 pagevec_release(&pvec);
1045                 index++;
1046         }
1047
1048         spin_lock_irq(&info->lock);
1049         info->swapped -= nr_swaps_freed;
1050         shmem_recalc_inode(inode);
1051         spin_unlock_irq(&info->lock);
1052 }
1053
1054 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1055 {
1056         shmem_undo_range(inode, lstart, lend, false);
1057         inode->i_ctime = inode->i_mtime = current_time(inode);
1058 }
1059 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1060
1061 static int shmem_getattr(const struct path *path, struct kstat *stat,
1062                          u32 request_mask, unsigned int query_flags)
1063 {
1064         struct inode *inode = path->dentry->d_inode;
1065         struct shmem_inode_info *info = SHMEM_I(inode);
1066         struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1067
1068         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1069                 spin_lock_irq(&info->lock);
1070                 shmem_recalc_inode(inode);
1071                 spin_unlock_irq(&info->lock);
1072         }
1073         generic_fillattr(inode, stat);
1074
1075         if (is_huge_enabled(sb_info))
1076                 stat->blksize = HPAGE_PMD_SIZE;
1077
1078         return 0;
1079 }
1080
1081 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1082 {
1083         struct inode *inode = d_inode(dentry);
1084         struct shmem_inode_info *info = SHMEM_I(inode);
1085         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1086         int error;
1087
1088         error = setattr_prepare(dentry, attr);
1089         if (error)
1090                 return error;
1091
1092         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1093                 loff_t oldsize = inode->i_size;
1094                 loff_t newsize = attr->ia_size;
1095
1096                 /* protected by i_mutex */
1097                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1098                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1099                         return -EPERM;
1100
1101                 if (newsize != oldsize) {
1102                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1103                                         oldsize, newsize);
1104                         if (error)
1105                                 return error;
1106                         i_size_write(inode, newsize);
1107                         inode->i_ctime = inode->i_mtime = current_time(inode);
1108                 }
1109                 if (newsize <= oldsize) {
1110                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1111                         if (oldsize > holebegin)
1112                                 unmap_mapping_range(inode->i_mapping,
1113                                                         holebegin, 0, 1);
1114                         if (info->alloced)
1115                                 shmem_truncate_range(inode,
1116                                                         newsize, (loff_t)-1);
1117                         /* unmap again to remove racily COWed private pages */
1118                         if (oldsize > holebegin)
1119                                 unmap_mapping_range(inode->i_mapping,
1120                                                         holebegin, 0, 1);
1121
1122                         /*
1123                          * Part of the huge page can be beyond i_size: subject
1124                          * to shrink under memory pressure.
1125                          */
1126                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1127                                 spin_lock(&sbinfo->shrinklist_lock);
1128                                 /*
1129                                  * _careful to defend against unlocked access to
1130                                  * ->shrink_list in shmem_unused_huge_shrink()
1131                                  */
1132                                 if (list_empty_careful(&info->shrinklist)) {
1133                                         list_add_tail(&info->shrinklist,
1134                                                         &sbinfo->shrinklist);
1135                                         sbinfo->shrinklist_len++;
1136                                 }
1137                                 spin_unlock(&sbinfo->shrinklist_lock);
1138                         }
1139                 }
1140         }
1141
1142         setattr_copy(inode, attr);
1143         if (attr->ia_valid & ATTR_MODE)
1144                 error = posix_acl_chmod(inode, inode->i_mode);
1145         return error;
1146 }
1147
1148 static void shmem_evict_inode(struct inode *inode)
1149 {
1150         struct shmem_inode_info *info = SHMEM_I(inode);
1151         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1152
1153         if (inode->i_mapping->a_ops == &shmem_aops) {
1154                 shmem_unacct_size(info->flags, inode->i_size);
1155                 inode->i_size = 0;
1156                 shmem_truncate_range(inode, 0, (loff_t)-1);
1157                 if (!list_empty(&info->shrinklist)) {
1158                         spin_lock(&sbinfo->shrinklist_lock);
1159                         if (!list_empty(&info->shrinklist)) {
1160                                 list_del_init(&info->shrinklist);
1161                                 sbinfo->shrinklist_len--;
1162                         }
1163                         spin_unlock(&sbinfo->shrinklist_lock);
1164                 }
1165                 while (!list_empty(&info->swaplist)) {
1166                         /* Wait while shmem_unuse() is scanning this inode... */
1167                         wait_var_event(&info->stop_eviction,
1168                                        !atomic_read(&info->stop_eviction));
1169                         mutex_lock(&shmem_swaplist_mutex);
1170                         /* ...but beware of the race if we peeked too early */
1171                         if (!atomic_read(&info->stop_eviction))
1172                                 list_del_init(&info->swaplist);
1173                         mutex_unlock(&shmem_swaplist_mutex);
1174                 }
1175         }
1176
1177         simple_xattrs_free(&info->xattrs);
1178         WARN_ON(inode->i_blocks);
1179         shmem_free_inode(inode->i_sb);
1180         clear_inode(inode);
1181 }
1182
1183 extern struct swap_info_struct *swap_info[];
1184
1185 static int shmem_find_swap_entries(struct address_space *mapping,
1186                                    pgoff_t start, unsigned int nr_entries,
1187                                    struct page **entries, pgoff_t *indices,
1188                                    unsigned int type, bool frontswap)
1189 {
1190         XA_STATE(xas, &mapping->i_pages, start);
1191         struct page *page;
1192         swp_entry_t entry;
1193         unsigned int ret = 0;
1194
1195         if (!nr_entries)
1196                 return 0;
1197
1198         rcu_read_lock();
1199         xas_for_each(&xas, page, ULONG_MAX) {
1200                 if (xas_retry(&xas, page))
1201                         continue;
1202
1203                 if (!xa_is_value(page))
1204                         continue;
1205
1206                 entry = radix_to_swp_entry(page);
1207                 if (swp_type(entry) != type)
1208                         continue;
1209                 if (frontswap &&
1210                     !frontswap_test(swap_info[type], swp_offset(entry)))
1211                         continue;
1212
1213                 indices[ret] = xas.xa_index;
1214                 entries[ret] = page;
1215
1216                 if (need_resched()) {
1217                         xas_pause(&xas);
1218                         cond_resched_rcu();
1219                 }
1220                 if (++ret == nr_entries)
1221                         break;
1222         }
1223         rcu_read_unlock();
1224
1225         return ret;
1226 }
1227
1228 /*
1229  * Move the swapped pages for an inode to page cache. Returns the count
1230  * of pages swapped in, or the error in case of failure.
1231  */
1232 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1233                                     pgoff_t *indices)
1234 {
1235         int i = 0;
1236         int ret = 0;
1237         int error = 0;
1238         struct address_space *mapping = inode->i_mapping;
1239
1240         for (i = 0; i < pvec.nr; i++) {
1241                 struct page *page = pvec.pages[i];
1242
1243                 if (!xa_is_value(page))
1244                         continue;
1245                 error = shmem_swapin_page(inode, indices[i],
1246                                           &page, SGP_CACHE,
1247                                           mapping_gfp_mask(mapping),
1248                                           NULL, NULL);
1249                 if (error == 0) {
1250                         unlock_page(page);
1251                         put_page(page);
1252                         ret++;
1253                 }
1254                 if (error == -ENOMEM)
1255                         break;
1256                 error = 0;
1257         }
1258         return error ? error : ret;
1259 }
1260
1261 /*
1262  * If swap found in inode, free it and move page from swapcache to filecache.
1263  */
1264 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1265                              bool frontswap, unsigned long *fs_pages_to_unuse)
1266 {
1267         struct address_space *mapping = inode->i_mapping;
1268         pgoff_t start = 0;
1269         struct pagevec pvec;
1270         pgoff_t indices[PAGEVEC_SIZE];
1271         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1272         int ret = 0;
1273
1274         pagevec_init(&pvec);
1275         do {
1276                 unsigned int nr_entries = PAGEVEC_SIZE;
1277
1278                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1279                         nr_entries = *fs_pages_to_unuse;
1280
1281                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1282                                                   pvec.pages, indices,
1283                                                   type, frontswap);
1284                 if (pvec.nr == 0) {
1285                         ret = 0;
1286                         break;
1287                 }
1288
1289                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1290                 if (ret < 0)
1291                         break;
1292
1293                 if (frontswap_partial) {
1294                         *fs_pages_to_unuse -= ret;
1295                         if (*fs_pages_to_unuse == 0) {
1296                                 ret = FRONTSWAP_PAGES_UNUSED;
1297                                 break;
1298                         }
1299                 }
1300
1301                 start = indices[pvec.nr - 1];
1302         } while (true);
1303
1304         return ret;
1305 }
1306
1307 /*
1308  * Read all the shared memory data that resides in the swap
1309  * device 'type' back into memory, so the swap device can be
1310  * unused.
1311  */
1312 int shmem_unuse(unsigned int type, bool frontswap,
1313                 unsigned long *fs_pages_to_unuse)
1314 {
1315         struct shmem_inode_info *info, *next;
1316         int error = 0;
1317
1318         if (list_empty(&shmem_swaplist))
1319                 return 0;
1320
1321         mutex_lock(&shmem_swaplist_mutex);
1322         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1323                 if (!info->swapped) {
1324                         list_del_init(&info->swaplist);
1325                         continue;
1326                 }
1327                 /*
1328                  * Drop the swaplist mutex while searching the inode for swap;
1329                  * but before doing so, make sure shmem_evict_inode() will not
1330                  * remove placeholder inode from swaplist, nor let it be freed
1331                  * (igrab() would protect from unlink, but not from unmount).
1332                  */
1333                 atomic_inc(&info->stop_eviction);
1334                 mutex_unlock(&shmem_swaplist_mutex);
1335
1336                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1337                                           fs_pages_to_unuse);
1338                 cond_resched();
1339
1340                 mutex_lock(&shmem_swaplist_mutex);
1341                 next = list_next_entry(info, swaplist);
1342                 if (!info->swapped)
1343                         list_del_init(&info->swaplist);
1344                 if (atomic_dec_and_test(&info->stop_eviction))
1345                         wake_up_var(&info->stop_eviction);
1346                 if (error)
1347                         break;
1348         }
1349         mutex_unlock(&shmem_swaplist_mutex);
1350
1351         return error;
1352 }
1353
1354 /*
1355  * Move the page from the page cache to the swap cache.
1356  */
1357 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1358 {
1359         struct shmem_inode_info *info;
1360         struct address_space *mapping;
1361         struct inode *inode;
1362         swp_entry_t swap;
1363         pgoff_t index;
1364
1365         VM_BUG_ON_PAGE(PageCompound(page), page);
1366         BUG_ON(!PageLocked(page));
1367         mapping = page->mapping;
1368         index = page->index;
1369         inode = mapping->host;
1370         info = SHMEM_I(inode);
1371         if (info->flags & VM_LOCKED)
1372                 goto redirty;
1373         if (!total_swap_pages)
1374                 goto redirty;
1375
1376         /*
1377          * Our capabilities prevent regular writeback or sync from ever calling
1378          * shmem_writepage; but a stacking filesystem might use ->writepage of
1379          * its underlying filesystem, in which case tmpfs should write out to
1380          * swap only in response to memory pressure, and not for the writeback
1381          * threads or sync.
1382          */
1383         if (!wbc->for_reclaim) {
1384                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1385                 goto redirty;
1386         }
1387
1388         /*
1389          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1390          * value into swapfile.c, the only way we can correctly account for a
1391          * fallocated page arriving here is now to initialize it and write it.
1392          *
1393          * That's okay for a page already fallocated earlier, but if we have
1394          * not yet completed the fallocation, then (a) we want to keep track
1395          * of this page in case we have to undo it, and (b) it may not be a
1396          * good idea to continue anyway, once we're pushing into swap.  So
1397          * reactivate the page, and let shmem_fallocate() quit when too many.
1398          */
1399         if (!PageUptodate(page)) {
1400                 if (inode->i_private) {
1401                         struct shmem_falloc *shmem_falloc;
1402                         spin_lock(&inode->i_lock);
1403                         shmem_falloc = inode->i_private;
1404                         if (shmem_falloc &&
1405                             !shmem_falloc->waitq &&
1406                             index >= shmem_falloc->start &&
1407                             index < shmem_falloc->next)
1408                                 shmem_falloc->nr_unswapped++;
1409                         else
1410                                 shmem_falloc = NULL;
1411                         spin_unlock(&inode->i_lock);
1412                         if (shmem_falloc)
1413                                 goto redirty;
1414                 }
1415                 clear_highpage(page);
1416                 flush_dcache_page(page);
1417                 SetPageUptodate(page);
1418         }
1419
1420         swap = get_swap_page(page);
1421         if (!swap.val)
1422                 goto redirty;
1423
1424         /*
1425          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1426          * if it's not already there.  Do it now before the page is
1427          * moved to swap cache, when its pagelock no longer protects
1428          * the inode from eviction.  But don't unlock the mutex until
1429          * we've incremented swapped, because shmem_unuse_inode() will
1430          * prune a !swapped inode from the swaplist under this mutex.
