sh: add loglvl to show_trace()
[linux-2.6-microblaze.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85 #include <asm/pgtable.h>
86
87 #include "internal.h"
88
89 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
90 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
91
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
94
95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96 #define SHORT_SYMLINK_LEN 128
97
98 /*
99  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100  * inode->i_private (with i_mutex making sure that it has only one user at
101  * a time): we would prefer not to enlarge the shmem inode just for that.
102  */
103 struct shmem_falloc {
104         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
105         pgoff_t start;          /* start of range currently being fallocated */
106         pgoff_t next;           /* the next page offset to be fallocated */
107         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
108         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
109 };
110
111 struct shmem_options {
112         unsigned long long blocks;
113         unsigned long long inodes;
114         struct mempolicy *mpol;
115         kuid_t uid;
116         kgid_t gid;
117         umode_t mode;
118         int huge;
119         int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 };
124
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128         return totalram_pages() / 2;
129 }
130
131 static unsigned long shmem_default_max_inodes(void)
132 {
133         unsigned long nr_pages = totalram_pages();
134
135         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138
139 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141                                 struct shmem_inode_info *info, pgoff_t index);
142 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143                              struct page **pagep, enum sgp_type sgp,
144                              gfp_t gfp, struct vm_area_struct *vma,
145                              vm_fault_t *fault_type);
146 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
147                 struct page **pagep, enum sgp_type sgp,
148                 gfp_t gfp, struct vm_area_struct *vma,
149                 struct vm_fault *vmf, vm_fault_t *fault_type);
150
151 int shmem_getpage(struct inode *inode, pgoff_t index,
152                 struct page **pagep, enum sgp_type sgp)
153 {
154         return shmem_getpage_gfp(inode, index, pagep, sgp,
155                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
156 }
157
158 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
159 {
160         return sb->s_fs_info;
161 }
162
163 /*
164  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165  * for shared memory and for shared anonymous (/dev/zero) mappings
166  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167  * consistent with the pre-accounting of private mappings ...
168  */
169 static inline int shmem_acct_size(unsigned long flags, loff_t size)
170 {
171         return (flags & VM_NORESERVE) ?
172                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
173 }
174
175 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
176 {
177         if (!(flags & VM_NORESERVE))
178                 vm_unacct_memory(VM_ACCT(size));
179 }
180
181 static inline int shmem_reacct_size(unsigned long flags,
182                 loff_t oldsize, loff_t newsize)
183 {
184         if (!(flags & VM_NORESERVE)) {
185                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186                         return security_vm_enough_memory_mm(current->mm,
187                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
188                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
190         }
191         return 0;
192 }
193
194 /*
195  * ... whereas tmpfs objects are accounted incrementally as
196  * pages are allocated, in order to allow large sparse files.
197  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
199  */
200 static inline int shmem_acct_block(unsigned long flags, long pages)
201 {
202         if (!(flags & VM_NORESERVE))
203                 return 0;
204
205         return security_vm_enough_memory_mm(current->mm,
206                         pages * VM_ACCT(PAGE_SIZE));
207 }
208
209 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210 {
211         if (flags & VM_NORESERVE)
212                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
213 }
214
215 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
216 {
217         struct shmem_inode_info *info = SHMEM_I(inode);
218         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220         if (shmem_acct_block(info->flags, pages))
221                 return false;
222
223         if (sbinfo->max_blocks) {
224                 if (percpu_counter_compare(&sbinfo->used_blocks,
225                                            sbinfo->max_blocks - pages) > 0)
226                         goto unacct;
227                 percpu_counter_add(&sbinfo->used_blocks, pages);
228         }
229
230         return true;
231
232 unacct:
233         shmem_unacct_blocks(info->flags, pages);
234         return false;
235 }
236
237 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
238 {
239         struct shmem_inode_info *info = SHMEM_I(inode);
240         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241
242         if (sbinfo->max_blocks)
243                 percpu_counter_sub(&sbinfo->used_blocks, pages);
244         shmem_unacct_blocks(info->flags, pages);
245 }
246
247 static const struct super_operations shmem_ops;
248 static const struct address_space_operations shmem_aops;
249 static const struct file_operations shmem_file_operations;
250 static const struct inode_operations shmem_inode_operations;
251 static const struct inode_operations shmem_dir_inode_operations;
252 static const struct inode_operations shmem_special_inode_operations;
253 static const struct vm_operations_struct shmem_vm_ops;
254 static struct file_system_type shmem_fs_type;
255
256 bool vma_is_shmem(struct vm_area_struct *vma)
257 {
258         return vma->vm_ops == &shmem_vm_ops;
259 }
260
261 static LIST_HEAD(shmem_swaplist);
262 static DEFINE_MUTEX(shmem_swaplist_mutex);
263
264 static int shmem_reserve_inode(struct super_block *sb)
265 {
266         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267         if (sbinfo->max_inodes) {
268                 spin_lock(&sbinfo->stat_lock);
269                 if (!sbinfo->free_inodes) {
270                         spin_unlock(&sbinfo->stat_lock);
271                         return -ENOSPC;
272                 }
273                 sbinfo->free_inodes--;
274                 spin_unlock(&sbinfo->stat_lock);
275         }
276         return 0;
277 }
278
279 static void shmem_free_inode(struct super_block *sb)
280 {
281         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282         if (sbinfo->max_inodes) {
283                 spin_lock(&sbinfo->stat_lock);
284                 sbinfo->free_inodes++;
285                 spin_unlock(&sbinfo->stat_lock);
286         }
287 }
288
289 /**
290  * shmem_recalc_inode - recalculate the block usage of an inode
291  * @inode: inode to recalc
292  *
293  * We have to calculate the free blocks since the mm can drop
294  * undirtied hole pages behind our back.
295  *
296  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
297  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
298  *
299  * It has to be called with the spinlock held.
300  */
301 static void shmem_recalc_inode(struct inode *inode)
302 {
303         struct shmem_inode_info *info = SHMEM_I(inode);
304         long freed;
305
306         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
307         if (freed > 0) {
308                 info->alloced -= freed;
309                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
310                 shmem_inode_unacct_blocks(inode, freed);
311         }
312 }
313
314 bool shmem_charge(struct inode *inode, long pages)
315 {
316         struct shmem_inode_info *info = SHMEM_I(inode);
317         unsigned long flags;
318
319         if (!shmem_inode_acct_block(inode, pages))
320                 return false;
321
322         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323         inode->i_mapping->nrpages += pages;
324
325         spin_lock_irqsave(&info->lock, flags);
326         info->alloced += pages;
327         inode->i_blocks += pages * BLOCKS_PER_PAGE;
328         shmem_recalc_inode(inode);
329         spin_unlock_irqrestore(&info->lock, flags);
330
331         return true;
332 }
333
334 void shmem_uncharge(struct inode *inode, long pages)
335 {
336         struct shmem_inode_info *info = SHMEM_I(inode);
337         unsigned long flags;
338
339         /* nrpages adjustment done by __delete_from_page_cache() or caller */
340
341         spin_lock_irqsave(&info->lock, flags);
342         info->alloced -= pages;
343         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344         shmem_recalc_inode(inode);
345         spin_unlock_irqrestore(&info->lock, flags);
346
347         shmem_inode_unacct_blocks(inode, pages);
348 }
349
350 /*
351  * Replace item expected in xarray by a new item, while holding xa_lock.
352  */
353 static int shmem_replace_entry(struct address_space *mapping,
354                         pgoff_t index, void *expected, void *replacement)
355 {
356         XA_STATE(xas, &mapping->i_pages, index);
357         void *item;
358
359         VM_BUG_ON(!expected);
360         VM_BUG_ON(!replacement);
361         item = xas_load(&xas);
362         if (item != expected)
363                 return -ENOENT;
364         xas_store(&xas, replacement);
365         return 0;
366 }
367
368 /*
369  * Sometimes, before we decide whether to proceed or to fail, we must check
370  * that an entry was not already brought back from swap by a racing thread.
371  *
372  * Checking page is not enough: by the time a SwapCache page is locked, it
373  * might be reused, and again be SwapCache, using the same swap as before.
374  */
375 static bool shmem_confirm_swap(struct address_space *mapping,
376                                pgoff_t index, swp_entry_t swap)
377 {
378         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
379 }
380
381 /*
382  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
383  *
384  * SHMEM_HUGE_NEVER:
385  *      disables huge pages for the mount;
386  * SHMEM_HUGE_ALWAYS:
387  *      enables huge pages for the mount;
388  * SHMEM_HUGE_WITHIN_SIZE:
389  *      only allocate huge pages if the page will be fully within i_size,
390  *      also respect fadvise()/madvise() hints;
391  * SHMEM_HUGE_ADVISE:
392  *      only allocate huge pages if requested with fadvise()/madvise();
393  */
394
395 #define SHMEM_HUGE_NEVER        0
396 #define SHMEM_HUGE_ALWAYS       1
397 #define SHMEM_HUGE_WITHIN_SIZE  2
398 #define SHMEM_HUGE_ADVISE       3
399
400 /*
401  * Special values.
402  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
403  *
404  * SHMEM_HUGE_DENY:
405  *      disables huge on shm_mnt and all mounts, for emergency use;
406  * SHMEM_HUGE_FORCE:
407  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
408  *
409  */
410 #define SHMEM_HUGE_DENY         (-1)
411 #define SHMEM_HUGE_FORCE        (-2)
412
413 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
414 /* ifdef here to avoid bloating shmem.o when not necessary */
415
416 static int shmem_huge __read_mostly;
417
418 #if defined(CONFIG_SYSFS)
419 static int shmem_parse_huge(const char *str)
420 {
421         if (!strcmp(str, "never"))
422                 return SHMEM_HUGE_NEVER;
423         if (!strcmp(str, "always"))
424                 return SHMEM_HUGE_ALWAYS;
425         if (!strcmp(str, "within_size"))
426                 return SHMEM_HUGE_WITHIN_SIZE;
427         if (!strcmp(str, "advise"))
428                 return SHMEM_HUGE_ADVISE;
429         if (!strcmp(str, "deny"))
430                 return SHMEM_HUGE_DENY;
431         if (!strcmp(str, "force"))
432                 return SHMEM_HUGE_FORCE;
433         return -EINVAL;
434 }
435 #endif
436
437 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
438 static const char *shmem_format_huge(int huge)
439 {
440         switch (huge) {
441         case SHMEM_HUGE_NEVER:
442                 return "never";
443         case SHMEM_HUGE_ALWAYS:
444                 return "always";
445         case SHMEM_HUGE_WITHIN_SIZE:
446                 return "within_size";
447         case SHMEM_HUGE_ADVISE:
448                 return "advise";
449         case SHMEM_HUGE_DENY:
450                 return "deny";
451         case SHMEM_HUGE_FORCE:
452                 return "force";
453         default:
454                 VM_BUG_ON(1);
455                 return "bad_val";
456         }
457 }
458 #endif
459
460 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461                 struct shrink_control *sc, unsigned long nr_to_split)
462 {
463         LIST_HEAD(list), *pos, *next;
464         LIST_HEAD(to_remove);
465         struct inode *inode;
466         struct shmem_inode_info *info;
467         struct page *page;
468         unsigned long batch = sc ? sc->nr_to_scan : 128;
469         int removed = 0, split = 0;
470
471         if (list_empty(&sbinfo->shrinklist))
472                 return SHRINK_STOP;
473
474         spin_lock(&sbinfo->shrinklist_lock);
475         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
477
478                 /* pin the inode */
479                 inode = igrab(&info->vfs_inode);
480
481                 /* inode is about to be evicted */
482                 if (!inode) {
483                         list_del_init(&info->shrinklist);
484                         removed++;
485                         goto next;
486                 }
487
488                 /* Check if there's anything to gain */
489                 if (round_up(inode->i_size, PAGE_SIZE) ==
490                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
491                         list_move(&info->shrinklist, &to_remove);
492                         removed++;
493                         goto next;
494                 }
495
496                 list_move(&info->shrinklist, &list);
497 next:
498                 if (!--batch)
499                         break;
500         }
501         spin_unlock(&sbinfo->shrinklist_lock);
502
503         list_for_each_safe(pos, next, &to_remove) {
504                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
505                 inode = &info->vfs_inode;
506                 list_del_init(&info->shrinklist);
507                 iput(inode);
508         }
509
510         list_for_each_safe(pos, next, &list) {
511                 int ret;
512
513                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
514                 inode = &info->vfs_inode;
515
516                 if (nr_to_split && split >= nr_to_split)
517                         goto leave;
518
519                 page = find_get_page(inode->i_mapping,
520                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
521                 if (!page)
522                         goto drop;
523
524                 /* No huge page at the end of the file: nothing to split */
525                 if (!PageTransHuge(page)) {
526                         put_page(page);
527                         goto drop;
528                 }
529
530                 /*
531                  * Leave the inode on the list if we failed to lock
532                  * the page at this time.
533                  *
534                  * Waiting for the lock may lead to deadlock in the
535                  * reclaim path.
536                  */
537                 if (!trylock_page(page)) {
538                         put_page(page);
539                         goto leave;
540                 }
541
542                 ret = split_huge_page(page);
543                 unlock_page(page);
544                 put_page(page);
545
546                 /* If split failed leave the inode on the list */
547                 if (ret)
548                         goto leave;
549
550                 split++;
551 drop:
552                 list_del_init(&info->shrinklist);
553                 removed++;
554 leave:
555                 iput(inode);
556         }
557
558         spin_lock(&sbinfo->shrinklist_lock);
559         list_splice_tail(&list, &sbinfo->shrinklist);
560         sbinfo->shrinklist_len -= removed;
561         spin_unlock(&sbinfo->shrinklist_lock);
562
563         return split;
564 }
565
566 static long shmem_unused_huge_scan(struct super_block *sb,
567                 struct shrink_control *sc)
568 {
569         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
570
571         if (!READ_ONCE(sbinfo->shrinklist_len))
572                 return SHRINK_STOP;
573
574         return shmem_unused_huge_shrink(sbinfo, sc, 0);
575 }
576
577 static long shmem_unused_huge_count(struct super_block *sb,
578                 struct shrink_control *sc)
579 {
580         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
581         return READ_ONCE(sbinfo->shrinklist_len);
582 }
583 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
584
585 #define shmem_huge SHMEM_HUGE_DENY
586
587 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
588                 struct shrink_control *sc, unsigned long nr_to_split)
589 {
590         return 0;
591 }
592 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
593
594 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
595 {
596         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
597             (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
598             shmem_huge != SHMEM_HUGE_DENY)
599                 return true;
600         return false;
601 }
602
603 /*
604  * Like add_to_page_cache_locked, but error if expected item has gone.
605  */
606 static int shmem_add_to_page_cache(struct page *page,
607                                    struct address_space *mapping,
608                                    pgoff_t index, void *expected, gfp_t gfp,
609                                    struct mm_struct *charge_mm)
610 {
611         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
612         unsigned long i = 0;
613         unsigned long nr = compound_nr(page);
614         int error;
615
616         VM_BUG_ON_PAGE(PageTail(page), page);
617         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
618         VM_BUG_ON_PAGE(!PageLocked(page), page);
619         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
620         VM_BUG_ON(expected && PageTransHuge(page));
621
622         page_ref_add(page, nr);
623         page->mapping = mapping;
624         page->index = index;
625
626         if (!PageSwapCache(page)) {
627                 error = mem_cgroup_charge(page, charge_mm, gfp);
628                 if (error) {
629                         if (PageTransHuge(page)) {
630                                 count_vm_event(THP_FILE_FALLBACK);
631                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
632                         }
633                         goto error;
634                 }
635         }
636         cgroup_throttle_swaprate(page, gfp);
637
638         do {
639                 void *entry;
640                 xas_lock_irq(&xas);
641                 entry = xas_find_conflict(&xas);
642                 if (entry != expected)
643                         xas_set_err(&xas, -EEXIST);
644                 xas_create_range(&xas);
645                 if (xas_error(&xas))
646                         goto unlock;
647 next:
648                 xas_store(&xas, page);
649                 if (++i < nr) {
650                         xas_next(&xas);
651                         goto next;
652                 }
653                 if (PageTransHuge(page)) {
654                         count_vm_event(THP_FILE_ALLOC);
655                         __inc_node_page_state(page, NR_SHMEM_THPS);
656                 }
657                 mapping->nrpages += nr;
658                 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
659                 __mod_lruvec_page_state(page, NR_SHMEM, nr);
660 unlock:
661                 xas_unlock_irq(&xas);
662         } while (xas_nomem(&xas, gfp));
663
664         if (xas_error(&xas)) {
665                 error = xas_error(&xas);
666                 goto error;
667         }
668
669         return 0;
670 error:
671         page->mapping = NULL;
672         page_ref_sub(page, nr);
673         return error;
674 }
675
676 /*
677  * Like delete_from_page_cache, but substitutes swap for page.
