huge tmpfs: decide stat.st_blksize by shmem_is_huge()
[linux-2.6-microblaze.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42
43 static struct vfsmount *shm_mnt;
44
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/blkdev.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82
83 #include <linux/uaccess.h>
84
85 #include "internal.h"
86
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_mutex making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103         pgoff_t start;          /* start of range currently being fallocated */
104         pgoff_t next;           /* the next page offset to be fallocated */
105         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
106         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
107 };
108
109 struct shmem_options {
110         unsigned long long blocks;
111         unsigned long long inodes;
112         struct mempolicy *mpol;
113         kuid_t uid;
114         kgid_t gid;
115         umode_t mode;
116         bool full_inums;
117         int huge;
118         int seen;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
122 #define SHMEM_SEEN_INUMS 8
123 };
124
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128         return totalram_pages() / 2;
129 }
130
131 static unsigned long shmem_default_max_inodes(void)
132 {
133         unsigned long nr_pages = totalram_pages();
134
135         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138
139 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
140                              struct page **pagep, enum sgp_type sgp,
141                              gfp_t gfp, struct vm_area_struct *vma,
142                              vm_fault_t *fault_type);
143 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
144                 struct page **pagep, enum sgp_type sgp,
145                 gfp_t gfp, struct vm_area_struct *vma,
146                 struct vm_fault *vmf, vm_fault_t *fault_type);
147
148 int shmem_getpage(struct inode *inode, pgoff_t index,
149                 struct page **pagep, enum sgp_type sgp)
150 {
151         return shmem_getpage_gfp(inode, index, pagep, sgp,
152                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
153 }
154
155 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
156 {
157         return sb->s_fs_info;
158 }
159
160 /*
161  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
162  * for shared memory and for shared anonymous (/dev/zero) mappings
163  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
164  * consistent with the pre-accounting of private mappings ...
165  */
166 static inline int shmem_acct_size(unsigned long flags, loff_t size)
167 {
168         return (flags & VM_NORESERVE) ?
169                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
170 }
171
172 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
173 {
174         if (!(flags & VM_NORESERVE))
175                 vm_unacct_memory(VM_ACCT(size));
176 }
177
178 static inline int shmem_reacct_size(unsigned long flags,
179                 loff_t oldsize, loff_t newsize)
180 {
181         if (!(flags & VM_NORESERVE)) {
182                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
183                         return security_vm_enough_memory_mm(current->mm,
184                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
185                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
186                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
187         }
188         return 0;
189 }
190
191 /*
192  * ... whereas tmpfs objects are accounted incrementally as
193  * pages are allocated, in order to allow large sparse files.
194  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
195  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
196  */
197 static inline int shmem_acct_block(unsigned long flags, long pages)
198 {
199         if (!(flags & VM_NORESERVE))
200                 return 0;
201
202         return security_vm_enough_memory_mm(current->mm,
203                         pages * VM_ACCT(PAGE_SIZE));
204 }
205
206 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
207 {
208         if (flags & VM_NORESERVE)
209                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
210 }
211
212 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
213 {
214         struct shmem_inode_info *info = SHMEM_I(inode);
215         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
216
217         if (shmem_acct_block(info->flags, pages))
218                 return false;
219
220         if (sbinfo->max_blocks) {
221                 if (percpu_counter_compare(&sbinfo->used_blocks,
222                                            sbinfo->max_blocks - pages) > 0)
223                         goto unacct;
224                 percpu_counter_add(&sbinfo->used_blocks, pages);
225         }
226
227         return true;
228
229 unacct:
230         shmem_unacct_blocks(info->flags, pages);
231         return false;
232 }
233
234 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
235 {
236         struct shmem_inode_info *info = SHMEM_I(inode);
237         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
238
239         if (sbinfo->max_blocks)
240                 percpu_counter_sub(&sbinfo->used_blocks, pages);
241         shmem_unacct_blocks(info->flags, pages);
242 }
243
244 static const struct super_operations shmem_ops;
245 const struct address_space_operations shmem_aops;
246 static const struct file_operations shmem_file_operations;
247 static const struct inode_operations shmem_inode_operations;
248 static const struct inode_operations shmem_dir_inode_operations;
249 static const struct inode_operations shmem_special_inode_operations;
250 static const struct vm_operations_struct shmem_vm_ops;
251 static struct file_system_type shmem_fs_type;
252
253 bool vma_is_shmem(struct vm_area_struct *vma)
254 {
255         return vma->vm_ops == &shmem_vm_ops;
256 }
257
258 static LIST_HEAD(shmem_swaplist);
259 static DEFINE_MUTEX(shmem_swaplist_mutex);
260
261 /*
262  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
263  * produces a novel ino for the newly allocated inode.
264  *
265  * It may also be called when making a hard link to permit the space needed by
266  * each dentry. However, in that case, no new inode number is needed since that
267  * internally draws from another pool of inode numbers (currently global
268  * get_next_ino()). This case is indicated by passing NULL as inop.
269  */
270 #define SHMEM_INO_BATCH 1024
271 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
272 {
273         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
274         ino_t ino;
275
276         if (!(sb->s_flags & SB_KERNMOUNT)) {
277                 raw_spin_lock(&sbinfo->stat_lock);
278                 if (sbinfo->max_inodes) {
279                         if (!sbinfo->free_inodes) {
280                                 raw_spin_unlock(&sbinfo->stat_lock);
281                                 return -ENOSPC;
282                         }
283                         sbinfo->free_inodes--;
284                 }
285                 if (inop) {
286                         ino = sbinfo->next_ino++;
287                         if (unlikely(is_zero_ino(ino)))
288                                 ino = sbinfo->next_ino++;
289                         if (unlikely(!sbinfo->full_inums &&
290                                      ino > UINT_MAX)) {
291                                 /*
292                                  * Emulate get_next_ino uint wraparound for
293                                  * compatibility
294                                  */
295                                 if (IS_ENABLED(CONFIG_64BIT))
296                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
297                                                 __func__, MINOR(sb->s_dev));
298                                 sbinfo->next_ino = 1;
299                                 ino = sbinfo->next_ino++;
300                         }
301                         *inop = ino;
302                 }
303                 raw_spin_unlock(&sbinfo->stat_lock);
304         } else if (inop) {
305                 /*
306                  * __shmem_file_setup, one of our callers, is lock-free: it
307                  * doesn't hold stat_lock in shmem_reserve_inode since
308                  * max_inodes is always 0, and is called from potentially
309                  * unknown contexts. As such, use a per-cpu batched allocator
310                  * which doesn't require the per-sb stat_lock unless we are at
311                  * the batch boundary.
312                  *
313                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
314                  * shmem mounts are not exposed to userspace, so we don't need
315                  * to worry about things like glibc compatibility.
316                  */
317                 ino_t *next_ino;
318
319                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
320                 ino = *next_ino;
321                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
322                         raw_spin_lock(&sbinfo->stat_lock);
323                         ino = sbinfo->next_ino;
324                         sbinfo->next_ino += SHMEM_INO_BATCH;
325                         raw_spin_unlock(&sbinfo->stat_lock);
326                         if (unlikely(is_zero_ino(ino)))
327                                 ino++;
328                 }
329                 *inop = ino;
330                 *next_ino = ++ino;
331                 put_cpu();
332         }
333
334         return 0;
335 }
336
337 static void shmem_free_inode(struct super_block *sb)
338 {
339         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
340         if (sbinfo->max_inodes) {
341                 raw_spin_lock(&sbinfo->stat_lock);
342                 sbinfo->free_inodes++;
343                 raw_spin_unlock(&sbinfo->stat_lock);
344         }
345 }
346
347 /**
348  * shmem_recalc_inode - recalculate the block usage of an inode
349  * @inode: inode to recalc
350  *
351  * We have to calculate the free blocks since the mm can drop
352  * undirtied hole pages behind our back.
353  *
354  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
355  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
356  *
357  * It has to be called with the spinlock held.
358  */
359 static void shmem_recalc_inode(struct inode *inode)
360 {
361         struct shmem_inode_info *info = SHMEM_I(inode);
362         long freed;
363
364         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
365         if (freed > 0) {
366                 info->alloced -= freed;
367                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
368                 shmem_inode_unacct_blocks(inode, freed);
369         }
370 }
371
372 bool shmem_charge(struct inode *inode, long pages)
373 {
374         struct shmem_inode_info *info = SHMEM_I(inode);
375         unsigned long flags;
376
377         if (!shmem_inode_acct_block(inode, pages))
378                 return false;
379
380         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
381         inode->i_mapping->nrpages += pages;
382
383         spin_lock_irqsave(&info->lock, flags);
384         info->alloced += pages;
385         inode->i_blocks += pages * BLOCKS_PER_PAGE;
386         shmem_recalc_inode(inode);
387         spin_unlock_irqrestore(&info->lock, flags);
388
389         return true;
390 }
391
392 void shmem_uncharge(struct inode *inode, long pages)
393 {
394         struct shmem_inode_info *info = SHMEM_I(inode);
395         unsigned long flags;
396
397         /* nrpages adjustment done by __delete_from_page_cache() or caller */
398
399         spin_lock_irqsave(&info->lock, flags);
400         info->alloced -= pages;
401         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
402         shmem_recalc_inode(inode);
403         spin_unlock_irqrestore(&info->lock, flags);
404
405         shmem_inode_unacct_blocks(inode, pages);
406 }
407
408 /*
409  * Replace item expected in xarray by a new item, while holding xa_lock.
410  */
411 static int shmem_replace_entry(struct address_space *mapping,
412                         pgoff_t index, void *expected, void *replacement)
413 {
414         XA_STATE(xas, &mapping->i_pages, index);
415         void *item;
416
417         VM_BUG_ON(!expected);
418         VM_BUG_ON(!replacement);
419         item = xas_load(&xas);
420         if (item != expected)
421                 return -ENOENT;
422         xas_store(&xas, replacement);
423         return 0;
424 }
425
426 /*
427  * Sometimes, before we decide whether to proceed or to fail, we must check
428  * that an entry was not already brought back from swap by a racing thread.
429  *
430  * Checking page is not enough: by the time a SwapCache page is locked, it
431  * might be reused, and again be SwapCache, using the same swap as before.
432  */
433 static bool shmem_confirm_swap(struct address_space *mapping,
434                                pgoff_t index, swp_entry_t swap)
435 {
436         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
437 }
438
439 /*
440  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
441  *
442  * SHMEM_HUGE_NEVER:
443  *      disables huge pages for the mount;
444  * SHMEM_HUGE_ALWAYS:
445  *      enables huge pages for the mount;
446  * SHMEM_HUGE_WITHIN_SIZE:
447  *      only allocate huge pages if the page will be fully within i_size,
448  *      also respect fadvise()/madvise() hints;
449  * SHMEM_HUGE_ADVISE:
450  *      only allocate huge pages if requested with fadvise()/madvise();
451  */
452
453 #define SHMEM_HUGE_NEVER        0
454 #define SHMEM_HUGE_ALWAYS       1
455 #define SHMEM_HUGE_WITHIN_SIZE  2
456 #define SHMEM_HUGE_ADVISE       3
457
458 /*
459  * Special values.
460  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
461  *
462  * SHMEM_HUGE_DENY:
463  *      disables huge on shm_mnt and all mounts, for emergency use;
464  * SHMEM_HUGE_FORCE:
465  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
466  *
467  */
468 #define SHMEM_HUGE_DENY         (-1)
469 #define SHMEM_HUGE_FORCE        (-2)
470
471 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
472 /* ifdef here to avoid bloating shmem.o when not necessary */
473
474 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
475
476 bool shmem_is_huge(struct vm_area_struct *vma,
477                    struct inode *inode, pgoff_t index)
478 {
479         loff_t i_size;
480
481         if (shmem_huge == SHMEM_HUGE_DENY)
482                 return false;
483         if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
484             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
485                 return false;
486         if (shmem_huge == SHMEM_HUGE_FORCE)
487                 return true;
488
489         switch (SHMEM_SB(inode->i_sb)->huge) {
490         case SHMEM_HUGE_ALWAYS:
491                 return true;
492         case SHMEM_HUGE_WITHIN_SIZE:
493                 index = round_up(index, HPAGE_PMD_NR);
494                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
495                 if (i_size >= HPAGE_PMD_SIZE && (i_size >> PAGE_SHIFT) >= index)
496                         return true;
497                 fallthrough;
498         case SHMEM_HUGE_ADVISE:
499                 if (vma && (vma->vm_flags & VM_HUGEPAGE))
500                         return true;
501                 fallthrough;
502         default:
503                 return false;
504         }
505 }
506
507 #if defined(CONFIG_SYSFS)
508 static int shmem_parse_huge(const char *str)
509 {
510         if (!strcmp(str, "never"))
511                 return SHMEM_HUGE_NEVER;
512         if (!strcmp(str, "always"))
513                 return SHMEM_HUGE_ALWAYS;
514         if (!strcmp(str, "within_size"))
515                 return SHMEM_HUGE_WITHIN_SIZE;
516         if (!strcmp(str, "advise"))
517                 return SHMEM_HUGE_ADVISE;
518         if (!strcmp(str, "deny"))
519                 return SHMEM_HUGE_DENY;
520         if (!strcmp(str, "force"))
521                 return SHMEM_HUGE_FORCE;
522         return -EINVAL;
523 }
524 #endif
525
526 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
527 static const char *shmem_format_huge(int huge)
528 {
529         switch (huge) {
530         case SHMEM_HUGE_NEVER:
531                 return "never";
532         case SHMEM_HUGE_ALWAYS:
533                 return "always";
534         case SHMEM_HUGE_WITHIN_SIZE:
535                 return "within_size";
536         case SHMEM_HUGE_ADVISE:
537                 return "advise";
538         case SHMEM_HUGE_DENY:
539                 return "deny";
540         case SHMEM_HUGE_FORCE:
541                 return "force";
542         default:
543                 VM_BUG_ON(1);
544                 return "bad_val";
545         }
546 }
547 #endif
548
549 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
550                 struct shrink_control *sc, unsigned long nr_to_split)
551 {
552         LIST_HEAD(list), *pos, *next;
553         LIST_HEAD(to_remove);
554         struct inode *inode;
555         struct shmem_inode_info *info;
556         struct page *page;
557         unsigned long batch = sc ? sc->nr_to_scan : 128;
558         int removed = 0, split = 0;
559
560         if (list_empty(&sbinfo->shrinklist))
561                 return SHRINK_STOP;
562
563         spin_lock(&sbinfo->shrinklist_lock);
564         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
565                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566
567                 /* pin the inode */
568                 inode = igrab(&info->vfs_inode);
569
570                 /* inode is about to be evicted */
571                 if (!inode) {
572                         list_del_init(&info->shrinklist);
573                         removed++;
574                         goto next;
575                 }
576
577                 /* Check if there's anything to gain */
578                 if (round_up(inode->i_size, PAGE_SIZE) ==
579                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
580                         list_move(&info->shrinklist, &to_remove);
581                         removed++;
582                         goto next;
583                 }
584
585                 list_move(&info->shrinklist, &list);
586 next:
587                 if (!--batch)
588                         break;
589         }
590         spin_unlock(&sbinfo->shrinklist_lock);
591
592         list_for_each_safe(pos, next, &to_remove) {
593                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
594                 inode = &info->vfs_inode;
595                 list_del_init(&info->shrinklist);
596                 iput(inode);
597         }
598
599         list_for_each_safe(pos, next, &list) {
600                 int ret;
601
602                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
603                 inode = &info->vfs_inode;
604
605                 if (nr_to_split && split >= nr_to_split)
606                         goto leave;
607
608                 page = find_get_page(inode->i_mapping,
609                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
610                 if (!page)
611                         goto drop;
612
613                 /* No huge page at the end of the file: nothing to split */
614                 if (!PageTransHuge(page)) {
615                         put_page(page);
616                         goto drop;
617                 }
618
619                 /*
620                  * Leave the inode on the list if we failed to lock
621                  * the page at this time.
622                  *
623                  * Waiting for the lock may lead to deadlock in the
624                  * reclaim path.