1431          */
1432         mutex_lock(&shmem_swaplist_mutex);
1433         if (list_empty(&info->swaplist))
1434                 list_add(&info->swaplist, &shmem_swaplist);
1435
1436         if (add_to_swap_cache(page, swap,
1437                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) {
1438                 spin_lock_irq(&info->lock);
1439                 shmem_recalc_inode(inode);
1440                 info->swapped++;
1441                 spin_unlock_irq(&info->lock);
1442
1443                 swap_shmem_alloc(swap);
1444                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1445
1446                 mutex_unlock(&shmem_swaplist_mutex);
1447                 BUG_ON(page_mapped(page));
1448                 swap_writepage(page, wbc);
1449                 return 0;
1450         }
1451
1452         mutex_unlock(&shmem_swaplist_mutex);
1453         put_swap_page(page, swap);
1454 redirty:
1455         set_page_dirty(page);
1456         if (wbc->for_reclaim)
1457                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1458         unlock_page(page);
1459         return 0;
1460 }
1461
1462 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1463 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1464 {
1465         char buffer[64];
1466
1467         if (!mpol || mpol->mode == MPOL_DEFAULT)
1468                 return;         /* show nothing */
1469
1470         mpol_to_str(buffer, sizeof(buffer), mpol);
1471
1472         seq_printf(seq, ",mpol=%s", buffer);
1473 }
1474
1475 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1476 {
1477         struct mempolicy *mpol = NULL;
1478         if (sbinfo->mpol) {
1479                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1480                 mpol = sbinfo->mpol;
1481                 mpol_get(mpol);
1482                 spin_unlock(&sbinfo->stat_lock);
1483         }
1484         return mpol;
1485 }
1486 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1487 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1488 {
1489 }
1490 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1491 {
1492         return NULL;
1493 }
1494 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1495 #ifndef CONFIG_NUMA
1496 #define vm_policy vm_private_data
1497 #endif
1498
1499 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1500                 struct shmem_inode_info *info, pgoff_t index)
1501 {
1502         /* Create a pseudo vma that just contains the policy */
1503         vma_init(vma, NULL);
1504         /* Bias interleave by inode number to distribute better across nodes */
1505         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1506         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1507 }
1508
1509 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1510 {
1511         /* Drop reference taken by mpol_shared_policy_lookup() */
1512         mpol_cond_put(vma->vm_policy);
1513 }
1514
1515 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1516                         struct shmem_inode_info *info, pgoff_t index)
1517 {
1518         struct vm_area_struct pvma;
1519         struct page *page;
1520         struct vm_fault vmf;
1521
1522         shmem_pseudo_vma_init(&pvma, info, index);
1523         vmf.vma = &pvma;
1524         vmf.address = 0;
1525         page = swap_cluster_readahead(swap, gfp, &vmf);
1526         shmem_pseudo_vma_destroy(&pvma);
1527
1528         return page;
1529 }
1530
1531 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1532                 struct shmem_inode_info *info, pgoff_t index)
1533 {
1534         struct vm_area_struct pvma;
1535         struct address_space *mapping = info->vfs_inode.i_mapping;
1536         pgoff_t hindex;
1537         struct page *page;
1538
1539         hindex = round_down(index, HPAGE_PMD_NR);
1540         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1541                                                                 XA_PRESENT))
1542                 return NULL;
1543
1544         shmem_pseudo_vma_init(&pvma, info, hindex);
1545         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1546                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1547         shmem_pseudo_vma_destroy(&pvma);
1548         if (page)
1549                 prep_transhuge_page(page);
1550         else
1551                 count_vm_event(THP_FILE_FALLBACK);
1552         return page;
1553 }
1554
1555 static struct page *shmem_alloc_page(gfp_t gfp,
1556                         struct shmem_inode_info *info, pgoff_t index)
1557 {
1558         struct vm_area_struct pvma;
1559         struct page *page;
1560
1561         shmem_pseudo_vma_init(&pvma, info, index);
1562         page = alloc_page_vma(gfp, &pvma, 0);
1563         shmem_pseudo_vma_destroy(&pvma);
1564
1565         return page;
1566 }
1567
1568 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1569                 struct inode *inode,
1570                 pgoff_t index, bool huge)
1571 {
1572         struct shmem_inode_info *info = SHMEM_I(inode);
1573         struct page *page;
1574         int nr;
1575         int err = -ENOSPC;
1576
1577         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1578                 huge = false;
1579         nr = huge ? HPAGE_PMD_NR : 1;
1580
1581         if (!shmem_inode_acct_block(inode, nr))
1582                 goto failed;
1583
1584         if (huge)
1585                 page = shmem_alloc_hugepage(gfp, info, index);
1586         else
1587                 page = shmem_alloc_page(gfp, info, index);
1588         if (page) {
1589                 __SetPageLocked(page);
1590                 __SetPageSwapBacked(page);
1591                 return page;
1592         }
1593
1594         err = -ENOMEM;
1595         shmem_inode_unacct_blocks(inode, nr);
1596 failed:
1597         return ERR_PTR(err);
1598 }
1599
1600 /*
1601  * When a page is moved from swapcache to shmem filecache (either by the
1602  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1603  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1604  * ignorance of the mapping it belongs to.  If that mapping has special
1605  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1606  * we may need to copy to a suitable page before moving to filecache.
1607  *
1608  * In a future release, this may well be extended to respect cpuset and
1609  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1610  * but for now it is a simple matter of zone.
1611  */
1612 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1613 {
1614         return page_zonenum(page) > gfp_zone(gfp);
1615 }
1616
1617 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1618                                 struct shmem_inode_info *info, pgoff_t index)
1619 {
1620         struct page *oldpage, *newpage;
1621         struct address_space *swap_mapping;
1622         swp_entry_t entry;
1623         pgoff_t swap_index;
1624         int error;
1625
1626         oldpage = *pagep;
1627         entry.val = page_private(oldpage);
1628         swap_index = swp_offset(entry);
1629         swap_mapping = page_mapping(oldpage);
1630
1631         /*
1632          * We have arrived here because our zones are constrained, so don't
1633          * limit chance of success by further cpuset and node constraints.
1634          */
1635         gfp &= ~GFP_CONSTRAINT_MASK;
1636         newpage = shmem_alloc_page(gfp, info, index);
1637         if (!newpage)
1638                 return -ENOMEM;
1639
1640         get_page(newpage);
1641         copy_highpage(newpage, oldpage);
1642         flush_dcache_page(newpage);
1643
1644         __SetPageLocked(newpage);
1645         __SetPageSwapBacked(newpage);
1646         SetPageUptodate(newpage);
1647         set_page_private(newpage, entry.val);
1648         SetPageSwapCache(newpage);
1649
1650         /*
1651          * Our caller will very soon move newpage out of swapcache, but it's
1652          * a nice clean interface for us to replace oldpage by newpage there.
1653          */
1654         xa_lock_irq(&swap_mapping->i_pages);
1655         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1656         if (!error) {
1657                 mem_cgroup_migrate(oldpage, newpage);
1658                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1659                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1660         }
1661         xa_unlock_irq(&swap_mapping->i_pages);
1662
1663         if (unlikely(error)) {
1664                 /*
1665                  * Is this possible?  I think not, now that our callers check
1666                  * both PageSwapCache and page_private after getting page lock;
1667                  * but be defensive.  Reverse old to newpage for clear and free.
1668                  */
1669                 oldpage = newpage;
1670         } else {
1671                 lru_cache_add(newpage);
1672                 *pagep = newpage;
1673         }
1674
1675         ClearPageSwapCache(oldpage);
1676         set_page_private(oldpage, 0);
1677
1678         unlock_page(oldpage);
1679         put_page(oldpage);
1680         put_page(oldpage);
1681         return error;
1682 }
1683
1684 /*
1685  * Swap in the page pointed to by *pagep.
1686  * Caller has to make sure that *pagep contains a valid swapped page.
1687  * Returns 0 and the page in pagep if success. On failure, returns the
1688  * the error code and NULL in *pagep.
1689  */
1690 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1691                              struct page **pagep, enum sgp_type sgp,
1692                              gfp_t gfp, struct vm_area_struct *vma,
1693                              vm_fault_t *fault_type)
1694 {
1695         struct address_space *mapping = inode->i_mapping;
1696         struct shmem_inode_info *info = SHMEM_I(inode);
1697         struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1698         struct page *page;
1699         swp_entry_t swap;
1700         int error;
1701
1702         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1703         swap = radix_to_swp_entry(*pagep);
1704         *pagep = NULL;
1705
1706         /* Look it up and read it in.. */
1707         page = lookup_swap_cache(swap, NULL, 0);
1708         if (!page) {
1709                 /* Or update major stats only when swapin succeeds?? */
1710                 if (fault_type) {
1711                         *fault_type |= VM_FAULT_MAJOR;
1712                         count_vm_event(PGMAJFAULT);
1713                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1714                 }
1715                 /* Here we actually start the io */
1716                 page = shmem_swapin(swap, gfp, info, index);
1717                 if (!page) {
1718                         error = -ENOMEM;
1719                         goto failed;
1720                 }
1721         }
1722
1723         /* We have to do this with page locked to prevent races */
1724         lock_page(page);
1725         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1726             !shmem_confirm_swap(mapping, index, swap)) {
1727                 error = -EEXIST;
1728                 goto unlock;
1729         }
1730         if (!PageUptodate(page)) {
1731                 error = -EIO;
1732                 goto failed;
1733         }
1734         wait_on_page_writeback(page);
1735
1736         if (shmem_should_replace_page(page, gfp)) {
1737                 error = shmem_replace_page(&page, gfp, info, index);
1738                 if (error)
1739                         goto failed;
1740         }
1741
1742         error = shmem_add_to_page_cache(page, mapping, index,
1743                                         swp_to_radix_entry(swap), gfp,
1744                                         charge_mm);
1745         if (error)
1746                 goto failed;
1747
1748         spin_lock_irq(&info->lock);
1749         info->swapped--;
1750         shmem_recalc_inode(inode);
1751         spin_unlock_irq(&info->lock);
1752
1753         if (sgp == SGP_WRITE)
1754                 mark_page_accessed(page);
1755
1756         delete_from_swap_cache(page);
1757         set_page_dirty(page);
1758         swap_free(swap);
1759
1760         *pagep = page;
1761         return 0;
1762 failed:
1763         if (!shmem_confirm_swap(mapping, index, swap))
1764                 error = -EEXIST;
1765 unlock:
1766         if (page) {
1767                 unlock_page(page);
1768                 put_page(page);
1769         }
1770
1771         return error;
1772 }
1773
1774 /*
1775  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1776  *
1777  * If we allocate a new one we do not mark it dirty. That's up to the
1778  * vm. If we swap it in we mark it dirty since we also free the swap
1779  * entry since a page cannot live in both the swap and page cache.
1780  *
1781  * vmf and fault_type are only supplied by shmem_fault:
1782  * otherwise they are NULL.
1783  */
1784 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1785         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1786         struct vm_area_struct *vma, struct vm_fault *vmf,
1787                         vm_fault_t *fault_type)
1788 {
1789         struct address_space *mapping = inode->i_mapping;
1790         struct shmem_inode_info *info = SHMEM_I(inode);
1791         struct shmem_sb_info *sbinfo;
1792         struct mm_struct *charge_mm;
1793         struct page *page;
1794         enum sgp_type sgp_huge = sgp;
1795         pgoff_t hindex = index;
1796         int error;
1797         int once = 0;
1798         int alloced = 0;
1799
1800         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1801                 return -EFBIG;
1802         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1803                 sgp = SGP_CACHE;
1804 repeat:
1805         if (sgp <= SGP_CACHE &&
1806             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1807                 return -EINVAL;
1808         }
1809
1810         sbinfo = SHMEM_SB(inode->i_sb);
1811         charge_mm = vma ? vma->vm_mm : current->mm;
1812
1813         page = find_lock_entry(mapping, index);
1814         if (xa_is_value(page)) {
1815                 error = shmem_swapin_page(inode, index, &page,
1816                                           sgp, gfp, vma, fault_type);
1817                 if (error == -EEXIST)
1818                         goto repeat;
1819
1820                 *pagep = page;
1821                 return error;
1822         }
1823
1824         if (page && sgp == SGP_WRITE)
1825                 mark_page_accessed(page);
1826
1827         /* fallocated page? */
1828         if (page && !PageUptodate(page)) {
1829                 if (sgp != SGP_READ)
1830                         goto clear;
1831                 unlock_page(page);
1832                 put_page(page);
1833                 page = NULL;
1834         }
1835         if (page || sgp == SGP_READ) {
1836                 *pagep = page;
1837                 return 0;
1838         }
1839
1840         /*
1841          * Fast cache lookup did not find it:
1842          * bring it back from swap or allocate.
