mm: add an 'end' parameter to find_get_entries
[linux-2.6-microblaze.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85
86 #include "internal.h"
87
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96
97 /*
98  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99  * inode->i_private (with i_mutex making sure that it has only one user at
100  * a time): we would prefer not to enlarge the shmem inode just for that.
101  */
102 struct shmem_falloc {
103         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104         pgoff_t start;          /* start of range currently being fallocated */
105         pgoff_t next;           /* the next page offset to be fallocated */
106         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
107         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
108 };
109
110 struct shmem_options {
111         unsigned long long blocks;
112         unsigned long long inodes;
113         struct mempolicy *mpol;
114         kuid_t uid;
115         kgid_t gid;
116         umode_t mode;
117         bool full_inums;
118         int huge;
119         int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129         return totalram_pages() / 2;
130 }
131
132 static unsigned long shmem_default_max_inodes(void)
133 {
134         unsigned long nr_pages = totalram_pages();
135
136         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142                                 struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144                              struct page **pagep, enum sgp_type sgp,
145                              gfp_t gfp, struct vm_area_struct *vma,
146                              vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148                 struct page **pagep, enum sgp_type sgp,
149                 gfp_t gfp, struct vm_area_struct *vma,
150                 struct vm_fault *vmf, vm_fault_t *fault_type);
151
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153                 struct page **pagep, enum sgp_type sgp)
154 {
155         return shmem_getpage_gfp(inode, index, pagep, sgp,
156                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161         return sb->s_fs_info;
162 }
163
164 /*
165  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166  * for shared memory and for shared anonymous (/dev/zero) mappings
167  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168  * consistent with the pre-accounting of private mappings ...
169  */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172         return (flags & VM_NORESERVE) ?
173                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178         if (!(flags & VM_NORESERVE))
179                 vm_unacct_memory(VM_ACCT(size));
180 }
181
182 static inline int shmem_reacct_size(unsigned long flags,
183                 loff_t oldsize, loff_t newsize)
184 {
185         if (!(flags & VM_NORESERVE)) {
186                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187                         return security_vm_enough_memory_mm(current->mm,
188                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
189                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191         }
192         return 0;
193 }
194
195 /*
196  * ... whereas tmpfs objects are accounted incrementally as
197  * pages are allocated, in order to allow large sparse files.
198  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200  */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203         if (!(flags & VM_NORESERVE))
204                 return 0;
205
206         return security_vm_enough_memory_mm(current->mm,
207                         pages * VM_ACCT(PAGE_SIZE));
208 }
209
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212         if (flags & VM_NORESERVE)
213                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218         struct shmem_inode_info *info = SHMEM_I(inode);
219         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220
221         if (shmem_acct_block(info->flags, pages))
222                 return false;
223
224         if (sbinfo->max_blocks) {
225                 if (percpu_counter_compare(&sbinfo->used_blocks,
226                                            sbinfo->max_blocks - pages) > 0)
227                         goto unacct;
228                 percpu_counter_add(&sbinfo->used_blocks, pages);
229         }
230
231         return true;
232
233 unacct:
234         shmem_unacct_blocks(info->flags, pages);
235         return false;
236 }
237
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240         struct shmem_inode_info *info = SHMEM_I(inode);
241         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242
243         if (sbinfo->max_blocks)
244                 percpu_counter_sub(&sbinfo->used_blocks, pages);
245         shmem_unacct_blocks(info->flags, pages);
246 }
247
248 static const struct super_operations shmem_ops;
249 const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259         return vma->vm_ops == &shmem_vm_ops;
260 }
261
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264
265 /*
266  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267  * produces a novel ino for the newly allocated inode.
268  *
269  * It may also be called when making a hard link to permit the space needed by
270  * each dentry. However, in that case, no new inode number is needed since that
271  * internally draws from another pool of inode numbers (currently global
272  * get_next_ino()). This case is indicated by passing NULL as inop.
273  */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278         ino_t ino;
279
280         if (!(sb->s_flags & SB_KERNMOUNT)) {
281                 spin_lock(&sbinfo->stat_lock);
282                 if (sbinfo->max_inodes) {
283                         if (!sbinfo->free_inodes) {
284                                 spin_unlock(&sbinfo->stat_lock);
285                                 return -ENOSPC;
286                         }
287                         sbinfo->free_inodes--;
288                 }
289                 if (inop) {
290                         ino = sbinfo->next_ino++;
291                         if (unlikely(is_zero_ino(ino)))
292                                 ino = sbinfo->next_ino++;
293                         if (unlikely(!sbinfo->full_inums &&
294                                      ino > UINT_MAX)) {
295                                 /*
296                                  * Emulate get_next_ino uint wraparound for
297                                  * compatibility
298                                  */
299                                 if (IS_ENABLED(CONFIG_64BIT))
300                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301                                                 __func__, MINOR(sb->s_dev));
302                                 sbinfo->next_ino = 1;
303                                 ino = sbinfo->next_ino++;
304                         }
305                         *inop = ino;
306                 }
307                 spin_unlock(&sbinfo->stat_lock);
308         } else if (inop) {
309                 /*
310                  * __shmem_file_setup, one of our callers, is lock-free: it
311                  * doesn't hold stat_lock in shmem_reserve_inode since
312                  * max_inodes is always 0, and is called from potentially
313                  * unknown contexts. As such, use a per-cpu batched allocator
314                  * which doesn't require the per-sb stat_lock unless we are at
315                  * the batch boundary.
316                  *
317                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318                  * shmem mounts are not exposed to userspace, so we don't need
319                  * to worry about things like glibc compatibility.
320                  */
321                 ino_t *next_ino;
322                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
323                 ino = *next_ino;
324                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
325                         spin_lock(&sbinfo->stat_lock);
326                         ino = sbinfo->next_ino;
327                         sbinfo->next_ino += SHMEM_INO_BATCH;
328                         spin_unlock(&sbinfo->stat_lock);
329                         if (unlikely(is_zero_ino(ino)))
330                                 ino++;
331                 }
332                 *inop = ino;
333                 *next_ino = ++ino;
334                 put_cpu();
335         }
336
337         return 0;
338 }
339
340 static void shmem_free_inode(struct super_block *sb)
341 {
342         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
343         if (sbinfo->max_inodes) {
344                 spin_lock(&sbinfo->stat_lock);
345                 sbinfo->free_inodes++;
346                 spin_unlock(&sbinfo->stat_lock);
347         }
348 }
349
350 /**
351  * shmem_recalc_inode - recalculate the block usage of an inode
352  * @inode: inode to recalc
353  *
354  * We have to calculate the free blocks since the mm can drop
355  * undirtied hole pages behind our back.
356  *
357  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
358  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
359  *
360  * It has to be called with the spinlock held.
361  */
362 static void shmem_recalc_inode(struct inode *inode)
363 {
364         struct shmem_inode_info *info = SHMEM_I(inode);
365         long freed;
366
367         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
368         if (freed > 0) {
369                 info->alloced -= freed;
370                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
371                 shmem_inode_unacct_blocks(inode, freed);
372         }
373 }
374
375 bool shmem_charge(struct inode *inode, long pages)
376 {
377         struct shmem_inode_info *info = SHMEM_I(inode);
378         unsigned long flags;
379
380         if (!shmem_inode_acct_block(inode, pages))
381                 return false;
382
383         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
384         inode->i_mapping->nrpages += pages;
385
386         spin_lock_irqsave(&info->lock, flags);
387         info->alloced += pages;
388         inode->i_blocks += pages * BLOCKS_PER_PAGE;
389         shmem_recalc_inode(inode);
390         spin_unlock_irqrestore(&info->lock, flags);
391
392         return true;
393 }
394
395 void shmem_uncharge(struct inode *inode, long pages)
396 {
397         struct shmem_inode_info *info = SHMEM_I(inode);
398         unsigned long flags;
399
400         /* nrpages adjustment done by __delete_from_page_cache() or caller */
401
402         spin_lock_irqsave(&info->lock, flags);
403         info->alloced -= pages;
404         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
405         shmem_recalc_inode(inode);
406         spin_unlock_irqrestore(&info->lock, flags);
407
408         shmem_inode_unacct_blocks(inode, pages);
409 }
410
411 /*
412  * Replace item expected in xarray by a new item, while holding xa_lock.
413  */
414 static int shmem_replace_entry(struct address_space *mapping,
415                         pgoff_t index, void *expected, void *replacement)
416 {
417         XA_STATE(xas, &mapping->i_pages, index);
418         void *item;
419
420         VM_BUG_ON(!expected);
421         VM_BUG_ON(!replacement);
422         item = xas_load(&xas);
423         if (item != expected)
424                 return -ENOENT;
425         xas_store(&xas, replacement);
426         return 0;
427 }
428
429 /*
430  * Sometimes, before we decide whether to proceed or to fail, we must check
431  * that an entry was not already brought back from swap by a racing thread.
432  *
433  * Checking page is not enough: by the time a SwapCache page is locked, it
434  * might be reused, and again be SwapCache, using the same swap as before.
435  */
436 static bool shmem_confirm_swap(struct address_space *mapping,
437                                pgoff_t index, swp_entry_t swap)
438 {
439         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
440 }
441
442 /*
443  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
444  *
445  * SHMEM_HUGE_NEVER:
446  *      disables huge pages for the mount;
447  * SHMEM_HUGE_ALWAYS:
448  *      enables huge pages for the mount;
449  * SHMEM_HUGE_WITHIN_SIZE:
450  *      only allocate huge pages if the page will be fully within i_size,
451  *      also respect fadvise()/madvise() hints;
452  * SHMEM_HUGE_ADVISE:
453  *      only allocate huge pages if requested with fadvise()/madvise();
454  */
455
456 #define SHMEM_HUGE_NEVER        0
457 #define SHMEM_HUGE_ALWAYS       1
458 #define SHMEM_HUGE_WITHIN_SIZE  2
459 #define SHMEM_HUGE_ADVISE       3
460
461 /*
462  * Special values.
463  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
464  *
465  * SHMEM_HUGE_DENY:
466  *      disables huge on shm_mnt and all mounts, for emergency use;
467  * SHMEM_HUGE_FORCE:
468  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
469  *
470  */
471 #define SHMEM_HUGE_DENY         (-1)
472 #define SHMEM_HUGE_FORCE        (-2)
473
474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
475 /* ifdef here to avoid bloating shmem.o when not necessary */
476
477 static int shmem_huge __read_mostly;
478
479 #if defined(CONFIG_SYSFS)
480 static int shmem_parse_huge(const char *str)
481 {
482         if (!strcmp(str, "never"))
483                 return SHMEM_HUGE_NEVER;
484         if (!strcmp(str, "always"))
485                 return SHMEM_HUGE_ALWAYS;
486         if (!strcmp(str, "within_size"))
487                 return SHMEM_HUGE_WITHIN_SIZE;
488         if (!strcmp(str, "advise"))
489                 return SHMEM_HUGE_ADVISE;
490         if (!strcmp(str, "deny"))
491                 return SHMEM_HUGE_DENY;
492         if (!strcmp(str, "force"))
493                 return SHMEM_HUGE_FORCE;
494         return -EINVAL;
495 }
496 #endif
497
498 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
499 static const char *shmem_format_huge(int huge)
500 {
501         switch (huge) {
502         case SHMEM_HUGE_NEVER:
503                 return "never";
504         case SHMEM_HUGE_ALWAYS:
505                 return "always";
506         case SHMEM_HUGE_WITHIN_SIZE:
507                 return "within_size";
508         case SHMEM_HUGE_ADVISE:
509                 return "advise";
510         case SHMEM_HUGE_DENY:
511                 return "deny";
512         case SHMEM_HUGE_FORCE:
513                 return "force";
514         default:
515                 VM_BUG_ON(1);
516                 return "bad_val";
517         }
518 }
519 #endif
520
521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522                 struct shrink_control *sc, unsigned long nr_to_split)
523 {
524         LIST_HEAD(list), *pos, *next;
525         LIST_HEAD(to_remove);
526         struct inode *inode;
527         struct shmem_inode_info *info;
528         struct page *page;
529         unsigned long batch = sc ? sc->nr_to_scan : 128;
530         int removed = 0, split = 0;
531
532         if (list_empty(&sbinfo->shrinklist))
533                 return SHRINK_STOP;
534
535         spin_lock(&sbinfo->shrinklist_lock);
536         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
537                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
538
539                 /* pin the inode */
540                 inode = igrab(&info->vfs_inode);
541
542                 /* inode is about to be evicted */
543                 if (!inode) {
544                         list_del_init(&info->shrinklist);
545                         removed++;
546                         goto next;
547                 }
548
549                 /* Check if there's anything to gain */
550                 if (round_up(inode->i_size, PAGE_SIZE) ==
551                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
552                         list_move(&info->shrinklist, &to_remove);
553                         removed++;
554                         goto next;
555                 }
556
557                 list_move(&info->shrinklist, &list);
558 next:
559                 if (!--batch)
560                         break;
561         }
562         spin_unlock(&sbinfo->shrinklist_lock);
563
564         list_for_each_safe(pos, next, &to_remove) {
565                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566                 inode = &info->vfs_inode;
567                 list_del_init(&info->shrinklist);
568                 iput(inode);
569         }
570
571         list_for_each_safe(pos, next, &list) {
572                 int ret;
573
574                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
575                 inode = &info->vfs_inode;
576
577                 if (nr_to_split && split >= nr_to_split)
578                         goto leave;
579
580                 page = find_get_page(inode->i_mapping,
581                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
582                 if (!page)
583                         goto drop;
584
585                 /* No huge page at the end of the file: nothing to split */
586                 if (!PageTransHuge(page)) {
587                         put_page(page);
588                         goto drop;
589                 }
590
591                 /*
592                  * Leave the inode on the list if we failed to lock
593                  * the page at this time.
594                  *
595                  * Waiting for the lock may lead to deadlock in the
596                  * reclaim path.
