e28d2593ec2719f00b21387302437442978f0516
[linux-2.6-microblaze.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85
86 #include "internal.h"
87
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96
97 /*
98  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99  * inode->i_private (with i_mutex making sure that it has only one user at
100  * a time): we would prefer not to enlarge the shmem inode just for that.
101  */
102 struct shmem_falloc {
103         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104         pgoff_t start;          /* start of range currently being fallocated */
105         pgoff_t next;           /* the next page offset to be fallocated */
106         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
107         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
108 };
109
110 struct shmem_options {
111         unsigned long long blocks;
112         unsigned long long inodes;
113         struct mempolicy *mpol;
114         kuid_t uid;
115         kgid_t gid;
116         umode_t mode;
117         bool full_inums;
118         int huge;
119         int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129         return totalram_pages() / 2;
130 }
131
132 static unsigned long shmem_default_max_inodes(void)
133 {
134         unsigned long nr_pages = totalram_pages();
135
136         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142                                 struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144                              struct page **pagep, enum sgp_type sgp,
145                              gfp_t gfp, struct vm_area_struct *vma,
146                              vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148                 struct page **pagep, enum sgp_type sgp,
149                 gfp_t gfp, struct vm_area_struct *vma,
150                 struct vm_fault *vmf, vm_fault_t *fault_type);
151
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153                 struct page **pagep, enum sgp_type sgp)
154 {
155         return shmem_getpage_gfp(inode, index, pagep, sgp,
156                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161         return sb->s_fs_info;
162 }
163
164 /*
165  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166  * for shared memory and for shared anonymous (/dev/zero) mappings
167  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168  * consistent with the pre-accounting of private mappings ...
169  */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172         return (flags & VM_NORESERVE) ?
173                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178         if (!(flags & VM_NORESERVE))
179                 vm_unacct_memory(VM_ACCT(size));
180 }
181
182 static inline int shmem_reacct_size(unsigned long flags,
183                 loff_t oldsize, loff_t newsize)
184 {
185         if (!(flags & VM_NORESERVE)) {
186                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187                         return security_vm_enough_memory_mm(current->mm,
188                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
189                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191         }
192         return 0;
193 }
194
195 /*
196  * ... whereas tmpfs objects are accounted incrementally as
197  * pages are allocated, in order to allow large sparse files.
198  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200  */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203         if (!(flags & VM_NORESERVE))
204                 return 0;
205
206         return security_vm_enough_memory_mm(current->mm,
207                         pages * VM_ACCT(PAGE_SIZE));
208 }
209
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212         if (flags & VM_NORESERVE)
213                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218         struct shmem_inode_info *info = SHMEM_I(inode);
219         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220
221         if (shmem_acct_block(info->flags, pages))
222                 return false;
223
224         if (sbinfo->max_blocks) {
225                 if (percpu_counter_compare(&sbinfo->used_blocks,
226                                            sbinfo->max_blocks - pages) > 0)
227                         goto unacct;
228                 percpu_counter_add(&sbinfo->used_blocks, pages);
229         }
230
231         return true;
232
233 unacct:
234         shmem_unacct_blocks(info->flags, pages);
235         return false;
236 }
237
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240         struct shmem_inode_info *info = SHMEM_I(inode);
241         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242
243         if (sbinfo->max_blocks)
244                 percpu_counter_sub(&sbinfo->used_blocks, pages);
245         shmem_unacct_blocks(info->flags, pages);
246 }
247
248 static const struct super_operations shmem_ops;
249 const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259         return vma->vm_ops == &shmem_vm_ops;
260 }
261
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264
265 /*
266  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267  * produces a novel ino for the newly allocated inode.
268  *
269  * It may also be called when making a hard link to permit the space needed by
270  * each dentry. However, in that case, no new inode number is needed since that
271  * internally draws from another pool of inode numbers (currently global
272  * get_next_ino()). This case is indicated by passing NULL as inop.
273  */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278         ino_t ino;
279
280         if (!(sb->s_flags & SB_KERNMOUNT)) {
281                 raw_spin_lock(&sbinfo->stat_lock);
282                 if (sbinfo->max_inodes) {
283                         if (!sbinfo->free_inodes) {
284                                 raw_spin_unlock(&sbinfo->stat_lock);
285                                 return -ENOSPC;
286                         }
287                         sbinfo->free_inodes--;
288                 }
289                 if (inop) {
290                         ino = sbinfo->next_ino++;
291                         if (unlikely(is_zero_ino(ino)))
292                                 ino = sbinfo->next_ino++;
293                         if (unlikely(!sbinfo->full_inums &&
294                                      ino > UINT_MAX)) {
295                                 /*
296                                  * Emulate get_next_ino uint wraparound for
297                                  * compatibility
298                                  */
299                                 if (IS_ENABLED(CONFIG_64BIT))
300                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301                                                 __func__, MINOR(sb->s_dev));
302                                 sbinfo->next_ino = 1;
303                                 ino = sbinfo->next_ino++;
304                         }
305                         *inop = ino;
306                 }
307                 raw_spin_unlock(&sbinfo->stat_lock);
308         } else if (inop) {
309                 /*
310                  * __shmem_file_setup, one of our callers, is lock-free: it
311                  * doesn't hold stat_lock in shmem_reserve_inode since
312                  * max_inodes is always 0, and is called from potentially
313                  * unknown contexts. As such, use a per-cpu batched allocator
314                  * which doesn't require the per-sb stat_lock unless we are at
315                  * the batch boundary.
316                  *
317                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318                  * shmem mounts are not exposed to userspace, so we don't need
319                  * to worry about things like glibc compatibility.
320                  */
321                 ino_t *next_ino;
322
323                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
324                 ino = *next_ino;
325                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
326                         raw_spin_lock(&sbinfo->stat_lock);
327                         ino = sbinfo->next_ino;
328                         sbinfo->next_ino += SHMEM_INO_BATCH;
329                         raw_spin_unlock(&sbinfo->stat_lock);
330                         if (unlikely(is_zero_ino(ino)))
331                                 ino++;
332                 }
333                 *inop = ino;
334                 *next_ino = ++ino;
335                 put_cpu();
336         }
337
338         return 0;
339 }
340
341 static void shmem_free_inode(struct super_block *sb)
342 {
343         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
344         if (sbinfo->max_inodes) {
345                 raw_spin_lock(&sbinfo->stat_lock);
346                 sbinfo->free_inodes++;
347                 raw_spin_unlock(&sbinfo->stat_lock);
348         }
349 }
350
351 /**
352  * shmem_recalc_inode - recalculate the block usage of an inode
353  * @inode: inode to recalc
354  *
355  * We have to calculate the free blocks since the mm can drop
356  * undirtied hole pages behind our back.
357  *
358  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
359  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
360  *
361  * It has to be called with the spinlock held.
362  */
363 static void shmem_recalc_inode(struct inode *inode)
364 {
365         struct shmem_inode_info *info = SHMEM_I(inode);
366         long freed;
367
368         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
369         if (freed > 0) {
370                 info->alloced -= freed;
371                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
372                 shmem_inode_unacct_blocks(inode, freed);
373         }
374 }
375
376 bool shmem_charge(struct inode *inode, long pages)
377 {
378         struct shmem_inode_info *info = SHMEM_I(inode);
379         unsigned long flags;
380
381         if (!shmem_inode_acct_block(inode, pages))
382                 return false;
383
384         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
385         inode->i_mapping->nrpages += pages;
386
387         spin_lock_irqsave(&info->lock, flags);
388         info->alloced += pages;
389         inode->i_blocks += pages * BLOCKS_PER_PAGE;
390         shmem_recalc_inode(inode);
391         spin_unlock_irqrestore(&info->lock, flags);
392
393         return true;
394 }
395
396 void shmem_uncharge(struct inode *inode, long pages)
397 {
398         struct shmem_inode_info *info = SHMEM_I(inode);
399         unsigned long flags;
400
401         /* nrpages adjustment done by __delete_from_page_cache() or caller */
402
403         spin_lock_irqsave(&info->lock, flags);
404         info->alloced -= pages;
405         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
406         shmem_recalc_inode(inode);
407         spin_unlock_irqrestore(&info->lock, flags);
408
409         shmem_inode_unacct_blocks(inode, pages);
410 }
411
412 /*
413  * Replace item expected in xarray by a new item, while holding xa_lock.
414  */
415 static int shmem_replace_entry(struct address_space *mapping,
416                         pgoff_t index, void *expected, void *replacement)
417 {
418         XA_STATE(xas, &mapping->i_pages, index);
419         void *item;
420
421         VM_BUG_ON(!expected);
422         VM_BUG_ON(!replacement);
423         item = xas_load(&xas);
424         if (item != expected)
425                 return -ENOENT;
426         xas_store(&xas, replacement);
427         return 0;
428 }
429
430 /*
431  * Sometimes, before we decide whether to proceed or to fail, we must check
432  * that an entry was not already brought back from swap by a racing thread.
433  *
434  * Checking page is not enough: by the time a SwapCache page is locked, it
435  * might be reused, and again be SwapCache, using the same swap as before.
436  */
437 static bool shmem_confirm_swap(struct address_space *mapping,
438                                pgoff_t index, swp_entry_t swap)
439 {
440         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
441 }
442
443 /*
444  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
445  *
446  * SHMEM_HUGE_NEVER:
447  *      disables huge pages for the mount;
448  * SHMEM_HUGE_ALWAYS:
449  *      enables huge pages for the mount;
450  * SHMEM_HUGE_WITHIN_SIZE:
451  *      only allocate huge pages if the page will be fully within i_size,
452  *      also respect fadvise()/madvise() hints;
453  * SHMEM_HUGE_ADVISE:
454  *      only allocate huge pages if requested with fadvise()/madvise();
455  */
456
457 #define SHMEM_HUGE_NEVER        0
458 #define SHMEM_HUGE_ALWAYS       1
459 #define SHMEM_HUGE_WITHIN_SIZE  2
460 #define SHMEM_HUGE_ADVISE       3
461
462 /*
463  * Special values.
464  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
465  *
466  * SHMEM_HUGE_DENY:
467  *      disables huge on shm_mnt and all mounts, for emergency use;
468  * SHMEM_HUGE_FORCE:
469  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
470  *
471  */
472 #define SHMEM_HUGE_DENY         (-1)
473 #define SHMEM_HUGE_FORCE        (-2)
474
475 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
476 /* ifdef here to avoid bloating shmem.o when not necessary */
477
478 static int shmem_huge __read_mostly;
479
480 #if defined(CONFIG_SYSFS)
481 static int shmem_parse_huge(const char *str)
482 {
483         if (!strcmp(str, "never"))
484                 return SHMEM_HUGE_NEVER;
485         if (!strcmp(str, "always"))
486                 return SHMEM_HUGE_ALWAYS;
487         if (!strcmp(str, "within_size"))
488                 return SHMEM_HUGE_WITHIN_SIZE;
489         if (!strcmp(str, "advise"))
490                 return SHMEM_HUGE_ADVISE;
491         if (!strcmp(str, "deny"))
492                 return SHMEM_HUGE_DENY;
493         if (!strcmp(str, "force"))
494                 return SHMEM_HUGE_FORCE;
495         return -EINVAL;
496 }
497 #endif
498
499 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
500 static const char *shmem_format_huge(int huge)
501 {
502         switch (huge) {
503         case SHMEM_HUGE_NEVER:
504                 return "never";
505         case SHMEM_HUGE_ALWAYS:
506                 return "always";
507         case SHMEM_HUGE_WITHIN_SIZE:
508                 return "within_size";
509         case SHMEM_HUGE_ADVISE:
510                 return "advise";
511         case SHMEM_HUGE_DENY:
512                 return "deny";
513         case SHMEM_HUGE_FORCE:
514                 return "force";
515         default:
516                 VM_BUG_ON(1);
517                 return "bad_val";
518         }
519 }
520 #endif
521
522 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
523                 struct shrink_control *sc, unsigned long nr_to_split)
524 {
525         LIST_HEAD(list), *pos, *next;
526         LIST_HEAD(to_remove);
527         struct inode *inode;
528         struct shmem_inode_info *info;
529         struct page *page;
530         unsigned long batch = sc ? sc->nr_to_scan : 128;
531         int removed = 0, split = 0;
532
533         if (list_empty(&sbinfo->shrinklist))
534                 return SHRINK_STOP;
535
536         spin_lock(&sbinfo->shrinklist_lock);
537         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
538                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
539
540                 /* pin the inode */
541                 inode = igrab(&info->vfs_inode);
542
543                 /* inode is about to be evicted */
544                 if (!inode) {
545                         list_del_init(&info->shrinklist);
546                         removed++;
547                         goto next;
548                 }
549
550                 /* Check if there's anything to gain */
551                 if (round_up(inode->i_size, PAGE_SIZE) ==
552                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
553                         list_move(&info->shrinklist, &to_remove);
554                         removed++;
555                         goto next;
556                 }
557
558                 list_move(&info->shrinklist, &list);
559 next:
560                 if (!--batch)
561                         break;
562         }
563         spin_unlock(&sbinfo->shrinklist_lock);
564
565         list_for_each_safe(pos, next, &to_remove) {
566                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
567                 inode = &info->vfs_inode;
568                 list_del_init(&info->shrinklist);
569                 iput(inode);
570         }
571
572         list_for_each_safe(pos, next, &list) {
573                 int ret;
574
575                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
576                 inode = &info->vfs_inode;
577
578                 if (nr_to_split && split >= nr_to_split)
579                         goto leave;
580
581                 page = find_get_page(inode->i_mapping,
582                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
583                 if (!page)
584                         goto drop;
585
586                 /* No huge page at the end of the file: nothing to split */
587                 if (!PageTransHuge(page)) {
588                         put_page(page);
589                         goto drop;
590                 }
591
592                 /*
593                  * Leave the inode on the list if we failed to lock
594                  * the page at this time.
595                  *
596                  * Waiting for the lock may lead to deadlock in the
597                  * reclaim path.
598                  */
599                 if (!trylock_page(page)) {
600                         put_page(page);
601                         goto leave;
602                 }
603
604                 ret = split_huge_page(page);
605                 unlock_page(page);
606                 put_page(page);
607
608                 /* If split failed leave the inode on the list */
609                 if (ret)
610                         goto leave;
611
612                 split++;
613 drop:
614                 list_del_init(&info->shrinklist);
615                 removed++;
616 leave:
617                 iput(inode);
618         }
619
620         spin_lock(&sbinfo->shrinklist_lock);
621         list_splice_tail(&list, &sbinfo->shrinklist);
622         sbinfo->shrinklist_len -= removed;
623         spin_unlock(&sbinfo->shrinklist_lock);
624
625         return split;
626 }
627
628 static long shmem_unused_huge_scan(struct super_block *sb,
629                 struct shrink_control *sc)
630 {
631         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
632
633         if (!READ_ONCE(sbinfo->shrinklist_len))
634                 return SHRINK_STOP;
635
636         return shmem_unused_huge_shrink(sbinfo, sc, 0);
637 }
638
639 static long shmem_unused_huge_count(struct super_block *sb,
640                 struct shrink_control *sc)
641 {
642         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
643         return READ_ONCE(sbinfo->shrinklist_len);
644 }
645 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
646
647 #define shmem_huge SHMEM_HUGE_DENY
648
649 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
650                 struct shrink_control *sc, unsigned long nr_to_split)
651 {
652         return 0;
653 }
654 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
655
656 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
657 {
658         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
659             (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
660             shmem_huge != SHMEM_HUGE_DENY)
661                 return true;
662         return false;
663 }
664
665 /*
666  * Like add_to_page_cache_locked, but error if expected item has gone.