678  */
679 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
680 {
681         struct address_space *mapping = page->mapping;
682         int error;
683
684         VM_BUG_ON_PAGE(PageCompound(page), page);
685
686         xa_lock_irq(&mapping->i_pages);
687         error = shmem_replace_entry(mapping, page->index, page, radswap);
688         page->mapping = NULL;
689         mapping->nrpages--;
690         __dec_lruvec_page_state(page, NR_FILE_PAGES);
691         __dec_lruvec_page_state(page, NR_SHMEM);
692         xa_unlock_irq(&mapping->i_pages);
693         put_page(page);
694         BUG_ON(error);
695 }
696
697 /*
698  * Remove swap entry from page cache, free the swap and its page cache.
699  */
700 static int shmem_free_swap(struct address_space *mapping,
701                            pgoff_t index, void *radswap)
702 {
703         void *old;
704
705         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
706         if (old != radswap)
707                 return -ENOENT;
708         free_swap_and_cache(radix_to_swp_entry(radswap));
709         return 0;
710 }
711
712 /*
713  * Determine (in bytes) how many of the shmem object's pages mapped by the
714  * given offsets are swapped out.
715  *
716  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
717  * as long as the inode doesn't go away and racy results are not a problem.
718  */
719 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
720                                                 pgoff_t start, pgoff_t end)
721 {
722         XA_STATE(xas, &mapping->i_pages, start);
723         struct page *page;
724         unsigned long swapped = 0;
725
726         rcu_read_lock();
727         xas_for_each(&xas, page, end - 1) {
728                 if (xas_retry(&xas, page))
729                         continue;
730                 if (xa_is_value(page))
731                         swapped++;
732
733                 if (need_resched()) {
734                         xas_pause(&xas);
735                         cond_resched_rcu();
736                 }
737         }
738
739         rcu_read_unlock();
740
741         return swapped << PAGE_SHIFT;
742 }
743
744 /*
745  * Determine (in bytes) how many of the shmem object's pages mapped by the
746  * given vma is swapped out.
747  *
748  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
749  * as long as the inode doesn't go away and racy results are not a problem.
750  */
751 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
752 {
753         struct inode *inode = file_inode(vma->vm_file);
754         struct shmem_inode_info *info = SHMEM_I(inode);
755         struct address_space *mapping = inode->i_mapping;
756         unsigned long swapped;
757
758         /* Be careful as we don't hold info->lock */
759         swapped = READ_ONCE(info->swapped);
760
761         /*
762          * The easier cases are when the shmem object has nothing in swap, or
763          * the vma maps it whole. Then we can simply use the stats that we
764          * already track.
765          */
766         if (!swapped)
767                 return 0;
768
769         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
770                 return swapped << PAGE_SHIFT;
771
772         /* Here comes the more involved part */
773         return shmem_partial_swap_usage(mapping,
774                         linear_page_index(vma, vma->vm_start),
775                         linear_page_index(vma, vma->vm_end));
776 }
777
778 /*
779  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
780  */
781 void shmem_unlock_mapping(struct address_space *mapping)
782 {
783         struct pagevec pvec;
784         pgoff_t indices[PAGEVEC_SIZE];
785         pgoff_t index = 0;
786
787         pagevec_init(&pvec);
788         /*
789          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
790          */
791         while (!mapping_unevictable(mapping)) {
792                 /*
793                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
794                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
795                  */
796                 pvec.nr = find_get_entries(mapping, index,
797                                            PAGEVEC_SIZE, pvec.pages, indices);
798                 if (!pvec.nr)
799                         break;
800                 index = indices[pvec.nr - 1] + 1;
801                 pagevec_remove_exceptionals(&pvec);
802                 check_move_unevictable_pages(&pvec);
803                 pagevec_release(&pvec);
804                 cond_resched();
805         }
806 }
807
808 /*
809  * Check whether a hole-punch or truncation needs to split a huge page,
810  * returning true if no split was required, or the split has been successful.
811  *
812  * Eviction (or truncation to 0 size) should never need to split a huge page;
813  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
814  * head, and then succeeded to trylock on tail.
815  *
816  * A split can only succeed when there are no additional references on the
817  * huge page: so the split below relies upon find_get_entries() having stopped
818  * when it found a subpage of the huge page, without getting further references.
819  */
820 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
821 {
822         if (!PageTransCompound(page))
823                 return true;
824
825         /* Just proceed to delete a huge page wholly within the range punched */
826         if (PageHead(page) &&
827             page->index >= start && page->index + HPAGE_PMD_NR <= end)
828                 return true;
829
830         /* Try to split huge page, so we can truly punch the hole or truncate */
831         return split_huge_page(page) >= 0;
832 }
833
834 /*
835  * Remove range of pages and swap entries from page cache, and free them.
836  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
837  */
838 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
839                                                                  bool unfalloc)
840 {
841         struct address_space *mapping = inode->i_mapping;
842         struct shmem_inode_info *info = SHMEM_I(inode);
843         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
844         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
845         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
846         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
847         struct pagevec pvec;
848         pgoff_t indices[PAGEVEC_SIZE];
849         long nr_swaps_freed = 0;
850         pgoff_t index;
851         int i;
852
853         if (lend == -1)
854                 end = -1;       /* unsigned, so actually very big */
855
856         pagevec_init(&pvec);
857         index = start;
858         while (index < end) {
859                 pvec.nr = find_get_entries(mapping, index,
860                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
861                         pvec.pages, indices);
862                 if (!pvec.nr)
863                         break;
864                 for (i = 0; i < pagevec_count(&pvec); i++) {
865                         struct page *page = pvec.pages[i];
866
867                         index = indices[i];
868                         if (index >= end)
869                                 break;
870
871                         if (xa_is_value(page)) {
872                                 if (unfalloc)
873                                         continue;
874                                 nr_swaps_freed += !shmem_free_swap(mapping,
875                                                                 index, page);
876                                 continue;
877                         }
878
879                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
880
881                         if (!trylock_page(page))
882                                 continue;
883
884                         if ((!unfalloc || !PageUptodate(page)) &&
885                             page_mapping(page) == mapping) {
886                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
887                                 if (shmem_punch_compound(page, start, end))
888                                         truncate_inode_page(mapping, page);
889                         }
890                         unlock_page(page);
891                 }
892                 pagevec_remove_exceptionals(&pvec);
893                 pagevec_release(&pvec);
894                 cond_resched();
895                 index++;
896         }
897
898         if (partial_start) {
899                 struct page *page = NULL;
900                 shmem_getpage(inode, start - 1, &page, SGP_READ);
901                 if (page) {
902                         unsigned int top = PAGE_SIZE;
903                         if (start > end) {
904                                 top = partial_end;
905                                 partial_end = 0;
906                         }
907                         zero_user_segment(page, partial_start, top);
908                         set_page_dirty(page);
909                         unlock_page(page);
910                         put_page(page);
911                 }
912         }
913         if (partial_end) {
914                 struct page *page = NULL;
915                 shmem_getpage(inode, end, &page, SGP_READ);
916                 if (page) {
917                         zero_user_segment(page, 0, partial_end);
918                         set_page_dirty(page);
919                         unlock_page(page);
920                         put_page(page);
921                 }
922         }
923         if (start >= end)
924                 return;
925
926         index = start;
927         while (index < end) {
928                 cond_resched();
929
930                 pvec.nr = find_get_entries(mapping, index,
931                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
932                                 pvec.pages, indices);
933                 if (!pvec.nr) {
934                         /* If all gone or hole-punch or unfalloc, we're done */
935                         if (index == start || end != -1)
936                                 break;
937                         /* But if truncating, restart to make sure all gone */
938                         index = start;
939                         continue;
940                 }
941                 for (i = 0; i < pagevec_count(&pvec); i++) {
942                         struct page *page = pvec.pages[i];
943
944                         index = indices[i];
945                         if (index >= end)
946                                 break;
947
948                         if (xa_is_value(page)) {
949                                 if (unfalloc)
950                                         continue;
951                                 if (shmem_free_swap(mapping, index, page)) {
952                                         /* Swap was replaced by page: retry */
953                                         index--;
954                                         break;
955                                 }
956                                 nr_swaps_freed++;
957                                 continue;
958                         }
959
960                         lock_page(page);
961
962                         if (!unfalloc || !PageUptodate(page)) {
963                                 if (page_mapping(page) != mapping) {
964                                         /* Page was replaced by swap: retry */
965                                         unlock_page(page);
966                                         index--;
967                                         break;
968                                 }
969                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
970                                 if (shmem_punch_compound(page, start, end))
971                                         truncate_inode_page(mapping, page);
972                                 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
973                                         /* Wipe the page and don't get stuck */
974                                         clear_highpage(page);
975                                         flush_dcache_page(page);
976                                         set_page_dirty(page);
977                                         if (index <
978                                             round_up(start, HPAGE_PMD_NR))
979                                                 start = index + 1;
980                                 }
981                         }
982                         unlock_page(page);
983                 }
984                 pagevec_remove_exceptionals(&pvec);
985                 pagevec_release(&pvec);
986                 index++;
987         }
988
989         spin_lock_irq(&info->lock);
990         info->swapped -= nr_swaps_freed;
991         shmem_recalc_inode(inode);
992         spin_unlock_irq(&info->lock);
993 }
994
995 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
996 {
997         shmem_undo_range(inode, lstart, lend, false);
998         inode->i_ctime = inode->i_mtime = current_time(inode);
999 }
1000 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1001
1002 static int shmem_getattr(const struct path *path, struct kstat *stat,
1003                          u32 request_mask, unsigned int query_flags)
1004 {
1005         struct inode *inode = path->dentry->d_inode;
1006         struct shmem_inode_info *info = SHMEM_I(inode);
1007         struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1008
1009         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1010                 spin_lock_irq(&info->lock);
1011                 shmem_recalc_inode(inode);
1012                 spin_unlock_irq(&info->lock);
1013         }
1014         generic_fillattr(inode, stat);
1015
1016         if (is_huge_enabled(sb_info))
1017                 stat->blksize = HPAGE_PMD_SIZE;
1018
1019         return 0;
1020 }
1021
1022 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1023 {
1024         struct inode *inode = d_inode(dentry);
1025         struct shmem_inode_info *info = SHMEM_I(inode);
1026         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1027         int error;
1028
1029         error = setattr_prepare(dentry, attr);
1030         if (error)
1031                 return error;
1032
1033         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1034                 loff_t oldsize = inode->i_size;
1035                 loff_t newsize = attr->ia_size;
1036
1037                 /* protected by i_mutex */
1038                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1039                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1040                         return -EPERM;
1041
1042                 if (newsize != oldsize) {
1043                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1044                                         oldsize, newsize);
1045                         if (error)
1046                                 return error;
1047                         i_size_write(inode, newsize);
1048                         inode->i_ctime = inode->i_mtime = current_time(inode);
1049                 }
1050                 if (newsize <= oldsize) {
1051                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1052                         if (oldsize > holebegin)
1053                                 unmap_mapping_range(inode->i_mapping,
1054                                                         holebegin, 0, 1);
1055                         if (info->alloced)
1056                                 shmem_truncate_range(inode,
1057                                                         newsize, (loff_t)-1);
1058                         /* unmap again to remove racily COWed private pages */
1059                         if (oldsize > holebegin)
1060                                 unmap_mapping_range(inode->i_mapping,
1061                                                         holebegin, 0, 1);
1062
1063                         /*
1064                          * Part of the huge page can be beyond i_size: subject
1065                          * to shrink under memory pressure.
1066                          */
1067                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1068                                 spin_lock(&sbinfo->shrinklist_lock);
1069                                 /*
1070                                  * _careful to defend against unlocked access to
1071                                  * ->shrink_list in shmem_unused_huge_shrink()
1072                                  */
1073                                 if (list_empty_careful(&info->shrinklist)) {
1074                                         list_add_tail(&info->shrinklist,
1075                                                         &sbinfo->shrinklist);
1076                                         sbinfo->shrinklist_len++;
1077                                 }
1078                                 spin_unlock(&sbinfo->shrinklist_lock);
1079                         }
1080                 }
1081         }
1082
1083         setattr_copy(inode, attr);
1084         if (attr->ia_valid & ATTR_MODE)
1085                 error = posix_acl_chmod(inode, inode->i_mode);
1086         return error;
1087 }
1088
1089 static void shmem_evict_inode(struct inode *inode)
1090 {
1091         struct shmem_inode_info *info = SHMEM_I(inode);
1092         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1093
1094         if (inode->i_mapping->a_ops == &shmem_aops) {
1095                 shmem_unacct_size(info->flags, inode->i_size);
1096                 inode->i_size = 0;
1097                 shmem_truncate_range(inode, 0, (loff_t)-1);
1098                 if (!list_empty(&info->shrinklist)) {
1099                         spin_lock(&sbinfo->shrinklist_lock);
1100                         if (!list_empty(&info->shrinklist)) {
1101                                 list_del_init(&info->shrinklist);
1102                                 sbinfo->shrinklist_len--;
1103                         }
1104                         spin_unlock(&sbinfo->shrinklist_lock);
1105                 }
1106                 while (!list_empty(&info->swaplist)) {
1107                         /* Wait while shmem_unuse() is scanning this inode... */
1108                         wait_var_event(&info->stop_eviction,
1109                                        !atomic_read(&info->stop_eviction));
1110                         mutex_lock(&shmem_swaplist_mutex);
1111                         /* ...but beware of the race if we peeked too early */
1112                         if (!atomic_read(&info->stop_eviction))
1113                                 list_del_init(&info->swaplist);
1114                         mutex_unlock(&shmem_swaplist_mutex);
1115                 }
1116         }
1117
1118         simple_xattrs_free(&info->xattrs);
1119         WARN_ON(inode->i_blocks);
1120         shmem_free_inode(inode->i_sb);
1121         clear_inode(inode);
1122 }
1123
1124 extern struct swap_info_struct *swap_info[];
1125
1126 static int shmem_find_swap_entries(struct address_space *mapping,
1127                                    pgoff_t start, unsigned int nr_entries,
1128                                    struct page **entries, pgoff_t *indices,
1129                                    unsigned int type, bool frontswap)
1130 {
1131         XA_STATE(xas, &mapping->i_pages, start);
1132         struct page *page;
1133         swp_entry_t entry;
1134         unsigned int ret = 0;
1135
1136         if (!nr_entries)
1137                 return 0;
1138
1139         rcu_read_lock();
1140         xas_for_each(&xas, page, ULONG_MAX) {
1141                 if (xas_retry(&xas, page))
1142                         continue;
1143
1144                 if (!xa_is_value(page))
1145                         continue;
1146
1147                 entry = radix_to_swp_entry(page);
1148                 if (swp_type(entry) != type)
1149                         continue;
1150                 if (frontswap &&
1151                     !frontswap_test(swap_info[type], swp_offset(entry)))
1152                         continue;
1153
1154                 indices[ret] = xas.xa_index;
1155                 entries[ret] = page;
1156
1157                 if (need_resched()) {
1158                         xas_pause(&xas);
1159                         cond_resched_rcu();
1160                 }
1161                 if (++ret == nr_entries)
1162                         break;
1163         }
1164         rcu_read_unlock();
1165
1166         return ret;
1167 }
1168
1169 /*
1170  * Move the swapped pages for an inode to page cache. Returns the count
1171  * of pages swapped in, or the error in case of failure.