597                  */
598                 if (!trylock_page(page)) {
599                         put_page(page);
600                         goto leave;
601                 }
602
603                 ret = split_huge_page(page);
604                 unlock_page(page);
605                 put_page(page);
606
607                 /* If split failed leave the inode on the list */
608                 if (ret)
609                         goto leave;
610
611                 split++;
612 drop:
613                 list_del_init(&info->shrinklist);
614                 removed++;
615 leave:
616                 iput(inode);
617         }
618
619         spin_lock(&sbinfo->shrinklist_lock);
620         list_splice_tail(&list, &sbinfo->shrinklist);
621         sbinfo->shrinklist_len -= removed;
622         spin_unlock(&sbinfo->shrinklist_lock);
623
624         return split;
625 }
626
627 static long shmem_unused_huge_scan(struct super_block *sb,
628                 struct shrink_control *sc)
629 {
630         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
631
632         if (!READ_ONCE(sbinfo->shrinklist_len))
633                 return SHRINK_STOP;
634
635         return shmem_unused_huge_shrink(sbinfo, sc, 0);
636 }
637
638 static long shmem_unused_huge_count(struct super_block *sb,
639                 struct shrink_control *sc)
640 {
641         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
642         return READ_ONCE(sbinfo->shrinklist_len);
643 }
644 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
645
646 #define shmem_huge SHMEM_HUGE_DENY
647
648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649                 struct shrink_control *sc, unsigned long nr_to_split)
650 {
651         return 0;
652 }
653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
654
655 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
656 {
657         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
658             (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
659             shmem_huge != SHMEM_HUGE_DENY)
660                 return true;
661         return false;
662 }
663
664 /*
665  * Like add_to_page_cache_locked, but error if expected item has gone.
666  */
667 static int shmem_add_to_page_cache(struct page *page,
668                                    struct address_space *mapping,
669                                    pgoff_t index, void *expected, gfp_t gfp,
670                                    struct mm_struct *charge_mm)
671 {
672         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
673         unsigned long i = 0;
674         unsigned long nr = compound_nr(page);
675         int error;
676
677         VM_BUG_ON_PAGE(PageTail(page), page);
678         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
679         VM_BUG_ON_PAGE(!PageLocked(page), page);
680         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
681         VM_BUG_ON(expected && PageTransHuge(page));
682
683         page_ref_add(page, nr);
684         page->mapping = mapping;
685         page->index = index;
686
687         if (!PageSwapCache(page)) {
688                 error = mem_cgroup_charge(page, charge_mm, gfp);
689                 if (error) {
690                         if (PageTransHuge(page)) {
691                                 count_vm_event(THP_FILE_FALLBACK);
692                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
693                         }
694                         goto error;
695                 }
696         }
697         cgroup_throttle_swaprate(page, gfp);
698
699         do {
700                 void *entry;
701                 xas_lock_irq(&xas);
702                 entry = xas_find_conflict(&xas);
703                 if (entry != expected)
704                         xas_set_err(&xas, -EEXIST);
705                 xas_create_range(&xas);
706                 if (xas_error(&xas))
707                         goto unlock;
708 next:
709                 xas_store(&xas, page);
710                 if (++i < nr) {
711                         xas_next(&xas);
712                         goto next;
713                 }
714                 if (PageTransHuge(page)) {
715                         count_vm_event(THP_FILE_ALLOC);
716                         __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
717                 }
718                 mapping->nrpages += nr;
719                 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
720                 __mod_lruvec_page_state(page, NR_SHMEM, nr);
721 unlock:
722                 xas_unlock_irq(&xas);
723         } while (xas_nomem(&xas, gfp));
724
725         if (xas_error(&xas)) {
726                 error = xas_error(&xas);
727                 goto error;
728         }
729
730         return 0;
731 error:
732         page->mapping = NULL;
733         page_ref_sub(page, nr);
734         return error;
735 }
736
737 /*
738  * Like delete_from_page_cache, but substitutes swap for page.
739  */
740 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
741 {
742         struct address_space *mapping = page->mapping;
743         int error;
744
745         VM_BUG_ON_PAGE(PageCompound(page), page);
746
747         xa_lock_irq(&mapping->i_pages);
748         error = shmem_replace_entry(mapping, page->index, page, radswap);
749         page->mapping = NULL;
750         mapping->nrpages--;
751         __dec_lruvec_page_state(page, NR_FILE_PAGES);
752         __dec_lruvec_page_state(page, NR_SHMEM);
753         xa_unlock_irq(&mapping->i_pages);
754         put_page(page);
755         BUG_ON(error);
756 }
757
758 /*
759  * Remove swap entry from page cache, free the swap and its page cache.
760  */
761 static int shmem_free_swap(struct address_space *mapping,
762                            pgoff_t index, void *radswap)
763 {
764         void *old;
765
766         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
767         if (old != radswap)
768                 return -ENOENT;
769         free_swap_and_cache(radix_to_swp_entry(radswap));
770         return 0;
771 }
772
773 /*
774  * Determine (in bytes) how many of the shmem object's pages mapped by the
775  * given offsets are swapped out.
776  *
777  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
778  * as long as the inode doesn't go away and racy results are not a problem.
779  */
780 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
781                                                 pgoff_t start, pgoff_t end)
782 {
783         XA_STATE(xas, &mapping->i_pages, start);
784         struct page *page;
785         unsigned long swapped = 0;
786
787         rcu_read_lock();
788         xas_for_each(&xas, page, end - 1) {
789                 if (xas_retry(&xas, page))
790                         continue;
791                 if (xa_is_value(page))
792                         swapped++;
793
794                 if (need_resched()) {
795                         xas_pause(&xas);
796                         cond_resched_rcu();
797                 }
798         }
799
800         rcu_read_unlock();
801
802         return swapped << PAGE_SHIFT;
803 }
804
805 /*
806  * Determine (in bytes) how many of the shmem object's pages mapped by the
807  * given vma is swapped out.
808  *
809  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
810  * as long as the inode doesn't go away and racy results are not a problem.
811  */
812 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
813 {
814         struct inode *inode = file_inode(vma->vm_file);
815         struct shmem_inode_info *info = SHMEM_I(inode);
816         struct address_space *mapping = inode->i_mapping;
817         unsigned long swapped;
818
819         /* Be careful as we don't hold info->lock */
820         swapped = READ_ONCE(info->swapped);
821
822         /*
823          * The easier cases are when the shmem object has nothing in swap, or
824          * the vma maps it whole. Then we can simply use the stats that we
825          * already track.
826          */
827         if (!swapped)
828                 return 0;
829
830         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
831                 return swapped << PAGE_SHIFT;
832
833         /* Here comes the more involved part */
834         return shmem_partial_swap_usage(mapping,
835                         linear_page_index(vma, vma->vm_start),
836                         linear_page_index(vma, vma->vm_end));
837 }
838
839 /*
840  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
841  */
842 void shmem_unlock_mapping(struct address_space *mapping)
843 {
844         struct pagevec pvec;
845         pgoff_t index = 0;
846
847         pagevec_init(&pvec);
848         /*
849          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
850          */
851         while (!mapping_unevictable(mapping)) {
852                 if (!pagevec_lookup(&pvec, mapping, &index))
853                         break;
854                 check_move_unevictable_pages(&pvec);
855                 pagevec_release(&pvec);
856                 cond_resched();
857         }
858 }
859
860 /*
861  * Check whether a hole-punch or truncation needs to split a huge page,
862  * returning true if no split was required, or the split has been successful.
863  *
864  * Eviction (or truncation to 0 size) should never need to split a huge page;
865  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
866  * head, and then succeeded to trylock on tail.
867  *
868  * A split can only succeed when there are no additional references on the
869  * huge page: so the split below relies upon find_get_entries() having stopped
870  * when it found a subpage of the huge page, without getting further references.
871  */
872 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
873 {
874         if (!PageTransCompound(page))
875                 return true;
876
877         /* Just proceed to delete a huge page wholly within the range punched */
878         if (PageHead(page) &&
879             page->index >= start && page->index + HPAGE_PMD_NR <= end)
880                 return true;
881
882         /* Try to split huge page, so we can truly punch the hole or truncate */
883         return split_huge_page(page) >= 0;
884 }
885
886 /*
887  * Remove range of pages and swap entries from page cache, and free them.
888  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
889  */
890 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
891                                                                  bool unfalloc)
892 {
893         struct address_space *mapping = inode->i_mapping;
894         struct shmem_inode_info *info = SHMEM_I(inode);
895         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
896         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
897         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
898         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
899         struct pagevec pvec;
900         pgoff_t indices[PAGEVEC_SIZE];
901         long nr_swaps_freed = 0;
902         pgoff_t index;
903         int i;
904
905         if (lend == -1)
906                 end = -1;       /* unsigned, so actually very big */
907
908         pagevec_init(&pvec);
909         index = start;
910         while (index < end && find_lock_entries(mapping, index, end - 1,
911                         &pvec, indices)) {
912                 for (i = 0; i < pagevec_count(&pvec); i++) {
913                         struct page *page = pvec.pages[i];
914
915                         index = indices[i];
916
917                         if (xa_is_value(page)) {
918                                 if (unfalloc)
919                                         continue;
920                                 nr_swaps_freed += !shmem_free_swap(mapping,
921                                                                 index, page);
922                                 continue;
923                         }
924                         index += thp_nr_pages(page) - 1;
925
926                         if (!unfalloc || !PageUptodate(page))
927                                 truncate_inode_page(mapping, page);
928                         unlock_page(page);
929                 }
930                 pagevec_remove_exceptionals(&pvec);
931                 pagevec_release(&pvec);
932                 cond_resched();
933                 index++;
934         }
935
936         if (partial_start) {
937                 struct page *page = NULL;
938                 shmem_getpage(inode, start - 1, &page, SGP_READ);
939                 if (page) {
940                         unsigned int top = PAGE_SIZE;
941                         if (start > end) {
942                                 top = partial_end;
943                                 partial_end = 0;
944                         }
945                         zero_user_segment(page, partial_start, top);
946                         set_page_dirty(page);
947                         unlock_page(page);
948                         put_page(page);
949                 }
950         }
951         if (partial_end) {
952                 struct page *page = NULL;
953                 shmem_getpage(inode, end, &page, SGP_READ);
954                 if (page) {
955                         zero_user_segment(page, 0, partial_end);
956                         set_page_dirty(page);
957                         unlock_page(page);
958                         put_page(page);
959                 }
960         }
961         if (start >= end)
962                 return;
963
964         index = start;
965         while (index < end) {
966                 cond_resched();
967
968                 pvec.nr = find_get_entries(mapping, index, end - 1,
969                                 PAGEVEC_SIZE, pvec.pages, indices);
970                 if (!pvec.nr) {
971                         /* If all gone or hole-punch or unfalloc, we're done */
972                         if (index == start || end != -1)
973                                 break;
974                         /* But if truncating, restart to make sure all gone */
975                         index = start;
976                         continue;
977                 }
978                 for (i = 0; i < pagevec_count(&pvec); i++) {
979                         struct page *page = pvec.pages[i];
980
981                         index = indices[i];
982                         if (xa_is_value(page)) {
983                                 if (unfalloc)
984                                         continue;
985                                 if (shmem_free_swap(mapping, index, page)) {
986                                         /* Swap was replaced by page: retry */
987                                         index--;
988                                         break;
989                                 }
990                                 nr_swaps_freed++;
991                                 continue;
992                         }
993
994                         lock_page(page);
995
996                         if (!unfalloc || !PageUptodate(page)) {
997                                 if (page_mapping(page) != mapping) {
998                                         /* Page was replaced by swap: retry */
999                                         unlock_page(page);
1000                                         index--;
1001                                         break;
1002                                 }
1003                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1004                                 if (shmem_punch_compound(page, start, end))
1005                                         truncate_inode_page(mapping, page);
1006                                 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1007                                         /* Wipe the page and don't get stuck */
1008                                         clear_highpage(page);
1009                                         flush_dcache_page(page);
1010                                         set_page_dirty(page);
1011                                         if (index <
1012                                             round_up(start, HPAGE_PMD_NR))
1013                                                 start = index + 1;
1014                                 }
1015                         }
1016                         unlock_page(page);
1017                 }
1018                 pagevec_remove_exceptionals(&pvec);
1019                 pagevec_release(&pvec);
1020                 index++;
1021         }
1022
1023         spin_lock_irq(&info->lock);
1024         info->swapped -= nr_swaps_freed;
1025         shmem_recalc_inode(inode);
1026         spin_unlock_irq(&info->lock);
1027 }
1028
1029 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1030 {
1031         shmem_undo_range(inode, lstart, lend, false);
1032         inode->i_ctime = inode->i_mtime = current_time(inode);
1033 }
1034 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1035
1036 static int shmem_getattr(struct user_namespace *mnt_userns,
1037                          const struct path *path, struct kstat *stat,
1038                          u32 request_mask, unsigned int query_flags)
1039 {
1040         struct inode *inode = path->dentry->d_inode;
1041         struct shmem_inode_info *info = SHMEM_I(inode);
1042         struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1043
1044         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1045                 spin_lock_irq(&info->lock);
1046                 shmem_recalc_inode(inode);
1047                 spin_unlock_irq(&info->lock);
1048         }
1049         generic_fillattr(&init_user_ns, inode, stat);
1050
1051         if (is_huge_enabled(sb_info))
1052                 stat->blksize = HPAGE_PMD_SIZE;
1053
1054         return 0;
1055 }
1056
1057 static int shmem_setattr(struct user_namespace *mnt_userns,
1058                          struct dentry *dentry, struct iattr *attr)
1059 {
1060         struct inode *inode = d_inode(dentry);
1061         struct shmem_inode_info *info = SHMEM_I(inode);
1062         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1063         int error;
1064
1065         error = setattr_prepare(&init_user_ns, dentry, attr);
1066         if (error)
1067                 return error;
1068
1069         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1070                 loff_t oldsize = inode->i_size;
1071                 loff_t newsize = attr->ia_size;
1072
1073                 /* protected by i_mutex */
1074                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1075                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1076                         return -EPERM;
1077
1078                 if (newsize != oldsize) {
1079                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1080                                         oldsize, newsize);
1081                         if (error)
1082                                 return error;
1083                         i_size_write(inode, newsize);
1084                         inode->i_ctime = inode->i_mtime = current_time(inode);
1085                 }
1086                 if (newsize <= oldsize) {
1087                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1088                         if (oldsize > holebegin)
1089                                 unmap_mapping_range(inode->i_mapping,
1090                                                         holebegin, 0, 1);
1091                         if (info->alloced)
1092                                 shmem_truncate_range(inode,
1093                                                         newsize, (loff_t)-1);
1094                         /* unmap again to remove racily COWed private pages */
1095                         if (oldsize > holebegin)
1096                                 unmap_mapping_range(inode->i_mapping,
1097                                                         holebegin, 0, 1);
1098
1099                         /*
1100                          * Part of the huge page can be beyond i_size: subject
1101                          * to shrink under memory pressure.
