huge tmpfs: SGP_NOALLOC to stop collapse_file() on race
[linux-2.6-microblaze.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42
43 static struct vfsmount *shm_mnt;
44
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/blkdev.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82
83 #include <linux/uaccess.h>
84
85 #include "internal.h"
86
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_mutex making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103         pgoff_t start;          /* start of range currently being fallocated */
104         pgoff_t next;           /* the next page offset to be fallocated */
105         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
106         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
107 };
108
109 struct shmem_options {
110         unsigned long long blocks;
111         unsigned long long inodes;
112         struct mempolicy *mpol;
113         kuid_t uid;
114         kgid_t gid;
115         umode_t mode;
116         bool full_inums;
117         int huge;
118         int seen;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
122 #define SHMEM_SEEN_INUMS 8
123 };
124
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128         return totalram_pages() / 2;
129 }
130
131 static unsigned long shmem_default_max_inodes(void)
132 {
133         unsigned long nr_pages = totalram_pages();
134
135         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138
139 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
140                              struct page **pagep, enum sgp_type sgp,
141                              gfp_t gfp, struct vm_area_struct *vma,
142                              vm_fault_t *fault_type);
143 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
144                 struct page **pagep, enum sgp_type sgp,
145                 gfp_t gfp, struct vm_area_struct *vma,
146                 struct vm_fault *vmf, vm_fault_t *fault_type);
147
148 int shmem_getpage(struct inode *inode, pgoff_t index,
149                 struct page **pagep, enum sgp_type sgp)
150 {
151         return shmem_getpage_gfp(inode, index, pagep, sgp,
152                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
153 }
154
155 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
156 {
157         return sb->s_fs_info;
158 }
159
160 /*
161  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
162  * for shared memory and for shared anonymous (/dev/zero) mappings
163  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
164  * consistent with the pre-accounting of private mappings ...
165  */
166 static inline int shmem_acct_size(unsigned long flags, loff_t size)
167 {
168         return (flags & VM_NORESERVE) ?
169                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
170 }
171
172 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
173 {
174         if (!(flags & VM_NORESERVE))
175                 vm_unacct_memory(VM_ACCT(size));
176 }
177
178 static inline int shmem_reacct_size(unsigned long flags,
179                 loff_t oldsize, loff_t newsize)
180 {
181         if (!(flags & VM_NORESERVE)) {
182                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
183                         return security_vm_enough_memory_mm(current->mm,
184                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
185                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
186                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
187         }
188         return 0;
189 }
190
191 /*
192  * ... whereas tmpfs objects are accounted incrementally as
193  * pages are allocated, in order to allow large sparse files.
194  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
195  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
196  */
197 static inline int shmem_acct_block(unsigned long flags, long pages)
198 {
199         if (!(flags & VM_NORESERVE))
200                 return 0;
201
202         return security_vm_enough_memory_mm(current->mm,
203                         pages * VM_ACCT(PAGE_SIZE));
204 }
205
206 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
207 {
208         if (flags & VM_NORESERVE)
209                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
210 }
211
212 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
213 {
214         struct shmem_inode_info *info = SHMEM_I(inode);
215         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
216
217         if (shmem_acct_block(info->flags, pages))
218                 return false;
219
220         if (sbinfo->max_blocks) {
221                 if (percpu_counter_compare(&sbinfo->used_blocks,
222                                            sbinfo->max_blocks - pages) > 0)
223                         goto unacct;
224                 percpu_counter_add(&sbinfo->used_blocks, pages);
225         }
226
227         return true;
228
229 unacct:
230         shmem_unacct_blocks(info->flags, pages);
231         return false;
232 }
233
234 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
235 {
236         struct shmem_inode_info *info = SHMEM_I(inode);
237         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
238
239         if (sbinfo->max_blocks)
240                 percpu_counter_sub(&sbinfo->used_blocks, pages);
241         shmem_unacct_blocks(info->flags, pages);
242 }
243
244 static const struct super_operations shmem_ops;
245 const struct address_space_operations shmem_aops;
246 static const struct file_operations shmem_file_operations;
247 static const struct inode_operations shmem_inode_operations;
248 static const struct inode_operations shmem_dir_inode_operations;
249 static const struct inode_operations shmem_special_inode_operations;
250 static const struct vm_operations_struct shmem_vm_ops;
251 static struct file_system_type shmem_fs_type;
252
253 bool vma_is_shmem(struct vm_area_struct *vma)
254 {
255         return vma->vm_ops == &shmem_vm_ops;
256 }
257
258 static LIST_HEAD(shmem_swaplist);
259 static DEFINE_MUTEX(shmem_swaplist_mutex);
260
261 /*
262  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
263  * produces a novel ino for the newly allocated inode.
264  *
265  * It may also be called when making a hard link to permit the space needed by
266  * each dentry. However, in that case, no new inode number is needed since that
267  * internally draws from another pool of inode numbers (currently global
268  * get_next_ino()). This case is indicated by passing NULL as inop.
269  */
270 #define SHMEM_INO_BATCH 1024
271 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
272 {
273         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
274         ino_t ino;
275
276         if (!(sb->s_flags & SB_KERNMOUNT)) {
277                 raw_spin_lock(&sbinfo->stat_lock);
278                 if (sbinfo->max_inodes) {
279                         if (!sbinfo->free_inodes) {
280                                 raw_spin_unlock(&sbinfo->stat_lock);
281                                 return -ENOSPC;
282                         }
283                         sbinfo->free_inodes--;
284                 }
285                 if (inop) {
286                         ino = sbinfo->next_ino++;
287                         if (unlikely(is_zero_ino(ino)))
288                                 ino = sbinfo->next_ino++;
289                         if (unlikely(!sbinfo->full_inums &&
290                                      ino > UINT_MAX)) {
291                                 /*
292                                  * Emulate get_next_ino uint wraparound for
293                                  * compatibility
294                                  */
295                                 if (IS_ENABLED(CONFIG_64BIT))
296                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
297                                                 __func__, MINOR(sb->s_dev));
298                                 sbinfo->next_ino = 1;
299                                 ino = sbinfo->next_ino++;
300                         }
301                         *inop = ino;
302                 }
303                 raw_spin_unlock(&sbinfo->stat_lock);
304         } else if (inop) {
305                 /*
306                  * __shmem_file_setup, one of our callers, is lock-free: it
307                  * doesn't hold stat_lock in shmem_reserve_inode since
308                  * max_inodes is always 0, and is called from potentially
309                  * unknown contexts. As such, use a per-cpu batched allocator
310                  * which doesn't require the per-sb stat_lock unless we are at
311                  * the batch boundary.
312                  *
313                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
314                  * shmem mounts are not exposed to userspace, so we don't need
315                  * to worry about things like glibc compatibility.
316                  */
317                 ino_t *next_ino;
318
319                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
320                 ino = *next_ino;
321                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
322                         raw_spin_lock(&sbinfo->stat_lock);
323                         ino = sbinfo->next_ino;
324                         sbinfo->next_ino += SHMEM_INO_BATCH;
325                         raw_spin_unlock(&sbinfo->stat_lock);
326                         if (unlikely(is_zero_ino(ino)))
327                                 ino++;
328                 }
329                 *inop = ino;
330                 *next_ino = ++ino;
331                 put_cpu();
332         }
333
334         return 0;
335 }
336
337 static void shmem_free_inode(struct super_block *sb)
338 {
339         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
340         if (sbinfo->max_inodes) {
341                 raw_spin_lock(&sbinfo->stat_lock);
342                 sbinfo->free_inodes++;
343                 raw_spin_unlock(&sbinfo->stat_lock);
344         }
345 }
346
347 /**
348  * shmem_recalc_inode - recalculate the block usage of an inode
349  * @inode: inode to recalc
350  *
351  * We have to calculate the free blocks since the mm can drop
352  * undirtied hole pages behind our back.
353  *
354  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
355  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
356  *
357  * It has to be called with the spinlock held.
358  */
359 static void shmem_recalc_inode(struct inode *inode)
360 {
361         struct shmem_inode_info *info = SHMEM_I(inode);
362         long freed;
363
364         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
365         if (freed > 0) {
366                 info->alloced -= freed;
367                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
368                 shmem_inode_unacct_blocks(inode, freed);
369         }
370 }
371
372 bool shmem_charge(struct inode *inode, long pages)
373 {
374         struct shmem_inode_info *info = SHMEM_I(inode);
375         unsigned long flags;
376
377         if (!shmem_inode_acct_block(inode, pages))
378                 return false;
379
380         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
381         inode->i_mapping->nrpages += pages;
382
383         spin_lock_irqsave(&info->lock, flags);
384         info->alloced += pages;
385         inode->i_blocks += pages * BLOCKS_PER_PAGE;
386         shmem_recalc_inode(inode);
387         spin_unlock_irqrestore(&info->lock, flags);
388
389         return true;
390 }
391
392 void shmem_uncharge(struct inode *inode, long pages)
393 {
394         struct shmem_inode_info *info = SHMEM_I(inode);
395         unsigned long flags;
396
397         /* nrpages adjustment done by __delete_from_page_cache() or caller */
398
399         spin_lock_irqsave(&info->lock, flags);
400         info->alloced -= pages;
401         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
402         shmem_recalc_inode(inode);
403         spin_unlock_irqrestore(&info->lock, flags);
404
405         shmem_inode_unacct_blocks(inode, pages);
406 }
407
408 /*
409  * Replace item expected in xarray by a new item, while holding xa_lock.
410  */
411 static int shmem_replace_entry(struct address_space *mapping,
412                         pgoff_t index, void *expected, void *replacement)
413 {
414         XA_STATE(xas, &mapping->i_pages, index);
415         void *item;
416
417         VM_BUG_ON(!expected);
418         VM_BUG_ON(!replacement);
419         item = xas_load(&xas);
420         if (item != expected)
421                 return -ENOENT;
422         xas_store(&xas, replacement);
423         return 0;
424 }
425
426 /*
427  * Sometimes, before we decide whether to proceed or to fail, we must check
428  * that an entry was not already brought back from swap by a racing thread.
429  *
430  * Checking page is not enough: by the time a SwapCache page is locked, it
431  * might be reused, and again be SwapCache, using the same swap as before.
432  */
433 static bool shmem_confirm_swap(struct address_space *mapping,
434                                pgoff_t index, swp_entry_t swap)
435 {
436         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
437 }
438
439 /*
440  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
441  *
442  * SHMEM_HUGE_NEVER:
443  *      disables huge pages for the mount;
444  * SHMEM_HUGE_ALWAYS:
445  *      enables huge pages for the mount;
446  * SHMEM_HUGE_WITHIN_SIZE:
447  *      only allocate huge pages if the page will be fully within i_size,
448  *      also respect fadvise()/madvise() hints;
449  * SHMEM_HUGE_ADVISE:
450  *      only allocate huge pages if requested with fadvise()/madvise();
451  */
452
453 #define SHMEM_HUGE_NEVER        0
454 #define SHMEM_HUGE_ALWAYS       1
455 #define SHMEM_HUGE_WITHIN_SIZE  2
456 #define SHMEM_HUGE_ADVISE       3
457
458 /*
459  * Special values.
460  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
461  *
462  * SHMEM_HUGE_DENY:
463  *      disables huge on shm_mnt and all mounts, for emergency use;
464  * SHMEM_HUGE_FORCE:
465  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
466  *
467  */
468 #define SHMEM_HUGE_DENY         (-1)
469 #define SHMEM_HUGE_FORCE        (-2)
470
471 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
472 /* ifdef here to avoid bloating shmem.o when not necessary */
473
474 static int shmem_huge __read_mostly;
475
476 bool shmem_huge_enabled(struct vm_area_struct *vma)
477 {
478         struct inode *inode = file_inode(vma->vm_file);
479         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
480         loff_t i_size;
481         pgoff_t off;
482
483         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
484             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
485                 return false;
486         if (shmem_huge == SHMEM_HUGE_FORCE)
487                 return true;
488         if (shmem_huge == SHMEM_HUGE_DENY)
489                 return false;
490         switch (sbinfo->huge) {
491         case SHMEM_HUGE_NEVER:
492                 return false;
493         case SHMEM_HUGE_ALWAYS:
494                 return true;
495         case SHMEM_HUGE_WITHIN_SIZE:
496                 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
497                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
498                 if (i_size >= HPAGE_PMD_SIZE &&
499                                 i_size >> PAGE_SHIFT >= off)
500                         return true;
501                 fallthrough;
502         case SHMEM_HUGE_ADVISE:
503                 /* TODO: implement fadvise() hints */
504                 return (vma->vm_flags & VM_HUGEPAGE);
505         default:
506                 VM_BUG_ON(1);
507                 return false;
508         }
509 }
510
511 #if defined(CONFIG_SYSFS)
512 static int shmem_parse_huge(const char *str)
513 {
514         if (!strcmp(str, "never"))
515                 return SHMEM_HUGE_NEVER;
516         if (!strcmp(str, "always"))
517                 return SHMEM_HUGE_ALWAYS;
518         if (!strcmp(str, "within_size"))
519                 return SHMEM_HUGE_WITHIN_SIZE;
520         if (!strcmp(str, "advise"))
521                 return SHMEM_HUGE_ADVISE;
522         if (!strcmp(str, "deny"))
523                 return SHMEM_HUGE_DENY;
524         if (!strcmp(str, "force"))
525                 return SHMEM_HUGE_FORCE;
526         return -EINVAL;
527 }
528 #endif
529
530 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
531 static const char *shmem_format_huge(int huge)
532 {
533         switch (huge) {
534         case SHMEM_HUGE_NEVER:
535                 return "never";
536         case SHMEM_HUGE_ALWAYS:
537                 return "always";
538         case SHMEM_HUGE_WITHIN_SIZE:
539                 return "within_size";
540         case SHMEM_HUGE_ADVISE:
541                 return "advise";
542         case SHMEM_HUGE_DENY:
543                 return "deny";
544         case SHMEM_HUGE_FORCE:
545                 return "force";
546         default:
547                 VM_BUG_ON(1);
548                 return "bad_val";
549         }
550 }
551 #endif
552
553 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
554                 struct shrink_control *sc, unsigned long nr_to_split)
555 {
556         LIST_HEAD(list), *pos, *next;
557         LIST_HEAD(to_remove);
558         struct inode *inode;
559         struct shmem_inode_info *info;
560         struct page *page;
561         unsigned long batch = sc ? sc->nr_to_scan : 128;
562         int removed = 0, split = 0;
563
564         if (list_empty(&sbinfo->shrinklist))
565                 return SHRINK_STOP;
566
567         spin_lock(&sbinfo->shrinklist_lock);
568         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
569                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
570
571                 /* pin the inode */
572                 inode = igrab(&info->vfs_inode);
573
574                 /* inode is about to be evicted */
575                 if (!inode) {
576                         list_del_init(&info->shrinklist);
577                         removed++;
578                         goto next;
579                 }
580
581                 /* Check if there's anything to gain */
582                 if (round_up(inode->i_size, PAGE_SIZE) ==
583                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
584                         list_move(&info->shrinklist, &to_remove);
585                         removed++;
586                         goto next;
587                 }
588
589                 list_move(&info->shrinklist, &list);
590 next:
591                 if (!--batch)
592                         break;
593         }
594         spin_unlock(&sbinfo->shrinklist_lock);
595
596         list_for_each_safe(pos, next, &to_remove) {
597                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
598                 inode = &info->vfs_inode;
599                 list_del_init(&info->shrinklist);
600                 iput(inode);
601         }
602
603         list_for_each_safe(pos, next, &list) {
604                 int ret;
605
606                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
607                 inode = &info->vfs_inode;
608
609                 if (nr_to_split && split >= nr_to_split)
610                         goto leave;
611
612                 page = find_get_page(inode->i_mapping,
613                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
614                 if (!page)
615                         goto drop;
616
617                 /* No huge page at the end of the file: nothing to split */
618                 if (!PageTransHuge(page)) {
619                         put_page(page);
620                         goto drop;
621                 }
622
623                 /*
624                  * Leave the inode on the list if we failed to lock
625                  * the page at this time.
626                  *
627                  * Waiting for the lock may lead to deadlock in the
628                  * reclaim path.