667  */
668 static int shmem_add_to_page_cache(struct page *page,
669                                    struct address_space *mapping,
670                                    pgoff_t index, void *expected, gfp_t gfp,
671                                    struct mm_struct *charge_mm)
672 {
673         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
674         unsigned long i = 0;
675         unsigned long nr = compound_nr(page);
676         int error;
677
678         VM_BUG_ON_PAGE(PageTail(page), page);
679         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
680         VM_BUG_ON_PAGE(!PageLocked(page), page);
681         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
682         VM_BUG_ON(expected && PageTransHuge(page));
683
684         page_ref_add(page, nr);
685         page->mapping = mapping;
686         page->index = index;
687
688         if (!PageSwapCache(page)) {
689                 error = mem_cgroup_charge(page, charge_mm, gfp);
690                 if (error) {
691                         if (PageTransHuge(page)) {
692                                 count_vm_event(THP_FILE_FALLBACK);
693                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
694                         }
695                         goto error;
696                 }
697         }
698         cgroup_throttle_swaprate(page, gfp);
699
700         do {
701                 void *entry;
702                 xas_lock_irq(&xas);
703                 entry = xas_find_conflict(&xas);
704                 if (entry != expected)
705                         xas_set_err(&xas, -EEXIST);
706                 xas_create_range(&xas);
707                 if (xas_error(&xas))
708                         goto unlock;
709 next:
710                 xas_store(&xas, page);
711                 if (++i < nr) {
712                         xas_next(&xas);
713                         goto next;
714                 }
715                 if (PageTransHuge(page)) {
716                         count_vm_event(THP_FILE_ALLOC);
717                         __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
718                 }
719                 mapping->nrpages += nr;
720                 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
721                 __mod_lruvec_page_state(page, NR_SHMEM, nr);
722 unlock:
723                 xas_unlock_irq(&xas);
724         } while (xas_nomem(&xas, gfp));
725
726         if (xas_error(&xas)) {
727                 error = xas_error(&xas);
728                 goto error;
729         }
730
731         return 0;
732 error:
733         page->mapping = NULL;
734         page_ref_sub(page, nr);
735         return error;
736 }
737
738 /*
739  * Like delete_from_page_cache, but substitutes swap for page.
740  */
741 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
742 {
743         struct address_space *mapping = page->mapping;
744         int error;
745
746         VM_BUG_ON_PAGE(PageCompound(page), page);
747
748         xa_lock_irq(&mapping->i_pages);
749         error = shmem_replace_entry(mapping, page->index, page, radswap);
750         page->mapping = NULL;
751         mapping->nrpages--;
752         __dec_lruvec_page_state(page, NR_FILE_PAGES);
753         __dec_lruvec_page_state(page, NR_SHMEM);
754         xa_unlock_irq(&mapping->i_pages);
755         put_page(page);
756         BUG_ON(error);
757 }
758
759 /*
760  * Remove swap entry from page cache, free the swap and its page cache.
761  */
762 static int shmem_free_swap(struct address_space *mapping,
763                            pgoff_t index, void *radswap)
764 {
765         void *old;
766
767         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
768         if (old != radswap)
769                 return -ENOENT;
770         free_swap_and_cache(radix_to_swp_entry(radswap));
771         return 0;
772 }
773
774 /*
775  * Determine (in bytes) how many of the shmem object's pages mapped by the
776  * given offsets are swapped out.
777  *
778  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
779  * as long as the inode doesn't go away and racy results are not a problem.
780  */
781 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
782                                                 pgoff_t start, pgoff_t end)
783 {
784         XA_STATE(xas, &mapping->i_pages, start);
785         struct page *page;
786         unsigned long swapped = 0;
787
788         rcu_read_lock();
789         xas_for_each(&xas, page, end - 1) {
790                 if (xas_retry(&xas, page))
791                         continue;
792                 if (xa_is_value(page))
793                         swapped++;
794
795                 if (need_resched()) {
796                         xas_pause(&xas);
797                         cond_resched_rcu();
798                 }
799         }
800
801         rcu_read_unlock();
802
803         return swapped << PAGE_SHIFT;
804 }
805
806 /*
807  * Determine (in bytes) how many of the shmem object's pages mapped by the
808  * given vma is swapped out.
809  *
810  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
811  * as long as the inode doesn't go away and racy results are not a problem.
812  */
813 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
814 {
815         struct inode *inode = file_inode(vma->vm_file);
816         struct shmem_inode_info *info = SHMEM_I(inode);
817         struct address_space *mapping = inode->i_mapping;
818         unsigned long swapped;
819
820         /* Be careful as we don't hold info->lock */
821         swapped = READ_ONCE(info->swapped);
822
823         /*
824          * The easier cases are when the shmem object has nothing in swap, or
825          * the vma maps it whole. Then we can simply use the stats that we
826          * already track.
827          */
828         if (!swapped)
829                 return 0;
830
831         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
832                 return swapped << PAGE_SHIFT;
833
834         /* Here comes the more involved part */
835         return shmem_partial_swap_usage(mapping,
836                         linear_page_index(vma, vma->vm_start),
837                         linear_page_index(vma, vma->vm_end));
838 }
839
840 /*
841  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
842  */
843 void shmem_unlock_mapping(struct address_space *mapping)
844 {
845         struct pagevec pvec;
846         pgoff_t index = 0;
847
848         pagevec_init(&pvec);
849         /*
850          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
851          */
852         while (!mapping_unevictable(mapping)) {
853                 if (!pagevec_lookup(&pvec, mapping, &index))
854                         break;
855                 check_move_unevictable_pages(&pvec);
856                 pagevec_release(&pvec);
857                 cond_resched();
858         }
859 }
860
861 /*
862  * Check whether a hole-punch or truncation needs to split a huge page,
863  * returning true if no split was required, or the split has been successful.
864  *
865  * Eviction (or truncation to 0 size) should never need to split a huge page;
866  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
867  * head, and then succeeded to trylock on tail.
868  *
869  * A split can only succeed when there are no additional references on the
870  * huge page: so the split below relies upon find_get_entries() having stopped
871  * when it found a subpage of the huge page, without getting further references.
872  */
873 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
874 {
875         if (!PageTransCompound(page))
876                 return true;
877
878         /* Just proceed to delete a huge page wholly within the range punched */
879         if (PageHead(page) &&
880             page->index >= start && page->index + HPAGE_PMD_NR <= end)
881                 return true;
882
883         /* Try to split huge page, so we can truly punch the hole or truncate */
884         return split_huge_page(page) >= 0;
885 }
886
887 /*
888  * Remove range of pages and swap entries from page cache, and free them.
889  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
890  */
891 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
892                                                                  bool unfalloc)
893 {
894         struct address_space *mapping = inode->i_mapping;
895         struct shmem_inode_info *info = SHMEM_I(inode);
896         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
897         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
898         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
899         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
900         struct pagevec pvec;
901         pgoff_t indices[PAGEVEC_SIZE];
902         long nr_swaps_freed = 0;
903         pgoff_t index;
904         int i;
905
906         if (lend == -1)
907                 end = -1;       /* unsigned, so actually very big */
908
909         pagevec_init(&pvec);
910         index = start;
911         while (index < end && find_lock_entries(mapping, index, end - 1,
912                         &pvec, indices)) {
913                 for (i = 0; i < pagevec_count(&pvec); i++) {
914                         struct page *page = pvec.pages[i];
915
916                         index = indices[i];
917
918                         if (xa_is_value(page)) {
919                                 if (unfalloc)
920                                         continue;
921                                 nr_swaps_freed += !shmem_free_swap(mapping,
922                                                                 index, page);
923                                 continue;
924                         }
925                         index += thp_nr_pages(page) - 1;
926
927                         if (!unfalloc || !PageUptodate(page))
928                                 truncate_inode_page(mapping, page);
929                         unlock_page(page);
930                 }
931                 pagevec_remove_exceptionals(&pvec);
932                 pagevec_release(&pvec);
933                 cond_resched();
934                 index++;
935         }
936
937         if (partial_start) {
938                 struct page *page = NULL;
939                 shmem_getpage(inode, start - 1, &page, SGP_READ);
940                 if (page) {
941                         unsigned int top = PAGE_SIZE;
942                         if (start > end) {
943                                 top = partial_end;
944                                 partial_end = 0;
945                         }
946                         zero_user_segment(page, partial_start, top);
947                         set_page_dirty(page);
948                         unlock_page(page);
949                         put_page(page);
950                 }
951         }
952         if (partial_end) {
953                 struct page *page = NULL;
954                 shmem_getpage(inode, end, &page, SGP_READ);
955                 if (page) {
956                         zero_user_segment(page, 0, partial_end);
957                         set_page_dirty(page);
958                         unlock_page(page);
959                         put_page(page);
960                 }
961         }
962         if (start >= end)
963                 return;
964
965         index = start;
966         while (index < end) {
967                 cond_resched();
968
969                 if (!find_get_entries(mapping, index, end - 1, &pvec,
970                                 indices)) {
971                         /* If all gone or hole-punch or unfalloc, we're done */
972                         if (index == start || end != -1)
973                                 break;
974                         /* But if truncating, restart to make sure all gone */
975                         index = start;
976                         continue;
977                 }
978                 for (i = 0; i < pagevec_count(&pvec); i++) {
979                         struct page *page = pvec.pages[i];
980
981                         index = indices[i];
982                         if (xa_is_value(page)) {
983                                 if (unfalloc)
984                                         continue;
985                                 if (shmem_free_swap(mapping, index, page)) {
986                                         /* Swap was replaced by page: retry */
987                                         index--;
988                                         break;
989                                 }
990                                 nr_swaps_freed++;
991                                 continue;
992                         }
993
994                         lock_page(page);
995
996                         if (!unfalloc || !PageUptodate(page)) {
997                                 if (page_mapping(page) != mapping) {
998                                         /* Page was replaced by swap: retry */
999                                         unlock_page(page);
1000                                         index--;
1001                                         break;
1002                                 }
1003                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1004                                 if (shmem_punch_compound(page, start, end))
1005                                         truncate_inode_page(mapping, page);
1006                                 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1007                                         /* Wipe the page and don't get stuck */
1008                                         clear_highpage(page);
1009                                         flush_dcache_page(page);
1010                                         set_page_dirty(page);
1011                                         if (index <
1012                                             round_up(start, HPAGE_PMD_NR))
1013                                                 start = index + 1;
1014                                 }
1015                         }
1016                         unlock_page(page);
1017                 }
1018                 pagevec_remove_exceptionals(&pvec);
1019                 pagevec_release(&pvec);
1020                 index++;
1021         }
1022
1023         spin_lock_irq(&info->lock);
1024         info->swapped -= nr_swaps_freed;
1025         shmem_recalc_inode(inode);
1026         spin_unlock_irq(&info->lock);
1027 }
1028
1029 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1030 {
1031         shmem_undo_range(inode, lstart, lend, false);
1032         inode->i_ctime = inode->i_mtime = current_time(inode);
1033 }
1034 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1035
1036 static int shmem_getattr(struct user_namespace *mnt_userns,
1037                          const struct path *path, struct kstat *stat,
1038                          u32 request_mask, unsigned int query_flags)
1039 {
1040         struct inode *inode = path->dentry->d_inode;
1041         struct shmem_inode_info *info = SHMEM_I(inode);
1042         struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1043
1044         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1045                 spin_lock_irq(&info->lock);
1046                 shmem_recalc_inode(inode);
1047                 spin_unlock_irq(&info->lock);
1048         }
1049         generic_fillattr(&init_user_ns, inode, stat);
1050
1051         if (is_huge_enabled(sb_info))
1052                 stat->blksize = HPAGE_PMD_SIZE;
1053
1054         return 0;
1055 }
1056
1057 static int shmem_setattr(struct user_namespace *mnt_userns,
1058                          struct dentry *dentry, struct iattr *attr)
1059 {
1060         struct inode *inode = d_inode(dentry);
1061         struct shmem_inode_info *info = SHMEM_I(inode);
1062         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1063         int error;
1064
1065         error = setattr_prepare(&init_user_ns, dentry, attr);
1066         if (error)
1067                 return error;
1068
1069         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1070                 loff_t oldsize = inode->i_size;
1071                 loff_t newsize = attr->ia_size;
1072
1073                 /* protected by i_mutex */
1074                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1075                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1076                         return -EPERM;
1077
1078                 if (newsize != oldsize) {
1079                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1080                                         oldsize, newsize);
1081                         if (error)
1082                                 return error;
1083                         i_size_write(inode, newsize);
1084                         inode->i_ctime = inode->i_mtime = current_time(inode);
1085                 }
1086                 if (newsize <= oldsize) {
1087                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1088                         if (oldsize > holebegin)
1089                                 unmap_mapping_range(inode->i_mapping,
1090                                                         holebegin, 0, 1);
1091                         if (info->alloced)
1092                                 shmem_truncate_range(inode,
1093                                                         newsize, (loff_t)-1);
1094                         /* unmap again to remove racily COWed private pages */
1095                         if (oldsize > holebegin)
1096                                 unmap_mapping_range(inode->i_mapping,
1097                                                         holebegin, 0, 1);
1098
1099                         /*
1100                          * Part of the huge page can be beyond i_size: subject
1101                          * to shrink under memory pressure.
1102                          */
1103                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1104                                 spin_lock(&sbinfo->shrinklist_lock);
1105                                 /*
1106                                  * _careful to defend against unlocked access to
1107                                  * ->shrink_list in shmem_unused_huge_shrink()
1108                                  */
1109                                 if (list_empty_careful(&info->shrinklist)) {
1110                                         list_add_tail(&info->shrinklist,
1111                                                         &sbinfo->shrinklist);
1112                                         sbinfo->shrinklist_len++;
1113                                 }
1114                                 spin_unlock(&sbinfo->shrinklist_lock);
1115                         }
1116                 }
1117         }
1118
1119         setattr_copy(&init_user_ns, inode, attr);
1120         if (attr->ia_valid & ATTR_MODE)
1121                 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1122         return error;
1123 }
1124
1125 static void shmem_evict_inode(struct inode *inode)
1126 {
1127         struct shmem_inode_info *info = SHMEM_I(inode);
1128         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1129
1130         if (shmem_mapping(inode->i_mapping)) {
1131                 shmem_unacct_size(info->flags, inode->i_size);
1132                 inode->i_size = 0;
1133                 shmem_truncate_range(inode, 0, (loff_t)-1);
1134                 if (!list_empty(&info->shrinklist)) {
1135                         spin_lock(&sbinfo->shrinklist_lock);
1136                         if (!list_empty(&info->shrinklist)) {
1137                                 list_del_init(&info->shrinklist);
1138                                 sbinfo->shrinklist_len--;
1139                         }
1140                         spin_unlock(&sbinfo->shrinklist_lock);
1141                 }
1142                 while (!list_empty(&info->swaplist)) {
1143                         /* Wait while shmem_unuse() is scanning this inode... */
1144                         wait_var_event(&info->stop_eviction,
1145                                        !atomic_read(&info->stop_eviction));
1146                         mutex_lock(&shmem_swaplist_mutex);
1147                         /* ...but beware of the race if we peeked too early */
1148                         if (!atomic_read(&info->stop_eviction))
1149                                 list_del_init(&info->swaplist);
1150                         mutex_unlock(&shmem_swaplist_mutex);
1151                 }
1152         }
1153
1154         simple_xattrs_free(&info->xattrs);
1155         WARN_ON(inode->i_blocks);
1156         shmem_free_inode(inode->i_sb);
1157         clear_inode(inode);
1158 }
1159
1160 extern struct swap_info_struct *swap_info[];
1161
1162 static int shmem_find_swap_entries(struct address_space *mapping,
1163                                    pgoff_t start, unsigned int nr_entries,
1164                                    struct page **entries, pgoff_t *indices,
1165                                    unsigned int type, bool frontswap)
1166 {
1167         XA_STATE(xas, &mapping->i_pages, start);
1168         struct page *page;
1169         swp_entry_t entry;
1170         unsigned int ret = 0;
1171
1172         if (!nr_entries)
1173                 return 0;
1174
1175         rcu_read_lock();
1176         xas_for_each(&xas, page, ULONG_MAX) {
1177                 if (xas_retry(&xas, page))
1178                         continue;
1179
1180                 if (!xa_is_value(page))
1181                         continue;
1182
1183                 entry = radix_to_swp_entry(page);
1184                 if (swp_type(entry) != type)
1185                         continue;
1186                 if (frontswap &&
1187                     !frontswap_test(swap_info[type], swp_offset(entry)))
1188                         continue;
1189
1190                 indices[ret] = xas.xa_index;
1191                 entries[ret] = page;
1192
1193                 if (need_resched()) {
1194                         xas_pause(&xas);
1195                         cond_resched_rcu();
1196                 }
1197                 if (++ret == nr_entries)
1198                         break;
1199         }
1200         rcu_read_unlock();
1201
1202         return ret;
1203 }
1204
1205 /*
1206  * Move the swapped pages for an inode to page cache. Returns the count
1207  * of pages swapped in, or the error in case of failure.