1102                          */
1103                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1104                                 spin_lock(&sbinfo->shrinklist_lock);
1105                                 /*
1106                                  * _careful to defend against unlocked access to
1107                                  * ->shrink_list in shmem_unused_huge_shrink()
1108                                  */
1109                                 if (list_empty_careful(&info->shrinklist)) {
1110                                         list_add_tail(&info->shrinklist,
1111                                                         &sbinfo->shrinklist);
1112                                         sbinfo->shrinklist_len++;
1113                                 }
1114                                 spin_unlock(&sbinfo->shrinklist_lock);
1115                         }
1116                 }
1117         }
1118
1119         setattr_copy(&init_user_ns, inode, attr);
1120         if (attr->ia_valid & ATTR_MODE)
1121                 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1122         return error;
1123 }
1124
1125 static void shmem_evict_inode(struct inode *inode)
1126 {
1127         struct shmem_inode_info *info = SHMEM_I(inode);
1128         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1129
1130         if (shmem_mapping(inode->i_mapping)) {
1131                 shmem_unacct_size(info->flags, inode->i_size);
1132                 inode->i_size = 0;
1133                 shmem_truncate_range(inode, 0, (loff_t)-1);
1134                 if (!list_empty(&info->shrinklist)) {
1135                         spin_lock(&sbinfo->shrinklist_lock);
1136                         if (!list_empty(&info->shrinklist)) {
1137                                 list_del_init(&info->shrinklist);
1138                                 sbinfo->shrinklist_len--;
1139                         }
1140                         spin_unlock(&sbinfo->shrinklist_lock);
1141                 }
1142                 while (!list_empty(&info->swaplist)) {
1143                         /* Wait while shmem_unuse() is scanning this inode... */
1144                         wait_var_event(&info->stop_eviction,
1145                                        !atomic_read(&info->stop_eviction));
1146                         mutex_lock(&shmem_swaplist_mutex);
1147                         /* ...but beware of the race if we peeked too early */
1148                         if (!atomic_read(&info->stop_eviction))
1149                                 list_del_init(&info->swaplist);
1150                         mutex_unlock(&shmem_swaplist_mutex);
1151                 }
1152         }
1153
1154         simple_xattrs_free(&info->xattrs);
1155         WARN_ON(inode->i_blocks);
1156         shmem_free_inode(inode->i_sb);
1157         clear_inode(inode);
1158 }
1159
1160 extern struct swap_info_struct *swap_info[];
1161
1162 static int shmem_find_swap_entries(struct address_space *mapping,
1163                                    pgoff_t start, unsigned int nr_entries,
1164                                    struct page **entries, pgoff_t *indices,
1165                                    unsigned int type, bool frontswap)
1166 {
1167         XA_STATE(xas, &mapping->i_pages, start);
1168         struct page *page;
1169         swp_entry_t entry;
1170         unsigned int ret = 0;
1171
1172         if (!nr_entries)
1173                 return 0;
1174
1175         rcu_read_lock();
1176         xas_for_each(&xas, page, ULONG_MAX) {
1177                 if (xas_retry(&xas, page))
1178                         continue;
1179
1180                 if (!xa_is_value(page))
1181                         continue;
1182
1183                 entry = radix_to_swp_entry(page);
1184                 if (swp_type(entry) != type)
1185                         continue;
1186                 if (frontswap &&
1187                     !frontswap_test(swap_info[type], swp_offset(entry)))
1188                         continue;
1189
1190                 indices[ret] = xas.xa_index;
1191                 entries[ret] = page;
1192
1193                 if (need_resched()) {
1194                         xas_pause(&xas);
1195                         cond_resched_rcu();
1196                 }
1197                 if (++ret == nr_entries)
1198                         break;
1199         }
1200         rcu_read_unlock();
1201
1202         return ret;
1203 }
1204
1205 /*
1206  * Move the swapped pages for an inode to page cache. Returns the count
1207  * of pages swapped in, or the error in case of failure.
1208  */
1209 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1210                                     pgoff_t *indices)
1211 {
1212         int i = 0;
1213         int ret = 0;
1214         int error = 0;
1215         struct address_space *mapping = inode->i_mapping;
1216
1217         for (i = 0; i < pvec.nr; i++) {
1218                 struct page *page = pvec.pages[i];
1219
1220                 if (!xa_is_value(page))
1221                         continue;
1222                 error = shmem_swapin_page(inode, indices[i],
1223                                           &page, SGP_CACHE,
1224                                           mapping_gfp_mask(mapping),
1225                                           NULL, NULL);
1226                 if (error == 0) {
1227                         unlock_page(page);
1228                         put_page(page);
1229                         ret++;
1230                 }
1231                 if (error == -ENOMEM)
1232                         break;
1233                 error = 0;
1234         }
1235         return error ? error : ret;
1236 }
1237
1238 /*
1239  * If swap found in inode, free it and move page from swapcache to filecache.
1240  */
1241 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1242                              bool frontswap, unsigned long *fs_pages_to_unuse)
1243 {
1244         struct address_space *mapping = inode->i_mapping;
1245         pgoff_t start = 0;
1246         struct pagevec pvec;
1247         pgoff_t indices[PAGEVEC_SIZE];
1248         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1249         int ret = 0;
1250
1251         pagevec_init(&pvec);
1252         do {
1253                 unsigned int nr_entries = PAGEVEC_SIZE;
1254
1255                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1256                         nr_entries = *fs_pages_to_unuse;
1257
1258                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1259                                                   pvec.pages, indices,
1260                                                   type, frontswap);
1261                 if (pvec.nr == 0) {
1262                         ret = 0;
1263                         break;
1264                 }
1265
1266                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1267                 if (ret < 0)
1268                         break;
1269
1270                 if (frontswap_partial) {
1271                         *fs_pages_to_unuse -= ret;
1272                         if (*fs_pages_to_unuse == 0) {
1273                                 ret = FRONTSWAP_PAGES_UNUSED;
1274                                 break;
1275                         }
1276                 }
1277
1278                 start = indices[pvec.nr - 1];
1279         } while (true);
1280
1281         return ret;
1282 }
1283
1284 /*
1285  * Read all the shared memory data that resides in the swap
1286  * device 'type' back into memory, so the swap device can be
1287  * unused.
1288  */
1289 int shmem_unuse(unsigned int type, bool frontswap,
1290                 unsigned long *fs_pages_to_unuse)
1291 {
1292         struct shmem_inode_info *info, *next;
1293         int error = 0;
1294
1295         if (list_empty(&shmem_swaplist))
1296                 return 0;
1297
1298         mutex_lock(&shmem_swaplist_mutex);
1299         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1300                 if (!info->swapped) {
1301                         list_del_init(&info->swaplist);
1302                         continue;
1303                 }
1304                 /*
1305                  * Drop the swaplist mutex while searching the inode for swap;
1306                  * but before doing so, make sure shmem_evict_inode() will not
1307                  * remove placeholder inode from swaplist, nor let it be freed
1308                  * (igrab() would protect from unlink, but not from unmount).
1309                  */
1310                 atomic_inc(&info->stop_eviction);
1311                 mutex_unlock(&shmem_swaplist_mutex);
1312
1313                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1314                                           fs_pages_to_unuse);
1315                 cond_resched();
1316
1317                 mutex_lock(&shmem_swaplist_mutex);
1318                 next = list_next_entry(info, swaplist);
1319                 if (!info->swapped)
1320                         list_del_init(&info->swaplist);
1321                 if (atomic_dec_and_test(&info->stop_eviction))
1322                         wake_up_var(&info->stop_eviction);
1323                 if (error)
1324                         break;
1325         }
1326         mutex_unlock(&shmem_swaplist_mutex);
1327
1328         return error;
1329 }
1330
1331 /*
1332  * Move the page from the page cache to the swap cache.
1333  */
1334 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1335 {
1336         struct shmem_inode_info *info;
1337         struct address_space *mapping;
1338         struct inode *inode;
1339         swp_entry_t swap;
1340         pgoff_t index;
1341
1342         VM_BUG_ON_PAGE(PageCompound(page), page);
1343         BUG_ON(!PageLocked(page));
1344         mapping = page->mapping;
1345         index = page->index;
1346         inode = mapping->host;
1347         info = SHMEM_I(inode);
1348         if (info->flags & VM_LOCKED)
1349                 goto redirty;
1350         if (!total_swap_pages)
1351                 goto redirty;
1352
1353         /*
1354          * Our capabilities prevent regular writeback or sync from ever calling
1355          * shmem_writepage; but a stacking filesystem might use ->writepage of
1356          * its underlying filesystem, in which case tmpfs should write out to
1357          * swap only in response to memory pressure, and not for the writeback
1358          * threads or sync.
1359          */
1360         if (!wbc->for_reclaim) {
1361                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1362                 goto redirty;
1363         }
1364
1365         /*
1366          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1367          * value into swapfile.c, the only way we can correctly account for a
1368          * fallocated page arriving here is now to initialize it and write it.
1369          *
1370          * That's okay for a page already fallocated earlier, but if we have
1371          * not yet completed the fallocation, then (a) we want to keep track
1372          * of this page in case we have to undo it, and (b) it may not be a
1373          * good idea to continue anyway, once we're pushing into swap.  So
1374          * reactivate the page, and let shmem_fallocate() quit when too many.
1375          */
1376         if (!PageUptodate(page)) {
1377                 if (inode->i_private) {
1378                         struct shmem_falloc *shmem_falloc;
1379                         spin_lock(&inode->i_lock);
1380                         shmem_falloc = inode->i_private;
1381                         if (shmem_falloc &&
1382                             !shmem_falloc->waitq &&
1383                             index >= shmem_falloc->start &&
1384                             index < shmem_falloc->next)
1385                                 shmem_falloc->nr_unswapped++;
1386                         else
1387                                 shmem_falloc = NULL;
1388                         spin_unlock(&inode->i_lock);
1389                         if (shmem_falloc)
1390                                 goto redirty;
1391                 }
1392                 clear_highpage(page);
1393                 flush_dcache_page(page);
1394                 SetPageUptodate(page);
1395         }
1396
1397         swap = get_swap_page(page);
1398         if (!swap.val)
1399                 goto redirty;
1400
1401         /*
1402          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1403          * if it's not already there.  Do it now before the page is
1404          * moved to swap cache, when its pagelock no longer protects
1405          * the inode from eviction.  But don't unlock the mutex until
1406          * we've incremented swapped, because shmem_unuse_inode() will
1407          * prune a !swapped inode from the swaplist under this mutex.
1408          */
1409         mutex_lock(&shmem_swaplist_mutex);
1410         if (list_empty(&info->swaplist))
1411                 list_add(&info->swaplist, &shmem_swaplist);
1412
1413         if (add_to_swap_cache(page, swap,
1414                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1415                         NULL) == 0) {
1416                 spin_lock_irq(&info->lock);
1417                 shmem_recalc_inode(inode);
1418                 info->swapped++;
1419                 spin_unlock_irq(&info->lock);
1420
1421                 swap_shmem_alloc(swap);
1422                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1423
1424                 mutex_unlock(&shmem_swaplist_mutex);
1425                 BUG_ON(page_mapped(page));
1426                 swap_writepage(page, wbc);
1427                 return 0;
1428         }
1429
1430         mutex_unlock(&shmem_swaplist_mutex);
1431         put_swap_page(page, swap);
1432 redirty:
1433         set_page_dirty(page);
1434         if (wbc->for_reclaim)
1435                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1436         unlock_page(page);
1437         return 0;
1438 }
1439
1440 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1441 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1442 {
1443         char buffer[64];
1444
1445         if (!mpol || mpol->mode == MPOL_DEFAULT)
1446                 return;         /* show nothing */
1447
1448         mpol_to_str(buffer, sizeof(buffer), mpol);
1449
1450         seq_printf(seq, ",mpol=%s", buffer);
1451 }
1452
1453 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1454 {
1455         struct mempolicy *mpol = NULL;
1456         if (sbinfo->mpol) {
1457                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1458                 mpol = sbinfo->mpol;
1459                 mpol_get(mpol);
1460                 spin_unlock(&sbinfo->stat_lock);
1461         }
1462         return mpol;
1463 }
1464 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1465 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1466 {
1467 }
1468 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1469 {
1470         return NULL;
1471 }
1472 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1473 #ifndef CONFIG_NUMA
1474 #define vm_policy vm_private_data
1475 #endif
1476
1477 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1478                 struct shmem_inode_info *info, pgoff_t index)
1479 {
1480         /* Create a pseudo vma that just contains the policy */
1481         vma_init(vma, NULL);
1482         /* Bias interleave by inode number to distribute better across nodes */
1483         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1484         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1485 }
1486
1487 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1488 {
1489         /* Drop reference taken by mpol_shared_policy_lookup() */
1490         mpol_cond_put(vma->vm_policy);
1491 }
1492
1493 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1494                         struct shmem_inode_info *info, pgoff_t index)
1495 {
1496         struct vm_area_struct pvma;
1497         struct page *page;
1498         struct vm_fault vmf = {
1499                 .vma = &pvma,
1500         };
1501
1502         shmem_pseudo_vma_init(&pvma, info, index);
1503         page = swap_cluster_readahead(swap, gfp, &vmf);
1504         shmem_pseudo_vma_destroy(&pvma);
1505
1506         return page;
1507 }
1508
1509 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1510                 struct shmem_inode_info *info, pgoff_t index)
1511 {
1512         struct vm_area_struct pvma;
1513         struct address_space *mapping = info->vfs_inode.i_mapping;
1514         pgoff_t hindex;
1515         struct page *page;
1516
1517         hindex = round_down(index, HPAGE_PMD_NR);
1518         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1519                                                                 XA_PRESENT))
1520                 return NULL;
1521
1522         shmem_pseudo_vma_init(&pvma, info, hindex);
1523         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1524                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1525         shmem_pseudo_vma_destroy(&pvma);
1526         if (page)
1527                 prep_transhuge_page(page);
1528         else
1529                 count_vm_event(THP_FILE_FALLBACK);
1530         return page;
1531 }
1532
1533 static struct page *shmem_alloc_page(gfp_t gfp,
1534                         struct shmem_inode_info *info, pgoff_t index)
1535 {
1536         struct vm_area_struct pvma;
1537         struct page *page;
1538
1539         shmem_pseudo_vma_init(&pvma, info, index);
1540         page = alloc_page_vma(gfp, &pvma, 0);
1541         shmem_pseudo_vma_destroy(&pvma);
1542
1543         return page;
1544 }
1545
1546 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1547                 struct inode *inode,
1548                 pgoff_t index, bool huge)
1549 {
1550         struct shmem_inode_info *info = SHMEM_I(inode);
1551         struct page *page;
1552         int nr;
1553         int err = -ENOSPC;
1554
1555         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1556                 huge = false;
1557         nr = huge ? HPAGE_PMD_NR : 1;
1558
1559         if (!shmem_inode_acct_block(inode, nr))
1560                 goto failed;
1561
1562         if (huge)
1563                 page = shmem_alloc_hugepage(gfp, info, index);
1564         else
1565                 page = shmem_alloc_page(gfp, info, index);
1566         if (page) {
1567                 __SetPageLocked(page);
1568                 __SetPageSwapBacked(page);
1569                 return page;
1570         }
1571
1572         err = -ENOMEM;
1573         shmem_inode_unacct_blocks(inode, nr);
1574 failed:
1575         return ERR_PTR(err);
1576 }
1577
1578 /*
1579  * When a page is moved from swapcache to shmem filecache (either by the
1580  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1581  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1582  * ignorance of the mapping it belongs to.  If that mapping has special
1583  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1584  * we may need to copy to a suitable page before moving to filecache.