1172  */
1173 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1174                                     pgoff_t *indices)
1175 {
1176         int i = 0;
1177         int ret = 0;
1178         int error = 0;
1179         struct address_space *mapping = inode->i_mapping;
1180
1181         for (i = 0; i < pvec.nr; i++) {
1182                 struct page *page = pvec.pages[i];
1183
1184                 if (!xa_is_value(page))
1185                         continue;
1186                 error = shmem_swapin_page(inode, indices[i],
1187                                           &page, SGP_CACHE,
1188                                           mapping_gfp_mask(mapping),
1189                                           NULL, NULL);
1190                 if (error == 0) {
1191                         unlock_page(page);
1192                         put_page(page);
1193                         ret++;
1194                 }
1195                 if (error == -ENOMEM)
1196                         break;
1197                 error = 0;
1198         }
1199         return error ? error : ret;
1200 }
1201
1202 /*
1203  * If swap found in inode, free it and move page from swapcache to filecache.
1204  */
1205 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1206                              bool frontswap, unsigned long *fs_pages_to_unuse)
1207 {
1208         struct address_space *mapping = inode->i_mapping;
1209         pgoff_t start = 0;
1210         struct pagevec pvec;
1211         pgoff_t indices[PAGEVEC_SIZE];
1212         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1213         int ret = 0;
1214
1215         pagevec_init(&pvec);
1216         do {
1217                 unsigned int nr_entries = PAGEVEC_SIZE;
1218
1219                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1220                         nr_entries = *fs_pages_to_unuse;
1221
1222                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1223                                                   pvec.pages, indices,
1224                                                   type, frontswap);
1225                 if (pvec.nr == 0) {
1226                         ret = 0;
1227                         break;
1228                 }
1229
1230                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1231                 if (ret < 0)
1232                         break;
1233
1234                 if (frontswap_partial) {
1235                         *fs_pages_to_unuse -= ret;
1236                         if (*fs_pages_to_unuse == 0) {
1237                                 ret = FRONTSWAP_PAGES_UNUSED;
1238                                 break;
1239                         }
1240                 }
1241
1242                 start = indices[pvec.nr - 1];
1243         } while (true);
1244
1245         return ret;
1246 }
1247
1248 /*
1249  * Read all the shared memory data that resides in the swap
1250  * device 'type' back into memory, so the swap device can be
1251  * unused.
1252  */
1253 int shmem_unuse(unsigned int type, bool frontswap,
1254                 unsigned long *fs_pages_to_unuse)
1255 {
1256         struct shmem_inode_info *info, *next;
1257         int error = 0;
1258
1259         if (list_empty(&shmem_swaplist))
1260                 return 0;
1261
1262         mutex_lock(&shmem_swaplist_mutex);
1263         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1264                 if (!info->swapped) {
1265                         list_del_init(&info->swaplist);
1266                         continue;
1267                 }
1268                 /*
1269                  * Drop the swaplist mutex while searching the inode for swap;
1270                  * but before doing so, make sure shmem_evict_inode() will not
1271                  * remove placeholder inode from swaplist, nor let it be freed
1272                  * (igrab() would protect from unlink, but not from unmount).
1273                  */
1274                 atomic_inc(&info->stop_eviction);
1275                 mutex_unlock(&shmem_swaplist_mutex);
1276
1277                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1278                                           fs_pages_to_unuse);
1279                 cond_resched();
1280
1281                 mutex_lock(&shmem_swaplist_mutex);
1282                 next = list_next_entry(info, swaplist);
1283                 if (!info->swapped)
1284                         list_del_init(&info->swaplist);
1285                 if (atomic_dec_and_test(&info->stop_eviction))
1286                         wake_up_var(&info->stop_eviction);
1287                 if (error)
1288                         break;
1289         }
1290         mutex_unlock(&shmem_swaplist_mutex);
1291
1292         return error;
1293 }
1294
1295 /*
1296  * Move the page from the page cache to the swap cache.
1297  */
1298 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1299 {
1300         struct shmem_inode_info *info;
1301         struct address_space *mapping;
1302         struct inode *inode;
1303         swp_entry_t swap;
1304         pgoff_t index;
1305
1306         VM_BUG_ON_PAGE(PageCompound(page), page);
1307         BUG_ON(!PageLocked(page));
1308         mapping = page->mapping;
1309         index = page->index;
1310         inode = mapping->host;
1311         info = SHMEM_I(inode);
1312         if (info->flags & VM_LOCKED)
1313                 goto redirty;
1314         if (!total_swap_pages)
1315                 goto redirty;
1316
1317         /*
1318          * Our capabilities prevent regular writeback or sync from ever calling
1319          * shmem_writepage; but a stacking filesystem might use ->writepage of
1320          * its underlying filesystem, in which case tmpfs should write out to
1321          * swap only in response to memory pressure, and not for the writeback
1322          * threads or sync.
1323          */
1324         if (!wbc->for_reclaim) {
1325                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1326                 goto redirty;
1327         }
1328
1329         /*
1330          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1331          * value into swapfile.c, the only way we can correctly account for a
1332          * fallocated page arriving here is now to initialize it and write it.
1333          *
1334          * That's okay for a page already fallocated earlier, but if we have
1335          * not yet completed the fallocation, then (a) we want to keep track
1336          * of this page in case we have to undo it, and (b) it may not be a
1337          * good idea to continue anyway, once we're pushing into swap.  So
1338          * reactivate the page, and let shmem_fallocate() quit when too many.
1339          */
1340         if (!PageUptodate(page)) {
1341                 if (inode->i_private) {
1342                         struct shmem_falloc *shmem_falloc;
1343                         spin_lock(&inode->i_lock);
1344                         shmem_falloc = inode->i_private;
1345                         if (shmem_falloc &&
1346                             !shmem_falloc->waitq &&
1347                             index >= shmem_falloc->start &&
1348                             index < shmem_falloc->next)
1349                                 shmem_falloc->nr_unswapped++;
1350                         else
1351                                 shmem_falloc = NULL;
1352                         spin_unlock(&inode->i_lock);
1353                         if (shmem_falloc)
1354                                 goto redirty;
1355                 }
1356                 clear_highpage(page);
1357                 flush_dcache_page(page);
1358                 SetPageUptodate(page);
1359         }
1360
1361         swap = get_swap_page(page);
1362         if (!swap.val)
1363                 goto redirty;
1364
1365         /*
1366          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1367          * if it's not already there.  Do it now before the page is
1368          * moved to swap cache, when its pagelock no longer protects
1369          * the inode from eviction.  But don't unlock the mutex until
1370          * we've incremented swapped, because shmem_unuse_inode() will
1371          * prune a !swapped inode from the swaplist under this mutex.
1372          */
1373         mutex_lock(&shmem_swaplist_mutex);
1374         if (list_empty(&info->swaplist))
1375                 list_add(&info->swaplist, &shmem_swaplist);
1376
1377         if (add_to_swap_cache(page, swap,
1378                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) {
1379                 spin_lock_irq(&info->lock);
1380                 shmem_recalc_inode(inode);
1381                 info->swapped++;
1382                 spin_unlock_irq(&info->lock);
1383
1384                 swap_shmem_alloc(swap);
1385                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1386
1387                 mutex_unlock(&shmem_swaplist_mutex);
1388                 BUG_ON(page_mapped(page));
1389                 swap_writepage(page, wbc);
1390                 return 0;
1391         }
1392
1393         mutex_unlock(&shmem_swaplist_mutex);
1394         put_swap_page(page, swap);
1395 redirty:
1396         set_page_dirty(page);
1397         if (wbc->for_reclaim)
1398                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1399         unlock_page(page);
1400         return 0;
1401 }
1402
1403 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1404 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1405 {
1406         char buffer[64];
1407
1408         if (!mpol || mpol->mode == MPOL_DEFAULT)
1409                 return;         /* show nothing */
1410
1411         mpol_to_str(buffer, sizeof(buffer), mpol);
1412
1413         seq_printf(seq, ",mpol=%s", buffer);
1414 }
1415
1416 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1417 {
1418         struct mempolicy *mpol = NULL;
1419         if (sbinfo->mpol) {
1420                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1421                 mpol = sbinfo->mpol;
1422                 mpol_get(mpol);
1423                 spin_unlock(&sbinfo->stat_lock);
1424         }
1425         return mpol;
1426 }
1427 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1428 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1429 {
1430 }
1431 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1432 {
1433         return NULL;
1434 }
1435 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1436 #ifndef CONFIG_NUMA
1437 #define vm_policy vm_private_data
1438 #endif
1439
1440 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1441                 struct shmem_inode_info *info, pgoff_t index)
1442 {
1443         /* Create a pseudo vma that just contains the policy */
1444         vma_init(vma, NULL);
1445         /* Bias interleave by inode number to distribute better across nodes */
1446         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1447         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1448 }
1449
1450 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1451 {
1452         /* Drop reference taken by mpol_shared_policy_lookup() */
1453         mpol_cond_put(vma->vm_policy);
1454 }
1455
1456 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1457                         struct shmem_inode_info *info, pgoff_t index)
1458 {
1459         struct vm_area_struct pvma;
1460         struct page *page;
1461         struct vm_fault vmf;
1462
1463         shmem_pseudo_vma_init(&pvma, info, index);
1464         vmf.vma = &pvma;
1465         vmf.address = 0;
1466         page = swap_cluster_readahead(swap, gfp, &vmf);
1467         shmem_pseudo_vma_destroy(&pvma);
1468
1469         return page;
1470 }
1471
1472 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1473                 struct shmem_inode_info *info, pgoff_t index)
1474 {
1475         struct vm_area_struct pvma;
1476         struct address_space *mapping = info->vfs_inode.i_mapping;
1477         pgoff_t hindex;
1478         struct page *page;
1479
1480         hindex = round_down(index, HPAGE_PMD_NR);
1481         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1482                                                                 XA_PRESENT))
1483                 return NULL;
1484
1485         shmem_pseudo_vma_init(&pvma, info, hindex);
1486         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1487                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1488         shmem_pseudo_vma_destroy(&pvma);
1489         if (page)
1490                 prep_transhuge_page(page);
1491         else
1492                 count_vm_event(THP_FILE_FALLBACK);
1493         return page;
1494 }
1495
1496 static struct page *shmem_alloc_page(gfp_t gfp,
1497                         struct shmem_inode_info *info, pgoff_t index)
1498 {
1499         struct vm_area_struct pvma;
1500         struct page *page;
1501
1502         shmem_pseudo_vma_init(&pvma, info, index);
1503         page = alloc_page_vma(gfp, &pvma, 0);
1504         shmem_pseudo_vma_destroy(&pvma);
1505
1506         return page;
1507 }
1508
1509 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1510                 struct inode *inode,
1511                 pgoff_t index, bool huge)
1512 {
1513         struct shmem_inode_info *info = SHMEM_I(inode);
1514         struct page *page;
1515         int nr;
1516         int err = -ENOSPC;
1517
1518         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1519                 huge = false;
1520         nr = huge ? HPAGE_PMD_NR : 1;
1521
1522         if (!shmem_inode_acct_block(inode, nr))
1523                 goto failed;
1524
1525         if (huge)
1526                 page = shmem_alloc_hugepage(gfp, info, index);
1527         else
1528                 page = shmem_alloc_page(gfp, info, index);
1529         if (page) {
1530                 __SetPageLocked(page);
1531                 __SetPageSwapBacked(page);
1532                 return page;
1533         }
1534
1535         err = -ENOMEM;
1536         shmem_inode_unacct_blocks(inode, nr);
1537 failed:
1538         return ERR_PTR(err);
1539 }
1540
1541 /*
1542  * When a page is moved from swapcache to shmem filecache (either by the
1543  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1544  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1545  * ignorance of the mapping it belongs to.  If that mapping has special
1546  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1547  * we may need to copy to a suitable page before moving to filecache.
1548  *
1549  * In a future release, this may well be extended to respect cpuset and
1550  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1551  * but for now it is a simple matter of zone.
1552  */
1553 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1554 {
1555         return page_zonenum(page) > gfp_zone(gfp);
1556 }
1557
1558 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1559                                 struct shmem_inode_info *info, pgoff_t index)
1560 {
1561         struct page *oldpage, *newpage;
1562         struct address_space *swap_mapping;
1563         swp_entry_t entry;
1564         pgoff_t swap_index;
1565         int error;
1566
1567         oldpage = *pagep;
1568         entry.val = page_private(oldpage);
1569         swap_index = swp_offset(entry);
1570         swap_mapping = page_mapping(oldpage);
1571
1572         /*
1573          * We have arrived here because our zones are constrained, so don't
1574          * limit chance of success by further cpuset and node constraints.
1575          */
1576         gfp &= ~GFP_CONSTRAINT_MASK;
1577         newpage = shmem_alloc_page(gfp, info, index);
1578         if (!newpage)
1579                 return -ENOMEM;
1580
1581         get_page(newpage);
1582         copy_highpage(newpage, oldpage);
1583         flush_dcache_page(newpage);
1584
1585         __SetPageLocked(newpage);
1586         __SetPageSwapBacked(newpage);
1587         SetPageUptodate(newpage);
1588         set_page_private(newpage, entry.val);
1589         SetPageSwapCache(newpage);
1590
1591         /*
1592          * Our caller will very soon move newpage out of swapcache, but it's
1593          * a nice clean interface for us to replace oldpage by newpage there.
1594          */
1595         xa_lock_irq(&swap_mapping->i_pages);
1596         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1597         if (!error) {
1598                 mem_cgroup_migrate(oldpage, newpage);
1599                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1600                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1601         }
1602         xa_unlock_irq(&swap_mapping->i_pages);
1603
1604         if (unlikely(error)) {
1605                 /*
1606                  * Is this possible?  I think not, now that our callers check
1607                  * both PageSwapCache and page_private after getting page lock;
1608                  * but be defensive.  Reverse old to newpage for clear and free.
1609                  */
1610                 oldpage = newpage;
1611         } else {
1612                 lru_cache_add(newpage);
1613                 *pagep = newpage;
1614         }
1615
1616         ClearPageSwapCache(oldpage);
1617         set_page_private(oldpage, 0);
1618
1619         unlock_page(oldpage);
1620         put_page(oldpage);
1621         put_page(oldpage);
1622         return error;
1623 }
1624
1625 /*
1626  * Swap in the page pointed to by *pagep.
1627  * Caller has to make sure that *pagep contains a valid swapped page.
1628  * Returns 0 and the page in pagep if success. On failure, returns the
1629  * the error code and NULL in *pagep.
