2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/fs_parser.h>
40 #include <linux/swapfile.h>
42 static struct vfsmount *shm_mnt;
46 * This virtual memory filesystem is heavily based on the ramfs. It
47 * extends ramfs by the ability to use swap and honor resource limits
48 * which makes it a completely usable filesystem.
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
81 #include <linux/uaccess.h>
85 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
86 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
88 /* Pretend that each entry is of this size in directory's i_size */
89 #define BOGO_DIRENT_SIZE 20
91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92 #define SHORT_SYMLINK_LEN 128
95 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
96 * inode->i_private (with i_rwsem making sure that it has only one user at
97 * a time): we would prefer not to enlarge the shmem inode just for that.
100 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
101 pgoff_t start; /* start of range currently being fallocated */
102 pgoff_t next; /* the next page offset to be fallocated */
103 pgoff_t nr_falloced; /* how many new pages have been fallocated */
104 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
107 struct shmem_options {
108 unsigned long long blocks;
109 unsigned long long inodes;
110 struct mempolicy *mpol;
117 #define SHMEM_SEEN_BLOCKS 1
118 #define SHMEM_SEEN_INODES 2
119 #define SHMEM_SEEN_HUGE 4
120 #define SHMEM_SEEN_INUMS 8
124 static unsigned long shmem_default_max_blocks(void)
126 return totalram_pages() / 2;
129 static unsigned long shmem_default_max_inodes(void)
131 unsigned long nr_pages = totalram_pages();
133 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
138 struct page **pagep, enum sgp_type sgp,
139 gfp_t gfp, struct vm_area_struct *vma,
140 vm_fault_t *fault_type);
141 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
142 struct page **pagep, enum sgp_type sgp,
143 gfp_t gfp, struct vm_area_struct *vma,
144 struct vm_fault *vmf, vm_fault_t *fault_type);
146 int shmem_getpage(struct inode *inode, pgoff_t index,
147 struct page **pagep, enum sgp_type sgp)
149 return shmem_getpage_gfp(inode, index, pagep, sgp,
150 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
155 return sb->s_fs_info;
159 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160 * for shared memory and for shared anonymous (/dev/zero) mappings
161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162 * consistent with the pre-accounting of private mappings ...
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
166 return (flags & VM_NORESERVE) ?
167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
172 if (!(flags & VM_NORESERVE))
173 vm_unacct_memory(VM_ACCT(size));
176 static inline int shmem_reacct_size(unsigned long flags,
177 loff_t oldsize, loff_t newsize)
179 if (!(flags & VM_NORESERVE)) {
180 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 return security_vm_enough_memory_mm(current->mm,
182 VM_ACCT(newsize) - VM_ACCT(oldsize));
183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
190 * ... whereas tmpfs objects are accounted incrementally as
191 * pages are allocated, in order to allow large sparse files.
192 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
195 static inline int shmem_acct_block(unsigned long flags, long pages)
197 if (!(flags & VM_NORESERVE))
200 return security_vm_enough_memory_mm(current->mm,
201 pages * VM_ACCT(PAGE_SIZE));
204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
206 if (flags & VM_NORESERVE)
207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
210 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
212 struct shmem_inode_info *info = SHMEM_I(inode);
213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
215 if (shmem_acct_block(info->flags, pages))
218 if (sbinfo->max_blocks) {
219 if (percpu_counter_compare(&sbinfo->used_blocks,
220 sbinfo->max_blocks - pages) > 0)
222 percpu_counter_add(&sbinfo->used_blocks, pages);
228 shmem_unacct_blocks(info->flags, pages);
232 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
234 struct shmem_inode_info *info = SHMEM_I(inode);
235 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
237 if (sbinfo->max_blocks)
238 percpu_counter_sub(&sbinfo->used_blocks, pages);
239 shmem_unacct_blocks(info->flags, pages);
242 static const struct super_operations shmem_ops;
243 const struct address_space_operations shmem_aops;
244 static const struct file_operations shmem_file_operations;
245 static const struct inode_operations shmem_inode_operations;
246 static const struct inode_operations shmem_dir_inode_operations;
247 static const struct inode_operations shmem_special_inode_operations;
248 static const struct vm_operations_struct shmem_vm_ops;
249 static struct file_system_type shmem_fs_type;
251 bool vma_is_shmem(struct vm_area_struct *vma)
253 return vma->vm_ops == &shmem_vm_ops;
256 static LIST_HEAD(shmem_swaplist);
257 static DEFINE_MUTEX(shmem_swaplist_mutex);
260 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
261 * produces a novel ino for the newly allocated inode.
263 * It may also be called when making a hard link to permit the space needed by
264 * each dentry. However, in that case, no new inode number is needed since that
265 * internally draws from another pool of inode numbers (currently global
266 * get_next_ino()). This case is indicated by passing NULL as inop.
268 #define SHMEM_INO_BATCH 1024
269 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
271 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
274 if (!(sb->s_flags & SB_KERNMOUNT)) {
275 raw_spin_lock(&sbinfo->stat_lock);
276 if (sbinfo->max_inodes) {
277 if (!sbinfo->free_inodes) {
278 raw_spin_unlock(&sbinfo->stat_lock);
281 sbinfo->free_inodes--;
284 ino = sbinfo->next_ino++;
285 if (unlikely(is_zero_ino(ino)))
286 ino = sbinfo->next_ino++;
287 if (unlikely(!sbinfo->full_inums &&
290 * Emulate get_next_ino uint wraparound for
293 if (IS_ENABLED(CONFIG_64BIT))
294 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
295 __func__, MINOR(sb->s_dev));
296 sbinfo->next_ino = 1;
297 ino = sbinfo->next_ino++;
301 raw_spin_unlock(&sbinfo->stat_lock);
304 * __shmem_file_setup, one of our callers, is lock-free: it
305 * doesn't hold stat_lock in shmem_reserve_inode since
306 * max_inodes is always 0, and is called from potentially
307 * unknown contexts. As such, use a per-cpu batched allocator
308 * which doesn't require the per-sb stat_lock unless we are at
309 * the batch boundary.
311 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
312 * shmem mounts are not exposed to userspace, so we don't need
313 * to worry about things like glibc compatibility.
317 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
319 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
320 raw_spin_lock(&sbinfo->stat_lock);
321 ino = sbinfo->next_ino;
322 sbinfo->next_ino += SHMEM_INO_BATCH;
323 raw_spin_unlock(&sbinfo->stat_lock);
324 if (unlikely(is_zero_ino(ino)))
335 static void shmem_free_inode(struct super_block *sb)
337 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
338 if (sbinfo->max_inodes) {
339 raw_spin_lock(&sbinfo->stat_lock);
340 sbinfo->free_inodes++;
341 raw_spin_unlock(&sbinfo->stat_lock);
346 * shmem_recalc_inode - recalculate the block usage of an inode
347 * @inode: inode to recalc
349 * We have to calculate the free blocks since the mm can drop
350 * undirtied hole pages behind our back.
352 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
353 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
355 * It has to be called with the spinlock held.
357 static void shmem_recalc_inode(struct inode *inode)
359 struct shmem_inode_info *info = SHMEM_I(inode);
362 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
364 info->alloced -= freed;
365 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
366 shmem_inode_unacct_blocks(inode, freed);
370 bool shmem_charge(struct inode *inode, long pages)
372 struct shmem_inode_info *info = SHMEM_I(inode);
375 if (!shmem_inode_acct_block(inode, pages))
378 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
379 inode->i_mapping->nrpages += pages;
381 spin_lock_irqsave(&info->lock, flags);
382 info->alloced += pages;
383 inode->i_blocks += pages * BLOCKS_PER_PAGE;
384 shmem_recalc_inode(inode);
385 spin_unlock_irqrestore(&info->lock, flags);
390 void shmem_uncharge(struct inode *inode, long pages)
392 struct shmem_inode_info *info = SHMEM_I(inode);
395 /* nrpages adjustment done by __delete_from_page_cache() or caller */
397 spin_lock_irqsave(&info->lock, flags);
398 info->alloced -= pages;
399 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
400 shmem_recalc_inode(inode);
401 spin_unlock_irqrestore(&info->lock, flags);
403 shmem_inode_unacct_blocks(inode, pages);
407 * Replace item expected in xarray by a new item, while holding xa_lock.
409 static int shmem_replace_entry(struct address_space *mapping,
410 pgoff_t index, void *expected, void *replacement)
412 XA_STATE(xas, &mapping->i_pages, index);
415 VM_BUG_ON(!expected);
416 VM_BUG_ON(!replacement);
417 item = xas_load(&xas);
418 if (item != expected)
420 xas_store(&xas, replacement);
425 * Sometimes, before we decide whether to proceed or to fail, we must check
426 * that an entry was not already brought back from swap by a racing thread.
428 * Checking page is not enough: by the time a SwapCache page is locked, it
429 * might be reused, and again be SwapCache, using the same swap as before.
431 static bool shmem_confirm_swap(struct address_space *mapping,
432 pgoff_t index, swp_entry_t swap)
434 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
438 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
441 * disables huge pages for the mount;
443 * enables huge pages for the mount;
444 * SHMEM_HUGE_WITHIN_SIZE:
445 * only allocate huge pages if the page will be fully within i_size,
446 * also respect fadvise()/madvise() hints;
448 * only allocate huge pages if requested with fadvise()/madvise();
451 #define SHMEM_HUGE_NEVER 0
452 #define SHMEM_HUGE_ALWAYS 1
453 #define SHMEM_HUGE_WITHIN_SIZE 2
454 #define SHMEM_HUGE_ADVISE 3
458 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
461 * disables huge on shm_mnt and all mounts, for emergency use;
463 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
466 #define SHMEM_HUGE_DENY (-1)
467 #define SHMEM_HUGE_FORCE (-2)
469 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
470 /* ifdef here to avoid bloating shmem.o when not necessary */
472 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
474 bool shmem_is_huge(struct vm_area_struct *vma,
475 struct inode *inode, pgoff_t index)
479 if (shmem_huge == SHMEM_HUGE_DENY)
481 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
482 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
484 if (shmem_huge == SHMEM_HUGE_FORCE)
487 switch (SHMEM_SB(inode->i_sb)->huge) {
488 case SHMEM_HUGE_ALWAYS:
490 case SHMEM_HUGE_WITHIN_SIZE:
491 index = round_up(index + 1, HPAGE_PMD_NR);
492 i_size = round_up(i_size_read(inode), PAGE_SIZE);
493 if (i_size >> PAGE_SHIFT >= index)
496 case SHMEM_HUGE_ADVISE:
497 if (vma && (vma->vm_flags & VM_HUGEPAGE))
505 #if defined(CONFIG_SYSFS)
506 static int shmem_parse_huge(const char *str)
508 if (!strcmp(str, "never"))
509 return SHMEM_HUGE_NEVER;
510 if (!strcmp(str, "always"))
511 return SHMEM_HUGE_ALWAYS;
512 if (!strcmp(str, "within_size"))
513 return SHMEM_HUGE_WITHIN_SIZE;
514 if (!strcmp(str, "advise"))
515 return SHMEM_HUGE_ADVISE;
516 if (!strcmp(str, "deny"))
517 return SHMEM_HUGE_DENY;
518 if (!strcmp(str, "force"))
519 return SHMEM_HUGE_FORCE;
524 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
525 static const char *shmem_format_huge(int huge)
528 case SHMEM_HUGE_NEVER:
530 case SHMEM_HUGE_ALWAYS:
532 case SHMEM_HUGE_WITHIN_SIZE:
533 return "within_size";
534 case SHMEM_HUGE_ADVISE:
536 case SHMEM_HUGE_DENY:
538 case SHMEM_HUGE_FORCE:
547 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
548 struct shrink_control *sc, unsigned long nr_to_split)
550 LIST_HEAD(list), *pos, *next;
551 LIST_HEAD(to_remove);
553 struct shmem_inode_info *info;
555 unsigned long batch = sc ? sc->nr_to_scan : 128;
558 if (list_empty(&sbinfo->shrinklist))
561 spin_lock(&sbinfo->shrinklist_lock);
562 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
563 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566 inode = igrab(&info->vfs_inode);
568 /* inode is about to be evicted */
570 list_del_init(&info->shrinklist);
574 /* Check if there's anything to gain */
575 if (round_up(inode->i_size, PAGE_SIZE) ==
576 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
577 list_move(&info->shrinklist, &to_remove);
581 list_move(&info->shrinklist, &list);
583 sbinfo->shrinklist_len--;
587 spin_unlock(&sbinfo->shrinklist_lock);
589 list_for_each_safe(pos, next, &to_remove) {
590 info = list_entry(pos, struct shmem_inode_info, shrinklist);
591 inode = &info->vfs_inode;
592 list_del_init(&info->shrinklist);
596 list_for_each_safe(pos, next, &list) {
599 info = list_entry(pos, struct shmem_inode_info, shrinklist);
600 inode = &info->vfs_inode;
602 if (nr_to_split && split >= nr_to_split)
605 page = find_get_page(inode->i_mapping,
606 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
610 /* No huge page at the end of the file: nothing to split */
611 if (!PageTransHuge(page)) {
617 * Move the inode on the list back to shrinklist if we failed
618 * to lock the page at this time.