629                  */
630                 if (!trylock_page(page)) {
631                         put_page(page);
632                         goto leave;
633                 }
634
635                 ret = split_huge_page(page);
636                 unlock_page(page);
637                 put_page(page);
638
639                 /* If split failed leave the inode on the list */
640                 if (ret)
641                         goto leave;
642
643                 split++;
644 drop:
645                 list_del_init(&info->shrinklist);
646                 removed++;
647 leave:
648                 iput(inode);
649         }
650
651         spin_lock(&sbinfo->shrinklist_lock);
652         list_splice_tail(&list, &sbinfo->shrinklist);
653         sbinfo->shrinklist_len -= removed;
654         spin_unlock(&sbinfo->shrinklist_lock);
655
656         return split;
657 }
658
659 static long shmem_unused_huge_scan(struct super_block *sb,
660                 struct shrink_control *sc)
661 {
662         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
663
664         if (!READ_ONCE(sbinfo->shrinklist_len))
665                 return SHRINK_STOP;
666
667         return shmem_unused_huge_shrink(sbinfo, sc, 0);
668 }
669
670 static long shmem_unused_huge_count(struct super_block *sb,
671                 struct shrink_control *sc)
672 {
673         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
674         return READ_ONCE(sbinfo->shrinklist_len);
675 }
676 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
677
678 #define shmem_huge SHMEM_HUGE_DENY
679
680 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
681                 struct shrink_control *sc, unsigned long nr_to_split)
682 {
683         return 0;
684 }
685 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
686
687 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
688 {
689         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
690             (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
691             shmem_huge != SHMEM_HUGE_DENY)
692                 return true;
693         return false;
694 }
695
696 /*
697  * Like add_to_page_cache_locked, but error if expected item has gone.
698  */
699 static int shmem_add_to_page_cache(struct page *page,
700                                    struct address_space *mapping,
701                                    pgoff_t index, void *expected, gfp_t gfp,
702                                    struct mm_struct *charge_mm)
703 {
704         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
705         unsigned long i = 0;
706         unsigned long nr = compound_nr(page);
707         int error;
708
709         VM_BUG_ON_PAGE(PageTail(page), page);
710         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
711         VM_BUG_ON_PAGE(!PageLocked(page), page);
712         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
713         VM_BUG_ON(expected && PageTransHuge(page));
714
715         page_ref_add(page, nr);
716         page->mapping = mapping;
717         page->index = index;
718
719         if (!PageSwapCache(page)) {
720                 error = mem_cgroup_charge(page, charge_mm, gfp);
721                 if (error) {
722                         if (PageTransHuge(page)) {
723                                 count_vm_event(THP_FILE_FALLBACK);
724                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
725                         }
726                         goto error;
727                 }
728         }
729         cgroup_throttle_swaprate(page, gfp);
730
731         do {
732                 void *entry;
733                 xas_lock_irq(&xas);
734                 entry = xas_find_conflict(&xas);
735                 if (entry != expected)
736                         xas_set_err(&xas, -EEXIST);
737                 xas_create_range(&xas);
738                 if (xas_error(&xas))
739                         goto unlock;
740 next:
741                 xas_store(&xas, page);
742                 if (++i < nr) {
743                         xas_next(&xas);
744                         goto next;
745                 }
746                 if (PageTransHuge(page)) {
747                         count_vm_event(THP_FILE_ALLOC);
748                         __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
749                 }
750                 mapping->nrpages += nr;
751                 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
752                 __mod_lruvec_page_state(page, NR_SHMEM, nr);
753 unlock:
754                 xas_unlock_irq(&xas);
755         } while (xas_nomem(&xas, gfp));
756
757         if (xas_error(&xas)) {
758                 error = xas_error(&xas);
759                 goto error;
760         }
761
762         return 0;
763 error:
764         page->mapping = NULL;
765         page_ref_sub(page, nr);
766         return error;
767 }
768
769 /*
770  * Like delete_from_page_cache, but substitutes swap for page.
771  */
772 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
773 {
774         struct address_space *mapping = page->mapping;
775         int error;
776
777         VM_BUG_ON_PAGE(PageCompound(page), page);
778
779         xa_lock_irq(&mapping->i_pages);
780         error = shmem_replace_entry(mapping, page->index, page, radswap);
781         page->mapping = NULL;
782         mapping->nrpages--;
783         __dec_lruvec_page_state(page, NR_FILE_PAGES);
784         __dec_lruvec_page_state(page, NR_SHMEM);
785         xa_unlock_irq(&mapping->i_pages);
786         put_page(page);
787         BUG_ON(error);
788 }
789
790 /*
791  * Remove swap entry from page cache, free the swap and its page cache.
792  */
793 static int shmem_free_swap(struct address_space *mapping,
794                            pgoff_t index, void *radswap)
795 {
796         void *old;
797
798         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
799         if (old != radswap)
800                 return -ENOENT;
801         free_swap_and_cache(radix_to_swp_entry(radswap));
802         return 0;
803 }
804
805 /*
806  * Determine (in bytes) how many of the shmem object's pages mapped by the
807  * given offsets are swapped out.
808  *
809  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
810  * as long as the inode doesn't go away and racy results are not a problem.
811  */
812 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
813                                                 pgoff_t start, pgoff_t end)
814 {
815         XA_STATE(xas, &mapping->i_pages, start);
816         struct page *page;
817         unsigned long swapped = 0;
818
819         rcu_read_lock();
820         xas_for_each(&xas, page, end - 1) {
821                 if (xas_retry(&xas, page))
822                         continue;
823                 if (xa_is_value(page))
824                         swapped++;
825
826                 if (need_resched()) {
827                         xas_pause(&xas);
828                         cond_resched_rcu();
829                 }
830         }
831
832         rcu_read_unlock();
833
834         return swapped << PAGE_SHIFT;
835 }
836
837 /*
838  * Determine (in bytes) how many of the shmem object's pages mapped by the
839  * given vma is swapped out.
840  *
841  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
842  * as long as the inode doesn't go away and racy results are not a problem.
843  */
844 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
845 {
846         struct inode *inode = file_inode(vma->vm_file);
847         struct shmem_inode_info *info = SHMEM_I(inode);
848         struct address_space *mapping = inode->i_mapping;
849         unsigned long swapped;
850
851         /* Be careful as we don't hold info->lock */
852         swapped = READ_ONCE(info->swapped);
853
854         /*
855          * The easier cases are when the shmem object has nothing in swap, or
856          * the vma maps it whole. Then we can simply use the stats that we
857          * already track.
858          */
859         if (!swapped)
860                 return 0;
861
862         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
863                 return swapped << PAGE_SHIFT;
864
865         /* Here comes the more involved part */
866         return shmem_partial_swap_usage(mapping,
867                         linear_page_index(vma, vma->vm_start),
868                         linear_page_index(vma, vma->vm_end));
869 }
870
871 /*
872  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
873  */
874 void shmem_unlock_mapping(struct address_space *mapping)
875 {
876         struct pagevec pvec;
877         pgoff_t index = 0;
878
879         pagevec_init(&pvec);
880         /*
881          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
882          */
883         while (!mapping_unevictable(mapping)) {
884                 if (!pagevec_lookup(&pvec, mapping, &index))
885                         break;
886                 check_move_unevictable_pages(&pvec);
887                 pagevec_release(&pvec);
888                 cond_resched();
889         }
890 }
891
892 /*
893  * Check whether a hole-punch or truncation needs to split a huge page,
894  * returning true if no split was required, or the split has been successful.
895  *
896  * Eviction (or truncation to 0 size) should never need to split a huge page;
897  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
898  * head, and then succeeded to trylock on tail.
899  *
900  * A split can only succeed when there are no additional references on the
901  * huge page: so the split below relies upon find_get_entries() having stopped
902  * when it found a subpage of the huge page, without getting further references.
903  */
904 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
905 {
906         if (!PageTransCompound(page))
907                 return true;
908
909         /* Just proceed to delete a huge page wholly within the range punched */
910         if (PageHead(page) &&
911             page->index >= start && page->index + HPAGE_PMD_NR <= end)
912                 return true;
913
914         /* Try to split huge page, so we can truly punch the hole or truncate */
915         return split_huge_page(page) >= 0;
916 }
917
918 /*
919  * Remove range of pages and swap entries from page cache, and free them.
920  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
921  */
922 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
923                                                                  bool unfalloc)
924 {
925         struct address_space *mapping = inode->i_mapping;
926         struct shmem_inode_info *info = SHMEM_I(inode);
927         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
928         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
929         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
930         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
931         struct pagevec pvec;
932         pgoff_t indices[PAGEVEC_SIZE];
933         long nr_swaps_freed = 0;
934         pgoff_t index;
935         int i;
936
937         if (lend == -1)
938                 end = -1;       /* unsigned, so actually very big */
939
940         if (info->fallocend > start && info->fallocend <= end && !unfalloc)
941                 info->fallocend = start;
942
943         pagevec_init(&pvec);
944         index = start;
945         while (index < end && find_lock_entries(mapping, index, end - 1,
946                         &pvec, indices)) {
947                 for (i = 0; i < pagevec_count(&pvec); i++) {
948                         struct page *page = pvec.pages[i];
949
950                         index = indices[i];
951
952                         if (xa_is_value(page)) {
953                                 if (unfalloc)
954                                         continue;
955                                 nr_swaps_freed += !shmem_free_swap(mapping,
956                                                                 index, page);
957                                 continue;
958                         }
959                         index += thp_nr_pages(page) - 1;
960
961                         if (!unfalloc || !PageUptodate(page))
962                                 truncate_inode_page(mapping, page);
963                         unlock_page(page);
964                 }
965                 pagevec_remove_exceptionals(&pvec);
966                 pagevec_release(&pvec);
967                 cond_resched();
968                 index++;
969         }
970
971         if (partial_start) {
972                 struct page *page = NULL;
973                 shmem_getpage(inode, start - 1, &page, SGP_READ);
974                 if (page) {
975                         unsigned int top = PAGE_SIZE;
976                         if (start > end) {
977                                 top = partial_end;
978                                 partial_end = 0;
979                         }
980                         zero_user_segment(page, partial_start, top);
981                         set_page_dirty(page);
982                         unlock_page(page);
983                         put_page(page);
984                 }
985         }
986         if (partial_end) {
987                 struct page *page = NULL;
988                 shmem_getpage(inode, end, &page, SGP_READ);
989                 if (page) {
990                         zero_user_segment(page, 0, partial_end);
991                         set_page_dirty(page);
992                         unlock_page(page);
993                         put_page(page);
994                 }
995         }
996         if (start >= end)
997                 return;
998
999         index = start;
1000         while (index < end) {
1001                 cond_resched();
1002
1003                 if (!find_get_entries(mapping, index, end - 1, &pvec,
1004                                 indices)) {
1005                         /* If all gone or hole-punch or unfalloc, we're done */
1006                         if (index == start || end != -1)
1007                                 break;
1008                         /* But if truncating, restart to make sure all gone */
1009                         index = start;
1010                         continue;
1011                 }
1012                 for (i = 0; i < pagevec_count(&pvec); i++) {
1013                         struct page *page = pvec.pages[i];
1014
1015                         index = indices[i];
1016                         if (xa_is_value(page)) {
1017                                 if (unfalloc)
1018                                         continue;
1019                                 if (shmem_free_swap(mapping, index, page)) {
1020                                         /* Swap was replaced by page: retry */
1021                                         index--;
1022                                         break;
1023                                 }
1024                                 nr_swaps_freed++;
1025                                 continue;
1026                         }
1027
1028                         lock_page(page);
1029
1030                         if (!unfalloc || !PageUptodate(page)) {
1031                                 if (page_mapping(page) != mapping) {
1032                                         /* Page was replaced by swap: retry */
1033                                         unlock_page(page);
1034                                         index--;
1035                                         break;
1036                                 }
1037                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1038                                 if (shmem_punch_compound(page, start, end))
1039                                         truncate_inode_page(mapping, page);
1040                                 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1041                                         /* Wipe the page and don't get stuck */
1042                                         clear_highpage(page);
1043                                         flush_dcache_page(page);
1044                                         set_page_dirty(page);
1045                                         if (index <
1046                                             round_up(start, HPAGE_PMD_NR))
1047                                                 start = index + 1;
1048                                 }
1049                         }
1050                         unlock_page(page);
1051                 }
1052                 pagevec_remove_exceptionals(&pvec);
1053                 pagevec_release(&pvec);
1054                 index++;
1055         }
1056
1057         spin_lock_irq(&info->lock);
1058         info->swapped -= nr_swaps_freed;
1059         shmem_recalc_inode(inode);
1060         spin_unlock_irq(&info->lock);
1061 }
1062
1063 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1064 {
1065         shmem_undo_range(inode, lstart, lend, false);
1066         inode->i_ctime = inode->i_mtime = current_time(inode);
1067 }
1068 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1069
1070 static int shmem_getattr(struct user_namespace *mnt_userns,
1071                          const struct path *path, struct kstat *stat,
1072                          u32 request_mask, unsigned int query_flags)
1073 {
1074         struct inode *inode = path->dentry->d_inode;
1075         struct shmem_inode_info *info = SHMEM_I(inode);
1076         struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1077
1078         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1079                 spin_lock_irq(&info->lock);
1080                 shmem_recalc_inode(inode);
1081                 spin_unlock_irq(&info->lock);
1082         }
1083         generic_fillattr(&init_user_ns, inode, stat);
1084
1085         if (is_huge_enabled(sb_info))
1086                 stat->blksize = HPAGE_PMD_SIZE;
1087
1088         return 0;
1089 }
1090
1091 static int shmem_setattr(struct user_namespace *mnt_userns,
1092                          struct dentry *dentry, struct iattr *attr)
1093 {
1094         struct inode *inode = d_inode(dentry);
1095         struct shmem_inode_info *info = SHMEM_I(inode);
1096         int error;
1097
1098         error = setattr_prepare(&init_user_ns, dentry, attr);
1099         if (error)
1100                 return error;
1101
1102         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1103                 loff_t oldsize = inode->i_size;
1104                 loff_t newsize = attr->ia_size;
1105
1106                 /* protected by i_mutex */
1107                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1108                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1109                         return -EPERM;
1110
1111                 if (newsize != oldsize) {
1112                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1113                                         oldsize, newsize);
1114                         if (error)
1115                                 return error;
1116                         i_size_write(inode, newsize);
1117                         inode->i_ctime = inode->i_mtime = current_time(inode);
1118                 }
1119                 if (newsize <= oldsize) {
1120                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1121                         if (oldsize > holebegin)
1122                                 unmap_mapping_range(inode->i_mapping,
1123                                                         holebegin, 0, 1);
1124                         if (info->alloced)
1125                                 shmem_truncate_range(inode,
1126                                                         newsize, (loff_t)-1);
1127                         /* unmap again to remove racily COWed private pages */
1128                         if (oldsize > holebegin)
1129                                 unmap_mapping_range(inode->i_mapping,
1130                                                         holebegin, 0, 1);
1131                 }
1132         }
1133
1134         setattr_copy(&init_user_ns, inode, attr);
1135         if (attr->ia_valid & ATTR_MODE)
1136                 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1137         return error;
1138 }
1139
1140 static void shmem_evict_inode(struct inode *inode)
1141 {
1142         struct shmem_inode_info *info = SHMEM_I(inode);
1143         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1144
1145         if (shmem_mapping(inode->i_mapping)) {
1146                 shmem_unacct_size(info->flags, inode->i_size);
1147                 inode->i_size = 0;
1148                 shmem_truncate_range(inode, 0, (loff_t)-1);
1149                 if (!list_empty(&info->shrinklist)) {
1150                         spin_lock(&sbinfo->shrinklist_lock);
1151                         if (!list_empty(&info->shrinklist)) {
1152                                 list_del_init(&info->shrinklist);
1153                                 sbinfo->shrinklist_len--;
1154                         }
1155                         spin_unlock(&sbinfo->shrinklist_lock);
1156                 }
1157                 while (!list_empty(&info->swaplist)) {
1158                         /* Wait while shmem_unuse() is scanning this inode... */
1159                         wait_var_event(&info->stop_eviction,
1160                                        !atomic_read(&info->stop_eviction));
1161                         mutex_lock(&shmem_swaplist_mutex);
1162                         /* ...but beware of the race if we peeked too early */
1163                         if (!atomic_read(&info->stop_eviction))
1164                                 list_del_init(&info->swaplist);
1165                         mutex_unlock(&shmem_swaplist_mutex);
1166                 }
1167         }
1168
1169         simple_xattrs_free(&info->xattrs);
1170         WARN_ON(inode->i_blocks);
1171         shmem_free_inode(inode->i_sb);
1172         clear_inode(inode);
1173 }
1174
1175 static int shmem_find_swap_entries(struct address_space *mapping,
1176                                    pgoff_t start, unsigned int nr_entries,
1177                                    struct page **entries, pgoff_t *indices,
1178                                    unsigned int type, bool frontswap)
1179 {
1180         XA_STATE(xas, &mapping->i_pages, start);
1181         struct page *page;
1182         swp_entry_t entry;
1183         unsigned int ret = 0;
1184
1185         if (!nr_entries)
1186                 return 0;
1187
1188         rcu_read_lock();
1189         xas_for_each(&xas, page, ULONG_MAX) {
1190                 if (xas_retry(&xas, page))
1191                         continue;
1192
1193                 if (!xa_is_value(page))
1194                         continue;
1195
1196                 entry = radix_to_swp_entry(page);
1197                 if (swp_type(entry) != type)
1198                         continue;
1199                 if (frontswap &&
1200                     !frontswap_test(swap_info[type], swp_offset(entry)))
1201                         continue;
1202
1203                 indices[ret] = xas.xa_index;
1204                 entries[ret] = page;
1205
1206                 if (need_resched()) {
1207                         xas_pause(&xas);
1208                         cond_resched_rcu();
1209                 }
1210                 if (++ret == nr_entries)
1211                         break;
1212         }
1213         rcu_read_unlock();
1214
1215         return ret;
1216 }
1217
1218 /*
1219  * Move the swapped pages for an inode to page cache. Returns the count
1220  * of pages swapped in, or the error in case of failure.