1630  */
1631 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1632                              struct page **pagep, enum sgp_type sgp,
1633                              gfp_t gfp, struct vm_area_struct *vma,
1634                              vm_fault_t *fault_type)
1635 {
1636         struct address_space *mapping = inode->i_mapping;
1637         struct shmem_inode_info *info = SHMEM_I(inode);
1638         struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1639         struct page *page;
1640         swp_entry_t swap;
1641         int error;
1642
1643         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1644         swap = radix_to_swp_entry(*pagep);
1645         *pagep = NULL;
1646
1647         /* Look it up and read it in.. */
1648         page = lookup_swap_cache(swap, NULL, 0);
1649         if (!page) {
1650                 /* Or update major stats only when swapin succeeds?? */
1651                 if (fault_type) {
1652                         *fault_type |= VM_FAULT_MAJOR;
1653                         count_vm_event(PGMAJFAULT);
1654                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1655                 }
1656                 /* Here we actually start the io */
1657                 page = shmem_swapin(swap, gfp, info, index);
1658                 if (!page) {
1659                         error = -ENOMEM;
1660                         goto failed;
1661                 }
1662         }
1663
1664         /* We have to do this with page locked to prevent races */
1665         lock_page(page);
1666         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1667             !shmem_confirm_swap(mapping, index, swap)) {
1668                 error = -EEXIST;
1669                 goto unlock;
1670         }
1671         if (!PageUptodate(page)) {
1672                 error = -EIO;
1673                 goto failed;
1674         }
1675         wait_on_page_writeback(page);
1676
1677         if (shmem_should_replace_page(page, gfp)) {
1678                 error = shmem_replace_page(&page, gfp, info, index);
1679                 if (error)
1680                         goto failed;
1681         }
1682
1683         error = shmem_add_to_page_cache(page, mapping, index,
1684                                         swp_to_radix_entry(swap), gfp,
1685                                         charge_mm);
1686         if (error)
1687                 goto failed;
1688
1689         spin_lock_irq(&info->lock);
1690         info->swapped--;
1691         shmem_recalc_inode(inode);
1692         spin_unlock_irq(&info->lock);
1693
1694         if (sgp == SGP_WRITE)
1695                 mark_page_accessed(page);
1696
1697         delete_from_swap_cache(page);
1698         set_page_dirty(page);
1699         swap_free(swap);
1700
1701         *pagep = page;
1702         return 0;
1703 failed:
1704         if (!shmem_confirm_swap(mapping, index, swap))
1705                 error = -EEXIST;
1706 unlock:
1707         if (page) {
1708                 unlock_page(page);
1709                 put_page(page);
1710         }
1711
1712         return error;
1713 }
1714
1715 /*
1716  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1717  *
1718  * If we allocate a new one we do not mark it dirty. That's up to the
1719  * vm. If we swap it in we mark it dirty since we also free the swap
1720  * entry since a page cannot live in both the swap and page cache.
1721  *
1722  * vmf and fault_type are only supplied by shmem_fault:
1723  * otherwise they are NULL.
1724  */
1725 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1726         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1727         struct vm_area_struct *vma, struct vm_fault *vmf,
1728                         vm_fault_t *fault_type)
1729 {
1730         struct address_space *mapping = inode->i_mapping;
1731         struct shmem_inode_info *info = SHMEM_I(inode);
1732         struct shmem_sb_info *sbinfo;
1733         struct mm_struct *charge_mm;
1734         struct page *page;
1735         enum sgp_type sgp_huge = sgp;
1736         pgoff_t hindex = index;
1737         int error;
1738         int once = 0;
1739         int alloced = 0;
1740
1741         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1742                 return -EFBIG;
1743         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1744                 sgp = SGP_CACHE;
1745 repeat:
1746         if (sgp <= SGP_CACHE &&
1747             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1748                 return -EINVAL;
1749         }
1750
1751         sbinfo = SHMEM_SB(inode->i_sb);
1752         charge_mm = vma ? vma->vm_mm : current->mm;
1753
1754         page = find_lock_entry(mapping, index);
1755         if (xa_is_value(page)) {
1756                 error = shmem_swapin_page(inode, index, &page,
1757                                           sgp, gfp, vma, fault_type);
1758                 if (error == -EEXIST)
1759                         goto repeat;
1760
1761                 *pagep = page;
1762                 return error;
1763         }
1764
1765         if (page && sgp == SGP_WRITE)
1766                 mark_page_accessed(page);
1767
1768         /* fallocated page? */
1769         if (page && !PageUptodate(page)) {
1770                 if (sgp != SGP_READ)
1771                         goto clear;
1772                 unlock_page(page);
1773                 put_page(page);
1774                 page = NULL;
1775         }
1776         if (page || sgp == SGP_READ) {
1777                 *pagep = page;
1778                 return 0;
1779         }
1780
1781         /*
1782          * Fast cache lookup did not find it:
1783          * bring it back from swap or allocate.
1784          */
1785
1786         if (vma && userfaultfd_missing(vma)) {
1787                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1788                 return 0;
1789         }
1790
1791         /* shmem_symlink() */
1792         if (mapping->a_ops != &shmem_aops)
1793                 goto alloc_nohuge;
1794         if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1795                 goto alloc_nohuge;
1796         if (shmem_huge == SHMEM_HUGE_FORCE)
1797                 goto alloc_huge;
1798         switch (sbinfo->huge) {
1799         case SHMEM_HUGE_NEVER:
1800                 goto alloc_nohuge;
1801         case SHMEM_HUGE_WITHIN_SIZE: {
1802                 loff_t i_size;
1803                 pgoff_t off;
1804
1805                 off = round_up(index, HPAGE_PMD_NR);
1806                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1807                 if (i_size >= HPAGE_PMD_SIZE &&
1808                     i_size >> PAGE_SHIFT >= off)
1809                         goto alloc_huge;
1810
1811                 fallthrough;
1812         }
1813         case SHMEM_HUGE_ADVISE:
1814                 if (sgp_huge == SGP_HUGE)
1815                         goto alloc_huge;
1816                 /* TODO: implement fadvise() hints */
1817                 goto alloc_nohuge;
1818         }
1819
1820 alloc_huge:
1821         page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1822         if (IS_ERR(page)) {
1823 alloc_nohuge:
1824                 page = shmem_alloc_and_acct_page(gfp, inode,
1825                                                  index, false);
1826         }
1827         if (IS_ERR(page)) {
1828                 int retry = 5;
1829
1830                 error = PTR_ERR(page);
1831                 page = NULL;
1832                 if (error != -ENOSPC)
1833                         goto unlock;
1834                 /*
1835                  * Try to reclaim some space by splitting a huge page
1836                  * beyond i_size on the filesystem.
1837                  */
1838                 while (retry--) {
1839                         int ret;
1840
1841                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1842                         if (ret == SHRINK_STOP)
1843                                 break;
1844                         if (ret)
1845                                 goto alloc_nohuge;
1846                 }
1847                 goto unlock;
1848         }
1849
1850         if (PageTransHuge(page))
1851                 hindex = round_down(index, HPAGE_PMD_NR);
1852         else
1853                 hindex = index;
1854
1855         if (sgp == SGP_WRITE)
1856                 __SetPageReferenced(page);
1857
1858         error = shmem_add_to_page_cache(page, mapping, hindex,
1859                                         NULL, gfp & GFP_RECLAIM_MASK,
1860                                         charge_mm);
1861         if (error)
1862                 goto unacct;
1863         lru_cache_add(page);
1864
1865         spin_lock_irq(&info->lock);
1866         info->alloced += compound_nr(page);
1867         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1868         shmem_recalc_inode(inode);
1869         spin_unlock_irq(&info->lock);
1870         alloced = true;
1871
1872         if (PageTransHuge(page) &&
1873             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1874                         hindex + HPAGE_PMD_NR - 1) {
1875                 /*
1876                  * Part of the huge page is beyond i_size: subject
1877                  * to shrink under memory pressure.
1878                  */
1879                 spin_lock(&sbinfo->shrinklist_lock);
1880                 /*
1881                  * _careful to defend against unlocked access to
1882                  * ->shrink_list in shmem_unused_huge_shrink()
1883                  */
1884                 if (list_empty_careful(&info->shrinklist)) {
1885                         list_add_tail(&info->shrinklist,
1886                                       &sbinfo->shrinklist);
1887                         sbinfo->shrinklist_len++;
1888                 }
1889                 spin_unlock(&sbinfo->shrinklist_lock);
1890         }
1891
1892         /*
1893          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1894          */
1895         if (sgp == SGP_FALLOC)
1896                 sgp = SGP_WRITE;
1897 clear:
1898         /*
1899          * Let SGP_WRITE caller clear ends if write does not fill page;
1900          * but SGP_FALLOC on a page fallocated earlier must initialize
1901          * it now, lest undo on failure cancel our earlier guarantee.
1902          */
1903         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1904                 struct page *head = compound_head(page);
1905                 int i;
1906
1907                 for (i = 0; i < compound_nr(head); i++) {
1908                         clear_highpage(head + i);
1909                         flush_dcache_page(head + i);
1910                 }
1911                 SetPageUptodate(head);
1912         }
1913
1914         /* Perhaps the file has been truncated since we checked */
1915         if (sgp <= SGP_CACHE &&
1916             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1917                 if (alloced) {
1918                         ClearPageDirty(page);
1919                         delete_from_page_cache(page);
1920                         spin_lock_irq(&info->lock);
1921                         shmem_recalc_inode(inode);
1922                         spin_unlock_irq(&info->lock);
1923                 }
1924                 error = -EINVAL;
1925                 goto unlock;
1926         }
1927         *pagep = page + index - hindex;
1928         return 0;
1929
1930         /*
1931          * Error recovery.
1932          */
1933 unacct:
1934         shmem_inode_unacct_blocks(inode, compound_nr(page));
1935
1936         if (PageTransHuge(page)) {
1937                 unlock_page(page);
1938                 put_page(page);
1939                 goto alloc_nohuge;
1940         }
1941 unlock:
1942         if (page) {
1943                 unlock_page(page);
1944                 put_page(page);
1945         }
1946         if (error == -ENOSPC && !once++) {
1947                 spin_lock_irq(&info->lock);
1948                 shmem_recalc_inode(inode);
1949                 spin_unlock_irq(&info->lock);
1950                 goto repeat;
1951         }
1952         if (error == -EEXIST)
1953                 goto repeat;
1954         return error;
1955 }
1956
1957 /*
1958  * This is like autoremove_wake_function, but it removes the wait queue
1959  * entry unconditionally - even if something else had already woken the
1960  * target.
1961  */
1962 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1963 {
1964         int ret = default_wake_function(wait, mode, sync, key);
1965         list_del_init(&wait->entry);
1966         return ret;
1967 }
1968
1969 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1970 {
1971         struct vm_area_struct *vma = vmf->vma;
1972         struct inode *inode = file_inode(vma->vm_file);
1973         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1974         enum sgp_type sgp;
1975         int err;
1976         vm_fault_t ret = VM_FAULT_LOCKED;
1977
1978         /*
1979          * Trinity finds that probing a hole which tmpfs is punching can
1980          * prevent the hole-punch from ever completing: which in turn
1981          * locks writers out with its hold on i_mutex.  So refrain from
1982          * faulting pages into the hole while it's being punched.  Although
1983          * shmem_undo_range() does remove the additions, it may be unable to
1984          * keep up, as each new page needs its own unmap_mapping_range() call,
1985          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1986          *
1987          * It does not matter if we sometimes reach this check just before the
1988          * hole-punch begins, so that one fault then races with the punch:
1989          * we just need to make racing faults a rare case.
1990          *
1991          * The implementation below would be much simpler if we just used a
1992          * standard mutex or completion: but we cannot take i_mutex in fault,
1993          * and bloating every shmem inode for this unlikely case would be sad.
1994          */
1995         if (unlikely(inode->i_private)) {
1996                 struct shmem_falloc *shmem_falloc;
1997
1998                 spin_lock(&inode->i_lock);
1999                 shmem_falloc = inode->i_private;
2000                 if (shmem_falloc &&
2001                     shmem_falloc->waitq &&
2002                     vmf->pgoff >= shmem_falloc->start &&
2003                     vmf->pgoff < shmem_falloc->next) {
2004                         struct file *fpin;
2005                         wait_queue_head_t *shmem_falloc_waitq;
2006                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2007
2008                         ret = VM_FAULT_NOPAGE;
2009                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2010                         if (fpin)
2011                                 ret = VM_FAULT_RETRY;
2012
2013                         shmem_falloc_waitq = shmem_falloc->waitq;
2014                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2015                                         TASK_UNINTERRUPTIBLE);
2016                         spin_unlock(&inode->i_lock);
2017                         schedule();
2018
2019                         /*
2020                          * shmem_falloc_waitq points into the shmem_fallocate()
2021                          * stack of the hole-punching task: shmem_falloc_waitq
2022                          * is usually invalid by the time we reach here, but
2023                          * finish_wait() does not dereference it in that case;
2024                          * though i_lock needed lest racing with wake_up_all().
2025                          */
2026                         spin_lock(&inode->i_lock);
2027                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2028                         spin_unlock(&inode->i_lock);
2029
2030                         if (fpin)
2031                                 fput(fpin);
2032                         return ret;
2033                 }
2034                 spin_unlock(&inode->i_lock);
2035         }
2036
2037         sgp = SGP_CACHE;
2038
2039         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2040             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2041                 sgp = SGP_NOHUGE;
2042         else if (vma->vm_flags & VM_HUGEPAGE)
2043                 sgp = SGP_HUGE;
2044
2045         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2046                                   gfp, vma, vmf, &ret);
2047         if (err)
2048                 return vmf_error(err);
2049         return ret;
2050 }
2051
2052 unsigned long shmem_get_unmapped_area(struct file *file,
2053                                       unsigned long uaddr, unsigned long len,
2054                                       unsigned long pgoff, unsigned long flags)
2055 {
2056         unsigned long (*get_area)(struct file *,
2057                 unsigned long, unsigned long, unsigned long, unsigned long);
2058         unsigned long addr;
2059         unsigned long offset;
2060         unsigned long inflated_len;
2061         unsigned long inflated_addr;
2062         unsigned long inflated_offset;
2063
2064         if (len > TASK_SIZE)
2065                 return -ENOMEM;
2066
2067         get_area = current->mm->get_unmapped_area;
2068         addr = get_area(file, uaddr, len, pgoff, flags);
2069
2070         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2071                 return addr;
2072         if (IS_ERR_VALUE(addr))
2073                 return addr;
2074         if (addr & ~PAGE_MASK)
2075                 return addr;
2076         if (addr > TASK_SIZE - len)
2077                 return addr;
2078
2079         if (shmem_huge == SHMEM_HUGE_DENY)
2080                 return addr;
2081         if (len < HPAGE_PMD_SIZE)
2082                 return addr;
2083         if (flags & MAP_FIXED)
2084                 return addr;
2085         /*
2086          * Our priority is to support MAP_SHARED mapped hugely;
2087          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2088          * But if caller specified an address hint and we allocated area there
2089          * successfully, respect that as before.
2090          */
2091         if (uaddr == addr)
2092                 return addr;
2093
2094         if (shmem_huge != SHMEM_HUGE_FORCE) {
2095                 struct super_block *sb;
2096
2097                 if (file) {
2098                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2099                         sb = file_inode(file)->i_sb;
2100                 } else {
2101                         /*
2102                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2103                          * for "/dev/zero", to create a shared anonymous object.
2104                          */
2105                         if (IS_ERR(shm_mnt))
2106                                 return addr;
2107                         sb = shm_mnt->mnt_sb;
2108                 }
2109                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2110                         return addr;
2111         }
2112
2113         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2114         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2115                 return addr;
2116         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2117                 return addr;
2118
2119         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2120         if (inflated_len > TASK_SIZE)
2121                 return addr;
2122         if (inflated_len < len)
2123                 return addr;
2124
2125         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2126         if (IS_ERR_VALUE(inflated_addr))
2127                 return addr;
2128         if (inflated_addr & ~PAGE_MASK)
2129                 return addr;
2130
2131         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2132         inflated_addr += offset - inflated_offset;
2133         if (inflated_offset > offset)
2134                 inflated_addr += HPAGE_PMD_SIZE;
2135
2136         if (inflated_addr > TASK_SIZE - len)
2137                 return addr;
2138         return inflated_addr;
2139 }
2140
2141 #ifdef CONFIG_NUMA
2142 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2143 {
2144         struct inode *inode = file_inode(vma->vm_file);
2145         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2146 }
2147
2148 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2149                                           unsigned long addr)
2150 {
2151         struct inode *inode = file_inode(vma->vm_file);
2152         pgoff_t index;
2153
2154         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2155         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2156 }
2157 #endif
2158
2159 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2160 {
2161         struct inode *inode = file_inode(file);
2162         struct shmem_inode_info *info = SHMEM_I(inode);
2163         int retval = -ENOMEM;
2164
2165         /*
2166          * What serializes the accesses to info->flags?
2167          * ipc_lock_object() when called from shmctl_do_lock(),
2168          * no serialization needed when called from shm_destroy().