1208  */
1209 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1210                                     pgoff_t *indices)
1211 {
1212         int i = 0;
1213         int ret = 0;
1214         int error = 0;
1215         struct address_space *mapping = inode->i_mapping;
1216
1217         for (i = 0; i < pvec.nr; i++) {
1218                 struct page *page = pvec.pages[i];
1219
1220                 if (!xa_is_value(page))
1221                         continue;
1222                 error = shmem_swapin_page(inode, indices[i],
1223                                           &page, SGP_CACHE,
1224                                           mapping_gfp_mask(mapping),
1225                                           NULL, NULL);
1226                 if (error == 0) {
1227                         unlock_page(page);
1228                         put_page(page);
1229                         ret++;
1230                 }
1231                 if (error == -ENOMEM)
1232                         break;
1233                 error = 0;
1234         }
1235         return error ? error : ret;
1236 }
1237
1238 /*
1239  * If swap found in inode, free it and move page from swapcache to filecache.
1240  */
1241 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1242                              bool frontswap, unsigned long *fs_pages_to_unuse)
1243 {
1244         struct address_space *mapping = inode->i_mapping;
1245         pgoff_t start = 0;
1246         struct pagevec pvec;
1247         pgoff_t indices[PAGEVEC_SIZE];
1248         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1249         int ret = 0;
1250
1251         pagevec_init(&pvec);
1252         do {
1253                 unsigned int nr_entries = PAGEVEC_SIZE;
1254
1255                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1256                         nr_entries = *fs_pages_to_unuse;
1257
1258                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1259                                                   pvec.pages, indices,
1260                                                   type, frontswap);
1261                 if (pvec.nr == 0) {
1262                         ret = 0;
1263                         break;
1264                 }
1265
1266                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1267                 if (ret < 0)
1268                         break;
1269
1270                 if (frontswap_partial) {
1271                         *fs_pages_to_unuse -= ret;
1272                         if (*fs_pages_to_unuse == 0) {
1273                                 ret = FRONTSWAP_PAGES_UNUSED;
1274                                 break;
1275                         }
1276                 }
1277
1278                 start = indices[pvec.nr - 1];
1279         } while (true);
1280
1281         return ret;
1282 }
1283
1284 /*
1285  * Read all the shared memory data that resides in the swap
1286  * device 'type' back into memory, so the swap device can be
1287  * unused.
1288  */
1289 int shmem_unuse(unsigned int type, bool frontswap,
1290                 unsigned long *fs_pages_to_unuse)
1291 {
1292         struct shmem_inode_info *info, *next;
1293         int error = 0;
1294
1295         if (list_empty(&shmem_swaplist))
1296                 return 0;
1297
1298         mutex_lock(&shmem_swaplist_mutex);
1299         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1300                 if (!info->swapped) {
1301                         list_del_init(&info->swaplist);
1302                         continue;
1303                 }
1304                 /*
1305                  * Drop the swaplist mutex while searching the inode for swap;
1306                  * but before doing so, make sure shmem_evict_inode() will not
1307                  * remove placeholder inode from swaplist, nor let it be freed
1308                  * (igrab() would protect from unlink, but not from unmount).
1309                  */
1310                 atomic_inc(&info->stop_eviction);
1311                 mutex_unlock(&shmem_swaplist_mutex);
1312
1313                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1314                                           fs_pages_to_unuse);
1315                 cond_resched();
1316
1317                 mutex_lock(&shmem_swaplist_mutex);
1318                 next = list_next_entry(info, swaplist);
1319                 if (!info->swapped)
1320                         list_del_init(&info->swaplist);
1321                 if (atomic_dec_and_test(&info->stop_eviction))
1322                         wake_up_var(&info->stop_eviction);
1323                 if (error)
1324                         break;
1325         }
1326         mutex_unlock(&shmem_swaplist_mutex);
1327
1328         return error;
1329 }
1330
1331 /*
1332  * Move the page from the page cache to the swap cache.
1333  */
1334 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1335 {
1336         struct shmem_inode_info *info;
1337         struct address_space *mapping;
1338         struct inode *inode;
1339         swp_entry_t swap;
1340         pgoff_t index;
1341
1342         VM_BUG_ON_PAGE(PageCompound(page), page);
1343         BUG_ON(!PageLocked(page));
1344         mapping = page->mapping;
1345         index = page->index;
1346         inode = mapping->host;
1347         info = SHMEM_I(inode);
1348         if (info->flags & VM_LOCKED)
1349                 goto redirty;
1350         if (!total_swap_pages)
1351                 goto redirty;
1352
1353         /*
1354          * Our capabilities prevent regular writeback or sync from ever calling
1355          * shmem_writepage; but a stacking filesystem might use ->writepage of
1356          * its underlying filesystem, in which case tmpfs should write out to
1357          * swap only in response to memory pressure, and not for the writeback
1358          * threads or sync.
1359          */
1360         if (!wbc->for_reclaim) {
1361                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1362                 goto redirty;
1363         }
1364
1365         /*
1366          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1367          * value into swapfile.c, the only way we can correctly account for a
1368          * fallocated page arriving here is now to initialize it and write it.
1369          *
1370          * That's okay for a page already fallocated earlier, but if we have
1371          * not yet completed the fallocation, then (a) we want to keep track
1372          * of this page in case we have to undo it, and (b) it may not be a
1373          * good idea to continue anyway, once we're pushing into swap.  So
1374          * reactivate the page, and let shmem_fallocate() quit when too many.
1375          */
1376         if (!PageUptodate(page)) {
1377                 if (inode->i_private) {
1378                         struct shmem_falloc *shmem_falloc;
1379                         spin_lock(&inode->i_lock);
1380                         shmem_falloc = inode->i_private;
1381                         if (shmem_falloc &&
1382                             !shmem_falloc->waitq &&
1383                             index >= shmem_falloc->start &&
1384                             index < shmem_falloc->next)
1385                                 shmem_falloc->nr_unswapped++;
1386                         else
1387                                 shmem_falloc = NULL;
1388                         spin_unlock(&inode->i_lock);
1389                         if (shmem_falloc)
1390                                 goto redirty;
1391                 }
1392                 clear_highpage(page);
1393                 flush_dcache_page(page);
1394                 SetPageUptodate(page);
1395         }
1396
1397         swap = get_swap_page(page);
1398         if (!swap.val)
1399                 goto redirty;
1400
1401         /*
1402          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1403          * if it's not already there.  Do it now before the page is
1404          * moved to swap cache, when its pagelock no longer protects
1405          * the inode from eviction.  But don't unlock the mutex until
1406          * we've incremented swapped, because shmem_unuse_inode() will
1407          * prune a !swapped inode from the swaplist under this mutex.
1408          */
1409         mutex_lock(&shmem_swaplist_mutex);
1410         if (list_empty(&info->swaplist))
1411                 list_add(&info->swaplist, &shmem_swaplist);
1412
1413         if (add_to_swap_cache(page, swap,
1414                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1415                         NULL) == 0) {
1416                 spin_lock_irq(&info->lock);
1417                 shmem_recalc_inode(inode);
1418                 info->swapped++;
1419                 spin_unlock_irq(&info->lock);
1420
1421                 swap_shmem_alloc(swap);
1422                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1423
1424                 mutex_unlock(&shmem_swaplist_mutex);
1425                 BUG_ON(page_mapped(page));
1426                 swap_writepage(page, wbc);
1427                 return 0;
1428         }
1429
1430         mutex_unlock(&shmem_swaplist_mutex);
1431         put_swap_page(page, swap);
1432 redirty:
1433         set_page_dirty(page);
1434         if (wbc->for_reclaim)
1435                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1436         unlock_page(page);
1437         return 0;
1438 }
1439
1440 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1441 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1442 {
1443         char buffer[64];
1444
1445         if (!mpol || mpol->mode == MPOL_DEFAULT)
1446                 return;         /* show nothing */
1447
1448         mpol_to_str(buffer, sizeof(buffer), mpol);
1449
1450         seq_printf(seq, ",mpol=%s", buffer);
1451 }
1452
1453 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1454 {
1455         struct mempolicy *mpol = NULL;
1456         if (sbinfo->mpol) {
1457                 raw_spin_lock(&sbinfo->stat_lock);      /* prevent replace/use races */
1458                 mpol = sbinfo->mpol;
1459                 mpol_get(mpol);
1460                 raw_spin_unlock(&sbinfo->stat_lock);
1461         }
1462         return mpol;
1463 }
1464 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1465 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1466 {
1467 }
1468 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1469 {
1470         return NULL;
1471 }
1472 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1473 #ifndef CONFIG_NUMA
1474 #define vm_policy vm_private_data
1475 #endif
1476
1477 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1478                 struct shmem_inode_info *info, pgoff_t index)
1479 {
1480         /* Create a pseudo vma that just contains the policy */
1481         vma_init(vma, NULL);
1482         /* Bias interleave by inode number to distribute better across nodes */
1483         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1484         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1485 }
1486
1487 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1488 {
1489         /* Drop reference taken by mpol_shared_policy_lookup() */
1490         mpol_cond_put(vma->vm_policy);
1491 }
1492
1493 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1494                         struct shmem_inode_info *info, pgoff_t index)
1495 {
1496         struct vm_area_struct pvma;
1497         struct page *page;
1498         struct vm_fault vmf = {
1499                 .vma = &pvma,
1500         };
1501
1502         shmem_pseudo_vma_init(&pvma, info, index);
1503         page = swap_cluster_readahead(swap, gfp, &vmf);
1504         shmem_pseudo_vma_destroy(&pvma);
1505
1506         return page;
1507 }
1508
1509 /*
1510  * Make sure huge_gfp is always more limited than limit_gfp.
1511  * Some of the flags set permissions, while others set limitations.
1512  */
1513 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1514 {
1515         gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1516         gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1517         gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1518         gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1519
1520         /* Allow allocations only from the originally specified zones. */
1521         result |= zoneflags;
1522
1523         /*
1524          * Minimize the result gfp by taking the union with the deny flags,
1525          * and the intersection of the allow flags.
1526          */
1527         result |= (limit_gfp & denyflags);
1528         result |= (huge_gfp & limit_gfp) & allowflags;
1529
1530         return result;
1531 }
1532
1533 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1534                 struct shmem_inode_info *info, pgoff_t index)
1535 {
1536         struct vm_area_struct pvma;
1537         struct address_space *mapping = info->vfs_inode.i_mapping;
1538         pgoff_t hindex;
1539         struct page *page;
1540
1541         hindex = round_down(index, HPAGE_PMD_NR);
1542         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1543                                                                 XA_PRESENT))
1544                 return NULL;
1545
1546         shmem_pseudo_vma_init(&pvma, info, hindex);
1547         page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1548                                true);
1549         shmem_pseudo_vma_destroy(&pvma);
1550         if (page)
1551                 prep_transhuge_page(page);
1552         else
1553                 count_vm_event(THP_FILE_FALLBACK);
1554         return page;
1555 }
1556
1557 static struct page *shmem_alloc_page(gfp_t gfp,
1558                         struct shmem_inode_info *info, pgoff_t index)
1559 {
1560         struct vm_area_struct pvma;
1561         struct page *page;
1562
1563         shmem_pseudo_vma_init(&pvma, info, index);
1564         page = alloc_page_vma(gfp, &pvma, 0);
1565         shmem_pseudo_vma_destroy(&pvma);
1566
1567         return page;
1568 }
1569
1570 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1571                 struct inode *inode,
1572                 pgoff_t index, bool huge)
1573 {
1574         struct shmem_inode_info *info = SHMEM_I(inode);
1575         struct page *page;
1576         int nr;
1577         int err = -ENOSPC;
1578
1579         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1580                 huge = false;
1581         nr = huge ? HPAGE_PMD_NR : 1;
1582
1583         if (!shmem_inode_acct_block(inode, nr))
1584                 goto failed;
1585
1586         if (huge)
1587                 page = shmem_alloc_hugepage(gfp, info, index);
1588         else
1589                 page = shmem_alloc_page(gfp, info, index);
1590         if (page) {
1591                 __SetPageLocked(page);
1592                 __SetPageSwapBacked(page);
1593                 return page;
1594         }
1595
1596         err = -ENOMEM;
1597         shmem_inode_unacct_blocks(inode, nr);
1598 failed:
1599         return ERR_PTR(err);
1600 }
1601
1602 /*
1603  * When a page is moved from swapcache to shmem filecache (either by the
1604  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1605  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1606  * ignorance of the mapping it belongs to.  If that mapping has special
1607  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1608  * we may need to copy to a suitable page before moving to filecache.
1609  *
1610  * In a future release, this may well be extended to respect cpuset and
1611  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1612  * but for now it is a simple matter of zone.
1613  */
1614 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1615 {
1616         return page_zonenum(page) > gfp_zone(gfp);
1617 }
1618
1619 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1620                                 struct shmem_inode_info *info, pgoff_t index)
1621 {
1622         struct page *oldpage, *newpage;
1623         struct address_space *swap_mapping;
1624         swp_entry_t entry;
1625         pgoff_t swap_index;
1626         int error;
1627
1628         oldpage = *pagep;
1629         entry.val = page_private(oldpage);
1630         swap_index = swp_offset(entry);
1631         swap_mapping = page_mapping(oldpage);
1632
1633         /*
1634          * We have arrived here because our zones are constrained, so don't
1635          * limit chance of success by further cpuset and node constraints.
1636          */
1637         gfp &= ~GFP_CONSTRAINT_MASK;
1638         newpage = shmem_alloc_page(gfp, info, index);
1639         if (!newpage)
1640                 return -ENOMEM;
1641
1642         get_page(newpage);
1643         copy_highpage(newpage, oldpage);
1644         flush_dcache_page(newpage);
1645
1646         __SetPageLocked(newpage);
1647         __SetPageSwapBacked(newpage);
1648         SetPageUptodate(newpage);
1649         set_page_private(newpage, entry.val);
1650         SetPageSwapCache(newpage);
1651
1652         /*
1653          * Our caller will very soon move newpage out of swapcache, but it's
1654          * a nice clean interface for us to replace oldpage by newpage there.
1655          */
1656         xa_lock_irq(&swap_mapping->i_pages);
1657         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1658         if (!error) {
1659                 mem_cgroup_migrate(oldpage, newpage);
1660                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1661                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1662         }
1663         xa_unlock_irq(&swap_mapping->i_pages);
1664
1665         if (unlikely(error)) {
1666                 /*
1667                  * Is this possible?  I think not, now that our callers check
1668                  * both PageSwapCache and page_private after getting page lock;
1669                  * but be defensive.  Reverse old to newpage for clear and free.
1670                  */
1671                 oldpage = newpage;
1672         } else {
1673                 lru_cache_add(newpage);
1674                 *pagep = newpage;
1675         }
1676
1677         ClearPageSwapCache(oldpage);
1678         set_page_private(oldpage, 0);
1679
1680         unlock_page(oldpage);
1681         put_page(oldpage);
1682         put_page(oldpage);
1683         return error;
1684 }
1685
1686 /*
1687  * Swap in the page pointed to by *pagep.
1688  * Caller has to make sure that *pagep contains a valid swapped page.
1689  * Returns 0 and the page in pagep if success. On failure, returns the
1690  * error code and NULL in *pagep.