620 * Waiting for the lock may lead to deadlock in the
623 if (!trylock_page(page)) {
628 ret = split_huge_page(page);
632 /* If split failed move the inode on the list back to shrinklist */
638 list_del_init(&info->shrinklist);
642 * Make sure the inode is either on the global list or deleted
643 * from any local list before iput() since it could be deleted
644 * in another thread once we put the inode (then the local list
647 spin_lock(&sbinfo->shrinklist_lock);
648 list_move(&info->shrinklist, &sbinfo->shrinklist);
649 sbinfo->shrinklist_len++;
650 spin_unlock(&sbinfo->shrinklist_lock);
658 static long shmem_unused_huge_scan(struct super_block *sb,
659 struct shrink_control *sc)
661 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
663 if (!READ_ONCE(sbinfo->shrinklist_len))
666 return shmem_unused_huge_shrink(sbinfo, sc, 0);
669 static long shmem_unused_huge_count(struct super_block *sb,
670 struct shrink_control *sc)
672 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
673 return READ_ONCE(sbinfo->shrinklist_len);
675 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
677 #define shmem_huge SHMEM_HUGE_DENY
679 bool shmem_is_huge(struct vm_area_struct *vma,
680 struct inode *inode, pgoff_t index)
685 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
686 struct shrink_control *sc, unsigned long nr_to_split)
690 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
693 * Like add_to_page_cache_locked, but error if expected item has gone.
695 static int shmem_add_to_page_cache(struct page *page,
696 struct address_space *mapping,
697 pgoff_t index, void *expected, gfp_t gfp,
698 struct mm_struct *charge_mm)
700 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
701 unsigned long nr = compound_nr(page);
704 VM_BUG_ON_PAGE(PageTail(page), page);
705 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
706 VM_BUG_ON_PAGE(!PageLocked(page), page);
707 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
708 VM_BUG_ON(expected && PageTransHuge(page));
710 page_ref_add(page, nr);
711 page->mapping = mapping;
714 if (!PageSwapCache(page)) {
715 error = mem_cgroup_charge(page_folio(page), charge_mm, gfp);
717 if (PageTransHuge(page)) {
718 count_vm_event(THP_FILE_FALLBACK);
719 count_vm_event(THP_FILE_FALLBACK_CHARGE);
724 cgroup_throttle_swaprate(page, gfp);
728 if (expected != xas_find_conflict(&xas)) {
729 xas_set_err(&xas, -EEXIST);
732 if (expected && xas_find_conflict(&xas)) {
733 xas_set_err(&xas, -EEXIST);
736 xas_store(&xas, page);
739 if (PageTransHuge(page)) {
740 count_vm_event(THP_FILE_ALLOC);
741 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
743 mapping->nrpages += nr;
744 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
745 __mod_lruvec_page_state(page, NR_SHMEM, nr);
747 xas_unlock_irq(&xas);
748 } while (xas_nomem(&xas, gfp));
750 if (xas_error(&xas)) {
751 error = xas_error(&xas);
757 page->mapping = NULL;
758 page_ref_sub(page, nr);
763 * Like delete_from_page_cache, but substitutes swap for page.
765 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
767 struct address_space *mapping = page->mapping;
770 VM_BUG_ON_PAGE(PageCompound(page), page);
772 xa_lock_irq(&mapping->i_pages);
773 error = shmem_replace_entry(mapping, page->index, page, radswap);
774 page->mapping = NULL;
776 __dec_lruvec_page_state(page, NR_FILE_PAGES);
777 __dec_lruvec_page_state(page, NR_SHMEM);
778 xa_unlock_irq(&mapping->i_pages);
784 * Remove swap entry from page cache, free the swap and its page cache.
786 static int shmem_free_swap(struct address_space *mapping,
787 pgoff_t index, void *radswap)
791 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
794 free_swap_and_cache(radix_to_swp_entry(radswap));
799 * Determine (in bytes) how many of the shmem object's pages mapped by the
800 * given offsets are swapped out.
802 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
803 * as long as the inode doesn't go away and racy results are not a problem.
805 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
806 pgoff_t start, pgoff_t end)
808 XA_STATE(xas, &mapping->i_pages, start);
810 unsigned long swapped = 0;
813 xas_for_each(&xas, page, end - 1) {
814 if (xas_retry(&xas, page))
816 if (xa_is_value(page))
819 if (need_resched()) {
827 return swapped << PAGE_SHIFT;
831 * Determine (in bytes) how many of the shmem object's pages mapped by the
832 * given vma is swapped out.
834 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
835 * as long as the inode doesn't go away and racy results are not a problem.
837 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
839 struct inode *inode = file_inode(vma->vm_file);
840 struct shmem_inode_info *info = SHMEM_I(inode);
841 struct address_space *mapping = inode->i_mapping;
842 unsigned long swapped;
844 /* Be careful as we don't hold info->lock */
845 swapped = READ_ONCE(info->swapped);
848 * The easier cases are when the shmem object has nothing in swap, or
849 * the vma maps it whole. Then we can simply use the stats that we
855 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
856 return swapped << PAGE_SHIFT;
858 /* Here comes the more involved part */
859 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
860 vma->vm_pgoff + vma_pages(vma));
864 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
866 void shmem_unlock_mapping(struct address_space *mapping)
873 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
875 while (!mapping_unevictable(mapping)) {
876 if (!pagevec_lookup(&pvec, mapping, &index))
878 check_move_unevictable_pages(&pvec);
879 pagevec_release(&pvec);
884 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
890 * At first avoid shmem_getpage(,,,SGP_READ): that fails
891 * beyond i_size, and reports fallocated pages as holes.
893 folio = __filemap_get_folio(inode->i_mapping, index,
894 FGP_ENTRY | FGP_LOCK, 0);
895 if (!xa_is_value(folio))
898 * But read a page back from swap if any of it is within i_size
899 * (although in some cases this is just a waste of time).
902 shmem_getpage(inode, index, &page, SGP_READ);
903 return page ? page_folio(page) : NULL;
907 * Remove range of pages and swap entries from page cache, and free them.
908 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
910 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
913 struct address_space *mapping = inode->i_mapping;
914 struct shmem_inode_info *info = SHMEM_I(inode);
915 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
916 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
917 struct folio_batch fbatch;
918 pgoff_t indices[PAGEVEC_SIZE];
921 long nr_swaps_freed = 0;
926 end = -1; /* unsigned, so actually very big */
928 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
929 info->fallocend = start;
931 folio_batch_init(&fbatch);
933 while (index < end && find_lock_entries(mapping, index, end - 1,
935 for (i = 0; i < folio_batch_count(&fbatch); i++) {
936 folio = fbatch.folios[i];
940 if (xa_is_value(folio)) {
943 nr_swaps_freed += !shmem_free_swap(mapping,
947 index += folio_nr_pages(folio) - 1;
949 if (!unfalloc || !folio_test_uptodate(folio))
950 truncate_inode_folio(mapping, folio);
953 folio_batch_remove_exceptionals(&fbatch);
954 folio_batch_release(&fbatch);
959 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
960 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
962 same_folio = lend < folio_pos(folio) + folio_size(folio);
963 folio_mark_dirty(folio);
964 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
965 start = folio->index + folio_nr_pages(folio);
975 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
977 folio_mark_dirty(folio);
978 if (!truncate_inode_partial_folio(folio, lstart, lend))
985 while (index < end) {
988 if (!find_get_entries(mapping, index, end - 1, &fbatch,
990 /* If all gone or hole-punch or unfalloc, we're done */
991 if (index == start || end != -1)
993 /* But if truncating, restart to make sure all gone */
997 for (i = 0; i < folio_batch_count(&fbatch); i++) {
998 folio = fbatch.folios[i];
1001 if (xa_is_value(folio)) {
1004 if (shmem_free_swap(mapping, index, folio)) {
1005 /* Swap was replaced by page: retry */
1015 if (!unfalloc || !folio_test_uptodate(folio)) {
1016 if (folio_mapping(folio) != mapping) {
1017 /* Page was replaced by swap: retry */
1018 folio_unlock(folio);
1022 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1024 truncate_inode_folio(mapping, folio);
1026 index = folio->index + folio_nr_pages(folio) - 1;
1027 folio_unlock(folio);
1029 folio_batch_remove_exceptionals(&fbatch);
1030 folio_batch_release(&fbatch);
1034 spin_lock_irq(&info->lock);
1035 info->swapped -= nr_swaps_freed;
1036 shmem_recalc_inode(inode);
1037 spin_unlock_irq(&info->lock);
1040 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1042 shmem_undo_range(inode, lstart, lend, false);
1043 inode->i_ctime = inode->i_mtime = current_time(inode);
1045 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1047 static int shmem_getattr(struct user_namespace *mnt_userns,
1048 const struct path *path, struct kstat *stat,
1049 u32 request_mask, unsigned int query_flags)
1051 struct inode *inode = path->dentry->d_inode;
1052 struct shmem_inode_info *info = SHMEM_I(inode);
1054 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1055 spin_lock_irq(&info->lock);
1056 shmem_recalc_inode(inode);
1057 spin_unlock_irq(&info->lock);
1059 generic_fillattr(&init_user_ns, inode, stat);
1061 if (shmem_is_huge(NULL, inode, 0))
1062 stat->blksize = HPAGE_PMD_SIZE;
1067 static int shmem_setattr(struct user_namespace *mnt_userns,
1068 struct dentry *dentry, struct iattr *attr)
1070 struct inode *inode = d_inode(dentry);
1071 struct shmem_inode_info *info = SHMEM_I(inode);
1074 error = setattr_prepare(&init_user_ns, dentry, attr);
1078 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1079 loff_t oldsize = inode->i_size;
1080 loff_t newsize = attr->ia_size;
1082 /* protected by i_rwsem */
1083 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1084 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1087 if (newsize != oldsize) {
1088 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1092 i_size_write(inode, newsize);
1093 inode->i_ctime = inode->i_mtime = current_time(inode);
1095 if (newsize <= oldsize) {
1096 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1097 if (oldsize > holebegin)
1098 unmap_mapping_range(inode->i_mapping,
1101 shmem_truncate_range(inode,
1102 newsize, (loff_t)-1);
1103 /* unmap again to remove racily COWed private pages */
1104 if (oldsize > holebegin)
1105 unmap_mapping_range(inode->i_mapping,
1110 setattr_copy(&init_user_ns, inode, attr);
1111 if (attr->ia_valid & ATTR_MODE)
1112 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1116 static void shmem_evict_inode(struct inode *inode)
1118 struct shmem_inode_info *info = SHMEM_I(inode);
1119 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1121 if (shmem_mapping(inode->i_mapping)) {
1122 shmem_unacct_size(info->flags, inode->i_size);
1124 shmem_truncate_range(inode, 0, (loff_t)-1);
1125 if (!list_empty(&info->shrinklist)) {
1126 spin_lock(&sbinfo->shrinklist_lock);
1127 if (!list_empty(&info->shrinklist)) {
1128 list_del_init(&info->shrinklist);
1129 sbinfo->shrinklist_len--;
1131 spin_unlock(&sbinfo->shrinklist_lock);
1133 while (!list_empty(&info->swaplist)) {
1134 /* Wait while shmem_unuse() is scanning this inode... */
1135 wait_var_event(&info->stop_eviction,
1136 !atomic_read(&info->stop_eviction));
1137 mutex_lock(&shmem_swaplist_mutex);
1138 /* ...but beware of the race if we peeked too early */
1139 if (!atomic_read(&info->stop_eviction))
1140 list_del_init(&info->swaplist);
1141 mutex_unlock(&shmem_swaplist_mutex);
1145 simple_xattrs_free(&info->xattrs);
1146 WARN_ON(inode->i_blocks);
1147 shmem_free_inode(inode->i_sb);
1151 static int shmem_find_swap_entries(struct address_space *mapping,
1152 pgoff_t start, unsigned int nr_entries,
1153 struct page **entries, pgoff_t *indices,
1156 XA_STATE(xas, &mapping->i_pages, start);
1159 unsigned int ret = 0;
1165 xas_for_each(&xas, page, ULONG_MAX) {
1166 if (xas_retry(&xas, page))
1169 if (!xa_is_value(page))
1172 entry = radix_to_swp_entry(page);
1173 if (swp_type(entry) != type)
1176 indices[ret] = xas.xa_index;
1177 entries[ret] = page;
1179 if (need_resched()) {
1183 if (++ret == nr_entries)
1192 * Move the swapped pages for an inode to page cache. Returns the count
1193 * of pages swapped in, or the error in case of failure.
