8e2b35ba93ad173e74b21c38fe3002cf8aceee6c
[linux-2.6-microblaze.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85
86 #include "internal.h"
87
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96
97 /*
98  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99  * inode->i_private (with i_mutex making sure that it has only one user at
100  * a time): we would prefer not to enlarge the shmem inode just for that.
101  */
102 struct shmem_falloc {
103         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104         pgoff_t start;          /* start of range currently being fallocated */
105         pgoff_t next;           /* the next page offset to be fallocated */
106         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
107         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
108 };
109
110 struct shmem_options {
111         unsigned long long blocks;
112         unsigned long long inodes;
113         struct mempolicy *mpol;
114         kuid_t uid;
115         kgid_t gid;
116         umode_t mode;
117         bool full_inums;
118         int huge;
119         int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129         return totalram_pages() / 2;
130 }
131
132 static unsigned long shmem_default_max_inodes(void)
133 {
134         unsigned long nr_pages = totalram_pages();
135
136         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142                                 struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144                              struct page **pagep, enum sgp_type sgp,
145                              gfp_t gfp, struct vm_area_struct *vma,
146                              vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148                 struct page **pagep, enum sgp_type sgp,
149                 gfp_t gfp, struct vm_area_struct *vma,
150                 struct vm_fault *vmf, vm_fault_t *fault_type);
151
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153                 struct page **pagep, enum sgp_type sgp)
154 {
155         return shmem_getpage_gfp(inode, index, pagep, sgp,
156                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161         return sb->s_fs_info;
162 }
163
164 /*
165  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166  * for shared memory and for shared anonymous (/dev/zero) mappings
167  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168  * consistent with the pre-accounting of private mappings ...
169  */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172         return (flags & VM_NORESERVE) ?
173                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178         if (!(flags & VM_NORESERVE))
179                 vm_unacct_memory(VM_ACCT(size));
180 }
181
182 static inline int shmem_reacct_size(unsigned long flags,
183                 loff_t oldsize, loff_t newsize)
184 {
185         if (!(flags & VM_NORESERVE)) {
186                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187                         return security_vm_enough_memory_mm(current->mm,
188                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
189                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191         }
192         return 0;
193 }
194
195 /*
196  * ... whereas tmpfs objects are accounted incrementally as
197  * pages are allocated, in order to allow large sparse files.
198  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200  */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203         if (!(flags & VM_NORESERVE))
204                 return 0;
205
206         return security_vm_enough_memory_mm(current->mm,
207                         pages * VM_ACCT(PAGE_SIZE));
208 }
209
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212         if (flags & VM_NORESERVE)
213                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218         struct shmem_inode_info *info = SHMEM_I(inode);
219         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220
221         if (shmem_acct_block(info->flags, pages))
222                 return false;
223
224         if (sbinfo->max_blocks) {
225                 if (percpu_counter_compare(&sbinfo->used_blocks,
226                                            sbinfo->max_blocks - pages) > 0)
227                         goto unacct;
228                 percpu_counter_add(&sbinfo->used_blocks, pages);
229         }
230
231         return true;
232
233 unacct:
234         shmem_unacct_blocks(info->flags, pages);
235         return false;
236 }
237
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240         struct shmem_inode_info *info = SHMEM_I(inode);
241         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242
243         if (sbinfo->max_blocks)
244                 percpu_counter_sub(&sbinfo->used_blocks, pages);
245         shmem_unacct_blocks(info->flags, pages);
246 }
247
248 static const struct super_operations shmem_ops;
249 static const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259         return vma->vm_ops == &shmem_vm_ops;
260 }
261
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264
265 /*
266  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267  * produces a novel ino for the newly allocated inode.
268  *
269  * It may also be called when making a hard link to permit the space needed by
270  * each dentry. However, in that case, no new inode number is needed since that
271  * internally draws from another pool of inode numbers (currently global
272  * get_next_ino()). This case is indicated by passing NULL as inop.
273  */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278         ino_t ino;
279
280         if (!(sb->s_flags & SB_KERNMOUNT)) {
281                 spin_lock(&sbinfo->stat_lock);
282                 if (sbinfo->max_inodes) {
283                         if (!sbinfo->free_inodes) {
284                                 spin_unlock(&sbinfo->stat_lock);
285                                 return -ENOSPC;
286                         }
287                         sbinfo->free_inodes--;
288                 }
289                 if (inop) {
290                         ino = sbinfo->next_ino++;
291                         if (unlikely(is_zero_ino(ino)))
292                                 ino = sbinfo->next_ino++;
293                         if (unlikely(!sbinfo->full_inums &&
294                                      ino > UINT_MAX)) {
295                                 /*
296                                  * Emulate get_next_ino uint wraparound for
297                                  * compatibility
298                                  */
299                                 if (IS_ENABLED(CONFIG_64BIT))
300                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301                                                 __func__, MINOR(sb->s_dev));
302                                 sbinfo->next_ino = 1;
303                                 ino = sbinfo->next_ino++;
304                         }
305                         *inop = ino;
306                 }
307                 spin_unlock(&sbinfo->stat_lock);
308         } else if (inop) {
309                 /*
310                  * __shmem_file_setup, one of our callers, is lock-free: it
311                  * doesn't hold stat_lock in shmem_reserve_inode since
312                  * max_inodes is always 0, and is called from potentially
313                  * unknown contexts. As such, use a per-cpu batched allocator
314                  * which doesn't require the per-sb stat_lock unless we are at
315                  * the batch boundary.
316                  *
317                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318                  * shmem mounts are not exposed to userspace, so we don't need
319                  * to worry about things like glibc compatibility.
320                  */
321                 ino_t *next_ino;
322                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
323                 ino = *next_ino;
324                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
325                         spin_lock(&sbinfo->stat_lock);
326                         ino = sbinfo->next_ino;
327                         sbinfo->next_ino += SHMEM_INO_BATCH;
328                         spin_unlock(&sbinfo->stat_lock);
329                         if (unlikely(is_zero_ino(ino)))
330                                 ino++;
331                 }
332                 *inop = ino;
333                 *next_ino = ++ino;
334                 put_cpu();
335         }
336
337         return 0;
338 }
339
340 static void shmem_free_inode(struct super_block *sb)
341 {
342         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
343         if (sbinfo->max_inodes) {
344                 spin_lock(&sbinfo->stat_lock);
345                 sbinfo->free_inodes++;
346                 spin_unlock(&sbinfo->stat_lock);
347         }
348 }
349
350 /**
351  * shmem_recalc_inode - recalculate the block usage of an inode
352  * @inode: inode to recalc
353  *
354  * We have to calculate the free blocks since the mm can drop
355  * undirtied hole pages behind our back.
356  *
357  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
358  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
359  *
360  * It has to be called with the spinlock held.
361  */
362 static void shmem_recalc_inode(struct inode *inode)
363 {
364         struct shmem_inode_info *info = SHMEM_I(inode);
365         long freed;
366
367         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
368         if (freed > 0) {
369                 info->alloced -= freed;
370                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
371                 shmem_inode_unacct_blocks(inode, freed);
372         }
373 }
374
375 bool shmem_charge(struct inode *inode, long pages)
376 {
377         struct shmem_inode_info *info = SHMEM_I(inode);
378         unsigned long flags;
379
380         if (!shmem_inode_acct_block(inode, pages))
381                 return false;
382
383         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
384         inode->i_mapping->nrpages += pages;
385
386         spin_lock_irqsave(&info->lock, flags);
387         info->alloced += pages;
388         inode->i_blocks += pages * BLOCKS_PER_PAGE;
389         shmem_recalc_inode(inode);
390         spin_unlock_irqrestore(&info->lock, flags);
391
392         return true;
393 }
394
395 void shmem_uncharge(struct inode *inode, long pages)
396 {
397         struct shmem_inode_info *info = SHMEM_I(inode);
398         unsigned long flags;
399
400         /* nrpages adjustment done by __delete_from_page_cache() or caller */
401
402         spin_lock_irqsave(&info->lock, flags);
403         info->alloced -= pages;
404         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
405         shmem_recalc_inode(inode);
406         spin_unlock_irqrestore(&info->lock, flags);
407
408         shmem_inode_unacct_blocks(inode, pages);
409 }
410
411 /*
412  * Replace item expected in xarray by a new item, while holding xa_lock.
413  */
414 static int shmem_replace_entry(struct address_space *mapping,
415                         pgoff_t index, void *expected, void *replacement)
416 {
417         XA_STATE(xas, &mapping->i_pages, index);
418         void *item;
419
420         VM_BUG_ON(!expected);
421         VM_BUG_ON(!replacement);
422         item = xas_load(&xas);
423         if (item != expected)
424                 return -ENOENT;
425         xas_store(&xas, replacement);
426         return 0;
427 }
428
429 /*
430  * Sometimes, before we decide whether to proceed or to fail, we must check
431  * that an entry was not already brought back from swap by a racing thread.
432  *
433  * Checking page is not enough: by the time a SwapCache page is locked, it
434  * might be reused, and again be SwapCache, using the same swap as before.
435  */
436 static bool shmem_confirm_swap(struct address_space *mapping,
437                                pgoff_t index, swp_entry_t swap)
438 {
439         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
440 }
441
442 /*
443  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
444  *
445  * SHMEM_HUGE_NEVER:
446  *      disables huge pages for the mount;
447  * SHMEM_HUGE_ALWAYS:
448  *      enables huge pages for the mount;
449  * SHMEM_HUGE_WITHIN_SIZE:
450  *      only allocate huge pages if the page will be fully within i_size,
451  *      also respect fadvise()/madvise() hints;
452  * SHMEM_HUGE_ADVISE:
453  *      only allocate huge pages if requested with fadvise()/madvise();
454  */
455
456 #define SHMEM_HUGE_NEVER        0
457 #define SHMEM_HUGE_ALWAYS       1
458 #define SHMEM_HUGE_WITHIN_SIZE  2
459 #define SHMEM_HUGE_ADVISE       3
460
461 /*
462  * Special values.
463  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
464  *
465  * SHMEM_HUGE_DENY:
466  *      disables huge on shm_mnt and all mounts, for emergency use;
467  * SHMEM_HUGE_FORCE:
468  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
469  *
470  */
471 #define SHMEM_HUGE_DENY         (-1)
472 #define SHMEM_HUGE_FORCE        (-2)
473
474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
475 /* ifdef here to avoid bloating shmem.o when not necessary */
476
477 static int shmem_huge __read_mostly;
478
479 #if defined(CONFIG_SYSFS)
480 static int shmem_parse_huge(const char *str)
481 {
482         if (!strcmp(str, "never"))
483                 return SHMEM_HUGE_NEVER;
484         if (!strcmp(str, "always"))
485                 return SHMEM_HUGE_ALWAYS;
486         if (!strcmp(str, "within_size"))
487                 return SHMEM_HUGE_WITHIN_SIZE;
488         if (!strcmp(str, "advise"))
489                 return SHMEM_HUGE_ADVISE;
490         if (!strcmp(str, "deny"))
491                 return SHMEM_HUGE_DENY;
492         if (!strcmp(str, "force"))
493                 return SHMEM_HUGE_FORCE;
494         return -EINVAL;
495 }
496 #endif
497
498 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
499 static const char *shmem_format_huge(int huge)
500 {
501         switch (huge) {
502         case SHMEM_HUGE_NEVER:
503                 return "never";
504         case SHMEM_HUGE_ALWAYS:
505                 return "always";
506         case SHMEM_HUGE_WITHIN_SIZE:
507                 return "within_size";
508         case SHMEM_HUGE_ADVISE:
509                 return "advise";
510         case SHMEM_HUGE_DENY:
511                 return "deny";
512         case SHMEM_HUGE_FORCE:
513                 return "force";
514         default:
515                 VM_BUG_ON(1);
516                 return "bad_val";
517         }
518 }
519 #endif
520
521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522                 struct shrink_control *sc, unsigned long nr_to_split)
523 {
524         LIST_HEAD(list), *pos, *next;
525         LIST_HEAD(to_remove);
526         struct inode *inode;
527         struct shmem_inode_info *info;
528         struct page *page;
529         unsigned long batch = sc ? sc->nr_to_scan : 128;
530         int removed = 0, split = 0;
531
532         if (list_empty(&sbinfo->shrinklist))
533                 return SHRINK_STOP;
534
535         spin_lock(&sbinfo->shrinklist_lock);
536         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
537                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
538
539                 /* pin the inode */
540                 inode = igrab(&info->vfs_inode);
541
542                 /* inode is about to be evicted */
543                 if (!inode) {
544                         list_del_init(&info->shrinklist);
545                         removed++;
546                         goto next;
547                 }
548
549                 /* Check if there's anything to gain */
550                 if (round_up(inode->i_size, PAGE_SIZE) ==
551                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
552                         list_move(&info->shrinklist, &to_remove);
553                         removed++;
554                         goto next;
555                 }
556
557                 list_move(&info->shrinklist, &list);
558 next:
559                 if (!--batch)
560                         break;
561         }
562         spin_unlock(&sbinfo->shrinklist_lock);
563
564         list_for_each_safe(pos, next, &to_remove) {
565                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566                 inode = &info->vfs_inode;
567                 list_del_init(&info->shrinklist);
568                 iput(inode);
569         }
570
571         list_for_each_safe(pos, next, &list) {
572                 int ret;
573
574                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
575                 inode = &info->vfs_inode;
576
577                 if (nr_to_split && split >= nr_to_split)
578                         goto leave;
579
580                 page = find_get_page(inode->i_mapping,
581                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
582                 if (!page)
583                         goto drop;
584
585                 /* No huge page at the end of the file: nothing to split */
586                 if (!PageTransHuge(page)) {
587                         put_page(page);
588                         goto drop;
589                 }
590
591                 /*
592                  * Leave the inode on the list if we failed to lock
593                  * the page at this time.
594                  *
595                  * Waiting for the lock may lead to deadlock in the
596                  * reclaim path.
597                  */
598                 if (!trylock_page(page)) {
599                         put_page(page);
600                         goto leave;
601                 }
602
603                 ret = split_huge_page(page);
604                 unlock_page(page);
605                 put_page(page);
606
607                 /* If split failed leave the inode on the list */
608                 if (ret)
609                         goto leave;
610
611                 split++;
612 drop:
613                 list_del_init(&info->shrinklist);
614                 removed++;
615 leave:
616                 iput(inode);
617         }
618
619         spin_lock(&sbinfo->shrinklist_lock);
620         list_splice_tail(&list, &sbinfo->shrinklist);
621         sbinfo->shrinklist_len -= removed;
622         spin_unlock(&sbinfo->shrinklist_lock);
623
624         return split;
625 }
626
627 static long shmem_unused_huge_scan(struct super_block *sb,
628                 struct shrink_control *sc)
629 {
630         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
631
632         if (!READ_ONCE(sbinfo->shrinklist_len))
633                 return SHRINK_STOP;
634
635         return shmem_unused_huge_shrink(sbinfo, sc, 0);
636 }
637
638 static long shmem_unused_huge_count(struct super_block *sb,
639                 struct shrink_control *sc)
640 {
641         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
642         return READ_ONCE(sbinfo->shrinklist_len);
643 }
644 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
645
646 #define shmem_huge SHMEM_HUGE_DENY
647
648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649                 struct shrink_control *sc, unsigned long nr_to_split)
650 {
651         return 0;
652 }
653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
654
655 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
656 {
657         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
658             (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
659             shmem_huge != SHMEM_HUGE_DENY)
660                 return true;
661         return false;
662 }
663
664 /*
665  * Like add_to_page_cache_locked, but error if expected item has gone.
