Merge tag 'for-linus-6.0-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/uio.h>
38 #include <linux/hugetlb.h>
39 #include <linux/fs_parser.h>
40 #include <linux/swapfile.h>
41 #include "swap.h"
42
43 static struct vfsmount *shm_mnt;
44
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81
82 #include <linux/uaccess.h>
83
84 #include "internal.h"
85
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_rwsem making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102         pgoff_t start;          /* start of range currently being fallocated */
103         pgoff_t next;           /* the next page offset to be fallocated */
104         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
105         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
106 };
107
108 struct shmem_options {
109         unsigned long long blocks;
110         unsigned long long inodes;
111         struct mempolicy *mpol;
112         kuid_t uid;
113         kgid_t gid;
114         umode_t mode;
115         bool full_inums;
116         int huge;
117         int seen;
118 #define SHMEM_SEEN_BLOCKS 1
119 #define SHMEM_SEEN_INODES 2
120 #define SHMEM_SEEN_HUGE 4
121 #define SHMEM_SEEN_INUMS 8
122 };
123
124 #ifdef CONFIG_TMPFS
125 static unsigned long shmem_default_max_blocks(void)
126 {
127         return totalram_pages() / 2;
128 }
129
130 static unsigned long shmem_default_max_inodes(void)
131 {
132         unsigned long nr_pages = totalram_pages();
133
134         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
135 }
136 #endif
137
138 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
139                              struct folio **foliop, enum sgp_type sgp,
140                              gfp_t gfp, struct vm_area_struct *vma,
141                              vm_fault_t *fault_type);
142 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
143                 struct page **pagep, enum sgp_type sgp,
144                 gfp_t gfp, struct vm_area_struct *vma,
145                 struct vm_fault *vmf, vm_fault_t *fault_type);
146
147 int shmem_getpage(struct inode *inode, pgoff_t index,
148                 struct page **pagep, enum sgp_type sgp)
149 {
150         return shmem_getpage_gfp(inode, index, pagep, sgp,
151                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
152 }
153
154 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
155 {
156         return sb->s_fs_info;
157 }
158
159 /*
160  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
161  * for shared memory and for shared anonymous (/dev/zero) mappings
162  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
163  * consistent with the pre-accounting of private mappings ...
164  */
165 static inline int shmem_acct_size(unsigned long flags, loff_t size)
166 {
167         return (flags & VM_NORESERVE) ?
168                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
169 }
170
171 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
172 {
173         if (!(flags & VM_NORESERVE))
174                 vm_unacct_memory(VM_ACCT(size));
175 }
176
177 static inline int shmem_reacct_size(unsigned long flags,
178                 loff_t oldsize, loff_t newsize)
179 {
180         if (!(flags & VM_NORESERVE)) {
181                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
182                         return security_vm_enough_memory_mm(current->mm,
183                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
184                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
185                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
186         }
187         return 0;
188 }
189
190 /*
191  * ... whereas tmpfs objects are accounted incrementally as
192  * pages are allocated, in order to allow large sparse files.
193  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
194  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
195  */
196 static inline int shmem_acct_block(unsigned long flags, long pages)
197 {
198         if (!(flags & VM_NORESERVE))
199                 return 0;
200
201         return security_vm_enough_memory_mm(current->mm,
202                         pages * VM_ACCT(PAGE_SIZE));
203 }
204
205 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
206 {
207         if (flags & VM_NORESERVE)
208                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
209 }
210
211 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
212 {
213         struct shmem_inode_info *info = SHMEM_I(inode);
214         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
215
216         if (shmem_acct_block(info->flags, pages))
217                 return false;
218
219         if (sbinfo->max_blocks) {
220                 if (percpu_counter_compare(&sbinfo->used_blocks,
221                                            sbinfo->max_blocks - pages) > 0)
222                         goto unacct;
223                 percpu_counter_add(&sbinfo->used_blocks, pages);
224         }
225
226         return true;
227
228 unacct:
229         shmem_unacct_blocks(info->flags, pages);
230         return false;
231 }
232
233 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
234 {
235         struct shmem_inode_info *info = SHMEM_I(inode);
236         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
237
238         if (sbinfo->max_blocks)
239                 percpu_counter_sub(&sbinfo->used_blocks, pages);
240         shmem_unacct_blocks(info->flags, pages);
241 }
242
243 static const struct super_operations shmem_ops;
244 const struct address_space_operations shmem_aops;
245 static const struct file_operations shmem_file_operations;
246 static const struct inode_operations shmem_inode_operations;
247 static const struct inode_operations shmem_dir_inode_operations;
248 static const struct inode_operations shmem_special_inode_operations;
249 static const struct vm_operations_struct shmem_vm_ops;
250 static struct file_system_type shmem_fs_type;
251
252 bool vma_is_shmem(struct vm_area_struct *vma)
253 {
254         return vma->vm_ops == &shmem_vm_ops;
255 }
256
257 static LIST_HEAD(shmem_swaplist);
258 static DEFINE_MUTEX(shmem_swaplist_mutex);
259
260 /*
261  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
262  * produces a novel ino for the newly allocated inode.
263  *
264  * It may also be called when making a hard link to permit the space needed by
265  * each dentry. However, in that case, no new inode number is needed since that
266  * internally draws from another pool of inode numbers (currently global
267  * get_next_ino()). This case is indicated by passing NULL as inop.
268  */
269 #define SHMEM_INO_BATCH 1024
270 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
271 {
272         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
273         ino_t ino;
274
275         if (!(sb->s_flags & SB_KERNMOUNT)) {
276                 raw_spin_lock(&sbinfo->stat_lock);
277                 if (sbinfo->max_inodes) {
278                         if (!sbinfo->free_inodes) {
279                                 raw_spin_unlock(&sbinfo->stat_lock);
280                                 return -ENOSPC;
281                         }
282                         sbinfo->free_inodes--;
283                 }
284                 if (inop) {
285                         ino = sbinfo->next_ino++;
286                         if (unlikely(is_zero_ino(ino)))
287                                 ino = sbinfo->next_ino++;
288                         if (unlikely(!sbinfo->full_inums &&
289                                      ino > UINT_MAX)) {
290                                 /*
291                                  * Emulate get_next_ino uint wraparound for
292                                  * compatibility
293                                  */
294                                 if (IS_ENABLED(CONFIG_64BIT))
295                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
296                                                 __func__, MINOR(sb->s_dev));
297                                 sbinfo->next_ino = 1;
298                                 ino = sbinfo->next_ino++;
299                         }
300                         *inop = ino;
301                 }
302                 raw_spin_unlock(&sbinfo->stat_lock);
303         } else if (inop) {
304                 /*
305                  * __shmem_file_setup, one of our callers, is lock-free: it
306                  * doesn't hold stat_lock in shmem_reserve_inode since
307                  * max_inodes is always 0, and is called from potentially
308                  * unknown contexts. As such, use a per-cpu batched allocator
309                  * which doesn't require the per-sb stat_lock unless we are at
310                  * the batch boundary.
311                  *
312                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
313                  * shmem mounts are not exposed to userspace, so we don't need
314                  * to worry about things like glibc compatibility.
315                  */
316                 ino_t *next_ino;
317
318                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
319                 ino = *next_ino;
320                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
321                         raw_spin_lock(&sbinfo->stat_lock);
322                         ino = sbinfo->next_ino;
323                         sbinfo->next_ino += SHMEM_INO_BATCH;
324                         raw_spin_unlock(&sbinfo->stat_lock);
325                         if (unlikely(is_zero_ino(ino)))
326                                 ino++;
327                 }
328                 *inop = ino;
329                 *next_ino = ++ino;
330                 put_cpu();
331         }
332
333         return 0;
334 }
335
336 static void shmem_free_inode(struct super_block *sb)
337 {
338         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339         if (sbinfo->max_inodes) {
340                 raw_spin_lock(&sbinfo->stat_lock);
341                 sbinfo->free_inodes++;
342                 raw_spin_unlock(&sbinfo->stat_lock);
343         }
344 }
345
346 /**
347  * shmem_recalc_inode - recalculate the block usage of an inode
348  * @inode: inode to recalc
349  *
350  * We have to calculate the free blocks since the mm can drop
351  * undirtied hole pages behind our back.
352  *
353  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
354  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
355  *
356  * It has to be called with the spinlock held.
357  */
358 static void shmem_recalc_inode(struct inode *inode)
359 {
360         struct shmem_inode_info *info = SHMEM_I(inode);
361         long freed;
362
363         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
364         if (freed > 0) {
365                 info->alloced -= freed;
366                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
367                 shmem_inode_unacct_blocks(inode, freed);
368         }
369 }
370
371 bool shmem_charge(struct inode *inode, long pages)
372 {
373         struct shmem_inode_info *info = SHMEM_I(inode);
374         unsigned long flags;
375
376         if (!shmem_inode_acct_block(inode, pages))
377                 return false;
378
379         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
380         inode->i_mapping->nrpages += pages;
381
382         spin_lock_irqsave(&info->lock, flags);
383         info->alloced += pages;
384         inode->i_blocks += pages * BLOCKS_PER_PAGE;
385         shmem_recalc_inode(inode);
386         spin_unlock_irqrestore(&info->lock, flags);
387
388         return true;
389 }
390
391 void shmem_uncharge(struct inode *inode, long pages)
392 {
393         struct shmem_inode_info *info = SHMEM_I(inode);
394         unsigned long flags;
395
396         /* nrpages adjustment done by __filemap_remove_folio() or caller */
397
398         spin_lock_irqsave(&info->lock, flags);
399         info->alloced -= pages;
400         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
401         shmem_recalc_inode(inode);
402         spin_unlock_irqrestore(&info->lock, flags);
403
404         shmem_inode_unacct_blocks(inode, pages);
405 }
406
407 /*
408  * Replace item expected in xarray by a new item, while holding xa_lock.
409  */
410 static int shmem_replace_entry(struct address_space *mapping,
411                         pgoff_t index, void *expected, void *replacement)
412 {
413         XA_STATE(xas, &mapping->i_pages, index);
414         void *item;
415
416         VM_BUG_ON(!expected);
417         VM_BUG_ON(!replacement);
418         item = xas_load(&xas);
419         if (item != expected)
420                 return -ENOENT;
421         xas_store(&xas, replacement);
422         return 0;
423 }
424
425 /*
426  * Sometimes, before we decide whether to proceed or to fail, we must check
427  * that an entry was not already brought back from swap by a racing thread.
428  *
429  * Checking page is not enough: by the time a SwapCache page is locked, it
430  * might be reused, and again be SwapCache, using the same swap as before.
431  */
432 static bool shmem_confirm_swap(struct address_space *mapping,
433                                pgoff_t index, swp_entry_t swap)
434 {
435         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
436 }
437
438 /*
439  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
440  *
441  * SHMEM_HUGE_NEVER:
442  *      disables huge pages for the mount;
443  * SHMEM_HUGE_ALWAYS:
444  *      enables huge pages for the mount;
445  * SHMEM_HUGE_WITHIN_SIZE:
446  *      only allocate huge pages if the page will be fully within i_size,
447  *      also respect fadvise()/madvise() hints;
448  * SHMEM_HUGE_ADVISE:
449  *      only allocate huge pages if requested with fadvise()/madvise();
450  */
451
452 #define SHMEM_HUGE_NEVER        0
453 #define SHMEM_HUGE_ALWAYS       1
454 #define SHMEM_HUGE_WITHIN_SIZE  2
455 #define SHMEM_HUGE_ADVISE       3
456
457 /*
458  * Special values.
459  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
460  *
461  * SHMEM_HUGE_DENY:
462  *      disables huge on shm_mnt and all mounts, for emergency use;
463  * SHMEM_HUGE_FORCE:
464  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
465  *
466  */
467 #define SHMEM_HUGE_DENY         (-1)
468 #define SHMEM_HUGE_FORCE        (-2)
469
470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
471 /* ifdef here to avoid bloating shmem.o when not necessary */
472
473 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
474
475 bool shmem_is_huge(struct vm_area_struct *vma,
476                    struct inode *inode, pgoff_t index)
477 {
478         loff_t i_size;
479
480         if (!S_ISREG(inode->i_mode))
481                 return false;
482         if (shmem_huge == SHMEM_HUGE_DENY)
483                 return false;
484         if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
485             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
486                 return false;
487         if (shmem_huge == SHMEM_HUGE_FORCE)
488                 return true;
489
490         switch (SHMEM_SB(inode->i_sb)->huge) {
491         case SHMEM_HUGE_ALWAYS:
492                 return true;
493         case SHMEM_HUGE_WITHIN_SIZE:
494                 index = round_up(index + 1, HPAGE_PMD_NR);
495                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
496                 if (i_size >> PAGE_SHIFT >= index)
497                         return true;
498                 fallthrough;
499         case SHMEM_HUGE_ADVISE:
500                 if (vma && (vma->vm_flags & VM_HUGEPAGE))
501                         return true;
502                 fallthrough;
503         default:
504                 return false;
505         }
506 }
507
508 #if defined(CONFIG_SYSFS)
509 static int shmem_parse_huge(const char *str)
510 {
511         if (!strcmp(str, "never"))
512                 return SHMEM_HUGE_NEVER;
513         if (!strcmp(str, "always"))
514                 return SHMEM_HUGE_ALWAYS;
515         if (!strcmp(str, "within_size"))
516                 return SHMEM_HUGE_WITHIN_SIZE;
517         if (!strcmp(str, "advise"))
518                 return SHMEM_HUGE_ADVISE;
519         if (!strcmp(str, "deny"))
520                 return SHMEM_HUGE_DENY;
521         if (!strcmp(str, "force"))
522                 return SHMEM_HUGE_FORCE;
523         return -EINVAL;
524 }
525 #endif
526
527 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
528 static const char *shmem_format_huge(int huge)
529 {
530         switch (huge) {
531         case SHMEM_HUGE_NEVER:
532                 return "never";
533         case SHMEM_HUGE_ALWAYS:
534                 return "always";
535         case SHMEM_HUGE_WITHIN_SIZE:
536                 return "within_size";
537         case SHMEM_HUGE_ADVISE:
538                 return "advise";
539         case SHMEM_HUGE_DENY:
540                 return "deny";
541         case SHMEM_HUGE_FORCE:
542                 return "force";
543         default:
544                 VM_BUG_ON(1);
545                 return "bad_val";
546         }
547 }
548 #endif
549
550 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
551                 struct shrink_control *sc, unsigned long nr_to_split)
552 {
553         LIST_HEAD(list), *pos, *next;
554         LIST_HEAD(to_remove);
555         struct inode *inode;
556         struct shmem_inode_info *info;
557         struct folio *folio;
558         unsigned long batch = sc ? sc->nr_to_scan : 128;
559         int split = 0;
560
561         if (list_empty(&sbinfo->shrinklist))
562                 return SHRINK_STOP;
563
564         spin_lock(&sbinfo->shrinklist_lock);
565         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
566                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
567
568                 /* pin the inode */
569                 inode = igrab(&info->vfs_inode);
570
571                 /* inode is about to be evicted */
572                 if (!inode) {
573                         list_del_init(&info->shrinklist);
574                         goto next;
575                 }
576
577                 /* Check if there's anything to gain */
578                 if (round_up(inode->i_size, PAGE_SIZE) ==
579                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
580                         list_move(&info->shrinklist, &to_remove);
581                         goto next;
582                 }
583
584                 list_move(&info->shrinklist, &list);
585 next:
586                 sbinfo->shrinklist_len--;
587                 if (!--batch)
588                         break;
589         }
590         spin_unlock(&sbinfo->shrinklist_lock);
591
592         list_for_each_safe(pos, next, &to_remove) {
593                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
594                 inode = &info->vfs_inode;
595                 list_del_init(&info->shrinklist);
596                 iput(inode);
597         }
598
599         list_for_each_safe(pos, next, &list) {
600                 int ret;
601                 pgoff_t index;
602
603                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
604                 inode = &info->vfs_inode;
605
606                 if (nr_to_split && split >= nr_to_split)
607                         goto move_back;
608
609                 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
610                 folio = filemap_get_folio(inode->i_mapping, index);
611                 if (!folio)
612                         goto drop;
613
614                 /* No huge page at the end of the file: nothing to split */
615                 if (!folio_test_large(folio)) {
616                         folio_put(folio);
617                         goto drop;
618                 }
619
620                 /*
621                  * Move the inode on the list back to shrinklist if we failed
622                  * to lock the page at this time.
623                  *
624                  * Waiting for the lock may lead to deadlock in the
625                  * reclaim path.