2169          */
2170         if (lock && !(info->flags & VM_LOCKED)) {
2171                 if (!user_shm_lock(inode->i_size, user))
2172                         goto out_nomem;
2173                 info->flags |= VM_LOCKED;
2174                 mapping_set_unevictable(file->f_mapping);
2175         }
2176         if (!lock && (info->flags & VM_LOCKED) && user) {
2177                 user_shm_unlock(inode->i_size, user);
2178                 info->flags &= ~VM_LOCKED;
2179                 mapping_clear_unevictable(file->f_mapping);
2180         }
2181         retval = 0;
2182
2183 out_nomem:
2184         return retval;
2185 }
2186
2187 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2188 {
2189         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2190
2191         if (info->seals & F_SEAL_FUTURE_WRITE) {
2192                 /*
2193                  * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2194                  * "future write" seal active.
2195                  */
2196                 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2197                         return -EPERM;
2198
2199                 /*
2200                  * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2201                  * MAP_SHARED and read-only, take care to not allow mprotect to
2202                  * revert protections on such mappings. Do this only for shared
2203                  * mappings. For private mappings, don't need to mask
2204                  * VM_MAYWRITE as we still want them to be COW-writable.
2205                  */
2206                 if (vma->vm_flags & VM_SHARED)
2207                         vma->vm_flags &= ~(VM_MAYWRITE);
2208         }
2209
2210         file_accessed(file);
2211         vma->vm_ops = &shmem_vm_ops;
2212         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2213                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2214                         (vma->vm_end & HPAGE_PMD_MASK)) {
2215                 khugepaged_enter(vma, vma->vm_flags);
2216         }
2217         return 0;
2218 }
2219
2220 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2221                                      umode_t mode, dev_t dev, unsigned long flags)
2222 {
2223         struct inode *inode;
2224         struct shmem_inode_info *info;
2225         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2226
2227         if (shmem_reserve_inode(sb))
2228                 return NULL;
2229
2230         inode = new_inode(sb);
2231         if (inode) {
2232                 inode->i_ino = get_next_ino();
2233                 inode_init_owner(inode, dir, mode);
2234                 inode->i_blocks = 0;
2235                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2236                 inode->i_generation = prandom_u32();
2237                 info = SHMEM_I(inode);
2238                 memset(info, 0, (char *)inode - (char *)info);
2239                 spin_lock_init(&info->lock);
2240                 atomic_set(&info->stop_eviction, 0);
2241                 info->seals = F_SEAL_SEAL;
2242                 info->flags = flags & VM_NORESERVE;
2243                 INIT_LIST_HEAD(&info->shrinklist);
2244                 INIT_LIST_HEAD(&info->swaplist);
2245                 simple_xattrs_init(&info->xattrs);
2246                 cache_no_acl(inode);
2247
2248                 switch (mode & S_IFMT) {
2249                 default:
2250                         inode->i_op = &shmem_special_inode_operations;
2251                         init_special_inode(inode, mode, dev);
2252                         break;
2253                 case S_IFREG:
2254                         inode->i_mapping->a_ops = &shmem_aops;
2255                         inode->i_op = &shmem_inode_operations;
2256                         inode->i_fop = &shmem_file_operations;
2257                         mpol_shared_policy_init(&info->policy,
2258                                                  shmem_get_sbmpol(sbinfo));
2259                         break;
2260                 case S_IFDIR:
2261                         inc_nlink(inode);
2262                         /* Some things misbehave if size == 0 on a directory */
2263                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2264                         inode->i_op = &shmem_dir_inode_operations;
2265                         inode->i_fop = &simple_dir_operations;
2266                         break;
2267                 case S_IFLNK:
2268                         /*
2269                          * Must not load anything in the rbtree,
2270                          * mpol_free_shared_policy will not be called.
2271                          */
2272                         mpol_shared_policy_init(&info->policy, NULL);
2273                         break;
2274                 }
2275
2276                 lockdep_annotate_inode_mutex_key(inode);
2277         } else
2278                 shmem_free_inode(sb);
2279         return inode;
2280 }
2281
2282 bool shmem_mapping(struct address_space *mapping)
2283 {
2284         return mapping->a_ops == &shmem_aops;
2285 }
2286
2287 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2288                                   pmd_t *dst_pmd,
2289                                   struct vm_area_struct *dst_vma,
2290                                   unsigned long dst_addr,
2291                                   unsigned long src_addr,
2292                                   bool zeropage,
2293                                   struct page **pagep)
2294 {
2295         struct inode *inode = file_inode(dst_vma->vm_file);
2296         struct shmem_inode_info *info = SHMEM_I(inode);
2297         struct address_space *mapping = inode->i_mapping;
2298         gfp_t gfp = mapping_gfp_mask(mapping);
2299         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2300         spinlock_t *ptl;
2301         void *page_kaddr;
2302         struct page *page;
2303         pte_t _dst_pte, *dst_pte;
2304         int ret;
2305         pgoff_t offset, max_off;
2306
2307         ret = -ENOMEM;
2308         if (!shmem_inode_acct_block(inode, 1))
2309                 goto out;
2310
2311         if (!*pagep) {
2312                 page = shmem_alloc_page(gfp, info, pgoff);
2313                 if (!page)
2314                         goto out_unacct_blocks;
2315
2316                 if (!zeropage) {        /* mcopy_atomic */
2317                         page_kaddr = kmap_atomic(page);
2318                         ret = copy_from_user(page_kaddr,
2319                                              (const void __user *)src_addr,
2320                                              PAGE_SIZE);
2321                         kunmap_atomic(page_kaddr);
2322
2323                         /* fallback to copy_from_user outside mmap_sem */
2324                         if (unlikely(ret)) {
2325                                 *pagep = page;
2326                                 shmem_inode_unacct_blocks(inode, 1);
2327                                 /* don't free the page */
2328                                 return -ENOENT;
2329                         }
2330                 } else {                /* mfill_zeropage_atomic */
2331                         clear_highpage(page);
2332                 }
2333         } else {
2334                 page = *pagep;
2335                 *pagep = NULL;
2336         }
2337
2338         VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2339         __SetPageLocked(page);
2340         __SetPageSwapBacked(page);
2341         __SetPageUptodate(page);
2342
2343         ret = -EFAULT;
2344         offset = linear_page_index(dst_vma, dst_addr);
2345         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2346         if (unlikely(offset >= max_off))
2347                 goto out_release;
2348
2349         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2350                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2351         if (ret)
2352                 goto out_release;
2353
2354         _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2355         if (dst_vma->vm_flags & VM_WRITE)
2356                 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2357         else {
2358                 /*
2359                  * We don't set the pte dirty if the vma has no
2360                  * VM_WRITE permission, so mark the page dirty or it
2361                  * could be freed from under us. We could do it
2362                  * unconditionally before unlock_page(), but doing it
2363                  * only if VM_WRITE is not set is faster.
2364                  */
2365                 set_page_dirty(page);
2366         }
2367
2368         dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2369
2370         ret = -EFAULT;
2371         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2372         if (unlikely(offset >= max_off))
2373                 goto out_release_unlock;
2374
2375         ret = -EEXIST;
2376         if (!pte_none(*dst_pte))
2377                 goto out_release_unlock;
2378
2379         lru_cache_add(page);
2380
2381         spin_lock_irq(&info->lock);
2382         info->alloced++;
2383         inode->i_blocks += BLOCKS_PER_PAGE;
2384         shmem_recalc_inode(inode);
2385         spin_unlock_irq(&info->lock);
2386
2387         inc_mm_counter(dst_mm, mm_counter_file(page));
2388         page_add_file_rmap(page, false);
2389         set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2390
2391         /* No need to invalidate - it was non-present before */
2392         update_mmu_cache(dst_vma, dst_addr, dst_pte);
2393         pte_unmap_unlock(dst_pte, ptl);
2394         unlock_page(page);
2395         ret = 0;
2396 out:
2397         return ret;
2398 out_release_unlock:
2399         pte_unmap_unlock(dst_pte, ptl);
2400         ClearPageDirty(page);
2401         delete_from_page_cache(page);
2402 out_release:
2403         unlock_page(page);
2404         put_page(page);
2405 out_unacct_blocks:
2406         shmem_inode_unacct_blocks(inode, 1);
2407         goto out;
2408 }
2409
2410 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2411                            pmd_t *dst_pmd,
2412                            struct vm_area_struct *dst_vma,
2413                            unsigned long dst_addr,
2414                            unsigned long src_addr,
2415                            struct page **pagep)
2416 {
2417         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2418                                       dst_addr, src_addr, false, pagep);
2419 }
2420
2421 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2422                              pmd_t *dst_pmd,
2423                              struct vm_area_struct *dst_vma,
2424                              unsigned long dst_addr)
2425 {
2426         struct page *page = NULL;
2427
2428         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2429                                       dst_addr, 0, true, &page);
2430 }
2431
2432 #ifdef CONFIG_TMPFS
2433 static const struct inode_operations shmem_symlink_inode_operations;
2434 static const struct inode_operations shmem_short_symlink_operations;
2435
2436 #ifdef CONFIG_TMPFS_XATTR
2437 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2438 #else
2439 #define shmem_initxattrs NULL
2440 #endif
2441
2442 static int
2443 shmem_write_begin(struct file *file, struct address_space *mapping,
2444                         loff_t pos, unsigned len, unsigned flags,
2445                         struct page **pagep, void **fsdata)
2446 {
2447         struct inode *inode = mapping->host;
2448         struct shmem_inode_info *info = SHMEM_I(inode);
2449         pgoff_t index = pos >> PAGE_SHIFT;
2450
2451         /* i_mutex is held by caller */
2452         if (unlikely(info->seals & (F_SEAL_GROW |
2453                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2454                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2455                         return -EPERM;
2456                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2457                         return -EPERM;
2458         }
2459
2460         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2461 }
2462
2463 static int
2464 shmem_write_end(struct file *file, struct address_space *mapping,
2465                         loff_t pos, unsigned len, unsigned copied,
2466                         struct page *page, void *fsdata)
2467 {
2468         struct inode *inode = mapping->host;
2469
2470         if (pos + copied > inode->i_size)
2471                 i_size_write(inode, pos + copied);
2472
2473         if (!PageUptodate(page)) {
2474                 struct page *head = compound_head(page);
2475                 if (PageTransCompound(page)) {
2476                         int i;
2477
2478                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2479                                 if (head + i == page)
2480                                         continue;
2481                                 clear_highpage(head + i);
2482                                 flush_dcache_page(head + i);
2483                         }
2484                 }
2485                 if (copied < PAGE_SIZE) {
2486                         unsigned from = pos & (PAGE_SIZE - 1);
2487                         zero_user_segments(page, 0, from,
2488                                         from + copied, PAGE_SIZE);
2489                 }
2490                 SetPageUptodate(head);
2491         }
2492         set_page_dirty(page);
2493         unlock_page(page);
2494         put_page(page);
2495
2496         return copied;
2497 }
2498
2499 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2500 {
2501         struct file *file = iocb->ki_filp;
2502         struct inode *inode = file_inode(file);
2503         struct address_space *mapping = inode->i_mapping;
2504         pgoff_t index;
2505         unsigned long offset;
2506         enum sgp_type sgp = SGP_READ;
2507         int error = 0;
2508         ssize_t retval = 0;
2509         loff_t *ppos = &iocb->ki_pos;
2510
2511         /*
2512          * Might this read be for a stacking filesystem?  Then when reading
2513          * holes of a sparse file, we actually need to allocate those pages,
2514          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2515          */
2516         if (!iter_is_iovec(to))
2517                 sgp = SGP_CACHE;
2518
2519         index = *ppos >> PAGE_SHIFT;
2520         offset = *ppos & ~PAGE_MASK;
2521
2522         for (;;) {
2523                 struct page *page = NULL;
2524                 pgoff_t end_index;
2525                 unsigned long nr, ret;
2526                 loff_t i_size = i_size_read(inode);
2527
2528                 end_index = i_size >> PAGE_SHIFT;
2529                 if (index > end_index)
2530                         break;
2531                 if (index == end_index) {
2532                         nr = i_size & ~PAGE_MASK;
2533                         if (nr <= offset)
2534                                 break;
2535                 }
2536
2537                 error = shmem_getpage(inode, index, &page, sgp);
2538                 if (error) {
2539                         if (error == -EINVAL)
2540                                 error = 0;
2541                         break;
2542                 }
2543                 if (page) {
2544                         if (sgp == SGP_CACHE)
2545                                 set_page_dirty(page);
2546                         unlock_page(page);
2547                 }
2548
2549                 /*
2550                  * We must evaluate after, since reads (unlike writes)
2551                  * are called without i_mutex protection against truncate
2552                  */
2553                 nr = PAGE_SIZE;
2554                 i_size = i_size_read(inode);
2555                 end_index = i_size >> PAGE_SHIFT;
2556                 if (index == end_index) {
2557                         nr = i_size & ~PAGE_MASK;
2558                         if (nr <= offset) {
2559                                 if (page)
2560                                         put_page(page);
2561                                 break;
2562                         }
2563                 }
2564                 nr -= offset;
2565
2566                 if (page) {
2567                         /*
2568                          * If users can be writing to this page using arbitrary
2569                          * virtual addresses, take care about potential aliasing
2570                          * before reading the page on the kernel side.
2571                          */
2572                         if (mapping_writably_mapped(mapping))
2573                                 flush_dcache_page(page);
2574                         /*
2575                          * Mark the page accessed if we read the beginning.
2576                          */
2577                         if (!offset)
2578                                 mark_page_accessed(page);
2579                 } else {
2580                         page = ZERO_PAGE(0);
2581                         get_page(page);
2582                 }
2583
2584                 /*
2585                  * Ok, we have the page, and it's up-to-date, so
2586                  * now we can copy it to user space...