1195 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1201 struct address_space *mapping = inode->i_mapping;
1203 for (i = 0; i < pvec.nr; i++) {
1204 struct page *page = pvec.pages[i];
1206 if (!xa_is_value(page))
1208 error = shmem_swapin_page(inode, indices[i],
1210 mapping_gfp_mask(mapping),
1217 if (error == -ENOMEM)
1221 return error ? error : ret;
1225 * If swap found in inode, free it and move page from swapcache to filecache.
1227 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1229 struct address_space *mapping = inode->i_mapping;
1231 struct pagevec pvec;
1232 pgoff_t indices[PAGEVEC_SIZE];
1235 pagevec_init(&pvec);
1237 unsigned int nr_entries = PAGEVEC_SIZE;
1239 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1240 pvec.pages, indices, type);
1246 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1250 start = indices[pvec.nr - 1];
1257 * Read all the shared memory data that resides in the swap
1258 * device 'type' back into memory, so the swap device can be
1261 int shmem_unuse(unsigned int type)
1263 struct shmem_inode_info *info, *next;
1266 if (list_empty(&shmem_swaplist))
1269 mutex_lock(&shmem_swaplist_mutex);
1270 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1271 if (!info->swapped) {
1272 list_del_init(&info->swaplist);
1276 * Drop the swaplist mutex while searching the inode for swap;
1277 * but before doing so, make sure shmem_evict_inode() will not
1278 * remove placeholder inode from swaplist, nor let it be freed
1279 * (igrab() would protect from unlink, but not from unmount).
1281 atomic_inc(&info->stop_eviction);
1282 mutex_unlock(&shmem_swaplist_mutex);
1284 error = shmem_unuse_inode(&info->vfs_inode, type);
1287 mutex_lock(&shmem_swaplist_mutex);
1288 next = list_next_entry(info, swaplist);
1290 list_del_init(&info->swaplist);
1291 if (atomic_dec_and_test(&info->stop_eviction))
1292 wake_up_var(&info->stop_eviction);
1296 mutex_unlock(&shmem_swaplist_mutex);
1302 * Move the page from the page cache to the swap cache.
1304 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1306 struct shmem_inode_info *info;
1307 struct address_space *mapping;
1308 struct inode *inode;
1313 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1314 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1315 * and its shmem_writeback() needs them to be split when swapping.
1317 if (PageTransCompound(page)) {
1318 /* Ensure the subpages are still dirty */
1320 if (split_huge_page(page) < 0)
1322 ClearPageDirty(page);
1325 BUG_ON(!PageLocked(page));
1326 mapping = page->mapping;
1327 index = page->index;
1328 inode = mapping->host;
1329 info = SHMEM_I(inode);
1330 if (info->flags & VM_LOCKED)
1332 if (!total_swap_pages)
1336 * Our capabilities prevent regular writeback or sync from ever calling
1337 * shmem_writepage; but a stacking filesystem might use ->writepage of
1338 * its underlying filesystem, in which case tmpfs should write out to
1339 * swap only in response to memory pressure, and not for the writeback
1342 if (!wbc->for_reclaim) {
1343 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1348 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1349 * value into swapfile.c, the only way we can correctly account for a
1350 * fallocated page arriving here is now to initialize it and write it.
1352 * That's okay for a page already fallocated earlier, but if we have
1353 * not yet completed the fallocation, then (a) we want to keep track
1354 * of this page in case we have to undo it, and (b) it may not be a
1355 * good idea to continue anyway, once we're pushing into swap. So
1356 * reactivate the page, and let shmem_fallocate() quit when too many.
1358 if (!PageUptodate(page)) {
1359 if (inode->i_private) {
1360 struct shmem_falloc *shmem_falloc;
1361 spin_lock(&inode->i_lock);
1362 shmem_falloc = inode->i_private;
1364 !shmem_falloc->waitq &&
1365 index >= shmem_falloc->start &&
1366 index < shmem_falloc->next)
1367 shmem_falloc->nr_unswapped++;
1369 shmem_falloc = NULL;
1370 spin_unlock(&inode->i_lock);
1374 clear_highpage(page);
1375 flush_dcache_page(page);
1376 SetPageUptodate(page);
1379 swap = get_swap_page(page);
1384 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1385 * if it's not already there. Do it now before the page is
1386 * moved to swap cache, when its pagelock no longer protects
1387 * the inode from eviction. But don't unlock the mutex until
1388 * we've incremented swapped, because shmem_unuse_inode() will
1389 * prune a !swapped inode from the swaplist under this mutex.
1391 mutex_lock(&shmem_swaplist_mutex);
1392 if (list_empty(&info->swaplist))
1393 list_add(&info->swaplist, &shmem_swaplist);
1395 if (add_to_swap_cache(page, swap,
1396 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1398 spin_lock_irq(&info->lock);
1399 shmem_recalc_inode(inode);
1401 spin_unlock_irq(&info->lock);
1403 swap_shmem_alloc(swap);
1404 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1406 mutex_unlock(&shmem_swaplist_mutex);
1407 BUG_ON(page_mapped(page));
1408 swap_writepage(page, wbc);
1412 mutex_unlock(&shmem_swaplist_mutex);
1413 put_swap_page(page, swap);
1415 set_page_dirty(page);
1416 if (wbc->for_reclaim)
1417 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1422 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1423 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1427 if (!mpol || mpol->mode == MPOL_DEFAULT)
1428 return; /* show nothing */
1430 mpol_to_str(buffer, sizeof(buffer), mpol);
1432 seq_printf(seq, ",mpol=%s", buffer);
1435 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1437 struct mempolicy *mpol = NULL;
1439 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1440 mpol = sbinfo->mpol;
1442 raw_spin_unlock(&sbinfo->stat_lock);
1446 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1447 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1450 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1454 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1456 #define vm_policy vm_private_data
1459 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1460 struct shmem_inode_info *info, pgoff_t index)
1462 /* Create a pseudo vma that just contains the policy */
1463 vma_init(vma, NULL);
1464 /* Bias interleave by inode number to distribute better across nodes */
1465 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1466 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1469 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1471 /* Drop reference taken by mpol_shared_policy_lookup() */
1472 mpol_cond_put(vma->vm_policy);
1475 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1476 struct shmem_inode_info *info, pgoff_t index)
1478 struct vm_area_struct pvma;
1480 struct vm_fault vmf = {
1484 shmem_pseudo_vma_init(&pvma, info, index);
1485 page = swap_cluster_readahead(swap, gfp, &vmf);
1486 shmem_pseudo_vma_destroy(&pvma);
1492 * Make sure huge_gfp is always more limited than limit_gfp.
1493 * Some of the flags set permissions, while others set limitations.
1495 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1497 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1498 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1499 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1500 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1502 /* Allow allocations only from the originally specified zones. */
1503 result |= zoneflags;
1506 * Minimize the result gfp by taking the union with the deny flags,
1507 * and the intersection of the allow flags.
1509 result |= (limit_gfp & denyflags);
1510 result |= (huge_gfp & limit_gfp) & allowflags;
1515 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1516 struct shmem_inode_info *info, pgoff_t index)
1518 struct vm_area_struct pvma;
1519 struct address_space *mapping = info->vfs_inode.i_mapping;
1523 hindex = round_down(index, HPAGE_PMD_NR);
1524 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1528 shmem_pseudo_vma_init(&pvma, info, hindex);
1529 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1530 shmem_pseudo_vma_destroy(&pvma);
1532 prep_transhuge_page(page);
1534 count_vm_event(THP_FILE_FALLBACK);
1538 static struct page *shmem_alloc_page(gfp_t gfp,
1539 struct shmem_inode_info *info, pgoff_t index)
1541 struct vm_area_struct pvma;
1544 shmem_pseudo_vma_init(&pvma, info, index);
1545 page = alloc_page_vma(gfp, &pvma, 0);
1546 shmem_pseudo_vma_destroy(&pvma);
1551 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1552 struct inode *inode,
1553 pgoff_t index, bool huge)
1555 struct shmem_inode_info *info = SHMEM_I(inode);
1560 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1562 nr = huge ? HPAGE_PMD_NR : 1;
1564 if (!shmem_inode_acct_block(inode, nr))
1568 page = shmem_alloc_hugepage(gfp, info, index);
1570 page = shmem_alloc_page(gfp, info, index);
1572 __SetPageLocked(page);
1573 __SetPageSwapBacked(page);
1578 shmem_inode_unacct_blocks(inode, nr);
1580 return ERR_PTR(err);
1584 * When a page is moved from swapcache to shmem filecache (either by the
1585 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1586 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1587 * ignorance of the mapping it belongs to. If that mapping has special
1588 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1589 * we may need to copy to a suitable page before moving to filecache.
1591 * In a future release, this may well be extended to respect cpuset and
1592 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1593 * but for now it is a simple matter of zone.
1595 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1597 return page_zonenum(page) > gfp_zone(gfp);
1600 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1601 struct shmem_inode_info *info, pgoff_t index)
1603 struct page *oldpage, *newpage;
1604 struct folio *old, *new;
1605 struct address_space *swap_mapping;
1611 entry.val = page_private(oldpage);
1612 swap_index = swp_offset(entry);
1613 swap_mapping = page_mapping(oldpage);
1616 * We have arrived here because our zones are constrained, so don't
1617 * limit chance of success by further cpuset and node constraints.