666  */
667 static int shmem_add_to_page_cache(struct page *page,
668                                    struct address_space *mapping,
669                                    pgoff_t index, void *expected, gfp_t gfp,
670                                    struct mm_struct *charge_mm)
671 {
672         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
673         unsigned long i = 0;
674         unsigned long nr = compound_nr(page);
675         int error;
676
677         VM_BUG_ON_PAGE(PageTail(page), page);
678         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
679         VM_BUG_ON_PAGE(!PageLocked(page), page);
680         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
681         VM_BUG_ON(expected && PageTransHuge(page));
682
683         page_ref_add(page, nr);
684         page->mapping = mapping;
685         page->index = index;
686
687         if (!PageSwapCache(page)) {
688                 error = mem_cgroup_charge(page, charge_mm, gfp);
689                 if (error) {
690                         if (PageTransHuge(page)) {
691                                 count_vm_event(THP_FILE_FALLBACK);
692                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
693                         }
694                         goto error;
695                 }
696         }
697         cgroup_throttle_swaprate(page, gfp);
698
699         do {
700                 void *entry;
701                 xas_lock_irq(&xas);
702                 entry = xas_find_conflict(&xas);
703                 if (entry != expected)
704                         xas_set_err(&xas, -EEXIST);
705                 xas_create_range(&xas);
706                 if (xas_error(&xas))
707                         goto unlock;
708 next:
709                 xas_store(&xas, page);
710                 if (++i < nr) {
711                         xas_next(&xas);
712                         goto next;
713                 }
714                 if (PageTransHuge(page)) {
715                         count_vm_event(THP_FILE_ALLOC);
716                         __inc_node_page_state(page, NR_SHMEM_THPS);
717                 }
718                 mapping->nrpages += nr;
719                 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
720                 __mod_lruvec_page_state(page, NR_SHMEM, nr);
721 unlock:
722                 xas_unlock_irq(&xas);
723         } while (xas_nomem(&xas, gfp));
724
725         if (xas_error(&xas)) {
726                 error = xas_error(&xas);
727                 goto error;
728         }
729
730         return 0;
731 error:
732         page->mapping = NULL;
733         page_ref_sub(page, nr);
734         return error;
735 }
736
737 /*
738  * Like delete_from_page_cache, but substitutes swap for page.
739  */
740 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
741 {
742         struct address_space *mapping = page->mapping;
743         int error;
744
745         VM_BUG_ON_PAGE(PageCompound(page), page);
746
747         xa_lock_irq(&mapping->i_pages);
748         error = shmem_replace_entry(mapping, page->index, page, radswap);
749         page->mapping = NULL;
750         mapping->nrpages--;
751         __dec_lruvec_page_state(page, NR_FILE_PAGES);
752         __dec_lruvec_page_state(page, NR_SHMEM);
753         xa_unlock_irq(&mapping->i_pages);
754         put_page(page);
755         BUG_ON(error);
756 }
757
758 /*
759  * Remove swap entry from page cache, free the swap and its page cache.
760  */
761 static int shmem_free_swap(struct address_space *mapping,
762                            pgoff_t index, void *radswap)
763 {
764         void *old;
765
766         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
767         if (old != radswap)
768                 return -ENOENT;
769         free_swap_and_cache(radix_to_swp_entry(radswap));
770         return 0;
771 }
772
773 /*
774  * Determine (in bytes) how many of the shmem object's pages mapped by the
775  * given offsets are swapped out.
776  *
777  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
778  * as long as the inode doesn't go away and racy results are not a problem.
779  */
780 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
781                                                 pgoff_t start, pgoff_t end)
782 {
783         XA_STATE(xas, &mapping->i_pages, start);
784         struct page *page;
785         unsigned long swapped = 0;
786
787         rcu_read_lock();
788         xas_for_each(&xas, page, end - 1) {
789                 if (xas_retry(&xas, page))
790                         continue;
791                 if (xa_is_value(page))
792                         swapped++;
793
794                 if (need_resched()) {
795                         xas_pause(&xas);
796                         cond_resched_rcu();
797                 }
798         }
799
800         rcu_read_unlock();
801
802         return swapped << PAGE_SHIFT;
803 }
804
805 /*
806  * Determine (in bytes) how many of the shmem object's pages mapped by the
807  * given vma is swapped out.
808  *
809  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
810  * as long as the inode doesn't go away and racy results are not a problem.
811  */
812 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
813 {
814         struct inode *inode = file_inode(vma->vm_file);
815         struct shmem_inode_info *info = SHMEM_I(inode);
816         struct address_space *mapping = inode->i_mapping;
817         unsigned long swapped;
818
819         /* Be careful as we don't hold info->lock */
820         swapped = READ_ONCE(info->swapped);
821
822         /*
823          * The easier cases are when the shmem object has nothing in swap, or
824          * the vma maps it whole. Then we can simply use the stats that we
825          * already track.
826          */
827         if (!swapped)
828                 return 0;
829
830         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
831                 return swapped << PAGE_SHIFT;
832
833         /* Here comes the more involved part */
834         return shmem_partial_swap_usage(mapping,
835                         linear_page_index(vma, vma->vm_start),
836                         linear_page_index(vma, vma->vm_end));
837 }
838
839 /*
840  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
841  */
842 void shmem_unlock_mapping(struct address_space *mapping)
843 {
844         struct pagevec pvec;
845         pgoff_t indices[PAGEVEC_SIZE];
846         pgoff_t index = 0;
847
848         pagevec_init(&pvec);
849         /*
850          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
851          */
852         while (!mapping_unevictable(mapping)) {
853                 /*
854                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
855                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
856                  */
857                 pvec.nr = find_get_entries(mapping, index,
858                                            PAGEVEC_SIZE, pvec.pages, indices);
859                 if (!pvec.nr)
860                         break;
861                 index = indices[pvec.nr - 1] + 1;
862                 pagevec_remove_exceptionals(&pvec);
863                 check_move_unevictable_pages(&pvec);
864                 pagevec_release(&pvec);
865                 cond_resched();
866         }
867 }
868
869 /*
870  * Check whether a hole-punch or truncation needs to split a huge page,
871  * returning true if no split was required, or the split has been successful.
872  *
873  * Eviction (or truncation to 0 size) should never need to split a huge page;
874  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
875  * head, and then succeeded to trylock on tail.
876  *
877  * A split can only succeed when there are no additional references on the
878  * huge page: so the split below relies upon find_get_entries() having stopped
879  * when it found a subpage of the huge page, without getting further references.
880  */
881 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
882 {
883         if (!PageTransCompound(page))
884                 return true;
885
886         /* Just proceed to delete a huge page wholly within the range punched */
887         if (PageHead(page) &&
888             page->index >= start && page->index + HPAGE_PMD_NR <= end)
889                 return true;
890
891         /* Try to split huge page, so we can truly punch the hole or truncate */
892         return split_huge_page(page) >= 0;
893 }
894
895 /*
896  * Remove range of pages and swap entries from page cache, and free them.
897  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
898  */
899 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
900                                                                  bool unfalloc)
901 {
902         struct address_space *mapping = inode->i_mapping;
903         struct shmem_inode_info *info = SHMEM_I(inode);
904         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
905         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
906         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
907         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
908         struct pagevec pvec;
909         pgoff_t indices[PAGEVEC_SIZE];
910         long nr_swaps_freed = 0;
911         pgoff_t index;
912         int i;
913
914         if (lend == -1)
915                 end = -1;       /* unsigned, so actually very big */
916
917         pagevec_init(&pvec);
918         index = start;
919         while (index < end) {
920                 pvec.nr = find_get_entries(mapping, index,
921                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
922                         pvec.pages, indices);
923                 if (!pvec.nr)
924                         break;
925                 for (i = 0; i < pagevec_count(&pvec); i++) {
926                         struct page *page = pvec.pages[i];
927
928                         index = indices[i];
929                         if (index >= end)
930                                 break;
931
932                         if (xa_is_value(page)) {
933                                 if (unfalloc)
934                                         continue;
935                                 nr_swaps_freed += !shmem_free_swap(mapping,
936                                                                 index, page);
937                                 continue;
938                         }
939
940                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
941
942                         if (!trylock_page(page))
943                                 continue;
944
945                         if ((!unfalloc || !PageUptodate(page)) &&
946                             page_mapping(page) == mapping) {
947                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
948                                 if (shmem_punch_compound(page, start, end))
949                                         truncate_inode_page(mapping, page);
950                         }
951                         unlock_page(page);
952                 }
953                 pagevec_remove_exceptionals(&pvec);
954                 pagevec_release(&pvec);
955                 cond_resched();
956                 index++;
957         }
958
959         if (partial_start) {
960                 struct page *page = NULL;
961                 shmem_getpage(inode, start - 1, &page, SGP_READ);
962                 if (page) {
963                         unsigned int top = PAGE_SIZE;
964                         if (start > end) {
965                                 top = partial_end;
966                                 partial_end = 0;
967                         }
968                         zero_user_segment(page, partial_start, top);
969                         set_page_dirty(page);
970                         unlock_page(page);
971                         put_page(page);
972                 }
973         }
974         if (partial_end) {
975                 struct page *page = NULL;
976                 shmem_getpage(inode, end, &page, SGP_READ);
977                 if (page) {
978                         zero_user_segment(page, 0, partial_end);
979                         set_page_dirty(page);
980                         unlock_page(page);
981                         put_page(page);
982                 }
983         }
984         if (start >= end)
985                 return;
986
987         index = start;
988         while (index < end) {
989                 cond_resched();
990
991                 pvec.nr = find_get_entries(mapping, index,
992                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
993                                 pvec.pages, indices);
994                 if (!pvec.nr) {
995                         /* If all gone or hole-punch or unfalloc, we're done */
996                         if (index == start || end != -1)
997                                 break;
998                         /* But if truncating, restart to make sure all gone */
999                         index = start;
1000                         continue;
1001                 }
1002                 for (i = 0; i < pagevec_count(&pvec); i++) {
1003                         struct page *page = pvec.pages[i];
1004
1005                         index = indices[i];
1006                         if (index >= end)
1007                                 break;
1008
1009                         if (xa_is_value(page)) {
1010                                 if (unfalloc)
1011                                         continue;
1012                                 if (shmem_free_swap(mapping, index, page)) {
1013                                         /* Swap was replaced by page: retry */
1014                                         index--;
1015                                         break;
1016                                 }
1017                                 nr_swaps_freed++;
1018                                 continue;
1019                         }
1020
1021                         lock_page(page);
1022
1023                         if (!unfalloc || !PageUptodate(page)) {
1024                                 if (page_mapping(page) != mapping) {
1025                                         /* Page was replaced by swap: retry */
1026                                         unlock_page(page);
1027                                         index--;
1028                                         break;
1029                                 }
1030                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1031                                 if (shmem_punch_compound(page, start, end))
1032                                         truncate_inode_page(mapping, page);
1033                                 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1034                                         /* Wipe the page and don't get stuck */
1035                                         clear_highpage(page);
1036                                         flush_dcache_page(page);
1037                                         set_page_dirty(page);
1038                                         if (index <
1039                                             round_up(start, HPAGE_PMD_NR))
1040                                                 start = index + 1;
1041                                 }
1042                         }
1043                         unlock_page(page);
1044                 }
1045                 pagevec_remove_exceptionals(&pvec);
1046                 pagevec_release(&pvec);
1047                 index++;
1048         }
1049
1050         spin_lock_irq(&info->lock);
1051         info->swapped -= nr_swaps_freed;
1052         shmem_recalc_inode(inode);
1053         spin_unlock_irq(&info->lock);
1054 }
1055
1056 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1057 {
1058         shmem_undo_range(inode, lstart, lend, false);
1059         inode->i_ctime = inode->i_mtime = current_time(inode);
1060 }
1061 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1062
1063 static int shmem_getattr(const struct path *path, struct kstat *stat,
1064                          u32 request_mask, unsigned int query_flags)
1065 {
1066         struct inode *inode = path->dentry->d_inode;
1067         struct shmem_inode_info *info = SHMEM_I(inode);
1068         struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1069
1070         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1071                 spin_lock_irq(&info->lock);
1072                 shmem_recalc_inode(inode);
1073                 spin_unlock_irq(&info->lock);
1074         }
1075         generic_fillattr(inode, stat);
1076
1077         if (is_huge_enabled(sb_info))
1078                 stat->blksize = HPAGE_PMD_SIZE;
1079
1080         return 0;
1081 }
1082
1083 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1084 {
1085         struct inode *inode = d_inode(dentry);
1086         struct shmem_inode_info *info = SHMEM_I(inode);
1087         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1088         int error;
1089
1090         error = setattr_prepare(dentry, attr);
1091         if (error)
1092                 return error;
1093
1094         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1095                 loff_t oldsize = inode->i_size;
1096                 loff_t newsize = attr->ia_size;
1097
1098                 /* protected by i_mutex */
1099                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1100                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1101                         return -EPERM;
1102
1103                 if (newsize != oldsize) {
1104                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1105                                         oldsize, newsize);
1106                         if (error)
1107                                 return error;
1108                         i_size_write(inode, newsize);
1109                         inode->i_ctime = inode->i_mtime = current_time(inode);
1110                 }
1111                 if (newsize <= oldsize) {
1112                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1113                         if (oldsize > holebegin)
1114                                 unmap_mapping_range(inode->i_mapping,
1115                                                         holebegin, 0, 1);
1116                         if (info->alloced)
1117                                 shmem_truncate_range(inode,
1118                                                         newsize, (loff_t)-1);
1119                         /* unmap again to remove racily COWed private pages */
1120                         if (oldsize > holebegin)
1121                                 unmap_mapping_range(inode->i_mapping,
1122                                                         holebegin, 0, 1);
1123
1124                         /*
1125                          * Part of the huge page can be beyond i_size: subject
1126                          * to shrink under memory pressure.
1127                          */
1128                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1129                                 spin_lock(&sbinfo->shrinklist_lock);
1130                                 /*
1131                                  * _careful to defend against unlocked access to
1132                                  * ->shrink_list in shmem_unused_huge_shrink()
1133                                  */
1134                                 if (list_empty_careful(&info->shrinklist)) {
1135                                         list_add_tail(&info->shrinklist,
1136                                                         &sbinfo->shrinklist);
1137                                         sbinfo->shrinklist_len++;
1138                                 }
1139                                 spin_unlock(&sbinfo->shrinklist_lock);
1140                         }
1141                 }
1142         }
1143
1144         setattr_copy(inode, attr);
1145         if (attr->ia_valid & ATTR_MODE)
1146                 error = posix_acl_chmod(inode, inode->i_mode);
1147         return error;
1148 }
1149
1150 static void shmem_evict_inode(struct inode *inode)
1151 {
1152         struct shmem_inode_info *info = SHMEM_I(inode);
1153         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1154
1155         if (inode->i_mapping->a_ops == &shmem_aops) {
1156                 shmem_unacct_size(info->flags, inode->i_size);
1157                 inode->i_size = 0;
1158                 shmem_truncate_range(inode, 0, (loff_t)-1);
1159                 if (!list_empty(&info->shrinklist)) {
1160                         spin_lock(&sbinfo->shrinklist_lock);
1161                         if (!list_empty(&info->shrinklist)) {
1162                                 list_del_init(&info->shrinklist);
1163                                 sbinfo->shrinklist_len--;
1164                         }
1165                         spin_unlock(&sbinfo->shrinklist_lock);
1166                 }
1167                 while (!list_empty(&info->swaplist)) {
1168                         /* Wait while shmem_unuse() is scanning this inode... */
1169                         wait_var_event(&info->stop_eviction,
1170                                        !atomic_read(&info->stop_eviction));
1171                         mutex_lock(&shmem_swaplist_mutex);
1172                         /* ...but beware of the race if we peeked too early */
1173                         if (!atomic_read(&info->stop_eviction))
1174                                 list_del_init(&info->swaplist);
1175                         mutex_unlock(&shmem_swaplist_mutex);
1176                 }
1177         }
1178
1179         simple_xattrs_free(&info->xattrs);
1180         WARN_ON(inode->i_blocks);
1181         shmem_free_inode(inode->i_sb);
1182         clear_inode(inode);
1183 }
1184
1185 extern struct swap_info_struct *swap_info[];
1186
1187 static int shmem_find_swap_entries(struct address_space *mapping,
1188                                    pgoff_t start, unsigned int nr_entries,
1189                                    struct page **entries, pgoff_t *indices,
1190                                    unsigned int type, bool frontswap)
1191 {
1192         XA_STATE(xas, &mapping->i_pages, start);
1193         struct page *page;
1194         swp_entry_t entry;
1195         unsigned int ret = 0;
1196
1197         if (!nr_entries)
1198                 return 0;
1199
1200         rcu_read_lock();
1201         xas_for_each(&xas, page, ULONG_MAX) {
1202                 if (xas_retry(&xas, page))
1203                         continue;
1204
1205                 if (!xa_is_value(page))
1206                         continue;
1207
1208                 entry = radix_to_swp_entry(page);
1209                 if (swp_type(entry) != type)
1210                         continue;
1211                 if (frontswap &&
1212                     !frontswap_test(swap_info[type], swp_offset(entry)))
1213                         continue;
1214
1215                 indices[ret] = xas.xa_index;
1216                 entries[ret] = page;
1217
1218                 if (need_resched()) {
1219                         xas_pause(&xas);
1220                         cond_resched_rcu();
1221                 }
1222                 if (++ret == nr_entries)
1223                         break;
1224         }
1225         rcu_read_unlock();
1226
1227         return ret;
1228 }
1229
1230 /*
1231  * Move the swapped pages for an inode to page cache. Returns the count
1232  * of pages swapped in, or the error in case of failure.