1221  */
1222 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1223                                     pgoff_t *indices)
1224 {
1225         int i = 0;
1226         int ret = 0;
1227         int error = 0;
1228         struct address_space *mapping = inode->i_mapping;
1229
1230         for (i = 0; i < pvec.nr; i++) {
1231                 struct page *page = pvec.pages[i];
1232
1233                 if (!xa_is_value(page))
1234                         continue;
1235                 error = shmem_swapin_page(inode, indices[i],
1236                                           &page, SGP_CACHE,
1237                                           mapping_gfp_mask(mapping),
1238                                           NULL, NULL);
1239                 if (error == 0) {
1240                         unlock_page(page);
1241                         put_page(page);
1242                         ret++;
1243                 }
1244                 if (error == -ENOMEM)
1245                         break;
1246                 error = 0;
1247         }
1248         return error ? error : ret;
1249 }
1250
1251 /*
1252  * If swap found in inode, free it and move page from swapcache to filecache.
1253  */
1254 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1255                              bool frontswap, unsigned long *fs_pages_to_unuse)
1256 {
1257         struct address_space *mapping = inode->i_mapping;
1258         pgoff_t start = 0;
1259         struct pagevec pvec;
1260         pgoff_t indices[PAGEVEC_SIZE];
1261         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1262         int ret = 0;
1263
1264         pagevec_init(&pvec);
1265         do {
1266                 unsigned int nr_entries = PAGEVEC_SIZE;
1267
1268                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1269                         nr_entries = *fs_pages_to_unuse;
1270
1271                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1272                                                   pvec.pages, indices,
1273                                                   type, frontswap);
1274                 if (pvec.nr == 0) {
1275                         ret = 0;
1276                         break;
1277                 }
1278
1279                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1280                 if (ret < 0)
1281                         break;
1282
1283                 if (frontswap_partial) {
1284                         *fs_pages_to_unuse -= ret;
1285                         if (*fs_pages_to_unuse == 0) {
1286                                 ret = FRONTSWAP_PAGES_UNUSED;
1287                                 break;
1288                         }
1289                 }
1290
1291                 start = indices[pvec.nr - 1];
1292         } while (true);
1293
1294         return ret;
1295 }
1296
1297 /*
1298  * Read all the shared memory data that resides in the swap
1299  * device 'type' back into memory, so the swap device can be
1300  * unused.
1301  */
1302 int shmem_unuse(unsigned int type, bool frontswap,
1303                 unsigned long *fs_pages_to_unuse)
1304 {
1305         struct shmem_inode_info *info, *next;
1306         int error = 0;
1307
1308         if (list_empty(&shmem_swaplist))
1309                 return 0;
1310
1311         mutex_lock(&shmem_swaplist_mutex);
1312         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1313                 if (!info->swapped) {
1314                         list_del_init(&info->swaplist);
1315                         continue;
1316                 }
1317                 /*
1318                  * Drop the swaplist mutex while searching the inode for swap;
1319                  * but before doing so, make sure shmem_evict_inode() will not
1320                  * remove placeholder inode from swaplist, nor let it be freed
1321                  * (igrab() would protect from unlink, but not from unmount).
1322                  */
1323                 atomic_inc(&info->stop_eviction);
1324                 mutex_unlock(&shmem_swaplist_mutex);
1325
1326                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1327                                           fs_pages_to_unuse);
1328                 cond_resched();
1329
1330                 mutex_lock(&shmem_swaplist_mutex);
1331                 next = list_next_entry(info, swaplist);
1332                 if (!info->swapped)
1333                         list_del_init(&info->swaplist);
1334                 if (atomic_dec_and_test(&info->stop_eviction))
1335                         wake_up_var(&info->stop_eviction);
1336                 if (error)
1337                         break;
1338         }
1339         mutex_unlock(&shmem_swaplist_mutex);
1340
1341         return error;
1342 }
1343
1344 /*
1345  * Move the page from the page cache to the swap cache.
1346  */
1347 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1348 {
1349         struct shmem_inode_info *info;
1350         struct address_space *mapping;
1351         struct inode *inode;
1352         swp_entry_t swap;
1353         pgoff_t index;
1354
1355         VM_BUG_ON_PAGE(PageCompound(page), page);
1356         BUG_ON(!PageLocked(page));
1357         mapping = page->mapping;
1358         index = page->index;
1359         inode = mapping->host;
1360         info = SHMEM_I(inode);
1361         if (info->flags & VM_LOCKED)
1362                 goto redirty;
1363         if (!total_swap_pages)
1364                 goto redirty;
1365
1366         /*
1367          * Our capabilities prevent regular writeback or sync from ever calling
1368          * shmem_writepage; but a stacking filesystem might use ->writepage of
1369          * its underlying filesystem, in which case tmpfs should write out to
1370          * swap only in response to memory pressure, and not for the writeback
1371          * threads or sync.
1372          */
1373         if (!wbc->for_reclaim) {
1374                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1375                 goto redirty;
1376         }
1377
1378         /*
1379          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1380          * value into swapfile.c, the only way we can correctly account for a
1381          * fallocated page arriving here is now to initialize it and write it.
1382          *
1383          * That's okay for a page already fallocated earlier, but if we have
1384          * not yet completed the fallocation, then (a) we want to keep track
1385          * of this page in case we have to undo it, and (b) it may not be a
1386          * good idea to continue anyway, once we're pushing into swap.  So
1387          * reactivate the page, and let shmem_fallocate() quit when too many.
1388          */
1389         if (!PageUptodate(page)) {
1390                 if (inode->i_private) {
1391                         struct shmem_falloc *shmem_falloc;
1392                         spin_lock(&inode->i_lock);
1393                         shmem_falloc = inode->i_private;
1394                         if (shmem_falloc &&
1395                             !shmem_falloc->waitq &&
1396                             index >= shmem_falloc->start &&
1397                             index < shmem_falloc->next)
1398                                 shmem_falloc->nr_unswapped++;
1399                         else
1400                                 shmem_falloc = NULL;
1401                         spin_unlock(&inode->i_lock);
1402                         if (shmem_falloc)
1403                                 goto redirty;
1404                 }
1405                 clear_highpage(page);
1406                 flush_dcache_page(page);
1407                 SetPageUptodate(page);
1408         }
1409
1410         swap = get_swap_page(page);
1411         if (!swap.val)
1412                 goto redirty;
1413
1414         /*
1415          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1416          * if it's not already there.  Do it now before the page is
1417          * moved to swap cache, when its pagelock no longer protects
1418          * the inode from eviction.  But don't unlock the mutex until
1419          * we've incremented swapped, because shmem_unuse_inode() will
1420          * prune a !swapped inode from the swaplist under this mutex.
1421          */
1422         mutex_lock(&shmem_swaplist_mutex);
1423         if (list_empty(&info->swaplist))
1424                 list_add(&info->swaplist, &shmem_swaplist);
1425
1426         if (add_to_swap_cache(page, swap,
1427                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1428                         NULL) == 0) {
1429                 spin_lock_irq(&info->lock);
1430                 shmem_recalc_inode(inode);
1431                 info->swapped++;
1432                 spin_unlock_irq(&info->lock);
1433
1434                 swap_shmem_alloc(swap);
1435                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1436
1437                 mutex_unlock(&shmem_swaplist_mutex);
1438                 BUG_ON(page_mapped(page));
1439                 swap_writepage(page, wbc);
1440                 return 0;
1441         }
1442
1443         mutex_unlock(&shmem_swaplist_mutex);
1444         put_swap_page(page, swap);
1445 redirty:
1446         set_page_dirty(page);
1447         if (wbc->for_reclaim)
1448                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1449         unlock_page(page);
1450         return 0;
1451 }
1452
1453 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1454 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1455 {
1456         char buffer[64];
1457
1458         if (!mpol || mpol->mode == MPOL_DEFAULT)
1459                 return;         /* show nothing */
1460
1461         mpol_to_str(buffer, sizeof(buffer), mpol);
1462
1463         seq_printf(seq, ",mpol=%s", buffer);
1464 }
1465
1466 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1467 {
1468         struct mempolicy *mpol = NULL;
1469         if (sbinfo->mpol) {
1470                 raw_spin_lock(&sbinfo->stat_lock);      /* prevent replace/use races */
1471                 mpol = sbinfo->mpol;
1472                 mpol_get(mpol);
1473                 raw_spin_unlock(&sbinfo->stat_lock);
1474         }
1475         return mpol;
1476 }
1477 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1478 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1479 {
1480 }
1481 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1482 {
1483         return NULL;
1484 }
1485 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1486 #ifndef CONFIG_NUMA
1487 #define vm_policy vm_private_data
1488 #endif
1489
1490 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1491                 struct shmem_inode_info *info, pgoff_t index)
1492 {
1493         /* Create a pseudo vma that just contains the policy */
1494         vma_init(vma, NULL);
1495         /* Bias interleave by inode number to distribute better across nodes */
1496         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1497         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1498 }
1499
1500 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1501 {
1502         /* Drop reference taken by mpol_shared_policy_lookup() */
1503         mpol_cond_put(vma->vm_policy);
1504 }
1505
1506 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1507                         struct shmem_inode_info *info, pgoff_t index)
1508 {
1509         struct vm_area_struct pvma;
1510         struct page *page;
1511         struct vm_fault vmf = {
1512                 .vma = &pvma,
1513         };
1514
1515         shmem_pseudo_vma_init(&pvma, info, index);
1516         page = swap_cluster_readahead(swap, gfp, &vmf);
1517         shmem_pseudo_vma_destroy(&pvma);
1518
1519         return page;
1520 }
1521
1522 /*
1523  * Make sure huge_gfp is always more limited than limit_gfp.
1524  * Some of the flags set permissions, while others set limitations.
1525  */
1526 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1527 {
1528         gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1529         gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1530         gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1531         gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1532
1533         /* Allow allocations only from the originally specified zones. */
1534         result |= zoneflags;
1535
1536         /*
1537          * Minimize the result gfp by taking the union with the deny flags,
1538          * and the intersection of the allow flags.
1539          */
1540         result |= (limit_gfp & denyflags);
1541         result |= (huge_gfp & limit_gfp) & allowflags;
1542
1543         return result;
1544 }
1545
1546 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1547                 struct shmem_inode_info *info, pgoff_t index)
1548 {
1549         struct vm_area_struct pvma;
1550         struct address_space *mapping = info->vfs_inode.i_mapping;
1551         pgoff_t hindex;
1552         struct page *page;
1553
1554         hindex = round_down(index, HPAGE_PMD_NR);
1555         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1556                                                                 XA_PRESENT))
1557                 return NULL;
1558
1559         shmem_pseudo_vma_init(&pvma, info, hindex);
1560         page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1561                                true);
1562         shmem_pseudo_vma_destroy(&pvma);
1563         if (page)
1564                 prep_transhuge_page(page);
1565         else
1566                 count_vm_event(THP_FILE_FALLBACK);
1567         return page;
1568 }
1569
1570 static struct page *shmem_alloc_page(gfp_t gfp,
1571                         struct shmem_inode_info *info, pgoff_t index)
1572 {
1573         struct vm_area_struct pvma;
1574         struct page *page;
1575
1576         shmem_pseudo_vma_init(&pvma, info, index);
1577         page = alloc_page_vma(gfp, &pvma, 0);
1578         shmem_pseudo_vma_destroy(&pvma);
1579
1580         return page;
1581 }
1582
1583 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1584                 struct inode *inode,
1585                 pgoff_t index, bool huge)
1586 {
1587         struct shmem_inode_info *info = SHMEM_I(inode);
1588         struct page *page;
1589         int nr;
1590         int err = -ENOSPC;
1591
1592         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1593                 huge = false;
1594         nr = huge ? HPAGE_PMD_NR : 1;
1595
1596         if (!shmem_inode_acct_block(inode, nr))
1597                 goto failed;
1598
1599         if (huge)
1600                 page = shmem_alloc_hugepage(gfp, info, index);
1601         else
1602                 page = shmem_alloc_page(gfp, info, index);
1603         if (page) {
1604                 __SetPageLocked(page);
1605                 __SetPageSwapBacked(page);
1606                 return page;
1607         }
1608
1609         err = -ENOMEM;
1610         shmem_inode_unacct_blocks(inode, nr);
1611 failed:
1612         return ERR_PTR(err);
1613 }
1614
1615 /*
1616  * When a page is moved from swapcache to shmem filecache (either by the
1617  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1618  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1619  * ignorance of the mapping it belongs to.  If that mapping has special
1620  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1621  * we may need to copy to a suitable page before moving to filecache.
1622  *
1623  * In a future release, this may well be extended to respect cpuset and
1624  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1625  * but for now it is a simple matter of zone.
1626  */
1627 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1628 {
1629         return page_zonenum(page) > gfp_zone(gfp);
1630 }
1631
1632 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1633                                 struct shmem_inode_info *info, pgoff_t index)
1634 {
1635         struct page *oldpage, *newpage;
1636         struct address_space *swap_mapping;
1637         swp_entry_t entry;
1638         pgoff_t swap_index;
1639         int error;
1640
1641         oldpage = *pagep;
1642         entry.val = page_private(oldpage);
1643         swap_index = swp_offset(entry);
1644         swap_mapping = page_mapping(oldpage);
1645
1646         /*
1647          * We have arrived here because our zones are constrained, so don't
1648          * limit chance of success by further cpuset and node constraints.
1649          */
1650         gfp &= ~GFP_CONSTRAINT_MASK;
1651         newpage = shmem_alloc_page(gfp, info, index);
1652         if (!newpage)
1653                 return -ENOMEM;
1654
1655         get_page(newpage);
1656         copy_highpage(newpage, oldpage);
1657         flush_dcache_page(newpage);
1658
1659         __SetPageLocked(newpage);
1660         __SetPageSwapBacked(newpage);
1661         SetPageUptodate(newpage);
1662         set_page_private(newpage, entry.val);
1663         SetPageSwapCache(newpage);
1664
1665         /*
1666          * Our caller will very soon move newpage out of swapcache, but it's
1667          * a nice clean interface for us to replace oldpage by newpage there.
1668          */
1669         xa_lock_irq(&swap_mapping->i_pages);
1670         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1671         if (!error) {
1672                 mem_cgroup_migrate(oldpage, newpage);
1673                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1674                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1675         }
1676         xa_unlock_irq(&swap_mapping->i_pages);
1677
1678         if (unlikely(error)) {
1679                 /*
1680                  * Is this possible?  I think not, now that our callers check
1681                  * both PageSwapCache and page_private after getting page lock;
1682                  * but be defensive.  Reverse old to newpage for clear and free.