1843          */
1844
1845         if (vma && userfaultfd_missing(vma)) {
1846                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1847                 return 0;
1848         }
1849
1850         /* shmem_symlink() */
1851         if (mapping->a_ops != &shmem_aops)
1852                 goto alloc_nohuge;
1853         if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1854                 goto alloc_nohuge;
1855         if (shmem_huge == SHMEM_HUGE_FORCE)
1856                 goto alloc_huge;
1857         switch (sbinfo->huge) {
1858         case SHMEM_HUGE_NEVER:
1859                 goto alloc_nohuge;
1860         case SHMEM_HUGE_WITHIN_SIZE: {
1861                 loff_t i_size;
1862                 pgoff_t off;
1863
1864                 off = round_up(index, HPAGE_PMD_NR);
1865                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1866                 if (i_size >= HPAGE_PMD_SIZE &&
1867                     i_size >> PAGE_SHIFT >= off)
1868                         goto alloc_huge;
1869
1870                 fallthrough;
1871         }
1872         case SHMEM_HUGE_ADVISE:
1873                 if (sgp_huge == SGP_HUGE)
1874                         goto alloc_huge;
1875                 /* TODO: implement fadvise() hints */
1876                 goto alloc_nohuge;
1877         }
1878
1879 alloc_huge:
1880         page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1881         if (IS_ERR(page)) {
1882 alloc_nohuge:
1883                 page = shmem_alloc_and_acct_page(gfp, inode,
1884                                                  index, false);
1885         }
1886         if (IS_ERR(page)) {
1887                 int retry = 5;
1888
1889                 error = PTR_ERR(page);
1890                 page = NULL;
1891                 if (error != -ENOSPC)
1892                         goto unlock;
1893                 /*
1894                  * Try to reclaim some space by splitting a huge page
1895                  * beyond i_size on the filesystem.
1896                  */
1897                 while (retry--) {
1898                         int ret;
1899
1900                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1901                         if (ret == SHRINK_STOP)
1902                                 break;
1903                         if (ret)
1904                                 goto alloc_nohuge;
1905                 }
1906                 goto unlock;
1907         }
1908
1909         if (PageTransHuge(page))
1910                 hindex = round_down(index, HPAGE_PMD_NR);
1911         else
1912                 hindex = index;
1913
1914         if (sgp == SGP_WRITE)
1915                 __SetPageReferenced(page);
1916
1917         error = shmem_add_to_page_cache(page, mapping, hindex,
1918                                         NULL, gfp & GFP_RECLAIM_MASK,
1919                                         charge_mm);
1920         if (error)
1921                 goto unacct;
1922         lru_cache_add(page);
1923
1924         spin_lock_irq(&info->lock);
1925         info->alloced += compound_nr(page);
1926         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1927         shmem_recalc_inode(inode);
1928         spin_unlock_irq(&info->lock);
1929         alloced = true;
1930
1931         if (PageTransHuge(page) &&
1932             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1933                         hindex + HPAGE_PMD_NR - 1) {
1934                 /*
1935                  * Part of the huge page is beyond i_size: subject
1936                  * to shrink under memory pressure.
1937                  */
1938                 spin_lock(&sbinfo->shrinklist_lock);
1939                 /*
1940                  * _careful to defend against unlocked access to
1941                  * ->shrink_list in shmem_unused_huge_shrink()
1942                  */
1943                 if (list_empty_careful(&info->shrinklist)) {
1944                         list_add_tail(&info->shrinklist,
1945                                       &sbinfo->shrinklist);
1946                         sbinfo->shrinklist_len++;
1947                 }
1948                 spin_unlock(&sbinfo->shrinklist_lock);
1949         }
1950
1951         /*
1952          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1953          */
1954         if (sgp == SGP_FALLOC)
1955                 sgp = SGP_WRITE;
1956 clear:
1957         /*
1958          * Let SGP_WRITE caller clear ends if write does not fill page;
1959          * but SGP_FALLOC on a page fallocated earlier must initialize
1960          * it now, lest undo on failure cancel our earlier guarantee.
1961          */
1962         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1963                 struct page *head = compound_head(page);
1964                 int i;
1965
1966                 for (i = 0; i < compound_nr(head); i++) {
1967                         clear_highpage(head + i);
1968                         flush_dcache_page(head + i);
1969                 }
1970                 SetPageUptodate(head);
1971         }
1972
1973         /* Perhaps the file has been truncated since we checked */
1974         if (sgp <= SGP_CACHE &&
1975             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1976                 if (alloced) {
1977                         ClearPageDirty(page);
1978                         delete_from_page_cache(page);
1979                         spin_lock_irq(&info->lock);
1980                         shmem_recalc_inode(inode);
1981                         spin_unlock_irq(&info->lock);
1982                 }
1983                 error = -EINVAL;
1984                 goto unlock;
1985         }
1986         *pagep = page + index - hindex;
1987         return 0;
1988
1989         /*
1990          * Error recovery.
1991          */
1992 unacct:
1993         shmem_inode_unacct_blocks(inode, compound_nr(page));
1994
1995         if (PageTransHuge(page)) {
1996                 unlock_page(page);
1997                 put_page(page);
1998                 goto alloc_nohuge;
1999         }
2000 unlock:
2001         if (page) {
2002                 unlock_page(page);
2003                 put_page(page);
2004         }
2005         if (error == -ENOSPC && !once++) {
2006                 spin_lock_irq(&info->lock);
2007                 shmem_recalc_inode(inode);
2008                 spin_unlock_irq(&info->lock);
2009                 goto repeat;
2010         }
2011         if (error == -EEXIST)
2012                 goto repeat;
2013         return error;
2014 }
2015
2016 /*
2017  * This is like autoremove_wake_function, but it removes the wait queue
2018  * entry unconditionally - even if something else had already woken the
2019  * target.
2020  */
2021 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2022 {
2023         int ret = default_wake_function(wait, mode, sync, key);
2024         list_del_init(&wait->entry);
2025         return ret;
2026 }
2027
2028 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2029 {
2030         struct vm_area_struct *vma = vmf->vma;
2031         struct inode *inode = file_inode(vma->vm_file);
2032         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2033         enum sgp_type sgp;
2034         int err;
2035         vm_fault_t ret = VM_FAULT_LOCKED;
2036
2037         /*
2038          * Trinity finds that probing a hole which tmpfs is punching can
2039          * prevent the hole-punch from ever completing: which in turn
2040          * locks writers out with its hold on i_mutex.  So refrain from
2041          * faulting pages into the hole while it's being punched.  Although
2042          * shmem_undo_range() does remove the additions, it may be unable to
2043          * keep up, as each new page needs its own unmap_mapping_range() call,
2044          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2045          *
2046          * It does not matter if we sometimes reach this check just before the
2047          * hole-punch begins, so that one fault then races with the punch:
2048          * we just need to make racing faults a rare case.
2049          *
2050          * The implementation below would be much simpler if we just used a
2051          * standard mutex or completion: but we cannot take i_mutex in fault,
2052          * and bloating every shmem inode for this unlikely case would be sad.
2053          */
2054         if (unlikely(inode->i_private)) {
2055                 struct shmem_falloc *shmem_falloc;
2056
2057                 spin_lock(&inode->i_lock);
2058                 shmem_falloc = inode->i_private;
2059                 if (shmem_falloc &&
2060                     shmem_falloc->waitq &&
2061                     vmf->pgoff >= shmem_falloc->start &&
2062                     vmf->pgoff < shmem_falloc->next) {
2063                         struct file *fpin;
2064                         wait_queue_head_t *shmem_falloc_waitq;
2065                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2066
2067                         ret = VM_FAULT_NOPAGE;
2068                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2069                         if (fpin)
2070                                 ret = VM_FAULT_RETRY;
2071
2072                         shmem_falloc_waitq = shmem_falloc->waitq;
2073                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2074                                         TASK_UNINTERRUPTIBLE);
2075                         spin_unlock(&inode->i_lock);
2076                         schedule();
2077
2078                         /*
2079                          * shmem_falloc_waitq points into the shmem_fallocate()
2080                          * stack of the hole-punching task: shmem_falloc_waitq
2081                          * is usually invalid by the time we reach here, but
2082                          * finish_wait() does not dereference it in that case;
2083                          * though i_lock needed lest racing with wake_up_all().
2084                          */
2085                         spin_lock(&inode->i_lock);
2086                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2087                         spin_unlock(&inode->i_lock);
2088
2089                         if (fpin)
2090                                 fput(fpin);
2091                         return ret;
2092                 }
2093                 spin_unlock(&inode->i_lock);
2094         }
2095
2096         sgp = SGP_CACHE;
2097
2098         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2099             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2100                 sgp = SGP_NOHUGE;
2101         else if (vma->vm_flags & VM_HUGEPAGE)
2102                 sgp = SGP_HUGE;
2103
2104         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2105                                   gfp, vma, vmf, &ret);
2106         if (err)
2107                 return vmf_error(err);
2108         return ret;
2109 }
2110
2111 unsigned long shmem_get_unmapped_area(struct file *file,
2112                                       unsigned long uaddr, unsigned long len,
2113                                       unsigned long pgoff, unsigned long flags)
2114 {
2115         unsigned long (*get_area)(struct file *,
2116                 unsigned long, unsigned long, unsigned long, unsigned long);
2117         unsigned long addr;
2118         unsigned long offset;
2119         unsigned long inflated_len;
2120         unsigned long inflated_addr;
2121         unsigned long inflated_offset;
2122
2123         if (len > TASK_SIZE)
2124                 return -ENOMEM;
2125
2126         get_area = current->mm->get_unmapped_area;
2127         addr = get_area(file, uaddr, len, pgoff, flags);
2128
2129         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2130                 return addr;
2131         if (IS_ERR_VALUE(addr))
2132                 return addr;
2133         if (addr & ~PAGE_MASK)
2134                 return addr;
2135         if (addr > TASK_SIZE - len)
2136                 return addr;
2137
2138         if (shmem_huge == SHMEM_HUGE_DENY)
2139                 return addr;
2140         if (len < HPAGE_PMD_SIZE)
2141                 return addr;
2142         if (flags & MAP_FIXED)
2143                 return addr;
2144         /*
2145          * Our priority is to support MAP_SHARED mapped hugely;
2146          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2147          * But if caller specified an address hint and we allocated area there
2148          * successfully, respect that as before.
2149          */
2150         if (uaddr == addr)
2151                 return addr;
2152
2153         if (shmem_huge != SHMEM_HUGE_FORCE) {
2154                 struct super_block *sb;
2155
2156                 if (file) {
2157                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2158                         sb = file_inode(file)->i_sb;
2159                 } else {
2160                         /*
2161                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2162                          * for "/dev/zero", to create a shared anonymous object.
2163                          */
2164                         if (IS_ERR(shm_mnt))
2165                                 return addr;
2166                         sb = shm_mnt->mnt_sb;
2167                 }
2168                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2169                         return addr;
2170         }
2171
2172         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2173         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2174                 return addr;
2175         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2176                 return addr;
2177
2178         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2179         if (inflated_len > TASK_SIZE)
2180                 return addr;
2181         if (inflated_len < len)
2182                 return addr;
2183
2184         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2185         if (IS_ERR_VALUE(inflated_addr))
2186                 return addr;
2187         if (inflated_addr & ~PAGE_MASK)
2188                 return addr;
2189
2190         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2191         inflated_addr += offset - inflated_offset;
2192         if (inflated_offset > offset)
2193                 inflated_addr += HPAGE_PMD_SIZE;
2194
2195         if (inflated_addr > TASK_SIZE - len)
2196                 return addr;
2197         return inflated_addr;
2198 }
2199
2200 #ifdef CONFIG_NUMA
2201 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2202 {
2203         struct inode *inode = file_inode(vma->vm_file);
2204         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2205 }
2206
2207 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2208                                           unsigned long addr)
2209 {
2210         struct inode *inode = file_inode(vma->vm_file);
2211         pgoff_t index;
2212
2213         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2214         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2215 }
2216 #endif
2217
2218 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2219 {
2220         struct inode *inode = file_inode(file);
2221         struct shmem_inode_info *info = SHMEM_I(inode);
2222         int retval = -ENOMEM;
2223
2224         /*
2225          * What serializes the accesses to info->flags?
2226          * ipc_lock_object() when called from shmctl_do_lock(),
2227          * no serialization needed when called from shm_destroy().
2228          */
2229         if (lock && !(info->flags & VM_LOCKED)) {
2230                 if (!user_shm_lock(inode->i_size, user))
2231                         goto out_nomem;
2232                 info->flags |= VM_LOCKED;
2233                 mapping_set_unevictable(file->f_mapping);
2234         }
2235         if (!lock && (info->flags & VM_LOCKED) && user) {
2236                 user_shm_unlock(inode->i_size, user);
2237                 info->flags &= ~VM_LOCKED;
2238                 mapping_clear_unevictable(file->f_mapping);
2239         }
2240         retval = 0;
2241
2242 out_nomem:
2243         return retval;
2244 }
2245
2246 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2247 {
2248         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2249
2250         if (info->seals & F_SEAL_FUTURE_WRITE) {
2251                 /*
2252                  * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2253                  * "future write" seal active.
2254                  */
2255                 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2256                         return -EPERM;
2257
2258                 /*
2259                  * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2260                  * MAP_SHARED and read-only, take care to not allow mprotect to
2261                  * revert protections on such mappings. Do this only for shared
2262                  * mappings. For private mappings, don't need to mask
2263                  * VM_MAYWRITE as we still want them to be COW-writable.