1619 gfp &= ~GFP_CONSTRAINT_MASK;
1620 newpage = shmem_alloc_page(gfp, info, index);
1625 copy_highpage(newpage, oldpage);
1626 flush_dcache_page(newpage);
1628 __SetPageLocked(newpage);
1629 __SetPageSwapBacked(newpage);
1630 SetPageUptodate(newpage);
1631 set_page_private(newpage, entry.val);
1632 SetPageSwapCache(newpage);
1635 * Our caller will very soon move newpage out of swapcache, but it's
1636 * a nice clean interface for us to replace oldpage by newpage there.
1638 xa_lock_irq(&swap_mapping->i_pages);
1639 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1641 old = page_folio(oldpage);
1642 new = page_folio(newpage);
1643 mem_cgroup_migrate(old, new);
1644 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1645 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1647 xa_unlock_irq(&swap_mapping->i_pages);
1649 if (unlikely(error)) {
1651 * Is this possible? I think not, now that our callers check
1652 * both PageSwapCache and page_private after getting page lock;
1653 * but be defensive. Reverse old to newpage for clear and free.
1657 lru_cache_add(newpage);
1661 ClearPageSwapCache(oldpage);
1662 set_page_private(oldpage, 0);
1664 unlock_page(oldpage);
1671 * Swap in the page pointed to by *pagep.
1672 * Caller has to make sure that *pagep contains a valid swapped page.
1673 * Returns 0 and the page in pagep if success. On failure, returns the
1674 * error code and NULL in *pagep.
1676 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1677 struct page **pagep, enum sgp_type sgp,
1678 gfp_t gfp, struct vm_area_struct *vma,
1679 vm_fault_t *fault_type)
1681 struct address_space *mapping = inode->i_mapping;
1682 struct shmem_inode_info *info = SHMEM_I(inode);
1683 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1688 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1689 swap = radix_to_swp_entry(*pagep);
1692 /* Look it up and read it in.. */
1693 page = lookup_swap_cache(swap, NULL, 0);
1695 /* Or update major stats only when swapin succeeds?? */
1697 *fault_type |= VM_FAULT_MAJOR;
1698 count_vm_event(PGMAJFAULT);
1699 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1701 /* Here we actually start the io */
1702 page = shmem_swapin(swap, gfp, info, index);
1709 /* We have to do this with page locked to prevent races */
1711 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1712 !shmem_confirm_swap(mapping, index, swap)) {
1716 if (!PageUptodate(page)) {
1720 wait_on_page_writeback(page);
1723 * Some architectures may have to restore extra metadata to the
1724 * physical page after reading from swap.
1726 arch_swap_restore(swap, page);
1728 if (shmem_should_replace_page(page, gfp)) {
1729 error = shmem_replace_page(&page, gfp, info, index);
1734 error = shmem_add_to_page_cache(page, mapping, index,
1735 swp_to_radix_entry(swap), gfp,
1740 spin_lock_irq(&info->lock);
1742 shmem_recalc_inode(inode);
1743 spin_unlock_irq(&info->lock);
1745 if (sgp == SGP_WRITE)
1746 mark_page_accessed(page);
1748 delete_from_swap_cache(page);
1749 set_page_dirty(page);
1755 if (!shmem_confirm_swap(mapping, index, swap))
1767 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1769 * If we allocate a new one we do not mark it dirty. That's up to the
1770 * vm. If we swap it in we mark it dirty since we also free the swap
1771 * entry since a page cannot live in both the swap and page cache.
1773 * vma, vmf, and fault_type are only supplied by shmem_fault:
1774 * otherwise they are NULL.
1776 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1777 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1778 struct vm_area_struct *vma, struct vm_fault *vmf,
1779 vm_fault_t *fault_type)
1781 struct address_space *mapping = inode->i_mapping;
1782 struct shmem_inode_info *info = SHMEM_I(inode);
1783 struct shmem_sb_info *sbinfo;
1784 struct mm_struct *charge_mm;
1786 pgoff_t hindex = index;
1792 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1795 if (sgp <= SGP_CACHE &&
1796 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1800 sbinfo = SHMEM_SB(inode->i_sb);
1801 charge_mm = vma ? vma->vm_mm : NULL;
1803 page = pagecache_get_page(mapping, index,
1804 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1806 if (page && vma && userfaultfd_minor(vma)) {
1807 if (!xa_is_value(page)) {
1811 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1815 if (xa_is_value(page)) {
1816 error = shmem_swapin_page(inode, index, &page,
1817 sgp, gfp, vma, fault_type);
1818 if (error == -EEXIST)
1826 hindex = page->index;
1827 if (sgp == SGP_WRITE)
1828 mark_page_accessed(page);
1829 if (PageUptodate(page))
1831 /* fallocated page */
1832 if (sgp != SGP_READ)
1839 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1840 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1843 if (sgp == SGP_READ)
1845 if (sgp == SGP_NOALLOC)
1849 * Fast cache lookup and swap lookup did not find it: allocate.
1852 if (vma && userfaultfd_missing(vma)) {
1853 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1857 /* Never use a huge page for shmem_symlink() */
1858 if (S_ISLNK(inode->i_mode))
1860 if (!shmem_is_huge(vma, inode, index))
1863 huge_gfp = vma_thp_gfp_mask(vma);
1864 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1865 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1868 page = shmem_alloc_and_acct_page(gfp, inode,
1874 error = PTR_ERR(page);
1876 if (error != -ENOSPC)
1879 * Try to reclaim some space by splitting a huge page
1880 * beyond i_size on the filesystem.
1885 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1886 if (ret == SHRINK_STOP)
1894 if (PageTransHuge(page))
1895 hindex = round_down(index, HPAGE_PMD_NR);
1899 if (sgp == SGP_WRITE)
1900 __SetPageReferenced(page);
1902 error = shmem_add_to_page_cache(page, mapping, hindex,
1903 NULL, gfp & GFP_RECLAIM_MASK,
1907 lru_cache_add(page);
1909 spin_lock_irq(&info->lock);
1910 info->alloced += compound_nr(page);
1911 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1912 shmem_recalc_inode(inode);
1913 spin_unlock_irq(&info->lock);
1916 if (PageTransHuge(page) &&
1917 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1918 hindex + HPAGE_PMD_NR - 1) {
1920 * Part of the huge page is beyond i_size: subject
1921 * to shrink under memory pressure.
1923 spin_lock(&sbinfo->shrinklist_lock);
1925 * _careful to defend against unlocked access to
1926 * ->shrink_list in shmem_unused_huge_shrink()
1928 if (list_empty_careful(&info->shrinklist)) {
1929 list_add_tail(&info->shrinklist,
1930 &sbinfo->shrinklist);
1931 sbinfo->shrinklist_len++;
1933 spin_unlock(&sbinfo->shrinklist_lock);
1937 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1939 if (sgp == SGP_FALLOC)
1943 * Let SGP_WRITE caller clear ends if write does not fill page;
1944 * but SGP_FALLOC on a page fallocated earlier must initialize
1945 * it now, lest undo on failure cancel our earlier guarantee.
1947 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1950 for (i = 0; i < compound_nr(page); i++) {
1951 clear_highpage(page + i);
1952 flush_dcache_page(page + i);
1954 SetPageUptodate(page);
1957 /* Perhaps the file has been truncated since we checked */
1958 if (sgp <= SGP_CACHE &&
1959 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1961 ClearPageDirty(page);
1962 delete_from_page_cache(page);
1963 spin_lock_irq(&info->lock);
1964 shmem_recalc_inode(inode);
1965 spin_unlock_irq(&info->lock);
1971 *pagep = page + index - hindex;
1978 shmem_inode_unacct_blocks(inode, compound_nr(page));
1980 if (PageTransHuge(page)) {
1990 if (error == -ENOSPC && !once++) {
1991 spin_lock_irq(&info->lock);
1992 shmem_recalc_inode(inode);
1993 spin_unlock_irq(&info->lock);
1996 if (error == -EEXIST)
2002 * This is like autoremove_wake_function, but it removes the wait queue
2003 * entry unconditionally - even if something else had already woken the
2006 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2008 int ret = default_wake_function(wait, mode, sync, key);
2009 list_del_init(&wait->entry);
2013 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2015 struct vm_area_struct *vma = vmf->vma;
2016 struct inode *inode = file_inode(vma->vm_file);
2017 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2019 vm_fault_t ret = VM_FAULT_LOCKED;
2022 * Trinity finds that probing a hole which tmpfs is punching can
2023 * prevent the hole-punch from ever completing: which in turn
2024 * locks writers out with its hold on i_rwsem. So refrain from
2025 * faulting pages into the hole while it's being punched. Although
2026 * shmem_undo_range() does remove the additions, it may be unable to
2027 * keep up, as each new page needs its own unmap_mapping_range() call,
2028 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2030 * It does not matter if we sometimes reach this check just before the
2031 * hole-punch begins, so that one fault then races with the punch:
2032 * we just need to make racing faults a rare case.
2034 * The implementation below would be much simpler if we just used a
2035 * standard mutex or completion: but we cannot take i_rwsem in fault,
2036 * and bloating every shmem inode for this unlikely case would be sad.
2038 if (unlikely(inode->i_private)) {
2039 struct shmem_falloc *shmem_falloc;
2041 spin_lock(&inode->i_lock);
2042 shmem_falloc = inode->i_private;
2044 shmem_falloc->waitq &&
2045 vmf->pgoff >= shmem_falloc->start &&
2046 vmf->pgoff < shmem_falloc->next) {
2048 wait_queue_head_t *shmem_falloc_waitq;
2049 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2051 ret = VM_FAULT_NOPAGE;
2052 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2054 ret = VM_FAULT_RETRY;
2056 shmem_falloc_waitq = shmem_falloc->waitq;
2057 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2058 TASK_UNINTERRUPTIBLE);
2059 spin_unlock(&inode->i_lock);
2063 * shmem_falloc_waitq points into the shmem_fallocate()
2064 * stack of the hole-punching task: shmem_falloc_waitq
2065 * is usually invalid by the time we reach here, but
2066 * finish_wait() does not dereference it in that case;
2067 * though i_lock needed lest racing with wake_up_all().
2069 spin_lock(&inode->i_lock);
2070 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2071 spin_unlock(&inode->i_lock);
2077 spin_unlock(&inode->i_lock);
2080 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2081 gfp, vma, vmf, &ret);
2083 return vmf_error(err);
2087 unsigned long shmem_get_unmapped_area(struct file *file,
2088 unsigned long uaddr, unsigned long len,
2089 unsigned long pgoff, unsigned long flags)
2091 unsigned long (*get_area)(struct file *,
2092 unsigned long, unsigned long, unsigned long, unsigned long);
2094 unsigned long offset;
2095 unsigned long inflated_len;
2096 unsigned long inflated_addr;
2097 unsigned long inflated_offset;
2099 if (len > TASK_SIZE)
2102 get_area = current->mm->get_unmapped_area;
2103 addr = get_area(file, uaddr, len, pgoff, flags);
2105 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2107 if (IS_ERR_VALUE(addr))
2109 if (addr & ~PAGE_MASK)
2111 if (addr > TASK_SIZE - len)
2114 if (shmem_huge == SHMEM_HUGE_DENY)
2116 if (len < HPAGE_PMD_SIZE)
2118 if (flags & MAP_FIXED)
2121 * Our priority is to support MAP_SHARED mapped hugely;
2122 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2123 * But if caller specified an address hint and we allocated area there
2124 * successfully, respect that as before.