1683                  */
1684                 oldpage = newpage;
1685         } else {
1686                 lru_cache_add(newpage);
1687                 *pagep = newpage;
1688         }
1689
1690         ClearPageSwapCache(oldpage);
1691         set_page_private(oldpage, 0);
1692
1693         unlock_page(oldpage);
1694         put_page(oldpage);
1695         put_page(oldpage);
1696         return error;
1697 }
1698
1699 /*
1700  * Swap in the page pointed to by *pagep.
1701  * Caller has to make sure that *pagep contains a valid swapped page.
1702  * Returns 0 and the page in pagep if success. On failure, returns the
1703  * error code and NULL in *pagep.
1704  */
1705 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1706                              struct page **pagep, enum sgp_type sgp,
1707                              gfp_t gfp, struct vm_area_struct *vma,
1708                              vm_fault_t *fault_type)
1709 {
1710         struct address_space *mapping = inode->i_mapping;
1711         struct shmem_inode_info *info = SHMEM_I(inode);
1712         struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1713         struct page *page;
1714         swp_entry_t swap;
1715         int error;
1716
1717         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1718         swap = radix_to_swp_entry(*pagep);
1719         *pagep = NULL;
1720
1721         /* Look it up and read it in.. */
1722         page = lookup_swap_cache(swap, NULL, 0);
1723         if (!page) {
1724                 /* Or update major stats only when swapin succeeds?? */
1725                 if (fault_type) {
1726                         *fault_type |= VM_FAULT_MAJOR;
1727                         count_vm_event(PGMAJFAULT);
1728                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1729                 }
1730                 /* Here we actually start the io */
1731                 page = shmem_swapin(swap, gfp, info, index);
1732                 if (!page) {
1733                         error = -ENOMEM;
1734                         goto failed;
1735                 }
1736         }
1737
1738         /* We have to do this with page locked to prevent races */
1739         lock_page(page);
1740         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1741             !shmem_confirm_swap(mapping, index, swap)) {
1742                 error = -EEXIST;
1743                 goto unlock;
1744         }
1745         if (!PageUptodate(page)) {
1746                 error = -EIO;
1747                 goto failed;
1748         }
1749         wait_on_page_writeback(page);
1750
1751         /*
1752          * Some architectures may have to restore extra metadata to the
1753          * physical page after reading from swap.
1754          */
1755         arch_swap_restore(swap, page);
1756
1757         if (shmem_should_replace_page(page, gfp)) {
1758                 error = shmem_replace_page(&page, gfp, info, index);
1759                 if (error)
1760                         goto failed;
1761         }
1762
1763         error = shmem_add_to_page_cache(page, mapping, index,
1764                                         swp_to_radix_entry(swap), gfp,
1765                                         charge_mm);
1766         if (error)
1767                 goto failed;
1768
1769         spin_lock_irq(&info->lock);
1770         info->swapped--;
1771         shmem_recalc_inode(inode);
1772         spin_unlock_irq(&info->lock);
1773
1774         if (sgp == SGP_WRITE)
1775                 mark_page_accessed(page);
1776
1777         delete_from_swap_cache(page);
1778         set_page_dirty(page);
1779         swap_free(swap);
1780
1781         *pagep = page;
1782         return 0;
1783 failed:
1784         if (!shmem_confirm_swap(mapping, index, swap))
1785                 error = -EEXIST;
1786 unlock:
1787         if (page) {
1788                 unlock_page(page);
1789                 put_page(page);
1790         }
1791
1792         return error;
1793 }
1794
1795 /*
1796  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1797  *
1798  * If we allocate a new one we do not mark it dirty. That's up to the
1799  * vm. If we swap it in we mark it dirty since we also free the swap
1800  * entry since a page cannot live in both the swap and page cache.
1801  *
1802  * vma, vmf, and fault_type are only supplied by shmem_fault:
1803  * otherwise they are NULL.
1804  */
1805 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1806         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1807         struct vm_area_struct *vma, struct vm_fault *vmf,
1808                         vm_fault_t *fault_type)
1809 {
1810         struct address_space *mapping = inode->i_mapping;
1811         struct shmem_inode_info *info = SHMEM_I(inode);
1812         struct shmem_sb_info *sbinfo;
1813         struct mm_struct *charge_mm;
1814         struct page *page;
1815         enum sgp_type sgp_huge = sgp;
1816         pgoff_t hindex = index;
1817         gfp_t huge_gfp;
1818         int error;
1819         int once = 0;
1820         int alloced = 0;
1821
1822         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1823                 return -EFBIG;
1824         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1825                 sgp = SGP_CACHE;
1826 repeat:
1827         if (sgp <= SGP_CACHE &&
1828             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1829                 return -EINVAL;
1830         }
1831
1832         sbinfo = SHMEM_SB(inode->i_sb);
1833         charge_mm = vma ? vma->vm_mm : NULL;
1834
1835         page = pagecache_get_page(mapping, index,
1836                                         FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1837
1838         if (page && vma && userfaultfd_minor(vma)) {
1839                 if (!xa_is_value(page)) {
1840                         unlock_page(page);
1841                         put_page(page);
1842                 }
1843                 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1844                 return 0;
1845         }
1846
1847         if (xa_is_value(page)) {
1848                 error = shmem_swapin_page(inode, index, &page,
1849                                           sgp, gfp, vma, fault_type);
1850                 if (error == -EEXIST)
1851                         goto repeat;
1852
1853                 *pagep = page;
1854                 return error;
1855         }
1856
1857         if (page) {
1858                 hindex = page->index;
1859                 if (sgp == SGP_WRITE)
1860                         mark_page_accessed(page);
1861                 if (PageUptodate(page))
1862                         goto out;
1863                 /* fallocated page */
1864                 if (sgp != SGP_READ)
1865                         goto clear;
1866                 unlock_page(page);
1867                 put_page(page);
1868         }
1869
1870         /*
1871          * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1872          * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1873          */
1874         *pagep = NULL;
1875         if (sgp == SGP_READ)
1876                 return 0;
1877         if (sgp == SGP_NOALLOC)
1878                 return -ENOENT;
1879
1880         /*
1881          * Fast cache lookup and swap lookup did not find it: allocate.
1882          */
1883
1884         if (vma && userfaultfd_missing(vma)) {
1885                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1886                 return 0;
1887         }
1888
1889         /* shmem_symlink() */
1890         if (!shmem_mapping(mapping))
1891                 goto alloc_nohuge;
1892         if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1893                 goto alloc_nohuge;
1894         if (shmem_huge == SHMEM_HUGE_FORCE)
1895                 goto alloc_huge;
1896         switch (sbinfo->huge) {
1897         case SHMEM_HUGE_NEVER:
1898                 goto alloc_nohuge;
1899         case SHMEM_HUGE_WITHIN_SIZE: {
1900                 loff_t i_size;
1901                 pgoff_t off;
1902
1903                 off = round_up(index, HPAGE_PMD_NR);
1904                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1905                 if (i_size >= HPAGE_PMD_SIZE &&
1906                     i_size >> PAGE_SHIFT >= off)
1907                         goto alloc_huge;
1908
1909                 fallthrough;
1910         }
1911         case SHMEM_HUGE_ADVISE:
1912                 if (sgp_huge == SGP_HUGE)
1913                         goto alloc_huge;
1914                 /* TODO: implement fadvise() hints */
1915                 goto alloc_nohuge;
1916         }
1917
1918 alloc_huge:
1919         huge_gfp = vma_thp_gfp_mask(vma);
1920         huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1921         page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1922         if (IS_ERR(page)) {
1923 alloc_nohuge:
1924                 page = shmem_alloc_and_acct_page(gfp, inode,
1925                                                  index, false);
1926         }
1927         if (IS_ERR(page)) {
1928                 int retry = 5;
1929
1930                 error = PTR_ERR(page);
1931                 page = NULL;
1932                 if (error != -ENOSPC)
1933                         goto unlock;
1934                 /*
1935                  * Try to reclaim some space by splitting a huge page
1936                  * beyond i_size on the filesystem.
1937                  */
1938                 while (retry--) {
1939                         int ret;
1940
1941                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1942                         if (ret == SHRINK_STOP)
1943                                 break;
1944                         if (ret)
1945                                 goto alloc_nohuge;
1946                 }
1947                 goto unlock;
1948         }
1949
1950         if (PageTransHuge(page))
1951                 hindex = round_down(index, HPAGE_PMD_NR);
1952         else
1953                 hindex = index;
1954
1955         if (sgp == SGP_WRITE)
1956                 __SetPageReferenced(page);
1957
1958         error = shmem_add_to_page_cache(page, mapping, hindex,
1959                                         NULL, gfp & GFP_RECLAIM_MASK,
1960                                         charge_mm);
1961         if (error)
1962                 goto unacct;
1963         lru_cache_add(page);
1964
1965         spin_lock_irq(&info->lock);
1966         info->alloced += compound_nr(page);
1967         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1968         shmem_recalc_inode(inode);
1969         spin_unlock_irq(&info->lock);
1970         alloced = true;
1971
1972         if (PageTransHuge(page) &&
1973             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1974                         hindex + HPAGE_PMD_NR - 1) {
1975                 /*
1976                  * Part of the huge page is beyond i_size: subject
1977                  * to shrink under memory pressure.
1978                  */
1979                 spin_lock(&sbinfo->shrinklist_lock);
1980                 /*
1981                  * _careful to defend against unlocked access to
1982                  * ->shrink_list in shmem_unused_huge_shrink()
1983                  */
1984                 if (list_empty_careful(&info->shrinklist)) {
1985                         list_add_tail(&info->shrinklist,
1986                                       &sbinfo->shrinklist);
1987                         sbinfo->shrinklist_len++;
1988                 }
1989                 spin_unlock(&sbinfo->shrinklist_lock);
1990         }
1991
1992         /*
1993          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1994          */
1995         if (sgp == SGP_FALLOC)
1996                 sgp = SGP_WRITE;
1997 clear:
1998         /*
1999          * Let SGP_WRITE caller clear ends if write does not fill page;
2000          * but SGP_FALLOC on a page fallocated earlier must initialize
2001          * it now, lest undo on failure cancel our earlier guarantee.
2002          */
2003         if (sgp != SGP_WRITE && !PageUptodate(page)) {
2004                 int i;
2005
2006                 for (i = 0; i < compound_nr(page); i++) {
2007                         clear_highpage(page + i);
2008                         flush_dcache_page(page + i);
2009                 }
2010                 SetPageUptodate(page);
2011         }
2012
2013         /* Perhaps the file has been truncated since we checked */
2014         if (sgp <= SGP_CACHE &&
2015             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2016                 if (alloced) {
2017                         ClearPageDirty(page);
2018                         delete_from_page_cache(page);
2019                         spin_lock_irq(&info->lock);
2020                         shmem_recalc_inode(inode);
2021                         spin_unlock_irq(&info->lock);
2022                 }
2023                 error = -EINVAL;
2024                 goto unlock;
2025         }
2026 out:
2027         *pagep = page + index - hindex;
2028         return 0;
2029
2030         /*
2031          * Error recovery.
2032          */
2033 unacct:
2034         shmem_inode_unacct_blocks(inode, compound_nr(page));
2035
2036         if (PageTransHuge(page)) {
2037                 unlock_page(page);
2038                 put_page(page);
2039                 goto alloc_nohuge;
2040         }
2041 unlock:
2042         if (page) {
2043                 unlock_page(page);
2044                 put_page(page);
2045         }
2046         if (error == -ENOSPC && !once++) {
2047                 spin_lock_irq(&info->lock);
2048                 shmem_recalc_inode(inode);
2049                 spin_unlock_irq(&info->lock);
2050                 goto repeat;
2051         }
2052         if (error == -EEXIST)
2053                 goto repeat;
2054         return error;
2055 }
2056
2057 /*
2058  * This is like autoremove_wake_function, but it removes the wait queue
2059  * entry unconditionally - even if something else had already woken the
2060  * target.
2061  */
2062 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2063 {
2064         int ret = default_wake_function(wait, mode, sync, key);
2065         list_del_init(&wait->entry);
2066         return ret;
2067 }
2068
2069 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2070 {
2071         struct vm_area_struct *vma = vmf->vma;
2072         struct inode *inode = file_inode(vma->vm_file);
2073         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2074         enum sgp_type sgp;
2075         int err;
2076         vm_fault_t ret = VM_FAULT_LOCKED;
2077
2078         /*
2079          * Trinity finds that probing a hole which tmpfs is punching can
2080          * prevent the hole-punch from ever completing: which in turn
2081          * locks writers out with its hold on i_mutex.  So refrain from
2082          * faulting pages into the hole while it's being punched.  Although
2083          * shmem_undo_range() does remove the additions, it may be unable to
2084          * keep up, as each new page needs its own unmap_mapping_range() call,
2085          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2086          *
2087          * It does not matter if we sometimes reach this check just before the
2088          * hole-punch begins, so that one fault then races with the punch:
2089          * we just need to make racing faults a rare case.
2090          *
2091          * The implementation below would be much simpler if we just used a
2092          * standard mutex or completion: but we cannot take i_mutex in fault,
2093          * and bloating every shmem inode for this unlikely case would be sad.
2094          */
2095         if (unlikely(inode->i_private)) {
2096                 struct shmem_falloc *shmem_falloc;
2097
2098                 spin_lock(&inode->i_lock);
2099                 shmem_falloc = inode->i_private;
2100                 if (shmem_falloc &&
2101                     shmem_falloc->waitq &&
2102                     vmf->pgoff >= shmem_falloc->start &&
2103                     vmf->pgoff < shmem_falloc->next) {
2104                         struct file *fpin;
2105                         wait_queue_head_t *shmem_falloc_waitq;
2106                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2107
2108                         ret = VM_FAULT_NOPAGE;
2109                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2110                         if (fpin)
2111                                 ret = VM_FAULT_RETRY;
2112
2113                         shmem_falloc_waitq = shmem_falloc->waitq;
2114                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2115                                         TASK_UNINTERRUPTIBLE);
2116                         spin_unlock(&inode->i_lock);
2117                         schedule();
2118
2119                         /*
2120                          * shmem_falloc_waitq points into the shmem_fallocate()
2121                          * stack of the hole-punching task: shmem_falloc_waitq
2122                          * is usually invalid by the time we reach here, but
2123                          * finish_wait() does not dereference it in that case;
2124                          * though i_lock needed lest racing with wake_up_all().
2125                          */
2126                         spin_lock(&inode->i_lock);
2127                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2128                         spin_unlock(&inode->i_lock);
2129
2130                         if (fpin)
2131                                 fput(fpin);
2132                         return ret;
2133                 }
2134                 spin_unlock(&inode->i_lock);
2135         }
2136
2137         sgp = SGP_CACHE;
2138
2139         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2140             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2141                 sgp = SGP_NOHUGE;
2142         else if (vma->vm_flags & VM_HUGEPAGE)
2143                 sgp = SGP_HUGE;
2144
2145         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2146                                   gfp, vma, vmf, &ret);
2147         if (err)
2148                 return vmf_error(err);
2149         return ret;
2150 }
2151
2152 unsigned long shmem_get_unmapped_area(struct file *file,
2153                                       unsigned long uaddr, unsigned long len,
2154                                       unsigned long pgoff, unsigned long flags)
2155 {
2156         unsigned long (*get_area)(struct file *,
2157                 unsigned long, unsigned long, unsigned long, unsigned long);
2158         unsigned long addr;
2159         unsigned long offset;
2160         unsigned long inflated_len;
2161         unsigned long inflated_addr;
2162         unsigned long inflated_offset;
2163
2164         if (len > TASK_SIZE)
2165                 return -ENOMEM;
2166
2167         get_area = current->mm->get_unmapped_area;
2168         addr = get_area(file, uaddr, len, pgoff, flags);
2169
2170         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2171                 return addr;
2172         if (IS_ERR_VALUE(addr))
2173                 return addr;
2174         if (addr & ~PAGE_MASK)
2175                 return addr;
2176         if (addr > TASK_SIZE - len)
2177                 return addr;
2178
2179         if (shmem_huge == SHMEM_HUGE_DENY)
2180                 return addr;
2181         if (len < HPAGE_PMD_SIZE)
2182                 return addr;
2183         if (flags & MAP_FIXED)
2184                 return addr;
2185         /*
2186          * Our priority is to support MAP_SHARED mapped hugely;
2187          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2188          * But if caller specified an address hint and we allocated area there
2189          * successfully, respect that as before.