2264                  */
2265                 if (vma->vm_flags & VM_SHARED)
2266                         vma->vm_flags &= ~(VM_MAYWRITE);
2267         }
2268
2269         file_accessed(file);
2270         vma->vm_ops = &shmem_vm_ops;
2271         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2272                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2273                         (vma->vm_end & HPAGE_PMD_MASK)) {
2274                 khugepaged_enter(vma, vma->vm_flags);
2275         }
2276         return 0;
2277 }
2278
2279 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2280                                      umode_t mode, dev_t dev, unsigned long flags)
2281 {
2282         struct inode *inode;
2283         struct shmem_inode_info *info;
2284         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2285         ino_t ino;
2286
2287         if (shmem_reserve_inode(sb, &ino))
2288                 return NULL;
2289
2290         inode = new_inode(sb);
2291         if (inode) {
2292                 inode->i_ino = ino;
2293                 inode_init_owner(inode, dir, mode);
2294                 inode->i_blocks = 0;
2295                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2296                 inode->i_generation = prandom_u32();
2297                 info = SHMEM_I(inode);
2298                 memset(info, 0, (char *)inode - (char *)info);
2299                 spin_lock_init(&info->lock);
2300                 atomic_set(&info->stop_eviction, 0);
2301                 info->seals = F_SEAL_SEAL;
2302                 info->flags = flags & VM_NORESERVE;
2303                 INIT_LIST_HEAD(&info->shrinklist);
2304                 INIT_LIST_HEAD(&info->swaplist);
2305                 simple_xattrs_init(&info->xattrs);
2306                 cache_no_acl(inode);
2307
2308                 switch (mode & S_IFMT) {
2309                 default:
2310                         inode->i_op = &shmem_special_inode_operations;
2311                         init_special_inode(inode, mode, dev);
2312                         break;
2313                 case S_IFREG:
2314                         inode->i_mapping->a_ops = &shmem_aops;
2315                         inode->i_op = &shmem_inode_operations;
2316                         inode->i_fop = &shmem_file_operations;
2317                         mpol_shared_policy_init(&info->policy,
2318                                                  shmem_get_sbmpol(sbinfo));
2319                         break;
2320                 case S_IFDIR:
2321                         inc_nlink(inode);
2322                         /* Some things misbehave if size == 0 on a directory */
2323                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2324                         inode->i_op = &shmem_dir_inode_operations;
2325                         inode->i_fop = &simple_dir_operations;
2326                         break;
2327                 case S_IFLNK:
2328                         /*
2329                          * Must not load anything in the rbtree,
2330                          * mpol_free_shared_policy will not be called.
2331                          */
2332                         mpol_shared_policy_init(&info->policy, NULL);
2333                         break;
2334                 }
2335
2336                 lockdep_annotate_inode_mutex_key(inode);
2337         } else
2338                 shmem_free_inode(sb);
2339         return inode;
2340 }
2341
2342 bool shmem_mapping(struct address_space *mapping)
2343 {
2344         return mapping->a_ops == &shmem_aops;
2345 }
2346
2347 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2348                                   pmd_t *dst_pmd,
2349                                   struct vm_area_struct *dst_vma,
2350                                   unsigned long dst_addr,
2351                                   unsigned long src_addr,
2352                                   bool zeropage,
2353                                   struct page **pagep)
2354 {
2355         struct inode *inode = file_inode(dst_vma->vm_file);
2356         struct shmem_inode_info *info = SHMEM_I(inode);
2357         struct address_space *mapping = inode->i_mapping;
2358         gfp_t gfp = mapping_gfp_mask(mapping);
2359         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2360         spinlock_t *ptl;
2361         void *page_kaddr;
2362         struct page *page;
2363         pte_t _dst_pte, *dst_pte;
2364         int ret;
2365         pgoff_t offset, max_off;
2366
2367         ret = -ENOMEM;
2368         if (!shmem_inode_acct_block(inode, 1))
2369                 goto out;
2370
2371         if (!*pagep) {
2372                 page = shmem_alloc_page(gfp, info, pgoff);
2373                 if (!page)
2374                         goto out_unacct_blocks;
2375
2376                 if (!zeropage) {        /* mcopy_atomic */
2377                         page_kaddr = kmap_atomic(page);
2378                         ret = copy_from_user(page_kaddr,
2379                                              (const void __user *)src_addr,
2380                                              PAGE_SIZE);
2381                         kunmap_atomic(page_kaddr);
2382
2383                         /* fallback to copy_from_user outside mmap_lock */
2384                         if (unlikely(ret)) {
2385                                 *pagep = page;
2386                                 shmem_inode_unacct_blocks(inode, 1);
2387                                 /* don't free the page */
2388                                 return -ENOENT;
2389                         }
2390                 } else {                /* mfill_zeropage_atomic */
2391                         clear_highpage(page);
2392                 }
2393         } else {
2394                 page = *pagep;
2395                 *pagep = NULL;
2396         }
2397
2398         VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2399         __SetPageLocked(page);
2400         __SetPageSwapBacked(page);
2401         __SetPageUptodate(page);
2402
2403         ret = -EFAULT;
2404         offset = linear_page_index(dst_vma, dst_addr);
2405         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2406         if (unlikely(offset >= max_off))
2407                 goto out_release;
2408
2409         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2410                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2411         if (ret)
2412                 goto out_release;
2413
2414         _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2415         if (dst_vma->vm_flags & VM_WRITE)
2416                 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2417         else {
2418                 /*
2419                  * We don't set the pte dirty if the vma has no
2420                  * VM_WRITE permission, so mark the page dirty or it
2421                  * could be freed from under us. We could do it
2422                  * unconditionally before unlock_page(), but doing it
2423                  * only if VM_WRITE is not set is faster.
2424                  */
2425                 set_page_dirty(page);
2426         }
2427
2428         dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2429
2430         ret = -EFAULT;
2431         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2432         if (unlikely(offset >= max_off))
2433                 goto out_release_unlock;
2434
2435         ret = -EEXIST;
2436         if (!pte_none(*dst_pte))
2437                 goto out_release_unlock;
2438
2439         lru_cache_add(page);
2440
2441         spin_lock_irq(&info->lock);
2442         info->alloced++;
2443         inode->i_blocks += BLOCKS_PER_PAGE;
2444         shmem_recalc_inode(inode);
2445         spin_unlock_irq(&info->lock);
2446
2447         inc_mm_counter(dst_mm, mm_counter_file(page));
2448         page_add_file_rmap(page, false);
2449         set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2450
2451         /* No need to invalidate - it was non-present before */
2452         update_mmu_cache(dst_vma, dst_addr, dst_pte);
2453         pte_unmap_unlock(dst_pte, ptl);
2454         unlock_page(page);
2455         ret = 0;
2456 out:
2457         return ret;
2458 out_release_unlock:
2459         pte_unmap_unlock(dst_pte, ptl);
2460         ClearPageDirty(page);
2461         delete_from_page_cache(page);
2462 out_release:
2463         unlock_page(page);
2464         put_page(page);
2465 out_unacct_blocks:
2466         shmem_inode_unacct_blocks(inode, 1);
2467         goto out;
2468 }
2469
2470 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2471                            pmd_t *dst_pmd,
2472                            struct vm_area_struct *dst_vma,
2473                            unsigned long dst_addr,
2474                            unsigned long src_addr,
2475                            struct page **pagep)
2476 {
2477         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2478                                       dst_addr, src_addr, false, pagep);
2479 }
2480
2481 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2482                              pmd_t *dst_pmd,
2483                              struct vm_area_struct *dst_vma,
2484                              unsigned long dst_addr)
2485 {
2486         struct page *page = NULL;
2487
2488         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2489                                       dst_addr, 0, true, &page);
2490 }
2491
2492 #ifdef CONFIG_TMPFS
2493 static const struct inode_operations shmem_symlink_inode_operations;
2494 static const struct inode_operations shmem_short_symlink_operations;
2495
2496 #ifdef CONFIG_TMPFS_XATTR
2497 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2498 #else
2499 #define shmem_initxattrs NULL
2500 #endif
2501
2502 static int
2503 shmem_write_begin(struct file *file, struct address_space *mapping,
2504                         loff_t pos, unsigned len, unsigned flags,
2505                         struct page **pagep, void **fsdata)
2506 {
2507         struct inode *inode = mapping->host;
2508         struct shmem_inode_info *info = SHMEM_I(inode);
2509         pgoff_t index = pos >> PAGE_SHIFT;
2510
2511         /* i_mutex is held by caller */
2512         if (unlikely(info->seals & (F_SEAL_GROW |
2513                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2514                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2515                         return -EPERM;
2516                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2517                         return -EPERM;
2518         }
2519
2520         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2521 }
2522
2523 static int
2524 shmem_write_end(struct file *file, struct address_space *mapping,
2525                         loff_t pos, unsigned len, unsigned copied,
2526                         struct page *page, void *fsdata)
2527 {
2528         struct inode *inode = mapping->host;
2529
2530         if (pos + copied > inode->i_size)
2531                 i_size_write(inode, pos + copied);
2532
2533         if (!PageUptodate(page)) {
2534                 struct page *head = compound_head(page);
2535                 if (PageTransCompound(page)) {
2536                         int i;
2537
2538                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2539                                 if (head + i == page)
2540                                         continue;
2541                                 clear_highpage(head + i);
2542                                 flush_dcache_page(head + i);
2543                         }
2544                 }
2545                 if (copied < PAGE_SIZE) {
2546                         unsigned from = pos & (PAGE_SIZE - 1);
2547                         zero_user_segments(page, 0, from,
2548                                         from + copied, PAGE_SIZE);
2549                 }
2550                 SetPageUptodate(head);
2551         }
2552         set_page_dirty(page);
2553         unlock_page(page);
2554         put_page(page);
2555
2556         return copied;
2557 }
2558
2559 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2560 {
2561         struct file *file = iocb->ki_filp;
2562         struct inode *inode = file_inode(file);
2563         struct address_space *mapping = inode->i_mapping;
2564         pgoff_t index;
2565         unsigned long offset;
2566         enum sgp_type sgp = SGP_READ;
2567         int error = 0;
2568         ssize_t retval = 0;
2569         loff_t *ppos = &iocb->ki_pos;
2570
2571         /*
2572          * Might this read be for a stacking filesystem?  Then when reading
2573          * holes of a sparse file, we actually need to allocate those pages,
2574          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2575          */
2576         if (!iter_is_iovec(to))
2577                 sgp = SGP_CACHE;
2578
2579         index = *ppos >> PAGE_SHIFT;
2580         offset = *ppos & ~PAGE_MASK;
2581
2582         for (;;) {
2583                 struct page *page = NULL;
2584                 pgoff_t end_index;
2585                 unsigned long nr, ret;
2586                 loff_t i_size = i_size_read(inode);
2587
2588                 end_index = i_size >> PAGE_SHIFT;
2589                 if (index > end_index)
2590                         break;
2591                 if (index == end_index) {
2592                         nr = i_size & ~PAGE_MASK;
2593                         if (nr <= offset)
2594                                 break;
2595                 }
2596
2597                 error = shmem_getpage(inode, index, &page, sgp);
2598                 if (error) {
2599                         if (error == -EINVAL)
2600                                 error = 0;
2601                         break;
2602                 }
2603                 if (page) {
2604                         if (sgp == SGP_CACHE)
2605                                 set_page_dirty(page);
2606                         unlock_page(page);
2607                 }
2608
2609                 /*
2610                  * We must evaluate after, since reads (unlike writes)
2611                  * are called without i_mutex protection against truncate
2612                  */
2613                 nr = PAGE_SIZE;
2614                 i_size = i_size_read(inode);
2615                 end_index = i_size >> PAGE_SHIFT;
2616                 if (index == end_index) {
2617                         nr = i_size & ~PAGE_MASK;
2618                         if (nr <= offset) {
2619                                 if (page)
2620                                         put_page(page);
2621                                 break;
2622                         }
2623                 }
2624                 nr -= offset;
2625
2626                 if (page) {
2627                         /*
2628                          * If users can be writing to this page using arbitrary
2629                          * virtual addresses, take care about potential aliasing
2630                          * before reading the page on the kernel side.
2631                          */
2632                         if (mapping_writably_mapped(mapping))
2633                                 flush_dcache_page(page);
2634                         /*
2635                          * Mark the page accessed if we read the beginning.
2636                          */
2637                         if (!offset)
2638                                 mark_page_accessed(page);
2639                 } else {
2640                         page = ZERO_PAGE(0);
2641                         get_page(page);
2642                 }
2643
2644                 /*
2645                  * Ok, we have the page, and it's up-to-date, so
2646                  * now we can copy it to user space...