2129 if (shmem_huge != SHMEM_HUGE_FORCE) {
2130 struct super_block *sb;
2133 VM_BUG_ON(file->f_op != &shmem_file_operations);
2134 sb = file_inode(file)->i_sb;
2137 * Called directly from mm/mmap.c, or drivers/char/mem.c
2138 * for "/dev/zero", to create a shared anonymous object.
2140 if (IS_ERR(shm_mnt))
2142 sb = shm_mnt->mnt_sb;
2144 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2148 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2149 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2151 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2154 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2155 if (inflated_len > TASK_SIZE)
2157 if (inflated_len < len)
2160 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2161 if (IS_ERR_VALUE(inflated_addr))
2163 if (inflated_addr & ~PAGE_MASK)
2166 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2167 inflated_addr += offset - inflated_offset;
2168 if (inflated_offset > offset)
2169 inflated_addr += HPAGE_PMD_SIZE;
2171 if (inflated_addr > TASK_SIZE - len)
2173 return inflated_addr;
2177 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2179 struct inode *inode = file_inode(vma->vm_file);
2180 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2183 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2186 struct inode *inode = file_inode(vma->vm_file);
2189 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2190 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2194 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2196 struct inode *inode = file_inode(file);
2197 struct shmem_inode_info *info = SHMEM_I(inode);
2198 int retval = -ENOMEM;
2201 * What serializes the accesses to info->flags?
2202 * ipc_lock_object() when called from shmctl_do_lock(),
2203 * no serialization needed when called from shm_destroy().
2205 if (lock && !(info->flags & VM_LOCKED)) {
2206 if (!user_shm_lock(inode->i_size, ucounts))
2208 info->flags |= VM_LOCKED;
2209 mapping_set_unevictable(file->f_mapping);
2211 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2212 user_shm_unlock(inode->i_size, ucounts);
2213 info->flags &= ~VM_LOCKED;
2214 mapping_clear_unevictable(file->f_mapping);
2222 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2224 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2227 ret = seal_check_future_write(info->seals, vma);
2231 /* arm64 - allow memory tagging on RAM-based files */
2232 vma->vm_flags |= VM_MTE_ALLOWED;
2234 file_accessed(file);
2235 vma->vm_ops = &shmem_vm_ops;
2236 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2237 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2238 (vma->vm_end & HPAGE_PMD_MASK)) {
2239 khugepaged_enter(vma, vma->vm_flags);
2244 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2245 umode_t mode, dev_t dev, unsigned long flags)
2247 struct inode *inode;
2248 struct shmem_inode_info *info;
2249 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2252 if (shmem_reserve_inode(sb, &ino))
2255 inode = new_inode(sb);
2258 inode_init_owner(&init_user_ns, inode, dir, mode);
2259 inode->i_blocks = 0;
2260 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2261 inode->i_generation = prandom_u32();
2262 info = SHMEM_I(inode);
2263 memset(info, 0, (char *)inode - (char *)info);
2264 spin_lock_init(&info->lock);
2265 atomic_set(&info->stop_eviction, 0);
2266 info->seals = F_SEAL_SEAL;
2267 info->flags = flags & VM_NORESERVE;
2268 INIT_LIST_HEAD(&info->shrinklist);
2269 INIT_LIST_HEAD(&info->swaplist);
2270 simple_xattrs_init(&info->xattrs);
2271 cache_no_acl(inode);
2272 mapping_set_large_folios(inode->i_mapping);
2274 switch (mode & S_IFMT) {
2276 inode->i_op = &shmem_special_inode_operations;
2277 init_special_inode(inode, mode, dev);
2280 inode->i_mapping->a_ops = &shmem_aops;
2281 inode->i_op = &shmem_inode_operations;
2282 inode->i_fop = &shmem_file_operations;
2283 mpol_shared_policy_init(&info->policy,
2284 shmem_get_sbmpol(sbinfo));
2288 /* Some things misbehave if size == 0 on a directory */
2289 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2290 inode->i_op = &shmem_dir_inode_operations;
2291 inode->i_fop = &simple_dir_operations;
2295 * Must not load anything in the rbtree,
2296 * mpol_free_shared_policy will not be called.
2298 mpol_shared_policy_init(&info->policy, NULL);
2302 lockdep_annotate_inode_mutex_key(inode);
2304 shmem_free_inode(sb);
2308 #ifdef CONFIG_USERFAULTFD
2309 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2311 struct vm_area_struct *dst_vma,
2312 unsigned long dst_addr,
2313 unsigned long src_addr,
2315 struct page **pagep)
2317 struct inode *inode = file_inode(dst_vma->vm_file);
2318 struct shmem_inode_info *info = SHMEM_I(inode);
2319 struct address_space *mapping = inode->i_mapping;
2320 gfp_t gfp = mapping_gfp_mask(mapping);
2321 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2327 if (!shmem_inode_acct_block(inode, 1)) {
2329 * We may have got a page, returned -ENOENT triggering a retry,
2330 * and now we find ourselves with -ENOMEM. Release the page, to
2331 * avoid a BUG_ON in our caller.
2333 if (unlikely(*pagep)) {
2342 page = shmem_alloc_page(gfp, info, pgoff);
2344 goto out_unacct_blocks;
2346 if (!zeropage) { /* COPY */
2347 page_kaddr = kmap_atomic(page);
2348 ret = copy_from_user(page_kaddr,
2349 (const void __user *)src_addr,
2351 kunmap_atomic(page_kaddr);
2353 /* fallback to copy_from_user outside mmap_lock */
2354 if (unlikely(ret)) {
2357 /* don't free the page */
2358 goto out_unacct_blocks;
2360 } else { /* ZEROPAGE */
2361 clear_highpage(page);
2368 VM_BUG_ON(PageLocked(page));
2369 VM_BUG_ON(PageSwapBacked(page));
2370 __SetPageLocked(page);
2371 __SetPageSwapBacked(page);
2372 __SetPageUptodate(page);
2375 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2376 if (unlikely(pgoff >= max_off))
2379 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2380 gfp & GFP_RECLAIM_MASK, dst_mm);
2384 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2387 goto out_delete_from_cache;
2389 spin_lock_irq(&info->lock);
2391 inode->i_blocks += BLOCKS_PER_PAGE;
2392 shmem_recalc_inode(inode);
2393 spin_unlock_irq(&info->lock);
2397 out_delete_from_cache:
2398 delete_from_page_cache(page);
2403 shmem_inode_unacct_blocks(inode, 1);
2406 #endif /* CONFIG_USERFAULTFD */
2409 static const struct inode_operations shmem_symlink_inode_operations;
2410 static const struct inode_operations shmem_short_symlink_operations;
2412 #ifdef CONFIG_TMPFS_XATTR
2413 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2415 #define shmem_initxattrs NULL
2419 shmem_write_begin(struct file *file, struct address_space *mapping,
2420 loff_t pos, unsigned len, unsigned flags,
2421 struct page **pagep, void **fsdata)
2423 struct inode *inode = mapping->host;
2424 struct shmem_inode_info *info = SHMEM_I(inode);
2425 pgoff_t index = pos >> PAGE_SHIFT;
2428 /* i_rwsem is held by caller */
2429 if (unlikely(info->seals & (F_SEAL_GROW |
2430 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2431 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2433 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2437 ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2442 if (PageHWPoison(*pagep)) {
2443 unlock_page(*pagep);
2453 shmem_write_end(struct file *file, struct address_space *mapping,
2454 loff_t pos, unsigned len, unsigned copied,
2455 struct page *page, void *fsdata)
2457 struct inode *inode = mapping->host;
2459 if (pos + copied > inode->i_size)
2460 i_size_write(inode, pos + copied);
2462 if (!PageUptodate(page)) {
2463 struct page *head = compound_head(page);
2464 if (PageTransCompound(page)) {
2467 for (i = 0; i < HPAGE_PMD_NR; i++) {
2468 if (head + i == page)
2470 clear_highpage(head + i);
2471 flush_dcache_page(head + i);
2474 if (copied < PAGE_SIZE) {
2475 unsigned from = pos & (PAGE_SIZE - 1);
2476 zero_user_segments(page, 0, from,
2477 from + copied, PAGE_SIZE);
2479 SetPageUptodate(head);
2481 set_page_dirty(page);
2488 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2490 struct file *file = iocb->ki_filp;
2491 struct inode *inode = file_inode(file);
2492 struct address_space *mapping = inode->i_mapping;
2494 unsigned long offset;
2495 enum sgp_type sgp = SGP_READ;
2498 loff_t *ppos = &iocb->ki_pos;
2501 * Might this read be for a stacking filesystem? Then when reading
2502 * holes of a sparse file, we actually need to allocate those pages,
2503 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2505 if (!iter_is_iovec(to))
2508 index = *ppos >> PAGE_SHIFT;
2509 offset = *ppos & ~PAGE_MASK;
2512 struct page *page = NULL;
2514 unsigned long nr, ret;
2515 loff_t i_size = i_size_read(inode);
2517 end_index = i_size >> PAGE_SHIFT;
2518 if (index > end_index)
2520 if (index == end_index) {
2521 nr = i_size & ~PAGE_MASK;
2526 error = shmem_getpage(inode, index, &page, sgp);
2528 if (error == -EINVAL)
2533 if (sgp == SGP_CACHE)
2534 set_page_dirty(page);
2537 if (PageHWPoison(page)) {
2545 * We must evaluate after, since reads (unlike writes)
2546 * are called without i_rwsem protection against truncate
2549 i_size = i_size_read(inode);
2550 end_index = i_size >> PAGE_SHIFT;
2551 if (index == end_index) {
2552 nr = i_size & ~PAGE_MASK;
2563 * If users can be writing to this page using arbitrary
2564 * virtual addresses, take care about potential aliasing
2565 * before reading the page on the kernel side.
2567 if (mapping_writably_mapped(mapping))
2568 flush_dcache_page(page);
2570 * Mark the page accessed if we read the beginning.
2573 mark_page_accessed(page);
2575 page = ZERO_PAGE(0);
2580 * Ok, we have the page, and it's up-to-date, so
2581 * now we can copy it to user space...
2583 ret = copy_page_to_iter(page, offset, nr, to);
2586 index += offset >> PAGE_SHIFT;
2587 offset &= ~PAGE_MASK;
2590 if (!iov_iter_count(to))
2599 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2600 file_accessed(file);
2601 return retval ? retval : error;
2604 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2606 struct address_space *mapping = file->f_mapping;
2607 struct inode *inode = mapping->host;
2609 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2610 return generic_file_llseek_size(file, offset, whence,
2611 MAX_LFS_FILESIZE, i_size_read(inode));
2616 /* We're holding i_rwsem so we can access i_size directly */
2617 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2619 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2620 inode_unlock(inode);
2624 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2627 struct inode *inode = file_inode(file);
2628 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2629 struct shmem_inode_info *info = SHMEM_I(inode);
2630 struct shmem_falloc shmem_falloc;
2631 pgoff_t start, index, end, undo_fallocend;
2634 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2639 if (mode & FALLOC_FL_PUNCH_HOLE) {
2640 struct address_space *mapping = file->f_mapping;
2641 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2642 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2643 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2645 /* protected by i_rwsem */
2646 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2651 shmem_falloc.waitq = &shmem_falloc_waitq;
2652 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2653 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2654 spin_lock(&inode->i_lock);
2655 inode->i_private = &shmem_falloc;
2656 spin_unlock(&inode->i_lock);
2658 if ((u64)unmap_end > (u64)unmap_start)
2659 unmap_mapping_range(mapping, unmap_start,
2660 1 + unmap_end - unmap_start, 0);
2661 shmem_truncate_range(inode, offset, offset + len - 1);
2662 /* No need to unmap again: hole-punching leaves COWed pages */
2664 spin_lock(&inode->i_lock);
2665 inode->i_private = NULL;
2666 wake_up_all(&shmem_falloc_waitq);
2667 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2668 spin_unlock(&inode->i_lock);
2673 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2674 error = inode_newsize_ok(inode, offset + len);
2678 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2683 start = offset >> PAGE_SHIFT;
2684 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2685 /* Try to avoid a swapstorm if len is impossible to satisfy */
2686 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2691 shmem_falloc.waitq = NULL;
2692 shmem_falloc.start = start;
2693 shmem_falloc.next = start;
2694 shmem_falloc.nr_falloced = 0;
2695 shmem_falloc.nr_unswapped = 0;
2696 spin_lock(&inode->i_lock);
2697 inode->i_private = &shmem_falloc;
2698 spin_unlock(&inode->i_lock);
2701 * info->fallocend is only relevant when huge pages might be
2702 * involved: to prevent split_huge_page() freeing fallocated
2703 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2705 undo_fallocend = info->fallocend;
2706 if (info->fallocend < end)
2707 info->fallocend = end;
2709 for (index = start; index < end; ) {
2713 * Good, the fallocate(2) manpage permits EINTR: we may have
2714 * been interrupted because we are using up too much memory.