1233  */
1234 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1235                                     pgoff_t *indices)
1236 {
1237         int i = 0;
1238         int ret = 0;
1239         int error = 0;
1240         struct address_space *mapping = inode->i_mapping;
1241
1242         for (i = 0; i < pvec.nr; i++) {
1243                 struct page *page = pvec.pages[i];
1244
1245                 if (!xa_is_value(page))
1246                         continue;
1247                 error = shmem_swapin_page(inode, indices[i],
1248                                           &page, SGP_CACHE,
1249                                           mapping_gfp_mask(mapping),
1250                                           NULL, NULL);
1251                 if (error == 0) {
1252                         unlock_page(page);
1253                         put_page(page);
1254                         ret++;
1255                 }
1256                 if (error == -ENOMEM)
1257                         break;
1258                 error = 0;
1259         }
1260         return error ? error : ret;
1261 }
1262
1263 /*
1264  * If swap found in inode, free it and move page from swapcache to filecache.
1265  */
1266 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1267                              bool frontswap, unsigned long *fs_pages_to_unuse)
1268 {
1269         struct address_space *mapping = inode->i_mapping;
1270         pgoff_t start = 0;
1271         struct pagevec pvec;
1272         pgoff_t indices[PAGEVEC_SIZE];
1273         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1274         int ret = 0;
1275
1276         pagevec_init(&pvec);
1277         do {
1278                 unsigned int nr_entries = PAGEVEC_SIZE;
1279
1280                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1281                         nr_entries = *fs_pages_to_unuse;
1282
1283                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1284                                                   pvec.pages, indices,
1285                                                   type, frontswap);
1286                 if (pvec.nr == 0) {
1287                         ret = 0;
1288                         break;
1289                 }
1290
1291                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1292                 if (ret < 0)
1293                         break;
1294
1295                 if (frontswap_partial) {
1296                         *fs_pages_to_unuse -= ret;
1297                         if (*fs_pages_to_unuse == 0) {
1298                                 ret = FRONTSWAP_PAGES_UNUSED;
1299                                 break;
1300                         }
1301                 }
1302
1303                 start = indices[pvec.nr - 1];
1304         } while (true);
1305
1306         return ret;
1307 }
1308
1309 /*
1310  * Read all the shared memory data that resides in the swap
1311  * device 'type' back into memory, so the swap device can be
1312  * unused.
1313  */
1314 int shmem_unuse(unsigned int type, bool frontswap,
1315                 unsigned long *fs_pages_to_unuse)
1316 {
1317         struct shmem_inode_info *info, *next;
1318         int error = 0;
1319
1320         if (list_empty(&shmem_swaplist))
1321                 return 0;
1322
1323         mutex_lock(&shmem_swaplist_mutex);
1324         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1325                 if (!info->swapped) {
1326                         list_del_init(&info->swaplist);
1327                         continue;
1328                 }
1329                 /*
1330                  * Drop the swaplist mutex while searching the inode for swap;
1331                  * but before doing so, make sure shmem_evict_inode() will not
1332                  * remove placeholder inode from swaplist, nor let it be freed
1333                  * (igrab() would protect from unlink, but not from unmount).
1334                  */
1335                 atomic_inc(&info->stop_eviction);
1336                 mutex_unlock(&shmem_swaplist_mutex);
1337
1338                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1339                                           fs_pages_to_unuse);
1340                 cond_resched();
1341
1342                 mutex_lock(&shmem_swaplist_mutex);
1343                 next = list_next_entry(info, swaplist);
1344                 if (!info->swapped)
1345                         list_del_init(&info->swaplist);
1346                 if (atomic_dec_and_test(&info->stop_eviction))
1347                         wake_up_var(&info->stop_eviction);
1348                 if (error)
1349                         break;
1350         }
1351         mutex_unlock(&shmem_swaplist_mutex);
1352
1353         return error;
1354 }
1355
1356 /*
1357  * Move the page from the page cache to the swap cache.
1358  */
1359 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1360 {
1361         struct shmem_inode_info *info;
1362         struct address_space *mapping;
1363         struct inode *inode;
1364         swp_entry_t swap;
1365         pgoff_t index;
1366
1367         VM_BUG_ON_PAGE(PageCompound(page), page);
1368         BUG_ON(!PageLocked(page));
1369         mapping = page->mapping;
1370         index = page->index;
1371         inode = mapping->host;
1372         info = SHMEM_I(inode);
1373         if (info->flags & VM_LOCKED)
1374                 goto redirty;
1375         if (!total_swap_pages)
1376                 goto redirty;
1377
1378         /*
1379          * Our capabilities prevent regular writeback or sync from ever calling
1380          * shmem_writepage; but a stacking filesystem might use ->writepage of
1381          * its underlying filesystem, in which case tmpfs should write out to
1382          * swap only in response to memory pressure, and not for the writeback
1383          * threads or sync.
1384          */
1385         if (!wbc->for_reclaim) {
1386                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1387                 goto redirty;
1388         }
1389
1390         /*
1391          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1392          * value into swapfile.c, the only way we can correctly account for a
1393          * fallocated page arriving here is now to initialize it and write it.
1394          *
1395          * That's okay for a page already fallocated earlier, but if we have
1396          * not yet completed the fallocation, then (a) we want to keep track
1397          * of this page in case we have to undo it, and (b) it may not be a
1398          * good idea to continue anyway, once we're pushing into swap.  So
1399          * reactivate the page, and let shmem_fallocate() quit when too many.
1400          */
1401         if (!PageUptodate(page)) {
1402                 if (inode->i_private) {
1403                         struct shmem_falloc *shmem_falloc;
1404                         spin_lock(&inode->i_lock);
1405                         shmem_falloc = inode->i_private;
1406                         if (shmem_falloc &&
1407                             !shmem_falloc->waitq &&
1408                             index >= shmem_falloc->start &&
1409                             index < shmem_falloc->next)
1410                                 shmem_falloc->nr_unswapped++;
1411                         else
1412                                 shmem_falloc = NULL;
1413                         spin_unlock(&inode->i_lock);
1414                         if (shmem_falloc)
1415                                 goto redirty;
1416                 }
1417                 clear_highpage(page);
1418                 flush_dcache_page(page);
1419                 SetPageUptodate(page);
1420         }
1421
1422         swap = get_swap_page(page);
1423         if (!swap.val)
1424                 goto redirty;
1425
1426         /*
1427          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1428          * if it's not already there.  Do it now before the page is
1429          * moved to swap cache, when its pagelock no longer protects
1430          * the inode from eviction.  But don't unlock the mutex until
1431          * we've incremented swapped, because shmem_unuse_inode() will
1432          * prune a !swapped inode from the swaplist under this mutex.
1433          */
1434         mutex_lock(&shmem_swaplist_mutex);
1435         if (list_empty(&info->swaplist))
1436                 list_add(&info->swaplist, &shmem_swaplist);
1437
1438         if (add_to_swap_cache(page, swap,
1439                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1440                         NULL) == 0) {
1441                 spin_lock_irq(&info->lock);
1442                 shmem_recalc_inode(inode);
1443                 info->swapped++;
1444                 spin_unlock_irq(&info->lock);
1445
1446                 swap_shmem_alloc(swap);
1447                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1448
1449                 mutex_unlock(&shmem_swaplist_mutex);
1450                 BUG_ON(page_mapped(page));
1451                 swap_writepage(page, wbc);
1452                 return 0;
1453         }
1454
1455         mutex_unlock(&shmem_swaplist_mutex);
1456         put_swap_page(page, swap);
1457 redirty:
1458         set_page_dirty(page);
1459         if (wbc->for_reclaim)
1460                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1461         unlock_page(page);
1462         return 0;
1463 }
1464
1465 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1466 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1467 {
1468         char buffer[64];
1469
1470         if (!mpol || mpol->mode == MPOL_DEFAULT)
1471                 return;         /* show nothing */
1472
1473         mpol_to_str(buffer, sizeof(buffer), mpol);
1474
1475         seq_printf(seq, ",mpol=%s", buffer);
1476 }
1477
1478 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1479 {
1480         struct mempolicy *mpol = NULL;
1481         if (sbinfo->mpol) {
1482                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1483                 mpol = sbinfo->mpol;
1484                 mpol_get(mpol);
1485                 spin_unlock(&sbinfo->stat_lock);
1486         }
1487         return mpol;
1488 }
1489 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1490 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1491 {
1492 }
1493 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1494 {
1495         return NULL;
1496 }
1497 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1498 #ifndef CONFIG_NUMA
1499 #define vm_policy vm_private_data
1500 #endif
1501
1502 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1503                 struct shmem_inode_info *info, pgoff_t index)
1504 {
1505         /* Create a pseudo vma that just contains the policy */
1506         vma_init(vma, NULL);
1507         /* Bias interleave by inode number to distribute better across nodes */
1508         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1509         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1510 }
1511
1512 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1513 {
1514         /* Drop reference taken by mpol_shared_policy_lookup() */
1515         mpol_cond_put(vma->vm_policy);
1516 }
1517
1518 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1519                         struct shmem_inode_info *info, pgoff_t index)
1520 {
1521         struct vm_area_struct pvma;
1522         struct page *page;
1523         struct vm_fault vmf;
1524
1525         shmem_pseudo_vma_init(&pvma, info, index);
1526         vmf.vma = &pvma;
1527         vmf.address = 0;
1528         page = swap_cluster_readahead(swap, gfp, &vmf);
1529         shmem_pseudo_vma_destroy(&pvma);
1530
1531         return page;
1532 }
1533
1534 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1535                 struct shmem_inode_info *info, pgoff_t index)
1536 {
1537         struct vm_area_struct pvma;
1538         struct address_space *mapping = info->vfs_inode.i_mapping;
1539         pgoff_t hindex;
1540         struct page *page;
1541
1542         hindex = round_down(index, HPAGE_PMD_NR);
1543         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1544                                                                 XA_PRESENT))
1545                 return NULL;
1546
1547         shmem_pseudo_vma_init(&pvma, info, hindex);
1548         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1549                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1550         shmem_pseudo_vma_destroy(&pvma);
1551         if (page)
1552                 prep_transhuge_page(page);
1553         else
1554                 count_vm_event(THP_FILE_FALLBACK);
1555         return page;
1556 }
1557
1558 static struct page *shmem_alloc_page(gfp_t gfp,
1559                         struct shmem_inode_info *info, pgoff_t index)
1560 {
1561         struct vm_area_struct pvma;
1562         struct page *page;
1563
1564         shmem_pseudo_vma_init(&pvma, info, index);
1565         page = alloc_page_vma(gfp, &pvma, 0);
1566         shmem_pseudo_vma_destroy(&pvma);
1567
1568         return page;
1569 }
1570
1571 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1572                 struct inode *inode,
1573                 pgoff_t index, bool huge)
1574 {
1575         struct shmem_inode_info *info = SHMEM_I(inode);
1576         struct page *page;
1577         int nr;
1578         int err = -ENOSPC;
1579
1580         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1581                 huge = false;
1582         nr = huge ? HPAGE_PMD_NR : 1;
1583
1584         if (!shmem_inode_acct_block(inode, nr))
1585                 goto failed;
1586
1587         if (huge)
1588                 page = shmem_alloc_hugepage(gfp, info, index);
1589         else
1590                 page = shmem_alloc_page(gfp, info, index);
1591         if (page) {
1592                 __SetPageLocked(page);
1593                 __SetPageSwapBacked(page);
1594                 return page;
1595         }
1596
1597         err = -ENOMEM;
1598         shmem_inode_unacct_blocks(inode, nr);
1599 failed:
1600         return ERR_PTR(err);
1601 }
1602
1603 /*
1604  * When a page is moved from swapcache to shmem filecache (either by the
1605  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1606  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1607  * ignorance of the mapping it belongs to.  If that mapping has special
1608  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1609  * we may need to copy to a suitable page before moving to filecache.
1610  *
1611  * In a future release, this may well be extended to respect cpuset and
1612  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1613  * but for now it is a simple matter of zone.
1614  */
1615 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1616 {
1617         return page_zonenum(page) > gfp_zone(gfp);
1618 }
1619
1620 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1621                                 struct shmem_inode_info *info, pgoff_t index)
1622 {
1623         struct page *oldpage, *newpage;
1624         struct address_space *swap_mapping;
1625         swp_entry_t entry;
1626         pgoff_t swap_index;
1627         int error;
1628
1629         oldpage = *pagep;
1630         entry.val = page_private(oldpage);
1631         swap_index = swp_offset(entry);
1632         swap_mapping = page_mapping(oldpage);
1633
1634         /*
1635          * We have arrived here because our zones are constrained, so don't
1636          * limit chance of success by further cpuset and node constraints.
1637          */
1638         gfp &= ~GFP_CONSTRAINT_MASK;
1639         newpage = shmem_alloc_page(gfp, info, index);
1640         if (!newpage)
1641                 return -ENOMEM;
1642
1643         get_page(newpage);
1644         copy_highpage(newpage, oldpage);
1645         flush_dcache_page(newpage);
1646
1647         __SetPageLocked(newpage);
1648         __SetPageSwapBacked(newpage);
1649         SetPageUptodate(newpage);
1650         set_page_private(newpage, entry.val);
1651         SetPageSwapCache(newpage);
1652
1653         /*
1654          * Our caller will very soon move newpage out of swapcache, but it's
1655          * a nice clean interface for us to replace oldpage by newpage there.
1656          */
1657         xa_lock_irq(&swap_mapping->i_pages);
1658         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1659         if (!error) {
1660                 mem_cgroup_migrate(oldpage, newpage);
1661                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1662                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1663         }
1664         xa_unlock_irq(&swap_mapping->i_pages);
1665
1666         if (unlikely(error)) {
1667                 /*
1668                  * Is this possible?  I think not, now that our callers check
1669                  * both PageSwapCache and page_private after getting page lock;
1670                  * but be defensive.  Reverse old to newpage for clear and free.
1671                  */
1672                 oldpage = newpage;
1673         } else {
1674                 lru_cache_add(newpage);
1675                 *pagep = newpage;
1676         }
1677
1678         ClearPageSwapCache(oldpage);
1679         set_page_private(oldpage, 0);
1680
1681         unlock_page(oldpage);
1682         put_page(oldpage);
1683         put_page(oldpage);
1684         return error;
1685 }
1686
1687 /*
1688  * Swap in the page pointed to by *pagep.
1689  * Caller has to make sure that *pagep contains a valid swapped page.
1690  * Returns 0 and the page in pagep if success. On failure, returns the
1691  * error code and NULL in *pagep.
1692  */
1693 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1694                              struct page **pagep, enum sgp_type sgp,
1695                              gfp_t gfp, struct vm_area_struct *vma,
1696                              vm_fault_t *fault_type)
1697 {
1698         struct address_space *mapping = inode->i_mapping;
1699         struct shmem_inode_info *info = SHMEM_I(inode);
1700         struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1701         struct page *page;
1702         swp_entry_t swap;
1703         int error;
1704
1705         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1706         swap = radix_to_swp_entry(*pagep);
1707         *pagep = NULL;
1708
1709         /* Look it up and read it in.. */
1710         page = lookup_swap_cache(swap, NULL, 0);
1711         if (!page) {
1712                 /* Or update major stats only when swapin succeeds?? */
1713                 if (fault_type) {
1714                         *fault_type |= VM_FAULT_MAJOR;
1715                         count_vm_event(PGMAJFAULT);
1716                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1717                 }
1718                 /* Here we actually start the io */
1719                 page = shmem_swapin(swap, gfp, info, index);
1720                 if (!page) {
1721                         error = -ENOMEM;
1722                         goto failed;
1723                 }
1724         }
1725
1726         /* We have to do this with page locked to prevent races */
1727         lock_page(page);
1728         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1729             !shmem_confirm_swap(mapping, index, swap)) {
1730                 error = -EEXIST;
1731                 goto unlock;
1732         }
1733         if (!PageUptodate(page)) {
1734                 error = -EIO;
1735                 goto failed;
1736         }
1737         wait_on_page_writeback(page);
1738
1739         if (shmem_should_replace_page(page, gfp)) {
1740                 error = shmem_replace_page(&page, gfp, info, index);
1741                 if (error)
1742                         goto failed;
1743         }
1744
1745         error = shmem_add_to_page_cache(page, mapping, index,
1746                                         swp_to_radix_entry(swap), gfp,
1747                                         charge_mm);
1748         if (error)
1749                 goto failed;
1750
1751         spin_lock_irq(&info->lock);
1752         info->swapped--;
1753         shmem_recalc_inode(inode);
1754         spin_unlock_irq(&info->lock);
1755
1756         if (sgp == SGP_WRITE)
1757                 mark_page_accessed(page);
1758
1759         delete_from_swap_cache(page);
1760         set_page_dirty(page);
1761         swap_free(swap);
1762
1763         *pagep = page;
1764         return 0;
1765 failed:
1766         if (!shmem_confirm_swap(mapping, index, swap))
1767                 error = -EEXIST;
1768 unlock:
1769         if (page) {
1770                 unlock_page(page);
1771                 put_page(page);
1772         }
1773
1774         return error;
1775 }
1776
1777 /*
1778  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1779  *
1780  * If we allocate a new one we do not mark it dirty. That's up to the
1781  * vm. If we swap it in we mark it dirty since we also free the swap
1782  * entry since a page cannot live in both the swap and page cache.