2190          */
2191         if (uaddr == addr)
2192                 return addr;
2193
2194         if (shmem_huge != SHMEM_HUGE_FORCE) {
2195                 struct super_block *sb;
2196
2197                 if (file) {
2198                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2199                         sb = file_inode(file)->i_sb;
2200                 } else {
2201                         /*
2202                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2203                          * for "/dev/zero", to create a shared anonymous object.
2204                          */
2205                         if (IS_ERR(shm_mnt))
2206                                 return addr;
2207                         sb = shm_mnt->mnt_sb;
2208                 }
2209                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2210                         return addr;
2211         }
2212
2213         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2214         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2215                 return addr;
2216         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2217                 return addr;
2218
2219         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2220         if (inflated_len > TASK_SIZE)
2221                 return addr;
2222         if (inflated_len < len)
2223                 return addr;
2224
2225         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2226         if (IS_ERR_VALUE(inflated_addr))
2227                 return addr;
2228         if (inflated_addr & ~PAGE_MASK)
2229                 return addr;
2230
2231         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2232         inflated_addr += offset - inflated_offset;
2233         if (inflated_offset > offset)
2234                 inflated_addr += HPAGE_PMD_SIZE;
2235
2236         if (inflated_addr > TASK_SIZE - len)
2237                 return addr;
2238         return inflated_addr;
2239 }
2240
2241 #ifdef CONFIG_NUMA
2242 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2243 {
2244         struct inode *inode = file_inode(vma->vm_file);
2245         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2246 }
2247
2248 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2249                                           unsigned long addr)
2250 {
2251         struct inode *inode = file_inode(vma->vm_file);
2252         pgoff_t index;
2253
2254         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2255         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2256 }
2257 #endif
2258
2259 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2260 {
2261         struct inode *inode = file_inode(file);
2262         struct shmem_inode_info *info = SHMEM_I(inode);
2263         int retval = -ENOMEM;
2264
2265         /*
2266          * What serializes the accesses to info->flags?
2267          * ipc_lock_object() when called from shmctl_do_lock(),
2268          * no serialization needed when called from shm_destroy().
2269          */
2270         if (lock && !(info->flags & VM_LOCKED)) {
2271                 if (!user_shm_lock(inode->i_size, ucounts))
2272                         goto out_nomem;
2273                 info->flags |= VM_LOCKED;
2274                 mapping_set_unevictable(file->f_mapping);
2275         }
2276         if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2277                 user_shm_unlock(inode->i_size, ucounts);
2278                 info->flags &= ~VM_LOCKED;
2279                 mapping_clear_unevictable(file->f_mapping);
2280         }
2281         retval = 0;
2282
2283 out_nomem:
2284         return retval;
2285 }
2286
2287 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2288 {
2289         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2290         int ret;
2291
2292         ret = seal_check_future_write(info->seals, vma);
2293         if (ret)
2294                 return ret;
2295
2296         /* arm64 - allow memory tagging on RAM-based files */
2297         vma->vm_flags |= VM_MTE_ALLOWED;
2298
2299         file_accessed(file);
2300         vma->vm_ops = &shmem_vm_ops;
2301         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2302                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2303                         (vma->vm_end & HPAGE_PMD_MASK)) {
2304                 khugepaged_enter(vma, vma->vm_flags);
2305         }
2306         return 0;
2307 }
2308
2309 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2310                                      umode_t mode, dev_t dev, unsigned long flags)
2311 {
2312         struct inode *inode;
2313         struct shmem_inode_info *info;
2314         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2315         ino_t ino;
2316
2317         if (shmem_reserve_inode(sb, &ino))
2318                 return NULL;
2319
2320         inode = new_inode(sb);
2321         if (inode) {
2322                 inode->i_ino = ino;
2323                 inode_init_owner(&init_user_ns, inode, dir, mode);
2324                 inode->i_blocks = 0;
2325                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2326                 inode->i_generation = prandom_u32();
2327                 info = SHMEM_I(inode);
2328                 memset(info, 0, (char *)inode - (char *)info);
2329                 spin_lock_init(&info->lock);
2330                 atomic_set(&info->stop_eviction, 0);
2331                 info->seals = F_SEAL_SEAL;
2332                 info->flags = flags & VM_NORESERVE;
2333                 INIT_LIST_HEAD(&info->shrinklist);
2334                 INIT_LIST_HEAD(&info->swaplist);
2335                 simple_xattrs_init(&info->xattrs);
2336                 cache_no_acl(inode);
2337
2338                 switch (mode & S_IFMT) {
2339                 default:
2340                         inode->i_op = &shmem_special_inode_operations;
2341                         init_special_inode(inode, mode, dev);
2342                         break;
2343                 case S_IFREG:
2344                         inode->i_mapping->a_ops = &shmem_aops;
2345                         inode->i_op = &shmem_inode_operations;
2346                         inode->i_fop = &shmem_file_operations;
2347                         mpol_shared_policy_init(&info->policy,
2348                                                  shmem_get_sbmpol(sbinfo));
2349                         break;
2350                 case S_IFDIR:
2351                         inc_nlink(inode);
2352                         /* Some things misbehave if size == 0 on a directory */
2353                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2354                         inode->i_op = &shmem_dir_inode_operations;
2355                         inode->i_fop = &simple_dir_operations;
2356                         break;
2357                 case S_IFLNK:
2358                         /*
2359                          * Must not load anything in the rbtree,
2360                          * mpol_free_shared_policy will not be called.
2361                          */
2362                         mpol_shared_policy_init(&info->policy, NULL);
2363                         break;
2364                 }
2365
2366                 lockdep_annotate_inode_mutex_key(inode);
2367         } else
2368                 shmem_free_inode(sb);
2369         return inode;
2370 }
2371
2372 #ifdef CONFIG_USERFAULTFD
2373 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2374                            pmd_t *dst_pmd,
2375                            struct vm_area_struct *dst_vma,
2376                            unsigned long dst_addr,
2377                            unsigned long src_addr,
2378                            bool zeropage,
2379                            struct page **pagep)
2380 {
2381         struct inode *inode = file_inode(dst_vma->vm_file);
2382         struct shmem_inode_info *info = SHMEM_I(inode);
2383         struct address_space *mapping = inode->i_mapping;
2384         gfp_t gfp = mapping_gfp_mask(mapping);
2385         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2386         void *page_kaddr;
2387         struct page *page;
2388         int ret;
2389         pgoff_t max_off;
2390
2391         if (!shmem_inode_acct_block(inode, 1)) {
2392                 /*
2393                  * We may have got a page, returned -ENOENT triggering a retry,
2394                  * and now we find ourselves with -ENOMEM. Release the page, to
2395                  * avoid a BUG_ON in our caller.
2396                  */
2397                 if (unlikely(*pagep)) {
2398                         put_page(*pagep);
2399                         *pagep = NULL;
2400                 }
2401                 return -ENOMEM;
2402         }
2403
2404         if (!*pagep) {
2405                 ret = -ENOMEM;
2406                 page = shmem_alloc_page(gfp, info, pgoff);
2407                 if (!page)
2408                         goto out_unacct_blocks;
2409
2410                 if (!zeropage) {        /* COPY */
2411                         page_kaddr = kmap_atomic(page);
2412                         ret = copy_from_user(page_kaddr,
2413                                              (const void __user *)src_addr,
2414                                              PAGE_SIZE);
2415                         kunmap_atomic(page_kaddr);
2416
2417                         /* fallback to copy_from_user outside mmap_lock */
2418                         if (unlikely(ret)) {
2419                                 *pagep = page;
2420                                 ret = -ENOENT;
2421                                 /* don't free the page */
2422                                 goto out_unacct_blocks;
2423                         }
2424                 } else {                /* ZEROPAGE */
2425                         clear_highpage(page);
2426                 }
2427         } else {
2428                 page = *pagep;
2429                 *pagep = NULL;
2430         }
2431
2432         VM_BUG_ON(PageLocked(page));
2433         VM_BUG_ON(PageSwapBacked(page));
2434         __SetPageLocked(page);
2435         __SetPageSwapBacked(page);
2436         __SetPageUptodate(page);
2437
2438         ret = -EFAULT;
2439         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2440         if (unlikely(pgoff >= max_off))
2441                 goto out_release;
2442
2443         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2444                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2445         if (ret)
2446                 goto out_release;
2447
2448         ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2449                                        page, true, false);
2450         if (ret)
2451                 goto out_delete_from_cache;
2452
2453         spin_lock_irq(&info->lock);
2454         info->alloced++;
2455         inode->i_blocks += BLOCKS_PER_PAGE;
2456         shmem_recalc_inode(inode);
2457         spin_unlock_irq(&info->lock);
2458
2459         SetPageDirty(page);
2460         unlock_page(page);
2461         return 0;
2462 out_delete_from_cache:
2463         delete_from_page_cache(page);
2464 out_release:
2465         unlock_page(page);
2466         put_page(page);
2467 out_unacct_blocks:
2468         shmem_inode_unacct_blocks(inode, 1);
2469         return ret;
2470 }
2471 #endif /* CONFIG_USERFAULTFD */
2472
2473 #ifdef CONFIG_TMPFS
2474 static const struct inode_operations shmem_symlink_inode_operations;
2475 static const struct inode_operations shmem_short_symlink_operations;
2476
2477 #ifdef CONFIG_TMPFS_XATTR
2478 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2479 #else
2480 #define shmem_initxattrs NULL
2481 #endif
2482
2483 static int
2484 shmem_write_begin(struct file *file, struct address_space *mapping,
2485                         loff_t pos, unsigned len, unsigned flags,
2486                         struct page **pagep, void **fsdata)
2487 {
2488         struct inode *inode = mapping->host;
2489         struct shmem_inode_info *info = SHMEM_I(inode);
2490         pgoff_t index = pos >> PAGE_SHIFT;
2491
2492         /* i_mutex is held by caller */
2493         if (unlikely(info->seals & (F_SEAL_GROW |
2494                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2495                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2496                         return -EPERM;
2497                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2498                         return -EPERM;
2499         }
2500
2501         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2502 }
2503
2504 static int
2505 shmem_write_end(struct file *file, struct address_space *mapping,
2506                         loff_t pos, unsigned len, unsigned copied,
2507                         struct page *page, void *fsdata)
2508 {
2509         struct inode *inode = mapping->host;
2510
2511         if (pos + copied > inode->i_size)
2512                 i_size_write(inode, pos + copied);
2513
2514         if (!PageUptodate(page)) {
2515                 struct page *head = compound_head(page);
2516                 if (PageTransCompound(page)) {
2517                         int i;
2518
2519                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2520                                 if (head + i == page)
2521                                         continue;
2522                                 clear_highpage(head + i);
2523                                 flush_dcache_page(head + i);
2524                         }
2525                 }
2526                 if (copied < PAGE_SIZE) {
2527                         unsigned from = pos & (PAGE_SIZE - 1);
2528                         zero_user_segments(page, 0, from,
2529                                         from + copied, PAGE_SIZE);
2530                 }
2531                 SetPageUptodate(head);
2532         }
2533         set_page_dirty(page);
2534         unlock_page(page);
2535         put_page(page);
2536
2537         return copied;
2538 }
2539
2540 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2541 {
2542         struct file *file = iocb->ki_filp;
2543         struct inode *inode = file_inode(file);
2544         struct address_space *mapping = inode->i_mapping;
2545         pgoff_t index;
2546         unsigned long offset;
2547         enum sgp_type sgp = SGP_READ;
2548         int error = 0;
2549         ssize_t retval = 0;
2550         loff_t *ppos = &iocb->ki_pos;
2551
2552         /*
2553          * Might this read be for a stacking filesystem?  Then when reading
2554          * holes of a sparse file, we actually need to allocate those pages,
2555          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2556          */
2557         if (!iter_is_iovec(to))
2558                 sgp = SGP_CACHE;
2559
2560         index = *ppos >> PAGE_SHIFT;
2561         offset = *ppos & ~PAGE_MASK;
2562
2563         for (;;) {
2564                 struct page *page = NULL;
2565                 pgoff_t end_index;
2566                 unsigned long nr, ret;
2567                 loff_t i_size = i_size_read(inode);
2568
2569                 end_index = i_size >> PAGE_SHIFT;
2570                 if (index > end_index)
2571                         break;
2572                 if (index == end_index) {
2573                         nr = i_size & ~PAGE_MASK;
2574                         if (nr <= offset)
2575                                 break;
2576                 }
2577
2578                 error = shmem_getpage(inode, index, &page, sgp);
2579                 if (error) {
2580                         if (error == -EINVAL)
2581                                 error = 0;
2582                         break;
2583                 }
2584                 if (page) {
2585                         if (sgp == SGP_CACHE)
2586                                 set_page_dirty(page);
2587                         unlock_page(page);
2588                 }
2589
2590                 /*
2591                  * We must evaluate after, since reads (unlike writes)
2592                  * are called without i_mutex protection against truncate
2593                  */
2594                 nr = PAGE_SIZE;
2595                 i_size = i_size_read(inode);
2596                 end_index = i_size >> PAGE_SHIFT;
2597                 if (index == end_index) {
2598                         nr = i_size & ~PAGE_MASK;
2599                         if (nr <= offset) {
2600                                 if (page)
2601                                         put_page(page);
2602                                 break;
2603                         }
2604                 }
2605                 nr -= offset;
2606
2607                 if (page) {
2608                         /*
2609                          * If users can be writing to this page using arbitrary
2610                          * virtual addresses, take care about potential aliasing
2611                          * before reading the page on the kernel side.
2612                          */
2613                         if (mapping_writably_mapped(mapping))
2614                                 flush_dcache_page(page);
2615                         /*
2616                          * Mark the page accessed if we read the beginning.
2617                          */
2618                         if (!offset)
2619                                 mark_page_accessed(page);
2620                 } else {
2621                         page = ZERO_PAGE(0);
2622                         get_page(page);
2623                 }
2624
2625                 /*
2626                  * Ok, we have the page, and it's up-to-date, so
2627                  * now we can copy it to user space...
2628                  */
2629                 ret = copy_page_to_iter(page, offset, nr, to);
2630                 retval += ret;
2631                 offset += ret;
2632                 index += offset >> PAGE_SHIFT;
2633                 offset &= ~PAGE_MASK;
2634
2635                 put_page(page);
2636                 if (!iov_iter_count(to))
2637                         break;
2638                 if (ret < nr) {
2639                         error = -EFAULT;
2640                         break;
2641                 }
2642                 cond_resched();
2643         }
2644
2645         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2646         file_accessed(file);
2647         return retval ? retval : error;
2648 }
2649
2650 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2651 {
2652         struct address_space *mapping = file->f_mapping;
2653         struct inode *inode = mapping->host;
2654
2655         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2656                 return generic_file_llseek_size(file, offset, whence,
2657                                         MAX_LFS_FILESIZE, i_size_read(inode));
2658         if (offset < 0)
2659                 return -ENXIO;
2660
2661         inode_lock(inode);
2662         /* We're holding i_mutex so we can access i_size directly */
2663         offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2664         if (offset >= 0)
2665                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2666         inode_unlock(inode);
2667         return offset;
2668 }
2669
2670 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2671                                                          loff_t len)
2672 {
2673         struct inode *inode = file_inode(file);
2674         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2675         struct shmem_inode_info *info = SHMEM_I(inode);
2676         struct shmem_falloc shmem_falloc;
2677         pgoff_t start, index, end, undo_fallocend;
2678         int error;
2679
2680         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2681                 return -EOPNOTSUPP;
2682
2683         inode_lock(inode);
2684
2685         if (mode & FALLOC_FL_PUNCH_HOLE) {
2686                 struct address_space *mapping = file->f_mapping;
2687                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2688                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2689                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2690
2691                 /* protected by i_mutex */
2692                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2693                         error = -EPERM;
2694                         goto out;
2695                 }
2696
2697                 shmem_falloc.waitq = &shmem_falloc_waitq;
2698                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2699                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2700                 spin_lock(&inode->i_lock);
2701                 inode->i_private = &shmem_falloc;
2702                 spin_unlock(&inode->i_lock);
2703
2704                 if ((u64)unmap_end > (u64)unmap_start)
2705                         unmap_mapping_range(mapping, unmap_start,
2706                                             1 + unmap_end - unmap_start, 0);
2707                 shmem_truncate_range(inode, offset, offset + len - 1);
2708                 /* No need to unmap again: hole-punching leaves COWed pages */
2709
2710                 spin_lock(&inode->i_lock);
2711                 inode->i_private = NULL;
2712                 wake_up_all(&shmem_falloc_waitq);
2713                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2714                 spin_unlock(&inode->i_lock);
2715                 error = 0;
2716                 goto out;
2717         }
2718
2719         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2720         error = inode_newsize_ok(inode, offset + len);
2721         if (error)
2722                 goto out;
2723
2724         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2725                 error = -EPERM;
2726                 goto out;
2727         }
2728
2729         start = offset >> PAGE_SHIFT;
2730         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2731         /* Try to avoid a swapstorm if len is impossible to satisfy */
2732         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2733                 error = -ENOSPC;
2734                 goto out;
2735         }
2736
2737         shmem_falloc.waitq = NULL;
2738         shmem_falloc.start = start;
2739         shmem_falloc.next  = start;
2740         shmem_falloc.nr_falloced = 0;
2741         shmem_falloc.nr_unswapped = 0;
2742         spin_lock(&inode->i_lock);
2743         inode->i_private = &shmem_falloc;
2744         spin_unlock(&inode->i_lock);
2745
2746         /*
2747          * info->fallocend is only relevant when huge pages might be
2748          * involved: to prevent split_huge_page() freeing fallocated
2749          * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2750          */
2751         undo_fallocend = info->fallocend;
2752         if (info->fallocend < end)
2753                 info->fallocend = end;
2754
2755         for (index = start; index < end; ) {
2756                 struct page *page;
2757
2758                 /*
2759                  * Good, the fallocate(2) manpage permits EINTR: we may have
2760                  * been interrupted because we are using up too much memory.