2647                  */
2648                 ret = copy_page_to_iter(page, offset, nr, to);
2649                 retval += ret;
2650                 offset += ret;
2651                 index += offset >> PAGE_SHIFT;
2652                 offset &= ~PAGE_MASK;
2653
2654                 put_page(page);
2655                 if (!iov_iter_count(to))
2656                         break;
2657                 if (ret < nr) {
2658                         error = -EFAULT;
2659                         break;
2660                 }
2661                 cond_resched();
2662         }
2663
2664         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2665         file_accessed(file);
2666         return retval ? retval : error;
2667 }
2668
2669 /*
2670  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2671  */
2672 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2673                                     pgoff_t index, pgoff_t end, int whence)
2674 {
2675         struct page *page;
2676         struct pagevec pvec;
2677         pgoff_t indices[PAGEVEC_SIZE];
2678         bool done = false;
2679         int i;
2680
2681         pagevec_init(&pvec);
2682         pvec.nr = 1;            /* start small: we may be there already */
2683         while (!done) {
2684                 pvec.nr = find_get_entries(mapping, index,
2685                                         pvec.nr, pvec.pages, indices);
2686                 if (!pvec.nr) {
2687                         if (whence == SEEK_DATA)
2688                                 index = end;
2689                         break;
2690                 }
2691                 for (i = 0; i < pvec.nr; i++, index++) {
2692                         if (index < indices[i]) {
2693                                 if (whence == SEEK_HOLE) {
2694                                         done = true;
2695                                         break;
2696                                 }
2697                                 index = indices[i];
2698                         }
2699                         page = pvec.pages[i];
2700                         if (page && !xa_is_value(page)) {
2701                                 if (!PageUptodate(page))
2702                                         page = NULL;
2703                         }
2704                         if (index >= end ||
2705                             (page && whence == SEEK_DATA) ||
2706                             (!page && whence == SEEK_HOLE)) {
2707                                 done = true;
2708                                 break;
2709                         }
2710                 }
2711                 pagevec_remove_exceptionals(&pvec);
2712                 pagevec_release(&pvec);
2713                 pvec.nr = PAGEVEC_SIZE;
2714                 cond_resched();
2715         }
2716         return index;
2717 }
2718
2719 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2720 {
2721         struct address_space *mapping = file->f_mapping;
2722         struct inode *inode = mapping->host;
2723         pgoff_t start, end;
2724         loff_t new_offset;
2725
2726         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2727                 return generic_file_llseek_size(file, offset, whence,
2728                                         MAX_LFS_FILESIZE, i_size_read(inode));
2729         inode_lock(inode);
2730         /* We're holding i_mutex so we can access i_size directly */
2731
2732         if (offset < 0 || offset >= inode->i_size)
2733                 offset = -ENXIO;
2734         else {
2735                 start = offset >> PAGE_SHIFT;
2736                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2737                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2738                 new_offset <<= PAGE_SHIFT;
2739                 if (new_offset > offset) {
2740                         if (new_offset < inode->i_size)
2741                                 offset = new_offset;
2742                         else if (whence == SEEK_DATA)
2743                                 offset = -ENXIO;
2744                         else
2745                                 offset = inode->i_size;
2746                 }
2747         }
2748
2749         if (offset >= 0)
2750                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2751         inode_unlock(inode);
2752         return offset;
2753 }
2754
2755 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2756                                                          loff_t len)
2757 {
2758         struct inode *inode = file_inode(file);
2759         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2760         struct shmem_inode_info *info = SHMEM_I(inode);
2761         struct shmem_falloc shmem_falloc;
2762         pgoff_t start, index, end;
2763         int error;
2764
2765         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2766                 return -EOPNOTSUPP;
2767
2768         inode_lock(inode);
2769
2770         if (mode & FALLOC_FL_PUNCH_HOLE) {
2771                 struct address_space *mapping = file->f_mapping;
2772                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2773                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2774                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2775
2776                 /* protected by i_mutex */
2777                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2778                         error = -EPERM;
2779                         goto out;
2780                 }
2781
2782                 shmem_falloc.waitq = &shmem_falloc_waitq;
2783                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2784                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2785                 spin_lock(&inode->i_lock);
2786                 inode->i_private = &shmem_falloc;
2787                 spin_unlock(&inode->i_lock);
2788
2789                 if ((u64)unmap_end > (u64)unmap_start)
2790                         unmap_mapping_range(mapping, unmap_start,
2791                                             1 + unmap_end - unmap_start, 0);
2792                 shmem_truncate_range(inode, offset, offset + len - 1);
2793                 /* No need to unmap again: hole-punching leaves COWed pages */
2794
2795                 spin_lock(&inode->i_lock);
2796                 inode->i_private = NULL;
2797                 wake_up_all(&shmem_falloc_waitq);
2798                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2799                 spin_unlock(&inode->i_lock);
2800                 error = 0;
2801                 goto out;
2802         }
2803
2804         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2805         error = inode_newsize_ok(inode, offset + len);
2806         if (error)
2807                 goto out;
2808
2809         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2810                 error = -EPERM;
2811                 goto out;
2812         }
2813
2814         start = offset >> PAGE_SHIFT;
2815         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2816         /* Try to avoid a swapstorm if len is impossible to satisfy */
2817         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2818                 error = -ENOSPC;
2819                 goto out;
2820         }
2821
2822         shmem_falloc.waitq = NULL;
2823         shmem_falloc.start = start;
2824         shmem_falloc.next  = start;
2825         shmem_falloc.nr_falloced = 0;
2826         shmem_falloc.nr_unswapped = 0;
2827         spin_lock(&inode->i_lock);
2828         inode->i_private = &shmem_falloc;
2829         spin_unlock(&inode->i_lock);
2830
2831         for (index = start; index < end; index++) {
2832                 struct page *page;
2833
2834                 /*
2835                  * Good, the fallocate(2) manpage permits EINTR: we may have
2836                  * been interrupted because we are using up too much memory.
2837                  */
2838                 if (signal_pending(current))
2839                         error = -EINTR;
2840                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2841                         error = -ENOMEM;
2842                 else
2843                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2844                 if (error) {
2845                         /* Remove the !PageUptodate pages we added */
2846                         if (index > start) {
2847                                 shmem_undo_range(inode,
2848                                     (loff_t)start << PAGE_SHIFT,
2849                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2850                         }
2851                         goto undone;
2852                 }
2853
2854                 /*
2855                  * Inform shmem_writepage() how far we have reached.
2856                  * No need for lock or barrier: we have the page lock.
2857                  */
2858                 shmem_falloc.next++;
2859                 if (!PageUptodate(page))
2860                         shmem_falloc.nr_falloced++;
2861
2862                 /*
2863                  * If !PageUptodate, leave it that way so that freeable pages
2864                  * can be recognized if we need to rollback on error later.
2865                  * But set_page_dirty so that memory pressure will swap rather
2866                  * than free the pages we are allocating (and SGP_CACHE pages
2867                  * might still be clean: we now need to mark those dirty too).
2868                  */
2869                 set_page_dirty(page);
2870                 unlock_page(page);
2871                 put_page(page);
2872                 cond_resched();
2873         }
2874
2875         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2876                 i_size_write(inode, offset + len);
2877         inode->i_ctime = current_time(inode);
2878 undone:
2879         spin_lock(&inode->i_lock);
2880         inode->i_private = NULL;
2881         spin_unlock(&inode->i_lock);
2882 out:
2883         inode_unlock(inode);
2884         return error;
2885 }
2886
2887 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2888 {
2889         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2890
2891         buf->f_type = TMPFS_MAGIC;
2892         buf->f_bsize = PAGE_SIZE;
2893         buf->f_namelen = NAME_MAX;
2894         if (sbinfo->max_blocks) {
2895                 buf->f_blocks = sbinfo->max_blocks;
2896                 buf->f_bavail =
2897                 buf->f_bfree  = sbinfo->max_blocks -
2898                                 percpu_counter_sum(&sbinfo->used_blocks);
2899         }
2900         if (sbinfo->max_inodes) {
2901                 buf->f_files = sbinfo->max_inodes;
2902                 buf->f_ffree = sbinfo->free_inodes;
2903         }
2904         /* else leave those fields 0 like simple_statfs */
2905         return 0;
2906 }
2907
2908 /*
2909  * File creation. Allocate an inode, and we're done..
2910  */
2911 static int
2912 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2913 {
2914         struct inode *inode;
2915         int error = -ENOSPC;
2916
2917         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2918         if (inode) {
2919                 error = simple_acl_create(dir, inode);
2920                 if (error)
2921                         goto out_iput;
2922                 error = security_inode_init_security(inode, dir,
2923                                                      &dentry->d_name,
2924                                                      shmem_initxattrs, NULL);
2925                 if (error && error != -EOPNOTSUPP)
2926                         goto out_iput;
2927
2928                 error = 0;
2929                 dir->i_size += BOGO_DIRENT_SIZE;
2930                 dir->i_ctime = dir->i_mtime = current_time(dir);
2931                 d_instantiate(dentry, inode);
2932                 dget(dentry); /* Extra count - pin the dentry in core */
2933         }
2934         return error;
2935 out_iput:
2936         iput(inode);
2937         return error;
2938 }
2939
2940 static int
2941 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2942 {
2943         struct inode *inode;
2944         int error = -ENOSPC;
2945
2946         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2947         if (inode) {
2948                 error = security_inode_init_security(inode, dir,
2949                                                      NULL,
2950                                                      shmem_initxattrs, NULL);
2951                 if (error && error != -EOPNOTSUPP)
2952                         goto out_iput;
2953                 error = simple_acl_create(dir, inode);
2954                 if (error)
2955                         goto out_iput;
2956                 d_tmpfile(dentry, inode);
2957         }
2958         return error;
2959 out_iput:
2960         iput(inode);
2961         return error;
2962 }
2963
2964 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2965 {
2966         int error;
2967
2968         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2969                 return error;
2970         inc_nlink(dir);
2971         return 0;
2972 }
2973
2974 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2975                 bool excl)
2976 {
2977         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2978 }
2979
2980 /*
2981  * Link a file..
2982  */
2983 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2984 {
2985         struct inode *inode = d_inode(old_dentry);
2986         int ret = 0;
2987
2988         /*
2989          * No ordinary (disk based) filesystem counts links as inodes;
2990          * but each new link needs a new dentry, pinning lowmem, and
2991          * tmpfs dentries cannot be pruned until they are unlinked.
2992          * But if an O_TMPFILE file is linked into the tmpfs, the
2993          * first link must skip that, to get the accounting right.
2994          */
2995         if (inode->i_nlink) {
2996                 ret = shmem_reserve_inode(inode->i_sb, NULL);
2997                 if (ret)
2998                         goto out;
2999         }
3000
3001         dir->i_size += BOGO_DIRENT_SIZE;
3002         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3003         inc_nlink(inode);
3004         ihold(inode);   /* New dentry reference */
3005         dget(dentry);           /* Extra pinning count for the created dentry */
3006         d_instantiate(dentry, inode);
3007 out:
3008         return ret;
3009 }
3010
3011 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3012 {
3013         struct inode *inode = d_inode(dentry);
3014
3015         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3016                 shmem_free_inode(inode->i_sb);
3017
3018         dir->i_size -= BOGO_DIRENT_SIZE;
3019         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3020         drop_nlink(inode);
3021         dput(dentry);   /* Undo the count from "create" - this does all the work */
3022         return 0;
3023 }
3024
3025 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3026 {
3027         if (!simple_empty(dentry))
3028                 return -ENOTEMPTY;
3029
3030         drop_nlink(d_inode(dentry));
3031         drop_nlink(dir);
3032         return shmem_unlink(dir, dentry);
3033 }
3034
3035 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3036 {
3037         bool old_is_dir = d_is_dir(old_dentry);
3038         bool new_is_dir = d_is_dir(new_dentry);
3039
3040         if (old_dir != new_dir && old_is_dir != new_is_dir) {
3041                 if (old_is_dir) {
3042                         drop_nlink(old_dir);
3043                         inc_nlink(new_dir);
3044                 } else {
3045                         drop_nlink(new_dir);
3046                         inc_nlink(old_dir);
3047                 }
3048         }
3049         old_dir->i_ctime = old_dir->i_mtime =
3050         new_dir->i_ctime = new_dir->i_mtime =
3051         d_inode(old_dentry)->i_ctime =
3052         d_inode(new_dentry)->i_ctime = current_time(old_dir);
3053
3054         return 0;
3055 }
3056
3057 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3058 {
3059         struct dentry *whiteout;
3060         int error;
3061
3062         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3063         if (!whiteout)
3064                 return -ENOMEM;
3065
3066         error = shmem_mknod(old_dir, whiteout,
3067                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3068         dput(whiteout);
3069         if (error)
3070                 return error;
3071
3072         /*
3073          * Cheat and hash the whiteout while the old dentry is still in
3074          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3075          *
3076          * d_lookup() will consistently find one of them at this point,
3077          * not sure which one, but that isn't even important.
3078          */
3079         d_rehash(whiteout);
3080         return 0;
3081 }
3082
3083 /*
3084  * The VFS layer already does all the dentry stuff for rename,
3085  * we just have to decrement the usage count for the target if
3086  * it exists so that the VFS layer correctly free's it when it
3087  * gets overwritten.