1783  *
1784  * vmf and fault_type are only supplied by shmem_fault:
1785  * otherwise they are NULL.
1786  */
1787 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1788         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1789         struct vm_area_struct *vma, struct vm_fault *vmf,
1790                         vm_fault_t *fault_type)
1791 {
1792         struct address_space *mapping = inode->i_mapping;
1793         struct shmem_inode_info *info = SHMEM_I(inode);
1794         struct shmem_sb_info *sbinfo;
1795         struct mm_struct *charge_mm;
1796         struct page *page;
1797         enum sgp_type sgp_huge = sgp;
1798         pgoff_t hindex = index;
1799         int error;
1800         int once = 0;
1801         int alloced = 0;
1802
1803         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1804                 return -EFBIG;
1805         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1806                 sgp = SGP_CACHE;
1807 repeat:
1808         if (sgp <= SGP_CACHE &&
1809             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1810                 return -EINVAL;
1811         }
1812
1813         sbinfo = SHMEM_SB(inode->i_sb);
1814         charge_mm = vma ? vma->vm_mm : current->mm;
1815
1816         page = find_lock_entry(mapping, index);
1817         if (xa_is_value(page)) {
1818                 error = shmem_swapin_page(inode, index, &page,
1819                                           sgp, gfp, vma, fault_type);
1820                 if (error == -EEXIST)
1821                         goto repeat;
1822
1823                 *pagep = page;
1824                 return error;
1825         }
1826
1827         if (page && sgp == SGP_WRITE)
1828                 mark_page_accessed(page);
1829
1830         /* fallocated page? */
1831         if (page && !PageUptodate(page)) {
1832                 if (sgp != SGP_READ)
1833                         goto clear;
1834                 unlock_page(page);
1835                 put_page(page);
1836                 page = NULL;
1837         }
1838         if (page || sgp == SGP_READ) {
1839                 *pagep = page;
1840                 return 0;
1841         }
1842
1843         /*
1844          * Fast cache lookup did not find it:
1845          * bring it back from swap or allocate.
1846          */
1847
1848         if (vma && userfaultfd_missing(vma)) {
1849                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1850                 return 0;
1851         }
1852
1853         /* shmem_symlink() */
1854         if (mapping->a_ops != &shmem_aops)
1855                 goto alloc_nohuge;
1856         if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1857                 goto alloc_nohuge;
1858         if (shmem_huge == SHMEM_HUGE_FORCE)
1859                 goto alloc_huge;
1860         switch (sbinfo->huge) {
1861         case SHMEM_HUGE_NEVER:
1862                 goto alloc_nohuge;
1863         case SHMEM_HUGE_WITHIN_SIZE: {
1864                 loff_t i_size;
1865                 pgoff_t off;
1866
1867                 off = round_up(index, HPAGE_PMD_NR);
1868                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1869                 if (i_size >= HPAGE_PMD_SIZE &&
1870                     i_size >> PAGE_SHIFT >= off)
1871                         goto alloc_huge;
1872
1873                 fallthrough;
1874         }
1875         case SHMEM_HUGE_ADVISE:
1876                 if (sgp_huge == SGP_HUGE)
1877                         goto alloc_huge;
1878                 /* TODO: implement fadvise() hints */
1879                 goto alloc_nohuge;
1880         }
1881
1882 alloc_huge:
1883         page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1884         if (IS_ERR(page)) {
1885 alloc_nohuge:
1886                 page = shmem_alloc_and_acct_page(gfp, inode,
1887                                                  index, false);
1888         }
1889         if (IS_ERR(page)) {
1890                 int retry = 5;
1891
1892                 error = PTR_ERR(page);
1893                 page = NULL;
1894                 if (error != -ENOSPC)
1895                         goto unlock;
1896                 /*
1897                  * Try to reclaim some space by splitting a huge page
1898                  * beyond i_size on the filesystem.
1899                  */
1900                 while (retry--) {
1901                         int ret;
1902
1903                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1904                         if (ret == SHRINK_STOP)
1905                                 break;
1906                         if (ret)
1907                                 goto alloc_nohuge;
1908                 }
1909                 goto unlock;
1910         }
1911
1912         if (PageTransHuge(page))
1913                 hindex = round_down(index, HPAGE_PMD_NR);
1914         else
1915                 hindex = index;
1916
1917         if (sgp == SGP_WRITE)
1918                 __SetPageReferenced(page);
1919
1920         error = shmem_add_to_page_cache(page, mapping, hindex,
1921                                         NULL, gfp & GFP_RECLAIM_MASK,
1922                                         charge_mm);
1923         if (error)
1924                 goto unacct;
1925         lru_cache_add(page);
1926
1927         spin_lock_irq(&info->lock);
1928         info->alloced += compound_nr(page);
1929         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1930         shmem_recalc_inode(inode);
1931         spin_unlock_irq(&info->lock);
1932         alloced = true;
1933
1934         if (PageTransHuge(page) &&
1935             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1936                         hindex + HPAGE_PMD_NR - 1) {
1937                 /*
1938                  * Part of the huge page is beyond i_size: subject
1939                  * to shrink under memory pressure.
1940                  */
1941                 spin_lock(&sbinfo->shrinklist_lock);
1942                 /*
1943                  * _careful to defend against unlocked access to
1944                  * ->shrink_list in shmem_unused_huge_shrink()
1945                  */
1946                 if (list_empty_careful(&info->shrinklist)) {
1947                         list_add_tail(&info->shrinklist,
1948                                       &sbinfo->shrinklist);
1949                         sbinfo->shrinklist_len++;
1950                 }
1951                 spin_unlock(&sbinfo->shrinklist_lock);
1952         }
1953
1954         /*
1955          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1956          */
1957         if (sgp == SGP_FALLOC)
1958                 sgp = SGP_WRITE;
1959 clear:
1960         /*
1961          * Let SGP_WRITE caller clear ends if write does not fill page;
1962          * but SGP_FALLOC on a page fallocated earlier must initialize
1963          * it now, lest undo on failure cancel our earlier guarantee.
1964          */
1965         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1966                 struct page *head = compound_head(page);
1967                 int i;
1968
1969                 for (i = 0; i < compound_nr(head); i++) {
1970                         clear_highpage(head + i);
1971                         flush_dcache_page(head + i);
1972                 }
1973                 SetPageUptodate(head);
1974         }
1975
1976         /* Perhaps the file has been truncated since we checked */
1977         if (sgp <= SGP_CACHE &&
1978             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1979                 if (alloced) {
1980                         ClearPageDirty(page);
1981                         delete_from_page_cache(page);
1982                         spin_lock_irq(&info->lock);
1983                         shmem_recalc_inode(inode);
1984                         spin_unlock_irq(&info->lock);
1985                 }
1986                 error = -EINVAL;
1987                 goto unlock;
1988         }
1989         *pagep = page + index - hindex;
1990         return 0;
1991
1992         /*
1993          * Error recovery.
1994          */
1995 unacct:
1996         shmem_inode_unacct_blocks(inode, compound_nr(page));
1997
1998         if (PageTransHuge(page)) {
1999                 unlock_page(page);
2000                 put_page(page);
2001                 goto alloc_nohuge;
2002         }
2003 unlock:
2004         if (page) {
2005                 unlock_page(page);
2006                 put_page(page);
2007         }
2008         if (error == -ENOSPC && !once++) {
2009                 spin_lock_irq(&info->lock);
2010                 shmem_recalc_inode(inode);
2011                 spin_unlock_irq(&info->lock);
2012                 goto repeat;
2013         }
2014         if (error == -EEXIST)
2015                 goto repeat;
2016         return error;
2017 }
2018
2019 /*
2020  * This is like autoremove_wake_function, but it removes the wait queue
2021  * entry unconditionally - even if something else had already woken the
2022  * target.
2023  */
2024 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2025 {
2026         int ret = default_wake_function(wait, mode, sync, key);
2027         list_del_init(&wait->entry);
2028         return ret;
2029 }
2030
2031 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2032 {
2033         struct vm_area_struct *vma = vmf->vma;
2034         struct inode *inode = file_inode(vma->vm_file);
2035         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2036         enum sgp_type sgp;
2037         int err;
2038         vm_fault_t ret = VM_FAULT_LOCKED;
2039
2040         /*
2041          * Trinity finds that probing a hole which tmpfs is punching can
2042          * prevent the hole-punch from ever completing: which in turn
2043          * locks writers out with its hold on i_mutex.  So refrain from
2044          * faulting pages into the hole while it's being punched.  Although
2045          * shmem_undo_range() does remove the additions, it may be unable to
2046          * keep up, as each new page needs its own unmap_mapping_range() call,
2047          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2048          *
2049          * It does not matter if we sometimes reach this check just before the
2050          * hole-punch begins, so that one fault then races with the punch:
2051          * we just need to make racing faults a rare case.
2052          *
2053          * The implementation below would be much simpler if we just used a
2054          * standard mutex or completion: but we cannot take i_mutex in fault,
2055          * and bloating every shmem inode for this unlikely case would be sad.
2056          */
2057         if (unlikely(inode->i_private)) {
2058                 struct shmem_falloc *shmem_falloc;
2059
2060                 spin_lock(&inode->i_lock);
2061                 shmem_falloc = inode->i_private;
2062                 if (shmem_falloc &&
2063                     shmem_falloc->waitq &&
2064                     vmf->pgoff >= shmem_falloc->start &&
2065                     vmf->pgoff < shmem_falloc->next) {
2066                         struct file *fpin;
2067                         wait_queue_head_t *shmem_falloc_waitq;
2068                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2069
2070                         ret = VM_FAULT_NOPAGE;
2071                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2072                         if (fpin)
2073                                 ret = VM_FAULT_RETRY;
2074
2075                         shmem_falloc_waitq = shmem_falloc->waitq;
2076                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2077                                         TASK_UNINTERRUPTIBLE);
2078                         spin_unlock(&inode->i_lock);
2079                         schedule();
2080
2081                         /*
2082                          * shmem_falloc_waitq points into the shmem_fallocate()
2083                          * stack of the hole-punching task: shmem_falloc_waitq
2084                          * is usually invalid by the time we reach here, but
2085                          * finish_wait() does not dereference it in that case;
2086                          * though i_lock needed lest racing with wake_up_all().
2087                          */
2088                         spin_lock(&inode->i_lock);
2089                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2090                         spin_unlock(&inode->i_lock);
2091
2092                         if (fpin)
2093                                 fput(fpin);
2094                         return ret;
2095                 }
2096                 spin_unlock(&inode->i_lock);
2097         }
2098
2099         sgp = SGP_CACHE;
2100
2101         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2102             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2103                 sgp = SGP_NOHUGE;
2104         else if (vma->vm_flags & VM_HUGEPAGE)
2105                 sgp = SGP_HUGE;
2106
2107         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2108                                   gfp, vma, vmf, &ret);
2109         if (err)
2110                 return vmf_error(err);
2111         return ret;
2112 }
2113
2114 unsigned long shmem_get_unmapped_area(struct file *file,
2115                                       unsigned long uaddr, unsigned long len,
2116                                       unsigned long pgoff, unsigned long flags)
2117 {
2118         unsigned long (*get_area)(struct file *,
2119                 unsigned long, unsigned long, unsigned long, unsigned long);
2120         unsigned long addr;
2121         unsigned long offset;
2122         unsigned long inflated_len;
2123         unsigned long inflated_addr;
2124         unsigned long inflated_offset;
2125
2126         if (len > TASK_SIZE)
2127                 return -ENOMEM;
2128
2129         get_area = current->mm->get_unmapped_area;
2130         addr = get_area(file, uaddr, len, pgoff, flags);
2131
2132         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2133                 return addr;
2134         if (IS_ERR_VALUE(addr))
2135                 return addr;
2136         if (addr & ~PAGE_MASK)
2137                 return addr;
2138         if (addr > TASK_SIZE - len)
2139                 return addr;
2140
2141         if (shmem_huge == SHMEM_HUGE_DENY)
2142                 return addr;
2143         if (len < HPAGE_PMD_SIZE)
2144                 return addr;
2145         if (flags & MAP_FIXED)
2146                 return addr;
2147         /*
2148          * Our priority is to support MAP_SHARED mapped hugely;
2149          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2150          * But if caller specified an address hint and we allocated area there
2151          * successfully, respect that as before.
2152          */
2153         if (uaddr == addr)
2154                 return addr;
2155
2156         if (shmem_huge != SHMEM_HUGE_FORCE) {
2157                 struct super_block *sb;
2158
2159                 if (file) {
2160                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2161                         sb = file_inode(file)->i_sb;
2162                 } else {
2163                         /*
2164                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2165                          * for "/dev/zero", to create a shared anonymous object.
2166                          */
2167                         if (IS_ERR(shm_mnt))
2168                                 return addr;
2169                         sb = shm_mnt->mnt_sb;
2170                 }
2171                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2172                         return addr;
2173         }
2174
2175         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2176         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2177                 return addr;
2178         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2179                 return addr;
2180
2181         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2182         if (inflated_len > TASK_SIZE)
2183                 return addr;
2184         if (inflated_len < len)
2185                 return addr;
2186
2187         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2188         if (IS_ERR_VALUE(inflated_addr))
2189                 return addr;
2190         if (inflated_addr & ~PAGE_MASK)
2191                 return addr;
2192
2193         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2194         inflated_addr += offset - inflated_offset;
2195         if (inflated_offset > offset)
2196                 inflated_addr += HPAGE_PMD_SIZE;
2197
2198         if (inflated_addr > TASK_SIZE - len)
2199                 return addr;
2200         return inflated_addr;
2201 }
2202
2203 #ifdef CONFIG_NUMA
2204 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2205 {
2206         struct inode *inode = file_inode(vma->vm_file);
2207         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2208 }
2209
2210 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2211                                           unsigned long addr)
2212 {
2213         struct inode *inode = file_inode(vma->vm_file);
2214         pgoff_t index;
2215
2216         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2217         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2218 }
2219 #endif
2220
2221 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2222 {
2223         struct inode *inode = file_inode(file);
2224         struct shmem_inode_info *info = SHMEM_I(inode);
2225         int retval = -ENOMEM;
2226
2227         /*
2228          * What serializes the accesses to info->flags?
2229          * ipc_lock_object() when called from shmctl_do_lock(),
2230          * no serialization needed when called from shm_destroy().
2231          */
2232         if (lock && !(info->flags & VM_LOCKED)) {
2233                 if (!user_shm_lock(inode->i_size, user))
2234                         goto out_nomem;
2235                 info->flags |= VM_LOCKED;
2236                 mapping_set_unevictable(file->f_mapping);
2237         }
2238         if (!lock && (info->flags & VM_LOCKED) && user) {
2239                 user_shm_unlock(inode->i_size, user);
2240                 info->flags &= ~VM_LOCKED;
2241                 mapping_clear_unevictable(file->f_mapping);
2242         }
2243         retval = 0;
2244
2245 out_nomem:
2246         return retval;
2247 }
2248
2249 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2250 {
2251         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2252
2253         if (info->seals & F_SEAL_FUTURE_WRITE) {
2254                 /*
2255                  * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2256                  * "future write" seal active.