2587                  */
2588                 ret = copy_page_to_iter(page, offset, nr, to);
2589                 retval += ret;
2590                 offset += ret;
2591                 index += offset >> PAGE_SHIFT;
2592                 offset &= ~PAGE_MASK;
2593
2594                 put_page(page);
2595                 if (!iov_iter_count(to))
2596                         break;
2597                 if (ret < nr) {
2598                         error = -EFAULT;
2599                         break;
2600                 }
2601                 cond_resched();
2602         }
2603
2604         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2605         file_accessed(file);
2606         return retval ? retval : error;
2607 }
2608
2609 /*
2610  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2611  */
2612 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2613                                     pgoff_t index, pgoff_t end, int whence)
2614 {
2615         struct page *page;
2616         struct pagevec pvec;
2617         pgoff_t indices[PAGEVEC_SIZE];
2618         bool done = false;
2619         int i;
2620
2621         pagevec_init(&pvec);
2622         pvec.nr = 1;            /* start small: we may be there already */
2623         while (!done) {
2624                 pvec.nr = find_get_entries(mapping, index,
2625                                         pvec.nr, pvec.pages, indices);
2626                 if (!pvec.nr) {
2627                         if (whence == SEEK_DATA)
2628                                 index = end;
2629                         break;
2630                 }
2631                 for (i = 0; i < pvec.nr; i++, index++) {
2632                         if (index < indices[i]) {
2633                                 if (whence == SEEK_HOLE) {
2634                                         done = true;
2635                                         break;
2636                                 }
2637                                 index = indices[i];
2638                         }
2639                         page = pvec.pages[i];
2640                         if (page && !xa_is_value(page)) {
2641                                 if (!PageUptodate(page))
2642                                         page = NULL;
2643                         }
2644                         if (index >= end ||
2645                             (page && whence == SEEK_DATA) ||
2646                             (!page && whence == SEEK_HOLE)) {
2647                                 done = true;
2648                                 break;
2649                         }
2650                 }
2651                 pagevec_remove_exceptionals(&pvec);
2652                 pagevec_release(&pvec);
2653                 pvec.nr = PAGEVEC_SIZE;
2654                 cond_resched();
2655         }
2656         return index;
2657 }
2658
2659 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2660 {
2661         struct address_space *mapping = file->f_mapping;
2662         struct inode *inode = mapping->host;
2663         pgoff_t start, end;
2664         loff_t new_offset;
2665
2666         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2667                 return generic_file_llseek_size(file, offset, whence,
2668                                         MAX_LFS_FILESIZE, i_size_read(inode));
2669         inode_lock(inode);
2670         /* We're holding i_mutex so we can access i_size directly */
2671
2672         if (offset < 0 || offset >= inode->i_size)
2673                 offset = -ENXIO;
2674         else {
2675                 start = offset >> PAGE_SHIFT;
2676                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2677                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2678                 new_offset <<= PAGE_SHIFT;
2679                 if (new_offset > offset) {
2680                         if (new_offset < inode->i_size)
2681                                 offset = new_offset;
2682                         else if (whence == SEEK_DATA)
2683                                 offset = -ENXIO;
2684                         else
2685                                 offset = inode->i_size;
2686                 }
2687         }
2688
2689         if (offset >= 0)
2690                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2691         inode_unlock(inode);
2692         return offset;
2693 }
2694
2695 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2696                                                          loff_t len)
2697 {
2698         struct inode *inode = file_inode(file);
2699         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2700         struct shmem_inode_info *info = SHMEM_I(inode);
2701         struct shmem_falloc shmem_falloc;
2702         pgoff_t start, index, end;
2703         int error;
2704
2705         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2706                 return -EOPNOTSUPP;
2707
2708         inode_lock(inode);
2709
2710         if (mode & FALLOC_FL_PUNCH_HOLE) {
2711                 struct address_space *mapping = file->f_mapping;
2712                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2713                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2714                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2715
2716                 /* protected by i_mutex */
2717                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2718                         error = -EPERM;
2719                         goto out;
2720                 }
2721
2722                 shmem_falloc.waitq = &shmem_falloc_waitq;
2723                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2724                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2725                 spin_lock(&inode->i_lock);
2726                 inode->i_private = &shmem_falloc;
2727                 spin_unlock(&inode->i_lock);
2728
2729                 if ((u64)unmap_end > (u64)unmap_start)
2730                         unmap_mapping_range(mapping, unmap_start,
2731                                             1 + unmap_end - unmap_start, 0);
2732                 shmem_truncate_range(inode, offset, offset + len - 1);
2733                 /* No need to unmap again: hole-punching leaves COWed pages */
2734
2735                 spin_lock(&inode->i_lock);
2736                 inode->i_private = NULL;
2737                 wake_up_all(&shmem_falloc_waitq);
2738                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2739                 spin_unlock(&inode->i_lock);
2740                 error = 0;
2741                 goto out;
2742         }
2743
2744         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2745         error = inode_newsize_ok(inode, offset + len);
2746         if (error)
2747                 goto out;
2748
2749         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2750                 error = -EPERM;
2751                 goto out;
2752         }
2753
2754         start = offset >> PAGE_SHIFT;
2755         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2756         /* Try to avoid a swapstorm if len is impossible to satisfy */
2757         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2758                 error = -ENOSPC;
2759                 goto out;
2760         }
2761
2762         shmem_falloc.waitq = NULL;
2763         shmem_falloc.start = start;
2764         shmem_falloc.next  = start;
2765         shmem_falloc.nr_falloced = 0;
2766         shmem_falloc.nr_unswapped = 0;
2767         spin_lock(&inode->i_lock);
2768         inode->i_private = &shmem_falloc;
2769         spin_unlock(&inode->i_lock);
2770
2771         for (index = start; index < end; index++) {
2772                 struct page *page;
2773
2774                 /*
2775                  * Good, the fallocate(2) manpage permits EINTR: we may have
2776                  * been interrupted because we are using up too much memory.
2777                  */
2778                 if (signal_pending(current))
2779                         error = -EINTR;
2780                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2781                         error = -ENOMEM;
2782                 else
2783                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2784                 if (error) {
2785                         /* Remove the !PageUptodate pages we added */
2786                         if (index > start) {
2787                                 shmem_undo_range(inode,
2788                                     (loff_t)start << PAGE_SHIFT,
2789                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2790                         }
2791                         goto undone;
2792                 }
2793
2794                 /*
2795                  * Inform shmem_writepage() how far we have reached.
2796                  * No need for lock or barrier: we have the page lock.
2797                  */
2798                 shmem_falloc.next++;
2799                 if (!PageUptodate(page))
2800                         shmem_falloc.nr_falloced++;
2801
2802                 /*
2803                  * If !PageUptodate, leave it that way so that freeable pages
2804                  * can be recognized if we need to rollback on error later.
2805                  * But set_page_dirty so that memory pressure will swap rather
2806                  * than free the pages we are allocating (and SGP_CACHE pages
2807                  * might still be clean: we now need to mark those dirty too).
2808                  */
2809                 set_page_dirty(page);
2810                 unlock_page(page);
2811                 put_page(page);
2812                 cond_resched();
2813         }
2814
2815         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2816                 i_size_write(inode, offset + len);
2817         inode->i_ctime = current_time(inode);
2818 undone:
2819         spin_lock(&inode->i_lock);
2820         inode->i_private = NULL;
2821         spin_unlock(&inode->i_lock);
2822 out:
2823         inode_unlock(inode);
2824         return error;
2825 }
2826
2827 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2828 {
2829         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2830
2831         buf->f_type = TMPFS_MAGIC;
2832         buf->f_bsize = PAGE_SIZE;
2833         buf->f_namelen = NAME_MAX;
2834         if (sbinfo->max_blocks) {
2835                 buf->f_blocks = sbinfo->max_blocks;
2836                 buf->f_bavail =
2837                 buf->f_bfree  = sbinfo->max_blocks -
2838                                 percpu_counter_sum(&sbinfo->used_blocks);
2839         }
2840         if (sbinfo->max_inodes) {
2841                 buf->f_files = sbinfo->max_inodes;
2842                 buf->f_ffree = sbinfo->free_inodes;
2843         }
2844         /* else leave those fields 0 like simple_statfs */
2845         return 0;
2846 }
2847
2848 /*
2849  * File creation. Allocate an inode, and we're done..
2850  */
2851 static int
2852 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2853 {
2854         struct inode *inode;
2855         int error = -ENOSPC;
2856
2857         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2858         if (inode) {
2859                 error = simple_acl_create(dir, inode);
2860                 if (error)
2861                         goto out_iput;
2862                 error = security_inode_init_security(inode, dir,
2863                                                      &dentry->d_name,
2864                                                      shmem_initxattrs, NULL);
2865                 if (error && error != -EOPNOTSUPP)
2866                         goto out_iput;
2867
2868                 error = 0;
2869                 dir->i_size += BOGO_DIRENT_SIZE;
2870                 dir->i_ctime = dir->i_mtime = current_time(dir);
2871                 d_instantiate(dentry, inode);
2872                 dget(dentry); /* Extra count - pin the dentry in core */
2873         }
2874         return error;
2875 out_iput:
2876         iput(inode);
2877         return error;
2878 }
2879
2880 static int
2881 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2882 {
2883         struct inode *inode;
2884         int error = -ENOSPC;
2885
2886         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2887         if (inode) {
2888                 error = security_inode_init_security(inode, dir,
2889                                                      NULL,
2890                                                      shmem_initxattrs, NULL);
2891                 if (error && error != -EOPNOTSUPP)
2892                         goto out_iput;
2893                 error = simple_acl_create(dir, inode);
2894                 if (error)
2895                         goto out_iput;
2896                 d_tmpfile(dentry, inode);
2897         }
2898         return error;
2899 out_iput:
2900         iput(inode);
2901         return error;
2902 }
2903
2904 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2905 {
2906         int error;
2907
2908         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2909                 return error;
2910         inc_nlink(dir);
2911         return 0;
2912 }
2913
2914 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2915                 bool excl)
2916 {
2917         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2918 }
2919
2920 /*
2921  * Link a file..
2922  */
2923 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2924 {
2925         struct inode *inode = d_inode(old_dentry);
2926         int ret = 0;
2927
2928         /*
2929          * No ordinary (disk based) filesystem counts links as inodes;
2930          * but each new link needs a new dentry, pinning lowmem, and
2931          * tmpfs dentries cannot be pruned until they are unlinked.
2932          * But if an O_TMPFILE file is linked into the tmpfs, the
2933          * first link must skip that, to get the accounting right.
2934          */
2935         if (inode->i_nlink) {
2936                 ret = shmem_reserve_inode(inode->i_sb);
2937                 if (ret)
2938                         goto out;
2939         }
2940
2941         dir->i_size += BOGO_DIRENT_SIZE;
2942         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2943         inc_nlink(inode);
2944         ihold(inode);   /* New dentry reference */
2945         dget(dentry);           /* Extra pinning count for the created dentry */
2946         d_instantiate(dentry, inode);
2947 out:
2948         return ret;
2949 }
2950
2951 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2952 {
2953         struct inode *inode = d_inode(dentry);
2954
2955         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2956                 shmem_free_inode(inode->i_sb);
2957
2958         dir->i_size -= BOGO_DIRENT_SIZE;
2959         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2960         drop_nlink(inode);
2961         dput(dentry);   /* Undo the count from "create" - this does all the work */
2962         return 0;
2963 }
2964
2965 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2966 {
2967         if (!simple_empty(dentry))
2968                 return -ENOTEMPTY;
2969
2970         drop_nlink(d_inode(dentry));
2971         drop_nlink(dir);
2972         return shmem_unlink(dir, dentry);
2973 }
2974
2975 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2976 {
2977         bool old_is_dir = d_is_dir(old_dentry);
2978         bool new_is_dir = d_is_dir(new_dentry);
2979
2980         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2981                 if (old_is_dir) {
2982                         drop_nlink(old_dir);
2983                         inc_nlink(new_dir);
2984                 } else {
2985                         drop_nlink(new_dir);
2986                         inc_nlink(old_dir);
2987                 }
2988         }
2989         old_dir->i_ctime = old_dir->i_mtime =
2990         new_dir->i_ctime = new_dir->i_mtime =
2991         d_inode(old_dentry)->i_ctime =
2992         d_inode(new_dentry)->i_ctime = current_time(old_dir);
2993
2994         return 0;
2995 }
2996
2997 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2998 {
2999         struct dentry *whiteout;
3000         int error;
3001
3002         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3003         if (!whiteout)
3004                 return -ENOMEM;
3005
3006         error = shmem_mknod(old_dir, whiteout,
3007                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3008         dput(whiteout);
3009         if (error)
3010                 return error;
3011
3012         /*
3013          * Cheat and hash the whiteout while the old dentry is still in
3014          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3015          *
3016          * d_lookup() will consistently find one of them at this point,
3017          * not sure which one, but that isn't even important.
3018          */
3019         d_rehash(whiteout);
3020         return 0;
3021 }
3022
3023 /*
3024  * The VFS layer already does all the dentry stuff for rename,
3025  * we just have to decrement the usage count for the target if
3026  * it exists so that the VFS layer correctly free's it when it
3027  * gets overwritten.
3028  */
3029 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3030 {
3031         struct inode *inode = d_inode(old_dentry);
3032         int they_are_dirs = S_ISDIR(inode->i_mode);
3033
3034         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3035                 return -EINVAL;
3036
3037         if (flags & RENAME_EXCHANGE)
3038                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3039
3040         if (!simple_empty(new_dentry))
3041                 return -ENOTEMPTY;
3042
3043         if (flags & RENAME_WHITEOUT) {
3044                 int error;
3045
3046                 error = shmem_whiteout(old_dir, old_dentry);
3047                 if (error)
3048                         return error;
3049         }
3050
3051         if (d_really_is_positive(new_dentry)) {
3052                 (void) shmem_unlink(new_dir, new_dentry);
3053                 if (they_are_dirs) {
3054                         drop_nlink(d_inode(new_dentry));
3055                         drop_nlink(old_dir);
3056                 }
3057         } else if (they_are_dirs) {
3058                 drop_nlink(old_dir);
3059                 inc_nlink(new_dir);
3060         }
3061
3062         old_dir->i_size -= BOGO_DIRENT_SIZE;
3063         new_dir->i_size += BOGO_DIRENT_SIZE;
3064         old_dir->i_ctime = old_dir->i_mtime =
3065         new_dir->i_ctime = new_dir->i_mtime =
3066         inode->i_ctime = current_time(old_dir);
3067         return 0;
3068 }
3069
3070 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3071 {
3072         int error;
3073         int len;
3074         struct inode *inode;
3075         struct page *page;
3076
3077         len = strlen(symname) + 1;
3078         if (len > PAGE_SIZE)
3079                 return -ENAMETOOLONG;
3080
3081         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3082                                 VM_NORESERVE);
3083         if (!inode)
3084                 return -ENOSPC;
3085
3086         error = security_inode_init_security(inode, dir, &dentry->d_name,
3087                                              shmem_initxattrs, NULL);
3088         if (error && error != -EOPNOTSUPP) {
3089                 iput(inode);
3090                 return error;
3091         }
3092
3093         inode->i_size = len-1;
3094         if (len <= SHORT_SYMLINK_LEN) {
3095                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3096                 if (!inode->i_link) {
3097                         iput(inode);
3098                         return -ENOMEM;
3099                 }
3100                 inode->i_op = &shmem_short_symlink_operations;
3101         } else {
3102                 inode_nohighmem(inode);
3103                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3104                 if (error) {
3105                         iput(inode);
3106                         return error;
3107                 }
3108                 inode->i_mapping->a_ops = &shmem_aops;
3109                 inode->i_op = &shmem_symlink_inode_operations;
3110                 memcpy(page_address(page), symname, len);
3111                 SetPageUptodate(page);
3112                 set_page_dirty(page);
3113                 unlock_page(page);
3114                 put_page(page);
3115         }
3116         dir->i_size += BOGO_DIRENT_SIZE;
3117         dir->i_ctime = dir->i_mtime = current_time(dir);
3118         d_instantiate(dentry, inode);
3119         dget(dentry);
3120         return 0;
3121 }
3122
3123 static void shmem_put_link(void *arg)
3124 {
3125         mark_page_accessed(arg);
3126         put_page(arg);
3127 }
3128
3129 static const char *shmem_get_link(struct dentry *dentry,
3130                                   struct inode *inode,
3131                                   struct delayed_call *done)
3132 {
3133         struct page *page = NULL;
3134         int error;
3135         if (!dentry) {
3136                 page = find_get_page(inode->i_mapping, 0);
3137                 if (!page)
3138                         return ERR_PTR(-ECHILD);
3139                 if (!PageUptodate(page)) {
3140                         put_page(page);
3141                         return ERR_PTR(-ECHILD);
3142                 }
3143         } else {
3144                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3145                 if (error)
3146                         return ERR_PTR(error);
3147                 unlock_page(page);
3148         }
3149         set_delayed_call(done, shmem_put_link, page);
3150         return page_address(page);
3151 }
3152
3153 #ifdef CONFIG_TMPFS_XATTR
3154 /*
3155  * Superblocks without xattr inode operations may get some security.* xattr
3156  * support from the LSM "for free". As soon as we have any other xattrs
3157  * like ACLs, we also need to implement the security.* handlers at
3158  * filesystem level, though.
3159  */
3160
3161 /*
3162  * Callback for security_inode_init_security() for acquiring xattrs.