2716 if (signal_pending(current))
2718 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2721 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2723 info->fallocend = undo_fallocend;
2724 /* Remove the !PageUptodate pages we added */
2725 if (index > start) {
2726 shmem_undo_range(inode,
2727 (loff_t)start << PAGE_SHIFT,
2728 ((loff_t)index << PAGE_SHIFT) - 1, true);
2735 * Here is a more important optimization than it appears:
2736 * a second SGP_FALLOC on the same huge page will clear it,
2737 * making it PageUptodate and un-undoable if we fail later.
2739 if (PageTransCompound(page)) {
2740 index = round_up(index, HPAGE_PMD_NR);
2741 /* Beware 32-bit wraparound */
2747 * Inform shmem_writepage() how far we have reached.
2748 * No need for lock or barrier: we have the page lock.
2750 if (!PageUptodate(page))
2751 shmem_falloc.nr_falloced += index - shmem_falloc.next;
2752 shmem_falloc.next = index;
2755 * If !PageUptodate, leave it that way so that freeable pages
2756 * can be recognized if we need to rollback on error later.
2757 * But set_page_dirty so that memory pressure will swap rather
2758 * than free the pages we are allocating (and SGP_CACHE pages
2759 * might still be clean: we now need to mark those dirty too).
2761 set_page_dirty(page);
2767 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2768 i_size_write(inode, offset + len);
2769 inode->i_ctime = current_time(inode);
2771 spin_lock(&inode->i_lock);
2772 inode->i_private = NULL;
2773 spin_unlock(&inode->i_lock);
2775 inode_unlock(inode);
2779 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2781 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2783 buf->f_type = TMPFS_MAGIC;
2784 buf->f_bsize = PAGE_SIZE;
2785 buf->f_namelen = NAME_MAX;
2786 if (sbinfo->max_blocks) {
2787 buf->f_blocks = sbinfo->max_blocks;
2789 buf->f_bfree = sbinfo->max_blocks -
2790 percpu_counter_sum(&sbinfo->used_blocks);
2792 if (sbinfo->max_inodes) {
2793 buf->f_files = sbinfo->max_inodes;
2794 buf->f_ffree = sbinfo->free_inodes;
2796 /* else leave those fields 0 like simple_statfs */
2798 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2804 * File creation. Allocate an inode, and we're done..
2807 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2808 struct dentry *dentry, umode_t mode, dev_t dev)
2810 struct inode *inode;
2811 int error = -ENOSPC;
2813 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2815 error = simple_acl_create(dir, inode);
2818 error = security_inode_init_security(inode, dir,
2820 shmem_initxattrs, NULL);
2821 if (error && error != -EOPNOTSUPP)
2825 dir->i_size += BOGO_DIRENT_SIZE;
2826 dir->i_ctime = dir->i_mtime = current_time(dir);
2827 d_instantiate(dentry, inode);
2828 dget(dentry); /* Extra count - pin the dentry in core */
2837 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2838 struct dentry *dentry, umode_t mode)
2840 struct inode *inode;
2841 int error = -ENOSPC;
2843 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2845 error = security_inode_init_security(inode, dir,
2847 shmem_initxattrs, NULL);
2848 if (error && error != -EOPNOTSUPP)
2850 error = simple_acl_create(dir, inode);
2853 d_tmpfile(dentry, inode);
2861 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2862 struct dentry *dentry, umode_t mode)
2866 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2867 mode | S_IFDIR, 0)))
2873 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2874 struct dentry *dentry, umode_t mode, bool excl)
2876 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2882 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2884 struct inode *inode = d_inode(old_dentry);
2888 * No ordinary (disk based) filesystem counts links as inodes;
2889 * but each new link needs a new dentry, pinning lowmem, and
2890 * tmpfs dentries cannot be pruned until they are unlinked.
2891 * But if an O_TMPFILE file is linked into the tmpfs, the
2892 * first link must skip that, to get the accounting right.
2894 if (inode->i_nlink) {
2895 ret = shmem_reserve_inode(inode->i_sb, NULL);
2900 dir->i_size += BOGO_DIRENT_SIZE;
2901 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2903 ihold(inode); /* New dentry reference */
2904 dget(dentry); /* Extra pinning count for the created dentry */
2905 d_instantiate(dentry, inode);
2910 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2912 struct inode *inode = d_inode(dentry);
2914 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2915 shmem_free_inode(inode->i_sb);
2917 dir->i_size -= BOGO_DIRENT_SIZE;
2918 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2920 dput(dentry); /* Undo the count from "create" - this does all the work */
2924 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2926 if (!simple_empty(dentry))
2929 drop_nlink(d_inode(dentry));
2931 return shmem_unlink(dir, dentry);
2934 static int shmem_whiteout(struct user_namespace *mnt_userns,
2935 struct inode *old_dir, struct dentry *old_dentry)
2937 struct dentry *whiteout;
2940 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2944 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2945 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2951 * Cheat and hash the whiteout while the old dentry is still in
2952 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2954 * d_lookup() will consistently find one of them at this point,
2955 * not sure which one, but that isn't even important.
2962 * The VFS layer already does all the dentry stuff for rename,
2963 * we just have to decrement the usage count for the target if
2964 * it exists so that the VFS layer correctly free's it when it
2967 static int shmem_rename2(struct user_namespace *mnt_userns,
2968 struct inode *old_dir, struct dentry *old_dentry,
2969 struct inode *new_dir, struct dentry *new_dentry,
2972 struct inode *inode = d_inode(old_dentry);
2973 int they_are_dirs = S_ISDIR(inode->i_mode);
2975 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2978 if (flags & RENAME_EXCHANGE)
2979 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
2981 if (!simple_empty(new_dentry))
2984 if (flags & RENAME_WHITEOUT) {
2987 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
2992 if (d_really_is_positive(new_dentry)) {
2993 (void) shmem_unlink(new_dir, new_dentry);
2994 if (they_are_dirs) {
2995 drop_nlink(d_inode(new_dentry));
2996 drop_nlink(old_dir);
2998 } else if (they_are_dirs) {
2999 drop_nlink(old_dir);
3003 old_dir->i_size -= BOGO_DIRENT_SIZE;
3004 new_dir->i_size += BOGO_DIRENT_SIZE;
3005 old_dir->i_ctime = old_dir->i_mtime =
3006 new_dir->i_ctime = new_dir->i_mtime =
3007 inode->i_ctime = current_time(old_dir);
3011 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3012 struct dentry *dentry, const char *symname)
3016 struct inode *inode;
3019 len = strlen(symname) + 1;
3020 if (len > PAGE_SIZE)
3021 return -ENAMETOOLONG;
3023 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3028 error = security_inode_init_security(inode, dir, &dentry->d_name,
3029 shmem_initxattrs, NULL);
3030 if (error && error != -EOPNOTSUPP) {
3035 inode->i_size = len-1;
3036 if (len <= SHORT_SYMLINK_LEN) {
3037 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3038 if (!inode->i_link) {
3042 inode->i_op = &shmem_short_symlink_operations;
3044 inode_nohighmem(inode);
3045 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3050 inode->i_mapping->a_ops = &shmem_aops;
3051 inode->i_op = &shmem_symlink_inode_operations;
3052 memcpy(page_address(page), symname, len);
3053 SetPageUptodate(page);
3054 set_page_dirty(page);
3058 dir->i_size += BOGO_DIRENT_SIZE;
3059 dir->i_ctime = dir->i_mtime = current_time(dir);
3060 d_instantiate(dentry, inode);
3065 static void shmem_put_link(void *arg)
3067 mark_page_accessed(arg);
3071 static const char *shmem_get_link(struct dentry *dentry,
3072 struct inode *inode,
3073 struct delayed_call *done)
3075 struct page *page = NULL;
3078 page = find_get_page(inode->i_mapping, 0);
3080 return ERR_PTR(-ECHILD);
3081 if (PageHWPoison(page) ||
3082 !PageUptodate(page)) {
3084 return ERR_PTR(-ECHILD);
3087 error = shmem_getpage(inode, 0, &page, SGP_READ);
3089 return ERR_PTR(error);
3091 return ERR_PTR(-ECHILD);
3092 if (PageHWPoison(page)) {
3095 return ERR_PTR(-ECHILD);
3099 set_delayed_call(done, shmem_put_link, page);
3100 return page_address(page);
3103 #ifdef CONFIG_TMPFS_XATTR
3105 * Superblocks without xattr inode operations may get some security.* xattr
3106 * support from the LSM "for free". As soon as we have any other xattrs
3107 * like ACLs, we also need to implement the security.* handlers at
3108 * filesystem level, though.
3112 * Callback for security_inode_init_security() for acquiring xattrs.