626                  */
627                 if (!folio_trylock(folio)) {
628                         folio_put(folio);
629                         goto move_back;
630                 }
631
632                 ret = split_huge_page(&folio->page);
633                 folio_unlock(folio);
634                 folio_put(folio);
635
636                 /* If split failed move the inode on the list back to shrinklist */
637                 if (ret)
638                         goto move_back;
639
640                 split++;
641 drop:
642                 list_del_init(&info->shrinklist);
643                 goto put;
644 move_back:
645                 /*
646                  * Make sure the inode is either on the global list or deleted
647                  * from any local list before iput() since it could be deleted
648                  * in another thread once we put the inode (then the local list
649                  * is corrupted).
650                  */
651                 spin_lock(&sbinfo->shrinklist_lock);
652                 list_move(&info->shrinklist, &sbinfo->shrinklist);
653                 sbinfo->shrinklist_len++;
654                 spin_unlock(&sbinfo->shrinklist_lock);
655 put:
656                 iput(inode);
657         }
658
659         return split;
660 }
661
662 static long shmem_unused_huge_scan(struct super_block *sb,
663                 struct shrink_control *sc)
664 {
665         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
666
667         if (!READ_ONCE(sbinfo->shrinklist_len))
668                 return SHRINK_STOP;
669
670         return shmem_unused_huge_shrink(sbinfo, sc, 0);
671 }
672
673 static long shmem_unused_huge_count(struct super_block *sb,
674                 struct shrink_control *sc)
675 {
676         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
677         return READ_ONCE(sbinfo->shrinklist_len);
678 }
679 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
680
681 #define shmem_huge SHMEM_HUGE_DENY
682
683 bool shmem_is_huge(struct vm_area_struct *vma,
684                    struct inode *inode, pgoff_t index)
685 {
686         return false;
687 }
688
689 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
690                 struct shrink_control *sc, unsigned long nr_to_split)
691 {
692         return 0;
693 }
694 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
695
696 /*
697  * Like filemap_add_folio, but error if expected item has gone.
698  */
699 static int shmem_add_to_page_cache(struct folio *folio,
700                                    struct address_space *mapping,
701                                    pgoff_t index, void *expected, gfp_t gfp,
702                                    struct mm_struct *charge_mm)
703 {
704         XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
705         long nr = folio_nr_pages(folio);
706         int error;
707
708         VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
709         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
710         VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
711         VM_BUG_ON(expected && folio_test_large(folio));
712
713         folio_ref_add(folio, nr);
714         folio->mapping = mapping;
715         folio->index = index;
716
717         if (!folio_test_swapcache(folio)) {
718                 error = mem_cgroup_charge(folio, charge_mm, gfp);
719                 if (error) {
720                         if (folio_test_pmd_mappable(folio)) {
721                                 count_vm_event(THP_FILE_FALLBACK);
722                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
723                         }
724                         goto error;
725                 }
726         }
727         folio_throttle_swaprate(folio, gfp);
728
729         do {
730                 xas_lock_irq(&xas);
731                 if (expected != xas_find_conflict(&xas)) {
732                         xas_set_err(&xas, -EEXIST);
733                         goto unlock;
734                 }
735                 if (expected && xas_find_conflict(&xas)) {
736                         xas_set_err(&xas, -EEXIST);
737                         goto unlock;
738                 }
739                 xas_store(&xas, folio);
740                 if (xas_error(&xas))
741                         goto unlock;
742                 if (folio_test_pmd_mappable(folio)) {
743                         count_vm_event(THP_FILE_ALLOC);
744                         __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
745                 }
746                 mapping->nrpages += nr;
747                 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
748                 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
749 unlock:
750                 xas_unlock_irq(&xas);
751         } while (xas_nomem(&xas, gfp));
752
753         if (xas_error(&xas)) {
754                 error = xas_error(&xas);
755                 goto error;
756         }
757
758         return 0;
759 error:
760         folio->mapping = NULL;
761         folio_ref_sub(folio, nr);
762         return error;
763 }
764
765 /*
766  * Like delete_from_page_cache, but substitutes swap for page.
767  */
768 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
769 {
770         struct address_space *mapping = page->mapping;
771         int error;
772
773         VM_BUG_ON_PAGE(PageCompound(page), page);
774
775         xa_lock_irq(&mapping->i_pages);
776         error = shmem_replace_entry(mapping, page->index, page, radswap);
777         page->mapping = NULL;
778         mapping->nrpages--;
779         __dec_lruvec_page_state(page, NR_FILE_PAGES);
780         __dec_lruvec_page_state(page, NR_SHMEM);
781         xa_unlock_irq(&mapping->i_pages);
782         put_page(page);
783         BUG_ON(error);
784 }
785
786 /*
787  * Remove swap entry from page cache, free the swap and its page cache.
788  */
789 static int shmem_free_swap(struct address_space *mapping,
790                            pgoff_t index, void *radswap)
791 {
792         void *old;
793
794         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
795         if (old != radswap)
796                 return -ENOENT;
797         free_swap_and_cache(radix_to_swp_entry(radswap));
798         return 0;
799 }
800
801 /*
802  * Determine (in bytes) how many of the shmem object's pages mapped by the
803  * given offsets are swapped out.
804  *
805  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
806  * as long as the inode doesn't go away and racy results are not a problem.
807  */
808 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
809                                                 pgoff_t start, pgoff_t end)
810 {
811         XA_STATE(xas, &mapping->i_pages, start);
812         struct page *page;
813         unsigned long swapped = 0;
814
815         rcu_read_lock();
816         xas_for_each(&xas, page, end - 1) {
817                 if (xas_retry(&xas, page))
818                         continue;
819                 if (xa_is_value(page))
820                         swapped++;
821
822                 if (need_resched()) {
823                         xas_pause(&xas);
824                         cond_resched_rcu();
825                 }
826         }
827
828         rcu_read_unlock();
829
830         return swapped << PAGE_SHIFT;
831 }
832
833 /*
834  * Determine (in bytes) how many of the shmem object's pages mapped by the
835  * given vma is swapped out.
836  *
837  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
838  * as long as the inode doesn't go away and racy results are not a problem.
839  */
840 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
841 {
842         struct inode *inode = file_inode(vma->vm_file);
843         struct shmem_inode_info *info = SHMEM_I(inode);
844         struct address_space *mapping = inode->i_mapping;
845         unsigned long swapped;
846
847         /* Be careful as we don't hold info->lock */
848         swapped = READ_ONCE(info->swapped);
849
850         /*
851          * The easier cases are when the shmem object has nothing in swap, or
852          * the vma maps it whole. Then we can simply use the stats that we
853          * already track.
854          */
855         if (!swapped)
856                 return 0;
857
858         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
859                 return swapped << PAGE_SHIFT;
860
861         /* Here comes the more involved part */
862         return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
863                                         vma->vm_pgoff + vma_pages(vma));
864 }
865
866 /*
867  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
868  */
869 void shmem_unlock_mapping(struct address_space *mapping)
870 {
871         struct folio_batch fbatch;
872         pgoff_t index = 0;
873
874         folio_batch_init(&fbatch);
875         /*
876          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
877          */
878         while (!mapping_unevictable(mapping) &&
879                filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
880                 check_move_unevictable_folios(&fbatch);
881                 folio_batch_release(&fbatch);
882                 cond_resched();
883         }
884 }
885
886 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
887 {
888         struct folio *folio;
889         struct page *page;
890
891         /*
892          * At first avoid shmem_getpage(,,,SGP_READ): that fails
893          * beyond i_size, and reports fallocated pages as holes.
894          */
895         folio = __filemap_get_folio(inode->i_mapping, index,
896                                         FGP_ENTRY | FGP_LOCK, 0);
897         if (!xa_is_value(folio))
898                 return folio;
899         /*
900          * But read a page back from swap if any of it is within i_size
901          * (although in some cases this is just a waste of time).
902          */
903         page = NULL;
904         shmem_getpage(inode, index, &page, SGP_READ);
905         return page ? page_folio(page) : NULL;
906 }
907
908 /*
909  * Remove range of pages and swap entries from page cache, and free them.
910  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
911  */
912 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
913                                                                  bool unfalloc)
914 {
915         struct address_space *mapping = inode->i_mapping;
916         struct shmem_inode_info *info = SHMEM_I(inode);
917         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
918         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
919         struct folio_batch fbatch;
920         pgoff_t indices[PAGEVEC_SIZE];
921         struct folio *folio;
922         bool same_folio;
923         long nr_swaps_freed = 0;
924         pgoff_t index;
925         int i;
926
927         if (lend == -1)
928                 end = -1;       /* unsigned, so actually very big */
929
930         if (info->fallocend > start && info->fallocend <= end && !unfalloc)
931                 info->fallocend = start;
932
933         folio_batch_init(&fbatch);
934         index = start;
935         while (index < end && find_lock_entries(mapping, index, end - 1,
936                         &fbatch, indices)) {
937                 for (i = 0; i < folio_batch_count(&fbatch); i++) {
938                         folio = fbatch.folios[i];
939
940                         index = indices[i];
941
942                         if (xa_is_value(folio)) {
943                                 if (unfalloc)
944                                         continue;
945                                 nr_swaps_freed += !shmem_free_swap(mapping,
946                                                                 index, folio);
947                                 continue;
948                         }
949                         index += folio_nr_pages(folio) - 1;
950
951                         if (!unfalloc || !folio_test_uptodate(folio))
952                                 truncate_inode_folio(mapping, folio);
953                         folio_unlock(folio);
954                 }
955                 folio_batch_remove_exceptionals(&fbatch);
956                 folio_batch_release(&fbatch);
957                 cond_resched();
958                 index++;
959         }
960
961         same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
962         folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
963         if (folio) {
964                 same_folio = lend < folio_pos(folio) + folio_size(folio);
965                 folio_mark_dirty(folio);
966                 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
967                         start = folio->index + folio_nr_pages(folio);
968                         if (same_folio)
969                                 end = folio->index;
970                 }
971                 folio_unlock(folio);
972                 folio_put(folio);
973                 folio = NULL;
974         }
975
976         if (!same_folio)
977                 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
978         if (folio) {
979                 folio_mark_dirty(folio);
980                 if (!truncate_inode_partial_folio(folio, lstart, lend))
981                         end = folio->index;
982                 folio_unlock(folio);
983                 folio_put(folio);
984         }
985
986         index = start;
987         while (index < end) {
988                 cond_resched();
989
990                 if (!find_get_entries(mapping, index, end - 1, &fbatch,
991                                 indices)) {
992                         /* If all gone or hole-punch or unfalloc, we're done */
993                         if (index == start || end != -1)
994                                 break;
995                         /* But if truncating, restart to make sure all gone */
996                         index = start;
997                         continue;
998                 }
999                 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1000                         folio = fbatch.folios[i];
1001
1002                         index = indices[i];
1003                         if (xa_is_value(folio)) {
1004                                 if (unfalloc)
1005                                         continue;
1006                                 if (shmem_free_swap(mapping, index, folio)) {
1007                                         /* Swap was replaced by page: retry */
1008                                         index--;
1009                                         break;
1010                                 }
1011                                 nr_swaps_freed++;
1012                                 continue;
1013                         }
1014
1015                         folio_lock(folio);
1016
1017                         if (!unfalloc || !folio_test_uptodate(folio)) {
1018                                 if (folio_mapping(folio) != mapping) {
1019                                         /* Page was replaced by swap: retry */
1020                                         folio_unlock(folio);
1021                                         index--;
1022                                         break;
1023                                 }
1024                                 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1025                                                 folio);
1026                                 truncate_inode_folio(mapping, folio);
1027                         }
1028                         index = folio->index + folio_nr_pages(folio) - 1;
1029                         folio_unlock(folio);
1030                 }
1031                 folio_batch_remove_exceptionals(&fbatch);
1032                 folio_batch_release(&fbatch);
1033                 index++;
1034         }
1035
1036         spin_lock_irq(&info->lock);
1037         info->swapped -= nr_swaps_freed;
1038         shmem_recalc_inode(inode);
1039         spin_unlock_irq(&info->lock);
1040 }
1041
1042 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1043 {
1044         shmem_undo_range(inode, lstart, lend, false);
1045         inode->i_ctime = inode->i_mtime = current_time(inode);
1046 }
1047 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1048
1049 static int shmem_getattr(struct user_namespace *mnt_userns,
1050                          const struct path *path, struct kstat *stat,
1051                          u32 request_mask, unsigned int query_flags)
1052 {
1053         struct inode *inode = path->dentry->d_inode;
1054         struct shmem_inode_info *info = SHMEM_I(inode);
1055
1056         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1057                 spin_lock_irq(&info->lock);
1058                 shmem_recalc_inode(inode);
1059                 spin_unlock_irq(&info->lock);
1060         }
1061         if (info->fsflags & FS_APPEND_FL)
1062                 stat->attributes |= STATX_ATTR_APPEND;
1063         if (info->fsflags & FS_IMMUTABLE_FL)
1064                 stat->attributes |= STATX_ATTR_IMMUTABLE;
1065         if (info->fsflags & FS_NODUMP_FL)
1066                 stat->attributes |= STATX_ATTR_NODUMP;
1067         stat->attributes_mask |= (STATX_ATTR_APPEND |
1068                         STATX_ATTR_IMMUTABLE |
1069                         STATX_ATTR_NODUMP);
1070         generic_fillattr(&init_user_ns, inode, stat);
1071
1072         if (shmem_is_huge(NULL, inode, 0))
1073                 stat->blksize = HPAGE_PMD_SIZE;
1074
1075         if (request_mask & STATX_BTIME) {
1076                 stat->result_mask |= STATX_BTIME;
1077                 stat->btime.tv_sec = info->i_crtime.tv_sec;
1078                 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1079         }
1080
1081         return 0;
1082 }
1083
1084 static int shmem_setattr(struct user_namespace *mnt_userns,
1085                          struct dentry *dentry, struct iattr *attr)
1086 {
1087         struct inode *inode = d_inode(dentry);
1088         struct shmem_inode_info *info = SHMEM_I(inode);
1089         int error;
1090
1091         error = setattr_prepare(&init_user_ns, dentry, attr);
1092         if (error)
1093                 return error;
1094
1095         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1096                 loff_t oldsize = inode->i_size;
1097                 loff_t newsize = attr->ia_size;
1098
1099                 /* protected by i_rwsem */
1100                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1101                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1102                         return -EPERM;
1103
1104                 if (newsize != oldsize) {
1105                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1106                                         oldsize, newsize);
1107                         if (error)
1108                                 return error;
1109                         i_size_write(inode, newsize);
1110                         inode->i_ctime = inode->i_mtime = current_time(inode);
1111                 }
1112                 if (newsize <= oldsize) {
1113                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1114                         if (oldsize > holebegin)
1115                                 unmap_mapping_range(inode->i_mapping,
1116                                                         holebegin, 0, 1);
1117                         if (info->alloced)
1118                                 shmem_truncate_range(inode,
1119                                                         newsize, (loff_t)-1);
1120                         /* unmap again to remove racily COWed private pages */
1121                         if (oldsize > holebegin)
1122                                 unmap_mapping_range(inode->i_mapping,
1123                                                         holebegin, 0, 1);
1124                 }
1125         }
1126
1127         setattr_copy(&init_user_ns, inode, attr);
1128         if (attr->ia_valid & ATTR_MODE)
1129                 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1130         return error;
1131 }
1132
1133 static void shmem_evict_inode(struct inode *inode)
1134 {
1135         struct shmem_inode_info *info = SHMEM_I(inode);
1136         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1137
1138         if (shmem_mapping(inode->i_mapping)) {
1139                 shmem_unacct_size(info->flags, inode->i_size);
1140                 inode->i_size = 0;
1141                 mapping_set_exiting(inode->i_mapping);
1142                 shmem_truncate_range(inode, 0, (loff_t)-1);
1143                 if (!list_empty(&info->shrinklist)) {
1144                         spin_lock(&sbinfo->shrinklist_lock);
1145                         if (!list_empty(&info->shrinklist)) {
1146                                 list_del_init(&info->shrinklist);
1147                                 sbinfo->shrinklist_len--;
1148                         }
1149                         spin_unlock(&sbinfo->shrinklist_lock);
1150                 }
1151                 while (!list_empty(&info->swaplist)) {
1152                         /* Wait while shmem_unuse() is scanning this inode... */
1153                         wait_var_event(&info->stop_eviction,
1154                                        !atomic_read(&info->stop_eviction));
1155                         mutex_lock(&shmem_swaplist_mutex);
1156                         /* ...but beware of the race if we peeked too early */
1157                         if (!atomic_read(&info->stop_eviction))
1158                                 list_del_init(&info->swaplist);
1159                         mutex_unlock(&shmem_swaplist_mutex);
1160                 }
1161         }
1162
1163         simple_xattrs_free(&info->xattrs);
1164         WARN_ON(inode->i_blocks);
1165         shmem_free_inode(inode->i_sb);
1166         clear_inode(inode);
1167 }
1168
1169 static int shmem_find_swap_entries(struct address_space *mapping,
1170                                    pgoff_t start, struct folio_batch *fbatch,
1171                                    pgoff_t *indices, unsigned int type)
1172 {
1173         XA_STATE(xas, &mapping->i_pages, start);
1174         struct folio *folio;
1175         swp_entry_t entry;
1176
1177         rcu_read_lock();
1178         xas_for_each(&xas, folio, ULONG_MAX) {
1179                 if (xas_retry(&xas, folio))
1180                         continue;
1181
1182                 if (!xa_is_value(folio))
1183                         continue;
1184
1185                 entry = radix_to_swp_entry(folio);
1186                 /*
1187                  * swapin error entries can be found in the mapping. But they're
1188                  * deliberately ignored here as we've done everything we can do.