3163  */
3164 static int shmem_initxattrs(struct inode *inode,
3165                             const struct xattr *xattr_array,
3166                             void *fs_info)
3167 {
3168         struct shmem_inode_info *info = SHMEM_I(inode);
3169         const struct xattr *xattr;
3170         struct simple_xattr *new_xattr;
3171         size_t len;
3172
3173         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3174                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3175                 if (!new_xattr)
3176                         return -ENOMEM;
3177
3178                 len = strlen(xattr->name) + 1;
3179                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3180                                           GFP_KERNEL);
3181                 if (!new_xattr->name) {
3182                         kfree(new_xattr);
3183                         return -ENOMEM;
3184                 }
3185
3186                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3187                        XATTR_SECURITY_PREFIX_LEN);
3188                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3189                        xattr->name, len);
3190
3191                 simple_xattr_list_add(&info->xattrs, new_xattr);
3192         }
3193
3194         return 0;
3195 }
3196
3197 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3198                                    struct dentry *unused, struct inode *inode,
3199                                    const char *name, void *buffer, size_t size)
3200 {
3201         struct shmem_inode_info *info = SHMEM_I(inode);
3202
3203         name = xattr_full_name(handler, name);
3204         return simple_xattr_get(&info->xattrs, name, buffer, size);
3205 }
3206
3207 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3208                                    struct dentry *unused, struct inode *inode,
3209                                    const char *name, const void *value,
3210                                    size_t size, int flags)
3211 {
3212         struct shmem_inode_info *info = SHMEM_I(inode);
3213
3214         name = xattr_full_name(handler, name);
3215         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3216 }
3217
3218 static const struct xattr_handler shmem_security_xattr_handler = {
3219         .prefix = XATTR_SECURITY_PREFIX,
3220         .get = shmem_xattr_handler_get,
3221         .set = shmem_xattr_handler_set,
3222 };
3223
3224 static const struct xattr_handler shmem_trusted_xattr_handler = {
3225         .prefix = XATTR_TRUSTED_PREFIX,
3226         .get = shmem_xattr_handler_get,
3227         .set = shmem_xattr_handler_set,
3228 };
3229
3230 static const struct xattr_handler *shmem_xattr_handlers[] = {
3231 #ifdef CONFIG_TMPFS_POSIX_ACL
3232         &posix_acl_access_xattr_handler,
3233         &posix_acl_default_xattr_handler,
3234 #endif
3235         &shmem_security_xattr_handler,
3236         &shmem_trusted_xattr_handler,
3237         NULL
3238 };
3239
3240 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3241 {
3242         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3243         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3244 }
3245 #endif /* CONFIG_TMPFS_XATTR */
3246
3247 static const struct inode_operations shmem_short_symlink_operations = {
3248         .get_link       = simple_get_link,
3249 #ifdef CONFIG_TMPFS_XATTR
3250         .listxattr      = shmem_listxattr,
3251 #endif
3252 };
3253
3254 static const struct inode_operations shmem_symlink_inode_operations = {
3255         .get_link       = shmem_get_link,
3256 #ifdef CONFIG_TMPFS_XATTR
3257         .listxattr      = shmem_listxattr,
3258 #endif
3259 };
3260
3261 static struct dentry *shmem_get_parent(struct dentry *child)
3262 {
3263         return ERR_PTR(-ESTALE);
3264 }
3265
3266 static int shmem_match(struct inode *ino, void *vfh)
3267 {
3268         __u32 *fh = vfh;
3269         __u64 inum = fh[2];
3270         inum = (inum << 32) | fh[1];
3271         return ino->i_ino == inum && fh[0] == ino->i_generation;
3272 }
3273
3274 /* Find any alias of inode, but prefer a hashed alias */
3275 static struct dentry *shmem_find_alias(struct inode *inode)
3276 {
3277         struct dentry *alias = d_find_alias(inode);
3278
3279         return alias ?: d_find_any_alias(inode);
3280 }
3281
3282
3283 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3284                 struct fid *fid, int fh_len, int fh_type)
3285 {
3286         struct inode *inode;
3287         struct dentry *dentry = NULL;
3288         u64 inum;
3289
3290         if (fh_len < 3)
3291                 return NULL;
3292
3293         inum = fid->raw[2];
3294         inum = (inum << 32) | fid->raw[1];
3295
3296         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3297                         shmem_match, fid->raw);
3298         if (inode) {
3299                 dentry = shmem_find_alias(inode);
3300                 iput(inode);
3301         }
3302
3303         return dentry;
3304 }
3305
3306 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3307                                 struct inode *parent)
3308 {
3309         if (*len < 3) {
3310                 *len = 3;
3311                 return FILEID_INVALID;
3312         }
3313
3314         if (inode_unhashed(inode)) {
3315                 /* Unfortunately insert_inode_hash is not idempotent,
3316                  * so as we hash inodes here rather than at creation
3317                  * time, we need a lock to ensure we only try
3318                  * to do it once
3319                  */
3320                 static DEFINE_SPINLOCK(lock);
3321                 spin_lock(&lock);
3322                 if (inode_unhashed(inode))
3323                         __insert_inode_hash(inode,
3324                                             inode->i_ino + inode->i_generation);
3325                 spin_unlock(&lock);
3326         }
3327
3328         fh[0] = inode->i_generation;
3329         fh[1] = inode->i_ino;
3330         fh[2] = ((__u64)inode->i_ino) >> 32;
3331
3332         *len = 3;
3333         return 1;
3334 }
3335
3336 static const struct export_operations shmem_export_ops = {
3337         .get_parent     = shmem_get_parent,
3338         .encode_fh      = shmem_encode_fh,
3339         .fh_to_dentry   = shmem_fh_to_dentry,
3340 };
3341
3342 enum shmem_param {
3343         Opt_gid,
3344         Opt_huge,
3345         Opt_mode,
3346         Opt_mpol,
3347         Opt_nr_blocks,
3348         Opt_nr_inodes,
3349         Opt_size,
3350         Opt_uid,
3351 };
3352
3353 static const struct constant_table shmem_param_enums_huge[] = {
3354         {"never",       SHMEM_HUGE_NEVER },
3355         {"always",      SHMEM_HUGE_ALWAYS },
3356         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3357         {"advise",      SHMEM_HUGE_ADVISE },
3358         {}
3359 };
3360
3361 const struct fs_parameter_spec shmem_fs_parameters[] = {
3362         fsparam_u32   ("gid",           Opt_gid),
3363         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3364         fsparam_u32oct("mode",          Opt_mode),
3365         fsparam_string("mpol",          Opt_mpol),
3366         fsparam_string("nr_blocks",     Opt_nr_blocks),
3367         fsparam_string("nr_inodes",     Opt_nr_inodes),
3368         fsparam_string("size",          Opt_size),
3369         fsparam_u32   ("uid",           Opt_uid),
3370         {}
3371 };
3372
3373 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3374 {
3375         struct shmem_options *ctx = fc->fs_private;
3376         struct fs_parse_result result;
3377         unsigned long long size;
3378         char *rest;
3379         int opt;
3380
3381         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3382         if (opt < 0)
3383                 return opt;
3384
3385         switch (opt) {
3386         case Opt_size:
3387                 size = memparse(param->string, &rest);
3388                 if (*rest == '%') {
3389                         size <<= PAGE_SHIFT;
3390                         size *= totalram_pages();
3391                         do_div(size, 100);
3392                         rest++;
3393                 }
3394                 if (*rest)
3395                         goto bad_value;
3396                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3397                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3398                 break;
3399         case Opt_nr_blocks:
3400                 ctx->blocks = memparse(param->string, &rest);
3401                 if (*rest)
3402                         goto bad_value;
3403                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3404                 break;
3405         case Opt_nr_inodes:
3406                 ctx->inodes = memparse(param->string, &rest);
3407                 if (*rest)
3408                         goto bad_value;
3409                 ctx->seen |= SHMEM_SEEN_INODES;
3410                 break;
3411         case Opt_mode:
3412                 ctx->mode = result.uint_32 & 07777;
3413                 break;
3414         case Opt_uid:
3415                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3416                 if (!uid_valid(ctx->uid))
3417                         goto bad_value;
3418                 break;
3419         case Opt_gid:
3420                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3421                 if (!gid_valid(ctx->gid))
3422                         goto bad_value;
3423                 break;
3424         case Opt_huge:
3425                 ctx->huge = result.uint_32;
3426                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3427                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3428                       has_transparent_hugepage()))
3429                         goto unsupported_parameter;
3430                 ctx->seen |= SHMEM_SEEN_HUGE;
3431                 break;
3432         case Opt_mpol:
3433                 if (IS_ENABLED(CONFIG_NUMA)) {
3434                         mpol_put(ctx->mpol);
3435                         ctx->mpol = NULL;
3436                         if (mpol_parse_str(param->string, &ctx->mpol))
3437                                 goto bad_value;
3438                         break;
3439                 }
3440                 goto unsupported_parameter;
3441         }
3442         return 0;
3443
3444 unsupported_parameter:
3445         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3446 bad_value:
3447         return invalfc(fc, "Bad value for '%s'", param->key);
3448 }
3449
3450 static int shmem_parse_options(struct fs_context *fc, void *data)
3451 {
3452         char *options = data;
3453
3454         if (options) {
3455                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3456                 if (err)
3457                         return err;
3458         }
3459
3460         while (options != NULL) {
3461                 char *this_char = options;
3462                 for (;;) {
3463                         /*
3464                          * NUL-terminate this option: unfortunately,
3465                          * mount options form a comma-separated list,
3466                          * but mpol's nodelist may also contain commas.
3467                          */
3468                         options = strchr(options, ',');
3469                         if (options == NULL)
3470                                 break;
3471                         options++;
3472                         if (!isdigit(*options)) {
3473                                 options[-1] = '\0';
3474                                 break;
3475                         }
3476                 }
3477                 if (*this_char) {
3478                         char *value = strchr(this_char,'=');
3479                         size_t len = 0;
3480                         int err;
3481
3482                         if (value) {
3483                                 *value++ = '\0';
3484                                 len = strlen(value);
3485                         }
3486                         err = vfs_parse_fs_string(fc, this_char, value, len);
3487                         if (err < 0)
3488                                 return err;
3489                 }
3490         }
3491         return 0;
3492 }
3493
3494 /*
3495  * Reconfigure a shmem filesystem.
3496  *
3497  * Note that we disallow change from limited->unlimited blocks/inodes while any
3498  * are in use; but we must separately disallow unlimited->limited, because in
3499  * that case we have no record of how much is already in use.
3500  */
3501 static int shmem_reconfigure(struct fs_context *fc)
3502 {
3503         struct shmem_options *ctx = fc->fs_private;
3504         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3505         unsigned long inodes;
3506         const char *err;
3507
3508         spin_lock(&sbinfo->stat_lock);
3509         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3510         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3511                 if (!sbinfo->max_blocks) {
3512                         err = "Cannot retroactively limit size";
3513                         goto out;
3514                 }
3515                 if (percpu_counter_compare(&sbinfo->used_blocks,
3516                                            ctx->blocks) > 0) {
3517                         err = "Too small a size for current use";
3518                         goto out;
3519                 }
3520         }
3521         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3522                 if (!sbinfo->max_inodes) {
3523                         err = "Cannot retroactively limit inodes";
3524                         goto out;
3525                 }
3526                 if (ctx->inodes < inodes) {
3527                         err = "Too few inodes for current use";
3528                         goto out;
3529                 }
3530         }
3531
3532         if (ctx->seen & SHMEM_SEEN_HUGE)
3533                 sbinfo->huge = ctx->huge;
3534         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3535                 sbinfo->max_blocks  = ctx->blocks;
3536         if (ctx->seen & SHMEM_SEEN_INODES) {
3537                 sbinfo->max_inodes  = ctx->inodes;
3538                 sbinfo->free_inodes = ctx->inodes - inodes;
3539         }
3540
3541         /*
3542          * Preserve previous mempolicy unless mpol remount option was specified.
3543          */
3544         if (ctx->mpol) {
3545                 mpol_put(sbinfo->mpol);
3546                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3547                 ctx->mpol = NULL;
3548         }
3549         spin_unlock(&sbinfo->stat_lock);
3550         return 0;
3551 out:
3552         spin_unlock(&sbinfo->stat_lock);
3553         return invalfc(fc, "%s", err);
3554 }
3555
3556 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3557 {
3558         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3559
3560         if (sbinfo->max_blocks != shmem_default_max_blocks())
3561                 seq_printf(seq, ",size=%luk",
3562                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3563         if (sbinfo->max_inodes != shmem_default_max_inodes())
3564                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3565         if (sbinfo->mode != (0777 | S_ISVTX))
3566                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3567         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3568                 seq_printf(seq, ",uid=%u",
3569                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3570         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3571                 seq_printf(seq, ",gid=%u",
3572                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3573 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3574         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3575         if (sbinfo->huge)
3576                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3577 #endif
3578         shmem_show_mpol(seq, sbinfo->mpol);
3579         return 0;
3580 }
3581
3582 #endif /* CONFIG_TMPFS */
3583
3584 static void shmem_put_super(struct super_block *sb)
3585 {
3586         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3587
3588         percpu_counter_destroy(&sbinfo->used_blocks);
3589         mpol_put(sbinfo->mpol);
3590         kfree(sbinfo);
3591         sb->s_fs_info = NULL;
3592 }
3593
3594 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3595 {
3596         struct shmem_options *ctx = fc->fs_private;
3597         struct inode *inode;
3598         struct shmem_sb_info *sbinfo;
3599         int err = -ENOMEM;
3600
3601         /* Round up to L1_CACHE_BYTES to resist false sharing */
3602         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3603                                 L1_CACHE_BYTES), GFP_KERNEL);
3604         if (!sbinfo)
3605                 return -ENOMEM;
3606
3607         sb->s_fs_info = sbinfo;
3608
3609 #ifdef CONFIG_TMPFS
3610         /*
3611          * Per default we only allow half of the physical ram per
3612          * tmpfs instance, limiting inodes to one per page of lowmem;
3613          * but the internal instance is left unlimited.