625                  */
626                 if (!trylock_page(page)) {
627                         put_page(page);
628                         goto leave;
629                 }
630
631                 ret = split_huge_page(page);
632                 unlock_page(page);
633                 put_page(page);
634
635                 /* If split failed leave the inode on the list */
636                 if (ret)
637                         goto leave;
638
639                 split++;
640 drop:
641                 list_del_init(&info->shrinklist);
642                 removed++;
643 leave:
644                 iput(inode);
645         }
646
647         spin_lock(&sbinfo->shrinklist_lock);
648         list_splice_tail(&list, &sbinfo->shrinklist);
649         sbinfo->shrinklist_len -= removed;
650         spin_unlock(&sbinfo->shrinklist_lock);
651
652         return split;
653 }
654
655 static long shmem_unused_huge_scan(struct super_block *sb,
656                 struct shrink_control *sc)
657 {
658         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
659
660         if (!READ_ONCE(sbinfo->shrinklist_len))
661                 return SHRINK_STOP;
662
663         return shmem_unused_huge_shrink(sbinfo, sc, 0);
664 }
665
666 static long shmem_unused_huge_count(struct super_block *sb,
667                 struct shrink_control *sc)
668 {
669         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
670         return READ_ONCE(sbinfo->shrinklist_len);
671 }
672 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
673
674 #define shmem_huge SHMEM_HUGE_DENY
675
676 bool shmem_is_huge(struct vm_area_struct *vma,
677                    struct inode *inode, pgoff_t index)
678 {
679         return false;
680 }
681
682 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
683                 struct shrink_control *sc, unsigned long nr_to_split)
684 {
685         return 0;
686 }
687 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
688
689 /*
690  * Like add_to_page_cache_locked, but error if expected item has gone.
691  */
692 static int shmem_add_to_page_cache(struct page *page,
693                                    struct address_space *mapping,
694                                    pgoff_t index, void *expected, gfp_t gfp,
695                                    struct mm_struct *charge_mm)
696 {
697         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
698         unsigned long i = 0;
699         unsigned long nr = compound_nr(page);
700         int error;
701
702         VM_BUG_ON_PAGE(PageTail(page), page);
703         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
704         VM_BUG_ON_PAGE(!PageLocked(page), page);
705         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
706         VM_BUG_ON(expected && PageTransHuge(page));
707
708         page_ref_add(page, nr);
709         page->mapping = mapping;
710         page->index = index;
711
712         if (!PageSwapCache(page)) {
713                 error = mem_cgroup_charge(page, charge_mm, gfp);
714                 if (error) {
715                         if (PageTransHuge(page)) {
716                                 count_vm_event(THP_FILE_FALLBACK);
717                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
718                         }
719                         goto error;
720                 }
721         }
722         cgroup_throttle_swaprate(page, gfp);
723
724         do {
725                 void *entry;
726                 xas_lock_irq(&xas);
727                 entry = xas_find_conflict(&xas);
728                 if (entry != expected)
729                         xas_set_err(&xas, -EEXIST);
730                 xas_create_range(&xas);
731                 if (xas_error(&xas))
732                         goto unlock;
733 next:
734                 xas_store(&xas, page);
735                 if (++i < nr) {
736                         xas_next(&xas);
737                         goto next;
738                 }
739                 if (PageTransHuge(page)) {
740                         count_vm_event(THP_FILE_ALLOC);
741                         __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
742                 }
743                 mapping->nrpages += nr;
744                 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
745                 __mod_lruvec_page_state(page, NR_SHMEM, nr);
746 unlock:
747                 xas_unlock_irq(&xas);
748         } while (xas_nomem(&xas, gfp));
749
750         if (xas_error(&xas)) {
751                 error = xas_error(&xas);
752                 goto error;
753         }
754
755         return 0;
756 error:
757         page->mapping = NULL;
758         page_ref_sub(page, nr);
759         return error;
760 }
761
762 /*
763  * Like delete_from_page_cache, but substitutes swap for page.
764  */
765 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
766 {
767         struct address_space *mapping = page->mapping;
768         int error;
769
770         VM_BUG_ON_PAGE(PageCompound(page), page);
771
772         xa_lock_irq(&mapping->i_pages);
773         error = shmem_replace_entry(mapping, page->index, page, radswap);
774         page->mapping = NULL;
775         mapping->nrpages--;
776         __dec_lruvec_page_state(page, NR_FILE_PAGES);
777         __dec_lruvec_page_state(page, NR_SHMEM);
778         xa_unlock_irq(&mapping->i_pages);
779         put_page(page);
780         BUG_ON(error);
781 }
782
783 /*
784  * Remove swap entry from page cache, free the swap and its page cache.
785  */
786 static int shmem_free_swap(struct address_space *mapping,
787                            pgoff_t index, void *radswap)
788 {
789         void *old;
790
791         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
792         if (old != radswap)
793                 return -ENOENT;
794         free_swap_and_cache(radix_to_swp_entry(radswap));
795         return 0;
796 }
797
798 /*
799  * Determine (in bytes) how many of the shmem object's pages mapped by the
800  * given offsets are swapped out.
801  *
802  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
803  * as long as the inode doesn't go away and racy results are not a problem.
804  */
805 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
806                                                 pgoff_t start, pgoff_t end)
807 {
808         XA_STATE(xas, &mapping->i_pages, start);
809         struct page *page;
810         unsigned long swapped = 0;
811
812         rcu_read_lock();
813         xas_for_each(&xas, page, end - 1) {
814                 if (xas_retry(&xas, page))
815                         continue;
816                 if (xa_is_value(page))
817                         swapped++;
818
819                 if (need_resched()) {
820                         xas_pause(&xas);
821                         cond_resched_rcu();
822                 }
823         }
824
825         rcu_read_unlock();
826
827         return swapped << PAGE_SHIFT;
828 }
829
830 /*
831  * Determine (in bytes) how many of the shmem object's pages mapped by the
832  * given vma is swapped out.
833  *
834  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
835  * as long as the inode doesn't go away and racy results are not a problem.
836  */
837 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
838 {
839         struct inode *inode = file_inode(vma->vm_file);
840         struct shmem_inode_info *info = SHMEM_I(inode);
841         struct address_space *mapping = inode->i_mapping;
842         unsigned long swapped;
843
844         /* Be careful as we don't hold info->lock */
845         swapped = READ_ONCE(info->swapped);
846
847         /*
848          * The easier cases are when the shmem object has nothing in swap, or
849          * the vma maps it whole. Then we can simply use the stats that we
850          * already track.
851          */
852         if (!swapped)
853                 return 0;
854
855         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
856                 return swapped << PAGE_SHIFT;
857
858         /* Here comes the more involved part */
859         return shmem_partial_swap_usage(mapping,
860                         linear_page_index(vma, vma->vm_start),
861                         linear_page_index(vma, vma->vm_end));
862 }
863
864 /*
865  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
866  */
867 void shmem_unlock_mapping(struct address_space *mapping)
868 {
869         struct pagevec pvec;
870         pgoff_t index = 0;
871
872         pagevec_init(&pvec);
873         /*
874          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
875          */
876         while (!mapping_unevictable(mapping)) {
877                 if (!pagevec_lookup(&pvec, mapping, &index))
878                         break;
879                 check_move_unevictable_pages(&pvec);
880                 pagevec_release(&pvec);
881                 cond_resched();
882         }
883 }
884
885 /*
886  * Check whether a hole-punch or truncation needs to split a huge page,
887  * returning true if no split was required, or the split has been successful.
888  *
889  * Eviction (or truncation to 0 size) should never need to split a huge page;
890  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
891  * head, and then succeeded to trylock on tail.
892  *
893  * A split can only succeed when there are no additional references on the
894  * huge page: so the split below relies upon find_get_entries() having stopped
895  * when it found a subpage of the huge page, without getting further references.
896  */
897 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
898 {
899         if (!PageTransCompound(page))
900                 return true;
901
902         /* Just proceed to delete a huge page wholly within the range punched */
903         if (PageHead(page) &&
904             page->index >= start && page->index + HPAGE_PMD_NR <= end)
905                 return true;
906
907         /* Try to split huge page, so we can truly punch the hole or truncate */
908         return split_huge_page(page) >= 0;
909 }
910
911 /*
912  * Remove range of pages and swap entries from page cache, and free them.
913  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
914  */
915 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
916                                                                  bool unfalloc)
917 {
918         struct address_space *mapping = inode->i_mapping;
919         struct shmem_inode_info *info = SHMEM_I(inode);
920         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
921         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
922         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
923         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
924         struct pagevec pvec;
925         pgoff_t indices[PAGEVEC_SIZE];
926         long nr_swaps_freed = 0;
927         pgoff_t index;
928         int i;
929
930         if (lend == -1)
931                 end = -1;       /* unsigned, so actually very big */
932
933         if (info->fallocend > start && info->fallocend <= end && !unfalloc)
934                 info->fallocend = start;
935
936         pagevec_init(&pvec);
937         index = start;
938         while (index < end && find_lock_entries(mapping, index, end - 1,
939                         &pvec, indices)) {
940                 for (i = 0; i < pagevec_count(&pvec); i++) {
941                         struct page *page = pvec.pages[i];
942
943                         index = indices[i];
944
945                         if (xa_is_value(page)) {
946                                 if (unfalloc)
947                                         continue;
948                                 nr_swaps_freed += !shmem_free_swap(mapping,
949                                                                 index, page);
950                                 continue;
951                         }
952                         index += thp_nr_pages(page) - 1;
953
954                         if (!unfalloc || !PageUptodate(page))
955                                 truncate_inode_page(mapping, page);
956                         unlock_page(page);
957                 }
958                 pagevec_remove_exceptionals(&pvec);
959                 pagevec_release(&pvec);
960                 cond_resched();
961                 index++;
962         }
963
964         if (partial_start) {
965                 struct page *page = NULL;
966                 shmem_getpage(inode, start - 1, &page, SGP_READ);
967                 if (page) {
968                         unsigned int top = PAGE_SIZE;
969                         if (start > end) {
970                                 top = partial_end;
971                                 partial_end = 0;
972                         }
973                         zero_user_segment(page, partial_start, top);
974                         set_page_dirty(page);
975                         unlock_page(page);
976                         put_page(page);
977                 }
978         }
979         if (partial_end) {
980                 struct page *page = NULL;
981                 shmem_getpage(inode, end, &page, SGP_READ);
982                 if (page) {
983                         zero_user_segment(page, 0, partial_end);
984                         set_page_dirty(page);
985                         unlock_page(page);
986                         put_page(page);
987                 }
988         }
989         if (start >= end)
990                 return;
991
992         index = start;
993         while (index < end) {
994                 cond_resched();
995
996                 if (!find_get_entries(mapping, index, end - 1, &pvec,
997                                 indices)) {
998                         /* If all gone or hole-punch or unfalloc, we're done */
999                         if (index == start || end != -1)
1000                                 break;
1001                         /* But if truncating, restart to make sure all gone */
1002                         index = start;
1003                         continue;
1004                 }
1005                 for (i = 0; i < pagevec_count(&pvec); i++) {
1006                         struct page *page = pvec.pages[i];
1007
1008                         index = indices[i];
1009                         if (xa_is_value(page)) {
1010                                 if (unfalloc)
1011                                         continue;
1012                                 if (shmem_free_swap(mapping, index, page)) {
1013                                         /* Swap was replaced by page: retry */
1014                                         index--;
1015                                         break;
1016                                 }
1017                                 nr_swaps_freed++;
1018                                 continue;
1019                         }
1020
1021                         lock_page(page);
1022
1023                         if (!unfalloc || !PageUptodate(page)) {
1024                                 if (page_mapping(page) != mapping) {
1025                                         /* Page was replaced by swap: retry */
1026                                         unlock_page(page);
1027                                         index--;
1028                                         break;
1029                                 }
1030                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1031                                 if (shmem_punch_compound(page, start, end))
1032                                         truncate_inode_page(mapping, page);
1033                                 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1034                                         /* Wipe the page and don't get stuck */
1035                                         clear_highpage(page);
1036                                         flush_dcache_page(page);
1037                                         set_page_dirty(page);
1038                                         if (index <
1039                                             round_up(start, HPAGE_PMD_NR))
1040                                                 start = index + 1;
1041                                 }
1042                         }
1043                         unlock_page(page);
1044                 }
1045                 pagevec_remove_exceptionals(&pvec);
1046                 pagevec_release(&pvec);
1047                 index++;
1048         }
1049
1050         spin_lock_irq(&info->lock);
1051         info->swapped -= nr_swaps_freed;
1052         shmem_recalc_inode(inode);
1053         spin_unlock_irq(&info->lock);
1054 }
1055
1056 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1057 {
1058         shmem_undo_range(inode, lstart, lend, false);
1059         inode->i_ctime = inode->i_mtime = current_time(inode);
1060 }
1061 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1062
1063 static int shmem_getattr(struct user_namespace *mnt_userns,
1064                          const struct path *path, struct kstat *stat,
1065                          u32 request_mask, unsigned int query_flags)
1066 {
1067         struct inode *inode = path->dentry->d_inode;
1068         struct shmem_inode_info *info = SHMEM_I(inode);
1069
1070         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1071                 spin_lock_irq(&info->lock);
1072                 shmem_recalc_inode(inode);
1073                 spin_unlock_irq(&info->lock);
1074         }
1075         generic_fillattr(&init_user_ns, inode, stat);
1076
1077         if (shmem_is_huge(NULL, inode, 0))
1078                 stat->blksize = HPAGE_PMD_SIZE;
1079
1080         return 0;
1081 }
1082
1083 static int shmem_setattr(struct user_namespace *mnt_userns,
1084                          struct dentry *dentry, struct iattr *attr)
1085 {
1086         struct inode *inode = d_inode(dentry);
1087         struct shmem_inode_info *info = SHMEM_I(inode);
1088         int error;
1089
1090         error = setattr_prepare(&init_user_ns, dentry, attr);
1091         if (error)
1092                 return error;
1093
1094         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1095                 loff_t oldsize = inode->i_size;
1096                 loff_t newsize = attr->ia_size;
1097
1098                 /* protected by i_mutex */
1099                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1100                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1101                         return -EPERM;
1102
1103                 if (newsize != oldsize) {
1104                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1105                                         oldsize, newsize);
1106                         if (error)
1107                                 return error;
1108                         i_size_write(inode, newsize);
1109                         inode->i_ctime = inode->i_mtime = current_time(inode);
1110                 }
1111                 if (newsize <= oldsize) {
1112                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1113                         if (oldsize > holebegin)
1114                                 unmap_mapping_range(inode->i_mapping,
1115                                                         holebegin, 0, 1);
1116                         if (info->alloced)
1117                                 shmem_truncate_range(inode,
1118                                                         newsize, (loff_t)-1);
1119                         /* unmap again to remove racily COWed private pages */
1120                         if (oldsize > holebegin)
1121                                 unmap_mapping_range(inode->i_mapping,
1122                                                         holebegin, 0, 1);
1123                 }
1124         }
1125
1126         setattr_copy(&init_user_ns, inode, attr);
1127         if (attr->ia_valid & ATTR_MODE)
1128                 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1129         return error;
1130 }
1131
1132 static void shmem_evict_inode(struct inode *inode)
1133 {
1134         struct shmem_inode_info *info = SHMEM_I(inode);
1135         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1136
1137         if (shmem_mapping(inode->i_mapping)) {
1138                 shmem_unacct_size(info->flags, inode->i_size);
1139                 inode->i_size = 0;
1140                 shmem_truncate_range(inode, 0, (loff_t)-1);
1141                 if (!list_empty(&info->shrinklist)) {
1142                         spin_lock(&sbinfo->shrinklist_lock);
1143                         if (!list_empty(&info->shrinklist)) {
1144                                 list_del_init(&info->shrinklist);
1145                                 sbinfo->shrinklist_len--;
1146                         }
1147                         spin_unlock(&sbinfo->shrinklist_lock);
1148                 }
1149                 while (!list_empty(&info->swaplist)) {
1150                         /* Wait while shmem_unuse() is scanning this inode... */
1151                         wait_var_event(&info->stop_eviction,
1152                                        !atomic_read(&info->stop_eviction));
1153                         mutex_lock(&shmem_swaplist_mutex);
1154                         /* ...but beware of the race if we peeked too early */
1155                         if (!atomic_read(&info->stop_eviction))
1156                                 list_del_init(&info->swaplist);
1157                         mutex_unlock(&shmem_swaplist_mutex);
1158                 }
1159         }
1160
1161         simple_xattrs_free(&info->xattrs);
1162         WARN_ON(inode->i_blocks);
1163         shmem_free_inode(inode->i_sb);
1164         clear_inode(inode);
1165 }
1166
1167 static int shmem_find_swap_entries(struct address_space *mapping,
1168                                    pgoff_t start, unsigned int nr_entries,
1169                                    struct page **entries, pgoff_t *indices,
1170                                    unsigned int type, bool frontswap)
1171 {
1172         XA_STATE(xas, &mapping->i_pages, start);
1173         struct page *page;
1174         swp_entry_t entry;
1175         unsigned int ret = 0;
1176
1177         if (!nr_entries)
1178                 return 0;
1179
1180         rcu_read_lock();
1181         xas_for_each(&xas, page, ULONG_MAX) {
1182                 if (xas_retry(&xas, page))
1183                         continue;
1184
1185                 if (!xa_is_value(page))
1186                         continue;
1187
1188                 entry = radix_to_swp_entry(page);
1189                 if (swp_type(entry) != type)
1190                         continue;
1191                 if (frontswap &&
1192                     !frontswap_test(swap_info[type], swp_offset(entry)))
1193                         continue;
1194
1195                 indices[ret] = xas.xa_index;
1196                 entries[ret] = page;
1197
1198                 if (need_resched()) {
1199                         xas_pause(&xas);
1200                         cond_resched_rcu();
1201                 }
1202                 if (++ret == nr_entries)
1203                         break;
1204         }
1205         rcu_read_unlock();
1206
1207         return ret;
1208 }
1209
1210 /*
1211  * Move the swapped pages for an inode to page cache. Returns the count
1212  * of pages swapped in, or the error in case of failure.