2257                  */
2258                 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2259                         return -EPERM;
2260
2261                 /*
2262                  * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2263                  * MAP_SHARED and read-only, take care to not allow mprotect to
2264                  * revert protections on such mappings. Do this only for shared
2265                  * mappings. For private mappings, don't need to mask
2266                  * VM_MAYWRITE as we still want them to be COW-writable.
2267                  */
2268                 if (vma->vm_flags & VM_SHARED)
2269                         vma->vm_flags &= ~(VM_MAYWRITE);
2270         }
2271
2272         file_accessed(file);
2273         vma->vm_ops = &shmem_vm_ops;
2274         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2275                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2276                         (vma->vm_end & HPAGE_PMD_MASK)) {
2277                 khugepaged_enter(vma, vma->vm_flags);
2278         }
2279         return 0;
2280 }
2281
2282 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2283                                      umode_t mode, dev_t dev, unsigned long flags)
2284 {
2285         struct inode *inode;
2286         struct shmem_inode_info *info;
2287         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2288         ino_t ino;
2289
2290         if (shmem_reserve_inode(sb, &ino))
2291                 return NULL;
2292
2293         inode = new_inode(sb);
2294         if (inode) {
2295                 inode->i_ino = ino;
2296                 inode_init_owner(inode, dir, mode);
2297                 inode->i_blocks = 0;
2298                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2299                 inode->i_generation = prandom_u32();
2300                 info = SHMEM_I(inode);
2301                 memset(info, 0, (char *)inode - (char *)info);
2302                 spin_lock_init(&info->lock);
2303                 atomic_set(&info->stop_eviction, 0);
2304                 info->seals = F_SEAL_SEAL;
2305                 info->flags = flags & VM_NORESERVE;
2306                 INIT_LIST_HEAD(&info->shrinklist);
2307                 INIT_LIST_HEAD(&info->swaplist);
2308                 simple_xattrs_init(&info->xattrs);
2309                 cache_no_acl(inode);
2310
2311                 switch (mode & S_IFMT) {
2312                 default:
2313                         inode->i_op = &shmem_special_inode_operations;
2314                         init_special_inode(inode, mode, dev);
2315                         break;
2316                 case S_IFREG:
2317                         inode->i_mapping->a_ops = &shmem_aops;
2318                         inode->i_op = &shmem_inode_operations;
2319                         inode->i_fop = &shmem_file_operations;
2320                         mpol_shared_policy_init(&info->policy,
2321                                                  shmem_get_sbmpol(sbinfo));
2322                         break;
2323                 case S_IFDIR:
2324                         inc_nlink(inode);
2325                         /* Some things misbehave if size == 0 on a directory */
2326                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2327                         inode->i_op = &shmem_dir_inode_operations;
2328                         inode->i_fop = &simple_dir_operations;
2329                         break;
2330                 case S_IFLNK:
2331                         /*
2332                          * Must not load anything in the rbtree,
2333                          * mpol_free_shared_policy will not be called.
2334                          */
2335                         mpol_shared_policy_init(&info->policy, NULL);
2336                         break;
2337                 }
2338
2339                 lockdep_annotate_inode_mutex_key(inode);
2340         } else
2341                 shmem_free_inode(sb);
2342         return inode;
2343 }
2344
2345 bool shmem_mapping(struct address_space *mapping)
2346 {
2347         return mapping->a_ops == &shmem_aops;
2348 }
2349
2350 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2351                                   pmd_t *dst_pmd,
2352                                   struct vm_area_struct *dst_vma,
2353                                   unsigned long dst_addr,
2354                                   unsigned long src_addr,
2355                                   bool zeropage,
2356                                   struct page **pagep)
2357 {
2358         struct inode *inode = file_inode(dst_vma->vm_file);
2359         struct shmem_inode_info *info = SHMEM_I(inode);
2360         struct address_space *mapping = inode->i_mapping;
2361         gfp_t gfp = mapping_gfp_mask(mapping);
2362         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2363         spinlock_t *ptl;
2364         void *page_kaddr;
2365         struct page *page;
2366         pte_t _dst_pte, *dst_pte;
2367         int ret;
2368         pgoff_t offset, max_off;
2369
2370         ret = -ENOMEM;
2371         if (!shmem_inode_acct_block(inode, 1))
2372                 goto out;
2373
2374         if (!*pagep) {
2375                 page = shmem_alloc_page(gfp, info, pgoff);
2376                 if (!page)
2377                         goto out_unacct_blocks;
2378
2379                 if (!zeropage) {        /* mcopy_atomic */
2380                         page_kaddr = kmap_atomic(page);
2381                         ret = copy_from_user(page_kaddr,
2382                                              (const void __user *)src_addr,
2383                                              PAGE_SIZE);
2384                         kunmap_atomic(page_kaddr);
2385
2386                         /* fallback to copy_from_user outside mmap_lock */
2387                         if (unlikely(ret)) {
2388                                 *pagep = page;
2389                                 shmem_inode_unacct_blocks(inode, 1);
2390                                 /* don't free the page */
2391                                 return -ENOENT;
2392                         }
2393                 } else {                /* mfill_zeropage_atomic */
2394                         clear_highpage(page);
2395                 }
2396         } else {
2397                 page = *pagep;
2398                 *pagep = NULL;
2399         }
2400
2401         VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2402         __SetPageLocked(page);
2403         __SetPageSwapBacked(page);
2404         __SetPageUptodate(page);
2405
2406         ret = -EFAULT;
2407         offset = linear_page_index(dst_vma, dst_addr);
2408         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2409         if (unlikely(offset >= max_off))
2410                 goto out_release;
2411
2412         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2413                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2414         if (ret)
2415                 goto out_release;
2416
2417         _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2418         if (dst_vma->vm_flags & VM_WRITE)
2419                 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2420         else {
2421                 /*
2422                  * We don't set the pte dirty if the vma has no
2423                  * VM_WRITE permission, so mark the page dirty or it
2424                  * could be freed from under us. We could do it
2425                  * unconditionally before unlock_page(), but doing it
2426                  * only if VM_WRITE is not set is faster.
2427                  */
2428                 set_page_dirty(page);
2429         }
2430
2431         dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2432
2433         ret = -EFAULT;
2434         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2435         if (unlikely(offset >= max_off))
2436                 goto out_release_unlock;
2437
2438         ret = -EEXIST;
2439         if (!pte_none(*dst_pte))
2440                 goto out_release_unlock;
2441
2442         lru_cache_add(page);
2443
2444         spin_lock_irq(&info->lock);
2445         info->alloced++;
2446         inode->i_blocks += BLOCKS_PER_PAGE;
2447         shmem_recalc_inode(inode);
2448         spin_unlock_irq(&info->lock);
2449
2450         inc_mm_counter(dst_mm, mm_counter_file(page));
2451         page_add_file_rmap(page, false);
2452         set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2453
2454         /* No need to invalidate - it was non-present before */
2455         update_mmu_cache(dst_vma, dst_addr, dst_pte);
2456         pte_unmap_unlock(dst_pte, ptl);
2457         unlock_page(page);
2458         ret = 0;
2459 out:
2460         return ret;
2461 out_release_unlock:
2462         pte_unmap_unlock(dst_pte, ptl);
2463         ClearPageDirty(page);
2464         delete_from_page_cache(page);
2465 out_release:
2466         unlock_page(page);
2467         put_page(page);
2468 out_unacct_blocks:
2469         shmem_inode_unacct_blocks(inode, 1);
2470         goto out;
2471 }
2472
2473 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2474                            pmd_t *dst_pmd,
2475                            struct vm_area_struct *dst_vma,
2476                            unsigned long dst_addr,
2477                            unsigned long src_addr,
2478                            struct page **pagep)
2479 {
2480         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2481                                       dst_addr, src_addr, false, pagep);
2482 }
2483
2484 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2485                              pmd_t *dst_pmd,
2486                              struct vm_area_struct *dst_vma,
2487                              unsigned long dst_addr)
2488 {
2489         struct page *page = NULL;
2490
2491         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2492                                       dst_addr, 0, true, &page);
2493 }
2494
2495 #ifdef CONFIG_TMPFS
2496 static const struct inode_operations shmem_symlink_inode_operations;
2497 static const struct inode_operations shmem_short_symlink_operations;
2498
2499 #ifdef CONFIG_TMPFS_XATTR
2500 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2501 #else
2502 #define shmem_initxattrs NULL
2503 #endif
2504
2505 static int
2506 shmem_write_begin(struct file *file, struct address_space *mapping,
2507                         loff_t pos, unsigned len, unsigned flags,
2508                         struct page **pagep, void **fsdata)
2509 {
2510         struct inode *inode = mapping->host;
2511         struct shmem_inode_info *info = SHMEM_I(inode);
2512         pgoff_t index = pos >> PAGE_SHIFT;
2513
2514         /* i_mutex is held by caller */
2515         if (unlikely(info->seals & (F_SEAL_GROW |
2516                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2517                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2518                         return -EPERM;
2519                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2520                         return -EPERM;
2521         }
2522
2523         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2524 }
2525
2526 static int
2527 shmem_write_end(struct file *file, struct address_space *mapping,
2528                         loff_t pos, unsigned len, unsigned copied,
2529                         struct page *page, void *fsdata)
2530 {
2531         struct inode *inode = mapping->host;
2532
2533         if (pos + copied > inode->i_size)
2534                 i_size_write(inode, pos + copied);
2535
2536         if (!PageUptodate(page)) {
2537                 struct page *head = compound_head(page);
2538                 if (PageTransCompound(page)) {
2539                         int i;
2540
2541                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2542                                 if (head + i == page)
2543                                         continue;
2544                                 clear_highpage(head + i);
2545                                 flush_dcache_page(head + i);
2546                         }
2547                 }
2548                 if (copied < PAGE_SIZE) {
2549                         unsigned from = pos & (PAGE_SIZE - 1);
2550                         zero_user_segments(page, 0, from,
2551                                         from + copied, PAGE_SIZE);
2552                 }
2553                 SetPageUptodate(head);
2554         }
2555         set_page_dirty(page);
2556         unlock_page(page);
2557         put_page(page);
2558
2559         return copied;
2560 }
2561
2562 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2563 {
2564         struct file *file = iocb->ki_filp;
2565         struct inode *inode = file_inode(file);
2566         struct address_space *mapping = inode->i_mapping;
2567         pgoff_t index;
2568         unsigned long offset;
2569         enum sgp_type sgp = SGP_READ;
2570         int error = 0;
2571         ssize_t retval = 0;
2572         loff_t *ppos = &iocb->ki_pos;
2573
2574         /*
2575          * Might this read be for a stacking filesystem?  Then when reading
2576          * holes of a sparse file, we actually need to allocate those pages,
2577          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2578          */
2579         if (!iter_is_iovec(to))
2580                 sgp = SGP_CACHE;
2581
2582         index = *ppos >> PAGE_SHIFT;
2583         offset = *ppos & ~PAGE_MASK;
2584
2585         for (;;) {
2586                 struct page *page = NULL;
2587                 pgoff_t end_index;
2588                 unsigned long nr, ret;
2589                 loff_t i_size = i_size_read(inode);
2590
2591                 end_index = i_size >> PAGE_SHIFT;
2592                 if (index > end_index)
2593                         break;
2594                 if (index == end_index) {
2595                         nr = i_size & ~PAGE_MASK;
2596                         if (nr <= offset)
2597                                 break;
2598                 }
2599
2600                 error = shmem_getpage(inode, index, &page, sgp);
2601                 if (error) {
2602                         if (error == -EINVAL)
2603                                 error = 0;
2604                         break;
2605                 }
2606                 if (page) {
2607                         if (sgp == SGP_CACHE)
2608                                 set_page_dirty(page);
2609                         unlock_page(page);
2610                 }
2611
2612                 /*
2613                  * We must evaluate after, since reads (unlike writes)
2614                  * are called without i_mutex protection against truncate
2615                  */
2616                 nr = PAGE_SIZE;
2617                 i_size = i_size_read(inode);
2618                 end_index = i_size >> PAGE_SHIFT;
2619                 if (index == end_index) {
2620                         nr = i_size & ~PAGE_MASK;
2621                         if (nr <= offset) {
2622                                 if (page)
2623                                         put_page(page);
2624                                 break;
2625                         }
2626                 }
2627                 nr -= offset;
2628
2629                 if (page) {
2630                         /*
2631                          * If users can be writing to this page using arbitrary
2632                          * virtual addresses, take care about potential aliasing
2633                          * before reading the page on the kernel side.
2634                          */
2635                         if (mapping_writably_mapped(mapping))
2636                                 flush_dcache_page(page);
2637                         /*
2638                          * Mark the page accessed if we read the beginning.
2639                          */
2640                         if (!offset)
2641                                 mark_page_accessed(page);
2642                 } else {
2643                         page = ZERO_PAGE(0);
2644                         get_page(page);
2645                 }
2646
2647                 /*
2648                  * Ok, we have the page, and it's up-to-date, so
2649                  * now we can copy it to user space...
2650                  */
2651                 ret = copy_page_to_iter(page, offset, nr, to);
2652                 retval += ret;
2653                 offset += ret;
2654                 index += offset >> PAGE_SHIFT;
2655                 offset &= ~PAGE_MASK;
2656
2657                 put_page(page);
2658                 if (!iov_iter_count(to))
2659                         break;
2660                 if (ret < nr) {
2661                         error = -EFAULT;
2662                         break;
2663                 }
2664                 cond_resched();
2665         }
2666
2667         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2668         file_accessed(file);
2669         return retval ? retval : error;
2670 }
2671
2672 /*
2673  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2674  */
2675 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2676                                     pgoff_t index, pgoff_t end, int whence)
2677 {
2678         struct page *page;
2679         struct pagevec pvec;
2680         pgoff_t indices[PAGEVEC_SIZE];
2681         bool done = false;
2682         int i;
2683
2684         pagevec_init(&pvec);
2685         pvec.nr = 1;            /* start small: we may be there already */
2686         while (!done) {
2687                 pvec.nr = find_get_entries(mapping, index,
2688                                         pvec.nr, pvec.pages, indices);
2689                 if (!pvec.nr) {
2690                         if (whence == SEEK_DATA)
2691                                 index = end;
2692                         break;
2693                 }
2694                 for (i = 0; i < pvec.nr; i++, index++) {
2695                         if (index < indices[i]) {
2696                                 if (whence == SEEK_HOLE) {
2697                                         done = true;
2698                                         break;
2699                                 }
2700                                 index = indices[i];
2701                         }
2702                         page = pvec.pages[i];
2703                         if (page && !xa_is_value(page)) {
2704                                 if (!PageUptodate(page))
2705                                         page = NULL;
2706                         }
2707                         if (index >= end ||
2708                             (page && whence == SEEK_DATA) ||
2709                             (!page && whence == SEEK_HOLE)) {
2710                                 done = true;
2711                                 break;
2712                         }
2713                 }
2714                 pagevec_remove_exceptionals(&pvec);
2715                 pagevec_release(&pvec);
2716                 pvec.nr = PAGEVEC_SIZE;
2717                 cond_resched();
2718         }
2719         return index;
2720 }
2721
2722 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2723 {
2724         struct address_space *mapping = file->f_mapping;
2725         struct inode *inode = mapping->host;
2726         pgoff_t start, end;
2727         loff_t new_offset;
2728
2729         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2730                 return generic_file_llseek_size(file, offset, whence,
2731                                         MAX_LFS_FILESIZE, i_size_read(inode));
2732         inode_lock(inode);
2733         /* We're holding i_mutex so we can access i_size directly */
2734
2735         if (offset < 0 || offset >= inode->i_size)
2736                 offset = -ENXIO;
2737         else {
2738                 start = offset >> PAGE_SHIFT;
2739                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2740                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2741                 new_offset <<= PAGE_SHIFT;
2742                 if (new_offset > offset) {
2743                         if (new_offset < inode->i_size)
2744                                 offset = new_offset;
2745                         else if (whence == SEEK_DATA)
2746                                 offset = -ENXIO;
2747                         else
2748                                 offset = inode->i_size;
2749                 }
2750         }
2751
2752         if (offset >= 0)
2753                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2754         inode_unlock(inode);
2755         return offset;
2756 }
2757
2758 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2759                                                          loff_t len)
2760 {
2761         struct inode *inode = file_inode(file);
2762         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2763         struct shmem_inode_info *info = SHMEM_I(inode);
2764         struct shmem_falloc shmem_falloc;
2765         pgoff_t start, index, end;
2766         int error;
2767
2768         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2769                 return -EOPNOTSUPP;
2770
2771         inode_lock(inode);
2772
2773         if (mode & FALLOC_FL_PUNCH_HOLE) {
2774                 struct address_space *mapping = file->f_mapping;
2775                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2776                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2777                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2778
2779                 /* protected by i_mutex */
2780                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2781                         error = -EPERM;
2782                         goto out;
2783                 }
2784
2785                 shmem_falloc.waitq = &shmem_falloc_waitq;
2786                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2787                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2788                 spin_lock(&inode->i_lock);
2789                 inode->i_private = &shmem_falloc;
2790                 spin_unlock(&inode->i_lock);
2791
2792                 if ((u64)unmap_end > (u64)unmap_start)
2793                         unmap_mapping_range(mapping, unmap_start,
2794                                             1 + unmap_end - unmap_start, 0);
2795                 shmem_truncate_range(inode, offset, offset + len - 1);
2796                 /* No need to unmap again: hole-punching leaves COWed pages */
2797
2798                 spin_lock(&inode->i_lock);
2799                 inode->i_private = NULL;
2800                 wake_up_all(&shmem_falloc_waitq);
2801                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2802                 spin_unlock(&inode->i_lock);
2803                 error = 0;
2804                 goto out;
2805         }
2806
2807         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2808         error = inode_newsize_ok(inode, offset + len);
2809         if (error)
2810                 goto out;
2811
2812         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2813                 error = -EPERM;
2814                 goto out;
2815         }
2816
2817         start = offset >> PAGE_SHIFT;
2818         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2819         /* Try to avoid a swapstorm if len is impossible to satisfy */
2820         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2821                 error = -ENOSPC;
2822                 goto out;
2823         }
2824
2825         shmem_falloc.waitq = NULL;
2826         shmem_falloc.start = start;
2827         shmem_falloc.next  = start;
2828         shmem_falloc.nr_falloced = 0;
2829         shmem_falloc.nr_unswapped = 0;
2830         spin_lock(&inode->i_lock);
2831         inode->i_private = &shmem_falloc;
2832         spin_unlock(&inode->i_lock);
2833
2834         for (index = start; index < end; index++) {
2835                 struct page *page;
2836
2837                 /*
2838                  * Good, the fallocate(2) manpage permits EINTR: we may have
2839                  * been interrupted because we are using up too much memory.