1585  *
1586  * In a future release, this may well be extended to respect cpuset and
1587  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1588  * but for now it is a simple matter of zone.
1589  */
1590 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1591 {
1592         return page_zonenum(page) > gfp_zone(gfp);
1593 }
1594
1595 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1596                                 struct shmem_inode_info *info, pgoff_t index)
1597 {
1598         struct page *oldpage, *newpage;
1599         struct address_space *swap_mapping;
1600         swp_entry_t entry;
1601         pgoff_t swap_index;
1602         int error;
1603
1604         oldpage = *pagep;
1605         entry.val = page_private(oldpage);
1606         swap_index = swp_offset(entry);
1607         swap_mapping = page_mapping(oldpage);
1608
1609         /*
1610          * We have arrived here because our zones are constrained, so don't
1611          * limit chance of success by further cpuset and node constraints.
1612          */
1613         gfp &= ~GFP_CONSTRAINT_MASK;
1614         newpage = shmem_alloc_page(gfp, info, index);
1615         if (!newpage)
1616                 return -ENOMEM;
1617
1618         get_page(newpage);
1619         copy_highpage(newpage, oldpage);
1620         flush_dcache_page(newpage);
1621
1622         __SetPageLocked(newpage);
1623         __SetPageSwapBacked(newpage);
1624         SetPageUptodate(newpage);
1625         set_page_private(newpage, entry.val);
1626         SetPageSwapCache(newpage);
1627
1628         /*
1629          * Our caller will very soon move newpage out of swapcache, but it's
1630          * a nice clean interface for us to replace oldpage by newpage there.
1631          */
1632         xa_lock_irq(&swap_mapping->i_pages);
1633         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1634         if (!error) {
1635                 mem_cgroup_migrate(oldpage, newpage);
1636                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1637                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1638         }
1639         xa_unlock_irq(&swap_mapping->i_pages);
1640
1641         if (unlikely(error)) {
1642                 /*
1643                  * Is this possible?  I think not, now that our callers check
1644                  * both PageSwapCache and page_private after getting page lock;
1645                  * but be defensive.  Reverse old to newpage for clear and free.
1646                  */
1647                 oldpage = newpage;
1648         } else {
1649                 lru_cache_add(newpage);
1650                 *pagep = newpage;
1651         }
1652
1653         ClearPageSwapCache(oldpage);
1654         set_page_private(oldpage, 0);
1655
1656         unlock_page(oldpage);
1657         put_page(oldpage);
1658         put_page(oldpage);
1659         return error;
1660 }
1661
1662 /*
1663  * Swap in the page pointed to by *pagep.
1664  * Caller has to make sure that *pagep contains a valid swapped page.
1665  * Returns 0 and the page in pagep if success. On failure, returns the
1666  * error code and NULL in *pagep.
1667  */
1668 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1669                              struct page **pagep, enum sgp_type sgp,
1670                              gfp_t gfp, struct vm_area_struct *vma,
1671                              vm_fault_t *fault_type)
1672 {
1673         struct address_space *mapping = inode->i_mapping;
1674         struct shmem_inode_info *info = SHMEM_I(inode);
1675         struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1676         struct page *page;
1677         swp_entry_t swap;
1678         int error;
1679
1680         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1681         swap = radix_to_swp_entry(*pagep);
1682         *pagep = NULL;
1683
1684         /* Look it up and read it in.. */
1685         page = lookup_swap_cache(swap, NULL, 0);
1686         if (!page) {
1687                 /* Or update major stats only when swapin succeeds?? */
1688                 if (fault_type) {
1689                         *fault_type |= VM_FAULT_MAJOR;
1690                         count_vm_event(PGMAJFAULT);
1691                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1692                 }
1693                 /* Here we actually start the io */
1694                 page = shmem_swapin(swap, gfp, info, index);
1695                 if (!page) {
1696                         error = -ENOMEM;
1697                         goto failed;
1698                 }
1699         }
1700
1701         /* We have to do this with page locked to prevent races */
1702         lock_page(page);
1703         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1704             !shmem_confirm_swap(mapping, index, swap)) {
1705                 error = -EEXIST;
1706                 goto unlock;
1707         }
1708         if (!PageUptodate(page)) {
1709                 error = -EIO;
1710                 goto failed;
1711         }
1712         wait_on_page_writeback(page);
1713
1714         /*
1715          * Some architectures may have to restore extra metadata to the
1716          * physical page after reading from swap.
1717          */
1718         arch_swap_restore(swap, page);
1719
1720         if (shmem_should_replace_page(page, gfp)) {
1721                 error = shmem_replace_page(&page, gfp, info, index);
1722                 if (error)
1723                         goto failed;
1724         }
1725
1726         error = shmem_add_to_page_cache(page, mapping, index,
1727                                         swp_to_radix_entry(swap), gfp,
1728                                         charge_mm);
1729         if (error)
1730                 goto failed;
1731
1732         spin_lock_irq(&info->lock);
1733         info->swapped--;
1734         shmem_recalc_inode(inode);
1735         spin_unlock_irq(&info->lock);
1736
1737         if (sgp == SGP_WRITE)
1738                 mark_page_accessed(page);
1739
1740         delete_from_swap_cache(page);
1741         set_page_dirty(page);
1742         swap_free(swap);
1743
1744         *pagep = page;
1745         return 0;
1746 failed:
1747         if (!shmem_confirm_swap(mapping, index, swap))
1748                 error = -EEXIST;
1749 unlock:
1750         if (page) {
1751                 unlock_page(page);
1752                 put_page(page);
1753         }
1754
1755         return error;
1756 }
1757
1758 /*
1759  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1760  *
1761  * If we allocate a new one we do not mark it dirty. That's up to the
1762  * vm. If we swap it in we mark it dirty since we also free the swap
1763  * entry since a page cannot live in both the swap and page cache.
1764  *
1765  * vmf and fault_type are only supplied by shmem_fault:
1766  * otherwise they are NULL.
1767  */
1768 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1769         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1770         struct vm_area_struct *vma, struct vm_fault *vmf,
1771                         vm_fault_t *fault_type)
1772 {
1773         struct address_space *mapping = inode->i_mapping;
1774         struct shmem_inode_info *info = SHMEM_I(inode);
1775         struct shmem_sb_info *sbinfo;
1776         struct mm_struct *charge_mm;
1777         struct page *page;
1778         enum sgp_type sgp_huge = sgp;
1779         pgoff_t hindex = index;
1780         int error;
1781         int once = 0;
1782         int alloced = 0;
1783
1784         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1785                 return -EFBIG;
1786         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1787                 sgp = SGP_CACHE;
1788 repeat:
1789         if (sgp <= SGP_CACHE &&
1790             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1791                 return -EINVAL;
1792         }
1793
1794         sbinfo = SHMEM_SB(inode->i_sb);
1795         charge_mm = vma ? vma->vm_mm : current->mm;
1796
1797         page = pagecache_get_page(mapping, index,
1798                                         FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1799         if (xa_is_value(page)) {
1800                 error = shmem_swapin_page(inode, index, &page,
1801                                           sgp, gfp, vma, fault_type);
1802                 if (error == -EEXIST)
1803                         goto repeat;
1804
1805                 *pagep = page;
1806                 return error;
1807         }
1808
1809         if (page)
1810                 hindex = page->index;
1811         if (page && sgp == SGP_WRITE)
1812                 mark_page_accessed(page);
1813
1814         /* fallocated page? */
1815         if (page && !PageUptodate(page)) {
1816                 if (sgp != SGP_READ)
1817                         goto clear;
1818                 unlock_page(page);
1819                 put_page(page);
1820                 page = NULL;
1821                 hindex = index;
1822         }
1823         if (page || sgp == SGP_READ)
1824                 goto out;
1825
1826         /*
1827          * Fast cache lookup did not find it:
1828          * bring it back from swap or allocate.
1829          */
1830
1831         if (vma && userfaultfd_missing(vma)) {
1832                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1833                 return 0;
1834         }
1835
1836         /* shmem_symlink() */
1837         if (!shmem_mapping(mapping))
1838                 goto alloc_nohuge;
1839         if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1840                 goto alloc_nohuge;
1841         if (shmem_huge == SHMEM_HUGE_FORCE)
1842                 goto alloc_huge;
1843         switch (sbinfo->huge) {
1844         case SHMEM_HUGE_NEVER:
1845                 goto alloc_nohuge;
1846         case SHMEM_HUGE_WITHIN_SIZE: {
1847                 loff_t i_size;
1848                 pgoff_t off;
1849
1850                 off = round_up(index, HPAGE_PMD_NR);
1851                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1852                 if (i_size >= HPAGE_PMD_SIZE &&
1853                     i_size >> PAGE_SHIFT >= off)
1854                         goto alloc_huge;
1855
1856                 fallthrough;
1857         }
1858         case SHMEM_HUGE_ADVISE:
1859                 if (sgp_huge == SGP_HUGE)
1860                         goto alloc_huge;
1861                 /* TODO: implement fadvise() hints */
1862                 goto alloc_nohuge;
1863         }
1864
1865 alloc_huge:
1866         page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1867         if (IS_ERR(page)) {
1868 alloc_nohuge:
1869                 page = shmem_alloc_and_acct_page(gfp, inode,
1870                                                  index, false);
1871         }
1872         if (IS_ERR(page)) {
1873                 int retry = 5;
1874
1875                 error = PTR_ERR(page);
1876                 page = NULL;
1877                 if (error != -ENOSPC)
1878                         goto unlock;
1879                 /*
1880                  * Try to reclaim some space by splitting a huge page
1881                  * beyond i_size on the filesystem.
1882                  */
1883                 while (retry--) {
1884                         int ret;
1885
1886                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1887                         if (ret == SHRINK_STOP)
1888                                 break;
1889                         if (ret)
1890                                 goto alloc_nohuge;
1891                 }
1892                 goto unlock;
1893         }
1894
1895         if (PageTransHuge(page))
1896                 hindex = round_down(index, HPAGE_PMD_NR);
1897         else
1898                 hindex = index;
1899
1900         if (sgp == SGP_WRITE)
1901                 __SetPageReferenced(page);
1902
1903         error = shmem_add_to_page_cache(page, mapping, hindex,
1904                                         NULL, gfp & GFP_RECLAIM_MASK,
1905                                         charge_mm);
1906         if (error)
1907                 goto unacct;
1908         lru_cache_add(page);
1909
1910         spin_lock_irq(&info->lock);
1911         info->alloced += compound_nr(page);
1912         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1913         shmem_recalc_inode(inode);
1914         spin_unlock_irq(&info->lock);
1915         alloced = true;
1916
1917         if (PageTransHuge(page) &&
1918             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1919                         hindex + HPAGE_PMD_NR - 1) {
1920                 /*
1921                  * Part of the huge page is beyond i_size: subject
1922                  * to shrink under memory pressure.
1923                  */
1924                 spin_lock(&sbinfo->shrinklist_lock);
1925                 /*
1926                  * _careful to defend against unlocked access to
1927                  * ->shrink_list in shmem_unused_huge_shrink()
1928                  */
1929                 if (list_empty_careful(&info->shrinklist)) {
1930                         list_add_tail(&info->shrinklist,
1931                                       &sbinfo->shrinklist);
1932                         sbinfo->shrinklist_len++;
1933                 }
1934                 spin_unlock(&sbinfo->shrinklist_lock);
1935         }
1936
1937         /*
1938          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1939          */
1940         if (sgp == SGP_FALLOC)
1941                 sgp = SGP_WRITE;
1942 clear:
1943         /*
1944          * Let SGP_WRITE caller clear ends if write does not fill page;
1945          * but SGP_FALLOC on a page fallocated earlier must initialize
1946          * it now, lest undo on failure cancel our earlier guarantee.
1947          */
1948         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1949                 int i;
1950
1951                 for (i = 0; i < compound_nr(page); i++) {
1952                         clear_highpage(page + i);
1953                         flush_dcache_page(page + i);
1954                 }
1955                 SetPageUptodate(page);
1956         }
1957
1958         /* Perhaps the file has been truncated since we checked */
1959         if (sgp <= SGP_CACHE &&
1960             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1961                 if (alloced) {
1962                         ClearPageDirty(page);
1963                         delete_from_page_cache(page);
1964                         spin_lock_irq(&info->lock);
1965                         shmem_recalc_inode(inode);
1966                         spin_unlock_irq(&info->lock);
1967                 }
1968                 error = -EINVAL;
1969                 goto unlock;
1970         }
1971 out:
1972         *pagep = page + index - hindex;
1973         return 0;
1974
1975         /*
1976          * Error recovery.