1213  */
1214 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1215                                     pgoff_t *indices)
1216 {
1217         int i = 0;
1218         int ret = 0;
1219         int error = 0;
1220         struct address_space *mapping = inode->i_mapping;
1221
1222         for (i = 0; i < pvec.nr; i++) {
1223                 struct page *page = pvec.pages[i];
1224
1225                 if (!xa_is_value(page))
1226                         continue;
1227                 error = shmem_swapin_page(inode, indices[i],
1228                                           &page, SGP_CACHE,
1229                                           mapping_gfp_mask(mapping),
1230                                           NULL, NULL);
1231                 if (error == 0) {
1232                         unlock_page(page);
1233                         put_page(page);
1234                         ret++;
1235                 }
1236                 if (error == -ENOMEM)
1237                         break;
1238                 error = 0;
1239         }
1240         return error ? error : ret;
1241 }
1242
1243 /*
1244  * If swap found in inode, free it and move page from swapcache to filecache.
1245  */
1246 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1247                              bool frontswap, unsigned long *fs_pages_to_unuse)
1248 {
1249         struct address_space *mapping = inode->i_mapping;
1250         pgoff_t start = 0;
1251         struct pagevec pvec;
1252         pgoff_t indices[PAGEVEC_SIZE];
1253         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1254         int ret = 0;
1255
1256         pagevec_init(&pvec);
1257         do {
1258                 unsigned int nr_entries = PAGEVEC_SIZE;
1259
1260                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1261                         nr_entries = *fs_pages_to_unuse;
1262
1263                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1264                                                   pvec.pages, indices,
1265                                                   type, frontswap);
1266                 if (pvec.nr == 0) {
1267                         ret = 0;
1268                         break;
1269                 }
1270
1271                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1272                 if (ret < 0)
1273                         break;
1274
1275                 if (frontswap_partial) {
1276                         *fs_pages_to_unuse -= ret;
1277                         if (*fs_pages_to_unuse == 0) {
1278                                 ret = FRONTSWAP_PAGES_UNUSED;
1279                                 break;
1280                         }
1281                 }
1282
1283                 start = indices[pvec.nr - 1];
1284         } while (true);
1285
1286         return ret;
1287 }
1288
1289 /*
1290  * Read all the shared memory data that resides in the swap
1291  * device 'type' back into memory, so the swap device can be
1292  * unused.
1293  */
1294 int shmem_unuse(unsigned int type, bool frontswap,
1295                 unsigned long *fs_pages_to_unuse)
1296 {
1297         struct shmem_inode_info *info, *next;
1298         int error = 0;
1299
1300         if (list_empty(&shmem_swaplist))
1301                 return 0;
1302
1303         mutex_lock(&shmem_swaplist_mutex);
1304         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1305                 if (!info->swapped) {
1306                         list_del_init(&info->swaplist);
1307                         continue;
1308                 }
1309                 /*
1310                  * Drop the swaplist mutex while searching the inode for swap;
1311                  * but before doing so, make sure shmem_evict_inode() will not
1312                  * remove placeholder inode from swaplist, nor let it be freed
1313                  * (igrab() would protect from unlink, but not from unmount).
1314                  */
1315                 atomic_inc(&info->stop_eviction);
1316                 mutex_unlock(&shmem_swaplist_mutex);
1317
1318                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1319                                           fs_pages_to_unuse);
1320                 cond_resched();
1321
1322                 mutex_lock(&shmem_swaplist_mutex);
1323                 next = list_next_entry(info, swaplist);
1324                 if (!info->swapped)
1325                         list_del_init(&info->swaplist);
1326                 if (atomic_dec_and_test(&info->stop_eviction))
1327                         wake_up_var(&info->stop_eviction);
1328                 if (error)
1329                         break;
1330         }
1331         mutex_unlock(&shmem_swaplist_mutex);
1332
1333         return error;
1334 }
1335
1336 /*
1337  * Move the page from the page cache to the swap cache.
1338  */
1339 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1340 {
1341         struct shmem_inode_info *info;
1342         struct address_space *mapping;
1343         struct inode *inode;
1344         swp_entry_t swap;
1345         pgoff_t index;
1346
1347         VM_BUG_ON_PAGE(PageCompound(page), page);
1348         BUG_ON(!PageLocked(page));
1349         mapping = page->mapping;
1350         index = page->index;
1351         inode = mapping->host;
1352         info = SHMEM_I(inode);
1353         if (info->flags & VM_LOCKED)
1354                 goto redirty;
1355         if (!total_swap_pages)
1356                 goto redirty;
1357
1358         /*
1359          * Our capabilities prevent regular writeback or sync from ever calling
1360          * shmem_writepage; but a stacking filesystem might use ->writepage of
1361          * its underlying filesystem, in which case tmpfs should write out to
1362          * swap only in response to memory pressure, and not for the writeback
1363          * threads or sync.
1364          */
1365         if (!wbc->for_reclaim) {
1366                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1367                 goto redirty;
1368         }
1369
1370         /*
1371          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1372          * value into swapfile.c, the only way we can correctly account for a
1373          * fallocated page arriving here is now to initialize it and write it.
1374          *
1375          * That's okay for a page already fallocated earlier, but if we have
1376          * not yet completed the fallocation, then (a) we want to keep track
1377          * of this page in case we have to undo it, and (b) it may not be a
1378          * good idea to continue anyway, once we're pushing into swap.  So
1379          * reactivate the page, and let shmem_fallocate() quit when too many.
1380          */
1381         if (!PageUptodate(page)) {
1382                 if (inode->i_private) {
1383                         struct shmem_falloc *shmem_falloc;
1384                         spin_lock(&inode->i_lock);
1385                         shmem_falloc = inode->i_private;
1386                         if (shmem_falloc &&
1387                             !shmem_falloc->waitq &&
1388                             index >= shmem_falloc->start &&
1389                             index < shmem_falloc->next)
1390                                 shmem_falloc->nr_unswapped++;
1391                         else
1392                                 shmem_falloc = NULL;
1393                         spin_unlock(&inode->i_lock);
1394                         if (shmem_falloc)
1395                                 goto redirty;
1396                 }
1397                 clear_highpage(page);
1398                 flush_dcache_page(page);
1399                 SetPageUptodate(page);
1400         }
1401
1402         swap = get_swap_page(page);
1403         if (!swap.val)
1404                 goto redirty;
1405
1406         /*
1407          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1408          * if it's not already there.  Do it now before the page is
1409          * moved to swap cache, when its pagelock no longer protects
1410          * the inode from eviction.  But don't unlock the mutex until
1411          * we've incremented swapped, because shmem_unuse_inode() will
1412          * prune a !swapped inode from the swaplist under this mutex.
1413          */
1414         mutex_lock(&shmem_swaplist_mutex);
1415         if (list_empty(&info->swaplist))
1416                 list_add(&info->swaplist, &shmem_swaplist);
1417
1418         if (add_to_swap_cache(page, swap,
1419                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1420                         NULL) == 0) {
1421                 spin_lock_irq(&info->lock);
1422                 shmem_recalc_inode(inode);
1423                 info->swapped++;
1424                 spin_unlock_irq(&info->lock);
1425
1426                 swap_shmem_alloc(swap);
1427                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1428
1429                 mutex_unlock(&shmem_swaplist_mutex);
1430                 BUG_ON(page_mapped(page));
1431                 swap_writepage(page, wbc);
1432                 return 0;
1433         }
1434
1435         mutex_unlock(&shmem_swaplist_mutex);
1436         put_swap_page(page, swap);
1437 redirty:
1438         set_page_dirty(page);
1439         if (wbc->for_reclaim)
1440                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1441         unlock_page(page);
1442         return 0;
1443 }
1444
1445 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1446 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1447 {
1448         char buffer[64];
1449
1450         if (!mpol || mpol->mode == MPOL_DEFAULT)
1451                 return;         /* show nothing */
1452
1453         mpol_to_str(buffer, sizeof(buffer), mpol);
1454
1455         seq_printf(seq, ",mpol=%s", buffer);
1456 }
1457
1458 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1459 {
1460         struct mempolicy *mpol = NULL;
1461         if (sbinfo->mpol) {
1462                 raw_spin_lock(&sbinfo->stat_lock);      /* prevent replace/use races */
1463                 mpol = sbinfo->mpol;
1464                 mpol_get(mpol);
1465                 raw_spin_unlock(&sbinfo->stat_lock);
1466         }
1467         return mpol;
1468 }
1469 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1470 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1471 {
1472 }
1473 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1474 {
1475         return NULL;
1476 }
1477 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1478 #ifndef CONFIG_NUMA
1479 #define vm_policy vm_private_data
1480 #endif
1481
1482 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1483                 struct shmem_inode_info *info, pgoff_t index)
1484 {
1485         /* Create a pseudo vma that just contains the policy */
1486         vma_init(vma, NULL);
1487         /* Bias interleave by inode number to distribute better across nodes */
1488         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1489         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1490 }
1491
1492 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1493 {
1494         /* Drop reference taken by mpol_shared_policy_lookup() */
1495         mpol_cond_put(vma->vm_policy);
1496 }
1497
1498 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1499                         struct shmem_inode_info *info, pgoff_t index)
1500 {
1501         struct vm_area_struct pvma;
1502         struct page *page;
1503         struct vm_fault vmf = {
1504                 .vma = &pvma,
1505         };
1506
1507         shmem_pseudo_vma_init(&pvma, info, index);
1508         page = swap_cluster_readahead(swap, gfp, &vmf);
1509         shmem_pseudo_vma_destroy(&pvma);
1510
1511         return page;
1512 }
1513
1514 /*
1515  * Make sure huge_gfp is always more limited than limit_gfp.
1516  * Some of the flags set permissions, while others set limitations.
1517  */
1518 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1519 {
1520         gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1521         gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1522         gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1523         gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1524
1525         /* Allow allocations only from the originally specified zones. */
1526         result |= zoneflags;
1527
1528         /*
1529          * Minimize the result gfp by taking the union with the deny flags,
1530          * and the intersection of the allow flags.
1531          */
1532         result |= (limit_gfp & denyflags);
1533         result |= (huge_gfp & limit_gfp) & allowflags;
1534
1535         return result;
1536 }
1537
1538 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1539                 struct shmem_inode_info *info, pgoff_t index)
1540 {
1541         struct vm_area_struct pvma;
1542         struct address_space *mapping = info->vfs_inode.i_mapping;
1543         pgoff_t hindex;
1544         struct page *page;
1545
1546         hindex = round_down(index, HPAGE_PMD_NR);
1547         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1548                                                                 XA_PRESENT))
1549                 return NULL;
1550
1551         shmem_pseudo_vma_init(&pvma, info, hindex);
1552         page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1553                                true);
1554         shmem_pseudo_vma_destroy(&pvma);
1555         if (page)
1556                 prep_transhuge_page(page);
1557         else
1558                 count_vm_event(THP_FILE_FALLBACK);
1559         return page;
1560 }
1561
1562 static struct page *shmem_alloc_page(gfp_t gfp,
1563                         struct shmem_inode_info *info, pgoff_t index)
1564 {
1565         struct vm_area_struct pvma;
1566         struct page *page;
1567
1568         shmem_pseudo_vma_init(&pvma, info, index);
1569         page = alloc_page_vma(gfp, &pvma, 0);
1570         shmem_pseudo_vma_destroy(&pvma);
1571
1572         return page;
1573 }
1574
1575 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1576                 struct inode *inode,
1577                 pgoff_t index, bool huge)
1578 {
1579         struct shmem_inode_info *info = SHMEM_I(inode);
1580         struct page *page;
1581         int nr;
1582         int err = -ENOSPC;
1583
1584         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1585                 huge = false;
1586         nr = huge ? HPAGE_PMD_NR : 1;
1587
1588         if (!shmem_inode_acct_block(inode, nr))
1589                 goto failed;
1590
1591         if (huge)
1592                 page = shmem_alloc_hugepage(gfp, info, index);
1593         else
1594                 page = shmem_alloc_page(gfp, info, index);
1595         if (page) {
1596                 __SetPageLocked(page);
1597                 __SetPageSwapBacked(page);
1598                 return page;
1599         }
1600
1601         err = -ENOMEM;
1602         shmem_inode_unacct_blocks(inode, nr);
1603 failed:
1604         return ERR_PTR(err);
1605 }
1606
1607 /*
1608  * When a page is moved from swapcache to shmem filecache (either by the
1609  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1610  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1611  * ignorance of the mapping it belongs to.  If that mapping has special
1612  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1613  * we may need to copy to a suitable page before moving to filecache.
1614  *
1615  * In a future release, this may well be extended to respect cpuset and
1616  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1617  * but for now it is a simple matter of zone.
1618  */
1619 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1620 {
1621         return page_zonenum(page) > gfp_zone(gfp);
1622 }
1623
1624 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1625                                 struct shmem_inode_info *info, pgoff_t index)
1626 {
1627         struct page *oldpage, *newpage;
1628         struct address_space *swap_mapping;
1629         swp_entry_t entry;
1630         pgoff_t swap_index;
1631         int error;
1632
1633         oldpage = *pagep;
1634         entry.val = page_private(oldpage);
1635         swap_index = swp_offset(entry);
1636         swap_mapping = page_mapping(oldpage);
1637
1638         /*
1639          * We have arrived here because our zones are constrained, so don't
1640          * limit chance of success by further cpuset and node constraints.
1641          */
1642         gfp &= ~GFP_CONSTRAINT_MASK;
1643         newpage = shmem_alloc_page(gfp, info, index);
1644         if (!newpage)
1645                 return -ENOMEM;
1646
1647         get_page(newpage);
1648         copy_highpage(newpage, oldpage);
1649         flush_dcache_page(newpage);
1650
1651         __SetPageLocked(newpage);
1652         __SetPageSwapBacked(newpage);
1653         SetPageUptodate(newpage);
1654         set_page_private(newpage, entry.val);
1655         SetPageSwapCache(newpage);
1656
1657         /*
1658          * Our caller will very soon move newpage out of swapcache, but it's
1659          * a nice clean interface for us to replace oldpage by newpage there.