2840                  */
2841                 if (signal_pending(current))
2842                         error = -EINTR;
2843                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2844                         error = -ENOMEM;
2845                 else
2846                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2847                 if (error) {
2848                         /* Remove the !PageUptodate pages we added */
2849                         if (index > start) {
2850                                 shmem_undo_range(inode,
2851                                     (loff_t)start << PAGE_SHIFT,
2852                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2853                         }
2854                         goto undone;
2855                 }
2856
2857                 /*
2858                  * Inform shmem_writepage() how far we have reached.
2859                  * No need for lock or barrier: we have the page lock.
2860                  */
2861                 shmem_falloc.next++;
2862                 if (!PageUptodate(page))
2863                         shmem_falloc.nr_falloced++;
2864
2865                 /*
2866                  * If !PageUptodate, leave it that way so that freeable pages
2867                  * can be recognized if we need to rollback on error later.
2868                  * But set_page_dirty so that memory pressure will swap rather
2869                  * than free the pages we are allocating (and SGP_CACHE pages
2870                  * might still be clean: we now need to mark those dirty too).
2871                  */
2872                 set_page_dirty(page);
2873                 unlock_page(page);
2874                 put_page(page);
2875                 cond_resched();
2876         }
2877
2878         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2879                 i_size_write(inode, offset + len);
2880         inode->i_ctime = current_time(inode);
2881 undone:
2882         spin_lock(&inode->i_lock);
2883         inode->i_private = NULL;
2884         spin_unlock(&inode->i_lock);
2885 out:
2886         inode_unlock(inode);
2887         return error;
2888 }
2889
2890 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2891 {
2892         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2893
2894         buf->f_type = TMPFS_MAGIC;
2895         buf->f_bsize = PAGE_SIZE;
2896         buf->f_namelen = NAME_MAX;
2897         if (sbinfo->max_blocks) {
2898                 buf->f_blocks = sbinfo->max_blocks;
2899                 buf->f_bavail =
2900                 buf->f_bfree  = sbinfo->max_blocks -
2901                                 percpu_counter_sum(&sbinfo->used_blocks);
2902         }
2903         if (sbinfo->max_inodes) {
2904                 buf->f_files = sbinfo->max_inodes;
2905                 buf->f_ffree = sbinfo->free_inodes;
2906         }
2907         /* else leave those fields 0 like simple_statfs */
2908         return 0;
2909 }
2910
2911 /*
2912  * File creation. Allocate an inode, and we're done..
2913  */
2914 static int
2915 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2916 {
2917         struct inode *inode;
2918         int error = -ENOSPC;
2919
2920         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2921         if (inode) {
2922                 error = simple_acl_create(dir, inode);
2923                 if (error)
2924                         goto out_iput;
2925                 error = security_inode_init_security(inode, dir,
2926                                                      &dentry->d_name,
2927                                                      shmem_initxattrs, NULL);
2928                 if (error && error != -EOPNOTSUPP)
2929                         goto out_iput;
2930
2931                 error = 0;
2932                 dir->i_size += BOGO_DIRENT_SIZE;
2933                 dir->i_ctime = dir->i_mtime = current_time(dir);
2934                 d_instantiate(dentry, inode);
2935                 dget(dentry); /* Extra count - pin the dentry in core */
2936         }
2937         return error;
2938 out_iput:
2939         iput(inode);
2940         return error;
2941 }
2942
2943 static int
2944 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2945 {
2946         struct inode *inode;
2947         int error = -ENOSPC;
2948
2949         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2950         if (inode) {
2951                 error = security_inode_init_security(inode, dir,
2952                                                      NULL,
2953                                                      shmem_initxattrs, NULL);
2954                 if (error && error != -EOPNOTSUPP)
2955                         goto out_iput;
2956                 error = simple_acl_create(dir, inode);
2957                 if (error)
2958                         goto out_iput;
2959                 d_tmpfile(dentry, inode);
2960         }
2961         return error;
2962 out_iput:
2963         iput(inode);
2964         return error;
2965 }
2966
2967 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2968 {
2969         int error;
2970
2971         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2972                 return error;
2973         inc_nlink(dir);
2974         return 0;
2975 }
2976
2977 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2978                 bool excl)
2979 {
2980         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2981 }
2982
2983 /*
2984  * Link a file..
2985  */
2986 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2987 {
2988         struct inode *inode = d_inode(old_dentry);
2989         int ret = 0;
2990
2991         /*
2992          * No ordinary (disk based) filesystem counts links as inodes;
2993          * but each new link needs a new dentry, pinning lowmem, and
2994          * tmpfs dentries cannot be pruned until they are unlinked.
2995          * But if an O_TMPFILE file is linked into the tmpfs, the
2996          * first link must skip that, to get the accounting right.
2997          */
2998         if (inode->i_nlink) {
2999                 ret = shmem_reserve_inode(inode->i_sb, NULL);
3000                 if (ret)
3001                         goto out;
3002         }
3003
3004         dir->i_size += BOGO_DIRENT_SIZE;
3005         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3006         inc_nlink(inode);
3007         ihold(inode);   /* New dentry reference */
3008         dget(dentry);           /* Extra pinning count for the created dentry */
3009         d_instantiate(dentry, inode);
3010 out:
3011         return ret;
3012 }
3013
3014 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3015 {
3016         struct inode *inode = d_inode(dentry);
3017
3018         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3019                 shmem_free_inode(inode->i_sb);
3020
3021         dir->i_size -= BOGO_DIRENT_SIZE;
3022         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3023         drop_nlink(inode);
3024         dput(dentry);   /* Undo the count from "create" - this does all the work */
3025         return 0;
3026 }
3027
3028 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3029 {
3030         if (!simple_empty(dentry))
3031                 return -ENOTEMPTY;
3032
3033         drop_nlink(d_inode(dentry));
3034         drop_nlink(dir);
3035         return shmem_unlink(dir, dentry);
3036 }
3037
3038 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3039 {
3040         bool old_is_dir = d_is_dir(old_dentry);
3041         bool new_is_dir = d_is_dir(new_dentry);
3042
3043         if (old_dir != new_dir && old_is_dir != new_is_dir) {
3044                 if (old_is_dir) {
3045                         drop_nlink(old_dir);
3046                         inc_nlink(new_dir);
3047                 } else {
3048                         drop_nlink(new_dir);
3049                         inc_nlink(old_dir);
3050                 }
3051         }
3052         old_dir->i_ctime = old_dir->i_mtime =
3053         new_dir->i_ctime = new_dir->i_mtime =
3054         d_inode(old_dentry)->i_ctime =
3055         d_inode(new_dentry)->i_ctime = current_time(old_dir);
3056
3057         return 0;
3058 }
3059
3060 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3061 {
3062         struct dentry *whiteout;
3063         int error;
3064
3065         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3066         if (!whiteout)
3067                 return -ENOMEM;
3068
3069         error = shmem_mknod(old_dir, whiteout,
3070                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3071         dput(whiteout);
3072         if (error)
3073                 return error;
3074
3075         /*
3076          * Cheat and hash the whiteout while the old dentry is still in
3077          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3078          *
3079          * d_lookup() will consistently find one of them at this point,
3080          * not sure which one, but that isn't even important.
3081          */
3082         d_rehash(whiteout);
3083         return 0;
3084 }
3085
3086 /*
3087  * The VFS layer already does all the dentry stuff for rename,
3088  * we just have to decrement the usage count for the target if
3089  * it exists so that the VFS layer correctly free's it when it
3090  * gets overwritten.
3091  */
3092 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3093 {
3094         struct inode *inode = d_inode(old_dentry);
3095         int they_are_dirs = S_ISDIR(inode->i_mode);
3096
3097         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3098                 return -EINVAL;
3099
3100         if (flags & RENAME_EXCHANGE)
3101                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3102
3103         if (!simple_empty(new_dentry))
3104                 return -ENOTEMPTY;
3105
3106         if (flags & RENAME_WHITEOUT) {
3107                 int error;
3108
3109                 error = shmem_whiteout(old_dir, old_dentry);
3110                 if (error)
3111                         return error;
3112         }
3113
3114         if (d_really_is_positive(new_dentry)) {
3115                 (void) shmem_unlink(new_dir, new_dentry);
3116                 if (they_are_dirs) {
3117                         drop_nlink(d_inode(new_dentry));
3118                         drop_nlink(old_dir);
3119                 }
3120         } else if (they_are_dirs) {
3121                 drop_nlink(old_dir);
3122                 inc_nlink(new_dir);
3123         }
3124
3125         old_dir->i_size -= BOGO_DIRENT_SIZE;
3126         new_dir->i_size += BOGO_DIRENT_SIZE;
3127         old_dir->i_ctime = old_dir->i_mtime =
3128         new_dir->i_ctime = new_dir->i_mtime =
3129         inode->i_ctime = current_time(old_dir);
3130         return 0;
3131 }
3132
3133 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3134 {
3135         int error;
3136         int len;
3137         struct inode *inode;
3138         struct page *page;
3139
3140         len = strlen(symname) + 1;
3141         if (len > PAGE_SIZE)
3142                 return -ENAMETOOLONG;
3143
3144         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3145                                 VM_NORESERVE);
3146         if (!inode)
3147                 return -ENOSPC;
3148
3149         error = security_inode_init_security(inode, dir, &dentry->d_name,
3150                                              shmem_initxattrs, NULL);
3151         if (error && error != -EOPNOTSUPP) {
3152                 iput(inode);
3153                 return error;
3154         }
3155
3156         inode->i_size = len-1;
3157         if (len <= SHORT_SYMLINK_LEN) {
3158                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3159                 if (!inode->i_link) {
3160                         iput(inode);
3161                         return -ENOMEM;
3162                 }
3163                 inode->i_op = &shmem_short_symlink_operations;
3164         } else {
3165                 inode_nohighmem(inode);
3166                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3167                 if (error) {
3168                         iput(inode);
3169                         return error;
3170                 }
3171                 inode->i_mapping->a_ops = &shmem_aops;
3172                 inode->i_op = &shmem_symlink_inode_operations;
3173                 memcpy(page_address(page), symname, len);
3174                 SetPageUptodate(page);
3175                 set_page_dirty(page);
3176                 unlock_page(page);
3177                 put_page(page);
3178         }
3179         dir->i_size += BOGO_DIRENT_SIZE;
3180         dir->i_ctime = dir->i_mtime = current_time(dir);
3181         d_instantiate(dentry, inode);
3182         dget(dentry);
3183         return 0;
3184 }
3185
3186 static void shmem_put_link(void *arg)
3187 {
3188         mark_page_accessed(arg);
3189         put_page(arg);
3190 }
3191
3192 static const char *shmem_get_link(struct dentry *dentry,
3193                                   struct inode *inode,
3194                                   struct delayed_call *done)
3195 {
3196         struct page *page = NULL;
3197         int error;
3198         if (!dentry) {
3199                 page = find_get_page(inode->i_mapping, 0);
3200                 if (!page)
3201                         return ERR_PTR(-ECHILD);
3202                 if (!PageUptodate(page)) {
3203                         put_page(page);
3204                         return ERR_PTR(-ECHILD);
3205                 }
3206         } else {
3207                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3208                 if (error)
3209                         return ERR_PTR(error);
3210                 unlock_page(page);
3211         }
3212         set_delayed_call(done, shmem_put_link, page);
3213         return page_address(page);
3214 }
3215
3216 #ifdef CONFIG_TMPFS_XATTR
3217 /*
3218  * Superblocks without xattr inode operations may get some security.* xattr
3219  * support from the LSM "for free". As soon as we have any other xattrs
3220  * like ACLs, we also need to implement the security.* handlers at
3221  * filesystem level, though.
3222  */
3223
3224 /*
3225  * Callback for security_inode_init_security() for acquiring xattrs.