1189                  */
1190                 if (swp_type(entry) != type)
1191                         continue;
1192
1193                 indices[folio_batch_count(fbatch)] = xas.xa_index;
1194                 if (!folio_batch_add(fbatch, folio))
1195                         break;
1196
1197                 if (need_resched()) {
1198                         xas_pause(&xas);
1199                         cond_resched_rcu();
1200                 }
1201         }
1202         rcu_read_unlock();
1203
1204         return xas.xa_index;
1205 }
1206
1207 /*
1208  * Move the swapped pages for an inode to page cache. Returns the count
1209  * of pages swapped in, or the error in case of failure.
1210  */
1211 static int shmem_unuse_swap_entries(struct inode *inode,
1212                 struct folio_batch *fbatch, pgoff_t *indices)
1213 {
1214         int i = 0;
1215         int ret = 0;
1216         int error = 0;
1217         struct address_space *mapping = inode->i_mapping;
1218
1219         for (i = 0; i < folio_batch_count(fbatch); i++) {
1220                 struct folio *folio = fbatch->folios[i];
1221
1222                 if (!xa_is_value(folio))
1223                         continue;
1224                 error = shmem_swapin_folio(inode, indices[i],
1225                                           &folio, SGP_CACHE,
1226                                           mapping_gfp_mask(mapping),
1227                                           NULL, NULL);
1228                 if (error == 0) {
1229                         folio_unlock(folio);
1230                         folio_put(folio);
1231                         ret++;
1232                 }
1233                 if (error == -ENOMEM)
1234                         break;
1235                 error = 0;
1236         }
1237         return error ? error : ret;
1238 }
1239
1240 /*
1241  * If swap found in inode, free it and move page from swapcache to filecache.
1242  */
1243 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1244 {
1245         struct address_space *mapping = inode->i_mapping;
1246         pgoff_t start = 0;
1247         struct folio_batch fbatch;
1248         pgoff_t indices[PAGEVEC_SIZE];
1249         int ret = 0;
1250
1251         do {
1252                 folio_batch_init(&fbatch);
1253                 shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1254                 if (folio_batch_count(&fbatch) == 0) {
1255                         ret = 0;
1256                         break;
1257                 }
1258
1259                 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1260                 if (ret < 0)
1261                         break;
1262
1263                 start = indices[folio_batch_count(&fbatch) - 1];
1264         } while (true);
1265
1266         return ret;
1267 }
1268
1269 /*
1270  * Read all the shared memory data that resides in the swap
1271  * device 'type' back into memory, so the swap device can be
1272  * unused.
1273  */
1274 int shmem_unuse(unsigned int type)
1275 {
1276         struct shmem_inode_info *info, *next;
1277         int error = 0;
1278
1279         if (list_empty(&shmem_swaplist))
1280                 return 0;
1281
1282         mutex_lock(&shmem_swaplist_mutex);
1283         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1284                 if (!info->swapped) {
1285                         list_del_init(&info->swaplist);
1286                         continue;
1287                 }
1288                 /*
1289                  * Drop the swaplist mutex while searching the inode for swap;
1290                  * but before doing so, make sure shmem_evict_inode() will not
1291                  * remove placeholder inode from swaplist, nor let it be freed
1292                  * (igrab() would protect from unlink, but not from unmount).
1293                  */
1294                 atomic_inc(&info->stop_eviction);
1295                 mutex_unlock(&shmem_swaplist_mutex);
1296
1297                 error = shmem_unuse_inode(&info->vfs_inode, type);
1298                 cond_resched();
1299
1300                 mutex_lock(&shmem_swaplist_mutex);
1301                 next = list_next_entry(info, swaplist);
1302                 if (!info->swapped)
1303                         list_del_init(&info->swaplist);
1304                 if (atomic_dec_and_test(&info->stop_eviction))
1305                         wake_up_var(&info->stop_eviction);
1306                 if (error)
1307                         break;
1308         }
1309         mutex_unlock(&shmem_swaplist_mutex);
1310
1311         return error;
1312 }
1313
1314 /*
1315  * Move the page from the page cache to the swap cache.
1316  */
1317 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1318 {
1319         struct folio *folio = page_folio(page);
1320         struct shmem_inode_info *info;
1321         struct address_space *mapping;
1322         struct inode *inode;
1323         swp_entry_t swap;
1324         pgoff_t index;
1325
1326         /*
1327          * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1328          * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1329          * and its shmem_writeback() needs them to be split when swapping.
1330          */
1331         if (PageTransCompound(page)) {
1332                 /* Ensure the subpages are still dirty */
1333                 SetPageDirty(page);
1334                 if (split_huge_page(page) < 0)
1335                         goto redirty;
1336                 ClearPageDirty(page);
1337         }
1338
1339         BUG_ON(!PageLocked(page));
1340         mapping = page->mapping;
1341         index = page->index;
1342         inode = mapping->host;
1343         info = SHMEM_I(inode);
1344         if (info->flags & VM_LOCKED)
1345                 goto redirty;
1346         if (!total_swap_pages)
1347                 goto redirty;
1348
1349         /*
1350          * Our capabilities prevent regular writeback or sync from ever calling
1351          * shmem_writepage; but a stacking filesystem might use ->writepage of
1352          * its underlying filesystem, in which case tmpfs should write out to
1353          * swap only in response to memory pressure, and not for the writeback
1354          * threads or sync.
1355          */
1356         if (!wbc->for_reclaim) {
1357                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1358                 goto redirty;
1359         }
1360
1361         /*
1362          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1363          * value into swapfile.c, the only way we can correctly account for a
1364          * fallocated page arriving here is now to initialize it and write it.
1365          *
1366          * That's okay for a page already fallocated earlier, but if we have
1367          * not yet completed the fallocation, then (a) we want to keep track
1368          * of this page in case we have to undo it, and (b) it may not be a
1369          * good idea to continue anyway, once we're pushing into swap.  So
1370          * reactivate the page, and let shmem_fallocate() quit when too many.
1371          */
1372         if (!PageUptodate(page)) {
1373                 if (inode->i_private) {
1374                         struct shmem_falloc *shmem_falloc;
1375                         spin_lock(&inode->i_lock);
1376                         shmem_falloc = inode->i_private;
1377                         if (shmem_falloc &&
1378                             !shmem_falloc->waitq &&
1379                             index >= shmem_falloc->start &&
1380                             index < shmem_falloc->next)
1381                                 shmem_falloc->nr_unswapped++;
1382                         else
1383                                 shmem_falloc = NULL;
1384                         spin_unlock(&inode->i_lock);
1385                         if (shmem_falloc)
1386                                 goto redirty;
1387                 }
1388                 clear_highpage(page);
1389                 flush_dcache_page(page);
1390                 SetPageUptodate(page);
1391         }
1392
1393         swap = folio_alloc_swap(folio);
1394         if (!swap.val)
1395                 goto redirty;
1396
1397         /*
1398          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1399          * if it's not already there.  Do it now before the page is
1400          * moved to swap cache, when its pagelock no longer protects
1401          * the inode from eviction.  But don't unlock the mutex until
1402          * we've incremented swapped, because shmem_unuse_inode() will
1403          * prune a !swapped inode from the swaplist under this mutex.
1404          */
1405         mutex_lock(&shmem_swaplist_mutex);
1406         if (list_empty(&info->swaplist))
1407                 list_add(&info->swaplist, &shmem_swaplist);
1408
1409         if (add_to_swap_cache(page, swap,
1410                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1411                         NULL) == 0) {
1412                 spin_lock_irq(&info->lock);
1413                 shmem_recalc_inode(inode);
1414                 info->swapped++;
1415                 spin_unlock_irq(&info->lock);
1416
1417                 swap_shmem_alloc(swap);
1418                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1419
1420                 mutex_unlock(&shmem_swaplist_mutex);
1421                 BUG_ON(page_mapped(page));
1422                 swap_writepage(page, wbc);
1423                 return 0;
1424         }
1425
1426         mutex_unlock(&shmem_swaplist_mutex);
1427         put_swap_page(page, swap);
1428 redirty:
1429         set_page_dirty(page);
1430         if (wbc->for_reclaim)
1431                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1432         unlock_page(page);
1433         return 0;
1434 }
1435
1436 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1437 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1438 {
1439         char buffer[64];
1440
1441         if (!mpol || mpol->mode == MPOL_DEFAULT)
1442                 return;         /* show nothing */
1443
1444         mpol_to_str(buffer, sizeof(buffer), mpol);
1445
1446         seq_printf(seq, ",mpol=%s", buffer);
1447 }
1448
1449 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1450 {
1451         struct mempolicy *mpol = NULL;
1452         if (sbinfo->mpol) {
1453                 raw_spin_lock(&sbinfo->stat_lock);      /* prevent replace/use races */
1454                 mpol = sbinfo->mpol;
1455                 mpol_get(mpol);
1456                 raw_spin_unlock(&sbinfo->stat_lock);
1457         }
1458         return mpol;
1459 }
1460 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1461 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1462 {
1463 }
1464 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1465 {
1466         return NULL;
1467 }
1468 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1469 #ifndef CONFIG_NUMA
1470 #define vm_policy vm_private_data
1471 #endif
1472
1473 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1474                 struct shmem_inode_info *info, pgoff_t index)
1475 {
1476         /* Create a pseudo vma that just contains the policy */
1477         vma_init(vma, NULL);
1478         /* Bias interleave by inode number to distribute better across nodes */
1479         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1480         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1481 }
1482
1483 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1484 {
1485         /* Drop reference taken by mpol_shared_policy_lookup() */
1486         mpol_cond_put(vma->vm_policy);
1487 }
1488
1489 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1490                         struct shmem_inode_info *info, pgoff_t index)
1491 {
1492         struct vm_area_struct pvma;
1493         struct page *page;
1494         struct vm_fault vmf = {
1495                 .vma = &pvma,
1496         };
1497
1498         shmem_pseudo_vma_init(&pvma, info, index);
1499         page = swap_cluster_readahead(swap, gfp, &vmf);
1500         shmem_pseudo_vma_destroy(&pvma);
1501
1502         return page;
1503 }
1504
1505 /*
1506  * Make sure huge_gfp is always more limited than limit_gfp.
1507  * Some of the flags set permissions, while others set limitations.
1508  */
1509 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1510 {
1511         gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1512         gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1513         gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1514         gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1515
1516         /* Allow allocations only from the originally specified zones. */
1517         result |= zoneflags;
1518
1519         /*
1520          * Minimize the result gfp by taking the union with the deny flags,
1521          * and the intersection of the allow flags.
1522          */
1523         result |= (limit_gfp & denyflags);
1524         result |= (huge_gfp & limit_gfp) & allowflags;
1525
1526         return result;
1527 }
1528
1529 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1530                 struct shmem_inode_info *info, pgoff_t index)
1531 {
1532         struct vm_area_struct pvma;
1533         struct address_space *mapping = info->vfs_inode.i_mapping;
1534         pgoff_t hindex;
1535         struct folio *folio;
1536
1537         hindex = round_down(index, HPAGE_PMD_NR);
1538         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1539                                                                 XA_PRESENT))
1540                 return NULL;
1541
1542         shmem_pseudo_vma_init(&pvma, info, hindex);
1543         folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1544         shmem_pseudo_vma_destroy(&pvma);
1545         if (!folio)
1546                 count_vm_event(THP_FILE_FALLBACK);
1547         return folio;
1548 }
1549
1550 static struct folio *shmem_alloc_folio(gfp_t gfp,
1551                         struct shmem_inode_info *info, pgoff_t index)
1552 {
1553         struct vm_area_struct pvma;
1554         struct folio *folio;
1555
1556         shmem_pseudo_vma_init(&pvma, info, index);
1557         folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1558         shmem_pseudo_vma_destroy(&pvma);
1559
1560         return folio;
1561 }
1562
1563 static struct page *shmem_alloc_page(gfp_t gfp,
1564                         struct shmem_inode_info *info, pgoff_t index)
1565 {
1566         return &shmem_alloc_folio(gfp, info, index)->page;
1567 }
1568
1569 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1570                 pgoff_t index, bool huge)
1571 {
1572         struct shmem_inode_info *info = SHMEM_I(inode);
1573         struct folio *folio;
1574         int nr;
1575         int err = -ENOSPC;
1576
1577         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1578                 huge = false;
1579         nr = huge ? HPAGE_PMD_NR : 1;
1580
1581         if (!shmem_inode_acct_block(inode, nr))
1582                 goto failed;
1583
1584         if (huge)
1585                 folio = shmem_alloc_hugefolio(gfp, info, index);
1586         else
1587                 folio = shmem_alloc_folio(gfp, info, index);
1588         if (folio) {
1589                 __folio_set_locked(folio);
1590                 __folio_set_swapbacked(folio);
1591                 return folio;
1592         }
1593
1594         err = -ENOMEM;
1595         shmem_inode_unacct_blocks(inode, nr);
1596 failed:
1597         return ERR_PTR(err);
1598 }
1599
1600 /*
1601  * When a page is moved from swapcache to shmem filecache (either by the
1602  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1603  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1604  * ignorance of the mapping it belongs to.  If that mapping has special
1605  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1606  * we may need to copy to a suitable page before moving to filecache.
1607  *
1608  * In a future release, this may well be extended to respect cpuset and
1609  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1610  * but for now it is a simple matter of zone.
1611  */
1612 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1613 {
1614         return folio_zonenum(folio) > gfp_zone(gfp);
1615 }
1616
1617 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1618                                 struct shmem_inode_info *info, pgoff_t index)
1619 {
1620         struct page *oldpage, *newpage;
1621         struct folio *old, *new;
1622         struct address_space *swap_mapping;
1623         swp_entry_t entry;
1624         pgoff_t swap_index;
1625         int error;
1626
1627         oldpage = *pagep;
1628         entry.val = page_private(oldpage);
1629         swap_index = swp_offset(entry);
1630         swap_mapping = page_mapping(oldpage);
1631
1632         /*
1633          * We have arrived here because our zones are constrained, so don't
1634          * limit chance of success by further cpuset and node constraints.
1635          */
1636         gfp &= ~GFP_CONSTRAINT_MASK;
1637         newpage = shmem_alloc_page(gfp, info, index);
1638         if (!newpage)
1639                 return -ENOMEM;
1640
1641         get_page(newpage);
1642         copy_highpage(newpage, oldpage);
1643         flush_dcache_page(newpage);
1644
1645         __SetPageLocked(newpage);
1646         __SetPageSwapBacked(newpage);
1647         SetPageUptodate(newpage);
1648         set_page_private(newpage, entry.val);
1649         SetPageSwapCache(newpage);
1650
1651         /*
1652          * Our caller will very soon move newpage out of swapcache, but it's
1653          * a nice clean interface for us to replace oldpage by newpage there.
1654          */
1655         xa_lock_irq(&swap_mapping->i_pages);
1656         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1657         if (!error) {
1658                 old = page_folio(oldpage);
1659                 new = page_folio(newpage);
1660                 mem_cgroup_migrate(old, new);
1661                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1662                 __inc_lruvec_page_state(newpage, NR_SHMEM);
1663                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1664                 __dec_lruvec_page_state(oldpage, NR_SHMEM);
1665         }
1666         xa_unlock_irq(&swap_mapping->i_pages);
1667
1668         if (unlikely(error)) {
1669                 /*
1670                  * Is this possible?  I think not, now that our callers check
1671                  * both PageSwapCache and page_private after getting page lock;
1672                  * but be defensive.  Reverse old to newpage for clear and free.