3088  */
3089 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3090 {
3091         struct inode *inode = d_inode(old_dentry);
3092         int they_are_dirs = S_ISDIR(inode->i_mode);
3093
3094         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3095                 return -EINVAL;
3096
3097         if (flags & RENAME_EXCHANGE)
3098                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3099
3100         if (!simple_empty(new_dentry))
3101                 return -ENOTEMPTY;
3102
3103         if (flags & RENAME_WHITEOUT) {
3104                 int error;
3105
3106                 error = shmem_whiteout(old_dir, old_dentry);
3107                 if (error)
3108                         return error;
3109         }
3110
3111         if (d_really_is_positive(new_dentry)) {
3112                 (void) shmem_unlink(new_dir, new_dentry);
3113                 if (they_are_dirs) {
3114                         drop_nlink(d_inode(new_dentry));
3115                         drop_nlink(old_dir);
3116                 }
3117         } else if (they_are_dirs) {
3118                 drop_nlink(old_dir);
3119                 inc_nlink(new_dir);
3120         }
3121
3122         old_dir->i_size -= BOGO_DIRENT_SIZE;
3123         new_dir->i_size += BOGO_DIRENT_SIZE;
3124         old_dir->i_ctime = old_dir->i_mtime =
3125         new_dir->i_ctime = new_dir->i_mtime =
3126         inode->i_ctime = current_time(old_dir);
3127         return 0;
3128 }
3129
3130 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3131 {
3132         int error;
3133         int len;
3134         struct inode *inode;
3135         struct page *page;
3136
3137         len = strlen(symname) + 1;
3138         if (len > PAGE_SIZE)
3139                 return -ENAMETOOLONG;
3140
3141         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3142                                 VM_NORESERVE);
3143         if (!inode)
3144                 return -ENOSPC;
3145
3146         error = security_inode_init_security(inode, dir, &dentry->d_name,
3147                                              shmem_initxattrs, NULL);
3148         if (error && error != -EOPNOTSUPP) {
3149                 iput(inode);
3150                 return error;
3151         }
3152
3153         inode->i_size = len-1;
3154         if (len <= SHORT_SYMLINK_LEN) {
3155                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3156                 if (!inode->i_link) {
3157                         iput(inode);
3158                         return -ENOMEM;
3159                 }
3160                 inode->i_op = &shmem_short_symlink_operations;
3161         } else {
3162                 inode_nohighmem(inode);
3163                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3164                 if (error) {
3165                         iput(inode);
3166                         return error;
3167                 }
3168                 inode->i_mapping->a_ops = &shmem_aops;
3169                 inode->i_op = &shmem_symlink_inode_operations;
3170                 memcpy(page_address(page), symname, len);
3171                 SetPageUptodate(page);
3172                 set_page_dirty(page);
3173                 unlock_page(page);
3174                 put_page(page);
3175         }
3176         dir->i_size += BOGO_DIRENT_SIZE;
3177         dir->i_ctime = dir->i_mtime = current_time(dir);
3178         d_instantiate(dentry, inode);
3179         dget(dentry);
3180         return 0;
3181 }
3182
3183 static void shmem_put_link(void *arg)
3184 {
3185         mark_page_accessed(arg);
3186         put_page(arg);
3187 }
3188
3189 static const char *shmem_get_link(struct dentry *dentry,
3190                                   struct inode *inode,
3191                                   struct delayed_call *done)
3192 {
3193         struct page *page = NULL;
3194         int error;
3195         if (!dentry) {
3196                 page = find_get_page(inode->i_mapping, 0);
3197                 if (!page)
3198                         return ERR_PTR(-ECHILD);
3199                 if (!PageUptodate(page)) {
3200                         put_page(page);
3201                         return ERR_PTR(-ECHILD);
3202                 }
3203         } else {
3204                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3205                 if (error)
3206                         return ERR_PTR(error);
3207                 unlock_page(page);
3208         }
3209         set_delayed_call(done, shmem_put_link, page);
3210         return page_address(page);
3211 }
3212
3213 #ifdef CONFIG_TMPFS_XATTR
3214 /*
3215  * Superblocks without xattr inode operations may get some security.* xattr
3216  * support from the LSM "for free". As soon as we have any other xattrs
3217  * like ACLs, we also need to implement the security.* handlers at
3218  * filesystem level, though.
3219  */
3220
3221 /*
3222  * Callback for security_inode_init_security() for acquiring xattrs.
3223  */
3224 static int shmem_initxattrs(struct inode *inode,
3225                             const struct xattr *xattr_array,
3226                             void *fs_info)
3227 {
3228         struct shmem_inode_info *info = SHMEM_I(inode);
3229         const struct xattr *xattr;
3230         struct simple_xattr *new_xattr;
3231         size_t len;
3232
3233         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3234                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3235                 if (!new_xattr)
3236                         return -ENOMEM;
3237
3238                 len = strlen(xattr->name) + 1;
3239                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3240                                           GFP_KERNEL);
3241                 if (!new_xattr->name) {
3242                         kvfree(new_xattr);
3243                         return -ENOMEM;
3244                 }
3245
3246                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3247                        XATTR_SECURITY_PREFIX_LEN);
3248                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3249                        xattr->name, len);
3250
3251                 simple_xattr_list_add(&info->xattrs, new_xattr);
3252         }
3253
3254         return 0;
3255 }
3256
3257 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3258                                    struct dentry *unused, struct inode *inode,
3259                                    const char *name, void *buffer, size_t size)
3260 {
3261         struct shmem_inode_info *info = SHMEM_I(inode);
3262
3263         name = xattr_full_name(handler, name);
3264         return simple_xattr_get(&info->xattrs, name, buffer, size);
3265 }
3266
3267 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3268                                    struct dentry *unused, struct inode *inode,
3269                                    const char *name, const void *value,
3270                                    size_t size, int flags)
3271 {
3272         struct shmem_inode_info *info = SHMEM_I(inode);
3273
3274         name = xattr_full_name(handler, name);
3275         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3276 }
3277
3278 static const struct xattr_handler shmem_security_xattr_handler = {
3279         .prefix = XATTR_SECURITY_PREFIX,
3280         .get = shmem_xattr_handler_get,
3281         .set = shmem_xattr_handler_set,
3282 };
3283
3284 static const struct xattr_handler shmem_trusted_xattr_handler = {
3285         .prefix = XATTR_TRUSTED_PREFIX,
3286         .get = shmem_xattr_handler_get,
3287         .set = shmem_xattr_handler_set,
3288 };
3289
3290 static const struct xattr_handler *shmem_xattr_handlers[] = {
3291 #ifdef CONFIG_TMPFS_POSIX_ACL
3292         &posix_acl_access_xattr_handler,
3293         &posix_acl_default_xattr_handler,
3294 #endif
3295         &shmem_security_xattr_handler,
3296         &shmem_trusted_xattr_handler,
3297         NULL
3298 };
3299
3300 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3301 {
3302         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3303         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3304 }
3305 #endif /* CONFIG_TMPFS_XATTR */
3306
3307 static const struct inode_operations shmem_short_symlink_operations = {
3308         .get_link       = simple_get_link,
3309 #ifdef CONFIG_TMPFS_XATTR
3310         .listxattr      = shmem_listxattr,
3311 #endif
3312 };
3313
3314 static const struct inode_operations shmem_symlink_inode_operations = {
3315         .get_link       = shmem_get_link,
3316 #ifdef CONFIG_TMPFS_XATTR
3317         .listxattr      = shmem_listxattr,
3318 #endif
3319 };
3320
3321 static struct dentry *shmem_get_parent(struct dentry *child)
3322 {
3323         return ERR_PTR(-ESTALE);
3324 }
3325
3326 static int shmem_match(struct inode *ino, void *vfh)
3327 {
3328         __u32 *fh = vfh;
3329         __u64 inum = fh[2];
3330         inum = (inum << 32) | fh[1];
3331         return ino->i_ino == inum && fh[0] == ino->i_generation;
3332 }
3333
3334 /* Find any alias of inode, but prefer a hashed alias */
3335 static struct dentry *shmem_find_alias(struct inode *inode)
3336 {
3337         struct dentry *alias = d_find_alias(inode);
3338
3339         return alias ?: d_find_any_alias(inode);
3340 }
3341
3342
3343 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3344                 struct fid *fid, int fh_len, int fh_type)
3345 {
3346         struct inode *inode;
3347         struct dentry *dentry = NULL;
3348         u64 inum;
3349
3350         if (fh_len < 3)
3351                 return NULL;
3352
3353         inum = fid->raw[2];
3354         inum = (inum << 32) | fid->raw[1];
3355
3356         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3357                         shmem_match, fid->raw);
3358         if (inode) {
3359                 dentry = shmem_find_alias(inode);
3360                 iput(inode);
3361         }
3362
3363         return dentry;
3364 }
3365
3366 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3367                                 struct inode *parent)
3368 {
3369         if (*len < 3) {
3370                 *len = 3;
3371                 return FILEID_INVALID;
3372         }
3373
3374         if (inode_unhashed(inode)) {
3375                 /* Unfortunately insert_inode_hash is not idempotent,
3376                  * so as we hash inodes here rather than at creation
3377                  * time, we need a lock to ensure we only try
3378                  * to do it once
3379                  */
3380                 static DEFINE_SPINLOCK(lock);
3381                 spin_lock(&lock);
3382                 if (inode_unhashed(inode))
3383                         __insert_inode_hash(inode,
3384                                             inode->i_ino + inode->i_generation);
3385                 spin_unlock(&lock);
3386         }
3387
3388         fh[0] = inode->i_generation;
3389         fh[1] = inode->i_ino;
3390         fh[2] = ((__u64)inode->i_ino) >> 32;
3391
3392         *len = 3;
3393         return 1;
3394 }
3395
3396 static const struct export_operations shmem_export_ops = {
3397         .get_parent     = shmem_get_parent,
3398         .encode_fh      = shmem_encode_fh,
3399         .fh_to_dentry   = shmem_fh_to_dentry,
3400 };
3401
3402 enum shmem_param {
3403         Opt_gid,
3404         Opt_huge,
3405         Opt_mode,
3406         Opt_mpol,
3407         Opt_nr_blocks,
3408         Opt_nr_inodes,
3409         Opt_size,
3410         Opt_uid,
3411         Opt_inode32,
3412         Opt_inode64,
3413 };
3414
3415 static const struct constant_table shmem_param_enums_huge[] = {
3416         {"never",       SHMEM_HUGE_NEVER },
3417         {"always",      SHMEM_HUGE_ALWAYS },
3418         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3419         {"advise",      SHMEM_HUGE_ADVISE },
3420         {}
3421 };
3422
3423 const struct fs_parameter_spec shmem_fs_parameters[] = {
3424         fsparam_u32   ("gid",           Opt_gid),
3425         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3426         fsparam_u32oct("mode",          Opt_mode),
3427         fsparam_string("mpol",          Opt_mpol),
3428         fsparam_string("nr_blocks",     Opt_nr_blocks),
3429         fsparam_string("nr_inodes",     Opt_nr_inodes),
3430         fsparam_string("size",          Opt_size),
3431         fsparam_u32   ("uid",           Opt_uid),
3432         fsparam_flag  ("inode32",       Opt_inode32),
3433         fsparam_flag  ("inode64",       Opt_inode64),
3434         {}
3435 };
3436
3437 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3438 {
3439         struct shmem_options *ctx = fc->fs_private;
3440         struct fs_parse_result result;
3441         unsigned long long size;
3442         char *rest;
3443         int opt;
3444
3445         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3446         if (opt < 0)
3447                 return opt;
3448
3449         switch (opt) {
3450         case Opt_size:
3451                 size = memparse(param->string, &rest);
3452                 if (*rest == '%') {
3453                         size <<= PAGE_SHIFT;
3454                         size *= totalram_pages();
3455                         do_div(size, 100);
3456                         rest++;
3457                 }
3458                 if (*rest)
3459                         goto bad_value;
3460                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3461                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3462                 break;
3463         case Opt_nr_blocks:
3464                 ctx->blocks = memparse(param->string, &rest);
3465                 if (*rest)
3466                         goto bad_value;
3467                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3468                 break;
3469         case Opt_nr_inodes:
3470                 ctx->inodes = memparse(param->string, &rest);
3471                 if (*rest)
3472                         goto bad_value;
3473                 ctx->seen |= SHMEM_SEEN_INODES;
3474                 break;
3475         case Opt_mode:
3476                 ctx->mode = result.uint_32 & 07777;
3477                 break;
3478         case Opt_uid:
3479                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3480                 if (!uid_valid(ctx->uid))
3481                         goto bad_value;
3482                 break;
3483         case Opt_gid:
3484                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3485                 if (!gid_valid(ctx->gid))
3486                         goto bad_value;
3487                 break;
3488         case Opt_huge:
3489                 ctx->huge = result.uint_32;
3490                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3491                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3492                       has_transparent_hugepage()))
3493                         goto unsupported_parameter;
3494                 ctx->seen |= SHMEM_SEEN_HUGE;
3495                 break;
3496         case Opt_mpol:
3497                 if (IS_ENABLED(CONFIG_NUMA)) {
3498                         mpol_put(ctx->mpol);
3499                         ctx->mpol = NULL;
3500                         if (mpol_parse_str(param->string, &ctx->mpol))
3501                                 goto bad_value;
3502                         break;
3503                 }
3504                 goto unsupported_parameter;
3505         case Opt_inode32:
3506                 ctx->full_inums = false;
3507                 ctx->seen |= SHMEM_SEEN_INUMS;
3508                 break;
3509         case Opt_inode64:
3510                 if (sizeof(ino_t) < 8) {
3511                         return invalfc(fc,
3512                                        "Cannot use inode64 with <64bit inums in kernel\n");
3513                 }
3514                 ctx->full_inums = true;
3515                 ctx->seen |= SHMEM_SEEN_INUMS;
3516                 break;
3517         }
3518         return 0;
3519
3520 unsupported_parameter:
3521         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3522 bad_value:
3523         return invalfc(fc, "Bad value for '%s'", param->key);
3524 }
3525
3526 static int shmem_parse_options(struct fs_context *fc, void *data)
3527 {
3528         char *options = data;
3529
3530         if (options) {
3531                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3532                 if (err)
3533                         return err;
3534         }
3535
3536         while (options != NULL) {
3537                 char *this_char = options;
3538                 for (;;) {
3539                         /*
3540                          * NUL-terminate this option: unfortunately,
3541                          * mount options form a comma-separated list,
3542                          * but mpol's nodelist may also contain commas.