3226  */
3227 static int shmem_initxattrs(struct inode *inode,
3228                             const struct xattr *xattr_array,
3229                             void *fs_info)
3230 {
3231         struct shmem_inode_info *info = SHMEM_I(inode);
3232         const struct xattr *xattr;
3233         struct simple_xattr *new_xattr;
3234         size_t len;
3235
3236         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3237                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3238                 if (!new_xattr)
3239                         return -ENOMEM;
3240
3241                 len = strlen(xattr->name) + 1;
3242                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3243                                           GFP_KERNEL);
3244                 if (!new_xattr->name) {
3245                         kvfree(new_xattr);
3246                         return -ENOMEM;
3247                 }
3248
3249                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3250                        XATTR_SECURITY_PREFIX_LEN);
3251                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3252                        xattr->name, len);
3253
3254                 simple_xattr_list_add(&info->xattrs, new_xattr);
3255         }
3256
3257         return 0;
3258 }
3259
3260 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3261                                    struct dentry *unused, struct inode *inode,
3262                                    const char *name, void *buffer, size_t size)
3263 {
3264         struct shmem_inode_info *info = SHMEM_I(inode);
3265
3266         name = xattr_full_name(handler, name);
3267         return simple_xattr_get(&info->xattrs, name, buffer, size);
3268 }
3269
3270 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3271                                    struct dentry *unused, struct inode *inode,
3272                                    const char *name, const void *value,
3273                                    size_t size, int flags)
3274 {
3275         struct shmem_inode_info *info = SHMEM_I(inode);
3276
3277         name = xattr_full_name(handler, name);
3278         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3279 }
3280
3281 static const struct xattr_handler shmem_security_xattr_handler = {
3282         .prefix = XATTR_SECURITY_PREFIX,
3283         .get = shmem_xattr_handler_get,
3284         .set = shmem_xattr_handler_set,
3285 };
3286
3287 static const struct xattr_handler shmem_trusted_xattr_handler = {
3288         .prefix = XATTR_TRUSTED_PREFIX,
3289         .get = shmem_xattr_handler_get,
3290         .set = shmem_xattr_handler_set,
3291 };
3292
3293 static const struct xattr_handler *shmem_xattr_handlers[] = {
3294 #ifdef CONFIG_TMPFS_POSIX_ACL
3295         &posix_acl_access_xattr_handler,
3296         &posix_acl_default_xattr_handler,
3297 #endif
3298         &shmem_security_xattr_handler,
3299         &shmem_trusted_xattr_handler,
3300         NULL
3301 };
3302
3303 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3304 {
3305         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3306         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3307 }
3308 #endif /* CONFIG_TMPFS_XATTR */
3309
3310 static const struct inode_operations shmem_short_symlink_operations = {
3311         .get_link       = simple_get_link,
3312 #ifdef CONFIG_TMPFS_XATTR
3313         .listxattr      = shmem_listxattr,
3314 #endif
3315 };
3316
3317 static const struct inode_operations shmem_symlink_inode_operations = {
3318         .get_link       = shmem_get_link,
3319 #ifdef CONFIG_TMPFS_XATTR
3320         .listxattr      = shmem_listxattr,
3321 #endif
3322 };
3323
3324 static struct dentry *shmem_get_parent(struct dentry *child)
3325 {
3326         return ERR_PTR(-ESTALE);
3327 }
3328
3329 static int shmem_match(struct inode *ino, void *vfh)
3330 {
3331         __u32 *fh = vfh;
3332         __u64 inum = fh[2];
3333         inum = (inum << 32) | fh[1];
3334         return ino->i_ino == inum && fh[0] == ino->i_generation;
3335 }
3336
3337 /* Find any alias of inode, but prefer a hashed alias */
3338 static struct dentry *shmem_find_alias(struct inode *inode)
3339 {
3340         struct dentry *alias = d_find_alias(inode);
3341
3342         return alias ?: d_find_any_alias(inode);
3343 }
3344
3345
3346 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3347                 struct fid *fid, int fh_len, int fh_type)
3348 {
3349         struct inode *inode;
3350         struct dentry *dentry = NULL;
3351         u64 inum;
3352
3353         if (fh_len < 3)
3354                 return NULL;
3355
3356         inum = fid->raw[2];
3357         inum = (inum << 32) | fid->raw[1];
3358
3359         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3360                         shmem_match, fid->raw);
3361         if (inode) {
3362                 dentry = shmem_find_alias(inode);
3363                 iput(inode);
3364         }
3365
3366         return dentry;
3367 }
3368
3369 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3370                                 struct inode *parent)
3371 {
3372         if (*len < 3) {
3373                 *len = 3;
3374                 return FILEID_INVALID;
3375         }
3376
3377         if (inode_unhashed(inode)) {
3378                 /* Unfortunately insert_inode_hash is not idempotent,
3379                  * so as we hash inodes here rather than at creation
3380                  * time, we need a lock to ensure we only try
3381                  * to do it once
3382                  */
3383                 static DEFINE_SPINLOCK(lock);
3384                 spin_lock(&lock);
3385                 if (inode_unhashed(inode))
3386                         __insert_inode_hash(inode,
3387                                             inode->i_ino + inode->i_generation);
3388                 spin_unlock(&lock);
3389         }
3390
3391         fh[0] = inode->i_generation;
3392         fh[1] = inode->i_ino;
3393         fh[2] = ((__u64)inode->i_ino) >> 32;
3394
3395         *len = 3;
3396         return 1;
3397 }
3398
3399 static const struct export_operations shmem_export_ops = {
3400         .get_parent     = shmem_get_parent,
3401         .encode_fh      = shmem_encode_fh,
3402         .fh_to_dentry   = shmem_fh_to_dentry,
3403 };
3404
3405 enum shmem_param {
3406         Opt_gid,
3407         Opt_huge,
3408         Opt_mode,
3409         Opt_mpol,
3410         Opt_nr_blocks,
3411         Opt_nr_inodes,
3412         Opt_size,
3413         Opt_uid,
3414         Opt_inode32,
3415         Opt_inode64,
3416 };
3417
3418 static const struct constant_table shmem_param_enums_huge[] = {
3419         {"never",       SHMEM_HUGE_NEVER },
3420         {"always",      SHMEM_HUGE_ALWAYS },
3421         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3422         {"advise",      SHMEM_HUGE_ADVISE },
3423         {}
3424 };
3425
3426 const struct fs_parameter_spec shmem_fs_parameters[] = {
3427         fsparam_u32   ("gid",           Opt_gid),
3428         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3429         fsparam_u32oct("mode",          Opt_mode),
3430         fsparam_string("mpol",          Opt_mpol),
3431         fsparam_string("nr_blocks",     Opt_nr_blocks),
3432         fsparam_string("nr_inodes",     Opt_nr_inodes),
3433         fsparam_string("size",          Opt_size),
3434         fsparam_u32   ("uid",           Opt_uid),
3435         fsparam_flag  ("inode32",       Opt_inode32),
3436         fsparam_flag  ("inode64",       Opt_inode64),
3437         {}
3438 };
3439
3440 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3441 {
3442         struct shmem_options *ctx = fc->fs_private;
3443         struct fs_parse_result result;
3444         unsigned long long size;
3445         char *rest;
3446         int opt;
3447
3448         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3449         if (opt < 0)
3450                 return opt;
3451
3452         switch (opt) {
3453         case Opt_size:
3454                 size = memparse(param->string, &rest);
3455                 if (*rest == '%') {
3456                         size <<= PAGE_SHIFT;
3457                         size *= totalram_pages();
3458                         do_div(size, 100);
3459                         rest++;
3460                 }
3461                 if (*rest)
3462                         goto bad_value;
3463                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3464                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3465                 break;
3466         case Opt_nr_blocks:
3467                 ctx->blocks = memparse(param->string, &rest);
3468                 if (*rest)
3469                         goto bad_value;
3470                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3471                 break;
3472         case Opt_nr_inodes:
3473                 ctx->inodes = memparse(param->string, &rest);
3474                 if (*rest)
3475                         goto bad_value;
3476                 ctx->seen |= SHMEM_SEEN_INODES;
3477                 break;
3478         case Opt_mode:
3479                 ctx->mode = result.uint_32 & 07777;
3480                 break;
3481         case Opt_uid:
3482                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3483                 if (!uid_valid(ctx->uid))
3484                         goto bad_value;
3485                 break;
3486         case Opt_gid:
3487                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3488                 if (!gid_valid(ctx->gid))
3489                         goto bad_value;
3490                 break;
3491         case Opt_huge:
3492                 ctx->huge = result.uint_32;
3493                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3494                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3495                       has_transparent_hugepage()))
3496                         goto unsupported_parameter;
3497                 ctx->seen |= SHMEM_SEEN_HUGE;
3498                 break;
3499         case Opt_mpol:
3500                 if (IS_ENABLED(CONFIG_NUMA)) {
3501                         mpol_put(ctx->mpol);
3502                         ctx->mpol = NULL;
3503                         if (mpol_parse_str(param->string, &ctx->mpol))
3504                                 goto bad_value;
3505                         break;
3506                 }
3507                 goto unsupported_parameter;
3508         case Opt_inode32:
3509                 ctx->full_inums = false;
3510                 ctx->seen |= SHMEM_SEEN_INUMS;
3511                 break;
3512         case Opt_inode64:
3513                 if (sizeof(ino_t) < 8) {
3514                         return invalfc(fc,
3515                                        "Cannot use inode64 with <64bit inums in kernel\n");
3516                 }
3517                 ctx->full_inums = true;
3518                 ctx->seen |= SHMEM_SEEN_INUMS;
3519                 break;
3520         }
3521         return 0;
3522
3523 unsupported_parameter:
3524         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3525 bad_value:
3526         return invalfc(fc, "Bad value for '%s'", param->key);
3527 }
3528
3529 static int shmem_parse_options(struct fs_context *fc, void *data)
3530 {
3531         char *options = data;
3532
3533         if (options) {
3534                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3535                 if (err)
3536                         return err;
3537         }
3538
3539         while (options != NULL) {
3540                 char *this_char = options;
3541                 for (;;) {
3542                         /*
3543                          * NUL-terminate this option: unfortunately,
3544                          * mount options form a comma-separated list,
3545                          * but mpol's nodelist may also contain commas.
3546                          */
3547                         options = strchr(options, ',');
3548                         if (options == NULL)
3549                                 break;
3550                         options++;
3551                         if (!isdigit(*options)) {
3552                                 options[-1] = '\0';
3553                                 break;
3554                         }
3555                 }
3556                 if (*this_char) {
3557                         char *value = strchr(this_char,'=');
3558                         size_t len = 0;
3559                         int err;
3560
3561                         if (value) {
3562                                 *value++ = '\0';
3563                                 len = strlen(value);
3564                         }
3565                         err = vfs_parse_fs_string(fc, this_char, value, len);
3566                         if (err < 0)
3567                                 return err;
3568                 }
3569         }
3570         return 0;
3571 }
3572
3573 /*
3574  * Reconfigure a shmem filesystem.
3575  *
3576  * Note that we disallow change from limited->unlimited blocks/inodes while any
3577  * are in use; but we must separately disallow unlimited->limited, because in
3578  * that case we have no record of how much is already in use.
3579  */
3580 static int shmem_reconfigure(struct fs_context *fc)
3581 {
3582         struct shmem_options *ctx = fc->fs_private;
3583         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3584         unsigned long inodes;
3585         const char *err;
3586
3587         spin_lock(&sbinfo->stat_lock);
3588         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3589         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3590                 if (!sbinfo->max_blocks) {
3591                         err = "Cannot retroactively limit size";
3592                         goto out;
3593                 }
3594                 if (percpu_counter_compare(&sbinfo->used_blocks,
3595                                            ctx->blocks) > 0) {
3596                         err = "Too small a size for current use";
3597                         goto out;
3598                 }
3599         }
3600         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3601                 if (!sbinfo->max_inodes) {
3602                         err = "Cannot retroactively limit inodes";
3603                         goto out;
3604                 }
3605                 if (ctx->inodes < inodes) {
3606                         err = "Too few inodes for current use";
3607                         goto out;
3608                 }
3609         }
3610
3611         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3612             sbinfo->next_ino > UINT_MAX) {
3613                 err = "Current inum too high to switch to 32-bit inums";
3614                 goto out;
3615         }
3616
3617         if (ctx->seen & SHMEM_SEEN_HUGE)
3618                 sbinfo->huge = ctx->huge;
3619         if (ctx->seen & SHMEM_SEEN_INUMS)
3620                 sbinfo->full_inums = ctx->full_inums;
3621         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3622                 sbinfo->max_blocks  = ctx->blocks;
3623         if (ctx->seen & SHMEM_SEEN_INODES) {
3624                 sbinfo->max_inodes  = ctx->inodes;
3625                 sbinfo->free_inodes = ctx->inodes - inodes;
3626         }
3627
3628         /*
3629          * Preserve previous mempolicy unless mpol remount option was specified.
3630          */
3631         if (ctx->mpol) {
3632                 mpol_put(sbinfo->mpol);
3633                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3634                 ctx->mpol = NULL;
3635         }
3636         spin_unlock(&sbinfo->stat_lock);
3637         return 0;
3638 out:
3639         spin_unlock(&sbinfo->stat_lock);
3640         return invalfc(fc, "%s", err);
3641 }
3642
3643 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3644 {
3645         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3646
3647         if (sbinfo->max_blocks != shmem_default_max_blocks())
3648                 seq_printf(seq, ",size=%luk",
3649                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3650         if (sbinfo->max_inodes != shmem_default_max_inodes())
3651                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3652         if (sbinfo->mode != (0777 | S_ISVTX))
3653                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3654         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3655                 seq_printf(seq, ",uid=%u",
3656                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3657         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3658                 seq_printf(seq, ",gid=%u",
3659                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3660
3661         /*
3662          * Showing inode{64,32} might be useful even if it's the system default,
3663          * since then people don't have to resort to checking both here and
3664          * /proc/config.gz to confirm 64-bit inums were successfully applied
3665          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3666          *
3667          * We hide it when inode64 isn't the default and we are using 32-bit
3668          * inodes, since that probably just means the feature isn't even under
3669          * consideration.
3670          *
3671          * As such:
3672          *
3673          *                     +-----------------+-----------------+
3674          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3675          *  +------------------+-----------------+-----------------+
3676          *  | full_inums=true  | show            | show            |
3677          *  | full_inums=false | show            | hide            |
3678          *  +------------------+-----------------+-----------------+
3679          *
3680          */
3681         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3682                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3683 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3684         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3685         if (sbinfo->huge)
3686                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3687 #endif
3688         shmem_show_mpol(seq, sbinfo->mpol);
3689         return 0;
3690 }
3691
3692 #endif /* CONFIG_TMPFS */
3693
3694 static void shmem_put_super(struct super_block *sb)
3695 {
3696         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3697
3698         free_percpu(sbinfo->ino_batch);
3699         percpu_counter_destroy(&sbinfo->used_blocks);
3700         mpol_put(sbinfo->mpol);
3701         kfree(sbinfo);
3702         sb->s_fs_info = NULL;
3703 }
3704
3705 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3706 {
3707         struct shmem_options *ctx = fc->fs_private;
3708         struct inode *inode;
3709         struct shmem_sb_info *sbinfo;
3710         int err = -ENOMEM;
3711
3712         /* Round up to L1_CACHE_BYTES to resist false sharing */
3713         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3714                                 L1_CACHE_BYTES), GFP_KERNEL);
3715         if (!sbinfo)
3716                 return -ENOMEM;
3717
3718         sb->s_fs_info = sbinfo;
3719
3720 #ifdef CONFIG_TMPFS
3721         /*
3722          * Per default we only allow half of the physical ram per
3723          * tmpfs instance, limiting inodes to one per page of lowmem;
3724          * but the internal instance is left unlimited.