1691  */
1692 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1693                              struct page **pagep, enum sgp_type sgp,
1694                              gfp_t gfp, struct vm_area_struct *vma,
1695                              vm_fault_t *fault_type)
1696 {
1697         struct address_space *mapping = inode->i_mapping;
1698         struct shmem_inode_info *info = SHMEM_I(inode);
1699         struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1700         struct page *page;
1701         swp_entry_t swap;
1702         int error;
1703
1704         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1705         swap = radix_to_swp_entry(*pagep);
1706         *pagep = NULL;
1707
1708         /* Look it up and read it in.. */
1709         page = lookup_swap_cache(swap, NULL, 0);
1710         if (!page) {
1711                 /* Or update major stats only when swapin succeeds?? */
1712                 if (fault_type) {
1713                         *fault_type |= VM_FAULT_MAJOR;
1714                         count_vm_event(PGMAJFAULT);
1715                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1716                 }
1717                 /* Here we actually start the io */
1718                 page = shmem_swapin(swap, gfp, info, index);
1719                 if (!page) {
1720                         error = -ENOMEM;
1721                         goto failed;
1722                 }
1723         }
1724
1725         /* We have to do this with page locked to prevent races */
1726         lock_page(page);
1727         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1728             !shmem_confirm_swap(mapping, index, swap)) {
1729                 error = -EEXIST;
1730                 goto unlock;
1731         }
1732         if (!PageUptodate(page)) {
1733                 error = -EIO;
1734                 goto failed;
1735         }
1736         wait_on_page_writeback(page);
1737
1738         /*
1739          * Some architectures may have to restore extra metadata to the
1740          * physical page after reading from swap.
1741          */
1742         arch_swap_restore(swap, page);
1743
1744         if (shmem_should_replace_page(page, gfp)) {
1745                 error = shmem_replace_page(&page, gfp, info, index);
1746                 if (error)
1747                         goto failed;
1748         }
1749
1750         error = shmem_add_to_page_cache(page, mapping, index,
1751                                         swp_to_radix_entry(swap), gfp,
1752                                         charge_mm);
1753         if (error)
1754                 goto failed;
1755
1756         spin_lock_irq(&info->lock);
1757         info->swapped--;
1758         shmem_recalc_inode(inode);
1759         spin_unlock_irq(&info->lock);
1760
1761         if (sgp == SGP_WRITE)
1762                 mark_page_accessed(page);
1763
1764         delete_from_swap_cache(page);
1765         set_page_dirty(page);
1766         swap_free(swap);
1767
1768         *pagep = page;
1769         return 0;
1770 failed:
1771         if (!shmem_confirm_swap(mapping, index, swap))
1772                 error = -EEXIST;
1773 unlock:
1774         if (page) {
1775                 unlock_page(page);
1776                 put_page(page);
1777         }
1778
1779         return error;
1780 }
1781
1782 /*
1783  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1784  *
1785  * If we allocate a new one we do not mark it dirty. That's up to the
1786  * vm. If we swap it in we mark it dirty since we also free the swap
1787  * entry since a page cannot live in both the swap and page cache.
1788  *
1789  * vma, vmf, and fault_type are only supplied by shmem_fault:
1790  * otherwise they are NULL.
1791  */
1792 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1793         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1794         struct vm_area_struct *vma, struct vm_fault *vmf,
1795                         vm_fault_t *fault_type)
1796 {
1797         struct address_space *mapping = inode->i_mapping;
1798         struct shmem_inode_info *info = SHMEM_I(inode);
1799         struct shmem_sb_info *sbinfo;
1800         struct mm_struct *charge_mm;
1801         struct page *page;
1802         enum sgp_type sgp_huge = sgp;
1803         pgoff_t hindex = index;
1804         gfp_t huge_gfp;
1805         int error;
1806         int once = 0;
1807         int alloced = 0;
1808
1809         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1810                 return -EFBIG;
1811         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1812                 sgp = SGP_CACHE;
1813 repeat:
1814         if (sgp <= SGP_CACHE &&
1815             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1816                 return -EINVAL;
1817         }
1818
1819         sbinfo = SHMEM_SB(inode->i_sb);
1820         charge_mm = vma ? vma->vm_mm : NULL;
1821
1822         page = pagecache_get_page(mapping, index,
1823                                         FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1824
1825         if (page && vma && userfaultfd_minor(vma)) {
1826                 if (!xa_is_value(page)) {
1827                         unlock_page(page);
1828                         put_page(page);
1829                 }
1830                 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1831                 return 0;
1832         }
1833
1834         if (xa_is_value(page)) {
1835                 error = shmem_swapin_page(inode, index, &page,
1836                                           sgp, gfp, vma, fault_type);
1837                 if (error == -EEXIST)
1838                         goto repeat;
1839
1840                 *pagep = page;
1841                 return error;
1842         }
1843
1844         if (page)
1845                 hindex = page->index;
1846         if (page && sgp == SGP_WRITE)
1847                 mark_page_accessed(page);
1848
1849         /* fallocated page? */
1850         if (page && !PageUptodate(page)) {
1851                 if (sgp != SGP_READ)
1852                         goto clear;
1853                 unlock_page(page);
1854                 put_page(page);
1855                 page = NULL;
1856                 hindex = index;
1857         }
1858         if (page || sgp == SGP_READ)
1859                 goto out;
1860
1861         /*
1862          * Fast cache lookup did not find it:
1863          * bring it back from swap or allocate.
1864          */
1865
1866         if (vma && userfaultfd_missing(vma)) {
1867                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1868                 return 0;
1869         }
1870
1871         /* shmem_symlink() */
1872         if (!shmem_mapping(mapping))
1873                 goto alloc_nohuge;
1874         if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1875                 goto alloc_nohuge;
1876         if (shmem_huge == SHMEM_HUGE_FORCE)
1877                 goto alloc_huge;
1878         switch (sbinfo->huge) {
1879         case SHMEM_HUGE_NEVER:
1880                 goto alloc_nohuge;
1881         case SHMEM_HUGE_WITHIN_SIZE: {
1882                 loff_t i_size;
1883                 pgoff_t off;
1884
1885                 off = round_up(index, HPAGE_PMD_NR);
1886                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1887                 if (i_size >= HPAGE_PMD_SIZE &&
1888                     i_size >> PAGE_SHIFT >= off)
1889                         goto alloc_huge;
1890
1891                 fallthrough;
1892         }
1893         case SHMEM_HUGE_ADVISE:
1894                 if (sgp_huge == SGP_HUGE)
1895                         goto alloc_huge;
1896                 /* TODO: implement fadvise() hints */
1897                 goto alloc_nohuge;
1898         }
1899
1900 alloc_huge:
1901         huge_gfp = vma_thp_gfp_mask(vma);
1902         huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1903         page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1904         if (IS_ERR(page)) {
1905 alloc_nohuge:
1906                 page = shmem_alloc_and_acct_page(gfp, inode,
1907                                                  index, false);
1908         }
1909         if (IS_ERR(page)) {
1910                 int retry = 5;
1911
1912                 error = PTR_ERR(page);
1913                 page = NULL;
1914                 if (error != -ENOSPC)
1915                         goto unlock;
1916                 /*
1917                  * Try to reclaim some space by splitting a huge page
1918                  * beyond i_size on the filesystem.
1919                  */
1920                 while (retry--) {
1921                         int ret;
1922
1923                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1924                         if (ret == SHRINK_STOP)
1925                                 break;
1926                         if (ret)
1927                                 goto alloc_nohuge;
1928                 }
1929                 goto unlock;
1930         }
1931
1932         if (PageTransHuge(page))
1933                 hindex = round_down(index, HPAGE_PMD_NR);
1934         else
1935                 hindex = index;
1936
1937         if (sgp == SGP_WRITE)
1938                 __SetPageReferenced(page);
1939
1940         error = shmem_add_to_page_cache(page, mapping, hindex,
1941                                         NULL, gfp & GFP_RECLAIM_MASK,
1942                                         charge_mm);
1943         if (error)
1944                 goto unacct;
1945         lru_cache_add(page);
1946
1947         spin_lock_irq(&info->lock);
1948         info->alloced += compound_nr(page);
1949         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1950         shmem_recalc_inode(inode);
1951         spin_unlock_irq(&info->lock);
1952         alloced = true;
1953
1954         if (PageTransHuge(page) &&
1955             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1956                         hindex + HPAGE_PMD_NR - 1) {
1957                 /*
1958                  * Part of the huge page is beyond i_size: subject
1959                  * to shrink under memory pressure.
1960                  */
1961                 spin_lock(&sbinfo->shrinklist_lock);
1962                 /*
1963                  * _careful to defend against unlocked access to
1964                  * ->shrink_list in shmem_unused_huge_shrink()
1965                  */
1966                 if (list_empty_careful(&info->shrinklist)) {
1967                         list_add_tail(&info->shrinklist,
1968                                       &sbinfo->shrinklist);
1969                         sbinfo->shrinklist_len++;
1970                 }
1971                 spin_unlock(&sbinfo->shrinklist_lock);
1972         }
1973
1974         /*
1975          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1976          */
1977         if (sgp == SGP_FALLOC)
1978                 sgp = SGP_WRITE;
1979 clear:
1980         /*
1981          * Let SGP_WRITE caller clear ends if write does not fill page;
1982          * but SGP_FALLOC on a page fallocated earlier must initialize
1983          * it now, lest undo on failure cancel our earlier guarantee.
1984          */
1985         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1986                 int i;
1987
1988                 for (i = 0; i < compound_nr(page); i++) {
1989                         clear_highpage(page + i);
1990                         flush_dcache_page(page + i);
1991                 }
1992                 SetPageUptodate(page);
1993         }
1994
1995         /* Perhaps the file has been truncated since we checked */
1996         if (sgp <= SGP_CACHE &&
1997             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1998                 if (alloced) {
1999                         ClearPageDirty(page);
2000                         delete_from_page_cache(page);
2001                         spin_lock_irq(&info->lock);
2002                         shmem_recalc_inode(inode);
2003                         spin_unlock_irq(&info->lock);
2004                 }
2005                 error = -EINVAL;
2006                 goto unlock;
2007         }
2008 out:
2009         *pagep = page + index - hindex;
2010         return 0;
2011
2012         /*
2013          * Error recovery.
2014          */
2015 unacct:
2016         shmem_inode_unacct_blocks(inode, compound_nr(page));
2017
2018         if (PageTransHuge(page)) {
2019                 unlock_page(page);
2020                 put_page(page);
2021                 goto alloc_nohuge;
2022         }
2023 unlock:
2024         if (page) {
2025                 unlock_page(page);
2026                 put_page(page);
2027         }
2028         if (error == -ENOSPC && !once++) {
2029                 spin_lock_irq(&info->lock);
2030                 shmem_recalc_inode(inode);
2031                 spin_unlock_irq(&info->lock);
2032                 goto repeat;
2033         }
2034         if (error == -EEXIST)
2035                 goto repeat;
2036         return error;
2037 }
2038
2039 /*
2040  * This is like autoremove_wake_function, but it removes the wait queue
2041  * entry unconditionally - even if something else had already woken the
2042  * target.
2043  */
2044 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2045 {
2046         int ret = default_wake_function(wait, mode, sync, key);
2047         list_del_init(&wait->entry);
2048         return ret;
2049 }
2050
2051 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2052 {
2053         struct vm_area_struct *vma = vmf->vma;
2054         struct inode *inode = file_inode(vma->vm_file);
2055         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2056         enum sgp_type sgp;
2057         int err;
2058         vm_fault_t ret = VM_FAULT_LOCKED;
2059
2060         /*
2061          * Trinity finds that probing a hole which tmpfs is punching can
2062          * prevent the hole-punch from ever completing: which in turn
2063          * locks writers out with its hold on i_mutex.  So refrain from
2064          * faulting pages into the hole while it's being punched.  Although
2065          * shmem_undo_range() does remove the additions, it may be unable to
2066          * keep up, as each new page needs its own unmap_mapping_range() call,
2067          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2068          *
2069          * It does not matter if we sometimes reach this check just before the
2070          * hole-punch begins, so that one fault then races with the punch:
2071          * we just need to make racing faults a rare case.
2072          *
2073          * The implementation below would be much simpler if we just used a
2074          * standard mutex or completion: but we cannot take i_mutex in fault,
2075          * and bloating every shmem inode for this unlikely case would be sad.
2076          */
2077         if (unlikely(inode->i_private)) {
2078                 struct shmem_falloc *shmem_falloc;
2079
2080                 spin_lock(&inode->i_lock);
2081                 shmem_falloc = inode->i_private;
2082                 if (shmem_falloc &&
2083                     shmem_falloc->waitq &&
2084                     vmf->pgoff >= shmem_falloc->start &&
2085                     vmf->pgoff < shmem_falloc->next) {
2086                         struct file *fpin;
2087                         wait_queue_head_t *shmem_falloc_waitq;
2088                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2089
2090                         ret = VM_FAULT_NOPAGE;
2091                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2092                         if (fpin)
2093                                 ret = VM_FAULT_RETRY;
2094
2095                         shmem_falloc_waitq = shmem_falloc->waitq;
2096                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2097                                         TASK_UNINTERRUPTIBLE);
2098                         spin_unlock(&inode->i_lock);
2099                         schedule();
2100
2101                         /*
2102                          * shmem_falloc_waitq points into the shmem_fallocate()
2103                          * stack of the hole-punching task: shmem_falloc_waitq
2104                          * is usually invalid by the time we reach here, but
2105                          * finish_wait() does not dereference it in that case;
2106                          * though i_lock needed lest racing with wake_up_all().
2107                          */
2108                         spin_lock(&inode->i_lock);
2109                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2110                         spin_unlock(&inode->i_lock);
2111
2112                         if (fpin)
2113                                 fput(fpin);
2114                         return ret;
2115                 }
2116                 spin_unlock(&inode->i_lock);
2117         }
2118
2119         sgp = SGP_CACHE;
2120
2121         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2122             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2123                 sgp = SGP_NOHUGE;
2124         else if (vma->vm_flags & VM_HUGEPAGE)
2125                 sgp = SGP_HUGE;
2126
2127         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2128                                   gfp, vma, vmf, &ret);
2129         if (err)
2130                 return vmf_error(err);
2131         return ret;
2132 }
2133
2134 unsigned long shmem_get_unmapped_area(struct file *file,
2135                                       unsigned long uaddr, unsigned long len,
2136                                       unsigned long pgoff, unsigned long flags)
2137 {
2138         unsigned long (*get_area)(struct file *,
2139                 unsigned long, unsigned long, unsigned long, unsigned long);
2140         unsigned long addr;
2141         unsigned long offset;
2142         unsigned long inflated_len;
2143         unsigned long inflated_addr;
2144         unsigned long inflated_offset;
2145
2146         if (len > TASK_SIZE)
2147                 return -ENOMEM;
2148
2149         get_area = current->mm->get_unmapped_area;
2150         addr = get_area(file, uaddr, len, pgoff, flags);
2151
2152         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2153                 return addr;
2154         if (IS_ERR_VALUE(addr))
2155                 return addr;
2156         if (addr & ~PAGE_MASK)
2157                 return addr;
2158         if (addr > TASK_SIZE - len)
2159                 return addr;
2160
2161         if (shmem_huge == SHMEM_HUGE_DENY)
2162                 return addr;
2163         if (len < HPAGE_PMD_SIZE)
2164                 return addr;
2165         if (flags & MAP_FIXED)
2166                 return addr;
2167         /*
2168          * Our priority is to support MAP_SHARED mapped hugely;
2169          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2170          * But if caller specified an address hint and we allocated area there
2171          * successfully, respect that as before.
2172          */
2173         if (uaddr == addr)
2174                 return addr;
2175
2176         if (shmem_huge != SHMEM_HUGE_FORCE) {
2177                 struct super_block *sb;
2178
2179                 if (file) {
2180                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2181                         sb = file_inode(file)->i_sb;
2182                 } else {
2183                         /*
2184                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2185                          * for "/dev/zero", to create a shared anonymous object.