1977          */
1978 unacct:
1979         shmem_inode_unacct_blocks(inode, compound_nr(page));
1980
1981         if (PageTransHuge(page)) {
1982                 unlock_page(page);
1983                 put_page(page);
1984                 goto alloc_nohuge;
1985         }
1986 unlock:
1987         if (page) {
1988                 unlock_page(page);
1989                 put_page(page);
1990         }
1991         if (error == -ENOSPC && !once++) {
1992                 spin_lock_irq(&info->lock);
1993                 shmem_recalc_inode(inode);
1994                 spin_unlock_irq(&info->lock);
1995                 goto repeat;
1996         }
1997         if (error == -EEXIST)
1998                 goto repeat;
1999         return error;
2000 }
2001
2002 /*
2003  * This is like autoremove_wake_function, but it removes the wait queue
2004  * entry unconditionally - even if something else had already woken the
2005  * target.
2006  */
2007 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2008 {
2009         int ret = default_wake_function(wait, mode, sync, key);
2010         list_del_init(&wait->entry);
2011         return ret;
2012 }
2013
2014 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2015 {
2016         struct vm_area_struct *vma = vmf->vma;
2017         struct inode *inode = file_inode(vma->vm_file);
2018         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2019         enum sgp_type sgp;
2020         int err;
2021         vm_fault_t ret = VM_FAULT_LOCKED;
2022
2023         /*
2024          * Trinity finds that probing a hole which tmpfs is punching can
2025          * prevent the hole-punch from ever completing: which in turn
2026          * locks writers out with its hold on i_mutex.  So refrain from
2027          * faulting pages into the hole while it's being punched.  Although
2028          * shmem_undo_range() does remove the additions, it may be unable to
2029          * keep up, as each new page needs its own unmap_mapping_range() call,
2030          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2031          *
2032          * It does not matter if we sometimes reach this check just before the
2033          * hole-punch begins, so that one fault then races with the punch:
2034          * we just need to make racing faults a rare case.
2035          *
2036          * The implementation below would be much simpler if we just used a
2037          * standard mutex or completion: but we cannot take i_mutex in fault,
2038          * and bloating every shmem inode for this unlikely case would be sad.
2039          */
2040         if (unlikely(inode->i_private)) {
2041                 struct shmem_falloc *shmem_falloc;
2042
2043                 spin_lock(&inode->i_lock);
2044                 shmem_falloc = inode->i_private;
2045                 if (shmem_falloc &&
2046                     shmem_falloc->waitq &&
2047                     vmf->pgoff >= shmem_falloc->start &&
2048                     vmf->pgoff < shmem_falloc->next) {
2049                         struct file *fpin;
2050                         wait_queue_head_t *shmem_falloc_waitq;
2051                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2052
2053                         ret = VM_FAULT_NOPAGE;
2054                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2055                         if (fpin)
2056                                 ret = VM_FAULT_RETRY;
2057
2058                         shmem_falloc_waitq = shmem_falloc->waitq;
2059                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2060                                         TASK_UNINTERRUPTIBLE);
2061                         spin_unlock(&inode->i_lock);
2062                         schedule();
2063
2064                         /*
2065                          * shmem_falloc_waitq points into the shmem_fallocate()
2066                          * stack of the hole-punching task: shmem_falloc_waitq
2067                          * is usually invalid by the time we reach here, but
2068                          * finish_wait() does not dereference it in that case;
2069                          * though i_lock needed lest racing with wake_up_all().
2070                          */
2071                         spin_lock(&inode->i_lock);
2072                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2073                         spin_unlock(&inode->i_lock);
2074
2075                         if (fpin)
2076                                 fput(fpin);
2077                         return ret;
2078                 }
2079                 spin_unlock(&inode->i_lock);
2080         }
2081
2082         sgp = SGP_CACHE;
2083
2084         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2085             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2086                 sgp = SGP_NOHUGE;
2087         else if (vma->vm_flags & VM_HUGEPAGE)
2088                 sgp = SGP_HUGE;
2089
2090         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2091                                   gfp, vma, vmf, &ret);
2092         if (err)
2093                 return vmf_error(err);
2094         return ret;
2095 }
2096
2097 unsigned long shmem_get_unmapped_area(struct file *file,
2098                                       unsigned long uaddr, unsigned long len,
2099                                       unsigned long pgoff, unsigned long flags)
2100 {
2101         unsigned long (*get_area)(struct file *,
2102                 unsigned long, unsigned long, unsigned long, unsigned long);
2103         unsigned long addr;
2104         unsigned long offset;
2105         unsigned long inflated_len;
2106         unsigned long inflated_addr;
2107         unsigned long inflated_offset;
2108
2109         if (len > TASK_SIZE)
2110                 return -ENOMEM;
2111
2112         get_area = current->mm->get_unmapped_area;
2113         addr = get_area(file, uaddr, len, pgoff, flags);
2114
2115         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2116                 return addr;
2117         if (IS_ERR_VALUE(addr))
2118                 return addr;
2119         if (addr & ~PAGE_MASK)
2120                 return addr;
2121         if (addr > TASK_SIZE - len)
2122                 return addr;
2123
2124         if (shmem_huge == SHMEM_HUGE_DENY)
2125                 return addr;
2126         if (len < HPAGE_PMD_SIZE)
2127                 return addr;
2128         if (flags & MAP_FIXED)
2129                 return addr;
2130         /*
2131          * Our priority is to support MAP_SHARED mapped hugely;
2132          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2133          * But if caller specified an address hint and we allocated area there
2134          * successfully, respect that as before.
2135          */
2136         if (uaddr == addr)
2137                 return addr;
2138
2139         if (shmem_huge != SHMEM_HUGE_FORCE) {
2140                 struct super_block *sb;
2141
2142                 if (file) {
2143                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2144                         sb = file_inode(file)->i_sb;
2145                 } else {
2146                         /*
2147                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2148                          * for "/dev/zero", to create a shared anonymous object.
2149                          */
2150                         if (IS_ERR(shm_mnt))
2151                                 return addr;
2152                         sb = shm_mnt->mnt_sb;
2153                 }
2154                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2155                         return addr;
2156         }
2157
2158         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2159         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2160                 return addr;
2161         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2162                 return addr;
2163
2164         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2165         if (inflated_len > TASK_SIZE)
2166                 return addr;
2167         if (inflated_len < len)
2168                 return addr;
2169
2170         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2171         if (IS_ERR_VALUE(inflated_addr))
2172                 return addr;
2173         if (inflated_addr & ~PAGE_MASK)
2174                 return addr;
2175
2176         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2177         inflated_addr += offset - inflated_offset;
2178         if (inflated_offset > offset)
2179                 inflated_addr += HPAGE_PMD_SIZE;
2180
2181         if (inflated_addr > TASK_SIZE - len)
2182                 return addr;
2183         return inflated_addr;
2184 }
2185
2186 #ifdef CONFIG_NUMA
2187 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2188 {
2189         struct inode *inode = file_inode(vma->vm_file);
2190         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2191 }
2192
2193 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2194                                           unsigned long addr)
2195 {
2196         struct inode *inode = file_inode(vma->vm_file);
2197         pgoff_t index;
2198
2199         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2200         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2201 }
2202 #endif
2203
2204 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2205 {
2206         struct inode *inode = file_inode(file);
2207         struct shmem_inode_info *info = SHMEM_I(inode);
2208         int retval = -ENOMEM;
2209
2210         /*
2211          * What serializes the accesses to info->flags?
2212          * ipc_lock_object() when called from shmctl_do_lock(),
2213          * no serialization needed when called from shm_destroy().
2214          */
2215         if (lock && !(info->flags & VM_LOCKED)) {
2216                 if (!user_shm_lock(inode->i_size, user))
2217                         goto out_nomem;
2218                 info->flags |= VM_LOCKED;
2219                 mapping_set_unevictable(file->f_mapping);
2220         }
2221         if (!lock && (info->flags & VM_LOCKED) && user) {
2222                 user_shm_unlock(inode->i_size, user);
2223                 info->flags &= ~VM_LOCKED;
2224                 mapping_clear_unevictable(file->f_mapping);
2225         }
2226         retval = 0;
2227
2228 out_nomem:
2229         return retval;
2230 }
2231
2232 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2233 {
2234         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2235
2236         if (info->seals & F_SEAL_FUTURE_WRITE) {
2237                 /*
2238                  * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2239                  * "future write" seal active.
2240                  */
2241                 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2242                         return -EPERM;
2243
2244                 /*
2245                  * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2246                  * MAP_SHARED and read-only, take care to not allow mprotect to
2247                  * revert protections on such mappings. Do this only for shared
2248                  * mappings. For private mappings, don't need to mask
2249                  * VM_MAYWRITE as we still want them to be COW-writable.
2250                  */
2251                 if (vma->vm_flags & VM_SHARED)
2252                         vma->vm_flags &= ~(VM_MAYWRITE);
2253         }
2254
2255         /* arm64 - allow memory tagging on RAM-based files */
2256         vma->vm_flags |= VM_MTE_ALLOWED;
2257
2258         file_accessed(file);
2259         vma->vm_ops = &shmem_vm_ops;
2260         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2261                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2262                         (vma->vm_end & HPAGE_PMD_MASK)) {
2263                 khugepaged_enter(vma, vma->vm_flags);
2264         }
2265         return 0;
2266 }
2267
2268 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2269                                      umode_t mode, dev_t dev, unsigned long flags)
2270 {
2271         struct inode *inode;
2272         struct shmem_inode_info *info;
2273         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2274         ino_t ino;
2275
2276         if (shmem_reserve_inode(sb, &ino))
2277                 return NULL;
2278
2279         inode = new_inode(sb);
2280         if (inode) {
2281                 inode->i_ino = ino;
2282                 inode_init_owner(&init_user_ns, inode, dir, mode);
2283                 inode->i_blocks = 0;
2284                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2285                 inode->i_generation = prandom_u32();
2286                 info = SHMEM_I(inode);
2287                 memset(info, 0, (char *)inode - (char *)info);
2288                 spin_lock_init(&info->lock);
2289                 atomic_set(&info->stop_eviction, 0);
2290                 info->seals = F_SEAL_SEAL;
2291                 info->flags = flags & VM_NORESERVE;
2292                 INIT_LIST_HEAD(&info->shrinklist);
2293                 INIT_LIST_HEAD(&info->swaplist);
2294                 simple_xattrs_init(&info->xattrs);
2295                 cache_no_acl(inode);
2296
2297                 switch (mode & S_IFMT) {
2298                 default:
2299                         inode->i_op = &shmem_special_inode_operations;
2300                         init_special_inode(inode, mode, dev);
2301                         break;
2302                 case S_IFREG:
2303                         inode->i_mapping->a_ops = &shmem_aops;
2304                         inode->i_op = &shmem_inode_operations;
2305                         inode->i_fop = &shmem_file_operations;
2306                         mpol_shared_policy_init(&info->policy,
2307                                                  shmem_get_sbmpol(sbinfo));
2308                         break;
2309                 case S_IFDIR:
2310                         inc_nlink(inode);
2311                         /* Some things misbehave if size == 0 on a directory */
2312                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2313                         inode->i_op = &shmem_dir_inode_operations;
2314                         inode->i_fop = &simple_dir_operations;
2315                         break;
2316                 case S_IFLNK:
2317                         /*
2318                          * Must not load anything in the rbtree,
2319                          * mpol_free_shared_policy will not be called.
2320                          */
2321                         mpol_shared_policy_init(&info->policy, NULL);
2322                         break;
2323                 }
2324
2325                 lockdep_annotate_inode_mutex_key(inode);
2326         } else
2327                 shmem_free_inode(sb);
2328         return inode;
2329 }
2330
2331 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2332                                   pmd_t *dst_pmd,
2333                                   struct vm_area_struct *dst_vma,
2334                                   unsigned long dst_addr,
2335                                   unsigned long src_addr,
2336                                   bool zeropage,
2337                                   struct page **pagep)
2338 {
2339         struct inode *inode = file_inode(dst_vma->vm_file);
2340         struct shmem_inode_info *info = SHMEM_I(inode);
2341         struct address_space *mapping = inode->i_mapping;
2342         gfp_t gfp = mapping_gfp_mask(mapping);
2343         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2344         spinlock_t *ptl;
2345         void *page_kaddr;
2346         struct page *page;
2347         pte_t _dst_pte, *dst_pte;
2348         int ret;
2349         pgoff_t offset, max_off;
2350
2351         ret = -ENOMEM;
2352         if (!shmem_inode_acct_block(inode, 1))
2353                 goto out;
2354
2355         if (!*pagep) {
2356                 page = shmem_alloc_page(gfp, info, pgoff);
2357                 if (!page)
2358                         goto out_unacct_blocks;
2359
2360                 if (!zeropage) {        /* mcopy_atomic */
2361                         page_kaddr = kmap_atomic(page);
2362                         ret = copy_from_user(page_kaddr,
2363                                              (const void __user *)src_addr,
2364                                              PAGE_SIZE);
2365                         kunmap_atomic(page_kaddr);
2366
2367                         /* fallback to copy_from_user outside mmap_lock */
2368                         if (unlikely(ret)) {
2369                                 *pagep = page;
2370                                 shmem_inode_unacct_blocks(inode, 1);
2371                                 /* don't free the page */
2372                                 return -ENOENT;
2373                         }
2374                 } else {                /* mfill_zeropage_atomic */
2375                         clear_highpage(page);
2376                 }
2377         } else {
2378                 page = *pagep;
2379                 *pagep = NULL;
2380         }
2381
2382         VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2383         __SetPageLocked(page);
2384         __SetPageSwapBacked(page);
2385         __SetPageUptodate(page);
2386
2387         ret = -EFAULT;
2388         offset = linear_page_index(dst_vma, dst_addr);
2389         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2390         if (unlikely(offset >= max_off))
2391                 goto out_release;
2392
2393         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2394                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2395         if (ret)
2396                 goto out_release;
2397
2398         _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2399         if (dst_vma->vm_flags & VM_WRITE)
2400                 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2401         else {
2402                 /*
2403                  * We don't set the pte dirty if the vma has no
2404                  * VM_WRITE permission, so mark the page dirty or it
2405                  * could be freed from under us. We could do it
2406                  * unconditionally before unlock_page(), but doing it
2407                  * only if VM_WRITE is not set is faster.