3725          */
3726         if (!(sb->s_flags & SB_KERNMOUNT)) {
3727                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3728                         ctx->blocks = shmem_default_max_blocks();
3729                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3730                         ctx->inodes = shmem_default_max_inodes();
3731                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3732                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3733         } else {
3734                 sb->s_flags |= SB_NOUSER;
3735         }
3736         sb->s_export_op = &shmem_export_ops;
3737         sb->s_flags |= SB_NOSEC;
3738 #else
3739         sb->s_flags |= SB_NOUSER;
3740 #endif
3741         sbinfo->max_blocks = ctx->blocks;
3742         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3743         if (sb->s_flags & SB_KERNMOUNT) {
3744                 sbinfo->ino_batch = alloc_percpu(ino_t);
3745                 if (!sbinfo->ino_batch)
3746                         goto failed;
3747         }
3748         sbinfo->uid = ctx->uid;
3749         sbinfo->gid = ctx->gid;
3750         sbinfo->full_inums = ctx->full_inums;
3751         sbinfo->mode = ctx->mode;
3752         sbinfo->huge = ctx->huge;
3753         sbinfo->mpol = ctx->mpol;
3754         ctx->mpol = NULL;
3755
3756         spin_lock_init(&sbinfo->stat_lock);
3757         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3758                 goto failed;
3759         spin_lock_init(&sbinfo->shrinklist_lock);
3760         INIT_LIST_HEAD(&sbinfo->shrinklist);
3761
3762         sb->s_maxbytes = MAX_LFS_FILESIZE;
3763         sb->s_blocksize = PAGE_SIZE;
3764         sb->s_blocksize_bits = PAGE_SHIFT;
3765         sb->s_magic = TMPFS_MAGIC;
3766         sb->s_op = &shmem_ops;
3767         sb->s_time_gran = 1;
3768 #ifdef CONFIG_TMPFS_XATTR
3769         sb->s_xattr = shmem_xattr_handlers;
3770 #endif
3771 #ifdef CONFIG_TMPFS_POSIX_ACL
3772         sb->s_flags |= SB_POSIXACL;
3773 #endif
3774         uuid_gen(&sb->s_uuid);
3775
3776         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3777         if (!inode)
3778                 goto failed;
3779         inode->i_uid = sbinfo->uid;
3780         inode->i_gid = sbinfo->gid;
3781         sb->s_root = d_make_root(inode);
3782         if (!sb->s_root)
3783                 goto failed;
3784         return 0;
3785
3786 failed:
3787         shmem_put_super(sb);
3788         return err;
3789 }
3790
3791 static int shmem_get_tree(struct fs_context *fc)
3792 {
3793         return get_tree_nodev(fc, shmem_fill_super);
3794 }
3795
3796 static void shmem_free_fc(struct fs_context *fc)
3797 {
3798         struct shmem_options *ctx = fc->fs_private;
3799
3800         if (ctx) {
3801                 mpol_put(ctx->mpol);
3802                 kfree(ctx);
3803         }
3804 }
3805
3806 static const struct fs_context_operations shmem_fs_context_ops = {
3807         .free                   = shmem_free_fc,
3808         .get_tree               = shmem_get_tree,
3809 #ifdef CONFIG_TMPFS
3810         .parse_monolithic       = shmem_parse_options,
3811         .parse_param            = shmem_parse_one,
3812         .reconfigure            = shmem_reconfigure,
3813 #endif
3814 };
3815
3816 static struct kmem_cache *shmem_inode_cachep;
3817
3818 static struct inode *shmem_alloc_inode(struct super_block *sb)
3819 {
3820         struct shmem_inode_info *info;
3821         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3822         if (!info)
3823                 return NULL;
3824         return &info->vfs_inode;
3825 }
3826
3827 static void shmem_free_in_core_inode(struct inode *inode)
3828 {
3829         if (S_ISLNK(inode->i_mode))
3830                 kfree(inode->i_link);
3831         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3832 }
3833
3834 static void shmem_destroy_inode(struct inode *inode)
3835 {
3836         if (S_ISREG(inode->i_mode))
3837                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3838 }
3839
3840 static void shmem_init_inode(void *foo)
3841 {
3842         struct shmem_inode_info *info = foo;
3843         inode_init_once(&info->vfs_inode);
3844 }
3845
3846 static void shmem_init_inodecache(void)
3847 {
3848         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3849                                 sizeof(struct shmem_inode_info),
3850                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3851 }
3852
3853 static void shmem_destroy_inodecache(void)
3854 {
3855         kmem_cache_destroy(shmem_inode_cachep);
3856 }
3857
3858 static const struct address_space_operations shmem_aops = {
3859         .writepage      = shmem_writepage,
3860         .set_page_dirty = __set_page_dirty_no_writeback,
3861 #ifdef CONFIG_TMPFS
3862         .write_begin    = shmem_write_begin,
3863         .write_end      = shmem_write_end,
3864 #endif
3865 #ifdef CONFIG_MIGRATION
3866         .migratepage    = migrate_page,
3867 #endif
3868         .error_remove_page = generic_error_remove_page,
3869 };
3870
3871 static const struct file_operations shmem_file_operations = {
3872         .mmap           = shmem_mmap,
3873         .get_unmapped_area = shmem_get_unmapped_area,
3874 #ifdef CONFIG_TMPFS
3875         .llseek         = shmem_file_llseek,
3876         .read_iter      = shmem_file_read_iter,
3877         .write_iter     = generic_file_write_iter,
3878         .fsync          = noop_fsync,
3879         .splice_read    = generic_file_splice_read,
3880         .splice_write   = iter_file_splice_write,
3881         .fallocate      = shmem_fallocate,
3882 #endif
3883 };
3884
3885 static const struct inode_operations shmem_inode_operations = {
3886         .getattr        = shmem_getattr,
3887         .setattr        = shmem_setattr,
3888 #ifdef CONFIG_TMPFS_XATTR
3889         .listxattr      = shmem_listxattr,
3890         .set_acl        = simple_set_acl,
3891 #endif
3892 };
3893
3894 static const struct inode_operations shmem_dir_inode_operations = {
3895 #ifdef CONFIG_TMPFS
3896         .create         = shmem_create,
3897         .lookup         = simple_lookup,
3898         .link           = shmem_link,
3899         .unlink         = shmem_unlink,
3900         .symlink        = shmem_symlink,
3901         .mkdir          = shmem_mkdir,
3902         .rmdir          = shmem_rmdir,
3903         .mknod          = shmem_mknod,
3904         .rename         = shmem_rename2,
3905         .tmpfile        = shmem_tmpfile,
3906 #endif
3907 #ifdef CONFIG_TMPFS_XATTR
3908         .listxattr      = shmem_listxattr,
3909 #endif
3910 #ifdef CONFIG_TMPFS_POSIX_ACL
3911         .setattr        = shmem_setattr,
3912         .set_acl        = simple_set_acl,
3913 #endif
3914 };
3915
3916 static const struct inode_operations shmem_special_inode_operations = {
3917 #ifdef CONFIG_TMPFS_XATTR
3918         .listxattr      = shmem_listxattr,
3919 #endif
3920 #ifdef CONFIG_TMPFS_POSIX_ACL
3921         .setattr        = shmem_setattr,
3922         .set_acl        = simple_set_acl,
3923 #endif
3924 };
3925
3926 static const struct super_operations shmem_ops = {
3927         .alloc_inode    = shmem_alloc_inode,
3928         .free_inode     = shmem_free_in_core_inode,
3929         .destroy_inode  = shmem_destroy_inode,
3930 #ifdef CONFIG_TMPFS
3931         .statfs         = shmem_statfs,
3932         .show_options   = shmem_show_options,
3933 #endif
3934         .evict_inode    = shmem_evict_inode,
3935         .drop_inode     = generic_delete_inode,
3936         .put_super      = shmem_put_super,
3937 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3938         .nr_cached_objects      = shmem_unused_huge_count,
3939         .free_cached_objects    = shmem_unused_huge_scan,
3940 #endif
3941 };
3942
3943 static const struct vm_operations_struct shmem_vm_ops = {
3944         .fault          = shmem_fault,
3945         .map_pages      = filemap_map_pages,
3946 #ifdef CONFIG_NUMA
3947         .set_policy     = shmem_set_policy,
3948         .get_policy     = shmem_get_policy,
3949 #endif
3950 };
3951
3952 int shmem_init_fs_context(struct fs_context *fc)
3953 {
3954         struct shmem_options *ctx;
3955
3956         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3957         if (!ctx)
3958                 return -ENOMEM;
3959
3960         ctx->mode = 0777 | S_ISVTX;
3961         ctx->uid = current_fsuid();
3962         ctx->gid = current_fsgid();
3963
3964         fc->fs_private = ctx;
3965         fc->ops = &shmem_fs_context_ops;
3966         return 0;
3967 }
3968
3969 static struct file_system_type shmem_fs_type = {
3970         .owner          = THIS_MODULE,
3971         .name           = "tmpfs",
3972         .init_fs_context = shmem_init_fs_context,
3973 #ifdef CONFIG_TMPFS
3974         .parameters     = shmem_fs_parameters,
3975 #endif
3976         .kill_sb        = kill_litter_super,
3977         .fs_flags       = FS_USERNS_MOUNT,
3978 };
3979
3980 int __init shmem_init(void)
3981 {
3982         int error;
3983
3984         shmem_init_inodecache();
3985
3986         error = register_filesystem(&shmem_fs_type);
3987         if (error) {
3988                 pr_err("Could not register tmpfs\n");
3989                 goto out2;
3990         }
3991
3992         shm_mnt = kern_mount(&shmem_fs_type);
3993         if (IS_ERR(shm_mnt)) {
3994                 error = PTR_ERR(shm_mnt);
3995                 pr_err("Could not kern_mount tmpfs\n");
3996                 goto out1;
3997         }
3998
3999 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4000         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4001                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4002         else
4003                 shmem_huge = 0; /* just in case it was patched */
4004 #endif
4005         return 0;
4006
4007 out1:
4008         unregister_filesystem(&shmem_fs_type);
4009 out2:
4010         shmem_destroy_inodecache();
4011         shm_mnt = ERR_PTR(error);
4012         return error;
4013 }
4014
4015 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4016 static ssize_t shmem_enabled_show(struct kobject *kobj,
4017                 struct kobj_attribute *attr, char *buf)
4018 {
4019         static const int values[] = {
4020                 SHMEM_HUGE_ALWAYS,
4021                 SHMEM_HUGE_WITHIN_SIZE,
4022                 SHMEM_HUGE_ADVISE,
4023                 SHMEM_HUGE_NEVER,
4024                 SHMEM_HUGE_DENY,
4025                 SHMEM_HUGE_FORCE,
4026         };
4027         int i, count;
4028
4029         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4030                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4031
4032                 count += sprintf(buf + count, fmt,
4033                                 shmem_format_huge(values[i]));
4034         }
4035         buf[count - 1] = '\n';
4036         return count;
4037 }
4038
4039 static ssize_t shmem_enabled_store(struct kobject *kobj,
4040                 struct kobj_attribute *attr, const char *buf, size_t count)
4041 {
4042         char tmp[16];
4043         int huge;
4044
4045         if (count + 1 > sizeof(tmp))
4046                 return -EINVAL;
4047         memcpy(tmp, buf, count);
4048         tmp[count] = '\0';
4049         if (count && tmp[count - 1] == '\n')
4050                 tmp[count - 1] = '\0';
4051
4052         huge = shmem_parse_huge(tmp);
4053         if (huge == -EINVAL)
4054                 return -EINVAL;
4055         if (!has_transparent_hugepage() &&
4056                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4057                 return -EINVAL;
4058
4059         shmem_huge = huge;
4060         if (shmem_huge > SHMEM_HUGE_DENY)
4061                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4062         return count;
4063 }
4064
4065 struct kobj_attribute shmem_enabled_attr =
4066         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4067 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4068
4069 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4070 bool shmem_huge_enabled(struct vm_area_struct *vma)
4071 {
4072         struct inode *inode = file_inode(vma->vm_file);
4073         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4074         loff_t i_size;
4075         pgoff_t off;
4076
4077         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4078             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4079                 return false;
4080         if (shmem_huge == SHMEM_HUGE_FORCE)
4081                 return true;
4082         if (shmem_huge == SHMEM_HUGE_DENY)
4083                 return false;
4084         switch (sbinfo->huge) {
4085                 case SHMEM_HUGE_NEVER:
4086                         return false;
4087                 case SHMEM_HUGE_ALWAYS:
4088                         return true;
4089                 case SHMEM_HUGE_WITHIN_SIZE:
4090                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4091                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
4092                         if (i_size >= HPAGE_PMD_SIZE &&
4093                                         i_size >> PAGE_SHIFT >= off)
4094                                 return true;
4095                         fallthrough;
4096                 case SHMEM_HUGE_ADVISE:
4097                         /* TODO: implement fadvise() hints */
4098                         return (vma->vm_flags & VM_HUGEPAGE);
4099                 default:
4100                         VM_BUG_ON(1);
4101                         return false;
4102         }
4103 }
4104 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4105
4106 #else /* !CONFIG_SHMEM */
4107
4108 /*
4109  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4110  *
4111  * This is intended for small system where the benefits of the full
4112  * shmem code (swap-backed and resource-limited) are outweighed by
4113  * their complexity. On systems without swap this code should be
4114  * effectively equivalent, but much lighter weight.
4115  */
4116
4117 static struct file_system_type shmem_fs_type = {
4118         .name           = "tmpfs",
4119         .init_fs_context = ramfs_init_fs_context,
4120         .parameters     = ramfs_fs_parameters,
4121         .kill_sb        = kill_litter_super,
4122         .fs_flags       = FS_USERNS_MOUNT,
4123 };
4124
4125 int __init shmem_init(void)
4126 {
4127         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4128
4129         shm_mnt = kern_mount(&shmem_fs_type);
4130         BUG_ON(IS_ERR(shm_mnt));
4131
4132         return 0;
4133 }
4134
4135 int shmem_unuse(unsigned int type, bool frontswap,
4136                 unsigned long *fs_pages_to_unuse)
4137 {
4138         return 0;
4139 }
4140
4141 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4142 {
4143         return 0;
4144 }
4145
4146 void shmem_unlock_mapping(struct address_space *mapping)
4147 {
4148 }
4149
4150 #ifdef CONFIG_MMU
4151 unsigned long shmem_get_unmapped_area(struct file *file,
4152                                       unsigned long addr, unsigned long len,
4153                                       unsigned long pgoff, unsigned long flags)
4154 {
4155         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4156 }
4157 #endif
4158
4159 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4160 {
4161         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4162 }
4163 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4164
4165 #define shmem_vm_ops                            generic_file_vm_ops
4166 #define shmem_file_operations                   ramfs_file_operations
4167 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4168 #define shmem_acct_size(flags, size)            0
4169 #define shmem_unacct_size(flags, size)          do {} while (0)
4170
4171 #endif /* CONFIG_SHMEM */
4172
4173 /* common code */
4174
4175 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4176                                        unsigned long flags, unsigned int i_flags)
4177 {
4178         struct inode *inode;
4179         struct file *res;
4180
4181         if (IS_ERR(mnt))
4182                 return ERR_CAST(mnt);
4183
4184         if (size < 0 || size > MAX_LFS_FILESIZE)
4185                 return ERR_PTR(-EINVAL);
4186
4187         if (shmem_acct_size(flags, size))
4188                 return ERR_PTR(-ENOMEM);
4189
4190         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4191                                 flags);
4192         if (unlikely(!inode)) {
4193                 shmem_unacct_size(flags, size);
4194                 return ERR_PTR(-ENOSPC);
4195         }
4196         inode->i_flags |= i_flags;
4197         inode->i_size = size;
4198         clear_nlink(inode);     /* It is unlinked */
4199         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4200         if (!IS_ERR(res))
4201                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4202                                 &shmem_file_operations);
4203         if (IS_ERR(res))
4204                 iput(inode);
4205         return res;
4206 }
4207
4208 /**
4209  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4210  *      kernel internal.  There will be NO LSM permission checks against the
4211  *      underlying inode.  So users of this interface must do LSM checks at a
4212  *      higher layer.  The users are the big_key and shm implementations.  LSM
4213  *      checks are provided at the key or shm level rather than the inode.
4214  * @name: name for dentry (to be seen in /proc/<pid>/maps
4215  * @size: size to be set for the file
4216  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4217  */
4218 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4219 {
4220         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4221 }
4222
4223 /**
4224  * shmem_file_setup - get an unlinked file living in tmpfs
4225  * @name: name for dentry (to be seen in /proc/<pid>/maps
4226  * @size: size to be set for the file
4227  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4228  */
4229 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4230 {
4231         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4232 }
4233 EXPORT_SYMBOL_GPL(shmem_file_setup);
4234
4235 /**
4236  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4237  * @mnt: the tmpfs mount where the file will be created
4238  * @name: name for dentry (to be seen in /proc/<pid>/maps
4239  * @size: size to be set for the file
4240  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4241  */
4242 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4243                                        loff_t size, unsigned long flags)
4244 {
4245         return __shmem_file_setup(mnt, name, size, flags, 0);
4246 }
4247 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4248
4249 /**
4250  * shmem_zero_setup - setup a shared anonymous mapping
4251  * @vma: the vma to be mmapped is prepared by do_mmap
4252  */
4253 int shmem_zero_setup(struct vm_area_struct *vma)
4254 {
4255         struct file *file;
4256         loff_t size = vma->vm_end - vma->vm_start;
4257
4258         /*
4259          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4260          * between XFS directory reading and selinux: since this file is only
4261          * accessible to the user through its mapping, use S_PRIVATE flag to
4262          * bypass file security, in the same way as shmem_kernel_file_setup().
4263          */
4264         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4265         if (IS_ERR(file))
4266                 return PTR_ERR(file);
4267
4268         if (vma->vm_file)
4269                 fput(vma->vm_file);
4270         vma->vm_file = file;
4271         vma->vm_ops = &shmem_vm_ops;
4272
4273         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4274                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4275                         (vma->vm_end & HPAGE_PMD_MASK)) {
4276                 khugepaged_enter(vma, vma->vm_flags);
4277         }
4278
4279         return 0;
4280 }
4281
4282 /**
4283  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4284  * @mapping:    the page's address_space
4285  * @index:      the page index
4286  * @gfp:        the page allocator flags to use if allocating
4287  *
4288  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4289  * with any new page allocations done using the specified allocation flags.
4290  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4291  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4292  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4293  *
4294  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4295  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4296  */
4297 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4298                                          pgoff_t index, gfp_t gfp)
4299 {
4300 #ifdef CONFIG_SHMEM
4301         struct inode *inode = mapping->host;
4302         struct page *page;
4303         int error;
4304
4305         BUG_ON(mapping->a_ops != &shmem_aops);
4306         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4307                                   gfp, NULL, NULL, NULL);
4308         if (error)
4309                 page = ERR_PTR(error);
4310         else
4311                 unlock_page(page);
4312         return page;
4313 #else
4314         /*
4315          * The tiny !SHMEM case uses ramfs without swap
4316          */
4317         return read_cache_page_gfp(mapping, index, gfp);
4318 #endif
4319 }
4320 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);