1673                  */
1674                 oldpage = newpage;
1675         } else {
1676                 lru_cache_add(newpage);
1677                 *pagep = newpage;
1678         }
1679
1680         ClearPageSwapCache(oldpage);
1681         set_page_private(oldpage, 0);
1682
1683         unlock_page(oldpage);
1684         put_page(oldpage);
1685         put_page(oldpage);
1686         return error;
1687 }
1688
1689 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1690                                          struct folio *folio, swp_entry_t swap)
1691 {
1692         struct address_space *mapping = inode->i_mapping;
1693         struct shmem_inode_info *info = SHMEM_I(inode);
1694         swp_entry_t swapin_error;
1695         void *old;
1696
1697         swapin_error = make_swapin_error_entry(&folio->page);
1698         old = xa_cmpxchg_irq(&mapping->i_pages, index,
1699                              swp_to_radix_entry(swap),
1700                              swp_to_radix_entry(swapin_error), 0);
1701         if (old != swp_to_radix_entry(swap))
1702                 return;
1703
1704         folio_wait_writeback(folio);
1705         delete_from_swap_cache(folio);
1706         spin_lock_irq(&info->lock);
1707         /*
1708          * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1709          * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1710          * shmem_evict_inode.
1711          */
1712         info->alloced--;
1713         info->swapped--;
1714         shmem_recalc_inode(inode);
1715         spin_unlock_irq(&info->lock);
1716         swap_free(swap);
1717 }
1718
1719 /*
1720  * Swap in the folio pointed to by *foliop.
1721  * Caller has to make sure that *foliop contains a valid swapped folio.
1722  * Returns 0 and the folio in foliop if success. On failure, returns the
1723  * error code and NULL in *foliop.
1724  */
1725 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1726                              struct folio **foliop, enum sgp_type sgp,
1727                              gfp_t gfp, struct vm_area_struct *vma,
1728                              vm_fault_t *fault_type)
1729 {
1730         struct address_space *mapping = inode->i_mapping;
1731         struct shmem_inode_info *info = SHMEM_I(inode);
1732         struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1733         struct page *page;
1734         struct folio *folio = NULL;
1735         swp_entry_t swap;
1736         int error;
1737
1738         VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1739         swap = radix_to_swp_entry(*foliop);
1740         *foliop = NULL;
1741
1742         if (is_swapin_error_entry(swap))
1743                 return -EIO;
1744
1745         /* Look it up and read it in.. */
1746         page = lookup_swap_cache(swap, NULL, 0);
1747         if (!page) {
1748                 /* Or update major stats only when swapin succeeds?? */
1749                 if (fault_type) {
1750                         *fault_type |= VM_FAULT_MAJOR;
1751                         count_vm_event(PGMAJFAULT);
1752                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1753                 }
1754                 /* Here we actually start the io */
1755                 page = shmem_swapin(swap, gfp, info, index);
1756                 if (!page) {
1757                         error = -ENOMEM;
1758                         goto failed;
1759                 }
1760         }
1761         folio = page_folio(page);
1762
1763         /* We have to do this with folio locked to prevent races */
1764         folio_lock(folio);
1765         if (!folio_test_swapcache(folio) ||
1766             folio_swap_entry(folio).val != swap.val ||
1767             !shmem_confirm_swap(mapping, index, swap)) {
1768                 error = -EEXIST;
1769                 goto unlock;
1770         }
1771         if (!folio_test_uptodate(folio)) {
1772                 error = -EIO;
1773                 goto failed;
1774         }
1775         folio_wait_writeback(folio);
1776
1777         /*
1778          * Some architectures may have to restore extra metadata to the
1779          * folio after reading from swap.
1780          */
1781         arch_swap_restore(swap, folio);
1782
1783         if (shmem_should_replace_folio(folio, gfp)) {
1784                 error = shmem_replace_page(&page, gfp, info, index);
1785                 if (error)
1786                         goto failed;
1787         }
1788
1789         error = shmem_add_to_page_cache(folio, mapping, index,
1790                                         swp_to_radix_entry(swap), gfp,
1791                                         charge_mm);
1792         if (error)
1793                 goto failed;
1794
1795         spin_lock_irq(&info->lock);
1796         info->swapped--;
1797         shmem_recalc_inode(inode);
1798         spin_unlock_irq(&info->lock);
1799
1800         if (sgp == SGP_WRITE)
1801                 folio_mark_accessed(folio);
1802
1803         delete_from_swap_cache(folio);
1804         folio_mark_dirty(folio);
1805         swap_free(swap);
1806
1807         *foliop = folio;
1808         return 0;
1809 failed:
1810         if (!shmem_confirm_swap(mapping, index, swap))
1811                 error = -EEXIST;
1812         if (error == -EIO)
1813                 shmem_set_folio_swapin_error(inode, index, folio, swap);
1814 unlock:
1815         if (folio) {
1816                 folio_unlock(folio);
1817                 folio_put(folio);
1818         }
1819
1820         return error;
1821 }
1822
1823 /*
1824  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1825  *
1826  * If we allocate a new one we do not mark it dirty. That's up to the
1827  * vm. If we swap it in we mark it dirty since we also free the swap
1828  * entry since a page cannot live in both the swap and page cache.
1829  *
1830  * vma, vmf, and fault_type are only supplied by shmem_fault:
1831  * otherwise they are NULL.
1832  */
1833 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1834         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1835         struct vm_area_struct *vma, struct vm_fault *vmf,
1836                         vm_fault_t *fault_type)
1837 {
1838         struct address_space *mapping = inode->i_mapping;
1839         struct shmem_inode_info *info = SHMEM_I(inode);
1840         struct shmem_sb_info *sbinfo;
1841         struct mm_struct *charge_mm;
1842         struct folio *folio;
1843         pgoff_t hindex = index;
1844         gfp_t huge_gfp;
1845         int error;
1846         int once = 0;
1847         int alloced = 0;
1848
1849         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1850                 return -EFBIG;
1851 repeat:
1852         if (sgp <= SGP_CACHE &&
1853             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1854                 return -EINVAL;
1855         }
1856
1857         sbinfo = SHMEM_SB(inode->i_sb);
1858         charge_mm = vma ? vma->vm_mm : NULL;
1859
1860         folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1861         if (folio && vma && userfaultfd_minor(vma)) {
1862                 if (!xa_is_value(folio)) {
1863                         folio_unlock(folio);
1864                         folio_put(folio);
1865                 }
1866                 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1867                 return 0;
1868         }
1869
1870         if (xa_is_value(folio)) {
1871                 error = shmem_swapin_folio(inode, index, &folio,
1872                                           sgp, gfp, vma, fault_type);
1873                 if (error == -EEXIST)
1874                         goto repeat;
1875
1876                 *pagep = &folio->page;
1877                 return error;
1878         }
1879
1880         if (folio) {
1881                 hindex = folio->index;
1882                 if (sgp == SGP_WRITE)
1883                         folio_mark_accessed(folio);
1884                 if (folio_test_uptodate(folio))
1885                         goto out;
1886                 /* fallocated page */
1887                 if (sgp != SGP_READ)
1888                         goto clear;
1889                 folio_unlock(folio);
1890                 folio_put(folio);
1891         }
1892
1893         /*
1894          * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1895          * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1896          */
1897         *pagep = NULL;
1898         if (sgp == SGP_READ)
1899                 return 0;
1900         if (sgp == SGP_NOALLOC)
1901                 return -ENOENT;
1902
1903         /*
1904          * Fast cache lookup and swap lookup did not find it: allocate.
1905          */
1906
1907         if (vma && userfaultfd_missing(vma)) {
1908                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1909                 return 0;
1910         }
1911
1912         if (!shmem_is_huge(vma, inode, index))
1913                 goto alloc_nohuge;
1914
1915         huge_gfp = vma_thp_gfp_mask(vma);
1916         huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1917         folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1918         if (IS_ERR(folio)) {
1919 alloc_nohuge:
1920                 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1921         }
1922         if (IS_ERR(folio)) {
1923                 int retry = 5;
1924
1925                 error = PTR_ERR(folio);
1926                 folio = NULL;
1927                 if (error != -ENOSPC)
1928                         goto unlock;
1929                 /*
1930                  * Try to reclaim some space by splitting a huge page
1931                  * beyond i_size on the filesystem.
1932                  */
1933                 while (retry--) {
1934                         int ret;
1935
1936                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1937                         if (ret == SHRINK_STOP)
1938                                 break;
1939                         if (ret)
1940                                 goto alloc_nohuge;
1941                 }
1942                 goto unlock;
1943         }
1944
1945         hindex = round_down(index, folio_nr_pages(folio));
1946
1947         if (sgp == SGP_WRITE)
1948                 __folio_set_referenced(folio);
1949
1950         error = shmem_add_to_page_cache(folio, mapping, hindex,
1951                                         NULL, gfp & GFP_RECLAIM_MASK,
1952                                         charge_mm);
1953         if (error)
1954                 goto unacct;
1955         folio_add_lru(folio);
1956
1957         spin_lock_irq(&info->lock);
1958         info->alloced += folio_nr_pages(folio);
1959         inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1960         shmem_recalc_inode(inode);
1961         spin_unlock_irq(&info->lock);
1962         alloced = true;
1963
1964         if (folio_test_pmd_mappable(folio) &&
1965             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1966                         hindex + HPAGE_PMD_NR - 1) {
1967                 /*
1968                  * Part of the huge page is beyond i_size: subject
1969                  * to shrink under memory pressure.
1970                  */
1971                 spin_lock(&sbinfo->shrinklist_lock);
1972                 /*
1973                  * _careful to defend against unlocked access to
1974                  * ->shrink_list in shmem_unused_huge_shrink()
1975                  */
1976                 if (list_empty_careful(&info->shrinklist)) {
1977                         list_add_tail(&info->shrinklist,
1978                                       &sbinfo->shrinklist);
1979                         sbinfo->shrinklist_len++;
1980                 }
1981                 spin_unlock(&sbinfo->shrinklist_lock);
1982         }
1983
1984         /*
1985          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1986          */
1987         if (sgp == SGP_FALLOC)
1988                 sgp = SGP_WRITE;
1989 clear:
1990         /*
1991          * Let SGP_WRITE caller clear ends if write does not fill page;
1992          * but SGP_FALLOC on a page fallocated earlier must initialize
1993          * it now, lest undo on failure cancel our earlier guarantee.
1994          */
1995         if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
1996                 long i, n = folio_nr_pages(folio);
1997
1998                 for (i = 0; i < n; i++)
1999                         clear_highpage(folio_page(folio, i));
2000                 flush_dcache_folio(folio);
2001                 folio_mark_uptodate(folio);
2002         }
2003
2004         /* Perhaps the file has been truncated since we checked */
2005         if (sgp <= SGP_CACHE &&
2006             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2007                 if (alloced) {
2008                         folio_clear_dirty(folio);
2009                         filemap_remove_folio(folio);
2010                         spin_lock_irq(&info->lock);
2011                         shmem_recalc_inode(inode);
2012                         spin_unlock_irq(&info->lock);
2013                 }
2014                 error = -EINVAL;
2015                 goto unlock;
2016         }
2017 out:
2018         *pagep = folio_page(folio, index - hindex);
2019         return 0;
2020
2021         /*
2022          * Error recovery.
2023          */
2024 unacct:
2025         shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2026
2027         if (folio_test_large(folio)) {
2028                 folio_unlock(folio);
2029                 folio_put(folio);
2030                 goto alloc_nohuge;
2031         }
2032 unlock:
2033         if (folio) {
2034                 folio_unlock(folio);
2035                 folio_put(folio);
2036         }
2037         if (error == -ENOSPC && !once++) {
2038                 spin_lock_irq(&info->lock);
2039                 shmem_recalc_inode(inode);
2040                 spin_unlock_irq(&info->lock);
2041                 goto repeat;
2042         }
2043         if (error == -EEXIST)
2044                 goto repeat;
2045         return error;
2046 }
2047
2048 /*
2049  * This is like autoremove_wake_function, but it removes the wait queue
2050  * entry unconditionally - even if something else had already woken the
2051  * target.
2052  */
2053 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2054 {
2055         int ret = default_wake_function(wait, mode, sync, key);
2056         list_del_init(&wait->entry);
2057         return ret;
2058 }
2059
2060 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2061 {
2062         struct vm_area_struct *vma = vmf->vma;
2063         struct inode *inode = file_inode(vma->vm_file);
2064         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2065         int err;
2066         vm_fault_t ret = VM_FAULT_LOCKED;
2067
2068         /*
2069          * Trinity finds that probing a hole which tmpfs is punching can
2070          * prevent the hole-punch from ever completing: which in turn
2071          * locks writers out with its hold on i_rwsem.  So refrain from
2072          * faulting pages into the hole while it's being punched.  Although
2073          * shmem_undo_range() does remove the additions, it may be unable to
2074          * keep up, as each new page needs its own unmap_mapping_range() call,
2075          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2076          *
2077          * It does not matter if we sometimes reach this check just before the
2078          * hole-punch begins, so that one fault then races with the punch:
2079          * we just need to make racing faults a rare case.
2080          *
2081          * The implementation below would be much simpler if we just used a
2082          * standard mutex or completion: but we cannot take i_rwsem in fault,
2083          * and bloating every shmem inode for this unlikely case would be sad.
2084          */
2085         if (unlikely(inode->i_private)) {
2086                 struct shmem_falloc *shmem_falloc;
2087
2088                 spin_lock(&inode->i_lock);
2089                 shmem_falloc = inode->i_private;
2090                 if (shmem_falloc &&
2091                     shmem_falloc->waitq &&
2092                     vmf->pgoff >= shmem_falloc->start &&
2093                     vmf->pgoff < shmem_falloc->next) {
2094                         struct file *fpin;
2095                         wait_queue_head_t *shmem_falloc_waitq;
2096                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2097
2098                         ret = VM_FAULT_NOPAGE;
2099                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2100                         if (fpin)
2101                                 ret = VM_FAULT_RETRY;
2102
2103                         shmem_falloc_waitq = shmem_falloc->waitq;
2104                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2105                                         TASK_UNINTERRUPTIBLE);
2106                         spin_unlock(&inode->i_lock);
2107                         schedule();
2108
2109                         /*
2110                          * shmem_falloc_waitq points into the shmem_fallocate()
2111                          * stack of the hole-punching task: shmem_falloc_waitq
2112                          * is usually invalid by the time we reach here, but
2113                          * finish_wait() does not dereference it in that case;
2114                          * though i_lock needed lest racing with wake_up_all().
2115                          */
2116                         spin_lock(&inode->i_lock);
2117                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2118                         spin_unlock(&inode->i_lock);
2119
2120                         if (fpin)
2121                                 fput(fpin);
2122                         return ret;
2123                 }
2124                 spin_unlock(&inode->i_lock);
2125         }
2126
2127         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2128                                   gfp, vma, vmf, &ret);
2129         if (err)
2130                 return vmf_error(err);
2131         return ret;
2132 }
2133
2134 unsigned long shmem_get_unmapped_area(struct file *file,
2135                                       unsigned long uaddr, unsigned long len,
2136                                       unsigned long pgoff, unsigned long flags)
2137 {
2138         unsigned long (*get_area)(struct file *,
2139                 unsigned long, unsigned long, unsigned long, unsigned long);
2140         unsigned long addr;
2141         unsigned long offset;
2142         unsigned long inflated_len;
2143         unsigned long inflated_addr;
2144         unsigned long inflated_offset;
2145
2146         if (len > TASK_SIZE)
2147                 return -ENOMEM;
2148
2149         get_area = current->mm->get_unmapped_area;
2150         addr = get_area(file, uaddr, len, pgoff, flags);
2151
2152         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2153                 return addr;
2154         if (IS_ERR_VALUE(addr))
2155                 return addr;
2156         if (addr & ~PAGE_MASK)
2157                 return addr;
2158         if (addr > TASK_SIZE - len)
2159                 return addr;
2160
2161         if (shmem_huge == SHMEM_HUGE_DENY)
2162                 return addr;
2163         if (len < HPAGE_PMD_SIZE)
2164                 return addr;
2165         if (flags & MAP_FIXED)
2166                 return addr;
2167         /*
2168          * Our priority is to support MAP_SHARED mapped hugely;
2169          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2170          * But if caller specified an address hint and we allocated area there
2171          * successfully, respect that as before.
2172          */
2173         if (uaddr == addr)
2174                 return addr;
2175
2176         if (shmem_huge != SHMEM_HUGE_FORCE) {
2177                 struct super_block *sb;
2178
2179                 if (file) {
2180                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2181                         sb = file_inode(file)->i_sb;
2182                 } else {
2183                         /*
2184                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2185                          * for "/dev/zero", to create a shared anonymous object.