2408                  */
2409                 set_page_dirty(page);
2410         }
2411
2412         dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2413
2414         ret = -EFAULT;
2415         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2416         if (unlikely(offset >= max_off))
2417                 goto out_release_unlock;
2418
2419         ret = -EEXIST;
2420         if (!pte_none(*dst_pte))
2421                 goto out_release_unlock;
2422
2423         lru_cache_add(page);
2424
2425         spin_lock_irq(&info->lock);
2426         info->alloced++;
2427         inode->i_blocks += BLOCKS_PER_PAGE;
2428         shmem_recalc_inode(inode);
2429         spin_unlock_irq(&info->lock);
2430
2431         inc_mm_counter(dst_mm, mm_counter_file(page));
2432         page_add_file_rmap(page, false);
2433         set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2434
2435         /* No need to invalidate - it was non-present before */
2436         update_mmu_cache(dst_vma, dst_addr, dst_pte);
2437         pte_unmap_unlock(dst_pte, ptl);
2438         unlock_page(page);
2439         ret = 0;
2440 out:
2441         return ret;
2442 out_release_unlock:
2443         pte_unmap_unlock(dst_pte, ptl);
2444         ClearPageDirty(page);
2445         delete_from_page_cache(page);
2446 out_release:
2447         unlock_page(page);
2448         put_page(page);
2449 out_unacct_blocks:
2450         shmem_inode_unacct_blocks(inode, 1);
2451         goto out;
2452 }
2453
2454 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2455                            pmd_t *dst_pmd,
2456                            struct vm_area_struct *dst_vma,
2457                            unsigned long dst_addr,
2458                            unsigned long src_addr,
2459                            struct page **pagep)
2460 {
2461         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2462                                       dst_addr, src_addr, false, pagep);
2463 }
2464
2465 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2466                              pmd_t *dst_pmd,
2467                              struct vm_area_struct *dst_vma,
2468                              unsigned long dst_addr)
2469 {
2470         struct page *page = NULL;
2471
2472         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2473                                       dst_addr, 0, true, &page);
2474 }
2475
2476 #ifdef CONFIG_TMPFS
2477 static const struct inode_operations shmem_symlink_inode_operations;
2478 static const struct inode_operations shmem_short_symlink_operations;
2479
2480 #ifdef CONFIG_TMPFS_XATTR
2481 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2482 #else
2483 #define shmem_initxattrs NULL
2484 #endif
2485
2486 static int
2487 shmem_write_begin(struct file *file, struct address_space *mapping,
2488                         loff_t pos, unsigned len, unsigned flags,
2489                         struct page **pagep, void **fsdata)
2490 {
2491         struct inode *inode = mapping->host;
2492         struct shmem_inode_info *info = SHMEM_I(inode);
2493         pgoff_t index = pos >> PAGE_SHIFT;
2494
2495         /* i_mutex is held by caller */
2496         if (unlikely(info->seals & (F_SEAL_GROW |
2497                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2498                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2499                         return -EPERM;
2500                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2501                         return -EPERM;
2502         }
2503
2504         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2505 }
2506
2507 static int
2508 shmem_write_end(struct file *file, struct address_space *mapping,
2509                         loff_t pos, unsigned len, unsigned copied,
2510                         struct page *page, void *fsdata)
2511 {
2512         struct inode *inode = mapping->host;
2513
2514         if (pos + copied > inode->i_size)
2515                 i_size_write(inode, pos + copied);
2516
2517         if (!PageUptodate(page)) {
2518                 struct page *head = compound_head(page);
2519                 if (PageTransCompound(page)) {
2520                         int i;
2521
2522                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2523                                 if (head + i == page)
2524                                         continue;
2525                                 clear_highpage(head + i);
2526                                 flush_dcache_page(head + i);
2527                         }
2528                 }
2529                 if (copied < PAGE_SIZE) {
2530                         unsigned from = pos & (PAGE_SIZE - 1);
2531                         zero_user_segments(page, 0, from,
2532                                         from + copied, PAGE_SIZE);
2533                 }
2534                 SetPageUptodate(head);
2535         }
2536         set_page_dirty(page);
2537         unlock_page(page);
2538         put_page(page);
2539
2540         return copied;
2541 }
2542
2543 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2544 {
2545         struct file *file = iocb->ki_filp;
2546         struct inode *inode = file_inode(file);
2547         struct address_space *mapping = inode->i_mapping;
2548         pgoff_t index;
2549         unsigned long offset;
2550         enum sgp_type sgp = SGP_READ;
2551         int error = 0;
2552         ssize_t retval = 0;
2553         loff_t *ppos = &iocb->ki_pos;
2554
2555         /*
2556          * Might this read be for a stacking filesystem?  Then when reading
2557          * holes of a sparse file, we actually need to allocate those pages,
2558          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2559          */
2560         if (!iter_is_iovec(to))
2561                 sgp = SGP_CACHE;
2562
2563         index = *ppos >> PAGE_SHIFT;
2564         offset = *ppos & ~PAGE_MASK;
2565
2566         for (;;) {
2567                 struct page *page = NULL;
2568                 pgoff_t end_index;
2569                 unsigned long nr, ret;
2570                 loff_t i_size = i_size_read(inode);
2571
2572                 end_index = i_size >> PAGE_SHIFT;
2573                 if (index > end_index)
2574                         break;
2575                 if (index == end_index) {
2576                         nr = i_size & ~PAGE_MASK;
2577                         if (nr <= offset)
2578                                 break;
2579                 }
2580
2581                 error = shmem_getpage(inode, index, &page, sgp);
2582                 if (error) {
2583                         if (error == -EINVAL)
2584                                 error = 0;
2585                         break;
2586                 }
2587                 if (page) {
2588                         if (sgp == SGP_CACHE)
2589                                 set_page_dirty(page);
2590                         unlock_page(page);
2591                 }
2592
2593                 /*
2594                  * We must evaluate after, since reads (unlike writes)
2595                  * are called without i_mutex protection against truncate
2596                  */
2597                 nr = PAGE_SIZE;
2598                 i_size = i_size_read(inode);
2599                 end_index = i_size >> PAGE_SHIFT;
2600                 if (index == end_index) {
2601                         nr = i_size & ~PAGE_MASK;
2602                         if (nr <= offset) {
2603                                 if (page)
2604                                         put_page(page);
2605                                 break;
2606                         }
2607                 }
2608                 nr -= offset;
2609
2610                 if (page) {
2611                         /*
2612                          * If users can be writing to this page using arbitrary
2613                          * virtual addresses, take care about potential aliasing
2614                          * before reading the page on the kernel side.
2615                          */
2616                         if (mapping_writably_mapped(mapping))
2617                                 flush_dcache_page(page);
2618                         /*
2619                          * Mark the page accessed if we read the beginning.
2620                          */
2621                         if (!offset)
2622                                 mark_page_accessed(page);
2623                 } else {
2624                         page = ZERO_PAGE(0);
2625                         get_page(page);
2626                 }
2627
2628                 /*
2629                  * Ok, we have the page, and it's up-to-date, so
2630                  * now we can copy it to user space...
2631                  */
2632                 ret = copy_page_to_iter(page, offset, nr, to);
2633                 retval += ret;
2634                 offset += ret;
2635                 index += offset >> PAGE_SHIFT;
2636                 offset &= ~PAGE_MASK;
2637
2638                 put_page(page);
2639                 if (!iov_iter_count(to))
2640                         break;
2641                 if (ret < nr) {
2642                         error = -EFAULT;
2643                         break;
2644                 }
2645                 cond_resched();
2646         }
2647
2648         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2649         file_accessed(file);
2650         return retval ? retval : error;
2651 }
2652
2653 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2654 {
2655         struct address_space *mapping = file->f_mapping;
2656         struct inode *inode = mapping->host;
2657
2658         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2659                 return generic_file_llseek_size(file, offset, whence,
2660                                         MAX_LFS_FILESIZE, i_size_read(inode));
2661         if (offset < 0)
2662                 return -ENXIO;
2663
2664         inode_lock(inode);
2665         /* We're holding i_mutex so we can access i_size directly */
2666         offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2667         if (offset >= 0)
2668                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2669         inode_unlock(inode);
2670         return offset;
2671 }
2672
2673 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2674                                                          loff_t len)
2675 {
2676         struct inode *inode = file_inode(file);
2677         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2678         struct shmem_inode_info *info = SHMEM_I(inode);
2679         struct shmem_falloc shmem_falloc;
2680         pgoff_t start, index, end;
2681         int error;
2682
2683         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2684                 return -EOPNOTSUPP;
2685
2686         inode_lock(inode);
2687
2688         if (mode & FALLOC_FL_PUNCH_HOLE) {
2689                 struct address_space *mapping = file->f_mapping;
2690                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2691                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2692                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2693
2694                 /* protected by i_mutex */
2695                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2696                         error = -EPERM;
2697                         goto out;
2698                 }
2699
2700                 shmem_falloc.waitq = &shmem_falloc_waitq;
2701                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2702                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2703                 spin_lock(&inode->i_lock);
2704                 inode->i_private = &shmem_falloc;
2705                 spin_unlock(&inode->i_lock);
2706
2707                 if ((u64)unmap_end > (u64)unmap_start)
2708                         unmap_mapping_range(mapping, unmap_start,
2709                                             1 + unmap_end - unmap_start, 0);
2710                 shmem_truncate_range(inode, offset, offset + len - 1);
2711                 /* No need to unmap again: hole-punching leaves COWed pages */
2712
2713                 spin_lock(&inode->i_lock);
2714                 inode->i_private = NULL;
2715                 wake_up_all(&shmem_falloc_waitq);
2716                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2717                 spin_unlock(&inode->i_lock);
2718                 error = 0;
2719                 goto out;
2720         }
2721
2722         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2723         error = inode_newsize_ok(inode, offset + len);
2724         if (error)
2725                 goto out;
2726
2727         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2728                 error = -EPERM;
2729                 goto out;
2730         }
2731
2732         start = offset >> PAGE_SHIFT;
2733         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2734         /* Try to avoid a swapstorm if len is impossible to satisfy */
2735         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2736                 error = -ENOSPC;
2737                 goto out;
2738         }
2739
2740         shmem_falloc.waitq = NULL;
2741         shmem_falloc.start = start;
2742         shmem_falloc.next  = start;
2743         shmem_falloc.nr_falloced = 0;
2744         shmem_falloc.nr_unswapped = 0;
2745         spin_lock(&inode->i_lock);
2746         inode->i_private = &shmem_falloc;
2747         spin_unlock(&inode->i_lock);
2748
2749         for (index = start; index < end; index++) {
2750                 struct page *page;
2751
2752                 /*
2753                  * Good, the fallocate(2) manpage permits EINTR: we may have
2754                  * been interrupted because we are using up too much memory.
2755                  */
2756                 if (signal_pending(current))
2757                         error = -EINTR;
2758                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2759                         error = -ENOMEM;
2760                 else
2761                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2762                 if (error) {
2763                         /* Remove the !PageUptodate pages we added */
2764                         if (index > start) {
2765                                 shmem_undo_range(inode,
2766                                     (loff_t)start << PAGE_SHIFT,
2767                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2768                         }
2769                         goto undone;
2770                 }
2771
2772                 /*
2773                  * Inform shmem_writepage() how far we have reached.
2774                  * No need for lock or barrier: we have the page lock.
2775                  */
2776                 shmem_falloc.next++;
2777                 if (!PageUptodate(page))
2778                         shmem_falloc.nr_falloced++;
2779
2780                 /*
2781                  * If !PageUptodate, leave it that way so that freeable pages
2782                  * can be recognized if we need to rollback on error later.
2783                  * But set_page_dirty so that memory pressure will swap rather
2784                  * than free the pages we are allocating (and SGP_CACHE pages
2785                  * might still be clean: we now need to mark those dirty too).
2786                  */
2787                 set_page_dirty(page);
2788                 unlock_page(page);
2789                 put_page(page);
2790                 cond_resched();
2791         }
2792
2793         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2794                 i_size_write(inode, offset + len);
2795         inode->i_ctime = current_time(inode);
2796 undone:
2797         spin_lock(&inode->i_lock);
2798         inode->i_private = NULL;
2799         spin_unlock(&inode->i_lock);
2800 out:
2801         inode_unlock(inode);
2802         return error;
2803 }
2804
2805 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2806 {
2807         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2808
2809         buf->f_type = TMPFS_MAGIC;
2810         buf->f_bsize = PAGE_SIZE;
2811         buf->f_namelen = NAME_MAX;
2812         if (sbinfo->max_blocks) {
2813                 buf->f_blocks = sbinfo->max_blocks;
2814                 buf->f_bavail =
2815                 buf->f_bfree  = sbinfo->max_blocks -
2816                                 percpu_counter_sum(&sbinfo->used_blocks);
2817         }
2818         if (sbinfo->max_inodes) {
2819                 buf->f_files = sbinfo->max_inodes;
2820                 buf->f_ffree = sbinfo->free_inodes;
2821         }
2822         /* else leave those fields 0 like simple_statfs */
2823         return 0;
2824 }
2825
2826 /*
2827  * File creation. Allocate an inode, and we're done..
2828  */
2829 static int
2830 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2831             struct dentry *dentry, umode_t mode, dev_t dev)
2832 {
2833         struct inode *inode;
2834         int error = -ENOSPC;
2835
2836         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2837         if (inode) {
2838                 error = simple_acl_create(dir, inode);
2839                 if (error)
2840                         goto out_iput;
2841                 error = security_inode_init_security(inode, dir,
2842                                                      &dentry->d_name,
2843                                                      shmem_initxattrs, NULL);
2844                 if (error && error != -EOPNOTSUPP)
2845                         goto out_iput;
2846
2847                 error = 0;
2848                 dir->i_size += BOGO_DIRENT_SIZE;
2849                 dir->i_ctime = dir->i_mtime = current_time(dir);
2850                 d_instantiate(dentry, inode);
2851                 dget(dentry); /* Extra count - pin the dentry in core */
2852         }
2853         return error;
2854 out_iput:
2855         iput(inode);
2856         return error;
2857 }
2858
2859 static int
2860 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2861               struct dentry *dentry, umode_t mode)
2862 {
2863         struct inode *inode;
2864         int error = -ENOSPC;
2865
2866         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2867         if (inode) {
2868                 error = security_inode_init_security(inode, dir,
2869                                                      NULL,
2870                                                      shmem_initxattrs, NULL);
2871                 if (error && error != -EOPNOTSUPP)
2872                         goto out_iput;
2873                 error = simple_acl_create(dir, inode);
2874                 if (error)
2875                         goto out_iput;
2876                 d_tmpfile(dentry, inode);
2877         }
2878         return error;
2879 out_iput:
2880         iput(inode);
2881         return error;
2882 }
2883
2884 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2885                        struct dentry *dentry, umode_t mode)
2886 {
2887         int error;
2888
2889         if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2890                                  mode | S_IFDIR, 0)))
2891                 return error;
2892         inc_nlink(dir);
2893         return 0;
2894 }
2895
2896 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2897                         struct dentry *dentry, umode_t mode, bool excl)
2898 {
2899         return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2900 }
2901
2902 /*
2903  * Link a file..