3614          */
3615         if (!(sb->s_flags & SB_KERNMOUNT)) {
3616                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3617                         ctx->blocks = shmem_default_max_blocks();
3618                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3619                         ctx->inodes = shmem_default_max_inodes();
3620         } else {
3621                 sb->s_flags |= SB_NOUSER;
3622         }
3623         sb->s_export_op = &shmem_export_ops;
3624         sb->s_flags |= SB_NOSEC;
3625 #else
3626         sb->s_flags |= SB_NOUSER;
3627 #endif
3628         sbinfo->max_blocks = ctx->blocks;
3629         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3630         sbinfo->uid = ctx->uid;
3631         sbinfo->gid = ctx->gid;
3632         sbinfo->mode = ctx->mode;
3633         sbinfo->huge = ctx->huge;
3634         sbinfo->mpol = ctx->mpol;
3635         ctx->mpol = NULL;
3636
3637         spin_lock_init(&sbinfo->stat_lock);
3638         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3639                 goto failed;
3640         spin_lock_init(&sbinfo->shrinklist_lock);
3641         INIT_LIST_HEAD(&sbinfo->shrinklist);
3642
3643         sb->s_maxbytes = MAX_LFS_FILESIZE;
3644         sb->s_blocksize = PAGE_SIZE;
3645         sb->s_blocksize_bits = PAGE_SHIFT;
3646         sb->s_magic = TMPFS_MAGIC;
3647         sb->s_op = &shmem_ops;
3648         sb->s_time_gran = 1;
3649 #ifdef CONFIG_TMPFS_XATTR
3650         sb->s_xattr = shmem_xattr_handlers;
3651 #endif
3652 #ifdef CONFIG_TMPFS_POSIX_ACL
3653         sb->s_flags |= SB_POSIXACL;
3654 #endif
3655         uuid_gen(&sb->s_uuid);
3656
3657         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3658         if (!inode)
3659                 goto failed;
3660         inode->i_uid = sbinfo->uid;
3661         inode->i_gid = sbinfo->gid;
3662         sb->s_root = d_make_root(inode);
3663         if (!sb->s_root)
3664                 goto failed;
3665         return 0;
3666
3667 failed:
3668         shmem_put_super(sb);
3669         return err;
3670 }
3671
3672 static int shmem_get_tree(struct fs_context *fc)
3673 {
3674         return get_tree_nodev(fc, shmem_fill_super);
3675 }
3676
3677 static void shmem_free_fc(struct fs_context *fc)
3678 {
3679         struct shmem_options *ctx = fc->fs_private;
3680
3681         if (ctx) {
3682                 mpol_put(ctx->mpol);
3683                 kfree(ctx);
3684         }
3685 }
3686
3687 static const struct fs_context_operations shmem_fs_context_ops = {
3688         .free                   = shmem_free_fc,
3689         .get_tree               = shmem_get_tree,
3690 #ifdef CONFIG_TMPFS
3691         .parse_monolithic       = shmem_parse_options,
3692         .parse_param            = shmem_parse_one,
3693         .reconfigure            = shmem_reconfigure,
3694 #endif
3695 };
3696
3697 static struct kmem_cache *shmem_inode_cachep;
3698
3699 static struct inode *shmem_alloc_inode(struct super_block *sb)
3700 {
3701         struct shmem_inode_info *info;
3702         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3703         if (!info)
3704                 return NULL;
3705         return &info->vfs_inode;
3706 }
3707
3708 static void shmem_free_in_core_inode(struct inode *inode)
3709 {
3710         if (S_ISLNK(inode->i_mode))
3711                 kfree(inode->i_link);
3712         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3713 }
3714
3715 static void shmem_destroy_inode(struct inode *inode)
3716 {
3717         if (S_ISREG(inode->i_mode))
3718                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3719 }
3720
3721 static void shmem_init_inode(void *foo)
3722 {
3723         struct shmem_inode_info *info = foo;
3724         inode_init_once(&info->vfs_inode);
3725 }
3726
3727 static void shmem_init_inodecache(void)
3728 {
3729         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3730                                 sizeof(struct shmem_inode_info),
3731                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3732 }
3733
3734 static void shmem_destroy_inodecache(void)
3735 {
3736         kmem_cache_destroy(shmem_inode_cachep);
3737 }
3738
3739 static const struct address_space_operations shmem_aops = {
3740         .writepage      = shmem_writepage,
3741         .set_page_dirty = __set_page_dirty_no_writeback,
3742 #ifdef CONFIG_TMPFS
3743         .write_begin    = shmem_write_begin,
3744         .write_end      = shmem_write_end,
3745 #endif
3746 #ifdef CONFIG_MIGRATION
3747         .migratepage    = migrate_page,
3748 #endif
3749         .error_remove_page = generic_error_remove_page,
3750 };
3751
3752 static const struct file_operations shmem_file_operations = {
3753         .mmap           = shmem_mmap,
3754         .get_unmapped_area = shmem_get_unmapped_area,
3755 #ifdef CONFIG_TMPFS
3756         .llseek         = shmem_file_llseek,
3757         .read_iter      = shmem_file_read_iter,
3758         .write_iter     = generic_file_write_iter,
3759         .fsync          = noop_fsync,
3760         .splice_read    = generic_file_splice_read,
3761         .splice_write   = iter_file_splice_write,
3762         .fallocate      = shmem_fallocate,
3763 #endif
3764 };
3765
3766 static const struct inode_operations shmem_inode_operations = {
3767         .getattr        = shmem_getattr,
3768         .setattr        = shmem_setattr,
3769 #ifdef CONFIG_TMPFS_XATTR
3770         .listxattr      = shmem_listxattr,
3771         .set_acl        = simple_set_acl,
3772 #endif
3773 };
3774
3775 static const struct inode_operations shmem_dir_inode_operations = {
3776 #ifdef CONFIG_TMPFS
3777         .create         = shmem_create,
3778         .lookup         = simple_lookup,
3779         .link           = shmem_link,
3780         .unlink         = shmem_unlink,
3781         .symlink        = shmem_symlink,
3782         .mkdir          = shmem_mkdir,
3783         .rmdir          = shmem_rmdir,
3784         .mknod          = shmem_mknod,
3785         .rename         = shmem_rename2,
3786         .tmpfile        = shmem_tmpfile,
3787 #endif
3788 #ifdef CONFIG_TMPFS_XATTR
3789         .listxattr      = shmem_listxattr,
3790 #endif
3791 #ifdef CONFIG_TMPFS_POSIX_ACL
3792         .setattr        = shmem_setattr,
3793         .set_acl        = simple_set_acl,
3794 #endif
3795 };
3796
3797 static const struct inode_operations shmem_special_inode_operations = {
3798 #ifdef CONFIG_TMPFS_XATTR
3799         .listxattr      = shmem_listxattr,
3800 #endif
3801 #ifdef CONFIG_TMPFS_POSIX_ACL
3802         .setattr        = shmem_setattr,
3803         .set_acl        = simple_set_acl,
3804 #endif
3805 };
3806
3807 static const struct super_operations shmem_ops = {
3808         .alloc_inode    = shmem_alloc_inode,
3809         .free_inode     = shmem_free_in_core_inode,
3810         .destroy_inode  = shmem_destroy_inode,
3811 #ifdef CONFIG_TMPFS
3812         .statfs         = shmem_statfs,
3813         .show_options   = shmem_show_options,
3814 #endif
3815         .evict_inode    = shmem_evict_inode,
3816         .drop_inode     = generic_delete_inode,
3817         .put_super      = shmem_put_super,
3818 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3819         .nr_cached_objects      = shmem_unused_huge_count,
3820         .free_cached_objects    = shmem_unused_huge_scan,
3821 #endif
3822 };
3823
3824 static const struct vm_operations_struct shmem_vm_ops = {
3825         .fault          = shmem_fault,
3826         .map_pages      = filemap_map_pages,
3827 #ifdef CONFIG_NUMA
3828         .set_policy     = shmem_set_policy,
3829         .get_policy     = shmem_get_policy,
3830 #endif
3831 };
3832
3833 int shmem_init_fs_context(struct fs_context *fc)
3834 {
3835         struct shmem_options *ctx;
3836
3837         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3838         if (!ctx)
3839                 return -ENOMEM;
3840
3841         ctx->mode = 0777 | S_ISVTX;
3842         ctx->uid = current_fsuid();
3843         ctx->gid = current_fsgid();
3844
3845         fc->fs_private = ctx;
3846         fc->ops = &shmem_fs_context_ops;
3847         return 0;
3848 }
3849
3850 static struct file_system_type shmem_fs_type = {
3851         .owner          = THIS_MODULE,
3852         .name           = "tmpfs",
3853         .init_fs_context = shmem_init_fs_context,
3854 #ifdef CONFIG_TMPFS
3855         .parameters     = shmem_fs_parameters,
3856 #endif
3857         .kill_sb        = kill_litter_super,
3858         .fs_flags       = FS_USERNS_MOUNT,
3859 };
3860
3861 int __init shmem_init(void)
3862 {
3863         int error;
3864
3865         shmem_init_inodecache();
3866
3867         error = register_filesystem(&shmem_fs_type);
3868         if (error) {
3869                 pr_err("Could not register tmpfs\n");
3870                 goto out2;
3871         }
3872
3873         shm_mnt = kern_mount(&shmem_fs_type);
3874         if (IS_ERR(shm_mnt)) {
3875                 error = PTR_ERR(shm_mnt);
3876                 pr_err("Could not kern_mount tmpfs\n");
3877                 goto out1;
3878         }
3879
3880 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3881         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3882                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3883         else
3884                 shmem_huge = 0; /* just in case it was patched */
3885 #endif
3886         return 0;
3887
3888 out1:
3889         unregister_filesystem(&shmem_fs_type);
3890 out2:
3891         shmem_destroy_inodecache();
3892         shm_mnt = ERR_PTR(error);
3893         return error;
3894 }
3895
3896 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3897 static ssize_t shmem_enabled_show(struct kobject *kobj,
3898                 struct kobj_attribute *attr, char *buf)
3899 {
3900         static const int values[] = {
3901                 SHMEM_HUGE_ALWAYS,
3902                 SHMEM_HUGE_WITHIN_SIZE,
3903                 SHMEM_HUGE_ADVISE,
3904                 SHMEM_HUGE_NEVER,
3905                 SHMEM_HUGE_DENY,
3906                 SHMEM_HUGE_FORCE,
3907         };
3908         int i, count;
3909
3910         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3911                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3912
3913                 count += sprintf(buf + count, fmt,
3914                                 shmem_format_huge(values[i]));
3915         }
3916         buf[count - 1] = '\n';
3917         return count;
3918 }
3919
3920 static ssize_t shmem_enabled_store(struct kobject *kobj,
3921                 struct kobj_attribute *attr, const char *buf, size_t count)
3922 {
3923         char tmp[16];
3924         int huge;
3925
3926         if (count + 1 > sizeof(tmp))
3927                 return -EINVAL;
3928         memcpy(tmp, buf, count);
3929         tmp[count] = '\0';
3930         if (count && tmp[count - 1] == '\n')
3931                 tmp[count - 1] = '\0';
3932
3933         huge = shmem_parse_huge(tmp);
3934         if (huge == -EINVAL)
3935                 return -EINVAL;
3936         if (!has_transparent_hugepage() &&
3937                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3938                 return -EINVAL;
3939
3940         shmem_huge = huge;
3941         if (shmem_huge > SHMEM_HUGE_DENY)
3942                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3943         return count;
3944 }
3945
3946 struct kobj_attribute shmem_enabled_attr =
3947         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3948 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3949
3950 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3951 bool shmem_huge_enabled(struct vm_area_struct *vma)
3952 {
3953         struct inode *inode = file_inode(vma->vm_file);
3954         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3955         loff_t i_size;
3956         pgoff_t off;
3957
3958         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3959             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3960                 return false;
3961         if (shmem_huge == SHMEM_HUGE_FORCE)
3962                 return true;
3963         if (shmem_huge == SHMEM_HUGE_DENY)
3964                 return false;
3965         switch (sbinfo->huge) {
3966                 case SHMEM_HUGE_NEVER:
3967                         return false;
3968                 case SHMEM_HUGE_ALWAYS:
3969                         return true;
3970                 case SHMEM_HUGE_WITHIN_SIZE:
3971                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3972                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
3973                         if (i_size >= HPAGE_PMD_SIZE &&
3974                                         i_size >> PAGE_SHIFT >= off)
3975                                 return true;
3976                         fallthrough;
3977                 case SHMEM_HUGE_ADVISE:
3978                         /* TODO: implement fadvise() hints */
3979                         return (vma->vm_flags & VM_HUGEPAGE);
3980                 default:
3981                         VM_BUG_ON(1);
3982                         return false;
3983         }
3984 }
3985 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3986
3987 #else /* !CONFIG_SHMEM */
3988
3989 /*
3990  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3991  *
3992  * This is intended for small system where the benefits of the full
3993  * shmem code (swap-backed and resource-limited) are outweighed by
3994  * their complexity. On systems without swap this code should be
3995  * effectively equivalent, but much lighter weight.
3996  */
3997
3998 static struct file_system_type shmem_fs_type = {
3999         .name           = "tmpfs",
4000         .init_fs_context = ramfs_init_fs_context,
4001         .parameters     = ramfs_fs_parameters,
4002         .kill_sb        = kill_litter_super,
4003         .fs_flags       = FS_USERNS_MOUNT,
4004 };
4005
4006 int __init shmem_init(void)
4007 {
4008         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4009
4010         shm_mnt = kern_mount(&shmem_fs_type);
4011         BUG_ON(IS_ERR(shm_mnt));
4012
4013         return 0;
4014 }
4015
4016 int shmem_unuse(unsigned int type, bool frontswap,
4017                 unsigned long *fs_pages_to_unuse)
4018 {
4019         return 0;
4020 }
4021
4022 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4023 {
4024         return 0;
4025 }
4026
4027 void shmem_unlock_mapping(struct address_space *mapping)
4028 {
4029 }
4030
4031 #ifdef CONFIG_MMU
4032 unsigned long shmem_get_unmapped_area(struct file *file,
4033                                       unsigned long addr, unsigned long len,
4034                                       unsigned long pgoff, unsigned long flags)
4035 {
4036         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4037 }
4038 #endif
4039
4040 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4041 {
4042         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4043 }
4044 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4045
4046 #define shmem_vm_ops                            generic_file_vm_ops
4047 #define shmem_file_operations                   ramfs_file_operations
4048 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4049 #define shmem_acct_size(flags, size)            0
4050 #define shmem_unacct_size(flags, size)          do {} while (0)
4051
4052 #endif /* CONFIG_SHMEM */
4053
4054 /* common code */
4055
4056 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4057                                        unsigned long flags, unsigned int i_flags)
4058 {
4059         struct inode *inode;
4060         struct file *res;
4061
4062         if (IS_ERR(mnt))
4063                 return ERR_CAST(mnt);
4064
4065         if (size < 0 || size > MAX_LFS_FILESIZE)
4066                 return ERR_PTR(-EINVAL);
4067
4068         if (shmem_acct_size(flags, size))
4069                 return ERR_PTR(-ENOMEM);
4070
4071         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4072                                 flags);
4073         if (unlikely(!inode)) {
4074                 shmem_unacct_size(flags, size);
4075                 return ERR_PTR(-ENOSPC);
4076         }
4077         inode->i_flags |= i_flags;
4078         inode->i_size = size;
4079         clear_nlink(inode);     /* It is unlinked */
4080         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4081         if (!IS_ERR(res))
4082                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4083                                 &shmem_file_operations);
4084         if (IS_ERR(res))
4085                 iput(inode);
4086         return res;
4087 }
4088
4089 /**
4090  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4091  *      kernel internal.  There will be NO LSM permission checks against the
4092  *      underlying inode.  So users of this interface must do LSM checks at a
4093  *      higher layer.  The users are the big_key and shm implementations.  LSM
4094  *      checks are provided at the key or shm level rather than the inode.
4095  * @name: name for dentry (to be seen in /proc/<pid>/maps
4096  * @size: size to be set for the file
4097  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4098  */
4099 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4100 {
4101         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4102 }
4103
4104 /**
4105  * shmem_file_setup - get an unlinked file living in tmpfs
4106  * @name: name for dentry (to be seen in /proc/<pid>/maps
4107  * @size: size to be set for the file
4108  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4109  */
4110 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4111 {
4112         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4113 }
4114 EXPORT_SYMBOL_GPL(shmem_file_setup);
4115
4116 /**
4117  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4118  * @mnt: the tmpfs mount where the file will be created
4119  * @name: name for dentry (to be seen in /proc/<pid>/maps
4120  * @size: size to be set for the file
4121  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4122  */
4123 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4124                                        loff_t size, unsigned long flags)
4125 {
4126         return __shmem_file_setup(mnt, name, size, flags, 0);
4127 }
4128 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4129
4130 /**
4131  * shmem_zero_setup - setup a shared anonymous mapping
4132  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4133  */
4134 int shmem_zero_setup(struct vm_area_struct *vma)
4135 {
4136         struct file *file;
4137         loff_t size = vma->vm_end - vma->vm_start;
4138
4139         /*
4140          * Cloning a new file under mmap_sem leads to a lock ordering conflict
4141          * between XFS directory reading and selinux: since this file is only
4142          * accessible to the user through its mapping, use S_PRIVATE flag to
4143          * bypass file security, in the same way as shmem_kernel_file_setup().
4144          */
4145         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4146         if (IS_ERR(file))
4147                 return PTR_ERR(file);
4148
4149         if (vma->vm_file)
4150                 fput(vma->vm_file);
4151         vma->vm_file = file;
4152         vma->vm_ops = &shmem_vm_ops;
4153
4154         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4155                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4156                         (vma->vm_end & HPAGE_PMD_MASK)) {
4157                 khugepaged_enter(vma, vma->vm_flags);
4158         }
4159
4160         return 0;
4161 }
4162
4163 /**
4164  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4165  * @mapping:    the page's address_space
4166  * @index:      the page index
4167  * @gfp:        the page allocator flags to use if allocating
4168  *
4169  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4170  * with any new page allocations done using the specified allocation flags.
4171  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4172  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4173  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4174  *
4175  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4176  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4177  */
4178 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4179                                          pgoff_t index, gfp_t gfp)
4180 {
4181 #ifdef CONFIG_SHMEM
4182         struct inode *inode = mapping->host;
4183         struct page *page;
4184         int error;
4185
4186         BUG_ON(mapping->a_ops != &shmem_aops);
4187         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4188                                   gfp, NULL, NULL, NULL);
4189         if (error)
4190                 page = ERR_PTR(error);
4191         else
4192                 unlock_page(page);
4193         return page;
4194 #else
4195         /*
4196          * The tiny !SHMEM case uses ramfs without swap
4197          */
4198         return read_cache_page_gfp(mapping, index, gfp);
4199 #endif
4200 }
4201 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);