2186                          */
2187                         if (IS_ERR(shm_mnt))
2188                                 return addr;
2189                         sb = shm_mnt->mnt_sb;
2190                 }
2191                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2192                         return addr;
2193         }
2194
2195         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2196         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2197                 return addr;
2198         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2199                 return addr;
2200
2201         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2202         if (inflated_len > TASK_SIZE)
2203                 return addr;
2204         if (inflated_len < len)
2205                 return addr;
2206
2207         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2208         if (IS_ERR_VALUE(inflated_addr))
2209                 return addr;
2210         if (inflated_addr & ~PAGE_MASK)
2211                 return addr;
2212
2213         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2214         inflated_addr += offset - inflated_offset;
2215         if (inflated_offset > offset)
2216                 inflated_addr += HPAGE_PMD_SIZE;
2217
2218         if (inflated_addr > TASK_SIZE - len)
2219                 return addr;
2220         return inflated_addr;
2221 }
2222
2223 #ifdef CONFIG_NUMA
2224 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2225 {
2226         struct inode *inode = file_inode(vma->vm_file);
2227         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2228 }
2229
2230 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2231                                           unsigned long addr)
2232 {
2233         struct inode *inode = file_inode(vma->vm_file);
2234         pgoff_t index;
2235
2236         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2237         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2238 }
2239 #endif
2240
2241 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2242 {
2243         struct inode *inode = file_inode(file);
2244         struct shmem_inode_info *info = SHMEM_I(inode);
2245         int retval = -ENOMEM;
2246
2247         /*
2248          * What serializes the accesses to info->flags?
2249          * ipc_lock_object() when called from shmctl_do_lock(),
2250          * no serialization needed when called from shm_destroy().
2251          */
2252         if (lock && !(info->flags & VM_LOCKED)) {
2253                 if (!user_shm_lock(inode->i_size, ucounts))
2254                         goto out_nomem;
2255                 info->flags |= VM_LOCKED;
2256                 mapping_set_unevictable(file->f_mapping);
2257         }
2258         if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2259                 user_shm_unlock(inode->i_size, ucounts);
2260                 info->flags &= ~VM_LOCKED;
2261                 mapping_clear_unevictable(file->f_mapping);
2262         }
2263         retval = 0;
2264
2265 out_nomem:
2266         return retval;
2267 }
2268
2269 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2270 {
2271         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2272         int ret;
2273
2274         ret = seal_check_future_write(info->seals, vma);
2275         if (ret)
2276                 return ret;
2277
2278         /* arm64 - allow memory tagging on RAM-based files */
2279         vma->vm_flags |= VM_MTE_ALLOWED;
2280
2281         file_accessed(file);
2282         vma->vm_ops = &shmem_vm_ops;
2283         return 0;
2284 }
2285
2286 #ifdef CONFIG_TMPFS_XATTR
2287 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2288
2289 /*
2290  * chattr's fsflags are unrelated to extended attributes,
2291  * but tmpfs has chosen to enable them under the same config option.
2292  */
2293 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2294 {
2295         unsigned int i_flags = 0;
2296
2297         if (fsflags & FS_NOATIME_FL)
2298                 i_flags |= S_NOATIME;
2299         if (fsflags & FS_APPEND_FL)
2300                 i_flags |= S_APPEND;
2301         if (fsflags & FS_IMMUTABLE_FL)
2302                 i_flags |= S_IMMUTABLE;
2303         /*
2304          * But FS_NODUMP_FL does not require any action in i_flags.
2305          */
2306         inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2307 }
2308 #else
2309 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2310 {
2311 }
2312 #define shmem_initxattrs NULL
2313 #endif
2314
2315 static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir,
2316                                      umode_t mode, dev_t dev, unsigned long flags)
2317 {
2318         struct inode *inode;
2319         struct shmem_inode_info *info;
2320         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2321         ino_t ino;
2322
2323         if (shmem_reserve_inode(sb, &ino))
2324                 return NULL;
2325
2326         inode = new_inode(sb);
2327         if (inode) {
2328                 inode->i_ino = ino;
2329                 inode_init_owner(&init_user_ns, inode, dir, mode);
2330                 inode->i_blocks = 0;
2331                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2332                 inode->i_generation = prandom_u32();
2333                 info = SHMEM_I(inode);
2334                 memset(info, 0, (char *)inode - (char *)info);
2335                 spin_lock_init(&info->lock);
2336                 atomic_set(&info->stop_eviction, 0);
2337                 info->seals = F_SEAL_SEAL;
2338                 info->flags = flags & VM_NORESERVE;
2339                 info->i_crtime = inode->i_mtime;
2340                 info->fsflags = (dir == NULL) ? 0 :
2341                         SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2342                 if (info->fsflags)
2343                         shmem_set_inode_flags(inode, info->fsflags);
2344                 INIT_LIST_HEAD(&info->shrinklist);
2345                 INIT_LIST_HEAD(&info->swaplist);
2346                 simple_xattrs_init(&info->xattrs);
2347                 cache_no_acl(inode);
2348                 mapping_set_large_folios(inode->i_mapping);
2349
2350                 switch (mode & S_IFMT) {
2351                 default:
2352                         inode->i_op = &shmem_special_inode_operations;
2353                         init_special_inode(inode, mode, dev);
2354                         break;
2355                 case S_IFREG:
2356                         inode->i_mapping->a_ops = &shmem_aops;
2357                         inode->i_op = &shmem_inode_operations;
2358                         inode->i_fop = &shmem_file_operations;
2359                         mpol_shared_policy_init(&info->policy,
2360                                                  shmem_get_sbmpol(sbinfo));
2361                         break;
2362                 case S_IFDIR:
2363                         inc_nlink(inode);
2364                         /* Some things misbehave if size == 0 on a directory */
2365                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2366                         inode->i_op = &shmem_dir_inode_operations;
2367                         inode->i_fop = &simple_dir_operations;
2368                         break;
2369                 case S_IFLNK:
2370                         /*
2371                          * Must not load anything in the rbtree,
2372                          * mpol_free_shared_policy will not be called.
2373                          */
2374                         mpol_shared_policy_init(&info->policy, NULL);
2375                         break;
2376                 }
2377
2378                 lockdep_annotate_inode_mutex_key(inode);
2379         } else
2380                 shmem_free_inode(sb);
2381         return inode;
2382 }
2383
2384 #ifdef CONFIG_USERFAULTFD
2385 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2386                            pmd_t *dst_pmd,
2387                            struct vm_area_struct *dst_vma,
2388                            unsigned long dst_addr,
2389                            unsigned long src_addr,
2390                            bool zeropage, bool wp_copy,
2391                            struct page **pagep)
2392 {
2393         struct inode *inode = file_inode(dst_vma->vm_file);
2394         struct shmem_inode_info *info = SHMEM_I(inode);
2395         struct address_space *mapping = inode->i_mapping;
2396         gfp_t gfp = mapping_gfp_mask(mapping);
2397         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2398         void *page_kaddr;
2399         struct folio *folio;
2400         struct page *page;
2401         int ret;
2402         pgoff_t max_off;
2403
2404         if (!shmem_inode_acct_block(inode, 1)) {
2405                 /*
2406                  * We may have got a page, returned -ENOENT triggering a retry,
2407                  * and now we find ourselves with -ENOMEM. Release the page, to
2408                  * avoid a BUG_ON in our caller.
2409                  */
2410                 if (unlikely(*pagep)) {
2411                         put_page(*pagep);
2412                         *pagep = NULL;
2413                 }
2414                 return -ENOMEM;
2415         }
2416
2417         if (!*pagep) {
2418                 ret = -ENOMEM;
2419                 page = shmem_alloc_page(gfp, info, pgoff);
2420                 if (!page)
2421                         goto out_unacct_blocks;
2422
2423                 if (!zeropage) {        /* COPY */
2424                         page_kaddr = kmap_atomic(page);
2425                         ret = copy_from_user(page_kaddr,
2426                                              (const void __user *)src_addr,
2427                                              PAGE_SIZE);
2428                         kunmap_atomic(page_kaddr);
2429
2430                         /* fallback to copy_from_user outside mmap_lock */
2431                         if (unlikely(ret)) {
2432                                 *pagep = page;
2433                                 ret = -ENOENT;
2434                                 /* don't free the page */
2435                                 goto out_unacct_blocks;
2436                         }
2437
2438                         flush_dcache_page(page);
2439                 } else {                /* ZEROPAGE */
2440                         clear_user_highpage(page, dst_addr);
2441                 }
2442         } else {
2443                 page = *pagep;
2444                 *pagep = NULL;
2445         }
2446
2447         VM_BUG_ON(PageLocked(page));
2448         VM_BUG_ON(PageSwapBacked(page));
2449         __SetPageLocked(page);
2450         __SetPageSwapBacked(page);
2451         __SetPageUptodate(page);
2452
2453         ret = -EFAULT;
2454         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2455         if (unlikely(pgoff >= max_off))
2456                 goto out_release;
2457
2458         folio = page_folio(page);
2459         ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2460                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2461         if (ret)
2462                 goto out_release;
2463
2464         ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2465                                        page, true, wp_copy);
2466         if (ret)
2467                 goto out_delete_from_cache;
2468
2469         spin_lock_irq(&info->lock);
2470         info->alloced++;
2471         inode->i_blocks += BLOCKS_PER_PAGE;
2472         shmem_recalc_inode(inode);
2473         spin_unlock_irq(&info->lock);
2474
2475         unlock_page(page);
2476         return 0;
2477 out_delete_from_cache:
2478         delete_from_page_cache(page);
2479 out_release:
2480         unlock_page(page);
2481         put_page(page);
2482 out_unacct_blocks:
2483         shmem_inode_unacct_blocks(inode, 1);
2484         return ret;
2485 }
2486 #endif /* CONFIG_USERFAULTFD */
2487
2488 #ifdef CONFIG_TMPFS
2489 static const struct inode_operations shmem_symlink_inode_operations;
2490 static const struct inode_operations shmem_short_symlink_operations;
2491
2492 static int
2493 shmem_write_begin(struct file *file, struct address_space *mapping,
2494                         loff_t pos, unsigned len,
2495                         struct page **pagep, void **fsdata)
2496 {
2497         struct inode *inode = mapping->host;
2498         struct shmem_inode_info *info = SHMEM_I(inode);
2499         pgoff_t index = pos >> PAGE_SHIFT;
2500         int ret = 0;
2501
2502         /* i_rwsem is held by caller */
2503         if (unlikely(info->seals & (F_SEAL_GROW |
2504                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2505                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2506                         return -EPERM;
2507                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2508                         return -EPERM;
2509         }
2510
2511         ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2512
2513         if (ret)
2514                 return ret;
2515
2516         if (PageHWPoison(*pagep)) {
2517                 unlock_page(*pagep);
2518                 put_page(*pagep);
2519                 *pagep = NULL;
2520                 return -EIO;
2521         }
2522
2523         return 0;
2524 }
2525
2526 static int
2527 shmem_write_end(struct file *file, struct address_space *mapping,
2528                         loff_t pos, unsigned len, unsigned copied,
2529                         struct page *page, void *fsdata)
2530 {
2531         struct inode *inode = mapping->host;
2532
2533         if (pos + copied > inode->i_size)
2534                 i_size_write(inode, pos + copied);
2535
2536         if (!PageUptodate(page)) {
2537                 struct page *head = compound_head(page);
2538                 if (PageTransCompound(page)) {
2539                         int i;
2540
2541                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2542                                 if (head + i == page)
2543                                         continue;
2544                                 clear_highpage(head + i);
2545                                 flush_dcache_page(head + i);
2546                         }
2547                 }
2548                 if (copied < PAGE_SIZE) {
2549                         unsigned from = pos & (PAGE_SIZE - 1);
2550                         zero_user_segments(page, 0, from,
2551                                         from + copied, PAGE_SIZE);
2552                 }
2553                 SetPageUptodate(head);
2554         }
2555         set_page_dirty(page);
2556         unlock_page(page);
2557         put_page(page);
2558
2559         return copied;
2560 }
2561
2562 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2563 {
2564         struct file *file = iocb->ki_filp;
2565         struct inode *inode = file_inode(file);
2566         struct address_space *mapping = inode->i_mapping;
2567         pgoff_t index;
2568         unsigned long offset;
2569         int error = 0;
2570         ssize_t retval = 0;
2571         loff_t *ppos = &iocb->ki_pos;
2572
2573         index = *ppos >> PAGE_SHIFT;
2574         offset = *ppos & ~PAGE_MASK;
2575
2576         for (;;) {
2577                 struct page *page = NULL;
2578                 pgoff_t end_index;
2579                 unsigned long nr, ret;
2580                 loff_t i_size = i_size_read(inode);
2581
2582                 end_index = i_size >> PAGE_SHIFT;
2583                 if (index > end_index)
2584                         break;
2585                 if (index == end_index) {
2586                         nr = i_size & ~PAGE_MASK;
2587                         if (nr <= offset)
2588                                 break;
2589                 }
2590
2591                 error = shmem_getpage(inode, index, &page, SGP_READ);
2592                 if (error) {
2593                         if (error == -EINVAL)
2594                                 error = 0;
2595                         break;
2596                 }
2597                 if (page) {
2598                         unlock_page(page);
2599
2600                         if (PageHWPoison(page)) {
2601                                 put_page(page);
2602                                 error = -EIO;
2603                                 break;
2604                         }
2605                 }
2606
2607                 /*
2608                  * We must evaluate after, since reads (unlike writes)
2609                  * are called without i_rwsem protection against truncate
2610                  */
2611                 nr = PAGE_SIZE;
2612                 i_size = i_size_read(inode);
2613                 end_index = i_size >> PAGE_SHIFT;
2614                 if (index == end_index) {
2615                         nr = i_size & ~PAGE_MASK;
2616                         if (nr <= offset) {
2617                                 if (page)
2618                                         put_page(page);
2619                                 break;
2620                         }
2621                 }
2622                 nr -= offset;
2623
2624                 if (page) {
2625                         /*
2626                          * If users can be writing to this page using arbitrary
2627                          * virtual addresses, take care about potential aliasing
2628                          * before reading the page on the kernel side.
2629                          */
2630                         if (mapping_writably_mapped(mapping))
2631                                 flush_dcache_page(page);
2632                         /*
2633                          * Mark the page accessed if we read the beginning.
2634                          */
2635                         if (!offset)
2636                                 mark_page_accessed(page);
2637                         /*
2638                          * Ok, we have the page, and it's up-to-date, so
2639                          * now we can copy it to user space...
2640                          */
2641                         ret = copy_page_to_iter(page, offset, nr, to);
2642                         put_page(page);
2643
2644                 } else if (user_backed_iter(to)) {
2645                         /*
2646                          * Copy to user tends to be so well optimized, but
2647                          * clear_user() not so much, that it is noticeably
2648                          * faster to copy the zero page instead of clearing.
2649                          */
2650                         ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2651                 } else {
2652                         /*
2653                          * But submitting the same page twice in a row to
2654                          * splice() - or others? - can result in confusion:
2655                          * so don't attempt that optimization on pipes etc.