2904  */
2905 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2906 {
2907         struct inode *inode = d_inode(old_dentry);
2908         int ret = 0;
2909
2910         /*
2911          * No ordinary (disk based) filesystem counts links as inodes;
2912          * but each new link needs a new dentry, pinning lowmem, and
2913          * tmpfs dentries cannot be pruned until they are unlinked.
2914          * But if an O_TMPFILE file is linked into the tmpfs, the
2915          * first link must skip that, to get the accounting right.
2916          */
2917         if (inode->i_nlink) {
2918                 ret = shmem_reserve_inode(inode->i_sb, NULL);
2919                 if (ret)
2920                         goto out;
2921         }
2922
2923         dir->i_size += BOGO_DIRENT_SIZE;
2924         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2925         inc_nlink(inode);
2926         ihold(inode);   /* New dentry reference */
2927         dget(dentry);           /* Extra pinning count for the created dentry */
2928         d_instantiate(dentry, inode);
2929 out:
2930         return ret;
2931 }
2932
2933 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2934 {
2935         struct inode *inode = d_inode(dentry);
2936
2937         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2938                 shmem_free_inode(inode->i_sb);
2939
2940         dir->i_size -= BOGO_DIRENT_SIZE;
2941         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2942         drop_nlink(inode);
2943         dput(dentry);   /* Undo the count from "create" - this does all the work */
2944         return 0;
2945 }
2946
2947 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2948 {
2949         if (!simple_empty(dentry))
2950                 return -ENOTEMPTY;
2951
2952         drop_nlink(d_inode(dentry));
2953         drop_nlink(dir);
2954         return shmem_unlink(dir, dentry);
2955 }
2956
2957 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2958 {
2959         bool old_is_dir = d_is_dir(old_dentry);
2960         bool new_is_dir = d_is_dir(new_dentry);
2961
2962         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2963                 if (old_is_dir) {
2964                         drop_nlink(old_dir);
2965                         inc_nlink(new_dir);
2966                 } else {
2967                         drop_nlink(new_dir);
2968                         inc_nlink(old_dir);
2969                 }
2970         }
2971         old_dir->i_ctime = old_dir->i_mtime =
2972         new_dir->i_ctime = new_dir->i_mtime =
2973         d_inode(old_dentry)->i_ctime =
2974         d_inode(new_dentry)->i_ctime = current_time(old_dir);
2975
2976         return 0;
2977 }
2978
2979 static int shmem_whiteout(struct user_namespace *mnt_userns,
2980                           struct inode *old_dir, struct dentry *old_dentry)
2981 {
2982         struct dentry *whiteout;
2983         int error;
2984
2985         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2986         if (!whiteout)
2987                 return -ENOMEM;
2988
2989         error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2990                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2991         dput(whiteout);
2992         if (error)
2993                 return error;
2994
2995         /*
2996          * Cheat and hash the whiteout while the old dentry is still in
2997          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2998          *
2999          * d_lookup() will consistently find one of them at this point,
3000          * not sure which one, but that isn't even important.
3001          */
3002         d_rehash(whiteout);
3003         return 0;
3004 }
3005
3006 /*
3007  * The VFS layer already does all the dentry stuff for rename,
3008  * we just have to decrement the usage count for the target if
3009  * it exists so that the VFS layer correctly free's it when it
3010  * gets overwritten.
3011  */
3012 static int shmem_rename2(struct user_namespace *mnt_userns,
3013                          struct inode *old_dir, struct dentry *old_dentry,
3014                          struct inode *new_dir, struct dentry *new_dentry,
3015                          unsigned int flags)
3016 {
3017         struct inode *inode = d_inode(old_dentry);
3018         int they_are_dirs = S_ISDIR(inode->i_mode);
3019
3020         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3021                 return -EINVAL;
3022
3023         if (flags & RENAME_EXCHANGE)
3024                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3025
3026         if (!simple_empty(new_dentry))
3027                 return -ENOTEMPTY;
3028
3029         if (flags & RENAME_WHITEOUT) {
3030                 int error;
3031
3032                 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3033                 if (error)
3034                         return error;
3035         }
3036
3037         if (d_really_is_positive(new_dentry)) {
3038                 (void) shmem_unlink(new_dir, new_dentry);
3039                 if (they_are_dirs) {
3040                         drop_nlink(d_inode(new_dentry));
3041                         drop_nlink(old_dir);
3042                 }
3043         } else if (they_are_dirs) {
3044                 drop_nlink(old_dir);
3045                 inc_nlink(new_dir);
3046         }
3047
3048         old_dir->i_size -= BOGO_DIRENT_SIZE;
3049         new_dir->i_size += BOGO_DIRENT_SIZE;
3050         old_dir->i_ctime = old_dir->i_mtime =
3051         new_dir->i_ctime = new_dir->i_mtime =
3052         inode->i_ctime = current_time(old_dir);
3053         return 0;
3054 }
3055
3056 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3057                          struct dentry *dentry, const char *symname)
3058 {
3059         int error;
3060         int len;
3061         struct inode *inode;
3062         struct page *page;
3063
3064         len = strlen(symname) + 1;
3065         if (len > PAGE_SIZE)
3066                 return -ENAMETOOLONG;
3067
3068         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3069                                 VM_NORESERVE);
3070         if (!inode)
3071                 return -ENOSPC;
3072
3073         error = security_inode_init_security(inode, dir, &dentry->d_name,
3074                                              shmem_initxattrs, NULL);
3075         if (error && error != -EOPNOTSUPP) {
3076                 iput(inode);
3077                 return error;
3078         }
3079
3080         inode->i_size = len-1;
3081         if (len <= SHORT_SYMLINK_LEN) {
3082                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3083                 if (!inode->i_link) {
3084                         iput(inode);
3085                         return -ENOMEM;
3086                 }
3087                 inode->i_op = &shmem_short_symlink_operations;
3088         } else {
3089                 inode_nohighmem(inode);
3090                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3091                 if (error) {
3092                         iput(inode);
3093                         return error;
3094                 }
3095                 inode->i_mapping->a_ops = &shmem_aops;
3096                 inode->i_op = &shmem_symlink_inode_operations;
3097                 memcpy(page_address(page), symname, len);
3098                 SetPageUptodate(page);
3099                 set_page_dirty(page);
3100                 unlock_page(page);
3101                 put_page(page);
3102         }
3103         dir->i_size += BOGO_DIRENT_SIZE;
3104         dir->i_ctime = dir->i_mtime = current_time(dir);
3105         d_instantiate(dentry, inode);
3106         dget(dentry);
3107         return 0;
3108 }
3109
3110 static void shmem_put_link(void *arg)
3111 {
3112         mark_page_accessed(arg);
3113         put_page(arg);
3114 }
3115
3116 static const char *shmem_get_link(struct dentry *dentry,
3117                                   struct inode *inode,
3118                                   struct delayed_call *done)
3119 {
3120         struct page *page = NULL;
3121         int error;
3122         if (!dentry) {
3123                 page = find_get_page(inode->i_mapping, 0);
3124                 if (!page)
3125                         return ERR_PTR(-ECHILD);
3126                 if (!PageUptodate(page)) {
3127                         put_page(page);
3128                         return ERR_PTR(-ECHILD);
3129                 }
3130         } else {
3131                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3132                 if (error)
3133                         return ERR_PTR(error);
3134                 unlock_page(page);
3135         }
3136         set_delayed_call(done, shmem_put_link, page);
3137         return page_address(page);
3138 }
3139
3140 #ifdef CONFIG_TMPFS_XATTR
3141 /*
3142  * Superblocks without xattr inode operations may get some security.* xattr
3143  * support from the LSM "for free". As soon as we have any other xattrs
3144  * like ACLs, we also need to implement the security.* handlers at
3145  * filesystem level, though.
3146  */
3147
3148 /*
3149  * Callback for security_inode_init_security() for acquiring xattrs.
3150  */
3151 static int shmem_initxattrs(struct inode *inode,
3152                             const struct xattr *xattr_array,
3153                             void *fs_info)
3154 {
3155         struct shmem_inode_info *info = SHMEM_I(inode);
3156         const struct xattr *xattr;
3157         struct simple_xattr *new_xattr;
3158         size_t len;
3159
3160         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3161                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3162                 if (!new_xattr)
3163                         return -ENOMEM;
3164
3165                 len = strlen(xattr->name) + 1;
3166                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3167                                           GFP_KERNEL);
3168                 if (!new_xattr->name) {
3169                         kvfree(new_xattr);
3170                         return -ENOMEM;
3171                 }
3172
3173                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3174                        XATTR_SECURITY_PREFIX_LEN);
3175                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3176                        xattr->name, len);
3177
3178                 simple_xattr_list_add(&info->xattrs, new_xattr);
3179         }
3180
3181         return 0;
3182 }
3183
3184 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3185                                    struct dentry *unused, struct inode *inode,
3186                                    const char *name, void *buffer, size_t size)
3187 {
3188         struct shmem_inode_info *info = SHMEM_I(inode);
3189
3190         name = xattr_full_name(handler, name);
3191         return simple_xattr_get(&info->xattrs, name, buffer, size);
3192 }
3193
3194 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3195                                    struct user_namespace *mnt_userns,
3196                                    struct dentry *unused, struct inode *inode,
3197                                    const char *name, const void *value,
3198                                    size_t size, int flags)
3199 {
3200         struct shmem_inode_info *info = SHMEM_I(inode);
3201
3202         name = xattr_full_name(handler, name);
3203         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3204 }
3205
3206 static const struct xattr_handler shmem_security_xattr_handler = {
3207         .prefix = XATTR_SECURITY_PREFIX,
3208         .get = shmem_xattr_handler_get,
3209         .set = shmem_xattr_handler_set,
3210 };
3211
3212 static const struct xattr_handler shmem_trusted_xattr_handler = {
3213         .prefix = XATTR_TRUSTED_PREFIX,
3214         .get = shmem_xattr_handler_get,
3215         .set = shmem_xattr_handler_set,
3216 };
3217
3218 static const struct xattr_handler *shmem_xattr_handlers[] = {
3219 #ifdef CONFIG_TMPFS_POSIX_ACL
3220         &posix_acl_access_xattr_handler,
3221         &posix_acl_default_xattr_handler,
3222 #endif
3223         &shmem_security_xattr_handler,
3224         &shmem_trusted_xattr_handler,
3225         NULL
3226 };
3227
3228 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3229 {
3230         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3231         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3232 }
3233 #endif /* CONFIG_TMPFS_XATTR */
3234
3235 static const struct inode_operations shmem_short_symlink_operations = {
3236         .get_link       = simple_get_link,
3237 #ifdef CONFIG_TMPFS_XATTR
3238         .listxattr      = shmem_listxattr,
3239 #endif
3240 };
3241
3242 static const struct inode_operations shmem_symlink_inode_operations = {
3243         .get_link       = shmem_get_link,
3244 #ifdef CONFIG_TMPFS_XATTR
3245         .listxattr      = shmem_listxattr,
3246 #endif
3247 };
3248
3249 static struct dentry *shmem_get_parent(struct dentry *child)
3250 {
3251         return ERR_PTR(-ESTALE);
3252 }
3253
3254 static int shmem_match(struct inode *ino, void *vfh)
3255 {
3256         __u32 *fh = vfh;
3257         __u64 inum = fh[2];
3258         inum = (inum << 32) | fh[1];
3259         return ino->i_ino == inum && fh[0] == ino->i_generation;
3260 }
3261
3262 /* Find any alias of inode, but prefer a hashed alias */
3263 static struct dentry *shmem_find_alias(struct inode *inode)
3264 {
3265         struct dentry *alias = d_find_alias(inode);
3266
3267         return alias ?: d_find_any_alias(inode);
3268 }
3269
3270
3271 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3272                 struct fid *fid, int fh_len, int fh_type)
3273 {
3274         struct inode *inode;
3275         struct dentry *dentry = NULL;
3276         u64 inum;
3277
3278         if (fh_len < 3)
3279                 return NULL;
3280
3281         inum = fid->raw[2];
3282         inum = (inum << 32) | fid->raw[1];
3283
3284         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3285                         shmem_match, fid->raw);
3286         if (inode) {
3287                 dentry = shmem_find_alias(inode);
3288                 iput(inode);
3289         }
3290
3291         return dentry;
3292 }
3293
3294 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3295                                 struct inode *parent)
3296 {
3297         if (*len < 3) {
3298                 *len = 3;
3299                 return FILEID_INVALID;
3300         }
3301
3302         if (inode_unhashed(inode)) {
3303                 /* Unfortunately insert_inode_hash is not idempotent,
3304                  * so as we hash inodes here rather than at creation
3305                  * time, we need a lock to ensure we only try
3306                  * to do it once
3307                  */
3308                 static DEFINE_SPINLOCK(lock);
3309                 spin_lock(&lock);
3310                 if (inode_unhashed(inode))
3311                         __insert_inode_hash(inode,
3312                                             inode->i_ino + inode->i_generation);
3313                 spin_unlock(&lock);
3314         }
3315
3316         fh[0] = inode->i_generation;
3317         fh[1] = inode->i_ino;
3318         fh[2] = ((__u64)inode->i_ino) >> 32;
3319
3320         *len = 3;
3321         return 1;
3322 }
3323
3324 static const struct export_operations shmem_export_ops = {
3325         .get_parent     = shmem_get_parent,
3326         .encode_fh      = shmem_encode_fh,
3327         .fh_to_dentry   = shmem_fh_to_dentry,
3328 };
3329
3330 enum shmem_param {
3331         Opt_gid,
3332         Opt_huge,
3333         Opt_mode,
3334         Opt_mpol,
3335         Opt_nr_blocks,
3336         Opt_nr_inodes,
3337         Opt_size,
3338         Opt_uid,
3339         Opt_inode32,
3340         Opt_inode64,
3341 };
3342
3343 static const struct constant_table shmem_param_enums_huge[] = {
3344         {"never",       SHMEM_HUGE_NEVER },
3345         {"always",      SHMEM_HUGE_ALWAYS },
3346         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3347         {"advise",      SHMEM_HUGE_ADVISE },
3348         {}
3349 };
3350
3351 const struct fs_parameter_spec shmem_fs_parameters[] = {
3352         fsparam_u32   ("gid",           Opt_gid),
3353         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3354         fsparam_u32oct("mode",          Opt_mode),