3114 static int shmem_initxattrs(struct inode *inode,
3115 const struct xattr *xattr_array,
3118 struct shmem_inode_info *info = SHMEM_I(inode);
3119 const struct xattr *xattr;
3120 struct simple_xattr *new_xattr;
3123 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3124 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3128 len = strlen(xattr->name) + 1;
3129 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3131 if (!new_xattr->name) {
3136 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3137 XATTR_SECURITY_PREFIX_LEN);
3138 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3141 simple_xattr_list_add(&info->xattrs, new_xattr);
3147 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3148 struct dentry *unused, struct inode *inode,
3149 const char *name, void *buffer, size_t size)
3151 struct shmem_inode_info *info = SHMEM_I(inode);
3153 name = xattr_full_name(handler, name);
3154 return simple_xattr_get(&info->xattrs, name, buffer, size);
3157 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3158 struct user_namespace *mnt_userns,
3159 struct dentry *unused, struct inode *inode,
3160 const char *name, const void *value,
3161 size_t size, int flags)
3163 struct shmem_inode_info *info = SHMEM_I(inode);
3165 name = xattr_full_name(handler, name);
3166 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3169 static const struct xattr_handler shmem_security_xattr_handler = {
3170 .prefix = XATTR_SECURITY_PREFIX,
3171 .get = shmem_xattr_handler_get,
3172 .set = shmem_xattr_handler_set,
3175 static const struct xattr_handler shmem_trusted_xattr_handler = {
3176 .prefix = XATTR_TRUSTED_PREFIX,
3177 .get = shmem_xattr_handler_get,
3178 .set = shmem_xattr_handler_set,
3181 static const struct xattr_handler *shmem_xattr_handlers[] = {
3182 #ifdef CONFIG_TMPFS_POSIX_ACL
3183 &posix_acl_access_xattr_handler,
3184 &posix_acl_default_xattr_handler,
3186 &shmem_security_xattr_handler,
3187 &shmem_trusted_xattr_handler,
3191 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3193 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3194 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3196 #endif /* CONFIG_TMPFS_XATTR */
3198 static const struct inode_operations shmem_short_symlink_operations = {
3199 .get_link = simple_get_link,
3200 #ifdef CONFIG_TMPFS_XATTR
3201 .listxattr = shmem_listxattr,
3205 static const struct inode_operations shmem_symlink_inode_operations = {
3206 .get_link = shmem_get_link,
3207 #ifdef CONFIG_TMPFS_XATTR
3208 .listxattr = shmem_listxattr,
3212 static struct dentry *shmem_get_parent(struct dentry *child)
3214 return ERR_PTR(-ESTALE);
3217 static int shmem_match(struct inode *ino, void *vfh)
3221 inum = (inum << 32) | fh[1];
3222 return ino->i_ino == inum && fh[0] == ino->i_generation;
3225 /* Find any alias of inode, but prefer a hashed alias */
3226 static struct dentry *shmem_find_alias(struct inode *inode)
3228 struct dentry *alias = d_find_alias(inode);
3230 return alias ?: d_find_any_alias(inode);
3234 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3235 struct fid *fid, int fh_len, int fh_type)
3237 struct inode *inode;
3238 struct dentry *dentry = NULL;
3245 inum = (inum << 32) | fid->raw[1];
3247 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3248 shmem_match, fid->raw);
3250 dentry = shmem_find_alias(inode);
3257 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3258 struct inode *parent)
3262 return FILEID_INVALID;
3265 if (inode_unhashed(inode)) {
3266 /* Unfortunately insert_inode_hash is not idempotent,
3267 * so as we hash inodes here rather than at creation
3268 * time, we need a lock to ensure we only try
3271 static DEFINE_SPINLOCK(lock);
3273 if (inode_unhashed(inode))
3274 __insert_inode_hash(inode,
3275 inode->i_ino + inode->i_generation);
3279 fh[0] = inode->i_generation;
3280 fh[1] = inode->i_ino;
3281 fh[2] = ((__u64)inode->i_ino) >> 32;
3287 static const struct export_operations shmem_export_ops = {
3288 .get_parent = shmem_get_parent,
3289 .encode_fh = shmem_encode_fh,
3290 .fh_to_dentry = shmem_fh_to_dentry,
3306 static const struct constant_table shmem_param_enums_huge[] = {
3307 {"never", SHMEM_HUGE_NEVER },
3308 {"always", SHMEM_HUGE_ALWAYS },
3309 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3310 {"advise", SHMEM_HUGE_ADVISE },
3314 const struct fs_parameter_spec shmem_fs_parameters[] = {
3315 fsparam_u32 ("gid", Opt_gid),
3316 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3317 fsparam_u32oct("mode", Opt_mode),
3318 fsparam_string("mpol", Opt_mpol),
3319 fsparam_string("nr_blocks", Opt_nr_blocks),
3320 fsparam_string("nr_inodes", Opt_nr_inodes),
3321 fsparam_string("size", Opt_size),
3322 fsparam_u32 ("uid", Opt_uid),
3323 fsparam_flag ("inode32", Opt_inode32),
3324 fsparam_flag ("inode64", Opt_inode64),
3328 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3330 struct shmem_options *ctx = fc->fs_private;
3331 struct fs_parse_result result;
3332 unsigned long long size;
3336 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3342 size = memparse(param->string, &rest);
3344 size <<= PAGE_SHIFT;
3345 size *= totalram_pages();
3351 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3352 ctx->seen |= SHMEM_SEEN_BLOCKS;
3355 ctx->blocks = memparse(param->string, &rest);
3358 ctx->seen |= SHMEM_SEEN_BLOCKS;
3361 ctx->inodes = memparse(param->string, &rest);
3364 ctx->seen |= SHMEM_SEEN_INODES;
3367 ctx->mode = result.uint_32 & 07777;
3370 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3371 if (!uid_valid(ctx->uid))
3375 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3376 if (!gid_valid(ctx->gid))
3380 ctx->huge = result.uint_32;
3381 if (ctx->huge != SHMEM_HUGE_NEVER &&
3382 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3383 has_transparent_hugepage()))
3384 goto unsupported_parameter;
3385 ctx->seen |= SHMEM_SEEN_HUGE;
3388 if (IS_ENABLED(CONFIG_NUMA)) {
3389 mpol_put(ctx->mpol);
3391 if (mpol_parse_str(param->string, &ctx->mpol))
3395 goto unsupported_parameter;
3397 ctx->full_inums = false;
3398 ctx->seen |= SHMEM_SEEN_INUMS;
3401 if (sizeof(ino_t) < 8) {
3403 "Cannot use inode64 with <64bit inums in kernel\n");
3405 ctx->full_inums = true;
3406 ctx->seen |= SHMEM_SEEN_INUMS;
3411 unsupported_parameter:
3412 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3414 return invalfc(fc, "Bad value for '%s'", param->key);
3417 static int shmem_parse_options(struct fs_context *fc, void *data)
3419 char *options = data;
3422 int err = security_sb_eat_lsm_opts(options, &fc->security);
3427 while (options != NULL) {
3428 char *this_char = options;
3431 * NUL-terminate this option: unfortunately,
3432 * mount options form a comma-separated list,
3433 * but mpol's nodelist may also contain commas.
3435 options = strchr(options, ',');
3436 if (options == NULL)
3439 if (!isdigit(*options)) {
3445 char *value = strchr(this_char, '=');
3451 len = strlen(value);
3453 err = vfs_parse_fs_string(fc, this_char, value, len);
3462 * Reconfigure a shmem filesystem.
3464 * Note that we disallow change from limited->unlimited blocks/inodes while any
3465 * are in use; but we must separately disallow unlimited->limited, because in
3466 * that case we have no record of how much is already in use.
3468 static int shmem_reconfigure(struct fs_context *fc)
3470 struct shmem_options *ctx = fc->fs_private;
3471 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3472 unsigned long inodes;
3473 struct mempolicy *mpol = NULL;
3476 raw_spin_lock(&sbinfo->stat_lock);
3477 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3478 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3479 if (!sbinfo->max_blocks) {
3480 err = "Cannot retroactively limit size";
3483 if (percpu_counter_compare(&sbinfo->used_blocks,
3485 err = "Too small a size for current use";
3489 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3490 if (!sbinfo->max_inodes) {
3491 err = "Cannot retroactively limit inodes";
3494 if (ctx->inodes < inodes) {
3495 err = "Too few inodes for current use";
3500 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3501 sbinfo->next_ino > UINT_MAX) {
3502 err = "Current inum too high to switch to 32-bit inums";
3506 if (ctx->seen & SHMEM_SEEN_HUGE)
3507 sbinfo->huge = ctx->huge;
3508 if (ctx->seen & SHMEM_SEEN_INUMS)
3509 sbinfo->full_inums = ctx->full_inums;
3510 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3511 sbinfo->max_blocks = ctx->blocks;
3512 if (ctx->seen & SHMEM_SEEN_INODES) {
3513 sbinfo->max_inodes = ctx->inodes;
3514 sbinfo->free_inodes = ctx->inodes - inodes;
3518 * Preserve previous mempolicy unless mpol remount option was specified.
3521 mpol = sbinfo->mpol;
3522 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3525 raw_spin_unlock(&sbinfo->stat_lock);
3529 raw_spin_unlock(&sbinfo->stat_lock);
3530 return invalfc(fc, "%s", err);
3533 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3535 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3537 if (sbinfo->max_blocks != shmem_default_max_blocks())
3538 seq_printf(seq, ",size=%luk",
3539 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3540 if (sbinfo->max_inodes != shmem_default_max_inodes())
3541 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3542 if (sbinfo->mode != (0777 | S_ISVTX))
3543 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3544 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3545 seq_printf(seq, ",uid=%u",
3546 from_kuid_munged(&init_user_ns, sbinfo->uid));
3547 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3548 seq_printf(seq, ",gid=%u",
3549 from_kgid_munged(&init_user_ns, sbinfo->gid));
3552 * Showing inode{64,32} might be useful even if it's the system default,
3553 * since then people don't have to resort to checking both here and
3554 * /proc/config.gz to confirm 64-bit inums were successfully applied
3555 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3557 * We hide it when inode64 isn't the default and we are using 32-bit
3558 * inodes, since that probably just means the feature isn't even under
3563 * +-----------------+-----------------+
3564 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3565 * +------------------+-----------------+-----------------+
3566 * | full_inums=true | show | show |
3567 * | full_inums=false | show | hide |
3568 * +------------------+-----------------+-----------------+
3571 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3572 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3573 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3574 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3576 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3578 shmem_show_mpol(seq, sbinfo->mpol);
3582 #endif /* CONFIG_TMPFS */
3584 static void shmem_put_super(struct super_block *sb)
3586 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3588 free_percpu(sbinfo->ino_batch);
3589 percpu_counter_destroy(&sbinfo->used_blocks);
3590 mpol_put(sbinfo->mpol);
3592 sb->s_fs_info = NULL;
3595 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3597 struct shmem_options *ctx = fc->fs_private;
3598 struct inode *inode;
3599 struct shmem_sb_info *sbinfo;
3601 /* Round up to L1_CACHE_BYTES to resist false sharing */
3602 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3603 L1_CACHE_BYTES), GFP_KERNEL);
3607 sb->s_fs_info = sbinfo;
3611 * Per default we only allow half of the physical ram per
3612 * tmpfs instance, limiting inodes to one per page of lowmem;
3613 * but the internal instance is left unlimited.