2656                          */
2657                         ret = iov_iter_zero(nr, to);
2658                 }
2659
2660                 retval += ret;
2661                 offset += ret;
2662                 index += offset >> PAGE_SHIFT;
2663                 offset &= ~PAGE_MASK;
2664
2665                 if (!iov_iter_count(to))
2666                         break;
2667                 if (ret < nr) {
2668                         error = -EFAULT;
2669                         break;
2670                 }
2671                 cond_resched();
2672         }
2673
2674         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2675         file_accessed(file);
2676         return retval ? retval : error;
2677 }
2678
2679 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2680 {
2681         struct address_space *mapping = file->f_mapping;
2682         struct inode *inode = mapping->host;
2683
2684         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2685                 return generic_file_llseek_size(file, offset, whence,
2686                                         MAX_LFS_FILESIZE, i_size_read(inode));
2687         if (offset < 0)
2688                 return -ENXIO;
2689
2690         inode_lock(inode);
2691         /* We're holding i_rwsem so we can access i_size directly */
2692         offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2693         if (offset >= 0)
2694                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2695         inode_unlock(inode);
2696         return offset;
2697 }
2698
2699 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2700                                                          loff_t len)
2701 {
2702         struct inode *inode = file_inode(file);
2703         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2704         struct shmem_inode_info *info = SHMEM_I(inode);
2705         struct shmem_falloc shmem_falloc;
2706         pgoff_t start, index, end, undo_fallocend;
2707         int error;
2708
2709         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2710                 return -EOPNOTSUPP;
2711
2712         inode_lock(inode);
2713
2714         if (mode & FALLOC_FL_PUNCH_HOLE) {
2715                 struct address_space *mapping = file->f_mapping;
2716                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2717                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2718                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2719
2720                 /* protected by i_rwsem */
2721                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2722                         error = -EPERM;
2723                         goto out;
2724                 }
2725
2726                 shmem_falloc.waitq = &shmem_falloc_waitq;
2727                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2728                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2729                 spin_lock(&inode->i_lock);
2730                 inode->i_private = &shmem_falloc;
2731                 spin_unlock(&inode->i_lock);
2732
2733                 if ((u64)unmap_end > (u64)unmap_start)
2734                         unmap_mapping_range(mapping, unmap_start,
2735                                             1 + unmap_end - unmap_start, 0);
2736                 shmem_truncate_range(inode, offset, offset + len - 1);
2737                 /* No need to unmap again: hole-punching leaves COWed pages */
2738
2739                 spin_lock(&inode->i_lock);
2740                 inode->i_private = NULL;
2741                 wake_up_all(&shmem_falloc_waitq);
2742                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2743                 spin_unlock(&inode->i_lock);
2744                 error = 0;
2745                 goto out;
2746         }
2747
2748         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2749         error = inode_newsize_ok(inode, offset + len);
2750         if (error)
2751                 goto out;
2752
2753         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2754                 error = -EPERM;
2755                 goto out;
2756         }
2757
2758         start = offset >> PAGE_SHIFT;
2759         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2760         /* Try to avoid a swapstorm if len is impossible to satisfy */
2761         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2762                 error = -ENOSPC;
2763                 goto out;
2764         }
2765
2766         shmem_falloc.waitq = NULL;
2767         shmem_falloc.start = start;
2768         shmem_falloc.next  = start;
2769         shmem_falloc.nr_falloced = 0;
2770         shmem_falloc.nr_unswapped = 0;
2771         spin_lock(&inode->i_lock);
2772         inode->i_private = &shmem_falloc;
2773         spin_unlock(&inode->i_lock);
2774
2775         /*
2776          * info->fallocend is only relevant when huge pages might be
2777          * involved: to prevent split_huge_page() freeing fallocated
2778          * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2779          */
2780         undo_fallocend = info->fallocend;
2781         if (info->fallocend < end)
2782                 info->fallocend = end;
2783
2784         for (index = start; index < end; ) {
2785                 struct page *page;
2786
2787                 /*
2788                  * Good, the fallocate(2) manpage permits EINTR: we may have
2789                  * been interrupted because we are using up too much memory.
2790                  */
2791                 if (signal_pending(current))
2792                         error = -EINTR;
2793                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2794                         error = -ENOMEM;
2795                 else
2796                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2797                 if (error) {
2798                         info->fallocend = undo_fallocend;
2799                         /* Remove the !PageUptodate pages we added */
2800                         if (index > start) {
2801                                 shmem_undo_range(inode,
2802                                     (loff_t)start << PAGE_SHIFT,
2803                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2804                         }
2805                         goto undone;
2806                 }
2807
2808                 index++;
2809                 /*
2810                  * Here is a more important optimization than it appears:
2811                  * a second SGP_FALLOC on the same huge page will clear it,
2812                  * making it PageUptodate and un-undoable if we fail later.
2813                  */
2814                 if (PageTransCompound(page)) {
2815                         index = round_up(index, HPAGE_PMD_NR);
2816                         /* Beware 32-bit wraparound */
2817                         if (!index)
2818                                 index--;
2819                 }
2820
2821                 /*
2822                  * Inform shmem_writepage() how far we have reached.
2823                  * No need for lock or barrier: we have the page lock.
2824                  */
2825                 if (!PageUptodate(page))
2826                         shmem_falloc.nr_falloced += index - shmem_falloc.next;
2827                 shmem_falloc.next = index;
2828
2829                 /*
2830                  * If !PageUptodate, leave it that way so that freeable pages
2831                  * can be recognized if we need to rollback on error later.
2832                  * But set_page_dirty so that memory pressure will swap rather
2833                  * than free the pages we are allocating (and SGP_CACHE pages
2834                  * might still be clean: we now need to mark those dirty too).
2835                  */
2836                 set_page_dirty(page);
2837                 unlock_page(page);
2838                 put_page(page);
2839                 cond_resched();
2840         }
2841
2842         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2843                 i_size_write(inode, offset + len);
2844 undone:
2845         spin_lock(&inode->i_lock);
2846         inode->i_private = NULL;
2847         spin_unlock(&inode->i_lock);
2848 out:
2849         if (!error)
2850                 file_modified(file);
2851         inode_unlock(inode);
2852         return error;
2853 }
2854
2855 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2856 {
2857         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2858
2859         buf->f_type = TMPFS_MAGIC;
2860         buf->f_bsize = PAGE_SIZE;
2861         buf->f_namelen = NAME_MAX;
2862         if (sbinfo->max_blocks) {
2863                 buf->f_blocks = sbinfo->max_blocks;
2864                 buf->f_bavail =
2865                 buf->f_bfree  = sbinfo->max_blocks -
2866                                 percpu_counter_sum(&sbinfo->used_blocks);
2867         }
2868         if (sbinfo->max_inodes) {
2869                 buf->f_files = sbinfo->max_inodes;
2870                 buf->f_ffree = sbinfo->free_inodes;
2871         }
2872         /* else leave those fields 0 like simple_statfs */
2873
2874         buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2875
2876         return 0;
2877 }
2878
2879 /*
2880  * File creation. Allocate an inode, and we're done..
2881  */
2882 static int
2883 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2884             struct dentry *dentry, umode_t mode, dev_t dev)
2885 {
2886         struct inode *inode;
2887         int error = -ENOSPC;
2888
2889         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2890         if (inode) {
2891                 error = simple_acl_create(dir, inode);
2892                 if (error)
2893                         goto out_iput;
2894                 error = security_inode_init_security(inode, dir,
2895                                                      &dentry->d_name,
2896                                                      shmem_initxattrs, NULL);
2897                 if (error && error != -EOPNOTSUPP)
2898                         goto out_iput;
2899
2900                 error = 0;
2901                 dir->i_size += BOGO_DIRENT_SIZE;
2902                 dir->i_ctime = dir->i_mtime = current_time(dir);
2903                 d_instantiate(dentry, inode);
2904                 dget(dentry); /* Extra count - pin the dentry in core */
2905         }
2906         return error;
2907 out_iput:
2908         iput(inode);
2909         return error;
2910 }
2911
2912 static int
2913 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2914               struct dentry *dentry, umode_t mode)
2915 {
2916         struct inode *inode;
2917         int error = -ENOSPC;
2918
2919         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2920         if (inode) {
2921                 error = security_inode_init_security(inode, dir,
2922                                                      NULL,
2923                                                      shmem_initxattrs, NULL);
2924                 if (error && error != -EOPNOTSUPP)
2925                         goto out_iput;
2926                 error = simple_acl_create(dir, inode);
2927                 if (error)
2928                         goto out_iput;
2929                 d_tmpfile(dentry, inode);
2930         }
2931         return error;
2932 out_iput:
2933         iput(inode);
2934         return error;
2935 }
2936
2937 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2938                        struct dentry *dentry, umode_t mode)
2939 {
2940         int error;
2941
2942         if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2943                                  mode | S_IFDIR, 0)))
2944                 return error;
2945         inc_nlink(dir);
2946         return 0;
2947 }
2948
2949 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2950                         struct dentry *dentry, umode_t mode, bool excl)
2951 {
2952         return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2953 }
2954
2955 /*
2956  * Link a file..
2957  */
2958 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2959 {
2960         struct inode *inode = d_inode(old_dentry);
2961         int ret = 0;
2962
2963         /*
2964          * No ordinary (disk based) filesystem counts links as inodes;
2965          * but each new link needs a new dentry, pinning lowmem, and
2966          * tmpfs dentries cannot be pruned until they are unlinked.
2967          * But if an O_TMPFILE file is linked into the tmpfs, the
2968          * first link must skip that, to get the accounting right.
2969          */
2970         if (inode->i_nlink) {
2971                 ret = shmem_reserve_inode(inode->i_sb, NULL);
2972                 if (ret)
2973                         goto out;
2974         }
2975
2976         dir->i_size += BOGO_DIRENT_SIZE;
2977         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2978         inc_nlink(inode);
2979         ihold(inode);   /* New dentry reference */
2980         dget(dentry);           /* Extra pinning count for the created dentry */
2981         d_instantiate(dentry, inode);
2982 out:
2983         return ret;
2984 }
2985
2986 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2987 {
2988         struct inode *inode = d_inode(dentry);
2989
2990         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2991                 shmem_free_inode(inode->i_sb);
2992
2993         dir->i_size -= BOGO_DIRENT_SIZE;
2994         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2995         drop_nlink(inode);
2996         dput(dentry);   /* Undo the count from "create" - this does all the work */
2997         return 0;
2998 }
2999
3000 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3001 {
3002         if (!simple_empty(dentry))
3003                 return -ENOTEMPTY;
3004
3005         drop_nlink(d_inode(dentry));
3006         drop_nlink(dir);
3007         return shmem_unlink(dir, dentry);
3008 }
3009
3010 static int shmem_whiteout(struct user_namespace *mnt_userns,
3011                           struct inode *old_dir, struct dentry *old_dentry)
3012 {
3013         struct dentry *whiteout;
3014         int error;
3015
3016         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3017         if (!whiteout)
3018                 return -ENOMEM;
3019
3020         error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3021                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3022         dput(whiteout);
3023         if (error)
3024                 return error;
3025
3026         /*
3027          * Cheat and hash the whiteout while the old dentry is still in
3028          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3029          *
3030          * d_lookup() will consistently find one of them at this point,
3031          * not sure which one, but that isn't even important.
3032          */
3033         d_rehash(whiteout);
3034         return 0;
3035 }
3036
3037 /*
3038  * The VFS layer already does all the dentry stuff for rename,
3039  * we just have to decrement the usage count for the target if
3040  * it exists so that the VFS layer correctly free's it when it
3041  * gets overwritten.
3042  */
3043 static int shmem_rename2(struct user_namespace *mnt_userns,
3044                          struct inode *old_dir, struct dentry *old_dentry,
3045                          struct inode *new_dir, struct dentry *new_dentry,
3046                          unsigned int flags)
3047 {
3048         struct inode *inode = d_inode(old_dentry);
3049         int they_are_dirs = S_ISDIR(inode->i_mode);
3050
3051         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3052                 return -EINVAL;
3053
3054         if (flags & RENAME_EXCHANGE)
3055                 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3056
3057         if (!simple_empty(new_dentry))
3058                 return -ENOTEMPTY;
3059
3060         if (flags & RENAME_WHITEOUT) {
3061                 int error;
3062
3063                 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3064                 if (error)
3065                         return error;
3066         }
3067
3068         if (d_really_is_positive(new_dentry)) {
3069                 (void) shmem_unlink(new_dir, new_dentry);
3070                 if (they_are_dirs) {
3071                         drop_nlink(d_inode(new_dentry));
3072                         drop_nlink(old_dir);
3073                 }
3074         } else if (they_are_dirs) {
3075                 drop_nlink(old_dir);
3076                 inc_nlink(new_dir);
3077         }
3078
3079         old_dir->i_size -= BOGO_DIRENT_SIZE;
3080         new_dir->i_size += BOGO_DIRENT_SIZE;
3081         old_dir->i_ctime = old_dir->i_mtime =
3082         new_dir->i_ctime = new_dir->i_mtime =
3083         inode->i_ctime = current_time(old_dir);
3084         return 0;
3085 }
3086
3087 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3088                          struct dentry *dentry, const char *symname)
3089 {
3090         int error;
3091         int len;
3092         struct inode *inode;
3093         struct page *page;
3094
3095         len = strlen(symname) + 1;
3096         if (len > PAGE_SIZE)
3097                 return -ENAMETOOLONG;
3098
3099         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3100                                 VM_NORESERVE);
3101         if (!inode)
3102                 return -ENOSPC;
3103
3104         error = security_inode_init_security(inode, dir, &dentry->d_name,
3105                                              shmem_initxattrs, NULL);
3106         if (error && error != -EOPNOTSUPP) {
3107                 iput(inode);
3108                 return error;
3109         }
3110
3111         inode->i_size = len-1;
3112         if (len <= SHORT_SYMLINK_LEN) {
3113                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3114                 if (!inode->i_link) {
3115                         iput(inode);
3116                         return -ENOMEM;
3117                 }
3118                 inode->i_op = &shmem_short_symlink_operations;
3119         } else {
3120                 inode_nohighmem(inode);
3121                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3122                 if (error) {
3123                         iput(inode);
3124                         return error;
3125                 }
3126                 inode->i_mapping->a_ops = &shmem_aops;
3127                 inode->i_op = &shmem_symlink_inode_operations;
3128                 memcpy(page_address(page), symname, len);
3129                 SetPageUptodate(page);
3130                 set_page_dirty(page);
3131                 unlock_page(page);
3132                 put_page(page);
3133         }
3134         dir->i_size += BOGO_DIRENT_SIZE;
3135         dir->i_ctime = dir->i_mtime = current_time(dir);
3136         d_instantiate(dentry, inode);
3137         dget(dentry);
3138         return 0;
3139 }
3140
3141 static void shmem_put_link(void *arg)
3142 {
3143         mark_page_accessed(arg);
3144         put_page(arg);
3145 }
3146
3147 static const char *shmem_get_link(struct dentry *dentry,
3148                                   struct inode *inode,
3149                                   struct delayed_call *done)
3150 {
3151         struct page *page = NULL;
3152         int error;
3153         if (!dentry) {
3154                 page = find_get_page(inode->i_mapping, 0);
3155                 if (!page)
3156                         return ERR_PTR(-ECHILD);
3157                 if (PageHWPoison(page) ||
3158                     !PageUptodate(page)) {
3159                         put_page(page);
3160                         return ERR_PTR(-ECHILD);
3161                 }
3162         } else {
3163                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3164                 if (error)
3165                         return ERR_PTR(error);
3166                 if (!page)
3167                         return ERR_PTR(-ECHILD);
3168                 if (PageHWPoison(page)) {
3169                         unlock_page(page);
3170                         put_page(page);
3171                         return ERR_PTR(-ECHILD);
3172                 }
3173                 unlock_page(page);
3174         }
3175         set_delayed_call(done, shmem_put_link, page);
3176         return page_address(page);
3177 }
3178
3179 #ifdef CONFIG_TMPFS_XATTR
3180
3181 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3182 {
3183         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3184
3185         fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3186
3187         return 0;
3188 }
3189
3190 static int shmem_fileattr_set(struct user_namespace *mnt_userns,
3191                               struct dentry *dentry, struct fileattr *fa)
3192 {
3193         struct inode *inode = d_inode(dentry);
3194         struct shmem_inode_info *info = SHMEM_I(inode);
3195
3196         if (fileattr_has_fsx(fa))
3197                 return -EOPNOTSUPP;
3198         if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3199                 return -EOPNOTSUPP;
3200
3201         info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3202                 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
3203
3204         shmem_set_inode_flags(inode, info->fsflags);
3205         inode->i_ctime = current_time(inode);
3206         return 0;
3207 }
3208
3209 /*
3210  * Superblocks without xattr inode operations may get some security.* xattr
3211  * support from the LSM "for free". As soon as we have any other xattrs
3212  * like ACLs, we also need to implement the security.* handlers at
3213  * filesystem level, though.
3214  */
3215
3216 /*
3217  * Callback for security_inode_init_security() for acquiring xattrs.