2186                          */
2187                         if (IS_ERR(shm_mnt))
2188                                 return addr;
2189                         sb = shm_mnt->mnt_sb;
2190                 }
2191                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2192                         return addr;
2193         }
2194
2195         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2196         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2197                 return addr;
2198         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2199                 return addr;
2200
2201         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2202         if (inflated_len > TASK_SIZE)
2203                 return addr;
2204         if (inflated_len < len)
2205                 return addr;
2206
2207         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2208         if (IS_ERR_VALUE(inflated_addr))
2209                 return addr;
2210         if (inflated_addr & ~PAGE_MASK)
2211                 return addr;
2212
2213         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2214         inflated_addr += offset - inflated_offset;
2215         if (inflated_offset > offset)
2216                 inflated_addr += HPAGE_PMD_SIZE;
2217
2218         if (inflated_addr > TASK_SIZE - len)
2219                 return addr;
2220         return inflated_addr;
2221 }
2222
2223 #ifdef CONFIG_NUMA
2224 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2225 {
2226         struct inode *inode = file_inode(vma->vm_file);
2227         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2228 }
2229
2230 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2231                                           unsigned long addr)
2232 {
2233         struct inode *inode = file_inode(vma->vm_file);
2234         pgoff_t index;
2235
2236         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2237         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2238 }
2239 #endif
2240
2241 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2242 {
2243         struct inode *inode = file_inode(file);
2244         struct shmem_inode_info *info = SHMEM_I(inode);
2245         int retval = -ENOMEM;
2246
2247         /*
2248          * What serializes the accesses to info->flags?
2249          * ipc_lock_object() when called from shmctl_do_lock(),
2250          * no serialization needed when called from shm_destroy().
2251          */
2252         if (lock && !(info->flags & VM_LOCKED)) {
2253                 if (!user_shm_lock(inode->i_size, ucounts))
2254                         goto out_nomem;
2255                 info->flags |= VM_LOCKED;
2256                 mapping_set_unevictable(file->f_mapping);
2257         }
2258         if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2259                 user_shm_unlock(inode->i_size, ucounts);
2260                 info->flags &= ~VM_LOCKED;
2261                 mapping_clear_unevictable(file->f_mapping);
2262         }
2263         retval = 0;
2264
2265 out_nomem:
2266         return retval;
2267 }
2268
2269 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2270 {
2271         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2272         int ret;
2273
2274         ret = seal_check_future_write(info->seals, vma);
2275         if (ret)
2276                 return ret;
2277
2278         /* arm64 - allow memory tagging on RAM-based files */
2279         vma->vm_flags |= VM_MTE_ALLOWED;
2280
2281         file_accessed(file);
2282         vma->vm_ops = &shmem_vm_ops;
2283         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2284                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2285                         (vma->vm_end & HPAGE_PMD_MASK)) {
2286                 khugepaged_enter(vma, vma->vm_flags);
2287         }
2288         return 0;
2289 }
2290
2291 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2292                                      umode_t mode, dev_t dev, unsigned long flags)
2293 {
2294         struct inode *inode;
2295         struct shmem_inode_info *info;
2296         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2297         ino_t ino;
2298
2299         if (shmem_reserve_inode(sb, &ino))
2300                 return NULL;
2301
2302         inode = new_inode(sb);
2303         if (inode) {
2304                 inode->i_ino = ino;
2305                 inode_init_owner(&init_user_ns, inode, dir, mode);
2306                 inode->i_blocks = 0;
2307                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2308                 inode->i_generation = prandom_u32();
2309                 info = SHMEM_I(inode);
2310                 memset(info, 0, (char *)inode - (char *)info);
2311                 spin_lock_init(&info->lock);
2312                 atomic_set(&info->stop_eviction, 0);
2313                 info->seals = F_SEAL_SEAL;
2314                 info->flags = flags & VM_NORESERVE;
2315                 INIT_LIST_HEAD(&info->shrinklist);
2316                 INIT_LIST_HEAD(&info->swaplist);
2317                 simple_xattrs_init(&info->xattrs);
2318                 cache_no_acl(inode);
2319
2320                 switch (mode & S_IFMT) {
2321                 default:
2322                         inode->i_op = &shmem_special_inode_operations;
2323                         init_special_inode(inode, mode, dev);
2324                         break;
2325                 case S_IFREG:
2326                         inode->i_mapping->a_ops = &shmem_aops;
2327                         inode->i_op = &shmem_inode_operations;
2328                         inode->i_fop = &shmem_file_operations;
2329                         mpol_shared_policy_init(&info->policy,
2330                                                  shmem_get_sbmpol(sbinfo));
2331                         break;
2332                 case S_IFDIR:
2333                         inc_nlink(inode);
2334                         /* Some things misbehave if size == 0 on a directory */
2335                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2336                         inode->i_op = &shmem_dir_inode_operations;
2337                         inode->i_fop = &simple_dir_operations;
2338                         break;
2339                 case S_IFLNK:
2340                         /*
2341                          * Must not load anything in the rbtree,
2342                          * mpol_free_shared_policy will not be called.
2343                          */
2344                         mpol_shared_policy_init(&info->policy, NULL);
2345                         break;
2346                 }
2347
2348                 lockdep_annotate_inode_mutex_key(inode);
2349         } else
2350                 shmem_free_inode(sb);
2351         return inode;
2352 }
2353
2354 #ifdef CONFIG_USERFAULTFD
2355 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2356                            pmd_t *dst_pmd,
2357                            struct vm_area_struct *dst_vma,
2358                            unsigned long dst_addr,
2359                            unsigned long src_addr,
2360                            bool zeropage,
2361                            struct page **pagep)
2362 {
2363         struct inode *inode = file_inode(dst_vma->vm_file);
2364         struct shmem_inode_info *info = SHMEM_I(inode);
2365         struct address_space *mapping = inode->i_mapping;
2366         gfp_t gfp = mapping_gfp_mask(mapping);
2367         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2368         void *page_kaddr;
2369         struct page *page;
2370         int ret;
2371         pgoff_t max_off;
2372
2373         if (!shmem_inode_acct_block(inode, 1)) {
2374                 /*
2375                  * We may have got a page, returned -ENOENT triggering a retry,
2376                  * and now we find ourselves with -ENOMEM. Release the page, to
2377                  * avoid a BUG_ON in our caller.
2378                  */
2379                 if (unlikely(*pagep)) {
2380                         put_page(*pagep);
2381                         *pagep = NULL;
2382                 }
2383                 return -ENOMEM;
2384         }
2385
2386         if (!*pagep) {
2387                 ret = -ENOMEM;
2388                 page = shmem_alloc_page(gfp, info, pgoff);
2389                 if (!page)
2390                         goto out_unacct_blocks;
2391
2392                 if (!zeropage) {        /* COPY */
2393                         page_kaddr = kmap_atomic(page);
2394                         ret = copy_from_user(page_kaddr,
2395                                              (const void __user *)src_addr,
2396                                              PAGE_SIZE);
2397                         kunmap_atomic(page_kaddr);
2398
2399                         /* fallback to copy_from_user outside mmap_lock */
2400                         if (unlikely(ret)) {
2401                                 *pagep = page;
2402                                 ret = -ENOENT;
2403                                 /* don't free the page */
2404                                 goto out_unacct_blocks;
2405                         }
2406                 } else {                /* ZEROPAGE */
2407                         clear_highpage(page);
2408                 }
2409         } else {
2410                 page = *pagep;
2411                 *pagep = NULL;
2412         }
2413
2414         VM_BUG_ON(PageLocked(page));
2415         VM_BUG_ON(PageSwapBacked(page));
2416         __SetPageLocked(page);
2417         __SetPageSwapBacked(page);
2418         __SetPageUptodate(page);
2419
2420         ret = -EFAULT;
2421         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2422         if (unlikely(pgoff >= max_off))
2423                 goto out_release;
2424
2425         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2426                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2427         if (ret)
2428                 goto out_release;
2429
2430         ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2431                                        page, true, false);
2432         if (ret)
2433                 goto out_delete_from_cache;
2434
2435         spin_lock_irq(&info->lock);
2436         info->alloced++;
2437         inode->i_blocks += BLOCKS_PER_PAGE;
2438         shmem_recalc_inode(inode);
2439         spin_unlock_irq(&info->lock);
2440
2441         SetPageDirty(page);
2442         unlock_page(page);
2443         return 0;
2444 out_delete_from_cache:
2445         delete_from_page_cache(page);
2446 out_release:
2447         unlock_page(page);
2448         put_page(page);
2449 out_unacct_blocks:
2450         shmem_inode_unacct_blocks(inode, 1);
2451         return ret;
2452 }
2453 #endif /* CONFIG_USERFAULTFD */
2454
2455 #ifdef CONFIG_TMPFS
2456 static const struct inode_operations shmem_symlink_inode_operations;
2457 static const struct inode_operations shmem_short_symlink_operations;
2458
2459 #ifdef CONFIG_TMPFS_XATTR
2460 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2461 #else
2462 #define shmem_initxattrs NULL
2463 #endif
2464
2465 static int
2466 shmem_write_begin(struct file *file, struct address_space *mapping,
2467                         loff_t pos, unsigned len, unsigned flags,
2468                         struct page **pagep, void **fsdata)
2469 {
2470         struct inode *inode = mapping->host;
2471         struct shmem_inode_info *info = SHMEM_I(inode);
2472         pgoff_t index = pos >> PAGE_SHIFT;
2473
2474         /* i_mutex is held by caller */
2475         if (unlikely(info->seals & (F_SEAL_GROW |
2476                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2477                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2478                         return -EPERM;
2479                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2480                         return -EPERM;
2481         }
2482
2483         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2484 }
2485
2486 static int
2487 shmem_write_end(struct file *file, struct address_space *mapping,
2488                         loff_t pos, unsigned len, unsigned copied,
2489                         struct page *page, void *fsdata)
2490 {
2491         struct inode *inode = mapping->host;
2492
2493         if (pos + copied > inode->i_size)
2494                 i_size_write(inode, pos + copied);
2495
2496         if (!PageUptodate(page)) {
2497                 struct page *head = compound_head(page);
2498                 if (PageTransCompound(page)) {
2499                         int i;
2500
2501                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2502                                 if (head + i == page)
2503                                         continue;
2504                                 clear_highpage(head + i);
2505                                 flush_dcache_page(head + i);
2506                         }
2507                 }
2508                 if (copied < PAGE_SIZE) {
2509                         unsigned from = pos & (PAGE_SIZE - 1);
2510                         zero_user_segments(page, 0, from,
2511                                         from + copied, PAGE_SIZE);
2512                 }
2513                 SetPageUptodate(head);
2514         }
2515         set_page_dirty(page);
2516         unlock_page(page);
2517         put_page(page);
2518
2519         return copied;
2520 }
2521
2522 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2523 {
2524         struct file *file = iocb->ki_filp;
2525         struct inode *inode = file_inode(file);
2526         struct address_space *mapping = inode->i_mapping;
2527         pgoff_t index;
2528         unsigned long offset;
2529         enum sgp_type sgp = SGP_READ;
2530         int error = 0;
2531         ssize_t retval = 0;
2532         loff_t *ppos = &iocb->ki_pos;
2533
2534         /*
2535          * Might this read be for a stacking filesystem?  Then when reading
2536          * holes of a sparse file, we actually need to allocate those pages,
2537          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2538          */
2539         if (!iter_is_iovec(to))
2540                 sgp = SGP_CACHE;
2541
2542         index = *ppos >> PAGE_SHIFT;
2543         offset = *ppos & ~PAGE_MASK;
2544
2545         for (;;) {
2546                 struct page *page = NULL;
2547                 pgoff_t end_index;
2548                 unsigned long nr, ret;
2549                 loff_t i_size = i_size_read(inode);
2550
2551                 end_index = i_size >> PAGE_SHIFT;
2552                 if (index > end_index)
2553                         break;
2554                 if (index == end_index) {
2555                         nr = i_size & ~PAGE_MASK;
2556                         if (nr <= offset)
2557                                 break;
2558                 }
2559
2560                 error = shmem_getpage(inode, index, &page, sgp);
2561                 if (error) {
2562                         if (error == -EINVAL)
2563                                 error = 0;
2564                         break;
2565                 }
2566                 if (page) {
2567                         if (sgp == SGP_CACHE)
2568                                 set_page_dirty(page);
2569                         unlock_page(page);
2570                 }
2571
2572                 /*
2573                  * We must evaluate after, since reads (unlike writes)
2574                  * are called without i_mutex protection against truncate
2575                  */
2576                 nr = PAGE_SIZE;
2577                 i_size = i_size_read(inode);
2578                 end_index = i_size >> PAGE_SHIFT;
2579                 if (index == end_index) {
2580                         nr = i_size & ~PAGE_MASK;
2581                         if (nr <= offset) {
2582                                 if (page)
2583                                         put_page(page);
2584                                 break;
2585                         }
2586                 }
2587                 nr -= offset;
2588
2589                 if (page) {
2590                         /*
2591                          * If users can be writing to this page using arbitrary
2592                          * virtual addresses, take care about potential aliasing
2593                          * before reading the page on the kernel side.
2594                          */
2595                         if (mapping_writably_mapped(mapping))
2596                                 flush_dcache_page(page);
2597                         /*
2598                          * Mark the page accessed if we read the beginning.
2599                          */
2600                         if (!offset)
2601                                 mark_page_accessed(page);
2602                 } else {
2603                         page = ZERO_PAGE(0);
2604                         get_page(page);
2605                 }
2606
2607                 /*
2608                  * Ok, we have the page, and it's up-to-date, so
2609                  * now we can copy it to user space...
2610                  */
2611                 ret = copy_page_to_iter(page, offset, nr, to);
2612                 retval += ret;
2613                 offset += ret;
2614                 index += offset >> PAGE_SHIFT;
2615                 offset &= ~PAGE_MASK;
2616
2617                 put_page(page);
2618                 if (!iov_iter_count(to))
2619                         break;
2620                 if (ret < nr) {
2621                         error = -EFAULT;
2622                         break;
2623                 }
2624                 cond_resched();
2625         }
2626
2627         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2628         file_accessed(file);
2629         return retval ? retval : error;
2630 }
2631
2632 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2633 {
2634         struct address_space *mapping = file->f_mapping;
2635         struct inode *inode = mapping->host;
2636
2637         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2638                 return generic_file_llseek_size(file, offset, whence,
2639                                         MAX_LFS_FILESIZE, i_size_read(inode));
2640         if (offset < 0)
2641                 return -ENXIO;
2642
2643         inode_lock(inode);
2644         /* We're holding i_mutex so we can access i_size directly */
2645         offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2646         if (offset >= 0)
2647                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2648         inode_unlock(inode);
2649         return offset;
2650 }
2651
2652 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2653                                                          loff_t len)
2654 {
2655         struct inode *inode = file_inode(file);
2656         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2657         struct shmem_inode_info *info = SHMEM_I(inode);
2658         struct shmem_falloc shmem_falloc;
2659         pgoff_t start, index, end;
2660         int error;
2661
2662         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2663                 return -EOPNOTSUPP;
2664
2665         inode_lock(inode);
2666
2667         if (mode & FALLOC_FL_PUNCH_HOLE) {
2668                 struct address_space *mapping = file->f_mapping;
2669                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2670                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2671                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2672
2673                 /* protected by i_mutex */
2674                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2675                         error = -EPERM;
2676                         goto out;
2677                 }
2678
2679                 shmem_falloc.waitq = &shmem_falloc_waitq;
2680                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2681                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2682                 spin_lock(&inode->i_lock);
2683                 inode->i_private = &shmem_falloc;
2684                 spin_unlock(&inode->i_lock);
2685
2686                 if ((u64)unmap_end > (u64)unmap_start)
2687                         unmap_mapping_range(mapping, unmap_start,
2688                                             1 + unmap_end - unmap_start, 0);
2689                 shmem_truncate_range(inode, offset, offset + len - 1);
2690                 /* No need to unmap again: hole-punching leaves COWed pages */
2691
2692                 spin_lock(&inode->i_lock);
2693                 inode->i_private = NULL;
2694                 wake_up_all(&shmem_falloc_waitq);
2695                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2696                 spin_unlock(&inode->i_lock);
2697                 error = 0;
2698                 goto out;
2699         }
2700
2701         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2702         error = inode_newsize_ok(inode, offset + len);
2703         if (error)
2704                 goto out;
2705
2706         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2707                 error = -EPERM;
2708                 goto out;
2709         }
2710
2711         start = offset >> PAGE_SHIFT;
2712         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2713         /* Try to avoid a swapstorm if len is impossible to satisfy */
2714         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2715                 error = -ENOSPC;
2716                 goto out;
2717         }
2718
2719         shmem_falloc.waitq = NULL;
2720         shmem_falloc.start = start;
2721         shmem_falloc.next  = start;
2722         shmem_falloc.nr_falloced = 0;
2723         shmem_falloc.nr_unswapped = 0;
2724         spin_lock(&inode->i_lock);
2725         inode->i_private = &shmem_falloc;
2726         spin_unlock(&inode->i_lock);
2727
2728         for (index = start; index < end; index++) {
2729                 struct page *page;
2730
2731                 /*
2732                  * Good, the fallocate(2) manpage permits EINTR: we may have
2733                  * been interrupted because we are using up too much memory.