2761                  */
2762                 if (signal_pending(current))
2763                         error = -EINTR;
2764                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2765                         error = -ENOMEM;
2766                 else
2767                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2768                 if (error) {
2769                         info->fallocend = undo_fallocend;
2770                         /* Remove the !PageUptodate pages we added */
2771                         if (index > start) {
2772                                 shmem_undo_range(inode,
2773                                     (loff_t)start << PAGE_SHIFT,
2774                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2775                         }
2776                         goto undone;
2777                 }
2778
2779                 index++;
2780                 /*
2781                  * Here is a more important optimization than it appears:
2782                  * a second SGP_FALLOC on the same huge page will clear it,
2783                  * making it PageUptodate and un-undoable if we fail later.
2784                  */
2785                 if (PageTransCompound(page)) {
2786                         index = round_up(index, HPAGE_PMD_NR);
2787                         /* Beware 32-bit wraparound */
2788                         if (!index)
2789                                 index--;
2790                 }
2791
2792                 /*
2793                  * Inform shmem_writepage() how far we have reached.
2794                  * No need for lock or barrier: we have the page lock.
2795                  */
2796                 if (!PageUptodate(page))
2797                         shmem_falloc.nr_falloced += index - shmem_falloc.next;
2798                 shmem_falloc.next = index;
2799
2800                 /*
2801                  * If !PageUptodate, leave it that way so that freeable pages
2802                  * can be recognized if we need to rollback on error later.
2803                  * But set_page_dirty so that memory pressure will swap rather
2804                  * than free the pages we are allocating (and SGP_CACHE pages
2805                  * might still be clean: we now need to mark those dirty too).
2806                  */
2807                 set_page_dirty(page);
2808                 unlock_page(page);
2809                 put_page(page);
2810                 cond_resched();
2811         }
2812
2813         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2814                 i_size_write(inode, offset + len);
2815         inode->i_ctime = current_time(inode);
2816 undone:
2817         spin_lock(&inode->i_lock);
2818         inode->i_private = NULL;
2819         spin_unlock(&inode->i_lock);
2820 out:
2821         inode_unlock(inode);
2822         return error;
2823 }
2824
2825 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2826 {
2827         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2828
2829         buf->f_type = TMPFS_MAGIC;
2830         buf->f_bsize = PAGE_SIZE;
2831         buf->f_namelen = NAME_MAX;
2832         if (sbinfo->max_blocks) {
2833                 buf->f_blocks = sbinfo->max_blocks;
2834                 buf->f_bavail =
2835                 buf->f_bfree  = sbinfo->max_blocks -
2836                                 percpu_counter_sum(&sbinfo->used_blocks);
2837         }
2838         if (sbinfo->max_inodes) {
2839                 buf->f_files = sbinfo->max_inodes;
2840                 buf->f_ffree = sbinfo->free_inodes;
2841         }
2842         /* else leave those fields 0 like simple_statfs */
2843
2844         buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2845
2846         return 0;
2847 }
2848
2849 /*
2850  * File creation. Allocate an inode, and we're done..
2851  */
2852 static int
2853 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2854             struct dentry *dentry, umode_t mode, dev_t dev)
2855 {
2856         struct inode *inode;
2857         int error = -ENOSPC;
2858
2859         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2860         if (inode) {
2861                 error = simple_acl_create(dir, inode);
2862                 if (error)
2863                         goto out_iput;
2864                 error = security_inode_init_security(inode, dir,
2865                                                      &dentry->d_name,
2866                                                      shmem_initxattrs, NULL);
2867                 if (error && error != -EOPNOTSUPP)
2868                         goto out_iput;
2869
2870                 error = 0;
2871                 dir->i_size += BOGO_DIRENT_SIZE;
2872                 dir->i_ctime = dir->i_mtime = current_time(dir);
2873                 d_instantiate(dentry, inode);
2874                 dget(dentry); /* Extra count - pin the dentry in core */
2875         }
2876         return error;
2877 out_iput:
2878         iput(inode);
2879         return error;
2880 }
2881
2882 static int
2883 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2884               struct dentry *dentry, umode_t mode)
2885 {
2886         struct inode *inode;
2887         int error = -ENOSPC;
2888
2889         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2890         if (inode) {
2891                 error = security_inode_init_security(inode, dir,
2892                                                      NULL,
2893                                                      shmem_initxattrs, NULL);
2894                 if (error && error != -EOPNOTSUPP)
2895                         goto out_iput;
2896                 error = simple_acl_create(dir, inode);
2897                 if (error)
2898                         goto out_iput;
2899                 d_tmpfile(dentry, inode);
2900         }
2901         return error;
2902 out_iput:
2903         iput(inode);
2904         return error;
2905 }
2906
2907 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2908                        struct dentry *dentry, umode_t mode)
2909 {
2910         int error;
2911
2912         if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2913                                  mode | S_IFDIR, 0)))
2914                 return error;
2915         inc_nlink(dir);
2916         return 0;
2917 }
2918
2919 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2920                         struct dentry *dentry, umode_t mode, bool excl)
2921 {
2922         return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2923 }
2924
2925 /*
2926  * Link a file..
2927  */
2928 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2929 {
2930         struct inode *inode = d_inode(old_dentry);
2931         int ret = 0;
2932
2933         /*
2934          * No ordinary (disk based) filesystem counts links as inodes;
2935          * but each new link needs a new dentry, pinning lowmem, and
2936          * tmpfs dentries cannot be pruned until they are unlinked.
2937          * But if an O_TMPFILE file is linked into the tmpfs, the
2938          * first link must skip that, to get the accounting right.
2939          */
2940         if (inode->i_nlink) {
2941                 ret = shmem_reserve_inode(inode->i_sb, NULL);
2942                 if (ret)
2943                         goto out;
2944         }
2945
2946         dir->i_size += BOGO_DIRENT_SIZE;
2947         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2948         inc_nlink(inode);
2949         ihold(inode);   /* New dentry reference */
2950         dget(dentry);           /* Extra pinning count for the created dentry */
2951         d_instantiate(dentry, inode);
2952 out:
2953         return ret;
2954 }
2955
2956 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2957 {
2958         struct inode *inode = d_inode(dentry);
2959
2960         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2961                 shmem_free_inode(inode->i_sb);
2962
2963         dir->i_size -= BOGO_DIRENT_SIZE;
2964         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2965         drop_nlink(inode);
2966         dput(dentry);   /* Undo the count from "create" - this does all the work */
2967         return 0;
2968 }
2969
2970 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2971 {
2972         if (!simple_empty(dentry))
2973                 return -ENOTEMPTY;
2974
2975         drop_nlink(d_inode(dentry));
2976         drop_nlink(dir);
2977         return shmem_unlink(dir, dentry);
2978 }
2979
2980 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2981 {
2982         bool old_is_dir = d_is_dir(old_dentry);
2983         bool new_is_dir = d_is_dir(new_dentry);
2984
2985         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2986                 if (old_is_dir) {
2987                         drop_nlink(old_dir);
2988                         inc_nlink(new_dir);
2989                 } else {
2990                         drop_nlink(new_dir);
2991                         inc_nlink(old_dir);
2992                 }
2993         }
2994         old_dir->i_ctime = old_dir->i_mtime =
2995         new_dir->i_ctime = new_dir->i_mtime =
2996         d_inode(old_dentry)->i_ctime =
2997         d_inode(new_dentry)->i_ctime = current_time(old_dir);
2998
2999         return 0;
3000 }
3001
3002 static int shmem_whiteout(struct user_namespace *mnt_userns,
3003                           struct inode *old_dir, struct dentry *old_dentry)
3004 {
3005         struct dentry *whiteout;
3006         int error;
3007
3008         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3009         if (!whiteout)
3010                 return -ENOMEM;
3011
3012         error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3013                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3014         dput(whiteout);
3015         if (error)
3016                 return error;
3017
3018         /*
3019          * Cheat and hash the whiteout while the old dentry is still in
3020          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3021          *
3022          * d_lookup() will consistently find one of them at this point,
3023          * not sure which one, but that isn't even important.
3024          */
3025         d_rehash(whiteout);
3026         return 0;
3027 }
3028
3029 /*
3030  * The VFS layer already does all the dentry stuff for rename,
3031  * we just have to decrement the usage count for the target if
3032  * it exists so that the VFS layer correctly free's it when it
3033  * gets overwritten.
3034  */
3035 static int shmem_rename2(struct user_namespace *mnt_userns,
3036                          struct inode *old_dir, struct dentry *old_dentry,
3037                          struct inode *new_dir, struct dentry *new_dentry,
3038                          unsigned int flags)
3039 {
3040         struct inode *inode = d_inode(old_dentry);
3041         int they_are_dirs = S_ISDIR(inode->i_mode);
3042
3043         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3044                 return -EINVAL;
3045
3046         if (flags & RENAME_EXCHANGE)
3047                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3048
3049         if (!simple_empty(new_dentry))
3050                 return -ENOTEMPTY;
3051
3052         if (flags & RENAME_WHITEOUT) {
3053                 int error;
3054
3055                 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3056                 if (error)
3057                         return error;
3058         }
3059
3060         if (d_really_is_positive(new_dentry)) {
3061                 (void) shmem_unlink(new_dir, new_dentry);
3062                 if (they_are_dirs) {
3063                         drop_nlink(d_inode(new_dentry));
3064                         drop_nlink(old_dir);
3065                 }
3066         } else if (they_are_dirs) {
3067                 drop_nlink(old_dir);
3068                 inc_nlink(new_dir);
3069         }
3070
3071         old_dir->i_size -= BOGO_DIRENT_SIZE;
3072         new_dir->i_size += BOGO_DIRENT_SIZE;
3073         old_dir->i_ctime = old_dir->i_mtime =
3074         new_dir->i_ctime = new_dir->i_mtime =
3075         inode->i_ctime = current_time(old_dir);
3076         return 0;
3077 }
3078
3079 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3080                          struct dentry *dentry, const char *symname)
3081 {
3082         int error;
3083         int len;
3084         struct inode *inode;
3085         struct page *page;
3086
3087         len = strlen(symname) + 1;
3088         if (len > PAGE_SIZE)
3089                 return -ENAMETOOLONG;
3090
3091         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3092                                 VM_NORESERVE);
3093         if (!inode)
3094                 return -ENOSPC;
3095
3096         error = security_inode_init_security(inode, dir, &dentry->d_name,
3097                                              shmem_initxattrs, NULL);
3098         if (error && error != -EOPNOTSUPP) {
3099                 iput(inode);
3100                 return error;
3101         }
3102
3103         inode->i_size = len-1;
3104         if (len <= SHORT_SYMLINK_LEN) {
3105                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3106                 if (!inode->i_link) {
3107                         iput(inode);
3108                         return -ENOMEM;
3109                 }
3110                 inode->i_op = &shmem_short_symlink_operations;
3111         } else {
3112                 inode_nohighmem(inode);
3113                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3114                 if (error) {
3115                         iput(inode);
3116                         return error;
3117                 }
3118                 inode->i_mapping->a_ops = &shmem_aops;
3119                 inode->i_op = &shmem_symlink_inode_operations;
3120                 memcpy(page_address(page), symname, len);
3121                 SetPageUptodate(page);
3122                 set_page_dirty(page);
3123                 unlock_page(page);
3124                 put_page(page);
3125         }
3126         dir->i_size += BOGO_DIRENT_SIZE;
3127         dir->i_ctime = dir->i_mtime = current_time(dir);
3128         d_instantiate(dentry, inode);
3129         dget(dentry);
3130         return 0;
3131 }
3132
3133 static void shmem_put_link(void *arg)
3134 {
3135         mark_page_accessed(arg);
3136         put_page(arg);
3137 }
3138
3139 static const char *shmem_get_link(struct dentry *dentry,
3140                                   struct inode *inode,
3141                                   struct delayed_call *done)
3142 {
3143         struct page *page = NULL;
3144         int error;
3145         if (!dentry) {
3146                 page = find_get_page(inode->i_mapping, 0);
3147                 if (!page)
3148                         return ERR_PTR(-ECHILD);
3149                 if (!PageUptodate(page)) {
3150                         put_page(page);
3151                         return ERR_PTR(-ECHILD);
3152                 }
3153         } else {
3154                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3155                 if (error)
3156                         return ERR_PTR(error);
3157                 unlock_page(page);
3158         }
3159         set_delayed_call(done, shmem_put_link, page);
3160         return page_address(page);
3161 }
3162
3163 #ifdef CONFIG_TMPFS_XATTR
3164 /*
3165  * Superblocks without xattr inode operations may get some security.* xattr
3166  * support from the LSM "for free". As soon as we have any other xattrs
3167  * like ACLs, we also need to implement the security.* handlers at
3168  * filesystem level, though.
3169  */
3170
3171 /*
3172  * Callback for security_inode_init_security() for acquiring xattrs.