1660          */
1661         xa_lock_irq(&swap_mapping->i_pages);
1662         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1663         if (!error) {
1664                 mem_cgroup_migrate(oldpage, newpage);
1665                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1666                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1667         }
1668         xa_unlock_irq(&swap_mapping->i_pages);
1669
1670         if (unlikely(error)) {
1671                 /*
1672                  * Is this possible?  I think not, now that our callers check
1673                  * both PageSwapCache and page_private after getting page lock;
1674                  * but be defensive.  Reverse old to newpage for clear and free.
1675                  */
1676                 oldpage = newpage;
1677         } else {
1678                 lru_cache_add(newpage);
1679                 *pagep = newpage;
1680         }
1681
1682         ClearPageSwapCache(oldpage);
1683         set_page_private(oldpage, 0);
1684
1685         unlock_page(oldpage);
1686         put_page(oldpage);
1687         put_page(oldpage);
1688         return error;
1689 }
1690
1691 /*
1692  * Swap in the page pointed to by *pagep.
1693  * Caller has to make sure that *pagep contains a valid swapped page.
1694  * Returns 0 and the page in pagep if success. On failure, returns the
1695  * error code and NULL in *pagep.
1696  */
1697 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1698                              struct page **pagep, enum sgp_type sgp,
1699                              gfp_t gfp, struct vm_area_struct *vma,
1700                              vm_fault_t *fault_type)
1701 {
1702         struct address_space *mapping = inode->i_mapping;
1703         struct shmem_inode_info *info = SHMEM_I(inode);
1704         struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1705         struct page *page;
1706         swp_entry_t swap;
1707         int error;
1708
1709         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1710         swap = radix_to_swp_entry(*pagep);
1711         *pagep = NULL;
1712
1713         /* Look it up and read it in.. */
1714         page = lookup_swap_cache(swap, NULL, 0);
1715         if (!page) {
1716                 /* Or update major stats only when swapin succeeds?? */
1717                 if (fault_type) {
1718                         *fault_type |= VM_FAULT_MAJOR;
1719                         count_vm_event(PGMAJFAULT);
1720                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1721                 }
1722                 /* Here we actually start the io */
1723                 page = shmem_swapin(swap, gfp, info, index);
1724                 if (!page) {
1725                         error = -ENOMEM;
1726                         goto failed;
1727                 }
1728         }
1729
1730         /* We have to do this with page locked to prevent races */
1731         lock_page(page);
1732         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1733             !shmem_confirm_swap(mapping, index, swap)) {
1734                 error = -EEXIST;
1735                 goto unlock;
1736         }
1737         if (!PageUptodate(page)) {
1738                 error = -EIO;
1739                 goto failed;
1740         }
1741         wait_on_page_writeback(page);
1742
1743         /*
1744          * Some architectures may have to restore extra metadata to the
1745          * physical page after reading from swap.
1746          */
1747         arch_swap_restore(swap, page);
1748
1749         if (shmem_should_replace_page(page, gfp)) {
1750                 error = shmem_replace_page(&page, gfp, info, index);
1751                 if (error)
1752                         goto failed;
1753         }
1754
1755         error = shmem_add_to_page_cache(page, mapping, index,
1756                                         swp_to_radix_entry(swap), gfp,
1757                                         charge_mm);
1758         if (error)
1759                 goto failed;
1760
1761         spin_lock_irq(&info->lock);
1762         info->swapped--;
1763         shmem_recalc_inode(inode);
1764         spin_unlock_irq(&info->lock);
1765
1766         if (sgp == SGP_WRITE)
1767                 mark_page_accessed(page);
1768
1769         delete_from_swap_cache(page);
1770         set_page_dirty(page);
1771         swap_free(swap);
1772
1773         *pagep = page;
1774         return 0;
1775 failed:
1776         if (!shmem_confirm_swap(mapping, index, swap))
1777                 error = -EEXIST;
1778 unlock:
1779         if (page) {
1780                 unlock_page(page);
1781                 put_page(page);
1782         }
1783
1784         return error;
1785 }
1786
1787 /*
1788  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1789  *
1790  * If we allocate a new one we do not mark it dirty. That's up to the
1791  * vm. If we swap it in we mark it dirty since we also free the swap
1792  * entry since a page cannot live in both the swap and page cache.
1793  *
1794  * vma, vmf, and fault_type are only supplied by shmem_fault:
1795  * otherwise they are NULL.
1796  */
1797 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1798         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1799         struct vm_area_struct *vma, struct vm_fault *vmf,
1800                         vm_fault_t *fault_type)
1801 {
1802         struct address_space *mapping = inode->i_mapping;
1803         struct shmem_inode_info *info = SHMEM_I(inode);
1804         struct shmem_sb_info *sbinfo;
1805         struct mm_struct *charge_mm;
1806         struct page *page;
1807         pgoff_t hindex = index;
1808         gfp_t huge_gfp;
1809         int error;
1810         int once = 0;
1811         int alloced = 0;
1812
1813         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1814                 return -EFBIG;
1815 repeat:
1816         if (sgp <= SGP_CACHE &&
1817             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1818                 return -EINVAL;
1819         }
1820
1821         sbinfo = SHMEM_SB(inode->i_sb);
1822         charge_mm = vma ? vma->vm_mm : NULL;
1823
1824         page = pagecache_get_page(mapping, index,
1825                                         FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1826
1827         if (page && vma && userfaultfd_minor(vma)) {
1828                 if (!xa_is_value(page)) {
1829                         unlock_page(page);
1830                         put_page(page);
1831                 }
1832                 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1833                 return 0;
1834         }
1835
1836         if (xa_is_value(page)) {
1837                 error = shmem_swapin_page(inode, index, &page,
1838                                           sgp, gfp, vma, fault_type);
1839                 if (error == -EEXIST)
1840                         goto repeat;
1841
1842                 *pagep = page;
1843                 return error;
1844         }
1845
1846         if (page) {
1847                 hindex = page->index;
1848                 if (sgp == SGP_WRITE)
1849                         mark_page_accessed(page);
1850                 if (PageUptodate(page))
1851                         goto out;
1852                 /* fallocated page */
1853                 if (sgp != SGP_READ)
1854                         goto clear;
1855                 unlock_page(page);
1856                 put_page(page);
1857         }
1858
1859         /*
1860          * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1861          * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1862          */
1863         *pagep = NULL;
1864         if (sgp == SGP_READ)
1865                 return 0;
1866         if (sgp == SGP_NOALLOC)
1867                 return -ENOENT;
1868
1869         /*
1870          * Fast cache lookup and swap lookup did not find it: allocate.
1871          */
1872
1873         if (vma && userfaultfd_missing(vma)) {
1874                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1875                 return 0;
1876         }
1877
1878         /* Never use a huge page for shmem_symlink() */
1879         if (S_ISLNK(inode->i_mode))
1880                 goto alloc_nohuge;
1881         if (!shmem_is_huge(vma, inode, index))
1882                 goto alloc_nohuge;
1883
1884         huge_gfp = vma_thp_gfp_mask(vma);
1885         huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1886         page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1887         if (IS_ERR(page)) {
1888 alloc_nohuge:
1889                 page = shmem_alloc_and_acct_page(gfp, inode,
1890                                                  index, false);
1891         }
1892         if (IS_ERR(page)) {
1893                 int retry = 5;
1894
1895                 error = PTR_ERR(page);
1896                 page = NULL;
1897                 if (error != -ENOSPC)
1898                         goto unlock;
1899                 /*
1900                  * Try to reclaim some space by splitting a huge page
1901                  * beyond i_size on the filesystem.
1902                  */
1903                 while (retry--) {
1904                         int ret;
1905
1906                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1907                         if (ret == SHRINK_STOP)
1908                                 break;
1909                         if (ret)
1910                                 goto alloc_nohuge;
1911                 }
1912                 goto unlock;
1913         }
1914
1915         if (PageTransHuge(page))
1916                 hindex = round_down(index, HPAGE_PMD_NR);
1917         else
1918                 hindex = index;
1919
1920         if (sgp == SGP_WRITE)
1921                 __SetPageReferenced(page);
1922
1923         error = shmem_add_to_page_cache(page, mapping, hindex,
1924                                         NULL, gfp & GFP_RECLAIM_MASK,
1925                                         charge_mm);
1926         if (error)
1927                 goto unacct;
1928         lru_cache_add(page);
1929
1930         spin_lock_irq(&info->lock);
1931         info->alloced += compound_nr(page);
1932         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1933         shmem_recalc_inode(inode);
1934         spin_unlock_irq(&info->lock);
1935         alloced = true;
1936
1937         if (PageTransHuge(page) &&
1938             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1939                         hindex + HPAGE_PMD_NR - 1) {
1940                 /*
1941                  * Part of the huge page is beyond i_size: subject
1942                  * to shrink under memory pressure.
1943                  */
1944                 spin_lock(&sbinfo->shrinklist_lock);
1945                 /*
1946                  * _careful to defend against unlocked access to
1947                  * ->shrink_list in shmem_unused_huge_shrink()
1948                  */
1949                 if (list_empty_careful(&info->shrinklist)) {
1950                         list_add_tail(&info->shrinklist,
1951                                       &sbinfo->shrinklist);
1952                         sbinfo->shrinklist_len++;
1953                 }
1954                 spin_unlock(&sbinfo->shrinklist_lock);
1955         }
1956
1957         /*
1958          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1959          */
1960         if (sgp == SGP_FALLOC)
1961                 sgp = SGP_WRITE;
1962 clear:
1963         /*
1964          * Let SGP_WRITE caller clear ends if write does not fill page;
1965          * but SGP_FALLOC on a page fallocated earlier must initialize
1966          * it now, lest undo on failure cancel our earlier guarantee.
1967          */
1968         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1969                 int i;
1970
1971                 for (i = 0; i < compound_nr(page); i++) {
1972                         clear_highpage(page + i);
1973                         flush_dcache_page(page + i);
1974                 }
1975                 SetPageUptodate(page);
1976         }
1977
1978         /* Perhaps the file has been truncated since we checked */
1979         if (sgp <= SGP_CACHE &&
1980             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1981                 if (alloced) {
1982                         ClearPageDirty(page);
1983                         delete_from_page_cache(page);
1984                         spin_lock_irq(&info->lock);
1985                         shmem_recalc_inode(inode);
1986                         spin_unlock_irq(&info->lock);
1987                 }
1988                 error = -EINVAL;
1989                 goto unlock;
1990         }
1991 out:
1992         *pagep = page + index - hindex;
1993         return 0;
1994
1995         /*
1996          * Error recovery.
1997          */
1998 unacct:
1999         shmem_inode_unacct_blocks(inode, compound_nr(page));
2000
2001         if (PageTransHuge(page)) {
2002                 unlock_page(page);
2003                 put_page(page);
2004                 goto alloc_nohuge;
2005         }
2006 unlock:
2007         if (page) {
2008                 unlock_page(page);
2009                 put_page(page);
2010         }
2011         if (error == -ENOSPC && !once++) {
2012                 spin_lock_irq(&info->lock);
2013                 shmem_recalc_inode(inode);
2014                 spin_unlock_irq(&info->lock);
2015                 goto repeat;
2016         }
2017         if (error == -EEXIST)
2018                 goto repeat;
2019         return error;
2020 }
2021
2022 /*
2023  * This is like autoremove_wake_function, but it removes the wait queue
2024  * entry unconditionally - even if something else had already woken the
2025  * target.
2026  */
2027 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2028 {
2029         int ret = default_wake_function(wait, mode, sync, key);
2030         list_del_init(&wait->entry);
2031         return ret;
2032 }
2033
2034 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2035 {
2036         struct vm_area_struct *vma = vmf->vma;
2037         struct inode *inode = file_inode(vma->vm_file);
2038         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2039         int err;
2040         vm_fault_t ret = VM_FAULT_LOCKED;
2041
2042         /*
2043          * Trinity finds that probing a hole which tmpfs is punching can
2044          * prevent the hole-punch from ever completing: which in turn
2045          * locks writers out with its hold on i_mutex.  So refrain from
2046          * faulting pages into the hole while it's being punched.  Although
2047          * shmem_undo_range() does remove the additions, it may be unable to
2048          * keep up, as each new page needs its own unmap_mapping_range() call,
2049          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2050          *
2051          * It does not matter if we sometimes reach this check just before the
2052          * hole-punch begins, so that one fault then races with the punch:
2053          * we just need to make racing faults a rare case.
2054          *
2055          * The implementation below would be much simpler if we just used a
2056          * standard mutex or completion: but we cannot take i_mutex in fault,
2057          * and bloating every shmem inode for this unlikely case would be sad.
2058          */
2059         if (unlikely(inode->i_private)) {
2060                 struct shmem_falloc *shmem_falloc;
2061
2062                 spin_lock(&inode->i_lock);
2063                 shmem_falloc = inode->i_private;
2064                 if (shmem_falloc &&
2065                     shmem_falloc->waitq &&
2066                     vmf->pgoff >= shmem_falloc->start &&
2067                     vmf->pgoff < shmem_falloc->next) {
2068                         struct file *fpin;
2069                         wait_queue_head_t *shmem_falloc_waitq;
2070                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2071
2072                         ret = VM_FAULT_NOPAGE;
2073                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2074                         if (fpin)
2075                                 ret = VM_FAULT_RETRY;
2076
2077                         shmem_falloc_waitq = shmem_falloc->waitq;
2078                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2079                                         TASK_UNINTERRUPTIBLE);
2080                         spin_unlock(&inode->i_lock);
2081                         schedule();
2082
2083                         /*
2084                          * shmem_falloc_waitq points into the shmem_fallocate()
2085                          * stack of the hole-punching task: shmem_falloc_waitq
2086                          * is usually invalid by the time we reach here, but
2087                          * finish_wait() does not dereference it in that case;
2088                          * though i_lock needed lest racing with wake_up_all().
2089                          */
2090                         spin_lock(&inode->i_lock);
2091                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2092                         spin_unlock(&inode->i_lock);
2093
2094                         if (fpin)
2095                                 fput(fpin);
2096                         return ret;
2097                 }
2098                 spin_unlock(&inode->i_lock);
2099         }
2100
2101         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2102                                   gfp, vma, vmf, &ret);
2103         if (err)
2104                 return vmf_error(err);
2105         return ret;
2106 }
2107
2108 unsigned long shmem_get_unmapped_area(struct file *file,
2109                                       unsigned long uaddr, unsigned long len,
2110                                       unsigned long pgoff, unsigned long flags)
2111 {
2112         unsigned long (*get_area)(struct file *,
2113                 unsigned long, unsigned long, unsigned long, unsigned long);
2114         unsigned long addr;
2115         unsigned long offset;
2116         unsigned long inflated_len;
2117         unsigned long inflated_addr;
2118         unsigned long inflated_offset;
2119
2120         if (len > TASK_SIZE)
2121                 return -ENOMEM;
2122
2123         get_area = current->mm->get_unmapped_area;
2124         addr = get_area(file, uaddr, len, pgoff, flags);
2125
2126         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2127                 return addr;
2128         if (IS_ERR_VALUE(addr))
2129                 return addr;
2130         if (addr & ~PAGE_MASK)
2131                 return addr;
2132         if (addr > TASK_SIZE - len)
2133                 return addr;
2134
2135         if (shmem_huge == SHMEM_HUGE_DENY)
2136                 return addr;
2137         if (len < HPAGE_PMD_SIZE)
2138                 return addr;
2139         if (flags & MAP_FIXED)
2140                 return addr;
2141         /*
2142          * Our priority is to support MAP_SHARED mapped hugely;
2143          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2144          * But if caller specified an address hint and we allocated area there
2145          * successfully, respect that as before.
2146          */
2147         if (uaddr == addr)
2148                 return addr;
2149
2150         if (shmem_huge != SHMEM_HUGE_FORCE) {
2151                 struct super_block *sb;
2152
2153                 if (file) {
2154                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2155                         sb = file_inode(file)->i_sb;
2156                 } else {
2157                         /*
2158                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2159                          * for "/dev/zero", to create a shared anonymous object.