2734                  */
2735                 if (signal_pending(current))
2736                         error = -EINTR;
2737                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2738                         error = -ENOMEM;
2739                 else
2740                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2741                 if (error) {
2742                         /* Remove the !PageUptodate pages we added */
2743                         if (index > start) {
2744                                 shmem_undo_range(inode,
2745                                     (loff_t)start << PAGE_SHIFT,
2746                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2747                         }
2748                         goto undone;
2749                 }
2750
2751                 /*
2752                  * Inform shmem_writepage() how far we have reached.
2753                  * No need for lock or barrier: we have the page lock.
2754                  */
2755                 shmem_falloc.next++;
2756                 if (!PageUptodate(page))
2757                         shmem_falloc.nr_falloced++;
2758
2759                 /*
2760                  * If !PageUptodate, leave it that way so that freeable pages
2761                  * can be recognized if we need to rollback on error later.
2762                  * But set_page_dirty so that memory pressure will swap rather
2763                  * than free the pages we are allocating (and SGP_CACHE pages
2764                  * might still be clean: we now need to mark those dirty too).
2765                  */
2766                 set_page_dirty(page);
2767                 unlock_page(page);
2768                 put_page(page);
2769                 cond_resched();
2770         }
2771
2772         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2773                 i_size_write(inode, offset + len);
2774         inode->i_ctime = current_time(inode);
2775 undone:
2776         spin_lock(&inode->i_lock);
2777         inode->i_private = NULL;
2778         spin_unlock(&inode->i_lock);
2779 out:
2780         inode_unlock(inode);
2781         return error;
2782 }
2783
2784 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2785 {
2786         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2787
2788         buf->f_type = TMPFS_MAGIC;
2789         buf->f_bsize = PAGE_SIZE;
2790         buf->f_namelen = NAME_MAX;
2791         if (sbinfo->max_blocks) {
2792                 buf->f_blocks = sbinfo->max_blocks;
2793                 buf->f_bavail =
2794                 buf->f_bfree  = sbinfo->max_blocks -
2795                                 percpu_counter_sum(&sbinfo->used_blocks);
2796         }
2797         if (sbinfo->max_inodes) {
2798                 buf->f_files = sbinfo->max_inodes;
2799                 buf->f_ffree = sbinfo->free_inodes;
2800         }
2801         /* else leave those fields 0 like simple_statfs */
2802
2803         buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2804
2805         return 0;
2806 }
2807
2808 /*
2809  * File creation. Allocate an inode, and we're done..
2810  */
2811 static int
2812 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2813             struct dentry *dentry, umode_t mode, dev_t dev)
2814 {
2815         struct inode *inode;
2816         int error = -ENOSPC;
2817
2818         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2819         if (inode) {
2820                 error = simple_acl_create(dir, inode);
2821                 if (error)
2822                         goto out_iput;
2823                 error = security_inode_init_security(inode, dir,
2824                                                      &dentry->d_name,
2825                                                      shmem_initxattrs, NULL);
2826                 if (error && error != -EOPNOTSUPP)
2827                         goto out_iput;
2828
2829                 error = 0;
2830                 dir->i_size += BOGO_DIRENT_SIZE;
2831                 dir->i_ctime = dir->i_mtime = current_time(dir);
2832                 d_instantiate(dentry, inode);
2833                 dget(dentry); /* Extra count - pin the dentry in core */
2834         }
2835         return error;
2836 out_iput:
2837         iput(inode);
2838         return error;
2839 }
2840
2841 static int
2842 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2843               struct dentry *dentry, umode_t mode)
2844 {
2845         struct inode *inode;
2846         int error = -ENOSPC;
2847
2848         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2849         if (inode) {
2850                 error = security_inode_init_security(inode, dir,
2851                                                      NULL,
2852                                                      shmem_initxattrs, NULL);
2853                 if (error && error != -EOPNOTSUPP)
2854                         goto out_iput;
2855                 error = simple_acl_create(dir, inode);
2856                 if (error)
2857                         goto out_iput;
2858                 d_tmpfile(dentry, inode);
2859         }
2860         return error;
2861 out_iput:
2862         iput(inode);
2863         return error;
2864 }
2865
2866 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2867                        struct dentry *dentry, umode_t mode)
2868 {
2869         int error;
2870
2871         if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2872                                  mode | S_IFDIR, 0)))
2873                 return error;
2874         inc_nlink(dir);
2875         return 0;
2876 }
2877
2878 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2879                         struct dentry *dentry, umode_t mode, bool excl)
2880 {
2881         return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2882 }
2883
2884 /*
2885  * Link a file..
2886  */
2887 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2888 {
2889         struct inode *inode = d_inode(old_dentry);
2890         int ret = 0;
2891
2892         /*
2893          * No ordinary (disk based) filesystem counts links as inodes;
2894          * but each new link needs a new dentry, pinning lowmem, and
2895          * tmpfs dentries cannot be pruned until they are unlinked.
2896          * But if an O_TMPFILE file is linked into the tmpfs, the
2897          * first link must skip that, to get the accounting right.
2898          */
2899         if (inode->i_nlink) {
2900                 ret = shmem_reserve_inode(inode->i_sb, NULL);
2901                 if (ret)
2902                         goto out;
2903         }
2904
2905         dir->i_size += BOGO_DIRENT_SIZE;
2906         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2907         inc_nlink(inode);
2908         ihold(inode);   /* New dentry reference */
2909         dget(dentry);           /* Extra pinning count for the created dentry */
2910         d_instantiate(dentry, inode);
2911 out:
2912         return ret;
2913 }
2914
2915 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2916 {
2917         struct inode *inode = d_inode(dentry);
2918
2919         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2920                 shmem_free_inode(inode->i_sb);
2921
2922         dir->i_size -= BOGO_DIRENT_SIZE;
2923         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2924         drop_nlink(inode);
2925         dput(dentry);   /* Undo the count from "create" - this does all the work */
2926         return 0;
2927 }
2928
2929 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2930 {
2931         if (!simple_empty(dentry))
2932                 return -ENOTEMPTY;
2933
2934         drop_nlink(d_inode(dentry));
2935         drop_nlink(dir);
2936         return shmem_unlink(dir, dentry);
2937 }
2938
2939 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2940 {
2941         bool old_is_dir = d_is_dir(old_dentry);
2942         bool new_is_dir = d_is_dir(new_dentry);
2943
2944         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2945                 if (old_is_dir) {
2946                         drop_nlink(old_dir);
2947                         inc_nlink(new_dir);
2948                 } else {
2949                         drop_nlink(new_dir);
2950                         inc_nlink(old_dir);
2951                 }
2952         }
2953         old_dir->i_ctime = old_dir->i_mtime =
2954         new_dir->i_ctime = new_dir->i_mtime =
2955         d_inode(old_dentry)->i_ctime =
2956         d_inode(new_dentry)->i_ctime = current_time(old_dir);
2957
2958         return 0;
2959 }
2960
2961 static int shmem_whiteout(struct user_namespace *mnt_userns,
2962                           struct inode *old_dir, struct dentry *old_dentry)
2963 {
2964         struct dentry *whiteout;
2965         int error;
2966
2967         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2968         if (!whiteout)
2969                 return -ENOMEM;
2970
2971         error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2972                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2973         dput(whiteout);
2974         if (error)
2975                 return error;
2976
2977         /*
2978          * Cheat and hash the whiteout while the old dentry is still in
2979          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2980          *
2981          * d_lookup() will consistently find one of them at this point,
2982          * not sure which one, but that isn't even important.
2983          */
2984         d_rehash(whiteout);
2985         return 0;
2986 }
2987
2988 /*
2989  * The VFS layer already does all the dentry stuff for rename,
2990  * we just have to decrement the usage count for the target if
2991  * it exists so that the VFS layer correctly free's it when it
2992  * gets overwritten.
2993  */
2994 static int shmem_rename2(struct user_namespace *mnt_userns,
2995                          struct inode *old_dir, struct dentry *old_dentry,
2996                          struct inode *new_dir, struct dentry *new_dentry,
2997                          unsigned int flags)
2998 {
2999         struct inode *inode = d_inode(old_dentry);
3000         int they_are_dirs = S_ISDIR(inode->i_mode);
3001
3002         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3003                 return -EINVAL;
3004
3005         if (flags & RENAME_EXCHANGE)
3006                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3007
3008         if (!simple_empty(new_dentry))
3009                 return -ENOTEMPTY;
3010
3011         if (flags & RENAME_WHITEOUT) {
3012                 int error;
3013
3014                 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3015                 if (error)
3016                         return error;
3017         }
3018
3019         if (d_really_is_positive(new_dentry)) {
3020                 (void) shmem_unlink(new_dir, new_dentry);
3021                 if (they_are_dirs) {
3022                         drop_nlink(d_inode(new_dentry));
3023                         drop_nlink(old_dir);
3024                 }
3025         } else if (they_are_dirs) {
3026                 drop_nlink(old_dir);
3027                 inc_nlink(new_dir);
3028         }
3029
3030         old_dir->i_size -= BOGO_DIRENT_SIZE;
3031         new_dir->i_size += BOGO_DIRENT_SIZE;
3032         old_dir->i_ctime = old_dir->i_mtime =
3033         new_dir->i_ctime = new_dir->i_mtime =
3034         inode->i_ctime = current_time(old_dir);
3035         return 0;
3036 }
3037
3038 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3039                          struct dentry *dentry, const char *symname)
3040 {
3041         int error;
3042         int len;
3043         struct inode *inode;
3044         struct page *page;
3045
3046         len = strlen(symname) + 1;
3047         if (len > PAGE_SIZE)
3048                 return -ENAMETOOLONG;
3049
3050         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3051                                 VM_NORESERVE);
3052         if (!inode)
3053                 return -ENOSPC;
3054
3055         error = security_inode_init_security(inode, dir, &dentry->d_name,
3056                                              shmem_initxattrs, NULL);
3057         if (error && error != -EOPNOTSUPP) {
3058                 iput(inode);
3059                 return error;
3060         }
3061
3062         inode->i_size = len-1;
3063         if (len <= SHORT_SYMLINK_LEN) {
3064                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3065                 if (!inode->i_link) {
3066                         iput(inode);
3067                         return -ENOMEM;
3068                 }
3069                 inode->i_op = &shmem_short_symlink_operations;
3070         } else {
3071                 inode_nohighmem(inode);
3072                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3073                 if (error) {
3074                         iput(inode);
3075                         return error;
3076                 }
3077                 inode->i_mapping->a_ops = &shmem_aops;
3078                 inode->i_op = &shmem_symlink_inode_operations;
3079                 memcpy(page_address(page), symname, len);
3080                 SetPageUptodate(page);
3081                 set_page_dirty(page);
3082                 unlock_page(page);
3083                 put_page(page);
3084         }
3085         dir->i_size += BOGO_DIRENT_SIZE;
3086         dir->i_ctime = dir->i_mtime = current_time(dir);
3087         d_instantiate(dentry, inode);
3088         dget(dentry);
3089         return 0;
3090 }
3091
3092 static void shmem_put_link(void *arg)
3093 {
3094         mark_page_accessed(arg);
3095         put_page(arg);
3096 }
3097
3098 static const char *shmem_get_link(struct dentry *dentry,
3099                                   struct inode *inode,
3100                                   struct delayed_call *done)
3101 {
3102         struct page *page = NULL;
3103         int error;
3104         if (!dentry) {
3105                 page = find_get_page(inode->i_mapping, 0);
3106                 if (!page)
3107                         return ERR_PTR(-ECHILD);
3108                 if (!PageUptodate(page)) {
3109                         put_page(page);
3110                         return ERR_PTR(-ECHILD);
3111                 }
3112         } else {
3113                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3114                 if (error)
3115                         return ERR_PTR(error);
3116                 unlock_page(page);
3117         }
3118         set_delayed_call(done, shmem_put_link, page);
3119         return page_address(page);
3120 }
3121
3122 #ifdef CONFIG_TMPFS_XATTR
3123 /*
3124  * Superblocks without xattr inode operations may get some security.* xattr
3125  * support from the LSM "for free". As soon as we have any other xattrs
3126  * like ACLs, we also need to implement the security.* handlers at
3127  * filesystem level, though.
3128  */
3129
3130 /*
3131  * Callback for security_inode_init_security() for acquiring xattrs.