3173  */
3174 static int shmem_initxattrs(struct inode *inode,
3175                             const struct xattr *xattr_array,
3176                             void *fs_info)
3177 {
3178         struct shmem_inode_info *info = SHMEM_I(inode);
3179         const struct xattr *xattr;
3180         struct simple_xattr *new_xattr;
3181         size_t len;
3182
3183         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3184                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3185                 if (!new_xattr)
3186                         return -ENOMEM;
3187
3188                 len = strlen(xattr->name) + 1;
3189                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3190                                           GFP_KERNEL);
3191                 if (!new_xattr->name) {
3192                         kvfree(new_xattr);
3193                         return -ENOMEM;
3194                 }
3195
3196                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3197                        XATTR_SECURITY_PREFIX_LEN);
3198                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3199                        xattr->name, len);
3200
3201                 simple_xattr_list_add(&info->xattrs, new_xattr);
3202         }
3203
3204         return 0;
3205 }
3206
3207 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3208                                    struct dentry *unused, struct inode *inode,
3209                                    const char *name, void *buffer, size_t size)
3210 {
3211         struct shmem_inode_info *info = SHMEM_I(inode);
3212
3213         name = xattr_full_name(handler, name);
3214         return simple_xattr_get(&info->xattrs, name, buffer, size);
3215 }
3216
3217 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3218                                    struct user_namespace *mnt_userns,
3219                                    struct dentry *unused, struct inode *inode,
3220                                    const char *name, const void *value,
3221                                    size_t size, int flags)
3222 {
3223         struct shmem_inode_info *info = SHMEM_I(inode);
3224
3225         name = xattr_full_name(handler, name);
3226         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3227 }
3228
3229 static const struct xattr_handler shmem_security_xattr_handler = {
3230         .prefix = XATTR_SECURITY_PREFIX,
3231         .get = shmem_xattr_handler_get,
3232         .set = shmem_xattr_handler_set,
3233 };
3234
3235 static const struct xattr_handler shmem_trusted_xattr_handler = {
3236         .prefix = XATTR_TRUSTED_PREFIX,
3237         .get = shmem_xattr_handler_get,
3238         .set = shmem_xattr_handler_set,
3239 };
3240
3241 static const struct xattr_handler *shmem_xattr_handlers[] = {
3242 #ifdef CONFIG_TMPFS_POSIX_ACL
3243         &posix_acl_access_xattr_handler,
3244         &posix_acl_default_xattr_handler,
3245 #endif
3246         &shmem_security_xattr_handler,
3247         &shmem_trusted_xattr_handler,
3248         NULL
3249 };
3250
3251 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3252 {
3253         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3254         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3255 }
3256 #endif /* CONFIG_TMPFS_XATTR */
3257
3258 static const struct inode_operations shmem_short_symlink_operations = {
3259         .get_link       = simple_get_link,
3260 #ifdef CONFIG_TMPFS_XATTR
3261         .listxattr      = shmem_listxattr,
3262 #endif
3263 };
3264
3265 static const struct inode_operations shmem_symlink_inode_operations = {
3266         .get_link       = shmem_get_link,
3267 #ifdef CONFIG_TMPFS_XATTR
3268         .listxattr      = shmem_listxattr,
3269 #endif
3270 };
3271
3272 static struct dentry *shmem_get_parent(struct dentry *child)
3273 {
3274         return ERR_PTR(-ESTALE);
3275 }
3276
3277 static int shmem_match(struct inode *ino, void *vfh)
3278 {
3279         __u32 *fh = vfh;
3280         __u64 inum = fh[2];
3281         inum = (inum << 32) | fh[1];
3282         return ino->i_ino == inum && fh[0] == ino->i_generation;
3283 }
3284
3285 /* Find any alias of inode, but prefer a hashed alias */
3286 static struct dentry *shmem_find_alias(struct inode *inode)
3287 {
3288         struct dentry *alias = d_find_alias(inode);
3289
3290         return alias ?: d_find_any_alias(inode);
3291 }
3292
3293
3294 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3295                 struct fid *fid, int fh_len, int fh_type)
3296 {
3297         struct inode *inode;
3298         struct dentry *dentry = NULL;
3299         u64 inum;
3300
3301         if (fh_len < 3)
3302                 return NULL;
3303
3304         inum = fid->raw[2];
3305         inum = (inum << 32) | fid->raw[1];
3306
3307         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3308                         shmem_match, fid->raw);
3309         if (inode) {
3310                 dentry = shmem_find_alias(inode);
3311                 iput(inode);
3312         }
3313
3314         return dentry;
3315 }
3316
3317 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3318                                 struct inode *parent)
3319 {
3320         if (*len < 3) {
3321                 *len = 3;
3322                 return FILEID_INVALID;
3323         }
3324
3325         if (inode_unhashed(inode)) {
3326                 /* Unfortunately insert_inode_hash is not idempotent,
3327                  * so as we hash inodes here rather than at creation
3328                  * time, we need a lock to ensure we only try
3329                  * to do it once
3330                  */
3331                 static DEFINE_SPINLOCK(lock);
3332                 spin_lock(&lock);
3333                 if (inode_unhashed(inode))
3334                         __insert_inode_hash(inode,
3335                                             inode->i_ino + inode->i_generation);
3336                 spin_unlock(&lock);
3337         }
3338
3339         fh[0] = inode->i_generation;
3340         fh[1] = inode->i_ino;
3341         fh[2] = ((__u64)inode->i_ino) >> 32;
3342
3343         *len = 3;
3344         return 1;
3345 }
3346
3347 static const struct export_operations shmem_export_ops = {
3348         .get_parent     = shmem_get_parent,
3349         .encode_fh      = shmem_encode_fh,
3350         .fh_to_dentry   = shmem_fh_to_dentry,
3351 };
3352
3353 enum shmem_param {
3354         Opt_gid,
3355         Opt_huge,
3356         Opt_mode,
3357         Opt_mpol,
3358         Opt_nr_blocks,
3359         Opt_nr_inodes,
3360         Opt_size,
3361         Opt_uid,
3362         Opt_inode32,
3363         Opt_inode64,
3364 };
3365
3366 static const struct constant_table shmem_param_enums_huge[] = {
3367         {"never",       SHMEM_HUGE_NEVER },
3368         {"always",      SHMEM_HUGE_ALWAYS },
3369         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3370         {"advise",      SHMEM_HUGE_ADVISE },
3371         {}
3372 };
3373
3374 const struct fs_parameter_spec shmem_fs_parameters[] = {
3375         fsparam_u32   ("gid",           Opt_gid),
3376         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3377         fsparam_u32oct("mode",          Opt_mode),
3378         fsparam_string("mpol",          Opt_mpol),
3379         fsparam_string("nr_blocks",     Opt_nr_blocks),
3380         fsparam_string("nr_inodes",     Opt_nr_inodes),
3381         fsparam_string("size",          Opt_size),
3382         fsparam_u32   ("uid",           Opt_uid),
3383         fsparam_flag  ("inode32",       Opt_inode32),
3384         fsparam_flag  ("inode64",       Opt_inode64),
3385         {}
3386 };
3387
3388 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3389 {
3390         struct shmem_options *ctx = fc->fs_private;
3391         struct fs_parse_result result;
3392         unsigned long long size;
3393         char *rest;
3394         int opt;
3395
3396         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3397         if (opt < 0)
3398                 return opt;
3399
3400         switch (opt) {
3401         case Opt_size:
3402                 size = memparse(param->string, &rest);
3403                 if (*rest == '%') {
3404                         size <<= PAGE_SHIFT;
3405                         size *= totalram_pages();
3406                         do_div(size, 100);
3407                         rest++;
3408                 }
3409                 if (*rest)
3410                         goto bad_value;
3411                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3412                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3413                 break;
3414         case Opt_nr_blocks:
3415                 ctx->blocks = memparse(param->string, &rest);
3416                 if (*rest)
3417                         goto bad_value;
3418                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3419                 break;
3420         case Opt_nr_inodes:
3421                 ctx->inodes = memparse(param->string, &rest);
3422                 if (*rest)
3423                         goto bad_value;
3424                 ctx->seen |= SHMEM_SEEN_INODES;
3425                 break;
3426         case Opt_mode:
3427                 ctx->mode = result.uint_32 & 07777;
3428                 break;
3429         case Opt_uid:
3430                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3431                 if (!uid_valid(ctx->uid))
3432                         goto bad_value;
3433                 break;
3434         case Opt_gid:
3435                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3436                 if (!gid_valid(ctx->gid))
3437                         goto bad_value;
3438                 break;
3439         case Opt_huge:
3440                 ctx->huge = result.uint_32;
3441                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3442                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3443                       has_transparent_hugepage()))
3444                         goto unsupported_parameter;
3445                 ctx->seen |= SHMEM_SEEN_HUGE;
3446                 break;
3447         case Opt_mpol:
3448                 if (IS_ENABLED(CONFIG_NUMA)) {
3449                         mpol_put(ctx->mpol);
3450                         ctx->mpol = NULL;
3451                         if (mpol_parse_str(param->string, &ctx->mpol))
3452                                 goto bad_value;
3453                         break;
3454                 }
3455                 goto unsupported_parameter;
3456         case Opt_inode32:
3457                 ctx->full_inums = false;
3458                 ctx->seen |= SHMEM_SEEN_INUMS;
3459                 break;
3460         case Opt_inode64:
3461                 if (sizeof(ino_t) < 8) {
3462                         return invalfc(fc,
3463                                        "Cannot use inode64 with <64bit inums in kernel\n");
3464                 }
3465                 ctx->full_inums = true;
3466                 ctx->seen |= SHMEM_SEEN_INUMS;
3467                 break;
3468         }
3469         return 0;
3470
3471 unsupported_parameter:
3472         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3473 bad_value:
3474         return invalfc(fc, "Bad value for '%s'", param->key);
3475 }
3476
3477 static int shmem_parse_options(struct fs_context *fc, void *data)
3478 {
3479         char *options = data;
3480
3481         if (options) {
3482                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3483                 if (err)
3484                         return err;
3485         }
3486
3487         while (options != NULL) {
3488                 char *this_char = options;
3489                 for (;;) {
3490                         /*
3491                          * NUL-terminate this option: unfortunately,
3492                          * mount options form a comma-separated list,
3493                          * but mpol's nodelist may also contain commas.
3494                          */
3495                         options = strchr(options, ',');
3496                         if (options == NULL)
3497                                 break;
3498                         options++;
3499                         if (!isdigit(*options)) {
3500                                 options[-1] = '\0';
3501                                 break;
3502                         }
3503                 }
3504                 if (*this_char) {
3505                         char *value = strchr(this_char, '=');
3506                         size_t len = 0;
3507                         int err;
3508
3509                         if (value) {
3510                                 *value++ = '\0';
3511                                 len = strlen(value);
3512                         }
3513                         err = vfs_parse_fs_string(fc, this_char, value, len);
3514                         if (err < 0)
3515                                 return err;
3516                 }
3517         }
3518         return 0;
3519 }
3520
3521 /*
3522  * Reconfigure a shmem filesystem.
3523  *
3524  * Note that we disallow change from limited->unlimited blocks/inodes while any
3525  * are in use; but we must separately disallow unlimited->limited, because in
3526  * that case we have no record of how much is already in use.
3527  */
3528 static int shmem_reconfigure(struct fs_context *fc)
3529 {
3530         struct shmem_options *ctx = fc->fs_private;
3531         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3532         unsigned long inodes;
3533         struct mempolicy *mpol = NULL;
3534         const char *err;
3535
3536         raw_spin_lock(&sbinfo->stat_lock);
3537         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3538         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3539                 if (!sbinfo->max_blocks) {
3540                         err = "Cannot retroactively limit size";
3541                         goto out;
3542                 }
3543                 if (percpu_counter_compare(&sbinfo->used_blocks,
3544                                            ctx->blocks) > 0) {
3545                         err = "Too small a size for current use";
3546                         goto out;
3547                 }
3548         }
3549         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3550                 if (!sbinfo->max_inodes) {
3551                         err = "Cannot retroactively limit inodes";
3552                         goto out;
3553                 }
3554                 if (ctx->inodes < inodes) {
3555                         err = "Too few inodes for current use";
3556                         goto out;
3557                 }
3558         }
3559
3560         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3561             sbinfo->next_ino > UINT_MAX) {
3562                 err = "Current inum too high to switch to 32-bit inums";
3563                 goto out;
3564         }
3565
3566         if (ctx->seen & SHMEM_SEEN_HUGE)
3567                 sbinfo->huge = ctx->huge;
3568         if (ctx->seen & SHMEM_SEEN_INUMS)
3569                 sbinfo->full_inums = ctx->full_inums;
3570         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3571                 sbinfo->max_blocks  = ctx->blocks;
3572         if (ctx->seen & SHMEM_SEEN_INODES) {
3573                 sbinfo->max_inodes  = ctx->inodes;
3574                 sbinfo->free_inodes = ctx->inodes - inodes;
3575         }
3576
3577         /*
3578          * Preserve previous mempolicy unless mpol remount option was specified.
3579          */
3580         if (ctx->mpol) {
3581                 mpol = sbinfo->mpol;
3582                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3583                 ctx->mpol = NULL;
3584         }
3585         raw_spin_unlock(&sbinfo->stat_lock);
3586         mpol_put(mpol);
3587         return 0;
3588 out:
3589         raw_spin_unlock(&sbinfo->stat_lock);
3590         return invalfc(fc, "%s", err);
3591 }
3592
3593 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3594 {
3595         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3596
3597         if (sbinfo->max_blocks != shmem_default_max_blocks())
3598                 seq_printf(seq, ",size=%luk",
3599                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3600         if (sbinfo->max_inodes != shmem_default_max_inodes())
3601                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3602         if (sbinfo->mode != (0777 | S_ISVTX))
3603                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3604         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3605                 seq_printf(seq, ",uid=%u",
3606                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3607         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3608                 seq_printf(seq, ",gid=%u",
3609                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3610
3611         /*
3612          * Showing inode{64,32} might be useful even if it's the system default,
3613          * since then people don't have to resort to checking both here and
3614          * /proc/config.gz to confirm 64-bit inums were successfully applied
3615          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3616          *
3617          * We hide it when inode64 isn't the default and we are using 32-bit
3618          * inodes, since that probably just means the feature isn't even under
3619          * consideration.
3620          *
3621          * As such:
3622          *
3623          *                     +-----------------+-----------------+
3624          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3625          *  +------------------+-----------------+-----------------+
3626          *  | full_inums=true  | show            | show            |
3627          *  | full_inums=false | show            | hide            |
3628          *  +------------------+-----------------+-----------------+
3629          *
3630          */
3631         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3632                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3633 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3634         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3635         if (sbinfo->huge)
3636                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3637 #endif
3638         shmem_show_mpol(seq, sbinfo->mpol);
3639         return 0;
3640 }
3641
3642 #endif /* CONFIG_TMPFS */
3643
3644 static void shmem_put_super(struct super_block *sb)
3645 {
3646         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3647
3648         free_percpu(sbinfo->ino_batch);
3649         percpu_counter_destroy(&sbinfo->used_blocks);
3650         mpol_put(sbinfo->mpol);
3651         kfree(sbinfo);
3652         sb->s_fs_info = NULL;
3653 }
3654
3655 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3656 {
3657         struct shmem_options *ctx = fc->fs_private;
3658         struct inode *inode;
3659         struct shmem_sb_info *sbinfo;
3660
3661         /* Round up to L1_CACHE_BYTES to resist false sharing */
3662         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3663                                 L1_CACHE_BYTES), GFP_KERNEL);
3664         if (!sbinfo)
3665                 return -ENOMEM;
3666
3667         sb->s_fs_info = sbinfo;
3668
3669 #ifdef CONFIG_TMPFS
3670         /*
3671          * Per default we only allow half of the physical ram per
3672          * tmpfs instance, limiting inodes to one per page of lowmem;
3673          * but the internal instance is left unlimited.