2160                          */
2161                         if (IS_ERR(shm_mnt))
2162                                 return addr;
2163                         sb = shm_mnt->mnt_sb;
2164                 }
2165                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2166                         return addr;
2167         }
2168
2169         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2170         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2171                 return addr;
2172         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2173                 return addr;
2174
2175         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2176         if (inflated_len > TASK_SIZE)
2177                 return addr;
2178         if (inflated_len < len)
2179                 return addr;
2180
2181         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2182         if (IS_ERR_VALUE(inflated_addr))
2183                 return addr;
2184         if (inflated_addr & ~PAGE_MASK)
2185                 return addr;
2186
2187         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2188         inflated_addr += offset - inflated_offset;
2189         if (inflated_offset > offset)
2190                 inflated_addr += HPAGE_PMD_SIZE;
2191
2192         if (inflated_addr > TASK_SIZE - len)
2193                 return addr;
2194         return inflated_addr;
2195 }
2196
2197 #ifdef CONFIG_NUMA
2198 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2199 {
2200         struct inode *inode = file_inode(vma->vm_file);
2201         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2202 }
2203
2204 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2205                                           unsigned long addr)
2206 {
2207         struct inode *inode = file_inode(vma->vm_file);
2208         pgoff_t index;
2209
2210         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2211         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2212 }
2213 #endif
2214
2215 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2216 {
2217         struct inode *inode = file_inode(file);
2218         struct shmem_inode_info *info = SHMEM_I(inode);
2219         int retval = -ENOMEM;
2220
2221         /*
2222          * What serializes the accesses to info->flags?
2223          * ipc_lock_object() when called from shmctl_do_lock(),
2224          * no serialization needed when called from shm_destroy().
2225          */
2226         if (lock && !(info->flags & VM_LOCKED)) {
2227                 if (!user_shm_lock(inode->i_size, ucounts))
2228                         goto out_nomem;
2229                 info->flags |= VM_LOCKED;
2230                 mapping_set_unevictable(file->f_mapping);
2231         }
2232         if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2233                 user_shm_unlock(inode->i_size, ucounts);
2234                 info->flags &= ~VM_LOCKED;
2235                 mapping_clear_unevictable(file->f_mapping);
2236         }
2237         retval = 0;
2238
2239 out_nomem:
2240         return retval;
2241 }
2242
2243 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2244 {
2245         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2246         int ret;
2247
2248         ret = seal_check_future_write(info->seals, vma);
2249         if (ret)
2250                 return ret;
2251
2252         /* arm64 - allow memory tagging on RAM-based files */
2253         vma->vm_flags |= VM_MTE_ALLOWED;
2254
2255         file_accessed(file);
2256         vma->vm_ops = &shmem_vm_ops;
2257         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2258                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2259                         (vma->vm_end & HPAGE_PMD_MASK)) {
2260                 khugepaged_enter(vma, vma->vm_flags);
2261         }
2262         return 0;
2263 }
2264
2265 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2266                                      umode_t mode, dev_t dev, unsigned long flags)
2267 {
2268         struct inode *inode;
2269         struct shmem_inode_info *info;
2270         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2271         ino_t ino;
2272
2273         if (shmem_reserve_inode(sb, &ino))
2274                 return NULL;
2275
2276         inode = new_inode(sb);
2277         if (inode) {
2278                 inode->i_ino = ino;
2279                 inode_init_owner(&init_user_ns, inode, dir, mode);
2280                 inode->i_blocks = 0;
2281                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2282                 inode->i_generation = prandom_u32();
2283                 info = SHMEM_I(inode);
2284                 memset(info, 0, (char *)inode - (char *)info);
2285                 spin_lock_init(&info->lock);
2286                 atomic_set(&info->stop_eviction, 0);
2287                 info->seals = F_SEAL_SEAL;
2288                 info->flags = flags & VM_NORESERVE;
2289                 INIT_LIST_HEAD(&info->shrinklist);
2290                 INIT_LIST_HEAD(&info->swaplist);
2291                 simple_xattrs_init(&info->xattrs);
2292                 cache_no_acl(inode);
2293
2294                 switch (mode & S_IFMT) {
2295                 default:
2296                         inode->i_op = &shmem_special_inode_operations;
2297                         init_special_inode(inode, mode, dev);
2298                         break;
2299                 case S_IFREG:
2300                         inode->i_mapping->a_ops = &shmem_aops;
2301                         inode->i_op = &shmem_inode_operations;
2302                         inode->i_fop = &shmem_file_operations;
2303                         mpol_shared_policy_init(&info->policy,
2304                                                  shmem_get_sbmpol(sbinfo));
2305                         break;
2306                 case S_IFDIR:
2307                         inc_nlink(inode);
2308                         /* Some things misbehave if size == 0 on a directory */
2309                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2310                         inode->i_op = &shmem_dir_inode_operations;
2311                         inode->i_fop = &simple_dir_operations;
2312                         break;
2313                 case S_IFLNK:
2314                         /*
2315                          * Must not load anything in the rbtree,
2316                          * mpol_free_shared_policy will not be called.
2317                          */
2318                         mpol_shared_policy_init(&info->policy, NULL);
2319                         break;
2320                 }
2321
2322                 lockdep_annotate_inode_mutex_key(inode);
2323         } else
2324                 shmem_free_inode(sb);
2325         return inode;
2326 }
2327
2328 #ifdef CONFIG_USERFAULTFD
2329 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2330                            pmd_t *dst_pmd,
2331                            struct vm_area_struct *dst_vma,
2332                            unsigned long dst_addr,
2333                            unsigned long src_addr,
2334                            bool zeropage,
2335                            struct page **pagep)
2336 {
2337         struct inode *inode = file_inode(dst_vma->vm_file);
2338         struct shmem_inode_info *info = SHMEM_I(inode);
2339         struct address_space *mapping = inode->i_mapping;
2340         gfp_t gfp = mapping_gfp_mask(mapping);
2341         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2342         void *page_kaddr;
2343         struct page *page;
2344         int ret;
2345         pgoff_t max_off;
2346
2347         if (!shmem_inode_acct_block(inode, 1)) {
2348                 /*
2349                  * We may have got a page, returned -ENOENT triggering a retry,
2350                  * and now we find ourselves with -ENOMEM. Release the page, to
2351                  * avoid a BUG_ON in our caller.
2352                  */
2353                 if (unlikely(*pagep)) {
2354                         put_page(*pagep);
2355                         *pagep = NULL;
2356                 }
2357                 return -ENOMEM;
2358         }
2359
2360         if (!*pagep) {
2361                 ret = -ENOMEM;
2362                 page = shmem_alloc_page(gfp, info, pgoff);
2363                 if (!page)
2364                         goto out_unacct_blocks;
2365
2366                 if (!zeropage) {        /* COPY */
2367                         page_kaddr = kmap_atomic(page);
2368                         ret = copy_from_user(page_kaddr,
2369                                              (const void __user *)src_addr,
2370                                              PAGE_SIZE);
2371                         kunmap_atomic(page_kaddr);
2372
2373                         /* fallback to copy_from_user outside mmap_lock */
2374                         if (unlikely(ret)) {
2375                                 *pagep = page;
2376                                 ret = -ENOENT;
2377                                 /* don't free the page */
2378                                 goto out_unacct_blocks;
2379                         }
2380                 } else {                /* ZEROPAGE */
2381                         clear_highpage(page);
2382                 }
2383         } else {
2384                 page = *pagep;
2385                 *pagep = NULL;
2386         }
2387
2388         VM_BUG_ON(PageLocked(page));
2389         VM_BUG_ON(PageSwapBacked(page));
2390         __SetPageLocked(page);
2391         __SetPageSwapBacked(page);
2392         __SetPageUptodate(page);
2393
2394         ret = -EFAULT;
2395         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2396         if (unlikely(pgoff >= max_off))
2397                 goto out_release;
2398
2399         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2400                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2401         if (ret)
2402                 goto out_release;
2403
2404         ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2405                                        page, true, false);
2406         if (ret)
2407                 goto out_delete_from_cache;
2408
2409         spin_lock_irq(&info->lock);
2410         info->alloced++;
2411         inode->i_blocks += BLOCKS_PER_PAGE;
2412         shmem_recalc_inode(inode);
2413         spin_unlock_irq(&info->lock);
2414
2415         SetPageDirty(page);
2416         unlock_page(page);
2417         return 0;
2418 out_delete_from_cache:
2419         delete_from_page_cache(page);
2420 out_release:
2421         unlock_page(page);
2422         put_page(page);
2423 out_unacct_blocks:
2424         shmem_inode_unacct_blocks(inode, 1);
2425         return ret;
2426 }
2427 #endif /* CONFIG_USERFAULTFD */
2428
2429 #ifdef CONFIG_TMPFS
2430 static const struct inode_operations shmem_symlink_inode_operations;
2431 static const struct inode_operations shmem_short_symlink_operations;
2432
2433 #ifdef CONFIG_TMPFS_XATTR
2434 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2435 #else
2436 #define shmem_initxattrs NULL
2437 #endif
2438
2439 static int
2440 shmem_write_begin(struct file *file, struct address_space *mapping,
2441                         loff_t pos, unsigned len, unsigned flags,
2442                         struct page **pagep, void **fsdata)
2443 {
2444         struct inode *inode = mapping->host;
2445         struct shmem_inode_info *info = SHMEM_I(inode);
2446         pgoff_t index = pos >> PAGE_SHIFT;
2447
2448         /* i_mutex is held by caller */
2449         if (unlikely(info->seals & (F_SEAL_GROW |
2450                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2451                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2452                         return -EPERM;
2453                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2454                         return -EPERM;
2455         }
2456
2457         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2458 }
2459
2460 static int
2461 shmem_write_end(struct file *file, struct address_space *mapping,
2462                         loff_t pos, unsigned len, unsigned copied,
2463                         struct page *page, void *fsdata)
2464 {
2465         struct inode *inode = mapping->host;
2466
2467         if (pos + copied > inode->i_size)
2468                 i_size_write(inode, pos + copied);
2469
2470         if (!PageUptodate(page)) {
2471                 struct page *head = compound_head(page);
2472                 if (PageTransCompound(page)) {
2473                         int i;
2474
2475                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2476                                 if (head + i == page)
2477                                         continue;
2478                                 clear_highpage(head + i);
2479                                 flush_dcache_page(head + i);
2480                         }
2481                 }
2482                 if (copied < PAGE_SIZE) {
2483                         unsigned from = pos & (PAGE_SIZE - 1);
2484                         zero_user_segments(page, 0, from,
2485                                         from + copied, PAGE_SIZE);
2486                 }
2487                 SetPageUptodate(head);
2488         }
2489         set_page_dirty(page);
2490         unlock_page(page);
2491         put_page(page);
2492
2493         return copied;
2494 }
2495
2496 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2497 {
2498         struct file *file = iocb->ki_filp;
2499         struct inode *inode = file_inode(file);
2500         struct address_space *mapping = inode->i_mapping;
2501         pgoff_t index;
2502         unsigned long offset;
2503         enum sgp_type sgp = SGP_READ;
2504         int error = 0;
2505         ssize_t retval = 0;
2506         loff_t *ppos = &iocb->ki_pos;
2507
2508         /*
2509          * Might this read be for a stacking filesystem?  Then when reading
2510          * holes of a sparse file, we actually need to allocate those pages,
2511          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2512          */
2513         if (!iter_is_iovec(to))
2514                 sgp = SGP_CACHE;
2515
2516         index = *ppos >> PAGE_SHIFT;
2517         offset = *ppos & ~PAGE_MASK;
2518
2519         for (;;) {
2520                 struct page *page = NULL;
2521                 pgoff_t end_index;
2522                 unsigned long nr, ret;
2523                 loff_t i_size = i_size_read(inode);
2524
2525                 end_index = i_size >> PAGE_SHIFT;
2526                 if (index > end_index)
2527                         break;
2528                 if (index == end_index) {
2529                         nr = i_size & ~PAGE_MASK;
2530                         if (nr <= offset)
2531                                 break;
2532                 }
2533
2534                 error = shmem_getpage(inode, index, &page, sgp);
2535                 if (error) {
2536                         if (error == -EINVAL)
2537                                 error = 0;
2538                         break;
2539                 }
2540                 if (page) {
2541                         if (sgp == SGP_CACHE)
2542                                 set_page_dirty(page);
2543                         unlock_page(page);
2544                 }
2545
2546                 /*
2547                  * We must evaluate after, since reads (unlike writes)
2548                  * are called without i_mutex protection against truncate
2549                  */
2550                 nr = PAGE_SIZE;
2551                 i_size = i_size_read(inode);
2552                 end_index = i_size >> PAGE_SHIFT;
2553                 if (index == end_index) {
2554                         nr = i_size & ~PAGE_MASK;
2555                         if (nr <= offset) {
2556                                 if (page)
2557                                         put_page(page);
2558                                 break;
2559                         }
2560                 }
2561                 nr -= offset;
2562
2563                 if (page) {
2564                         /*
2565                          * If users can be writing to this page using arbitrary
2566                          * virtual addresses, take care about potential aliasing
2567                          * before reading the page on the kernel side.
2568                          */
2569                         if (mapping_writably_mapped(mapping))
2570                                 flush_dcache_page(page);
2571                         /*
2572                          * Mark the page accessed if we read the beginning.
2573                          */
2574                         if (!offset)
2575                                 mark_page_accessed(page);
2576                 } else {
2577                         page = ZERO_PAGE(0);
2578                         get_page(page);
2579                 }
2580
2581                 /*
2582                  * Ok, we have the page, and it's up-to-date, so
2583                  * now we can copy it to user space...
2584                  */
2585                 ret = copy_page_to_iter(page, offset, nr, to);
2586                 retval += ret;
2587                 offset += ret;
2588                 index += offset >> PAGE_SHIFT;
2589                 offset &= ~PAGE_MASK;
2590
2591                 put_page(page);
2592                 if (!iov_iter_count(to))
2593                         break;
2594                 if (ret < nr) {
2595                         error = -EFAULT;
2596                         break;
2597                 }
2598                 cond_resched();
2599         }
2600
2601         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2602         file_accessed(file);
2603         return retval ? retval : error;
2604 }
2605
2606 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2607 {
2608         struct address_space *mapping = file->f_mapping;
2609         struct inode *inode = mapping->host;
2610
2611         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2612                 return generic_file_llseek_size(file, offset, whence,
2613                                         MAX_LFS_FILESIZE, i_size_read(inode));
2614         if (offset < 0)
2615                 return -ENXIO;
2616
2617         inode_lock(inode);
2618         /* We're holding i_mutex so we can access i_size directly */
2619         offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2620         if (offset >= 0)
2621                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2622         inode_unlock(inode);
2623         return offset;
2624 }
2625
2626 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2627                                                          loff_t len)
2628 {
2629         struct inode *inode = file_inode(file);
2630         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2631         struct shmem_inode_info *info = SHMEM_I(inode);
2632         struct shmem_falloc shmem_falloc;
2633         pgoff_t start, index, end, undo_fallocend;
2634         int error;
2635
2636         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2637                 return -EOPNOTSUPP;
2638
2639         inode_lock(inode);
2640
2641         if (mode & FALLOC_FL_PUNCH_HOLE) {
2642                 struct address_space *mapping = file->f_mapping;
2643                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2644                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2645                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2646
2647                 /* protected by i_mutex */
2648                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2649                         error = -EPERM;
2650                         goto out;
2651                 }
2652
2653                 shmem_falloc.waitq = &shmem_falloc_waitq;
2654                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2655                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2656                 spin_lock(&inode->i_lock);
2657                 inode->i_private = &shmem_falloc;
2658                 spin_unlock(&inode->i_lock);
2659
2660                 if ((u64)unmap_end > (u64)unmap_start)
2661                         unmap_mapping_range(mapping, unmap_start,
2662                                             1 + unmap_end - unmap_start, 0);
2663                 shmem_truncate_range(inode, offset, offset + len - 1);
2664                 /* No need to unmap again: hole-punching leaves COWed pages */
2665
2666                 spin_lock(&inode->i_lock);
2667                 inode->i_private = NULL;
2668                 wake_up_all(&shmem_falloc_waitq);
2669                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2670                 spin_unlock(&inode->i_lock);
2671                 error = 0;
2672                 goto out;
2673         }
2674
2675         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2676         error = inode_newsize_ok(inode, offset + len);
2677         if (error)
2678                 goto out;
2679
2680         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2681                 error = -EPERM;
2682                 goto out;
2683         }
2684
2685         start = offset >> PAGE_SHIFT;
2686         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2687         /* Try to avoid a swapstorm if len is impossible to satisfy */
2688         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2689                 error = -ENOSPC;
2690                 goto out;
2691         }
2692
2693         shmem_falloc.waitq = NULL;
2694         shmem_falloc.start = start;
2695         shmem_falloc.next  = start;
2696         shmem_falloc.nr_falloced = 0;
2697         shmem_falloc.nr_unswapped = 0;
2698         spin_lock(&inode->i_lock);
2699         inode->i_private = &shmem_falloc;
2700         spin_unlock(&inode->i_lock);
2701
2702         /*
2703          * info->fallocend is only relevant when huge pages might be
2704          * involved: to prevent split_huge_page() freeing fallocated
2705          * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2706          */
2707         undo_fallocend = info->fallocend;
2708         if (info->fallocend < end)
2709                 info->fallocend = end;
2710
2711         for (index = start; index < end; ) {
2712                 struct page *page;
2713
2714                 /*
2715                  * Good, the fallocate(2) manpage permits EINTR: we may have
2716                  * been interrupted because we are using up too much memory.