3132  */
3133 static int shmem_initxattrs(struct inode *inode,
3134                             const struct xattr *xattr_array,
3135                             void *fs_info)
3136 {
3137         struct shmem_inode_info *info = SHMEM_I(inode);
3138         const struct xattr *xattr;
3139         struct simple_xattr *new_xattr;
3140         size_t len;
3141
3142         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3143                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3144                 if (!new_xattr)
3145                         return -ENOMEM;
3146
3147                 len = strlen(xattr->name) + 1;
3148                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3149                                           GFP_KERNEL);
3150                 if (!new_xattr->name) {
3151                         kvfree(new_xattr);
3152                         return -ENOMEM;
3153                 }
3154
3155                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3156                        XATTR_SECURITY_PREFIX_LEN);
3157                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3158                        xattr->name, len);
3159
3160                 simple_xattr_list_add(&info->xattrs, new_xattr);
3161         }
3162
3163         return 0;
3164 }
3165
3166 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3167                                    struct dentry *unused, struct inode *inode,
3168                                    const char *name, void *buffer, size_t size)
3169 {
3170         struct shmem_inode_info *info = SHMEM_I(inode);
3171
3172         name = xattr_full_name(handler, name);
3173         return simple_xattr_get(&info->xattrs, name, buffer, size);
3174 }
3175
3176 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3177                                    struct user_namespace *mnt_userns,
3178                                    struct dentry *unused, struct inode *inode,
3179                                    const char *name, const void *value,
3180                                    size_t size, int flags)
3181 {
3182         struct shmem_inode_info *info = SHMEM_I(inode);
3183
3184         name = xattr_full_name(handler, name);
3185         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3186 }
3187
3188 static const struct xattr_handler shmem_security_xattr_handler = {
3189         .prefix = XATTR_SECURITY_PREFIX,
3190         .get = shmem_xattr_handler_get,
3191         .set = shmem_xattr_handler_set,
3192 };
3193
3194 static const struct xattr_handler shmem_trusted_xattr_handler = {
3195         .prefix = XATTR_TRUSTED_PREFIX,
3196         .get = shmem_xattr_handler_get,
3197         .set = shmem_xattr_handler_set,
3198 };
3199
3200 static const struct xattr_handler *shmem_xattr_handlers[] = {
3201 #ifdef CONFIG_TMPFS_POSIX_ACL
3202         &posix_acl_access_xattr_handler,
3203         &posix_acl_default_xattr_handler,
3204 #endif
3205         &shmem_security_xattr_handler,
3206         &shmem_trusted_xattr_handler,
3207         NULL
3208 };
3209
3210 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3211 {
3212         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3213         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3214 }
3215 #endif /* CONFIG_TMPFS_XATTR */
3216
3217 static const struct inode_operations shmem_short_symlink_operations = {
3218         .get_link       = simple_get_link,
3219 #ifdef CONFIG_TMPFS_XATTR
3220         .listxattr      = shmem_listxattr,
3221 #endif
3222 };
3223
3224 static const struct inode_operations shmem_symlink_inode_operations = {
3225         .get_link       = shmem_get_link,
3226 #ifdef CONFIG_TMPFS_XATTR
3227         .listxattr      = shmem_listxattr,
3228 #endif
3229 };
3230
3231 static struct dentry *shmem_get_parent(struct dentry *child)
3232 {
3233         return ERR_PTR(-ESTALE);
3234 }
3235
3236 static int shmem_match(struct inode *ino, void *vfh)
3237 {
3238         __u32 *fh = vfh;
3239         __u64 inum = fh[2];
3240         inum = (inum << 32) | fh[1];
3241         return ino->i_ino == inum && fh[0] == ino->i_generation;
3242 }
3243
3244 /* Find any alias of inode, but prefer a hashed alias */
3245 static struct dentry *shmem_find_alias(struct inode *inode)
3246 {
3247         struct dentry *alias = d_find_alias(inode);
3248
3249         return alias ?: d_find_any_alias(inode);
3250 }
3251
3252
3253 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3254                 struct fid *fid, int fh_len, int fh_type)
3255 {
3256         struct inode *inode;
3257         struct dentry *dentry = NULL;
3258         u64 inum;
3259
3260         if (fh_len < 3)
3261                 return NULL;
3262
3263         inum = fid->raw[2];
3264         inum = (inum << 32) | fid->raw[1];
3265
3266         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3267                         shmem_match, fid->raw);
3268         if (inode) {
3269                 dentry = shmem_find_alias(inode);
3270                 iput(inode);
3271         }
3272
3273         return dentry;
3274 }
3275
3276 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3277                                 struct inode *parent)
3278 {
3279         if (*len < 3) {
3280                 *len = 3;
3281                 return FILEID_INVALID;
3282         }
3283
3284         if (inode_unhashed(inode)) {
3285                 /* Unfortunately insert_inode_hash is not idempotent,
3286                  * so as we hash inodes here rather than at creation
3287                  * time, we need a lock to ensure we only try
3288                  * to do it once
3289                  */
3290                 static DEFINE_SPINLOCK(lock);
3291                 spin_lock(&lock);
3292                 if (inode_unhashed(inode))
3293                         __insert_inode_hash(inode,
3294                                             inode->i_ino + inode->i_generation);
3295                 spin_unlock(&lock);
3296         }
3297
3298         fh[0] = inode->i_generation;
3299         fh[1] = inode->i_ino;
3300         fh[2] = ((__u64)inode->i_ino) >> 32;
3301
3302         *len = 3;
3303         return 1;
3304 }
3305
3306 static const struct export_operations shmem_export_ops = {
3307         .get_parent     = shmem_get_parent,
3308         .encode_fh      = shmem_encode_fh,
3309         .fh_to_dentry   = shmem_fh_to_dentry,
3310 };
3311
3312 enum shmem_param {
3313         Opt_gid,
3314         Opt_huge,
3315         Opt_mode,
3316         Opt_mpol,
3317         Opt_nr_blocks,
3318         Opt_nr_inodes,
3319         Opt_size,
3320         Opt_uid,
3321         Opt_inode32,
3322         Opt_inode64,
3323 };
3324
3325 static const struct constant_table shmem_param_enums_huge[] = {
3326         {"never",       SHMEM_HUGE_NEVER },
3327         {"always",      SHMEM_HUGE_ALWAYS },
3328         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3329         {"advise",      SHMEM_HUGE_ADVISE },
3330         {}
3331 };
3332
3333 const struct fs_parameter_spec shmem_fs_parameters[] = {
3334         fsparam_u32   ("gid",           Opt_gid),
3335         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3336         fsparam_u32oct("mode",          Opt_mode),
3337         fsparam_string("mpol",          Opt_mpol),
3338         fsparam_string("nr_blocks",     Opt_nr_blocks),
3339         fsparam_string("nr_inodes",     Opt_nr_inodes),
3340         fsparam_string("size",          Opt_size),
3341         fsparam_u32   ("uid",           Opt_uid),
3342         fsparam_flag  ("inode32",       Opt_inode32),
3343         fsparam_flag  ("inode64",       Opt_inode64),
3344         {}
3345 };
3346
3347 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3348 {
3349         struct shmem_options *ctx = fc->fs_private;
3350         struct fs_parse_result result;
3351         unsigned long long size;
3352         char *rest;
3353         int opt;
3354
3355         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3356         if (opt < 0)
3357                 return opt;
3358
3359         switch (opt) {
3360         case Opt_size:
3361                 size = memparse(param->string, &rest);
3362                 if (*rest == '%') {
3363                         size <<= PAGE_SHIFT;
3364                         size *= totalram_pages();
3365                         do_div(size, 100);
3366                         rest++;
3367                 }
3368                 if (*rest)
3369                         goto bad_value;
3370                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3371                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3372                 break;
3373         case Opt_nr_blocks:
3374                 ctx->blocks = memparse(param->string, &rest);
3375                 if (*rest)
3376                         goto bad_value;
3377                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3378                 break;
3379         case Opt_nr_inodes:
3380                 ctx->inodes = memparse(param->string, &rest);
3381                 if (*rest)
3382                         goto bad_value;
3383                 ctx->seen |= SHMEM_SEEN_INODES;
3384                 break;
3385         case Opt_mode:
3386                 ctx->mode = result.uint_32 & 07777;
3387                 break;
3388         case Opt_uid:
3389                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3390                 if (!uid_valid(ctx->uid))
3391                         goto bad_value;
3392                 break;
3393         case Opt_gid:
3394                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3395                 if (!gid_valid(ctx->gid))
3396                         goto bad_value;
3397                 break;
3398         case Opt_huge:
3399                 ctx->huge = result.uint_32;
3400                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3401                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3402                       has_transparent_hugepage()))
3403                         goto unsupported_parameter;
3404                 ctx->seen |= SHMEM_SEEN_HUGE;
3405                 break;
3406         case Opt_mpol:
3407                 if (IS_ENABLED(CONFIG_NUMA)) {
3408                         mpol_put(ctx->mpol);
3409                         ctx->mpol = NULL;
3410                         if (mpol_parse_str(param->string, &ctx->mpol))
3411                                 goto bad_value;
3412                         break;
3413                 }
3414                 goto unsupported_parameter;
3415         case Opt_inode32:
3416                 ctx->full_inums = false;
3417                 ctx->seen |= SHMEM_SEEN_INUMS;
3418                 break;
3419         case Opt_inode64:
3420                 if (sizeof(ino_t) < 8) {
3421                         return invalfc(fc,
3422                                        "Cannot use inode64 with <64bit inums in kernel\n");
3423                 }
3424                 ctx->full_inums = true;
3425                 ctx->seen |= SHMEM_SEEN_INUMS;
3426                 break;
3427         }
3428         return 0;
3429
3430 unsupported_parameter:
3431         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3432 bad_value:
3433         return invalfc(fc, "Bad value for '%s'", param->key);
3434 }
3435
3436 static int shmem_parse_options(struct fs_context *fc, void *data)
3437 {
3438         char *options = data;
3439
3440         if (options) {
3441                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3442                 if (err)
3443                         return err;
3444         }
3445
3446         while (options != NULL) {
3447                 char *this_char = options;
3448                 for (;;) {
3449                         /*
3450                          * NUL-terminate this option: unfortunately,
3451                          * mount options form a comma-separated list,
3452                          * but mpol's nodelist may also contain commas.
3453                          */
3454                         options = strchr(options, ',');
3455                         if (options == NULL)
3456                                 break;
3457                         options++;
3458                         if (!isdigit(*options)) {
3459                                 options[-1] = '\0';
3460                                 break;
3461                         }
3462                 }
3463                 if (*this_char) {
3464                         char *value = strchr(this_char, '=');
3465                         size_t len = 0;
3466                         int err;
3467
3468                         if (value) {
3469                                 *value++ = '\0';
3470                                 len = strlen(value);
3471                         }
3472                         err = vfs_parse_fs_string(fc, this_char, value, len);
3473                         if (err < 0)
3474                                 return err;
3475                 }
3476         }
3477         return 0;
3478 }
3479
3480 /*
3481  * Reconfigure a shmem filesystem.
3482  *
3483  * Note that we disallow change from limited->unlimited blocks/inodes while any
3484  * are in use; but we must separately disallow unlimited->limited, because in
3485  * that case we have no record of how much is already in use.
3486  */
3487 static int shmem_reconfigure(struct fs_context *fc)
3488 {
3489         struct shmem_options *ctx = fc->fs_private;
3490         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3491         unsigned long inodes;
3492         struct mempolicy *mpol = NULL;
3493         const char *err;
3494
3495         raw_spin_lock(&sbinfo->stat_lock);
3496         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3497         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3498                 if (!sbinfo->max_blocks) {
3499                         err = "Cannot retroactively limit size";
3500                         goto out;
3501                 }
3502                 if (percpu_counter_compare(&sbinfo->used_blocks,
3503                                            ctx->blocks) > 0) {
3504                         err = "Too small a size for current use";
3505                         goto out;
3506                 }
3507         }
3508         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3509                 if (!sbinfo->max_inodes) {
3510                         err = "Cannot retroactively limit inodes";
3511                         goto out;
3512                 }
3513                 if (ctx->inodes < inodes) {
3514                         err = "Too few inodes for current use";
3515                         goto out;
3516                 }
3517         }
3518
3519         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3520             sbinfo->next_ino > UINT_MAX) {
3521                 err = "Current inum too high to switch to 32-bit inums";
3522                 goto out;
3523         }
3524
3525         if (ctx->seen & SHMEM_SEEN_HUGE)
3526                 sbinfo->huge = ctx->huge;
3527         if (ctx->seen & SHMEM_SEEN_INUMS)
3528                 sbinfo->full_inums = ctx->full_inums;
3529         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3530                 sbinfo->max_blocks  = ctx->blocks;
3531         if (ctx->seen & SHMEM_SEEN_INODES) {
3532                 sbinfo->max_inodes  = ctx->inodes;
3533                 sbinfo->free_inodes = ctx->inodes - inodes;
3534         }
3535
3536         /*
3537          * Preserve previous mempolicy unless mpol remount option was specified.
3538          */
3539         if (ctx->mpol) {
3540                 mpol = sbinfo->mpol;
3541                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3542                 ctx->mpol = NULL;
3543         }
3544         raw_spin_unlock(&sbinfo->stat_lock);
3545         mpol_put(mpol);
3546         return 0;
3547 out:
3548         raw_spin_unlock(&sbinfo->stat_lock);
3549         return invalfc(fc, "%s", err);
3550 }
3551
3552 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3553 {
3554         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3555
3556         if (sbinfo->max_blocks != shmem_default_max_blocks())
3557                 seq_printf(seq, ",size=%luk",
3558                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3559         if (sbinfo->max_inodes != shmem_default_max_inodes())
3560                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3561         if (sbinfo->mode != (0777 | S_ISVTX))
3562                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3563         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3564                 seq_printf(seq, ",uid=%u",
3565                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3566         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3567                 seq_printf(seq, ",gid=%u",
3568                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3569
3570         /*
3571          * Showing inode{64,32} might be useful even if it's the system default,
3572          * since then people don't have to resort to checking both here and
3573          * /proc/config.gz to confirm 64-bit inums were successfully applied
3574          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3575          *
3576          * We hide it when inode64 isn't the default and we are using 32-bit
3577          * inodes, since that probably just means the feature isn't even under
3578          * consideration.
3579          *
3580          * As such:
3581          *
3582          *                     +-----------------+-----------------+
3583          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3584          *  +------------------+-----------------+-----------------+
3585          *  | full_inums=true  | show            | show            |
3586          *  | full_inums=false | show            | hide            |
3587          *  +------------------+-----------------+-----------------+
3588          *
3589          */
3590         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3591                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3592 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3593         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3594         if (sbinfo->huge)
3595                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3596 #endif
3597         shmem_show_mpol(seq, sbinfo->mpol);
3598         return 0;
3599 }
3600
3601 #endif /* CONFIG_TMPFS */
3602
3603 static void shmem_put_super(struct super_block *sb)
3604 {
3605         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3606
3607         free_percpu(sbinfo->ino_batch);
3608         percpu_counter_destroy(&sbinfo->used_blocks);
3609         mpol_put(sbinfo->mpol);
3610         kfree(sbinfo);
3611         sb->s_fs_info = NULL;
3612 }
3613
3614 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3615 {
3616         struct shmem_options *ctx = fc->fs_private;
3617         struct inode *inode;
3618         struct shmem_sb_info *sbinfo;
3619
3620         /* Round up to L1_CACHE_BYTES to resist false sharing */
3621         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3622                                 L1_CACHE_BYTES), GFP_KERNEL);
3623         if (!sbinfo)
3624                 return -ENOMEM;
3625
3626         sb->s_fs_info = sbinfo;
3627
3628 #ifdef CONFIG_TMPFS
3629         /*
3630          * Per default we only allow half of the physical ram per
3631          * tmpfs instance, limiting inodes to one per page of lowmem;
3632          * but the internal instance is left unlimited.