3615 if (!(sb->s_flags & SB_KERNMOUNT)) {
3616 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3617 ctx->blocks = shmem_default_max_blocks();
3618 if (!(ctx->seen & SHMEM_SEEN_INODES))
3619 ctx->inodes = shmem_default_max_inodes();
3620 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3621 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3623 sb->s_flags |= SB_NOUSER;
3625 sb->s_export_op = &shmem_export_ops;
3626 sb->s_flags |= SB_NOSEC;
3628 sb->s_flags |= SB_NOUSER;
3630 sbinfo->max_blocks = ctx->blocks;
3631 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3632 if (sb->s_flags & SB_KERNMOUNT) {
3633 sbinfo->ino_batch = alloc_percpu(ino_t);
3634 if (!sbinfo->ino_batch)
3637 sbinfo->uid = ctx->uid;
3638 sbinfo->gid = ctx->gid;
3639 sbinfo->full_inums = ctx->full_inums;
3640 sbinfo->mode = ctx->mode;
3641 sbinfo->huge = ctx->huge;
3642 sbinfo->mpol = ctx->mpol;
3645 raw_spin_lock_init(&sbinfo->stat_lock);
3646 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3648 spin_lock_init(&sbinfo->shrinklist_lock);
3649 INIT_LIST_HEAD(&sbinfo->shrinklist);
3651 sb->s_maxbytes = MAX_LFS_FILESIZE;
3652 sb->s_blocksize = PAGE_SIZE;
3653 sb->s_blocksize_bits = PAGE_SHIFT;
3654 sb->s_magic = TMPFS_MAGIC;
3655 sb->s_op = &shmem_ops;
3656 sb->s_time_gran = 1;
3657 #ifdef CONFIG_TMPFS_XATTR
3658 sb->s_xattr = shmem_xattr_handlers;
3660 #ifdef CONFIG_TMPFS_POSIX_ACL
3661 sb->s_flags |= SB_POSIXACL;
3663 uuid_gen(&sb->s_uuid);
3665 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3668 inode->i_uid = sbinfo->uid;
3669 inode->i_gid = sbinfo->gid;
3670 sb->s_root = d_make_root(inode);
3676 shmem_put_super(sb);
3680 static int shmem_get_tree(struct fs_context *fc)
3682 return get_tree_nodev(fc, shmem_fill_super);
3685 static void shmem_free_fc(struct fs_context *fc)
3687 struct shmem_options *ctx = fc->fs_private;
3690 mpol_put(ctx->mpol);
3695 static const struct fs_context_operations shmem_fs_context_ops = {
3696 .free = shmem_free_fc,
3697 .get_tree = shmem_get_tree,
3699 .parse_monolithic = shmem_parse_options,
3700 .parse_param = shmem_parse_one,
3701 .reconfigure = shmem_reconfigure,
3705 static struct kmem_cache *shmem_inode_cachep;
3707 static struct inode *shmem_alloc_inode(struct super_block *sb)
3709 struct shmem_inode_info *info;
3710 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3713 return &info->vfs_inode;
3716 static void shmem_free_in_core_inode(struct inode *inode)
3718 if (S_ISLNK(inode->i_mode))
3719 kfree(inode->i_link);
3720 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3723 static void shmem_destroy_inode(struct inode *inode)
3725 if (S_ISREG(inode->i_mode))
3726 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3729 static void shmem_init_inode(void *foo)
3731 struct shmem_inode_info *info = foo;
3732 inode_init_once(&info->vfs_inode);
3735 static void shmem_init_inodecache(void)
3737 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3738 sizeof(struct shmem_inode_info),
3739 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3742 static void shmem_destroy_inodecache(void)
3744 kmem_cache_destroy(shmem_inode_cachep);
3747 /* Keep the page in page cache instead of truncating it */
3748 static int shmem_error_remove_page(struct address_space *mapping,
3754 const struct address_space_operations shmem_aops = {
3755 .writepage = shmem_writepage,
3756 .set_page_dirty = __set_page_dirty_no_writeback,
3758 .write_begin = shmem_write_begin,
3759 .write_end = shmem_write_end,
3761 #ifdef CONFIG_MIGRATION
3762 .migratepage = migrate_page,
3764 .error_remove_page = shmem_error_remove_page,
3766 EXPORT_SYMBOL(shmem_aops);
3768 static const struct file_operations shmem_file_operations = {
3770 .get_unmapped_area = shmem_get_unmapped_area,
3772 .llseek = shmem_file_llseek,
3773 .read_iter = shmem_file_read_iter,
3774 .write_iter = generic_file_write_iter,
3775 .fsync = noop_fsync,
3776 .splice_read = generic_file_splice_read,
3777 .splice_write = iter_file_splice_write,
3778 .fallocate = shmem_fallocate,
3782 static const struct inode_operations shmem_inode_operations = {
3783 .getattr = shmem_getattr,
3784 .setattr = shmem_setattr,
3785 #ifdef CONFIG_TMPFS_XATTR
3786 .listxattr = shmem_listxattr,
3787 .set_acl = simple_set_acl,
3791 static const struct inode_operations shmem_dir_inode_operations = {
3793 .create = shmem_create,
3794 .lookup = simple_lookup,
3796 .unlink = shmem_unlink,
3797 .symlink = shmem_symlink,
3798 .mkdir = shmem_mkdir,
3799 .rmdir = shmem_rmdir,
3800 .mknod = shmem_mknod,
3801 .rename = shmem_rename2,
3802 .tmpfile = shmem_tmpfile,
3804 #ifdef CONFIG_TMPFS_XATTR
3805 .listxattr = shmem_listxattr,
3807 #ifdef CONFIG_TMPFS_POSIX_ACL
3808 .setattr = shmem_setattr,
3809 .set_acl = simple_set_acl,
3813 static const struct inode_operations shmem_special_inode_operations = {
3814 #ifdef CONFIG_TMPFS_XATTR
3815 .listxattr = shmem_listxattr,
3817 #ifdef CONFIG_TMPFS_POSIX_ACL
3818 .setattr = shmem_setattr,
3819 .set_acl = simple_set_acl,
3823 static const struct super_operations shmem_ops = {
3824 .alloc_inode = shmem_alloc_inode,
3825 .free_inode = shmem_free_in_core_inode,
3826 .destroy_inode = shmem_destroy_inode,
3828 .statfs = shmem_statfs,
3829 .show_options = shmem_show_options,
3831 .evict_inode = shmem_evict_inode,
3832 .drop_inode = generic_delete_inode,
3833 .put_super = shmem_put_super,
3834 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3835 .nr_cached_objects = shmem_unused_huge_count,
3836 .free_cached_objects = shmem_unused_huge_scan,
3840 static const struct vm_operations_struct shmem_vm_ops = {
3841 .fault = shmem_fault,
3842 .map_pages = filemap_map_pages,
3844 .set_policy = shmem_set_policy,
3845 .get_policy = shmem_get_policy,
3849 int shmem_init_fs_context(struct fs_context *fc)
3851 struct shmem_options *ctx;
3853 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3857 ctx->mode = 0777 | S_ISVTX;
3858 ctx->uid = current_fsuid();
3859 ctx->gid = current_fsgid();
3861 fc->fs_private = ctx;
3862 fc->ops = &shmem_fs_context_ops;
3866 static struct file_system_type shmem_fs_type = {
3867 .owner = THIS_MODULE,
3869 .init_fs_context = shmem_init_fs_context,
3871 .parameters = shmem_fs_parameters,
3873 .kill_sb = kill_litter_super,
3874 .fs_flags = FS_USERNS_MOUNT,
3877 int __init shmem_init(void)
3881 shmem_init_inodecache();
3883 error = register_filesystem(&shmem_fs_type);
3885 pr_err("Could not register tmpfs\n");
3889 shm_mnt = kern_mount(&shmem_fs_type);
3890 if (IS_ERR(shm_mnt)) {
3891 error = PTR_ERR(shm_mnt);
3892 pr_err("Could not kern_mount tmpfs\n");
3896 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3897 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3898 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3900 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3905 unregister_filesystem(&shmem_fs_type);
3907 shmem_destroy_inodecache();
3908 shm_mnt = ERR_PTR(error);
3912 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3913 static ssize_t shmem_enabled_show(struct kobject *kobj,
3914 struct kobj_attribute *attr, char *buf)
3916 static const int values[] = {
3918 SHMEM_HUGE_WITHIN_SIZE,
3927 for (i = 0; i < ARRAY_SIZE(values); i++) {
3928 len += sysfs_emit_at(buf, len,
3929 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3931 shmem_format_huge(values[i]));
3934 len += sysfs_emit_at(buf, len, "\n");
3939 static ssize_t shmem_enabled_store(struct kobject *kobj,
3940 struct kobj_attribute *attr, const char *buf, size_t count)
3945 if (count + 1 > sizeof(tmp))
3947 memcpy(tmp, buf, count);
3949 if (count && tmp[count - 1] == '\n')
3950 tmp[count - 1] = '\0';
3952 huge = shmem_parse_huge(tmp);
3953 if (huge == -EINVAL)
3955 if (!has_transparent_hugepage() &&
3956 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3960 if (shmem_huge > SHMEM_HUGE_DENY)
3961 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3965 struct kobj_attribute shmem_enabled_attr =
3966 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3967 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3969 #else /* !CONFIG_SHMEM */
3972 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3974 * This is intended for small system where the benefits of the full
3975 * shmem code (swap-backed and resource-limited) are outweighed by
3976 * their complexity. On systems without swap this code should be
3977 * effectively equivalent, but much lighter weight.
3980 static struct file_system_type shmem_fs_type = {
3982 .init_fs_context = ramfs_init_fs_context,
3983 .parameters = ramfs_fs_parameters,
3984 .kill_sb = kill_litter_super,
3985 .fs_flags = FS_USERNS_MOUNT,
3988 int __init shmem_init(void)
3990 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3992 shm_mnt = kern_mount(&shmem_fs_type);
3993 BUG_ON(IS_ERR(shm_mnt));
3998 int shmem_unuse(unsigned int type)
4003 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4008 void shmem_unlock_mapping(struct address_space *mapping)
4013 unsigned long shmem_get_unmapped_area(struct file *file,
4014 unsigned long addr, unsigned long len,
4015 unsigned long pgoff, unsigned long flags)
4017 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4021 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4023 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4025 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4027 #define shmem_vm_ops generic_file_vm_ops
4028 #define shmem_file_operations ramfs_file_operations
4029 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4030 #define shmem_acct_size(flags, size) 0
4031 #define shmem_unacct_size(flags, size) do {} while (0)
4033 #endif /* CONFIG_SHMEM */
4037 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4038 unsigned long flags, unsigned int i_flags)
4040 struct inode *inode;
4044 return ERR_CAST(mnt);
4046 if (size < 0 || size > MAX_LFS_FILESIZE)
4047 return ERR_PTR(-EINVAL);
4049 if (shmem_acct_size(flags, size))
4050 return ERR_PTR(-ENOMEM);
4052 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4054 if (unlikely(!inode)) {
4055 shmem_unacct_size(flags, size);
4056 return ERR_PTR(-ENOSPC);
4058 inode->i_flags |= i_flags;
4059 inode->i_size = size;
4060 clear_nlink(inode); /* It is unlinked */
4061 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4063 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4064 &shmem_file_operations);
4071 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4072 * kernel internal. There will be NO LSM permission checks against the
4073 * underlying inode. So users of this interface must do LSM checks at a
4074 * higher layer. The users are the big_key and shm implementations. LSM
4075 * checks are provided at the key or shm level rather than the inode.
4076 * @name: name for dentry (to be seen in /proc/<pid>/maps
4077 * @size: size to be set for the file
4078 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4080 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4082 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4086 * shmem_file_setup - get an unlinked file living in tmpfs
4087 * @name: name for dentry (to be seen in /proc/<pid>/maps
4088 * @size: size to be set for the file
4089 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4091 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4093 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4095 EXPORT_SYMBOL_GPL(shmem_file_setup);
4098 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4099 * @mnt: the tmpfs mount where the file will be created
4100 * @name: name for dentry (to be seen in /proc/<pid>/maps
4101 * @size: size to be set for the file
4102 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4104 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4105 loff_t size, unsigned long flags)
4107 return __shmem_file_setup(mnt, name, size, flags, 0);
4109 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4112 * shmem_zero_setup - setup a shared anonymous mapping
4113 * @vma: the vma to be mmapped is prepared by do_mmap
4115 int shmem_zero_setup(struct vm_area_struct *vma)
4118 loff_t size = vma->vm_end - vma->vm_start;
4121 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4122 * between XFS directory reading and selinux: since this file is only
4123 * accessible to the user through its mapping, use S_PRIVATE flag to
4124 * bypass file security, in the same way as shmem_kernel_file_setup().
4126 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4128 return PTR_ERR(file);
4132 vma->vm_file = file;
4133 vma->vm_ops = &shmem_vm_ops;
4135 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4136 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4137 (vma->vm_end & HPAGE_PMD_MASK)) {
4138 khugepaged_enter(vma, vma->vm_flags);
4145 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4146 * @mapping: the page's address_space
4147 * @index: the page index
4148 * @gfp: the page allocator flags to use if allocating
4150 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4151 * with any new page allocations done using the specified allocation flags.
4152 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4153 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4154 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4156 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4157 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4159 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4160 pgoff_t index, gfp_t gfp)
4163 struct inode *inode = mapping->host;
4167 BUG_ON(!shmem_mapping(mapping));
4168 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4169 gfp, NULL, NULL, NULL);
4171 return ERR_PTR(error);
4174 if (PageHWPoison(page)) {
4176 return ERR_PTR(-EIO);
4182 * The tiny !SHMEM case uses ramfs without swap
4184 return read_cache_page_gfp(mapping, index, gfp);
4187 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);