3218  */
3219 static int shmem_initxattrs(struct inode *inode,
3220                             const struct xattr *xattr_array,
3221                             void *fs_info)
3222 {
3223         struct shmem_inode_info *info = SHMEM_I(inode);
3224         const struct xattr *xattr;
3225         struct simple_xattr *new_xattr;
3226         size_t len;
3227
3228         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3229                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3230                 if (!new_xattr)
3231                         return -ENOMEM;
3232
3233                 len = strlen(xattr->name) + 1;
3234                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3235                                           GFP_KERNEL);
3236                 if (!new_xattr->name) {
3237                         kvfree(new_xattr);
3238                         return -ENOMEM;
3239                 }
3240
3241                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3242                        XATTR_SECURITY_PREFIX_LEN);
3243                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3244                        xattr->name, len);
3245
3246                 simple_xattr_list_add(&info->xattrs, new_xattr);
3247         }
3248
3249         return 0;
3250 }
3251
3252 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3253                                    struct dentry *unused, struct inode *inode,
3254                                    const char *name, void *buffer, size_t size)
3255 {
3256         struct shmem_inode_info *info = SHMEM_I(inode);
3257
3258         name = xattr_full_name(handler, name);
3259         return simple_xattr_get(&info->xattrs, name, buffer, size);
3260 }
3261
3262 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3263                                    struct user_namespace *mnt_userns,
3264                                    struct dentry *unused, struct inode *inode,
3265                                    const char *name, const void *value,
3266                                    size_t size, int flags)
3267 {
3268         struct shmem_inode_info *info = SHMEM_I(inode);
3269
3270         name = xattr_full_name(handler, name);
3271         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3272 }
3273
3274 static const struct xattr_handler shmem_security_xattr_handler = {
3275         .prefix = XATTR_SECURITY_PREFIX,
3276         .get = shmem_xattr_handler_get,
3277         .set = shmem_xattr_handler_set,
3278 };
3279
3280 static const struct xattr_handler shmem_trusted_xattr_handler = {
3281         .prefix = XATTR_TRUSTED_PREFIX,
3282         .get = shmem_xattr_handler_get,
3283         .set = shmem_xattr_handler_set,
3284 };
3285
3286 static const struct xattr_handler *shmem_xattr_handlers[] = {
3287 #ifdef CONFIG_TMPFS_POSIX_ACL
3288         &posix_acl_access_xattr_handler,
3289         &posix_acl_default_xattr_handler,
3290 #endif
3291         &shmem_security_xattr_handler,
3292         &shmem_trusted_xattr_handler,
3293         NULL
3294 };
3295
3296 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3297 {
3298         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3299         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3300 }
3301 #endif /* CONFIG_TMPFS_XATTR */
3302
3303 static const struct inode_operations shmem_short_symlink_operations = {
3304         .getattr        = shmem_getattr,
3305         .get_link       = simple_get_link,
3306 #ifdef CONFIG_TMPFS_XATTR
3307         .listxattr      = shmem_listxattr,
3308 #endif
3309 };
3310
3311 static const struct inode_operations shmem_symlink_inode_operations = {
3312         .getattr        = shmem_getattr,
3313         .get_link       = shmem_get_link,
3314 #ifdef CONFIG_TMPFS_XATTR
3315         .listxattr      = shmem_listxattr,
3316 #endif
3317 };
3318
3319 static struct dentry *shmem_get_parent(struct dentry *child)
3320 {
3321         return ERR_PTR(-ESTALE);
3322 }
3323
3324 static int shmem_match(struct inode *ino, void *vfh)
3325 {
3326         __u32 *fh = vfh;
3327         __u64 inum = fh[2];
3328         inum = (inum << 32) | fh[1];
3329         return ino->i_ino == inum && fh[0] == ino->i_generation;
3330 }
3331
3332 /* Find any alias of inode, but prefer a hashed alias */
3333 static struct dentry *shmem_find_alias(struct inode *inode)
3334 {
3335         struct dentry *alias = d_find_alias(inode);
3336
3337         return alias ?: d_find_any_alias(inode);
3338 }
3339
3340
3341 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3342                 struct fid *fid, int fh_len, int fh_type)
3343 {
3344         struct inode *inode;
3345         struct dentry *dentry = NULL;
3346         u64 inum;
3347
3348         if (fh_len < 3)
3349                 return NULL;
3350
3351         inum = fid->raw[2];
3352         inum = (inum << 32) | fid->raw[1];
3353
3354         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3355                         shmem_match, fid->raw);
3356         if (inode) {
3357                 dentry = shmem_find_alias(inode);
3358                 iput(inode);
3359         }
3360
3361         return dentry;
3362 }
3363
3364 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3365                                 struct inode *parent)
3366 {
3367         if (*len < 3) {
3368                 *len = 3;
3369                 return FILEID_INVALID;
3370         }
3371
3372         if (inode_unhashed(inode)) {
3373                 /* Unfortunately insert_inode_hash is not idempotent,
3374                  * so as we hash inodes here rather than at creation
3375                  * time, we need a lock to ensure we only try
3376                  * to do it once
3377                  */
3378                 static DEFINE_SPINLOCK(lock);
3379                 spin_lock(&lock);
3380                 if (inode_unhashed(inode))
3381                         __insert_inode_hash(inode,
3382                                             inode->i_ino + inode->i_generation);
3383                 spin_unlock(&lock);
3384         }
3385
3386         fh[0] = inode->i_generation;
3387         fh[1] = inode->i_ino;
3388         fh[2] = ((__u64)inode->i_ino) >> 32;
3389
3390         *len = 3;
3391         return 1;
3392 }
3393
3394 static const struct export_operations shmem_export_ops = {
3395         .get_parent     = shmem_get_parent,
3396         .encode_fh      = shmem_encode_fh,
3397         .fh_to_dentry   = shmem_fh_to_dentry,
3398 };
3399
3400 enum shmem_param {
3401         Opt_gid,
3402         Opt_huge,
3403         Opt_mode,
3404         Opt_mpol,
3405         Opt_nr_blocks,
3406         Opt_nr_inodes,
3407         Opt_size,
3408         Opt_uid,
3409         Opt_inode32,
3410         Opt_inode64,
3411 };
3412
3413 static const struct constant_table shmem_param_enums_huge[] = {
3414         {"never",       SHMEM_HUGE_NEVER },
3415         {"always",      SHMEM_HUGE_ALWAYS },
3416         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3417         {"advise",      SHMEM_HUGE_ADVISE },
3418         {}
3419 };
3420
3421 const struct fs_parameter_spec shmem_fs_parameters[] = {
3422         fsparam_u32   ("gid",           Opt_gid),
3423         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3424         fsparam_u32oct("mode",          Opt_mode),
3425         fsparam_string("mpol",          Opt_mpol),
3426         fsparam_string("nr_blocks",     Opt_nr_blocks),
3427         fsparam_string("nr_inodes",     Opt_nr_inodes),
3428         fsparam_string("size",          Opt_size),
3429         fsparam_u32   ("uid",           Opt_uid),
3430         fsparam_flag  ("inode32",       Opt_inode32),
3431         fsparam_flag  ("inode64",       Opt_inode64),
3432         {}
3433 };
3434
3435 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3436 {
3437         struct shmem_options *ctx = fc->fs_private;
3438         struct fs_parse_result result;
3439         unsigned long long size;
3440         char *rest;
3441         int opt;
3442
3443         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3444         if (opt < 0)
3445                 return opt;
3446
3447         switch (opt) {
3448         case Opt_size:
3449                 size = memparse(param->string, &rest);
3450                 if (*rest == '%') {
3451                         size <<= PAGE_SHIFT;
3452                         size *= totalram_pages();
3453                         do_div(size, 100);
3454                         rest++;
3455                 }
3456                 if (*rest)
3457                         goto bad_value;
3458                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3459                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3460                 break;
3461         case Opt_nr_blocks:
3462                 ctx->blocks = memparse(param->string, &rest);
3463                 if (*rest || ctx->blocks > S64_MAX)
3464                         goto bad_value;
3465                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3466                 break;
3467         case Opt_nr_inodes:
3468                 ctx->inodes = memparse(param->string, &rest);
3469                 if (*rest)
3470                         goto bad_value;
3471                 ctx->seen |= SHMEM_SEEN_INODES;
3472                 break;
3473         case Opt_mode:
3474                 ctx->mode = result.uint_32 & 07777;
3475                 break;
3476         case Opt_uid:
3477                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3478                 if (!uid_valid(ctx->uid))
3479                         goto bad_value;
3480                 break;
3481         case Opt_gid:
3482                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3483                 if (!gid_valid(ctx->gid))
3484                         goto bad_value;
3485                 break;
3486         case Opt_huge:
3487                 ctx->huge = result.uint_32;
3488                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3489                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3490                       has_transparent_hugepage()))
3491                         goto unsupported_parameter;
3492                 ctx->seen |= SHMEM_SEEN_HUGE;
3493                 break;
3494         case Opt_mpol:
3495                 if (IS_ENABLED(CONFIG_NUMA)) {
3496                         mpol_put(ctx->mpol);
3497                         ctx->mpol = NULL;
3498                         if (mpol_parse_str(param->string, &ctx->mpol))
3499                                 goto bad_value;
3500                         break;
3501                 }
3502                 goto unsupported_parameter;
3503         case Opt_inode32:
3504                 ctx->full_inums = false;
3505                 ctx->seen |= SHMEM_SEEN_INUMS;
3506                 break;
3507         case Opt_inode64:
3508                 if (sizeof(ino_t) < 8) {
3509                         return invalfc(fc,
3510                                        "Cannot use inode64 with <64bit inums in kernel\n");
3511                 }
3512                 ctx->full_inums = true;
3513                 ctx->seen |= SHMEM_SEEN_INUMS;
3514                 break;
3515         }
3516         return 0;
3517
3518 unsupported_parameter:
3519         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3520 bad_value:
3521         return invalfc(fc, "Bad value for '%s'", param->key);
3522 }
3523
3524 static int shmem_parse_options(struct fs_context *fc, void *data)
3525 {
3526         char *options = data;
3527
3528         if (options) {
3529                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3530                 if (err)
3531                         return err;
3532         }
3533
3534         while (options != NULL) {
3535                 char *this_char = options;
3536                 for (;;) {
3537                         /*
3538                          * NUL-terminate this option: unfortunately,
3539                          * mount options form a comma-separated list,
3540                          * but mpol's nodelist may also contain commas.
3541                          */
3542                         options = strchr(options, ',');
3543                         if (options == NULL)
3544                                 break;
3545                         options++;
3546                         if (!isdigit(*options)) {
3547                                 options[-1] = '\0';
3548                                 break;
3549                         }
3550                 }
3551                 if (*this_char) {
3552                         char *value = strchr(this_char, '=');
3553                         size_t len = 0;
3554                         int err;
3555
3556                         if (value) {
3557                                 *value++ = '\0';
3558                                 len = strlen(value);
3559                         }
3560                         err = vfs_parse_fs_string(fc, this_char, value, len);
3561                         if (err < 0)
3562                                 return err;
3563                 }
3564         }
3565         return 0;
3566 }
3567
3568 /*
3569  * Reconfigure a shmem filesystem.
3570  *
3571  * Note that we disallow change from limited->unlimited blocks/inodes while any
3572  * are in use; but we must separately disallow unlimited->limited, because in
3573  * that case we have no record of how much is already in use.
3574  */
3575 static int shmem_reconfigure(struct fs_context *fc)
3576 {
3577         struct shmem_options *ctx = fc->fs_private;
3578         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3579         unsigned long inodes;
3580         struct mempolicy *mpol = NULL;
3581         const char *err;
3582
3583         raw_spin_lock(&sbinfo->stat_lock);
3584         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3585
3586         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3587                 if (!sbinfo->max_blocks) {
3588                         err = "Cannot retroactively limit size";
3589                         goto out;
3590                 }
3591                 if (percpu_counter_compare(&sbinfo->used_blocks,
3592                                            ctx->blocks) > 0) {
3593                         err = "Too small a size for current use";
3594                         goto out;
3595                 }
3596         }
3597         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3598                 if (!sbinfo->max_inodes) {
3599                         err = "Cannot retroactively limit inodes";
3600                         goto out;
3601                 }
3602                 if (ctx->inodes < inodes) {
3603                         err = "Too few inodes for current use";
3604                         goto out;
3605                 }
3606         }
3607
3608         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3609             sbinfo->next_ino > UINT_MAX) {
3610                 err = "Current inum too high to switch to 32-bit inums";
3611                 goto out;
3612         }
3613
3614         if (ctx->seen & SHMEM_SEEN_HUGE)
3615                 sbinfo->huge = ctx->huge;
3616         if (ctx->seen & SHMEM_SEEN_INUMS)
3617                 sbinfo->full_inums = ctx->full_inums;
3618         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3619                 sbinfo->max_blocks  = ctx->blocks;
3620         if (ctx->seen & SHMEM_SEEN_INODES) {
3621                 sbinfo->max_inodes  = ctx->inodes;
3622                 sbinfo->free_inodes = ctx->inodes - inodes;
3623         }
3624
3625         /*
3626          * Preserve previous mempolicy unless mpol remount option was specified.
3627          */
3628         if (ctx->mpol) {
3629                 mpol = sbinfo->mpol;
3630                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3631                 ctx->mpol = NULL;
3632         }
3633         raw_spin_unlock(&sbinfo->stat_lock);
3634         mpol_put(mpol);
3635         return 0;
3636 out:
3637         raw_spin_unlock(&sbinfo->stat_lock);
3638         return invalfc(fc, "%s", err);
3639 }
3640
3641 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3642 {
3643         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3644
3645         if (sbinfo->max_blocks != shmem_default_max_blocks())
3646                 seq_printf(seq, ",size=%luk",
3647                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3648         if (sbinfo->max_inodes != shmem_default_max_inodes())
3649                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3650         if (sbinfo->mode != (0777 | S_ISVTX))
3651                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3652         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3653                 seq_printf(seq, ",uid=%u",
3654                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3655         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3656                 seq_printf(seq, ",gid=%u",
3657                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3658
3659         /*
3660          * Showing inode{64,32} might be useful even if it's the system default,
3661          * since then people don't have to resort to checking both here and
3662          * /proc/config.gz to confirm 64-bit inums were successfully applied
3663          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3664          *
3665          * We hide it when inode64 isn't the default and we are using 32-bit
3666          * inodes, since that probably just means the feature isn't even under
3667          * consideration.
3668          *
3669          * As such:
3670          *
3671          *                     +-----------------+-----------------+
3672          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3673          *  +------------------+-----------------+-----------------+
3674          *  | full_inums=true  | show            | show            |
3675          *  | full_inums=false | show            | hide            |
3676          *  +------------------+-----------------+-----------------+
3677          *
3678          */
3679         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3680                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3681 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3682         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3683         if (sbinfo->huge)
3684                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3685 #endif
3686         shmem_show_mpol(seq, sbinfo->mpol);
3687         return 0;
3688 }
3689
3690 #endif /* CONFIG_TMPFS */
3691
3692 static void shmem_put_super(struct super_block *sb)
3693 {
3694         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3695
3696         free_percpu(sbinfo->ino_batch);
3697         percpu_counter_destroy(&sbinfo->used_blocks);
3698         mpol_put(sbinfo->mpol);
3699         kfree(sbinfo);
3700         sb->s_fs_info = NULL;
3701 }
3702
3703 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3704 {
3705         struct shmem_options *ctx = fc->fs_private;
3706         struct inode *inode;
3707         struct shmem_sb_info *sbinfo;
3708
3709         /* Round up to L1_CACHE_BYTES to resist false sharing */
3710         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3711                                 L1_CACHE_BYTES), GFP_KERNEL);
3712         if (!sbinfo)
3713                 return -ENOMEM;
3714
3715         sb->s_fs_info = sbinfo;
3716
3717 #ifdef CONFIG_TMPFS
3718         /*
3719          * Per default we only allow half of the physical ram per
3720          * tmpfs instance, limiting inodes to one per page of lowmem;
3721          * but the internal instance is left unlimited.