3633          */
3634         if (!(sb->s_flags & SB_KERNMOUNT)) {
3635                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3636                         ctx->blocks = shmem_default_max_blocks();
3637                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3638                         ctx->inodes = shmem_default_max_inodes();
3639                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3640                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3641         } else {
3642                 sb->s_flags |= SB_NOUSER;
3643         }
3644         sb->s_export_op = &shmem_export_ops;
3645         sb->s_flags |= SB_NOSEC;
3646 #else
3647         sb->s_flags |= SB_NOUSER;
3648 #endif
3649         sbinfo->max_blocks = ctx->blocks;
3650         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3651         if (sb->s_flags & SB_KERNMOUNT) {
3652                 sbinfo->ino_batch = alloc_percpu(ino_t);
3653                 if (!sbinfo->ino_batch)
3654                         goto failed;
3655         }
3656         sbinfo->uid = ctx->uid;
3657         sbinfo->gid = ctx->gid;
3658         sbinfo->full_inums = ctx->full_inums;
3659         sbinfo->mode = ctx->mode;
3660         sbinfo->huge = ctx->huge;
3661         sbinfo->mpol = ctx->mpol;
3662         ctx->mpol = NULL;
3663
3664         raw_spin_lock_init(&sbinfo->stat_lock);
3665         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3666                 goto failed;
3667         spin_lock_init(&sbinfo->shrinklist_lock);
3668         INIT_LIST_HEAD(&sbinfo->shrinklist);
3669
3670         sb->s_maxbytes = MAX_LFS_FILESIZE;
3671         sb->s_blocksize = PAGE_SIZE;
3672         sb->s_blocksize_bits = PAGE_SHIFT;
3673         sb->s_magic = TMPFS_MAGIC;
3674         sb->s_op = &shmem_ops;
3675         sb->s_time_gran = 1;
3676 #ifdef CONFIG_TMPFS_XATTR
3677         sb->s_xattr = shmem_xattr_handlers;
3678 #endif
3679 #ifdef CONFIG_TMPFS_POSIX_ACL
3680         sb->s_flags |= SB_POSIXACL;
3681 #endif
3682         uuid_gen(&sb->s_uuid);
3683
3684         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3685         if (!inode)
3686                 goto failed;
3687         inode->i_uid = sbinfo->uid;
3688         inode->i_gid = sbinfo->gid;
3689         sb->s_root = d_make_root(inode);
3690         if (!sb->s_root)
3691                 goto failed;
3692         return 0;
3693
3694 failed:
3695         shmem_put_super(sb);
3696         return -ENOMEM;
3697 }
3698
3699 static int shmem_get_tree(struct fs_context *fc)
3700 {
3701         return get_tree_nodev(fc, shmem_fill_super);
3702 }
3703
3704 static void shmem_free_fc(struct fs_context *fc)
3705 {
3706         struct shmem_options *ctx = fc->fs_private;
3707
3708         if (ctx) {
3709                 mpol_put(ctx->mpol);
3710                 kfree(ctx);
3711         }
3712 }
3713
3714 static const struct fs_context_operations shmem_fs_context_ops = {
3715         .free                   = shmem_free_fc,
3716         .get_tree               = shmem_get_tree,
3717 #ifdef CONFIG_TMPFS
3718         .parse_monolithic       = shmem_parse_options,
3719         .parse_param            = shmem_parse_one,
3720         .reconfigure            = shmem_reconfigure,
3721 #endif
3722 };
3723
3724 static struct kmem_cache *shmem_inode_cachep;
3725
3726 static struct inode *shmem_alloc_inode(struct super_block *sb)
3727 {
3728         struct shmem_inode_info *info;
3729         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3730         if (!info)
3731                 return NULL;
3732         return &info->vfs_inode;
3733 }
3734
3735 static void shmem_free_in_core_inode(struct inode *inode)
3736 {
3737         if (S_ISLNK(inode->i_mode))
3738                 kfree(inode->i_link);
3739         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3740 }
3741
3742 static void shmem_destroy_inode(struct inode *inode)
3743 {
3744         if (S_ISREG(inode->i_mode))
3745                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3746 }
3747
3748 static void shmem_init_inode(void *foo)
3749 {
3750         struct shmem_inode_info *info = foo;
3751         inode_init_once(&info->vfs_inode);
3752 }
3753
3754 static void shmem_init_inodecache(void)
3755 {
3756         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3757                                 sizeof(struct shmem_inode_info),
3758                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3759 }
3760
3761 static void shmem_destroy_inodecache(void)
3762 {
3763         kmem_cache_destroy(shmem_inode_cachep);
3764 }
3765
3766 const struct address_space_operations shmem_aops = {
3767         .writepage      = shmem_writepage,
3768         .set_page_dirty = __set_page_dirty_no_writeback,
3769 #ifdef CONFIG_TMPFS
3770         .write_begin    = shmem_write_begin,
3771         .write_end      = shmem_write_end,
3772 #endif
3773 #ifdef CONFIG_MIGRATION
3774         .migratepage    = migrate_page,
3775 #endif
3776         .error_remove_page = generic_error_remove_page,
3777 };
3778 EXPORT_SYMBOL(shmem_aops);
3779
3780 static const struct file_operations shmem_file_operations = {
3781         .mmap           = shmem_mmap,
3782         .get_unmapped_area = shmem_get_unmapped_area,
3783 #ifdef CONFIG_TMPFS
3784         .llseek         = shmem_file_llseek,
3785         .read_iter      = shmem_file_read_iter,
3786         .write_iter     = generic_file_write_iter,
3787         .fsync          = noop_fsync,
3788         .splice_read    = generic_file_splice_read,
3789         .splice_write   = iter_file_splice_write,
3790         .fallocate      = shmem_fallocate,
3791 #endif
3792 };
3793
3794 static const struct inode_operations shmem_inode_operations = {
3795         .getattr        = shmem_getattr,
3796         .setattr        = shmem_setattr,
3797 #ifdef CONFIG_TMPFS_XATTR
3798         .listxattr      = shmem_listxattr,
3799         .set_acl        = simple_set_acl,
3800 #endif
3801 };
3802
3803 static const struct inode_operations shmem_dir_inode_operations = {
3804 #ifdef CONFIG_TMPFS
3805         .create         = shmem_create,
3806         .lookup         = simple_lookup,
3807         .link           = shmem_link,
3808         .unlink         = shmem_unlink,
3809         .symlink        = shmem_symlink,
3810         .mkdir          = shmem_mkdir,
3811         .rmdir          = shmem_rmdir,
3812         .mknod          = shmem_mknod,
3813         .rename         = shmem_rename2,
3814         .tmpfile        = shmem_tmpfile,
3815 #endif
3816 #ifdef CONFIG_TMPFS_XATTR
3817         .listxattr      = shmem_listxattr,
3818 #endif
3819 #ifdef CONFIG_TMPFS_POSIX_ACL
3820         .setattr        = shmem_setattr,
3821         .set_acl        = simple_set_acl,
3822 #endif
3823 };
3824
3825 static const struct inode_operations shmem_special_inode_operations = {
3826 #ifdef CONFIG_TMPFS_XATTR
3827         .listxattr      = shmem_listxattr,
3828 #endif
3829 #ifdef CONFIG_TMPFS_POSIX_ACL
3830         .setattr        = shmem_setattr,
3831         .set_acl        = simple_set_acl,
3832 #endif
3833 };
3834
3835 static const struct super_operations shmem_ops = {
3836         .alloc_inode    = shmem_alloc_inode,
3837         .free_inode     = shmem_free_in_core_inode,
3838         .destroy_inode  = shmem_destroy_inode,
3839 #ifdef CONFIG_TMPFS
3840         .statfs         = shmem_statfs,
3841         .show_options   = shmem_show_options,
3842 #endif
3843         .evict_inode    = shmem_evict_inode,
3844         .drop_inode     = generic_delete_inode,
3845         .put_super      = shmem_put_super,
3846 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3847         .nr_cached_objects      = shmem_unused_huge_count,
3848         .free_cached_objects    = shmem_unused_huge_scan,
3849 #endif
3850 };
3851
3852 static const struct vm_operations_struct shmem_vm_ops = {
3853         .fault          = shmem_fault,
3854         .map_pages      = filemap_map_pages,
3855 #ifdef CONFIG_NUMA
3856         .set_policy     = shmem_set_policy,
3857         .get_policy     = shmem_get_policy,
3858 #endif
3859 };
3860
3861 int shmem_init_fs_context(struct fs_context *fc)
3862 {
3863         struct shmem_options *ctx;
3864
3865         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3866         if (!ctx)
3867                 return -ENOMEM;
3868
3869         ctx->mode = 0777 | S_ISVTX;
3870         ctx->uid = current_fsuid();
3871         ctx->gid = current_fsgid();
3872
3873         fc->fs_private = ctx;
3874         fc->ops = &shmem_fs_context_ops;
3875         return 0;
3876 }
3877
3878 static struct file_system_type shmem_fs_type = {
3879         .owner          = THIS_MODULE,
3880         .name           = "tmpfs",
3881         .init_fs_context = shmem_init_fs_context,
3882 #ifdef CONFIG_TMPFS
3883         .parameters     = shmem_fs_parameters,
3884 #endif
3885         .kill_sb        = kill_litter_super,
3886         .fs_flags       = FS_USERNS_MOUNT | FS_THP_SUPPORT,
3887 };
3888
3889 int __init shmem_init(void)
3890 {
3891         int error;
3892
3893         shmem_init_inodecache();
3894
3895         error = register_filesystem(&shmem_fs_type);
3896         if (error) {
3897                 pr_err("Could not register tmpfs\n");
3898                 goto out2;
3899         }
3900
3901         shm_mnt = kern_mount(&shmem_fs_type);
3902         if (IS_ERR(shm_mnt)) {
3903                 error = PTR_ERR(shm_mnt);
3904                 pr_err("Could not kern_mount tmpfs\n");
3905                 goto out1;
3906         }
3907
3908 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3909         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3910                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3911         else
3912                 shmem_huge = 0; /* just in case it was patched */
3913 #endif
3914         return 0;
3915
3916 out1:
3917         unregister_filesystem(&shmem_fs_type);
3918 out2:
3919         shmem_destroy_inodecache();
3920         shm_mnt = ERR_PTR(error);
3921         return error;
3922 }
3923
3924 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3925 static ssize_t shmem_enabled_show(struct kobject *kobj,
3926                                   struct kobj_attribute *attr, char *buf)
3927 {
3928         static const int values[] = {
3929                 SHMEM_HUGE_ALWAYS,
3930                 SHMEM_HUGE_WITHIN_SIZE,
3931                 SHMEM_HUGE_ADVISE,
3932                 SHMEM_HUGE_NEVER,
3933                 SHMEM_HUGE_DENY,
3934                 SHMEM_HUGE_FORCE,
3935         };
3936         int len = 0;
3937         int i;
3938
3939         for (i = 0; i < ARRAY_SIZE(values); i++) {
3940                 len += sysfs_emit_at(buf, len,
3941                                      shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3942                                      i ? " " : "",
3943                                      shmem_format_huge(values[i]));
3944         }
3945
3946         len += sysfs_emit_at(buf, len, "\n");
3947
3948         return len;
3949 }
3950
3951 static ssize_t shmem_enabled_store(struct kobject *kobj,
3952                 struct kobj_attribute *attr, const char *buf, size_t count)
3953 {
3954         char tmp[16];
3955         int huge;
3956
3957         if (count + 1 > sizeof(tmp))
3958                 return -EINVAL;
3959         memcpy(tmp, buf, count);
3960         tmp[count] = '\0';
3961         if (count && tmp[count - 1] == '\n')
3962                 tmp[count - 1] = '\0';
3963
3964         huge = shmem_parse_huge(tmp);
3965         if (huge == -EINVAL)
3966                 return -EINVAL;
3967         if (!has_transparent_hugepage() &&
3968                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3969                 return -EINVAL;
3970
3971         shmem_huge = huge;
3972         if (shmem_huge > SHMEM_HUGE_DENY)
3973                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3974         return count;
3975 }
3976
3977 struct kobj_attribute shmem_enabled_attr =
3978         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3979 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3980
3981 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3982 bool shmem_huge_enabled(struct vm_area_struct *vma)
3983 {
3984         struct inode *inode = file_inode(vma->vm_file);
3985         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3986         loff_t i_size;
3987         pgoff_t off;
3988
3989         if (!transhuge_vma_enabled(vma, vma->vm_flags))
3990                 return false;
3991         if (shmem_huge == SHMEM_HUGE_FORCE)
3992                 return true;
3993         if (shmem_huge == SHMEM_HUGE_DENY)
3994                 return false;
3995         switch (sbinfo->huge) {
3996                 case SHMEM_HUGE_NEVER:
3997                         return false;
3998                 case SHMEM_HUGE_ALWAYS:
3999                         return true;
4000                 case SHMEM_HUGE_WITHIN_SIZE:
4001                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4002                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
4003                         if (i_size >= HPAGE_PMD_SIZE &&
4004                                         i_size >> PAGE_SHIFT >= off)
4005                                 return true;
4006                         fallthrough;
4007                 case SHMEM_HUGE_ADVISE:
4008                         /* TODO: implement fadvise() hints */
4009                         return (vma->vm_flags & VM_HUGEPAGE);
4010                 default:
4011                         VM_BUG_ON(1);
4012                         return false;
4013         }
4014 }
4015 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4016
4017 #else /* !CONFIG_SHMEM */
4018
4019 /*
4020  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4021  *
4022  * This is intended for small system where the benefits of the full
4023  * shmem code (swap-backed and resource-limited) are outweighed by
4024  * their complexity. On systems without swap this code should be
4025  * effectively equivalent, but much lighter weight.
4026  */
4027
4028 static struct file_system_type shmem_fs_type = {
4029         .name           = "tmpfs",
4030         .init_fs_context = ramfs_init_fs_context,
4031         .parameters     = ramfs_fs_parameters,
4032         .kill_sb        = kill_litter_super,
4033         .fs_flags       = FS_USERNS_MOUNT,
4034 };
4035
4036 int __init shmem_init(void)
4037 {
4038         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4039
4040         shm_mnt = kern_mount(&shmem_fs_type);
4041         BUG_ON(IS_ERR(shm_mnt));
4042
4043         return 0;
4044 }
4045
4046 int shmem_unuse(unsigned int type, bool frontswap,
4047                 unsigned long *fs_pages_to_unuse)
4048 {
4049         return 0;
4050 }
4051
4052 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4053 {
4054         return 0;
4055 }
4056
4057 void shmem_unlock_mapping(struct address_space *mapping)
4058 {
4059 }
4060
4061 #ifdef CONFIG_MMU
4062 unsigned long shmem_get_unmapped_area(struct file *file,
4063                                       unsigned long addr, unsigned long len,
4064                                       unsigned long pgoff, unsigned long flags)
4065 {
4066         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4067 }
4068 #endif
4069
4070 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4071 {
4072         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4073 }
4074 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4075
4076 #define shmem_vm_ops                            generic_file_vm_ops
4077 #define shmem_file_operations                   ramfs_file_operations
4078 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4079 #define shmem_acct_size(flags, size)            0
4080 #define shmem_unacct_size(flags, size)          do {} while (0)
4081
4082 #endif /* CONFIG_SHMEM */
4083
4084 /* common code */
4085
4086 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4087                                        unsigned long flags, unsigned int i_flags)
4088 {
4089         struct inode *inode;
4090         struct file *res;
4091
4092         if (IS_ERR(mnt))
4093                 return ERR_CAST(mnt);
4094
4095         if (size < 0 || size > MAX_LFS_FILESIZE)
4096                 return ERR_PTR(-EINVAL);
4097
4098         if (shmem_acct_size(flags, size))
4099                 return ERR_PTR(-ENOMEM);
4100
4101         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4102                                 flags);
4103         if (unlikely(!inode)) {
4104                 shmem_unacct_size(flags, size);
4105                 return ERR_PTR(-ENOSPC);
4106         }
4107         inode->i_flags |= i_flags;
4108         inode->i_size = size;
4109         clear_nlink(inode);     /* It is unlinked */
4110         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4111         if (!IS_ERR(res))
4112                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4113                                 &shmem_file_operations);
4114         if (IS_ERR(res))
4115                 iput(inode);
4116         return res;
4117 }
4118
4119 /**
4120  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4121  *      kernel internal.  There will be NO LSM permission checks against the
4122  *      underlying inode.  So users of this interface must do LSM checks at a
4123  *      higher layer.  The users are the big_key and shm implementations.  LSM
4124  *      checks are provided at the key or shm level rather than the inode.
4125  * @name: name for dentry (to be seen in /proc/<pid>/maps
4126  * @size: size to be set for the file
4127  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4128  */
4129 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4130 {
4131         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4132 }
4133
4134 /**
4135  * shmem_file_setup - get an unlinked file living in tmpfs
4136  * @name: name for dentry (to be seen in /proc/<pid>/maps
4137  * @size: size to be set for the file
4138  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4139  */
4140 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4141 {
4142         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4143 }
4144 EXPORT_SYMBOL_GPL(shmem_file_setup);
4145
4146 /**
4147  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4148  * @mnt: the tmpfs mount where the file will be created
4149  * @name: name for dentry (to be seen in /proc/<pid>/maps
4150  * @size: size to be set for the file
4151  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4152  */
4153 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4154                                        loff_t size, unsigned long flags)
4155 {
4156         return __shmem_file_setup(mnt, name, size, flags, 0);
4157 }
4158 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4159
4160 /**
4161  * shmem_zero_setup - setup a shared anonymous mapping
4162  * @vma: the vma to be mmapped is prepared by do_mmap
4163  */
4164 int shmem_zero_setup(struct vm_area_struct *vma)
4165 {
4166         struct file *file;
4167         loff_t size = vma->vm_end - vma->vm_start;
4168
4169         /*
4170          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4171          * between XFS directory reading and selinux: since this file is only
4172          * accessible to the user through its mapping, use S_PRIVATE flag to
4173          * bypass file security, in the same way as shmem_kernel_file_setup().
4174          */
4175         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4176         if (IS_ERR(file))
4177                 return PTR_ERR(file);
4178
4179         if (vma->vm_file)
4180                 fput(vma->vm_file);
4181         vma->vm_file = file;
4182         vma->vm_ops = &shmem_vm_ops;
4183
4184         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4185                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4186                         (vma->vm_end & HPAGE_PMD_MASK)) {
4187                 khugepaged_enter(vma, vma->vm_flags);
4188         }
4189
4190         return 0;
4191 }
4192
4193 /**
4194  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4195  * @mapping:    the page's address_space
4196  * @index:      the page index
4197  * @gfp:        the page allocator flags to use if allocating
4198  *
4199  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4200  * with any new page allocations done using the specified allocation flags.
4201  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4202  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4203  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4204  *
4205  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4206  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4207  */
4208 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4209                                          pgoff_t index, gfp_t gfp)
4210 {
4211 #ifdef CONFIG_SHMEM
4212         struct inode *inode = mapping->host;
4213         struct page *page;
4214         int error;
4215
4216         BUG_ON(!shmem_mapping(mapping));
4217         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4218                                   gfp, NULL, NULL, NULL);
4219         if (error)
4220                 page = ERR_PTR(error);
4221         else
4222                 unlock_page(page);
4223         return page;
4224 #else
4225         /*
4226          * The tiny !SHMEM case uses ramfs without swap
4227          */
4228         return read_cache_page_gfp(mapping, index, gfp);
4229 #endif
4230 }
4231 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);