3674          */
3675         if (!(sb->s_flags & SB_KERNMOUNT)) {
3676                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3677                         ctx->blocks = shmem_default_max_blocks();
3678                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3679                         ctx->inodes = shmem_default_max_inodes();
3680                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3681                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3682         } else {
3683                 sb->s_flags |= SB_NOUSER;
3684         }
3685         sb->s_export_op = &shmem_export_ops;
3686         sb->s_flags |= SB_NOSEC;
3687 #else
3688         sb->s_flags |= SB_NOUSER;
3689 #endif
3690         sbinfo->max_blocks = ctx->blocks;
3691         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3692         if (sb->s_flags & SB_KERNMOUNT) {
3693                 sbinfo->ino_batch = alloc_percpu(ino_t);
3694                 if (!sbinfo->ino_batch)
3695                         goto failed;
3696         }
3697         sbinfo->uid = ctx->uid;
3698         sbinfo->gid = ctx->gid;
3699         sbinfo->full_inums = ctx->full_inums;
3700         sbinfo->mode = ctx->mode;
3701         sbinfo->huge = ctx->huge;
3702         sbinfo->mpol = ctx->mpol;
3703         ctx->mpol = NULL;
3704
3705         raw_spin_lock_init(&sbinfo->stat_lock);
3706         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3707                 goto failed;
3708         spin_lock_init(&sbinfo->shrinklist_lock);
3709         INIT_LIST_HEAD(&sbinfo->shrinklist);
3710
3711         sb->s_maxbytes = MAX_LFS_FILESIZE;
3712         sb->s_blocksize = PAGE_SIZE;
3713         sb->s_blocksize_bits = PAGE_SHIFT;
3714         sb->s_magic = TMPFS_MAGIC;
3715         sb->s_op = &shmem_ops;
3716         sb->s_time_gran = 1;
3717 #ifdef CONFIG_TMPFS_XATTR
3718         sb->s_xattr = shmem_xattr_handlers;
3719 #endif
3720 #ifdef CONFIG_TMPFS_POSIX_ACL
3721         sb->s_flags |= SB_POSIXACL;
3722 #endif
3723         uuid_gen(&sb->s_uuid);
3724
3725         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3726         if (!inode)
3727                 goto failed;
3728         inode->i_uid = sbinfo->uid;
3729         inode->i_gid = sbinfo->gid;
3730         sb->s_root = d_make_root(inode);
3731         if (!sb->s_root)
3732                 goto failed;
3733         return 0;
3734
3735 failed:
3736         shmem_put_super(sb);
3737         return -ENOMEM;
3738 }
3739
3740 static int shmem_get_tree(struct fs_context *fc)
3741 {
3742         return get_tree_nodev(fc, shmem_fill_super);
3743 }
3744
3745 static void shmem_free_fc(struct fs_context *fc)
3746 {
3747         struct shmem_options *ctx = fc->fs_private;
3748
3749         if (ctx) {
3750                 mpol_put(ctx->mpol);
3751                 kfree(ctx);
3752         }
3753 }
3754
3755 static const struct fs_context_operations shmem_fs_context_ops = {
3756         .free                   = shmem_free_fc,
3757         .get_tree               = shmem_get_tree,
3758 #ifdef CONFIG_TMPFS
3759         .parse_monolithic       = shmem_parse_options,
3760         .parse_param            = shmem_parse_one,
3761         .reconfigure            = shmem_reconfigure,
3762 #endif
3763 };
3764
3765 static struct kmem_cache *shmem_inode_cachep;
3766
3767 static struct inode *shmem_alloc_inode(struct super_block *sb)
3768 {
3769         struct shmem_inode_info *info;
3770         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3771         if (!info)
3772                 return NULL;
3773         return &info->vfs_inode;
3774 }
3775
3776 static void shmem_free_in_core_inode(struct inode *inode)
3777 {
3778         if (S_ISLNK(inode->i_mode))
3779                 kfree(inode->i_link);
3780         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3781 }
3782
3783 static void shmem_destroy_inode(struct inode *inode)
3784 {
3785         if (S_ISREG(inode->i_mode))
3786                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3787 }
3788
3789 static void shmem_init_inode(void *foo)
3790 {
3791         struct shmem_inode_info *info = foo;
3792         inode_init_once(&info->vfs_inode);
3793 }
3794
3795 static void shmem_init_inodecache(void)
3796 {
3797         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3798                                 sizeof(struct shmem_inode_info),
3799                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3800 }
3801
3802 static void shmem_destroy_inodecache(void)
3803 {
3804         kmem_cache_destroy(shmem_inode_cachep);
3805 }
3806
3807 const struct address_space_operations shmem_aops = {
3808         .writepage      = shmem_writepage,
3809         .set_page_dirty = __set_page_dirty_no_writeback,
3810 #ifdef CONFIG_TMPFS
3811         .write_begin    = shmem_write_begin,
3812         .write_end      = shmem_write_end,
3813 #endif
3814 #ifdef CONFIG_MIGRATION
3815         .migratepage    = migrate_page,
3816 #endif
3817         .error_remove_page = generic_error_remove_page,
3818 };
3819 EXPORT_SYMBOL(shmem_aops);
3820
3821 static const struct file_operations shmem_file_operations = {
3822         .mmap           = shmem_mmap,
3823         .get_unmapped_area = shmem_get_unmapped_area,
3824 #ifdef CONFIG_TMPFS
3825         .llseek         = shmem_file_llseek,
3826         .read_iter      = shmem_file_read_iter,
3827         .write_iter     = generic_file_write_iter,
3828         .fsync          = noop_fsync,
3829         .splice_read    = generic_file_splice_read,
3830         .splice_write   = iter_file_splice_write,
3831         .fallocate      = shmem_fallocate,
3832 #endif
3833 };
3834
3835 static const struct inode_operations shmem_inode_operations = {
3836         .getattr        = shmem_getattr,
3837         .setattr        = shmem_setattr,
3838 #ifdef CONFIG_TMPFS_XATTR
3839         .listxattr      = shmem_listxattr,
3840         .set_acl        = simple_set_acl,
3841 #endif
3842 };
3843
3844 static const struct inode_operations shmem_dir_inode_operations = {
3845 #ifdef CONFIG_TMPFS
3846         .create         = shmem_create,
3847         .lookup         = simple_lookup,
3848         .link           = shmem_link,
3849         .unlink         = shmem_unlink,
3850         .symlink        = shmem_symlink,
3851         .mkdir          = shmem_mkdir,
3852         .rmdir          = shmem_rmdir,
3853         .mknod          = shmem_mknod,
3854         .rename         = shmem_rename2,
3855         .tmpfile        = shmem_tmpfile,
3856 #endif
3857 #ifdef CONFIG_TMPFS_XATTR
3858         .listxattr      = shmem_listxattr,
3859 #endif
3860 #ifdef CONFIG_TMPFS_POSIX_ACL
3861         .setattr        = shmem_setattr,
3862         .set_acl        = simple_set_acl,
3863 #endif
3864 };
3865
3866 static const struct inode_operations shmem_special_inode_operations = {
3867 #ifdef CONFIG_TMPFS_XATTR
3868         .listxattr      = shmem_listxattr,
3869 #endif
3870 #ifdef CONFIG_TMPFS_POSIX_ACL
3871         .setattr        = shmem_setattr,
3872         .set_acl        = simple_set_acl,
3873 #endif
3874 };
3875
3876 static const struct super_operations shmem_ops = {
3877         .alloc_inode    = shmem_alloc_inode,
3878         .free_inode     = shmem_free_in_core_inode,
3879         .destroy_inode  = shmem_destroy_inode,
3880 #ifdef CONFIG_TMPFS
3881         .statfs         = shmem_statfs,
3882         .show_options   = shmem_show_options,
3883 #endif
3884         .evict_inode    = shmem_evict_inode,
3885         .drop_inode     = generic_delete_inode,
3886         .put_super      = shmem_put_super,
3887 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3888         .nr_cached_objects      = shmem_unused_huge_count,
3889         .free_cached_objects    = shmem_unused_huge_scan,
3890 #endif
3891 };
3892
3893 static const struct vm_operations_struct shmem_vm_ops = {
3894         .fault          = shmem_fault,
3895         .map_pages      = filemap_map_pages,
3896 #ifdef CONFIG_NUMA
3897         .set_policy     = shmem_set_policy,
3898         .get_policy     = shmem_get_policy,
3899 #endif
3900 };
3901
3902 int shmem_init_fs_context(struct fs_context *fc)
3903 {
3904         struct shmem_options *ctx;
3905
3906         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3907         if (!ctx)
3908                 return -ENOMEM;
3909
3910         ctx->mode = 0777 | S_ISVTX;
3911         ctx->uid = current_fsuid();
3912         ctx->gid = current_fsgid();
3913
3914         fc->fs_private = ctx;
3915         fc->ops = &shmem_fs_context_ops;
3916         return 0;
3917 }
3918
3919 static struct file_system_type shmem_fs_type = {
3920         .owner          = THIS_MODULE,
3921         .name           = "tmpfs",
3922         .init_fs_context = shmem_init_fs_context,
3923 #ifdef CONFIG_TMPFS
3924         .parameters     = shmem_fs_parameters,
3925 #endif
3926         .kill_sb        = kill_litter_super,
3927         .fs_flags       = FS_USERNS_MOUNT | FS_THP_SUPPORT,
3928 };
3929
3930 int __init shmem_init(void)
3931 {
3932         int error;
3933
3934         shmem_init_inodecache();
3935
3936         error = register_filesystem(&shmem_fs_type);
3937         if (error) {
3938                 pr_err("Could not register tmpfs\n");
3939                 goto out2;
3940         }
3941
3942         shm_mnt = kern_mount(&shmem_fs_type);
3943         if (IS_ERR(shm_mnt)) {
3944                 error = PTR_ERR(shm_mnt);
3945                 pr_err("Could not kern_mount tmpfs\n");
3946                 goto out1;
3947         }
3948
3949 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3950         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3951                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3952         else
3953                 shmem_huge = 0; /* just in case it was patched */
3954 #endif
3955         return 0;
3956
3957 out1:
3958         unregister_filesystem(&shmem_fs_type);
3959 out2:
3960         shmem_destroy_inodecache();
3961         shm_mnt = ERR_PTR(error);
3962         return error;
3963 }
3964
3965 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3966 static ssize_t shmem_enabled_show(struct kobject *kobj,
3967                                   struct kobj_attribute *attr, char *buf)
3968 {
3969         static const int values[] = {
3970                 SHMEM_HUGE_ALWAYS,
3971                 SHMEM_HUGE_WITHIN_SIZE,
3972                 SHMEM_HUGE_ADVISE,
3973                 SHMEM_HUGE_NEVER,
3974                 SHMEM_HUGE_DENY,
3975                 SHMEM_HUGE_FORCE,
3976         };
3977         int len = 0;
3978         int i;
3979
3980         for (i = 0; i < ARRAY_SIZE(values); i++) {
3981                 len += sysfs_emit_at(buf, len,
3982                                      shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3983                                      i ? " " : "",
3984                                      shmem_format_huge(values[i]));
3985         }
3986
3987         len += sysfs_emit_at(buf, len, "\n");
3988
3989         return len;
3990 }
3991
3992 static ssize_t shmem_enabled_store(struct kobject *kobj,
3993                 struct kobj_attribute *attr, const char *buf, size_t count)
3994 {
3995         char tmp[16];
3996         int huge;
3997
3998         if (count + 1 > sizeof(tmp))
3999                 return -EINVAL;
4000         memcpy(tmp, buf, count);
4001         tmp[count] = '\0';
4002         if (count && tmp[count - 1] == '\n')
4003                 tmp[count - 1] = '\0';
4004
4005         huge = shmem_parse_huge(tmp);
4006         if (huge == -EINVAL)
4007                 return -EINVAL;
4008         if (!has_transparent_hugepage() &&
4009                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4010                 return -EINVAL;
4011
4012         shmem_huge = huge;
4013         if (shmem_huge > SHMEM_HUGE_DENY)
4014                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4015         return count;
4016 }
4017
4018 struct kobj_attribute shmem_enabled_attr =
4019         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4020 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4021
4022 #else /* !CONFIG_SHMEM */
4023
4024 /*
4025  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4026  *
4027  * This is intended for small system where the benefits of the full
4028  * shmem code (swap-backed and resource-limited) are outweighed by
4029  * their complexity. On systems without swap this code should be
4030  * effectively equivalent, but much lighter weight.
4031  */
4032
4033 static struct file_system_type shmem_fs_type = {
4034         .name           = "tmpfs",
4035         .init_fs_context = ramfs_init_fs_context,
4036         .parameters     = ramfs_fs_parameters,
4037         .kill_sb        = kill_litter_super,
4038         .fs_flags       = FS_USERNS_MOUNT,
4039 };
4040
4041 int __init shmem_init(void)
4042 {
4043         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4044
4045         shm_mnt = kern_mount(&shmem_fs_type);
4046         BUG_ON(IS_ERR(shm_mnt));
4047
4048         return 0;
4049 }
4050
4051 int shmem_unuse(unsigned int type, bool frontswap,
4052                 unsigned long *fs_pages_to_unuse)
4053 {
4054         return 0;
4055 }
4056
4057 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4058 {
4059         return 0;
4060 }
4061
4062 void shmem_unlock_mapping(struct address_space *mapping)
4063 {
4064 }
4065
4066 #ifdef CONFIG_MMU
4067 unsigned long shmem_get_unmapped_area(struct file *file,
4068                                       unsigned long addr, unsigned long len,
4069                                       unsigned long pgoff, unsigned long flags)
4070 {
4071         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4072 }
4073 #endif
4074
4075 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4076 {
4077         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4078 }
4079 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4080
4081 #define shmem_vm_ops                            generic_file_vm_ops
4082 #define shmem_file_operations                   ramfs_file_operations
4083 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4084 #define shmem_acct_size(flags, size)            0
4085 #define shmem_unacct_size(flags, size)          do {} while (0)
4086
4087 #endif /* CONFIG_SHMEM */
4088
4089 /* common code */
4090
4091 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4092                                        unsigned long flags, unsigned int i_flags)
4093 {
4094         struct inode *inode;
4095         struct file *res;
4096
4097         if (IS_ERR(mnt))
4098                 return ERR_CAST(mnt);
4099
4100         if (size < 0 || size > MAX_LFS_FILESIZE)
4101                 return ERR_PTR(-EINVAL);
4102
4103         if (shmem_acct_size(flags, size))
4104                 return ERR_PTR(-ENOMEM);
4105
4106         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4107                                 flags);
4108         if (unlikely(!inode)) {
4109                 shmem_unacct_size(flags, size);
4110                 return ERR_PTR(-ENOSPC);
4111         }
4112         inode->i_flags |= i_flags;
4113         inode->i_size = size;
4114         clear_nlink(inode);     /* It is unlinked */
4115         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4116         if (!IS_ERR(res))
4117                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4118                                 &shmem_file_operations);
4119         if (IS_ERR(res))
4120                 iput(inode);
4121         return res;
4122 }
4123
4124 /**
4125  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4126  *      kernel internal.  There will be NO LSM permission checks against the
4127  *      underlying inode.  So users of this interface must do LSM checks at a
4128  *      higher layer.  The users are the big_key and shm implementations.  LSM
4129  *      checks are provided at the key or shm level rather than the inode.
4130  * @name: name for dentry (to be seen in /proc/<pid>/maps
4131  * @size: size to be set for the file
4132  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4133  */
4134 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4135 {
4136         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4137 }
4138
4139 /**
4140  * shmem_file_setup - get an unlinked file living in tmpfs
4141  * @name: name for dentry (to be seen in /proc/<pid>/maps
4142  * @size: size to be set for the file
4143  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4144  */
4145 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4146 {
4147         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4148 }
4149 EXPORT_SYMBOL_GPL(shmem_file_setup);
4150
4151 /**
4152  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4153  * @mnt: the tmpfs mount where the file will be created
4154  * @name: name for dentry (to be seen in /proc/<pid>/maps
4155  * @size: size to be set for the file
4156  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4157  */
4158 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4159                                        loff_t size, unsigned long flags)
4160 {
4161         return __shmem_file_setup(mnt, name, size, flags, 0);
4162 }
4163 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4164
4165 /**
4166  * shmem_zero_setup - setup a shared anonymous mapping
4167  * @vma: the vma to be mmapped is prepared by do_mmap
4168  */
4169 int shmem_zero_setup(struct vm_area_struct *vma)
4170 {
4171         struct file *file;
4172         loff_t size = vma->vm_end - vma->vm_start;
4173
4174         /*
4175          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4176          * between XFS directory reading and selinux: since this file is only
4177          * accessible to the user through its mapping, use S_PRIVATE flag to
4178          * bypass file security, in the same way as shmem_kernel_file_setup().
4179          */
4180         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4181         if (IS_ERR(file))
4182                 return PTR_ERR(file);
4183
4184         if (vma->vm_file)
4185                 fput(vma->vm_file);
4186         vma->vm_file = file;
4187         vma->vm_ops = &shmem_vm_ops;
4188
4189         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4190                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4191                         (vma->vm_end & HPAGE_PMD_MASK)) {
4192                 khugepaged_enter(vma, vma->vm_flags);
4193         }
4194
4195         return 0;
4196 }
4197
4198 /**
4199  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4200  * @mapping:    the page's address_space
4201  * @index:      the page index
4202  * @gfp:        the page allocator flags to use if allocating
4203  *
4204  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4205  * with any new page allocations done using the specified allocation flags.
4206  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4207  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4208  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4209  *
4210  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4211  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4212  */
4213 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4214                                          pgoff_t index, gfp_t gfp)
4215 {
4216 #ifdef CONFIG_SHMEM
4217         struct inode *inode = mapping->host;
4218         struct page *page;
4219         int error;
4220
4221         BUG_ON(!shmem_mapping(mapping));
4222         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4223                                   gfp, NULL, NULL, NULL);
4224         if (error)
4225                 page = ERR_PTR(error);
4226         else
4227                 unlock_page(page);
4228         return page;
4229 #else
4230         /*
4231          * The tiny !SHMEM case uses ramfs without swap
4232          */
4233         return read_cache_page_gfp(mapping, index, gfp);
4234 #endif
4235 }
4236 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);