2717                  */
2718                 if (signal_pending(current))
2719                         error = -EINTR;
2720                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2721                         error = -ENOMEM;
2722                 else
2723                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2724                 if (error) {
2725                         info->fallocend = undo_fallocend;
2726                         /* Remove the !PageUptodate pages we added */
2727                         if (index > start) {
2728                                 shmem_undo_range(inode,
2729                                     (loff_t)start << PAGE_SHIFT,
2730                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2731                         }
2732                         goto undone;
2733                 }
2734
2735                 index++;
2736                 /*
2737                  * Here is a more important optimization than it appears:
2738                  * a second SGP_FALLOC on the same huge page will clear it,
2739                  * making it PageUptodate and un-undoable if we fail later.
2740                  */
2741                 if (PageTransCompound(page)) {
2742                         index = round_up(index, HPAGE_PMD_NR);
2743                         /* Beware 32-bit wraparound */
2744                         if (!index)
2745                                 index--;
2746                 }
2747
2748                 /*
2749                  * Inform shmem_writepage() how far we have reached.
2750                  * No need for lock or barrier: we have the page lock.
2751                  */
2752                 if (!PageUptodate(page))
2753                         shmem_falloc.nr_falloced += index - shmem_falloc.next;
2754                 shmem_falloc.next = index;
2755
2756                 /*
2757                  * If !PageUptodate, leave it that way so that freeable pages
2758                  * can be recognized if we need to rollback on error later.
2759                  * But set_page_dirty so that memory pressure will swap rather
2760                  * than free the pages we are allocating (and SGP_CACHE pages
2761                  * might still be clean: we now need to mark those dirty too).
2762                  */
2763                 set_page_dirty(page);
2764                 unlock_page(page);
2765                 put_page(page);
2766                 cond_resched();
2767         }
2768
2769         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2770                 i_size_write(inode, offset + len);
2771         inode->i_ctime = current_time(inode);
2772 undone:
2773         spin_lock(&inode->i_lock);
2774         inode->i_private = NULL;
2775         spin_unlock(&inode->i_lock);
2776 out:
2777         inode_unlock(inode);
2778         return error;
2779 }
2780
2781 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2782 {
2783         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2784
2785         buf->f_type = TMPFS_MAGIC;
2786         buf->f_bsize = PAGE_SIZE;
2787         buf->f_namelen = NAME_MAX;
2788         if (sbinfo->max_blocks) {
2789                 buf->f_blocks = sbinfo->max_blocks;
2790                 buf->f_bavail =
2791                 buf->f_bfree  = sbinfo->max_blocks -
2792                                 percpu_counter_sum(&sbinfo->used_blocks);
2793         }
2794         if (sbinfo->max_inodes) {
2795                 buf->f_files = sbinfo->max_inodes;
2796                 buf->f_ffree = sbinfo->free_inodes;
2797         }
2798         /* else leave those fields 0 like simple_statfs */
2799
2800         buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2801
2802         return 0;
2803 }
2804
2805 /*
2806  * File creation. Allocate an inode, and we're done..
2807  */
2808 static int
2809 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2810             struct dentry *dentry, umode_t mode, dev_t dev)
2811 {
2812         struct inode *inode;
2813         int error = -ENOSPC;
2814
2815         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2816         if (inode) {
2817                 error = simple_acl_create(dir, inode);
2818                 if (error)
2819                         goto out_iput;
2820                 error = security_inode_init_security(inode, dir,
2821                                                      &dentry->d_name,
2822                                                      shmem_initxattrs, NULL);
2823                 if (error && error != -EOPNOTSUPP)
2824                         goto out_iput;
2825
2826                 error = 0;
2827                 dir->i_size += BOGO_DIRENT_SIZE;
2828                 dir->i_ctime = dir->i_mtime = current_time(dir);
2829                 d_instantiate(dentry, inode);
2830                 dget(dentry); /* Extra count - pin the dentry in core */
2831         }
2832         return error;
2833 out_iput:
2834         iput(inode);
2835         return error;
2836 }
2837
2838 static int
2839 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2840               struct dentry *dentry, umode_t mode)
2841 {
2842         struct inode *inode;
2843         int error = -ENOSPC;
2844
2845         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2846         if (inode) {
2847                 error = security_inode_init_security(inode, dir,
2848                                                      NULL,
2849                                                      shmem_initxattrs, NULL);
2850                 if (error && error != -EOPNOTSUPP)
2851                         goto out_iput;
2852                 error = simple_acl_create(dir, inode);
2853                 if (error)
2854                         goto out_iput;
2855                 d_tmpfile(dentry, inode);
2856         }
2857         return error;
2858 out_iput:
2859         iput(inode);
2860         return error;
2861 }
2862
2863 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2864                        struct dentry *dentry, umode_t mode)
2865 {
2866         int error;
2867
2868         if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2869                                  mode | S_IFDIR, 0)))
2870                 return error;
2871         inc_nlink(dir);
2872         return 0;
2873 }
2874
2875 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2876                         struct dentry *dentry, umode_t mode, bool excl)
2877 {
2878         return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2879 }
2880
2881 /*
2882  * Link a file..
2883  */
2884 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2885 {
2886         struct inode *inode = d_inode(old_dentry);
2887         int ret = 0;
2888
2889         /*
2890          * No ordinary (disk based) filesystem counts links as inodes;
2891          * but each new link needs a new dentry, pinning lowmem, and
2892          * tmpfs dentries cannot be pruned until they are unlinked.
2893          * But if an O_TMPFILE file is linked into the tmpfs, the
2894          * first link must skip that, to get the accounting right.
2895          */
2896         if (inode->i_nlink) {
2897                 ret = shmem_reserve_inode(inode->i_sb, NULL);
2898                 if (ret)
2899                         goto out;
2900         }
2901
2902         dir->i_size += BOGO_DIRENT_SIZE;
2903         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2904         inc_nlink(inode);
2905         ihold(inode);   /* New dentry reference */
2906         dget(dentry);           /* Extra pinning count for the created dentry */
2907         d_instantiate(dentry, inode);
2908 out:
2909         return ret;
2910 }
2911
2912 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2913 {
2914         struct inode *inode = d_inode(dentry);
2915
2916         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2917                 shmem_free_inode(inode->i_sb);
2918
2919         dir->i_size -= BOGO_DIRENT_SIZE;
2920         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2921         drop_nlink(inode);
2922         dput(dentry);   /* Undo the count from "create" - this does all the work */
2923         return 0;
2924 }
2925
2926 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2927 {
2928         if (!simple_empty(dentry))
2929                 return -ENOTEMPTY;
2930
2931         drop_nlink(d_inode(dentry));
2932         drop_nlink(dir);
2933         return shmem_unlink(dir, dentry);
2934 }
2935
2936 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2937 {
2938         bool old_is_dir = d_is_dir(old_dentry);
2939         bool new_is_dir = d_is_dir(new_dentry);
2940
2941         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2942                 if (old_is_dir) {
2943                         drop_nlink(old_dir);
2944                         inc_nlink(new_dir);
2945                 } else {
2946                         drop_nlink(new_dir);
2947                         inc_nlink(old_dir);
2948                 }
2949         }
2950         old_dir->i_ctime = old_dir->i_mtime =
2951         new_dir->i_ctime = new_dir->i_mtime =
2952         d_inode(old_dentry)->i_ctime =
2953         d_inode(new_dentry)->i_ctime = current_time(old_dir);
2954
2955         return 0;
2956 }
2957
2958 static int shmem_whiteout(struct user_namespace *mnt_userns,
2959                           struct inode *old_dir, struct dentry *old_dentry)
2960 {
2961         struct dentry *whiteout;
2962         int error;
2963
2964         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2965         if (!whiteout)
2966                 return -ENOMEM;
2967
2968         error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2969                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2970         dput(whiteout);
2971         if (error)
2972                 return error;
2973
2974         /*
2975          * Cheat and hash the whiteout while the old dentry is still in
2976          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2977          *
2978          * d_lookup() will consistently find one of them at this point,
2979          * not sure which one, but that isn't even important.
2980          */
2981         d_rehash(whiteout);
2982         return 0;
2983 }
2984
2985 /*
2986  * The VFS layer already does all the dentry stuff for rename,
2987  * we just have to decrement the usage count for the target if
2988  * it exists so that the VFS layer correctly free's it when it
2989  * gets overwritten.
2990  */
2991 static int shmem_rename2(struct user_namespace *mnt_userns,
2992                          struct inode *old_dir, struct dentry *old_dentry,
2993                          struct inode *new_dir, struct dentry *new_dentry,
2994                          unsigned int flags)
2995 {
2996         struct inode *inode = d_inode(old_dentry);
2997         int they_are_dirs = S_ISDIR(inode->i_mode);
2998
2999         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3000                 return -EINVAL;
3001
3002         if (flags & RENAME_EXCHANGE)
3003                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3004
3005         if (!simple_empty(new_dentry))
3006                 return -ENOTEMPTY;
3007
3008         if (flags & RENAME_WHITEOUT) {
3009                 int error;
3010
3011                 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3012                 if (error)
3013                         return error;
3014         }
3015
3016         if (d_really_is_positive(new_dentry)) {
3017                 (void) shmem_unlink(new_dir, new_dentry);
3018                 if (they_are_dirs) {
3019                         drop_nlink(d_inode(new_dentry));
3020                         drop_nlink(old_dir);
3021                 }
3022         } else if (they_are_dirs) {
3023                 drop_nlink(old_dir);
3024                 inc_nlink(new_dir);
3025         }
3026
3027         old_dir->i_size -= BOGO_DIRENT_SIZE;
3028         new_dir->i_size += BOGO_DIRENT_SIZE;
3029         old_dir->i_ctime = old_dir->i_mtime =
3030         new_dir->i_ctime = new_dir->i_mtime =
3031         inode->i_ctime = current_time(old_dir);
3032         return 0;
3033 }
3034
3035 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3036                          struct dentry *dentry, const char *symname)
3037 {
3038         int error;
3039         int len;
3040         struct inode *inode;
3041         struct page *page;
3042
3043         len = strlen(symname) + 1;
3044         if (len > PAGE_SIZE)
3045                 return -ENAMETOOLONG;
3046
3047         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3048                                 VM_NORESERVE);
3049         if (!inode)
3050                 return -ENOSPC;
3051
3052         error = security_inode_init_security(inode, dir, &dentry->d_name,
3053                                              shmem_initxattrs, NULL);
3054         if (error && error != -EOPNOTSUPP) {
3055                 iput(inode);
3056                 return error;
3057         }
3058
3059         inode->i_size = len-1;
3060         if (len <= SHORT_SYMLINK_LEN) {
3061                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3062                 if (!inode->i_link) {
3063                         iput(inode);
3064                         return -ENOMEM;
3065                 }
3066                 inode->i_op = &shmem_short_symlink_operations;
3067         } else {
3068                 inode_nohighmem(inode);
3069                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3070                 if (error) {
3071                         iput(inode);
3072                         return error;
3073                 }
3074                 inode->i_mapping->a_ops = &shmem_aops;
3075                 inode->i_op = &shmem_symlink_inode_operations;
3076                 memcpy(page_address(page), symname, len);
3077                 SetPageUptodate(page);
3078                 set_page_dirty(page);
3079                 unlock_page(page);
3080                 put_page(page);
3081         }
3082         dir->i_size += BOGO_DIRENT_SIZE;
3083         dir->i_ctime = dir->i_mtime = current_time(dir);
3084         d_instantiate(dentry, inode);
3085         dget(dentry);
3086         return 0;
3087 }
3088
3089 static void shmem_put_link(void *arg)
3090 {
3091         mark_page_accessed(arg);
3092         put_page(arg);
3093 }
3094
3095 static const char *shmem_get_link(struct dentry *dentry,
3096                                   struct inode *inode,
3097                                   struct delayed_call *done)
3098 {
3099         struct page *page = NULL;
3100         int error;
3101         if (!dentry) {
3102                 page = find_get_page(inode->i_mapping, 0);
3103                 if (!page)
3104                         return ERR_PTR(-ECHILD);
3105                 if (!PageUptodate(page)) {
3106                         put_page(page);
3107                         return ERR_PTR(-ECHILD);
3108                 }
3109         } else {
3110                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3111                 if (error)
3112                         return ERR_PTR(error);
3113                 unlock_page(page);
3114         }
3115         set_delayed_call(done, shmem_put_link, page);
3116         return page_address(page);
3117 }
3118
3119 #ifdef CONFIG_TMPFS_XATTR
3120 /*
3121  * Superblocks without xattr inode operations may get some security.* xattr
3122  * support from the LSM "for free". As soon as we have any other xattrs
3123  * like ACLs, we also need to implement the security.* handlers at
3124  * filesystem level, though.
3125  */
3126
3127 /*
3128  * Callback for security_inode_init_security() for acquiring xattrs.