3543                          */
3544                         options = strchr(options, ',');
3545                         if (options == NULL)
3546                                 break;
3547                         options++;
3548                         if (!isdigit(*options)) {
3549                                 options[-1] = '\0';
3550                                 break;
3551                         }
3552                 }
3553                 if (*this_char) {
3554                         char *value = strchr(this_char,'=');
3555                         size_t len = 0;
3556                         int err;
3557
3558                         if (value) {
3559                                 *value++ = '\0';
3560                                 len = strlen(value);
3561                         }
3562                         err = vfs_parse_fs_string(fc, this_char, value, len);
3563                         if (err < 0)
3564                                 return err;
3565                 }
3566         }
3567         return 0;
3568 }
3569
3570 /*
3571  * Reconfigure a shmem filesystem.
3572  *
3573  * Note that we disallow change from limited->unlimited blocks/inodes while any
3574  * are in use; but we must separately disallow unlimited->limited, because in
3575  * that case we have no record of how much is already in use.
3576  */
3577 static int shmem_reconfigure(struct fs_context *fc)
3578 {
3579         struct shmem_options *ctx = fc->fs_private;
3580         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3581         unsigned long inodes;
3582         const char *err;
3583
3584         spin_lock(&sbinfo->stat_lock);
3585         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3586         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3587                 if (!sbinfo->max_blocks) {
3588                         err = "Cannot retroactively limit size";
3589                         goto out;
3590                 }
3591                 if (percpu_counter_compare(&sbinfo->used_blocks,
3592                                            ctx->blocks) > 0) {
3593                         err = "Too small a size for current use";
3594                         goto out;
3595                 }
3596         }
3597         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3598                 if (!sbinfo->max_inodes) {
3599                         err = "Cannot retroactively limit inodes";
3600                         goto out;
3601                 }
3602                 if (ctx->inodes < inodes) {
3603                         err = "Too few inodes for current use";
3604                         goto out;
3605                 }
3606         }
3607
3608         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3609             sbinfo->next_ino > UINT_MAX) {
3610                 err = "Current inum too high to switch to 32-bit inums";
3611                 goto out;
3612         }
3613
3614         if (ctx->seen & SHMEM_SEEN_HUGE)
3615                 sbinfo->huge = ctx->huge;
3616         if (ctx->seen & SHMEM_SEEN_INUMS)
3617                 sbinfo->full_inums = ctx->full_inums;
3618         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3619                 sbinfo->max_blocks  = ctx->blocks;
3620         if (ctx->seen & SHMEM_SEEN_INODES) {
3621                 sbinfo->max_inodes  = ctx->inodes;
3622                 sbinfo->free_inodes = ctx->inodes - inodes;
3623         }
3624
3625         /*
3626          * Preserve previous mempolicy unless mpol remount option was specified.
3627          */
3628         if (ctx->mpol) {
3629                 mpol_put(sbinfo->mpol);
3630                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3631                 ctx->mpol = NULL;
3632         }
3633         spin_unlock(&sbinfo->stat_lock);
3634         return 0;
3635 out:
3636         spin_unlock(&sbinfo->stat_lock);
3637         return invalfc(fc, "%s", err);
3638 }
3639
3640 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3641 {
3642         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3643
3644         if (sbinfo->max_blocks != shmem_default_max_blocks())
3645                 seq_printf(seq, ",size=%luk",
3646                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3647         if (sbinfo->max_inodes != shmem_default_max_inodes())
3648                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3649         if (sbinfo->mode != (0777 | S_ISVTX))
3650                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3651         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3652                 seq_printf(seq, ",uid=%u",
3653                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3654         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3655                 seq_printf(seq, ",gid=%u",
3656                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3657
3658         /*
3659          * Showing inode{64,32} might be useful even if it's the system default,
3660          * since then people don't have to resort to checking both here and
3661          * /proc/config.gz to confirm 64-bit inums were successfully applied
3662          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3663          *
3664          * We hide it when inode64 isn't the default and we are using 32-bit
3665          * inodes, since that probably just means the feature isn't even under
3666          * consideration.
3667          *
3668          * As such:
3669          *
3670          *                     +-----------------+-----------------+
3671          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3672          *  +------------------+-----------------+-----------------+
3673          *  | full_inums=true  | show            | show            |
3674          *  | full_inums=false | show            | hide            |
3675          *  +------------------+-----------------+-----------------+
3676          *
3677          */
3678         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3679                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3680 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3681         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3682         if (sbinfo->huge)
3683                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3684 #endif
3685         shmem_show_mpol(seq, sbinfo->mpol);
3686         return 0;
3687 }
3688
3689 #endif /* CONFIG_TMPFS */
3690
3691 static void shmem_put_super(struct super_block *sb)
3692 {
3693         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3694
3695         free_percpu(sbinfo->ino_batch);
3696         percpu_counter_destroy(&sbinfo->used_blocks);
3697         mpol_put(sbinfo->mpol);
3698         kfree(sbinfo);
3699         sb->s_fs_info = NULL;
3700 }
3701
3702 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3703 {
3704         struct shmem_options *ctx = fc->fs_private;
3705         struct inode *inode;
3706         struct shmem_sb_info *sbinfo;
3707         int err = -ENOMEM;
3708
3709         /* Round up to L1_CACHE_BYTES to resist false sharing */
3710         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3711                                 L1_CACHE_BYTES), GFP_KERNEL);
3712         if (!sbinfo)
3713                 return -ENOMEM;
3714
3715         sb->s_fs_info = sbinfo;
3716
3717 #ifdef CONFIG_TMPFS
3718         /*
3719          * Per default we only allow half of the physical ram per
3720          * tmpfs instance, limiting inodes to one per page of lowmem;
3721          * but the internal instance is left unlimited.
3722          */
3723         if (!(sb->s_flags & SB_KERNMOUNT)) {
3724                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3725                         ctx->blocks = shmem_default_max_blocks();
3726                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3727                         ctx->inodes = shmem_default_max_inodes();
3728                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3729                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3730         } else {
3731                 sb->s_flags |= SB_NOUSER;
3732         }
3733         sb->s_export_op = &shmem_export_ops;
3734         sb->s_flags |= SB_NOSEC;
3735 #else
3736         sb->s_flags |= SB_NOUSER;
3737 #endif
3738         sbinfo->max_blocks = ctx->blocks;
3739         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3740         if (sb->s_flags & SB_KERNMOUNT) {
3741                 sbinfo->ino_batch = alloc_percpu(ino_t);
3742                 if (!sbinfo->ino_batch)
3743                         goto failed;
3744         }
3745         sbinfo->uid = ctx->uid;
3746         sbinfo->gid = ctx->gid;
3747         sbinfo->full_inums = ctx->full_inums;
3748         sbinfo->mode = ctx->mode;
3749         sbinfo->huge = ctx->huge;
3750         sbinfo->mpol = ctx->mpol;
3751         ctx->mpol = NULL;
3752
3753         spin_lock_init(&sbinfo->stat_lock);
3754         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3755                 goto failed;
3756         spin_lock_init(&sbinfo->shrinklist_lock);
3757         INIT_LIST_HEAD(&sbinfo->shrinklist);
3758
3759         sb->s_maxbytes = MAX_LFS_FILESIZE;
3760         sb->s_blocksize = PAGE_SIZE;
3761         sb->s_blocksize_bits = PAGE_SHIFT;
3762         sb->s_magic = TMPFS_MAGIC;
3763         sb->s_op = &shmem_ops;
3764         sb->s_time_gran = 1;
3765 #ifdef CONFIG_TMPFS_XATTR
3766         sb->s_xattr = shmem_xattr_handlers;
3767 #endif
3768 #ifdef CONFIG_TMPFS_POSIX_ACL
3769         sb->s_flags |= SB_POSIXACL;
3770 #endif
3771         uuid_gen(&sb->s_uuid);
3772
3773         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3774         if (!inode)
3775                 goto failed;
3776         inode->i_uid = sbinfo->uid;
3777         inode->i_gid = sbinfo->gid;
3778         sb->s_root = d_make_root(inode);
3779         if (!sb->s_root)
3780                 goto failed;
3781         return 0;
3782
3783 failed:
3784         shmem_put_super(sb);
3785         return err;
3786 }
3787
3788 static int shmem_get_tree(struct fs_context *fc)
3789 {
3790         return get_tree_nodev(fc, shmem_fill_super);
3791 }
3792
3793 static void shmem_free_fc(struct fs_context *fc)
3794 {
3795         struct shmem_options *ctx = fc->fs_private;
3796
3797         if (ctx) {
3798                 mpol_put(ctx->mpol);
3799                 kfree(ctx);
3800         }
3801 }
3802
3803 static const struct fs_context_operations shmem_fs_context_ops = {
3804         .free                   = shmem_free_fc,
3805         .get_tree               = shmem_get_tree,
3806 #ifdef CONFIG_TMPFS
3807         .parse_monolithic       = shmem_parse_options,
3808         .parse_param            = shmem_parse_one,
3809         .reconfigure            = shmem_reconfigure,
3810 #endif
3811 };
3812
3813 static struct kmem_cache *shmem_inode_cachep;
3814
3815 static struct inode *shmem_alloc_inode(struct super_block *sb)
3816 {
3817         struct shmem_inode_info *info;
3818         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3819         if (!info)
3820                 return NULL;
3821         return &info->vfs_inode;
3822 }
3823
3824 static void shmem_free_in_core_inode(struct inode *inode)
3825 {
3826         if (S_ISLNK(inode->i_mode))
3827                 kfree(inode->i_link);
3828         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3829 }
3830
3831 static void shmem_destroy_inode(struct inode *inode)
3832 {
3833         if (S_ISREG(inode->i_mode))
3834                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3835 }
3836
3837 static void shmem_init_inode(void *foo)
3838 {
3839         struct shmem_inode_info *info = foo;
3840         inode_init_once(&info->vfs_inode);
3841 }
3842
3843 static void shmem_init_inodecache(void)
3844 {
3845         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3846                                 sizeof(struct shmem_inode_info),
3847                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3848 }
3849
3850 static void shmem_destroy_inodecache(void)
3851 {
3852         kmem_cache_destroy(shmem_inode_cachep);
3853 }
3854
3855 static const struct address_space_operations shmem_aops = {
3856         .writepage      = shmem_writepage,
3857         .set_page_dirty = __set_page_dirty_no_writeback,
3858 #ifdef CONFIG_TMPFS
3859         .write_begin    = shmem_write_begin,
3860         .write_end      = shmem_write_end,
3861 #endif
3862 #ifdef CONFIG_MIGRATION
3863         .migratepage    = migrate_page,
3864 #endif
3865         .error_remove_page = generic_error_remove_page,
3866 };
3867
3868 static const struct file_operations shmem_file_operations = {
3869         .mmap           = shmem_mmap,
3870         .get_unmapped_area = shmem_get_unmapped_area,
3871 #ifdef CONFIG_TMPFS
3872         .llseek         = shmem_file_llseek,
3873         .read_iter      = shmem_file_read_iter,
3874         .write_iter     = generic_file_write_iter,
3875         .fsync          = noop_fsync,
3876         .splice_read    = generic_file_splice_read,
3877         .splice_write   = iter_file_splice_write,
3878         .fallocate      = shmem_fallocate,
3879 #endif
3880 };
3881
3882 static const struct inode_operations shmem_inode_operations = {
3883         .getattr        = shmem_getattr,
3884         .setattr        = shmem_setattr,
3885 #ifdef CONFIG_TMPFS_XATTR
3886         .listxattr      = shmem_listxattr,
3887         .set_acl        = simple_set_acl,
3888 #endif
3889 };
3890
3891 static const struct inode_operations shmem_dir_inode_operations = {
3892 #ifdef CONFIG_TMPFS
3893         .create         = shmem_create,
3894         .lookup         = simple_lookup,
3895         .link           = shmem_link,
3896         .unlink         = shmem_unlink,
3897         .symlink        = shmem_symlink,
3898         .mkdir          = shmem_mkdir,
3899         .rmdir          = shmem_rmdir,
3900         .mknod          = shmem_mknod,
3901         .rename         = shmem_rename2,
3902         .tmpfile        = shmem_tmpfile,
3903 #endif
3904 #ifdef CONFIG_TMPFS_XATTR
3905         .listxattr      = shmem_listxattr,
3906 #endif
3907 #ifdef CONFIG_TMPFS_POSIX_ACL
3908         .setattr        = shmem_setattr,
3909         .set_acl        = simple_set_acl,
3910 #endif
3911 };
3912
3913 static const struct inode_operations shmem_special_inode_operations = {
3914 #ifdef CONFIG_TMPFS_XATTR
3915         .listxattr      = shmem_listxattr,
3916 #endif
3917 #ifdef CONFIG_TMPFS_POSIX_ACL
3918         .setattr        = shmem_setattr,