3722          */
3723         if (!(sb->s_flags & SB_KERNMOUNT)) {
3724                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3725                         ctx->blocks = shmem_default_max_blocks();
3726                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3727                         ctx->inodes = shmem_default_max_inodes();
3728                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3729                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3730         } else {
3731                 sb->s_flags |= SB_NOUSER;
3732         }
3733         sb->s_export_op = &shmem_export_ops;
3734         sb->s_flags |= SB_NOSEC;
3735 #else
3736         sb->s_flags |= SB_NOUSER;
3737 #endif
3738         sbinfo->max_blocks = ctx->blocks;
3739         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3740         if (sb->s_flags & SB_KERNMOUNT) {
3741                 sbinfo->ino_batch = alloc_percpu(ino_t);
3742                 if (!sbinfo->ino_batch)
3743                         goto failed;
3744         }
3745         sbinfo->uid = ctx->uid;
3746         sbinfo->gid = ctx->gid;
3747         sbinfo->full_inums = ctx->full_inums;
3748         sbinfo->mode = ctx->mode;
3749         sbinfo->huge = ctx->huge;
3750         sbinfo->mpol = ctx->mpol;
3751         ctx->mpol = NULL;
3752
3753         raw_spin_lock_init(&sbinfo->stat_lock);
3754         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3755                 goto failed;
3756         spin_lock_init(&sbinfo->shrinklist_lock);
3757         INIT_LIST_HEAD(&sbinfo->shrinklist);
3758
3759         sb->s_maxbytes = MAX_LFS_FILESIZE;
3760         sb->s_blocksize = PAGE_SIZE;
3761         sb->s_blocksize_bits = PAGE_SHIFT;
3762         sb->s_magic = TMPFS_MAGIC;
3763         sb->s_op = &shmem_ops;
3764         sb->s_time_gran = 1;
3765 #ifdef CONFIG_TMPFS_XATTR
3766         sb->s_xattr = shmem_xattr_handlers;
3767 #endif
3768 #ifdef CONFIG_TMPFS_POSIX_ACL
3769         sb->s_flags |= SB_POSIXACL;
3770 #endif
3771         uuid_gen(&sb->s_uuid);
3772
3773         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3774         if (!inode)
3775                 goto failed;
3776         inode->i_uid = sbinfo->uid;
3777         inode->i_gid = sbinfo->gid;
3778         sb->s_root = d_make_root(inode);
3779         if (!sb->s_root)
3780                 goto failed;
3781         return 0;
3782
3783 failed:
3784         shmem_put_super(sb);
3785         return -ENOMEM;
3786 }
3787
3788 static int shmem_get_tree(struct fs_context *fc)
3789 {
3790         return get_tree_nodev(fc, shmem_fill_super);
3791 }
3792
3793 static void shmem_free_fc(struct fs_context *fc)
3794 {
3795         struct shmem_options *ctx = fc->fs_private;
3796
3797         if (ctx) {
3798                 mpol_put(ctx->mpol);
3799                 kfree(ctx);
3800         }
3801 }
3802
3803 static const struct fs_context_operations shmem_fs_context_ops = {
3804         .free                   = shmem_free_fc,
3805         .get_tree               = shmem_get_tree,
3806 #ifdef CONFIG_TMPFS
3807         .parse_monolithic       = shmem_parse_options,
3808         .parse_param            = shmem_parse_one,
3809         .reconfigure            = shmem_reconfigure,
3810 #endif
3811 };
3812
3813 static struct kmem_cache *shmem_inode_cachep;
3814
3815 static struct inode *shmem_alloc_inode(struct super_block *sb)
3816 {
3817         struct shmem_inode_info *info;
3818         info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3819         if (!info)
3820                 return NULL;
3821         return &info->vfs_inode;
3822 }
3823
3824 static void shmem_free_in_core_inode(struct inode *inode)
3825 {
3826         if (S_ISLNK(inode->i_mode))
3827                 kfree(inode->i_link);
3828         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3829 }
3830
3831 static void shmem_destroy_inode(struct inode *inode)
3832 {
3833         if (S_ISREG(inode->i_mode))
3834                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3835 }
3836
3837 static void shmem_init_inode(void *foo)
3838 {
3839         struct shmem_inode_info *info = foo;
3840         inode_init_once(&info->vfs_inode);
3841 }
3842
3843 static void shmem_init_inodecache(void)
3844 {
3845         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3846                                 sizeof(struct shmem_inode_info),
3847                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3848 }
3849
3850 static void shmem_destroy_inodecache(void)
3851 {
3852         kmem_cache_destroy(shmem_inode_cachep);
3853 }
3854
3855 /* Keep the page in page cache instead of truncating it */
3856 static int shmem_error_remove_page(struct address_space *mapping,
3857                                    struct page *page)
3858 {
3859         return 0;
3860 }
3861
3862 const struct address_space_operations shmem_aops = {
3863         .writepage      = shmem_writepage,
3864         .dirty_folio    = noop_dirty_folio,
3865 #ifdef CONFIG_TMPFS
3866         .write_begin    = shmem_write_begin,
3867         .write_end      = shmem_write_end,
3868 #endif
3869 #ifdef CONFIG_MIGRATION
3870         .migrate_folio  = migrate_folio,
3871 #endif
3872         .error_remove_page = shmem_error_remove_page,
3873 };
3874 EXPORT_SYMBOL(shmem_aops);
3875
3876 static const struct file_operations shmem_file_operations = {
3877         .mmap           = shmem_mmap,
3878         .get_unmapped_area = shmem_get_unmapped_area,
3879 #ifdef CONFIG_TMPFS
3880         .llseek         = shmem_file_llseek,
3881         .read_iter      = shmem_file_read_iter,
3882         .write_iter     = generic_file_write_iter,
3883         .fsync          = noop_fsync,
3884         .splice_read    = generic_file_splice_read,
3885         .splice_write   = iter_file_splice_write,
3886         .fallocate      = shmem_fallocate,
3887 #endif
3888 };
3889
3890 static const struct inode_operations shmem_inode_operations = {
3891         .getattr        = shmem_getattr,
3892         .setattr        = shmem_setattr,
3893 #ifdef CONFIG_TMPFS_XATTR
3894         .listxattr      = shmem_listxattr,
3895         .set_acl        = simple_set_acl,
3896         .fileattr_get   = shmem_fileattr_get,
3897         .fileattr_set   = shmem_fileattr_set,
3898 #endif
3899 };
3900
3901 static const struct inode_operations shmem_dir_inode_operations = {
3902 #ifdef CONFIG_TMPFS
3903         .getattr        = shmem_getattr,
3904         .create         = shmem_create,
3905         .lookup         = simple_lookup,
3906         .link           = shmem_link,
3907         .unlink         = shmem_unlink,
3908         .symlink        = shmem_symlink,
3909         .mkdir          = shmem_mkdir,
3910         .rmdir          = shmem_rmdir,
3911         .mknod          = shmem_mknod,
3912         .rename         = shmem_rename2,
3913         .tmpfile        = shmem_tmpfile,
3914 #endif
3915 #ifdef CONFIG_TMPFS_XATTR
3916         .listxattr      = shmem_listxattr,
3917         .fileattr_get   = shmem_fileattr_get,
3918         .fileattr_set   = shmem_fileattr_set,
3919 #endif
3920 #ifdef CONFIG_TMPFS_POSIX_ACL
3921         .setattr        = shmem_setattr,
3922         .set_acl        = simple_set_acl,
3923 #endif
3924 };
3925
3926 static const struct inode_operations shmem_special_inode_operations = {
3927         .getattr        = shmem_getattr,
3928 #ifdef CONFIG_TMPFS_XATTR
3929         .listxattr      = shmem_listxattr,
3930 #endif
3931 #ifdef CONFIG_TMPFS_POSIX_ACL
3932         .setattr        = shmem_setattr,
3933         .set_acl        = simple_set_acl,
3934 #endif
3935 };
3936
3937 static const struct super_operations shmem_ops = {
3938         .alloc_inode    = shmem_alloc_inode,
3939         .free_inode     = shmem_free_in_core_inode,
3940         .destroy_inode  = shmem_destroy_inode,
3941 #ifdef CONFIG_TMPFS
3942         .statfs         = shmem_statfs,
3943         .show_options   = shmem_show_options,
3944 #endif
3945         .evict_inode    = shmem_evict_inode,
3946         .drop_inode     = generic_delete_inode,
3947         .put_super      = shmem_put_super,
3948 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3949         .nr_cached_objects      = shmem_unused_huge_count,
3950         .free_cached_objects    = shmem_unused_huge_scan,
3951 #endif
3952 };
3953
3954 static const struct vm_operations_struct shmem_vm_ops = {
3955         .fault          = shmem_fault,
3956         .map_pages      = filemap_map_pages,
3957 #ifdef CONFIG_NUMA
3958         .set_policy     = shmem_set_policy,
3959         .get_policy     = shmem_get_policy,
3960 #endif
3961 };
3962
3963 int shmem_init_fs_context(struct fs_context *fc)
3964 {
3965         struct shmem_options *ctx;
3966
3967         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3968         if (!ctx)
3969                 return -ENOMEM;
3970
3971         ctx->mode = 0777 | S_ISVTX;
3972         ctx->uid = current_fsuid();
3973         ctx->gid = current_fsgid();
3974
3975         fc->fs_private = ctx;
3976         fc->ops = &shmem_fs_context_ops;
3977         return 0;
3978 }
3979
3980 static struct file_system_type shmem_fs_type = {
3981         .owner          = THIS_MODULE,
3982         .name           = "tmpfs",
3983         .init_fs_context = shmem_init_fs_context,
3984 #ifdef CONFIG_TMPFS
3985         .parameters     = shmem_fs_parameters,
3986 #endif
3987         .kill_sb        = kill_litter_super,
3988         .fs_flags       = FS_USERNS_MOUNT,
3989 };
3990
3991 void __init shmem_init(void)
3992 {
3993         int error;
3994
3995         shmem_init_inodecache();
3996
3997         error = register_filesystem(&shmem_fs_type);
3998         if (error) {
3999                 pr_err("Could not register tmpfs\n");
4000                 goto out2;
4001         }
4002
4003         shm_mnt = kern_mount(&shmem_fs_type);
4004         if (IS_ERR(shm_mnt)) {
4005                 error = PTR_ERR(shm_mnt);
4006                 pr_err("Could not kern_mount tmpfs\n");
4007                 goto out1;
4008         }
4009
4010 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4011         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4012                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4013         else
4014                 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4015 #endif
4016         return;
4017
4018 out1:
4019         unregister_filesystem(&shmem_fs_type);
4020 out2:
4021         shmem_destroy_inodecache();
4022         shm_mnt = ERR_PTR(error);
4023 }
4024
4025 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4026 static ssize_t shmem_enabled_show(struct kobject *kobj,
4027                                   struct kobj_attribute *attr, char *buf)
4028 {
4029         static const int values[] = {
4030                 SHMEM_HUGE_ALWAYS,
4031                 SHMEM_HUGE_WITHIN_SIZE,
4032                 SHMEM_HUGE_ADVISE,
4033                 SHMEM_HUGE_NEVER,
4034                 SHMEM_HUGE_DENY,
4035                 SHMEM_HUGE_FORCE,
4036         };
4037         int len = 0;
4038         int i;
4039
4040         for (i = 0; i < ARRAY_SIZE(values); i++) {
4041                 len += sysfs_emit_at(buf, len,
4042                                      shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4043                                      i ? " " : "",
4044                                      shmem_format_huge(values[i]));
4045         }
4046
4047         len += sysfs_emit_at(buf, len, "\n");
4048
4049         return len;
4050 }
4051
4052 static ssize_t shmem_enabled_store(struct kobject *kobj,
4053                 struct kobj_attribute *attr, const char *buf, size_t count)
4054 {
4055         char tmp[16];
4056         int huge;
4057
4058         if (count + 1 > sizeof(tmp))
4059                 return -EINVAL;
4060         memcpy(tmp, buf, count);
4061         tmp[count] = '\0';
4062         if (count && tmp[count - 1] == '\n')
4063                 tmp[count - 1] = '\0';
4064
4065         huge = shmem_parse_huge(tmp);
4066         if (huge == -EINVAL)
4067                 return -EINVAL;
4068         if (!has_transparent_hugepage() &&
4069                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4070                 return -EINVAL;
4071
4072         shmem_huge = huge;
4073         if (shmem_huge > SHMEM_HUGE_DENY)
4074                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4075         return count;
4076 }
4077
4078 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4079 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4080
4081 #else /* !CONFIG_SHMEM */
4082
4083 /*
4084  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4085  *
4086  * This is intended for small system where the benefits of the full
4087  * shmem code (swap-backed and resource-limited) are outweighed by
4088  * their complexity. On systems without swap this code should be
4089  * effectively equivalent, but much lighter weight.
4090  */
4091
4092 static struct file_system_type shmem_fs_type = {
4093         .name           = "tmpfs",
4094         .init_fs_context = ramfs_init_fs_context,
4095         .parameters     = ramfs_fs_parameters,
4096         .kill_sb        = kill_litter_super,
4097         .fs_flags       = FS_USERNS_MOUNT,
4098 };
4099
4100 void __init shmem_init(void)
4101 {
4102         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4103
4104         shm_mnt = kern_mount(&shmem_fs_type);
4105         BUG_ON(IS_ERR(shm_mnt));
4106 }
4107
4108 int shmem_unuse(unsigned int type)
4109 {
4110         return 0;
4111 }
4112
4113 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4114 {
4115         return 0;
4116 }
4117
4118 void shmem_unlock_mapping(struct address_space *mapping)
4119 {
4120 }
4121
4122 #ifdef CONFIG_MMU
4123 unsigned long shmem_get_unmapped_area(struct file *file,
4124                                       unsigned long addr, unsigned long len,
4125                                       unsigned long pgoff, unsigned long flags)
4126 {
4127         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4128 }
4129 #endif
4130
4131 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4132 {
4133         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4134 }
4135 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4136
4137 #define shmem_vm_ops                            generic_file_vm_ops
4138 #define shmem_file_operations                   ramfs_file_operations
4139 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4140 #define shmem_acct_size(flags, size)            0
4141 #define shmem_unacct_size(flags, size)          do {} while (0)
4142
4143 #endif /* CONFIG_SHMEM */
4144
4145 /* common code */
4146
4147 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4148                                        unsigned long flags, unsigned int i_flags)
4149 {
4150         struct inode *inode;
4151         struct file *res;
4152
4153         if (IS_ERR(mnt))
4154                 return ERR_CAST(mnt);
4155
4156         if (size < 0 || size > MAX_LFS_FILESIZE)
4157                 return ERR_PTR(-EINVAL);
4158
4159         if (shmem_acct_size(flags, size))
4160                 return ERR_PTR(-ENOMEM);
4161
4162         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4163                                 flags);
4164         if (unlikely(!inode)) {
4165                 shmem_unacct_size(flags, size);
4166                 return ERR_PTR(-ENOSPC);
4167         }
4168         inode->i_flags |= i_flags;
4169         inode->i_size = size;
4170         clear_nlink(inode);     /* It is unlinked */
4171         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4172         if (!IS_ERR(res))
4173                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4174                                 &shmem_file_operations);
4175         if (IS_ERR(res))
4176                 iput(inode);
4177         return res;
4178 }
4179
4180 /**
4181  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4182  *      kernel internal.  There will be NO LSM permission checks against the
4183  *      underlying inode.  So users of this interface must do LSM checks at a
4184  *      higher layer.  The users are the big_key and shm implementations.  LSM
4185  *      checks are provided at the key or shm level rather than the inode.
4186  * @name: name for dentry (to be seen in /proc/<pid>/maps
4187  * @size: size to be set for the file
4188  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4189  */
4190 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4191 {
4192         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4193 }
4194
4195 /**
4196  * shmem_file_setup - get an unlinked file living in tmpfs
4197  * @name: name for dentry (to be seen in /proc/<pid>/maps
4198  * @size: size to be set for the file
4199  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4200  */
4201 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4202 {
4203         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4204 }
4205 EXPORT_SYMBOL_GPL(shmem_file_setup);
4206
4207 /**
4208  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4209  * @mnt: the tmpfs mount where the file will be created
4210  * @name: name for dentry (to be seen in /proc/<pid>/maps
4211  * @size: size to be set for the file
4212  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4213  */
4214 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4215                                        loff_t size, unsigned long flags)
4216 {
4217         return __shmem_file_setup(mnt, name, size, flags, 0);
4218 }
4219 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4220
4221 /**
4222  * shmem_zero_setup - setup a shared anonymous mapping
4223  * @vma: the vma to be mmapped is prepared by do_mmap
4224  */
4225 int shmem_zero_setup(struct vm_area_struct *vma)
4226 {
4227         struct file *file;
4228         loff_t size = vma->vm_end - vma->vm_start;
4229
4230         /*
4231          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4232          * between XFS directory reading and selinux: since this file is only
4233          * accessible to the user through its mapping, use S_PRIVATE flag to
4234          * bypass file security, in the same way as shmem_kernel_file_setup().
4235          */
4236         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4237         if (IS_ERR(file))
4238                 return PTR_ERR(file);
4239
4240         if (vma->vm_file)
4241                 fput(vma->vm_file);
4242         vma->vm_file = file;
4243         vma->vm_ops = &shmem_vm_ops;
4244
4245         return 0;
4246 }
4247
4248 /**
4249  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4250  * @mapping:    the page's address_space
4251  * @index:      the page index
4252  * @gfp:        the page allocator flags to use if allocating
4253  *
4254  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4255  * with any new page allocations done using the specified allocation flags.
4256  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4257  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4258  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4259  *
4260  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4261  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4262  */
4263 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4264                                          pgoff_t index, gfp_t gfp)
4265 {
4266 #ifdef CONFIG_SHMEM
4267         struct inode *inode = mapping->host;
4268         struct page *page;
4269         int error;
4270
4271         BUG_ON(!shmem_mapping(mapping));
4272         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4273                                   gfp, NULL, NULL, NULL);
4274         if (error)
4275                 return ERR_PTR(error);
4276
4277         unlock_page(page);
4278         if (PageHWPoison(page)) {
4279                 put_page(page);
4280                 return ERR_PTR(-EIO);
4281         }
4282
4283         return page;
4284 #else
4285         /*
4286          * The tiny !SHMEM case uses ramfs without swap
4287          */
4288         return read_cache_page_gfp(mapping, index, gfp);
4289 #endif
4290 }
4291 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);