3129  */
3130 static int shmem_initxattrs(struct inode *inode,
3131                             const struct xattr *xattr_array,
3132                             void *fs_info)
3133 {
3134         struct shmem_inode_info *info = SHMEM_I(inode);
3135         const struct xattr *xattr;
3136         struct simple_xattr *new_xattr;
3137         size_t len;
3138
3139         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3140                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3141                 if (!new_xattr)
3142                         return -ENOMEM;
3143
3144                 len = strlen(xattr->name) + 1;
3145                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3146                                           GFP_KERNEL);
3147                 if (!new_xattr->name) {
3148                         kvfree(new_xattr);
3149                         return -ENOMEM;
3150                 }
3151
3152                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3153                        XATTR_SECURITY_PREFIX_LEN);
3154                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3155                        xattr->name, len);
3156
3157                 simple_xattr_list_add(&info->xattrs, new_xattr);
3158         }
3159
3160         return 0;
3161 }
3162
3163 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3164                                    struct dentry *unused, struct inode *inode,
3165                                    const char *name, void *buffer, size_t size)
3166 {
3167         struct shmem_inode_info *info = SHMEM_I(inode);
3168
3169         name = xattr_full_name(handler, name);
3170         return simple_xattr_get(&info->xattrs, name, buffer, size);
3171 }
3172
3173 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3174                                    struct user_namespace *mnt_userns,
3175                                    struct dentry *unused, struct inode *inode,
3176                                    const char *name, const void *value,
3177                                    size_t size, int flags)
3178 {
3179         struct shmem_inode_info *info = SHMEM_I(inode);
3180
3181         name = xattr_full_name(handler, name);
3182         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3183 }
3184
3185 static const struct xattr_handler shmem_security_xattr_handler = {
3186         .prefix = XATTR_SECURITY_PREFIX,
3187         .get = shmem_xattr_handler_get,
3188         .set = shmem_xattr_handler_set,
3189 };
3190
3191 static const struct xattr_handler shmem_trusted_xattr_handler = {
3192         .prefix = XATTR_TRUSTED_PREFIX,
3193         .get = shmem_xattr_handler_get,
3194         .set = shmem_xattr_handler_set,
3195 };
3196
3197 static const struct xattr_handler *shmem_xattr_handlers[] = {
3198 #ifdef CONFIG_TMPFS_POSIX_ACL
3199         &posix_acl_access_xattr_handler,
3200         &posix_acl_default_xattr_handler,
3201 #endif
3202         &shmem_security_xattr_handler,
3203         &shmem_trusted_xattr_handler,
3204         NULL
3205 };
3206
3207 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3208 {
3209         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3210         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3211 }
3212 #endif /* CONFIG_TMPFS_XATTR */
3213
3214 static const struct inode_operations shmem_short_symlink_operations = {
3215         .get_link       = simple_get_link,
3216 #ifdef CONFIG_TMPFS_XATTR
3217         .listxattr      = shmem_listxattr,
3218 #endif
3219 };
3220
3221 static const struct inode_operations shmem_symlink_inode_operations = {
3222         .get_link       = shmem_get_link,
3223 #ifdef CONFIG_TMPFS_XATTR
3224         .listxattr      = shmem_listxattr,
3225 #endif
3226 };
3227
3228 static struct dentry *shmem_get_parent(struct dentry *child)
3229 {
3230         return ERR_PTR(-ESTALE);
3231 }
3232
3233 static int shmem_match(struct inode *ino, void *vfh)
3234 {
3235         __u32 *fh = vfh;
3236         __u64 inum = fh[2];
3237         inum = (inum << 32) | fh[1];
3238         return ino->i_ino == inum && fh[0] == ino->i_generation;
3239 }
3240
3241 /* Find any alias of inode, but prefer a hashed alias */
3242 static struct dentry *shmem_find_alias(struct inode *inode)
3243 {
3244         struct dentry *alias = d_find_alias(inode);
3245
3246         return alias ?: d_find_any_alias(inode);
3247 }
3248
3249
3250 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3251                 struct fid *fid, int fh_len, int fh_type)
3252 {
3253         struct inode *inode;
3254         struct dentry *dentry = NULL;
3255         u64 inum;
3256
3257         if (fh_len < 3)
3258                 return NULL;
3259
3260         inum = fid->raw[2];
3261         inum = (inum << 32) | fid->raw[1];
3262
3263         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3264                         shmem_match, fid->raw);
3265         if (inode) {
3266                 dentry = shmem_find_alias(inode);
3267                 iput(inode);
3268         }
3269
3270         return dentry;
3271 }
3272
3273 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3274                                 struct inode *parent)
3275 {
3276         if (*len < 3) {
3277                 *len = 3;
3278                 return FILEID_INVALID;
3279         }
3280
3281         if (inode_unhashed(inode)) {
3282                 /* Unfortunately insert_inode_hash is not idempotent,
3283                  * so as we hash inodes here rather than at creation
3284                  * time, we need a lock to ensure we only try
3285                  * to do it once
3286                  */
3287                 static DEFINE_SPINLOCK(lock);
3288                 spin_lock(&lock);
3289                 if (inode_unhashed(inode))
3290                         __insert_inode_hash(inode,
3291                                             inode->i_ino + inode->i_generation);
3292                 spin_unlock(&lock);
3293         }
3294
3295         fh[0] = inode->i_generation;
3296         fh[1] = inode->i_ino;
3297         fh[2] = ((__u64)inode->i_ino) >> 32;
3298
3299         *len = 3;
3300         return 1;
3301 }
3302
3303 static const struct export_operations shmem_export_ops = {
3304         .get_parent     = shmem_get_parent,
3305         .encode_fh      = shmem_encode_fh,
3306         .fh_to_dentry   = shmem_fh_to_dentry,
3307 };
3308
3309 enum shmem_param {
3310         Opt_gid,
3311         Opt_huge,
3312         Opt_mode,
3313         Opt_mpol,
3314         Opt_nr_blocks,
3315         Opt_nr_inodes,
3316         Opt_size,
3317         Opt_uid,
3318         Opt_inode32,
3319         Opt_inode64,
3320 };
3321
3322 static const struct constant_table shmem_param_enums_huge[] = {
3323         {"never",       SHMEM_HUGE_NEVER },
3324         {"always",      SHMEM_HUGE_ALWAYS },
3325         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3326         {"advise",      SHMEM_HUGE_ADVISE },
3327         {}
3328 };
3329
3330 const struct fs_parameter_spec shmem_fs_parameters[] = {
3331         fsparam_u32   ("gid",           Opt_gid),
3332         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3333         fsparam_u32oct("mode",          Opt_mode),
3334         fsparam_string("mpol",          Opt_mpol),
3335         fsparam_string("nr_blocks",     Opt_nr_blocks),
3336         fsparam_string("nr_inodes",     Opt_nr_inodes),
3337         fsparam_string("size",          Opt_size),
3338         fsparam_u32   ("uid",           Opt_uid),
3339         fsparam_flag  ("inode32",       Opt_inode32),
3340         fsparam_flag  ("inode64",       Opt_inode64),
3341         {}
3342 };
3343
3344 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3345 {
3346         struct shmem_options *ctx = fc->fs_private;
3347         struct fs_parse_result result;
3348         unsigned long long size;
3349         char *rest;
3350         int opt;
3351
3352         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3353         if (opt < 0)
3354                 return opt;
3355
3356         switch (opt) {
3357         case Opt_size:
3358                 size = memparse(param->string, &rest);
3359                 if (*rest == '%') {
3360                         size <<= PAGE_SHIFT;
3361                         size *= totalram_pages();
3362                         do_div(size, 100);
3363                         rest++;
3364                 }
3365                 if (*rest)
3366                         goto bad_value;
3367                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3368                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3369                 break;
3370         case Opt_nr_blocks:
3371                 ctx->blocks = memparse(param->string, &rest);
3372                 if (*rest)
3373                         goto bad_value;
3374                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3375                 break;
3376         case Opt_nr_inodes:
3377                 ctx->inodes = memparse(param->string, &rest);
3378                 if (*rest)
3379                         goto bad_value;
3380                 ctx->seen |= SHMEM_SEEN_INODES;
3381                 break;
3382         case Opt_mode:
3383                 ctx->mode = result.uint_32 & 07777;
3384                 break;
3385         case Opt_uid:
3386                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3387                 if (!uid_valid(ctx->uid))
3388                         goto bad_value;
3389                 break;
3390         case Opt_gid:
3391                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3392                 if (!gid_valid(ctx->gid))
3393                         goto bad_value;
3394                 break;
3395         case Opt_huge:
3396                 ctx->huge = result.uint_32;
3397                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3398                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3399                       has_transparent_hugepage()))
3400                         goto unsupported_parameter;
3401                 ctx->seen |= SHMEM_SEEN_HUGE;
3402                 break;
3403         case Opt_mpol:
3404                 if (IS_ENABLED(CONFIG_NUMA)) {
3405                         mpol_put(ctx->mpol);
3406                         ctx->mpol = NULL;
3407                         if (mpol_parse_str(param->string, &ctx->mpol))
3408                                 goto bad_value;
3409                         break;
3410                 }
3411                 goto unsupported_parameter;
3412         case Opt_inode32:
3413                 ctx->full_inums = false;
3414                 ctx->seen |= SHMEM_SEEN_INUMS;
3415                 break;
3416         case Opt_inode64:
3417                 if (sizeof(ino_t) < 8) {
3418                         return invalfc(fc,
3419                                        "Cannot use inode64 with <64bit inums in kernel\n");
3420                 }
3421                 ctx->full_inums = true;
3422                 ctx->seen |= SHMEM_SEEN_INUMS;
3423                 break;
3424         }
3425         return 0;
3426
3427 unsupported_parameter:
3428         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3429 bad_value:
3430         return invalfc(fc, "Bad value for '%s'", param->key);
3431 }
3432
3433 static int shmem_parse_options(struct fs_context *fc, void *data)
3434 {
3435         char *options = data;
3436
3437         if (options) {
3438                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3439                 if (err)
3440                         return err;
3441         }
3442
3443         while (options != NULL) {
3444                 char *this_char = options;
3445                 for (;;) {
3446                         /*
3447                          * NUL-terminate this option: unfortunately,
3448                          * mount options form a comma-separated list,
3449                          * but mpol's nodelist may also contain commas.
3450                          */
3451                         options = strchr(options, ',');
3452                         if (options == NULL)
3453                                 break;
3454                         options++;
3455                         if (!isdigit(*options)) {
3456                                 options[-1] = '\0';
3457                                 break;
3458                         }
3459                 }
3460                 if (*this_char) {
3461                         char *value = strchr(this_char, '=');
3462                         size_t len = 0;
3463                         int err;
3464
3465                         if (value) {
3466                                 *value++ = '\0';
3467                                 len = strlen(value);
3468                         }
3469                         err = vfs_parse_fs_string(fc, this_char, value, len);
3470                         if (err < 0)
3471                                 return err;
3472                 }
3473         }
3474         return 0;
3475 }
3476
3477 /*
3478  * Reconfigure a shmem filesystem.
3479  *
3480  * Note that we disallow change from limited->unlimited blocks/inodes while any
3481  * are in use; but we must separately disallow unlimited->limited, because in
3482  * that case we have no record of how much is already in use.
3483  */
3484 static int shmem_reconfigure(struct fs_context *fc)
3485 {
3486         struct shmem_options *ctx = fc->fs_private;
3487         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3488         unsigned long inodes;
3489         struct mempolicy *mpol = NULL;
3490         const char *err;
3491
3492         raw_spin_lock(&sbinfo->stat_lock);
3493         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3494         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3495                 if (!sbinfo->max_blocks) {
3496                         err = "Cannot retroactively limit size";
3497                         goto out;
3498                 }
3499                 if (percpu_counter_compare(&sbinfo->used_blocks,
3500                                            ctx->blocks) > 0) {
3501                         err = "Too small a size for current use";
3502                         goto out;
3503                 }
3504         }
3505         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3506                 if (!sbinfo->max_inodes) {
3507                         err = "Cannot retroactively limit inodes";
3508                         goto out;
3509                 }
3510                 if (ctx->inodes < inodes) {
3511                         err = "Too few inodes for current use";
3512                         goto out;
3513                 }
3514         }
3515
3516         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3517             sbinfo->next_ino > UINT_MAX) {
3518                 err = "Current inum too high to switch to 32-bit inums";
3519                 goto out;
3520         }
3521
3522         if (ctx->seen & SHMEM_SEEN_HUGE)
3523                 sbinfo->huge = ctx->huge;
3524         if (ctx->seen & SHMEM_SEEN_INUMS)
3525                 sbinfo->full_inums = ctx->full_inums;
3526         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3527                 sbinfo->max_blocks  = ctx->blocks;
3528         if (ctx->seen & SHMEM_SEEN_INODES) {
3529                 sbinfo->max_inodes  = ctx->inodes;
3530                 sbinfo->free_inodes = ctx->inodes - inodes;
3531         }
3532
3533         /*
3534          * Preserve previous mempolicy unless mpol remount option was specified.
3535          */
3536         if (ctx->mpol) {
3537                 mpol = sbinfo->mpol;
3538                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3539                 ctx->mpol = NULL;
3540         }
3541         raw_spin_unlock(&sbinfo->stat_lock);
3542         mpol_put(mpol);
3543         return 0;
3544 out:
3545         raw_spin_unlock(&sbinfo->stat_lock);
3546         return invalfc(fc, "%s", err);
3547 }
3548
3549 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3550 {
3551         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3552
3553         if (sbinfo->max_blocks != shmem_default_max_blocks())
3554                 seq_printf(seq, ",size=%luk",
3555                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3556         if (sbinfo->max_inodes != shmem_default_max_inodes())
3557                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3558         if (sbinfo->mode != (0777 | S_ISVTX))
3559                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3560         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3561                 seq_printf(seq, ",uid=%u",
3562                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3563         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3564                 seq_printf(seq, ",gid=%u",
3565                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3566
3567         /*
3568          * Showing inode{64,32} might be useful even if it's the system default,
3569          * since then people don't have to resort to checking both here and
3570          * /proc/config.gz to confirm 64-bit inums were successfully applied
3571          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3572          *
3573          * We hide it when inode64 isn't the default and we are using 32-bit
3574          * inodes, since that probably just means the feature isn't even under
3575          * consideration.
3576          *
3577          * As such:
3578          *
3579          *                     +-----------------+-----------------+
3580          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3581          *  +------------------+-----------------+-----------------+
3582          *  | full_inums=true  | show            | show            |
3583          *  | full_inums=false | show            | hide            |
3584          *  +------------------+-----------------+-----------------+
3585          *
3586          */
3587         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3588                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3589 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3590         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3591         if (sbinfo->huge)
3592                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3593 #endif
3594         shmem_show_mpol(seq, sbinfo->mpol);
3595         return 0;
3596 }
3597
3598 #endif /* CONFIG_TMPFS */
3599
3600 static void shmem_put_super(struct super_block *sb)
3601 {
3602         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3603
3604         free_percpu(sbinfo->ino_batch);
3605         percpu_counter_destroy(&sbinfo->used_blocks);
3606         mpol_put(sbinfo->mpol);
3607         kfree(sbinfo);
3608         sb->s_fs_info = NULL;
3609 }
3610
3611 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3612 {
3613         struct shmem_options *ctx = fc->fs_private;
3614         struct inode *inode;
3615         struct shmem_sb_info *sbinfo;
3616
3617         /* Round up to L1_CACHE_BYTES to resist false sharing */
3618         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3619                                 L1_CACHE_BYTES), GFP_KERNEL);
3620         if (!sbinfo)
3621                 return -ENOMEM;
3622
3623         sb->s_fs_info = sbinfo;
3624
3625 #ifdef CONFIG_TMPFS
3626         /*
3627          * Per default we only allow half of the physical ram per
3628          * tmpfs instance, limiting inodes to one per page of lowmem;
3629          * but the internal instance is left unlimited.