3919         .set_acl        = simple_set_acl,
3920 #endif
3921 };
3922
3923 static const struct super_operations shmem_ops = {
3924         .alloc_inode    = shmem_alloc_inode,
3925         .free_inode     = shmem_free_in_core_inode,
3926         .destroy_inode  = shmem_destroy_inode,
3927 #ifdef CONFIG_TMPFS
3928         .statfs         = shmem_statfs,
3929         .show_options   = shmem_show_options,
3930 #endif
3931         .evict_inode    = shmem_evict_inode,
3932         .drop_inode     = generic_delete_inode,
3933         .put_super      = shmem_put_super,
3934 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3935         .nr_cached_objects      = shmem_unused_huge_count,
3936         .free_cached_objects    = shmem_unused_huge_scan,
3937 #endif
3938 };
3939
3940 static const struct vm_operations_struct shmem_vm_ops = {
3941         .fault          = shmem_fault,
3942         .map_pages      = filemap_map_pages,
3943 #ifdef CONFIG_NUMA
3944         .set_policy     = shmem_set_policy,
3945         .get_policy     = shmem_get_policy,
3946 #endif
3947 };
3948
3949 int shmem_init_fs_context(struct fs_context *fc)
3950 {
3951         struct shmem_options *ctx;
3952
3953         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3954         if (!ctx)
3955                 return -ENOMEM;
3956
3957         ctx->mode = 0777 | S_ISVTX;
3958         ctx->uid = current_fsuid();
3959         ctx->gid = current_fsgid();
3960
3961         fc->fs_private = ctx;
3962         fc->ops = &shmem_fs_context_ops;
3963         return 0;
3964 }
3965
3966 static struct file_system_type shmem_fs_type = {
3967         .owner          = THIS_MODULE,
3968         .name           = "tmpfs",
3969         .init_fs_context = shmem_init_fs_context,
3970 #ifdef CONFIG_TMPFS
3971         .parameters     = shmem_fs_parameters,
3972 #endif
3973         .kill_sb        = kill_litter_super,
3974         .fs_flags       = FS_USERNS_MOUNT,
3975 };
3976
3977 int __init shmem_init(void)
3978 {
3979         int error;
3980
3981         shmem_init_inodecache();
3982
3983         error = register_filesystem(&shmem_fs_type);
3984         if (error) {
3985                 pr_err("Could not register tmpfs\n");
3986                 goto out2;
3987         }
3988
3989         shm_mnt = kern_mount(&shmem_fs_type);
3990         if (IS_ERR(shm_mnt)) {
3991                 error = PTR_ERR(shm_mnt);
3992                 pr_err("Could not kern_mount tmpfs\n");
3993                 goto out1;
3994         }
3995
3996 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3997         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3998                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3999         else
4000                 shmem_huge = 0; /* just in case it was patched */
4001 #endif
4002         return 0;
4003
4004 out1:
4005         unregister_filesystem(&shmem_fs_type);
4006 out2:
4007         shmem_destroy_inodecache();
4008         shm_mnt = ERR_PTR(error);
4009         return error;
4010 }
4011
4012 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4013 static ssize_t shmem_enabled_show(struct kobject *kobj,
4014                 struct kobj_attribute *attr, char *buf)
4015 {
4016         static const int values[] = {
4017                 SHMEM_HUGE_ALWAYS,
4018                 SHMEM_HUGE_WITHIN_SIZE,
4019                 SHMEM_HUGE_ADVISE,
4020                 SHMEM_HUGE_NEVER,
4021                 SHMEM_HUGE_DENY,
4022                 SHMEM_HUGE_FORCE,
4023         };
4024         int i, count;
4025
4026         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4027                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4028
4029                 count += sprintf(buf + count, fmt,
4030                                 shmem_format_huge(values[i]));
4031         }
4032         buf[count - 1] = '\n';
4033         return count;
4034 }
4035
4036 static ssize_t shmem_enabled_store(struct kobject *kobj,
4037                 struct kobj_attribute *attr, const char *buf, size_t count)
4038 {
4039         char tmp[16];
4040         int huge;
4041
4042         if (count + 1 > sizeof(tmp))
4043                 return -EINVAL;
4044         memcpy(tmp, buf, count);
4045         tmp[count] = '\0';
4046         if (count && tmp[count - 1] == '\n')
4047                 tmp[count - 1] = '\0';
4048
4049         huge = shmem_parse_huge(tmp);
4050         if (huge == -EINVAL)
4051                 return -EINVAL;
4052         if (!has_transparent_hugepage() &&
4053                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4054                 return -EINVAL;
4055
4056         shmem_huge = huge;
4057         if (shmem_huge > SHMEM_HUGE_DENY)
4058                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4059         return count;
4060 }
4061
4062 struct kobj_attribute shmem_enabled_attr =
4063         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4064 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4065
4066 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4067 bool shmem_huge_enabled(struct vm_area_struct *vma)
4068 {
4069         struct inode *inode = file_inode(vma->vm_file);
4070         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4071         loff_t i_size;
4072         pgoff_t off;
4073
4074         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4075             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4076                 return false;
4077         if (shmem_huge == SHMEM_HUGE_FORCE)
4078                 return true;
4079         if (shmem_huge == SHMEM_HUGE_DENY)
4080                 return false;
4081         switch (sbinfo->huge) {
4082                 case SHMEM_HUGE_NEVER:
4083                         return false;
4084                 case SHMEM_HUGE_ALWAYS:
4085                         return true;
4086                 case SHMEM_HUGE_WITHIN_SIZE:
4087                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4088                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
4089                         if (i_size >= HPAGE_PMD_SIZE &&
4090                                         i_size >> PAGE_SHIFT >= off)
4091                                 return true;
4092                         fallthrough;
4093                 case SHMEM_HUGE_ADVISE:
4094                         /* TODO: implement fadvise() hints */
4095                         return (vma->vm_flags & VM_HUGEPAGE);
4096                 default:
4097                         VM_BUG_ON(1);
4098                         return false;
4099         }
4100 }
4101 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4102
4103 #else /* !CONFIG_SHMEM */
4104
4105 /*
4106  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4107  *
4108  * This is intended for small system where the benefits of the full
4109  * shmem code (swap-backed and resource-limited) are outweighed by
4110  * their complexity. On systems without swap this code should be
4111  * effectively equivalent, but much lighter weight.
4112  */
4113
4114 static struct file_system_type shmem_fs_type = {
4115         .name           = "tmpfs",
4116         .init_fs_context = ramfs_init_fs_context,
4117         .parameters     = ramfs_fs_parameters,
4118         .kill_sb        = kill_litter_super,
4119         .fs_flags       = FS_USERNS_MOUNT,
4120 };
4121
4122 int __init shmem_init(void)
4123 {
4124         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4125
4126         shm_mnt = kern_mount(&shmem_fs_type);
4127         BUG_ON(IS_ERR(shm_mnt));
4128
4129         return 0;
4130 }
4131
4132 int shmem_unuse(unsigned int type, bool frontswap,
4133                 unsigned long *fs_pages_to_unuse)
4134 {
4135         return 0;
4136 }
4137
4138 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4139 {
4140         return 0;
4141 }
4142
4143 void shmem_unlock_mapping(struct address_space *mapping)
4144 {
4145 }
4146
4147 #ifdef CONFIG_MMU
4148 unsigned long shmem_get_unmapped_area(struct file *file,
4149                                       unsigned long addr, unsigned long len,
4150                                       unsigned long pgoff, unsigned long flags)
4151 {
4152         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4153 }
4154 #endif
4155
4156 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4157 {
4158         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4159 }
4160 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4161
4162 #define shmem_vm_ops                            generic_file_vm_ops
4163 #define shmem_file_operations                   ramfs_file_operations
4164 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4165 #define shmem_acct_size(flags, size)            0
4166 #define shmem_unacct_size(flags, size)          do {} while (0)
4167
4168 #endif /* CONFIG_SHMEM */
4169
4170 /* common code */
4171
4172 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4173                                        unsigned long flags, unsigned int i_flags)
4174 {
4175         struct inode *inode;
4176         struct file *res;
4177
4178         if (IS_ERR(mnt))
4179                 return ERR_CAST(mnt);
4180
4181         if (size < 0 || size > MAX_LFS_FILESIZE)
4182                 return ERR_PTR(-EINVAL);
4183
4184         if (shmem_acct_size(flags, size))
4185                 return ERR_PTR(-ENOMEM);
4186
4187         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4188                                 flags);
4189         if (unlikely(!inode)) {
4190                 shmem_unacct_size(flags, size);
4191                 return ERR_PTR(-ENOSPC);
4192         }
4193         inode->i_flags |= i_flags;
4194         inode->i_size = size;
4195         clear_nlink(inode);     /* It is unlinked */
4196         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4197         if (!IS_ERR(res))
4198                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4199                                 &shmem_file_operations);
4200         if (IS_ERR(res))
4201                 iput(inode);
4202         return res;
4203 }
4204
4205 /**
4206  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4207  *      kernel internal.  There will be NO LSM permission checks against the
4208  *      underlying inode.  So users of this interface must do LSM checks at a
4209  *      higher layer.  The users are the big_key and shm implementations.  LSM
4210  *      checks are provided at the key or shm level rather than the inode.
4211  * @name: name for dentry (to be seen in /proc/<pid>/maps
4212  * @size: size to be set for the file
4213  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4214  */
4215 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4216 {
4217         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4218 }
4219
4220 /**
4221  * shmem_file_setup - get an unlinked file living in tmpfs
4222  * @name: name for dentry (to be seen in /proc/<pid>/maps
4223  * @size: size to be set for the file
4224  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4225  */
4226 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4227 {
4228         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4229 }
4230 EXPORT_SYMBOL_GPL(shmem_file_setup);
4231
4232 /**
4233  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4234  * @mnt: the tmpfs mount where the file will be created
4235  * @name: name for dentry (to be seen in /proc/<pid>/maps
4236  * @size: size to be set for the file
4237  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4238  */
4239 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4240                                        loff_t size, unsigned long flags)
4241 {
4242         return __shmem_file_setup(mnt, name, size, flags, 0);
4243 }
4244 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4245
4246 /**
4247  * shmem_zero_setup - setup a shared anonymous mapping
4248  * @vma: the vma to be mmapped is prepared by do_mmap
4249  */
4250 int shmem_zero_setup(struct vm_area_struct *vma)
4251 {
4252         struct file *file;
4253         loff_t size = vma->vm_end - vma->vm_start;
4254
4255         /*
4256          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4257          * between XFS directory reading and selinux: since this file is only
4258          * accessible to the user through its mapping, use S_PRIVATE flag to
4259          * bypass file security, in the same way as shmem_kernel_file_setup().
4260          */
4261         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4262         if (IS_ERR(file))
4263                 return PTR_ERR(file);
4264
4265         if (vma->vm_file)
4266                 fput(vma->vm_file);
4267         vma->vm_file = file;
4268         vma->vm_ops = &shmem_vm_ops;
4269
4270         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4271                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4272                         (vma->vm_end & HPAGE_PMD_MASK)) {
4273                 khugepaged_enter(vma, vma->vm_flags);
4274         }
4275
4276         return 0;
4277 }
4278
4279 /**
4280  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4281  * @mapping:    the page's address_space
4282  * @index:      the page index
4283  * @gfp:        the page allocator flags to use if allocating
4284  *
4285  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4286  * with any new page allocations done using the specified allocation flags.
4287  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4288  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4289  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4290  *
4291  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4292  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4293  */
4294 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4295                                          pgoff_t index, gfp_t gfp)
4296 {
4297 #ifdef CONFIG_SHMEM
4298         struct inode *inode = mapping->host;
4299         struct page *page;
4300         int error;
4301
4302         BUG_ON(mapping->a_ops != &shmem_aops);
4303         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4304                                   gfp, NULL, NULL, NULL);
4305         if (error)
4306                 page = ERR_PTR(error);
4307         else
4308                 unlock_page(page);
4309         return page;
4310 #else
4311         /*
4312          * The tiny !SHMEM case uses ramfs without swap
4313          */
4314         return read_cache_page_gfp(mapping, index, gfp);
4315 #endif
4316 }
4317 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);