3630          */
3631         if (!(sb->s_flags & SB_KERNMOUNT)) {
3632                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3633                         ctx->blocks = shmem_default_max_blocks();
3634                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3635                         ctx->inodes = shmem_default_max_inodes();
3636                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3637                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3638         } else {
3639                 sb->s_flags |= SB_NOUSER;
3640         }
3641         sb->s_export_op = &shmem_export_ops;
3642         sb->s_flags |= SB_NOSEC;
3643 #else
3644         sb->s_flags |= SB_NOUSER;
3645 #endif
3646         sbinfo->max_blocks = ctx->blocks;
3647         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3648         if (sb->s_flags & SB_KERNMOUNT) {
3649                 sbinfo->ino_batch = alloc_percpu(ino_t);
3650                 if (!sbinfo->ino_batch)
3651                         goto failed;
3652         }
3653         sbinfo->uid = ctx->uid;
3654         sbinfo->gid = ctx->gid;
3655         sbinfo->full_inums = ctx->full_inums;
3656         sbinfo->mode = ctx->mode;
3657         sbinfo->huge = ctx->huge;
3658         sbinfo->mpol = ctx->mpol;
3659         ctx->mpol = NULL;
3660
3661         raw_spin_lock_init(&sbinfo->stat_lock);
3662         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3663                 goto failed;
3664         spin_lock_init(&sbinfo->shrinklist_lock);
3665         INIT_LIST_HEAD(&sbinfo->shrinklist);
3666
3667         sb->s_maxbytes = MAX_LFS_FILESIZE;
3668         sb->s_blocksize = PAGE_SIZE;
3669         sb->s_blocksize_bits = PAGE_SHIFT;
3670         sb->s_magic = TMPFS_MAGIC;
3671         sb->s_op = &shmem_ops;
3672         sb->s_time_gran = 1;
3673 #ifdef CONFIG_TMPFS_XATTR
3674         sb->s_xattr = shmem_xattr_handlers;
3675 #endif
3676 #ifdef CONFIG_TMPFS_POSIX_ACL
3677         sb->s_flags |= SB_POSIXACL;
3678 #endif
3679         uuid_gen(&sb->s_uuid);
3680
3681         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3682         if (!inode)
3683                 goto failed;
3684         inode->i_uid = sbinfo->uid;
3685         inode->i_gid = sbinfo->gid;
3686         sb->s_root = d_make_root(inode);
3687         if (!sb->s_root)
3688                 goto failed;
3689         return 0;
3690
3691 failed:
3692         shmem_put_super(sb);
3693         return -ENOMEM;
3694 }
3695
3696 static int shmem_get_tree(struct fs_context *fc)
3697 {
3698         return get_tree_nodev(fc, shmem_fill_super);
3699 }
3700
3701 static void shmem_free_fc(struct fs_context *fc)
3702 {
3703         struct shmem_options *ctx = fc->fs_private;
3704
3705         if (ctx) {
3706                 mpol_put(ctx->mpol);
3707                 kfree(ctx);
3708         }
3709 }
3710
3711 static const struct fs_context_operations shmem_fs_context_ops = {
3712         .free                   = shmem_free_fc,
3713         .get_tree               = shmem_get_tree,
3714 #ifdef CONFIG_TMPFS
3715         .parse_monolithic       = shmem_parse_options,
3716         .parse_param            = shmem_parse_one,
3717         .reconfigure            = shmem_reconfigure,
3718 #endif
3719 };
3720
3721 static struct kmem_cache *shmem_inode_cachep;
3722
3723 static struct inode *shmem_alloc_inode(struct super_block *sb)
3724 {
3725         struct shmem_inode_info *info;
3726         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3727         if (!info)
3728                 return NULL;
3729         return &info->vfs_inode;
3730 }
3731
3732 static void shmem_free_in_core_inode(struct inode *inode)
3733 {
3734         if (S_ISLNK(inode->i_mode))
3735                 kfree(inode->i_link);
3736         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3737 }
3738
3739 static void shmem_destroy_inode(struct inode *inode)
3740 {
3741         if (S_ISREG(inode->i_mode))
3742                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3743 }
3744
3745 static void shmem_init_inode(void *foo)
3746 {
3747         struct shmem_inode_info *info = foo;
3748         inode_init_once(&info->vfs_inode);
3749 }
3750
3751 static void shmem_init_inodecache(void)
3752 {
3753         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3754                                 sizeof(struct shmem_inode_info),
3755                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3756 }
3757
3758 static void shmem_destroy_inodecache(void)
3759 {
3760         kmem_cache_destroy(shmem_inode_cachep);
3761 }
3762
3763 const struct address_space_operations shmem_aops = {
3764         .writepage      = shmem_writepage,
3765         .set_page_dirty = __set_page_dirty_no_writeback,
3766 #ifdef CONFIG_TMPFS
3767         .write_begin    = shmem_write_begin,
3768         .write_end      = shmem_write_end,
3769 #endif
3770 #ifdef CONFIG_MIGRATION
3771         .migratepage    = migrate_page,
3772 #endif
3773         .error_remove_page = generic_error_remove_page,
3774 };
3775 EXPORT_SYMBOL(shmem_aops);
3776
3777 static const struct file_operations shmem_file_operations = {
3778         .mmap           = shmem_mmap,
3779         .get_unmapped_area = shmem_get_unmapped_area,
3780 #ifdef CONFIG_TMPFS
3781         .llseek         = shmem_file_llseek,
3782         .read_iter      = shmem_file_read_iter,
3783         .write_iter     = generic_file_write_iter,
3784         .fsync          = noop_fsync,
3785         .splice_read    = generic_file_splice_read,
3786         .splice_write   = iter_file_splice_write,
3787         .fallocate      = shmem_fallocate,
3788 #endif
3789 };
3790
3791 static const struct inode_operations shmem_inode_operations = {
3792         .getattr        = shmem_getattr,
3793         .setattr        = shmem_setattr,
3794 #ifdef CONFIG_TMPFS_XATTR
3795         .listxattr      = shmem_listxattr,
3796         .set_acl        = simple_set_acl,
3797 #endif
3798 };
3799
3800 static const struct inode_operations shmem_dir_inode_operations = {
3801 #ifdef CONFIG_TMPFS
3802         .create         = shmem_create,
3803         .lookup         = simple_lookup,
3804         .link           = shmem_link,
3805         .unlink         = shmem_unlink,
3806         .symlink        = shmem_symlink,
3807         .mkdir          = shmem_mkdir,
3808         .rmdir          = shmem_rmdir,
3809         .mknod          = shmem_mknod,
3810         .rename         = shmem_rename2,
3811         .tmpfile        = shmem_tmpfile,
3812 #endif
3813 #ifdef CONFIG_TMPFS_XATTR
3814         .listxattr      = shmem_listxattr,
3815 #endif
3816 #ifdef CONFIG_TMPFS_POSIX_ACL
3817         .setattr        = shmem_setattr,
3818         .set_acl        = simple_set_acl,
3819 #endif
3820 };
3821
3822 static const struct inode_operations shmem_special_inode_operations = {
3823 #ifdef CONFIG_TMPFS_XATTR
3824         .listxattr      = shmem_listxattr,
3825 #endif
3826 #ifdef CONFIG_TMPFS_POSIX_ACL
3827         .setattr        = shmem_setattr,
3828         .set_acl        = simple_set_acl,
3829 #endif
3830 };
3831
3832 static const struct super_operations shmem_ops = {
3833         .alloc_inode    = shmem_alloc_inode,
3834         .free_inode     = shmem_free_in_core_inode,
3835         .destroy_inode  = shmem_destroy_inode,
3836 #ifdef CONFIG_TMPFS
3837         .statfs         = shmem_statfs,
3838         .show_options   = shmem_show_options,
3839 #endif
3840         .evict_inode    = shmem_evict_inode,
3841         .drop_inode     = generic_delete_inode,
3842         .put_super      = shmem_put_super,
3843 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3844         .nr_cached_objects      = shmem_unused_huge_count,
3845         .free_cached_objects    = shmem_unused_huge_scan,
3846 #endif
3847 };
3848
3849 static const struct vm_operations_struct shmem_vm_ops = {
3850         .fault          = shmem_fault,
3851         .map_pages      = filemap_map_pages,
3852 #ifdef CONFIG_NUMA
3853         .set_policy     = shmem_set_policy,
3854         .get_policy     = shmem_get_policy,
3855 #endif
3856 };
3857
3858 int shmem_init_fs_context(struct fs_context *fc)
3859 {
3860         struct shmem_options *ctx;
3861
3862         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3863         if (!ctx)
3864                 return -ENOMEM;
3865
3866         ctx->mode = 0777 | S_ISVTX;
3867         ctx->uid = current_fsuid();
3868         ctx->gid = current_fsgid();
3869
3870         fc->fs_private = ctx;
3871         fc->ops = &shmem_fs_context_ops;
3872         return 0;
3873 }
3874
3875 static struct file_system_type shmem_fs_type = {
3876         .owner          = THIS_MODULE,
3877         .name           = "tmpfs",
3878         .init_fs_context = shmem_init_fs_context,
3879 #ifdef CONFIG_TMPFS
3880         .parameters     = shmem_fs_parameters,
3881 #endif
3882         .kill_sb        = kill_litter_super,
3883         .fs_flags       = FS_USERNS_MOUNT | FS_THP_SUPPORT,
3884 };
3885
3886 int __init shmem_init(void)
3887 {
3888         int error;
3889
3890         shmem_init_inodecache();
3891
3892         error = register_filesystem(&shmem_fs_type);
3893         if (error) {
3894                 pr_err("Could not register tmpfs\n");
3895                 goto out2;
3896         }
3897
3898         shm_mnt = kern_mount(&shmem_fs_type);
3899         if (IS_ERR(shm_mnt)) {
3900                 error = PTR_ERR(shm_mnt);
3901                 pr_err("Could not kern_mount tmpfs\n");
3902                 goto out1;
3903         }
3904
3905 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3906         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3907                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3908         else
3909                 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3910 #endif
3911         return 0;
3912
3913 out1:
3914         unregister_filesystem(&shmem_fs_type);
3915 out2:
3916         shmem_destroy_inodecache();
3917         shm_mnt = ERR_PTR(error);
3918         return error;
3919 }
3920
3921 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3922 static ssize_t shmem_enabled_show(struct kobject *kobj,
3923                                   struct kobj_attribute *attr, char *buf)
3924 {
3925         static const int values[] = {
3926                 SHMEM_HUGE_ALWAYS,
3927                 SHMEM_HUGE_WITHIN_SIZE,
3928                 SHMEM_HUGE_ADVISE,
3929                 SHMEM_HUGE_NEVER,
3930                 SHMEM_HUGE_DENY,
3931                 SHMEM_HUGE_FORCE,
3932         };
3933         int len = 0;
3934         int i;
3935
3936         for (i = 0; i < ARRAY_SIZE(values); i++) {
3937                 len += sysfs_emit_at(buf, len,
3938                                      shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3939                                      i ? " " : "",
3940                                      shmem_format_huge(values[i]));
3941         }
3942
3943         len += sysfs_emit_at(buf, len, "\n");
3944
3945         return len;
3946 }
3947
3948 static ssize_t shmem_enabled_store(struct kobject *kobj,
3949                 struct kobj_attribute *attr, const char *buf, size_t count)
3950 {
3951         char tmp[16];
3952         int huge;
3953
3954         if (count + 1 > sizeof(tmp))
3955                 return -EINVAL;
3956         memcpy(tmp, buf, count);
3957         tmp[count] = '\0';
3958         if (count && tmp[count - 1] == '\n')
3959                 tmp[count - 1] = '\0';
3960
3961         huge = shmem_parse_huge(tmp);
3962         if (huge == -EINVAL)
3963                 return -EINVAL;
3964         if (!has_transparent_hugepage() &&
3965                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3966                 return -EINVAL;
3967
3968         shmem_huge = huge;
3969         if (shmem_huge > SHMEM_HUGE_DENY)
3970                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3971         return count;
3972 }
3973
3974 struct kobj_attribute shmem_enabled_attr =
3975         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3976 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3977
3978 #else /* !CONFIG_SHMEM */
3979
3980 /*
3981  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3982  *
3983  * This is intended for small system where the benefits of the full
3984  * shmem code (swap-backed and resource-limited) are outweighed by
3985  * their complexity. On systems without swap this code should be
3986  * effectively equivalent, but much lighter weight.
3987  */
3988
3989 static struct file_system_type shmem_fs_type = {
3990         .name           = "tmpfs",
3991         .init_fs_context = ramfs_init_fs_context,
3992         .parameters     = ramfs_fs_parameters,
3993         .kill_sb        = kill_litter_super,
3994         .fs_flags       = FS_USERNS_MOUNT,
3995 };
3996
3997 int __init shmem_init(void)
3998 {
3999         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4000
4001         shm_mnt = kern_mount(&shmem_fs_type);
4002         BUG_ON(IS_ERR(shm_mnt));
4003
4004         return 0;
4005 }
4006
4007 int shmem_unuse(unsigned int type, bool frontswap,
4008                 unsigned long *fs_pages_to_unuse)
4009 {
4010         return 0;
4011 }
4012
4013 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4014 {
4015         return 0;
4016 }
4017
4018 void shmem_unlock_mapping(struct address_space *mapping)
4019 {
4020 }
4021
4022 #ifdef CONFIG_MMU
4023 unsigned long shmem_get_unmapped_area(struct file *file,
4024                                       unsigned long addr, unsigned long len,
4025                                       unsigned long pgoff, unsigned long flags)
4026 {
4027         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4028 }
4029 #endif
4030
4031 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4032 {
4033         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4034 }
4035 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4036
4037 #define shmem_vm_ops                            generic_file_vm_ops
4038 #define shmem_file_operations                   ramfs_file_operations
4039 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4040 #define shmem_acct_size(flags, size)            0
4041 #define shmem_unacct_size(flags, size)          do {} while (0)
4042
4043 #endif /* CONFIG_SHMEM */
4044
4045 /* common code */
4046
4047 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4048                                        unsigned long flags, unsigned int i_flags)
4049 {
4050         struct inode *inode;
4051         struct file *res;
4052
4053         if (IS_ERR(mnt))
4054                 return ERR_CAST(mnt);
4055
4056         if (size < 0 || size > MAX_LFS_FILESIZE)
4057                 return ERR_PTR(-EINVAL);
4058
4059         if (shmem_acct_size(flags, size))
4060                 return ERR_PTR(-ENOMEM);
4061
4062         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4063                                 flags);
4064         if (unlikely(!inode)) {
4065                 shmem_unacct_size(flags, size);
4066                 return ERR_PTR(-ENOSPC);
4067         }
4068         inode->i_flags |= i_flags;
4069         inode->i_size = size;
4070         clear_nlink(inode);     /* It is unlinked */
4071         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4072         if (!IS_ERR(res))
4073                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4074                                 &shmem_file_operations);
4075         if (IS_ERR(res))
4076                 iput(inode);
4077         return res;
4078 }
4079
4080 /**
4081  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4082  *      kernel internal.  There will be NO LSM permission checks against the
4083  *      underlying inode.  So users of this interface must do LSM checks at a
4084  *      higher layer.  The users are the big_key and shm implementations.  LSM
4085  *      checks are provided at the key or shm level rather than the inode.
4086  * @name: name for dentry (to be seen in /proc/<pid>/maps
4087  * @size: size to be set for the file
4088  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4089  */
4090 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4091 {
4092         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4093 }
4094
4095 /**
4096  * shmem_file_setup - get an unlinked file living in tmpfs
4097  * @name: name for dentry (to be seen in /proc/<pid>/maps
4098  * @size: size to be set for the file
4099  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4100  */
4101 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4102 {
4103         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4104 }
4105 EXPORT_SYMBOL_GPL(shmem_file_setup);
4106
4107 /**
4108  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4109  * @mnt: the tmpfs mount where the file will be created
4110  * @name: name for dentry (to be seen in /proc/<pid>/maps
4111  * @size: size to be set for the file
4112  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4113  */
4114 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4115                                        loff_t size, unsigned long flags)
4116 {
4117         return __shmem_file_setup(mnt, name, size, flags, 0);
4118 }
4119 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4120
4121 /**
4122  * shmem_zero_setup - setup a shared anonymous mapping
4123  * @vma: the vma to be mmapped is prepared by do_mmap
4124  */
4125 int shmem_zero_setup(struct vm_area_struct *vma)
4126 {
4127         struct file *file;
4128         loff_t size = vma->vm_end - vma->vm_start;
4129
4130         /*
4131          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4132          * between XFS directory reading and selinux: since this file is only
4133          * accessible to the user through its mapping, use S_PRIVATE flag to
4134          * bypass file security, in the same way as shmem_kernel_file_setup().
4135          */
4136         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4137         if (IS_ERR(file))
4138                 return PTR_ERR(file);
4139
4140         if (vma->vm_file)
4141                 fput(vma->vm_file);
4142         vma->vm_file = file;
4143         vma->vm_ops = &shmem_vm_ops;
4144
4145         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4146                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4147                         (vma->vm_end & HPAGE_PMD_MASK)) {
4148                 khugepaged_enter(vma, vma->vm_flags);
4149         }
4150
4151         return 0;
4152 }
4153
4154 /**
4155  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4156  * @mapping:    the page's address_space
4157  * @index:      the page index
4158  * @gfp:        the page allocator flags to use if allocating
4159  *
4160  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4161  * with any new page allocations done using the specified allocation flags.
4162  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4163  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4164  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4165  *
4166  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4167  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4168  */
4169 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4170                                          pgoff_t index, gfp_t gfp)
4171 {
4172 #ifdef CONFIG_SHMEM
4173         struct inode *inode = mapping->host;
4174         struct page *page;
4175         int error;
4176
4177         BUG_ON(!shmem_mapping(mapping));
4178         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4179                                   gfp, NULL, NULL, NULL);
4180         if (error)
4181                 page = ERR_PTR(error);
4182         else
4183                 unlock_page(page);
4184         return page;
4185 #else
4186         /*
4187          * The tiny !SHMEM case uses ramfs without swap
4188          */
4189         return read_cache_page_gfp(mapping, index, gfp);
4190 #endif
4191 }
4192 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);