3355         fsparam_string("mpol",          Opt_mpol),
3356         fsparam_string("nr_blocks",     Opt_nr_blocks),
3357         fsparam_string("nr_inodes",     Opt_nr_inodes),
3358         fsparam_string("size",          Opt_size),
3359         fsparam_u32   ("uid",           Opt_uid),
3360         fsparam_flag  ("inode32",       Opt_inode32),
3361         fsparam_flag  ("inode64",       Opt_inode64),
3362         {}
3363 };
3364
3365 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3366 {
3367         struct shmem_options *ctx = fc->fs_private;
3368         struct fs_parse_result result;
3369         unsigned long long size;
3370         char *rest;
3371         int opt;
3372
3373         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3374         if (opt < 0)
3375                 return opt;
3376
3377         switch (opt) {
3378         case Opt_size:
3379                 size = memparse(param->string, &rest);
3380                 if (*rest == '%') {
3381                         size <<= PAGE_SHIFT;
3382                         size *= totalram_pages();
3383                         do_div(size, 100);
3384                         rest++;
3385                 }
3386                 if (*rest)
3387                         goto bad_value;
3388                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3389                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3390                 break;
3391         case Opt_nr_blocks:
3392                 ctx->blocks = memparse(param->string, &rest);
3393                 if (*rest)
3394                         goto bad_value;
3395                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3396                 break;
3397         case Opt_nr_inodes:
3398                 ctx->inodes = memparse(param->string, &rest);
3399                 if (*rest)
3400                         goto bad_value;
3401                 ctx->seen |= SHMEM_SEEN_INODES;
3402                 break;
3403         case Opt_mode:
3404                 ctx->mode = result.uint_32 & 07777;
3405                 break;
3406         case Opt_uid:
3407                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3408                 if (!uid_valid(ctx->uid))
3409                         goto bad_value;
3410                 break;
3411         case Opt_gid:
3412                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3413                 if (!gid_valid(ctx->gid))
3414                         goto bad_value;
3415                 break;
3416         case Opt_huge:
3417                 ctx->huge = result.uint_32;
3418                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3419                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3420                       has_transparent_hugepage()))
3421                         goto unsupported_parameter;
3422                 ctx->seen |= SHMEM_SEEN_HUGE;
3423                 break;
3424         case Opt_mpol:
3425                 if (IS_ENABLED(CONFIG_NUMA)) {
3426                         mpol_put(ctx->mpol);
3427                         ctx->mpol = NULL;
3428                         if (mpol_parse_str(param->string, &ctx->mpol))
3429                                 goto bad_value;
3430                         break;
3431                 }
3432                 goto unsupported_parameter;
3433         case Opt_inode32:
3434                 ctx->full_inums = false;
3435                 ctx->seen |= SHMEM_SEEN_INUMS;
3436                 break;
3437         case Opt_inode64:
3438                 if (sizeof(ino_t) < 8) {
3439                         return invalfc(fc,
3440                                        "Cannot use inode64 with <64bit inums in kernel\n");
3441                 }
3442                 ctx->full_inums = true;
3443                 ctx->seen |= SHMEM_SEEN_INUMS;
3444                 break;
3445         }
3446         return 0;
3447
3448 unsupported_parameter:
3449         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3450 bad_value:
3451         return invalfc(fc, "Bad value for '%s'", param->key);
3452 }
3453
3454 static int shmem_parse_options(struct fs_context *fc, void *data)
3455 {
3456         char *options = data;
3457
3458         if (options) {
3459                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3460                 if (err)
3461                         return err;
3462         }
3463
3464         while (options != NULL) {
3465                 char *this_char = options;
3466                 for (;;) {
3467                         /*
3468                          * NUL-terminate this option: unfortunately,
3469                          * mount options form a comma-separated list,
3470                          * but mpol's nodelist may also contain commas.
3471                          */
3472                         options = strchr(options, ',');
3473                         if (options == NULL)
3474                                 break;
3475                         options++;
3476                         if (!isdigit(*options)) {
3477                                 options[-1] = '\0';
3478                                 break;
3479                         }
3480                 }
3481                 if (*this_char) {
3482                         char *value = strchr(this_char,'=');
3483                         size_t len = 0;
3484                         int err;
3485
3486                         if (value) {
3487                                 *value++ = '\0';
3488                                 len = strlen(value);
3489                         }
3490                         err = vfs_parse_fs_string(fc, this_char, value, len);
3491                         if (err < 0)
3492                                 return err;
3493                 }
3494         }
3495         return 0;
3496 }
3497
3498 /*
3499  * Reconfigure a shmem filesystem.
3500  *
3501  * Note that we disallow change from limited->unlimited blocks/inodes while any
3502  * are in use; but we must separately disallow unlimited->limited, because in
3503  * that case we have no record of how much is already in use.
3504  */
3505 static int shmem_reconfigure(struct fs_context *fc)
3506 {
3507         struct shmem_options *ctx = fc->fs_private;
3508         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3509         unsigned long inodes;
3510         const char *err;
3511
3512         spin_lock(&sbinfo->stat_lock);
3513         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3514         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3515                 if (!sbinfo->max_blocks) {
3516                         err = "Cannot retroactively limit size";
3517                         goto out;
3518                 }
3519                 if (percpu_counter_compare(&sbinfo->used_blocks,
3520                                            ctx->blocks) > 0) {
3521                         err = "Too small a size for current use";
3522                         goto out;
3523                 }
3524         }
3525         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3526                 if (!sbinfo->max_inodes) {
3527                         err = "Cannot retroactively limit inodes";
3528                         goto out;
3529                 }
3530                 if (ctx->inodes < inodes) {
3531                         err = "Too few inodes for current use";
3532                         goto out;
3533                 }
3534         }
3535
3536         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3537             sbinfo->next_ino > UINT_MAX) {
3538                 err = "Current inum too high to switch to 32-bit inums";
3539                 goto out;
3540         }
3541
3542         if (ctx->seen & SHMEM_SEEN_HUGE)
3543                 sbinfo->huge = ctx->huge;
3544         if (ctx->seen & SHMEM_SEEN_INUMS)
3545                 sbinfo->full_inums = ctx->full_inums;
3546         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3547                 sbinfo->max_blocks  = ctx->blocks;
3548         if (ctx->seen & SHMEM_SEEN_INODES) {
3549                 sbinfo->max_inodes  = ctx->inodes;
3550                 sbinfo->free_inodes = ctx->inodes - inodes;
3551         }
3552
3553         /*
3554          * Preserve previous mempolicy unless mpol remount option was specified.
3555          */
3556         if (ctx->mpol) {
3557                 mpol_put(sbinfo->mpol);
3558                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3559                 ctx->mpol = NULL;
3560         }
3561         spin_unlock(&sbinfo->stat_lock);
3562         return 0;
3563 out:
3564         spin_unlock(&sbinfo->stat_lock);
3565         return invalfc(fc, "%s", err);
3566 }
3567
3568 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3569 {
3570         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3571
3572         if (sbinfo->max_blocks != shmem_default_max_blocks())
3573                 seq_printf(seq, ",size=%luk",
3574                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3575         if (sbinfo->max_inodes != shmem_default_max_inodes())
3576                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3577         if (sbinfo->mode != (0777 | S_ISVTX))
3578                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3579         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3580                 seq_printf(seq, ",uid=%u",
3581                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3582         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3583                 seq_printf(seq, ",gid=%u",
3584                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3585
3586         /*
3587          * Showing inode{64,32} might be useful even if it's the system default,
3588          * since then people don't have to resort to checking both here and
3589          * /proc/config.gz to confirm 64-bit inums were successfully applied
3590          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3591          *
3592          * We hide it when inode64 isn't the default and we are using 32-bit
3593          * inodes, since that probably just means the feature isn't even under
3594          * consideration.
3595          *
3596          * As such:
3597          *
3598          *                     +-----------------+-----------------+
3599          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3600          *  +------------------+-----------------+-----------------+
3601          *  | full_inums=true  | show            | show            |
3602          *  | full_inums=false | show            | hide            |
3603          *  +------------------+-----------------+-----------------+
3604          *
3605          */
3606         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3607                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3608 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3609         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3610         if (sbinfo->huge)
3611                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3612 #endif
3613         shmem_show_mpol(seq, sbinfo->mpol);
3614         return 0;
3615 }
3616
3617 #endif /* CONFIG_TMPFS */
3618
3619 static void shmem_put_super(struct super_block *sb)
3620 {
3621         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3622
3623         free_percpu(sbinfo->ino_batch);
3624         percpu_counter_destroy(&sbinfo->used_blocks);
3625         mpol_put(sbinfo->mpol);
3626         kfree(sbinfo);
3627         sb->s_fs_info = NULL;
3628 }
3629
3630 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3631 {
3632         struct shmem_options *ctx = fc->fs_private;
3633         struct inode *inode;
3634         struct shmem_sb_info *sbinfo;
3635         int err = -ENOMEM;
3636
3637         /* Round up to L1_CACHE_BYTES to resist false sharing */
3638         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3639                                 L1_CACHE_BYTES), GFP_KERNEL);
3640         if (!sbinfo)
3641                 return -ENOMEM;
3642
3643         sb->s_fs_info = sbinfo;
3644
3645 #ifdef CONFIG_TMPFS
3646         /*
3647          * Per default we only allow half of the physical ram per
3648          * tmpfs instance, limiting inodes to one per page of lowmem;
3649          * but the internal instance is left unlimited.
3650          */
3651         if (!(sb->s_flags & SB_KERNMOUNT)) {
3652                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3653                         ctx->blocks = shmem_default_max_blocks();
3654                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3655                         ctx->inodes = shmem_default_max_inodes();
3656                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3657                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3658         } else {
3659                 sb->s_flags |= SB_NOUSER;
3660         }
3661         sb->s_export_op = &shmem_export_ops;
3662         sb->s_flags |= SB_NOSEC;
3663 #else
3664         sb->s_flags |= SB_NOUSER;
3665 #endif
3666         sbinfo->max_blocks = ctx->blocks;
3667         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3668         if (sb->s_flags & SB_KERNMOUNT) {
3669                 sbinfo->ino_batch = alloc_percpu(ino_t);
3670                 if (!sbinfo->ino_batch)
3671                         goto failed;
3672         }
3673         sbinfo->uid = ctx->uid;
3674         sbinfo->gid = ctx->gid;
3675         sbinfo->full_inums = ctx->full_inums;
3676         sbinfo->mode = ctx->mode;
3677         sbinfo->huge = ctx->huge;
3678         sbinfo->mpol = ctx->mpol;
3679         ctx->mpol = NULL;
3680
3681         spin_lock_init(&sbinfo->stat_lock);
3682         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3683                 goto failed;
3684         spin_lock_init(&sbinfo->shrinklist_lock);
3685         INIT_LIST_HEAD(&sbinfo->shrinklist);
3686
3687         sb->s_maxbytes = MAX_LFS_FILESIZE;
3688         sb->s_blocksize = PAGE_SIZE;
3689         sb->s_blocksize_bits = PAGE_SHIFT;
3690         sb->s_magic = TMPFS_MAGIC;
3691         sb->s_op = &shmem_ops;
3692         sb->s_time_gran = 1;
3693 #ifdef CONFIG_TMPFS_XATTR
3694         sb->s_xattr = shmem_xattr_handlers;
3695 #endif
3696 #ifdef CONFIG_TMPFS_POSIX_ACL
3697         sb->s_flags |= SB_POSIXACL;
3698 #endif
3699         uuid_gen(&sb->s_uuid);
3700
3701         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3702         if (!inode)
3703                 goto failed;
3704         inode->i_uid = sbinfo->uid;
3705         inode->i_gid = sbinfo->gid;
3706         sb->s_root = d_make_root(inode);
3707         if (!sb->s_root)
3708                 goto failed;
3709         return 0;
3710
3711 failed:
3712         shmem_put_super(sb);
3713         return err;
3714 }
3715
3716 static int shmem_get_tree(struct fs_context *fc)
3717 {
3718         return get_tree_nodev(fc, shmem_fill_super);
3719 }
3720
3721 static void shmem_free_fc(struct fs_context *fc)
3722 {
3723         struct shmem_options *ctx = fc->fs_private;
3724
3725         if (ctx) {
3726                 mpol_put(ctx->mpol);
3727                 kfree(ctx);
3728         }
3729 }
3730
3731 static const struct fs_context_operations shmem_fs_context_ops = {
3732         .free                   = shmem_free_fc,
3733         .get_tree               = shmem_get_tree,
3734 #ifdef CONFIG_TMPFS
3735         .parse_monolithic       = shmem_parse_options,
3736         .parse_param            = shmem_parse_one,
3737         .reconfigure            = shmem_reconfigure,
3738 #endif
3739 };
3740
3741 static struct kmem_cache *shmem_inode_cachep;
3742
3743 static struct inode *shmem_alloc_inode(struct super_block *sb)
3744 {
3745         struct shmem_inode_info *info;
3746         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3747         if (!info)
3748                 return NULL;
3749         return &info->vfs_inode;
3750 }
3751
3752 static void shmem_free_in_core_inode(struct inode *inode)
3753 {
3754         if (S_ISLNK(inode->i_mode))
3755                 kfree(inode->i_link);
3756         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3757 }
3758
3759 static void shmem_destroy_inode(struct inode *inode)
3760 {
3761         if (S_ISREG(inode->i_mode))
3762                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3763 }
3764
3765 static void shmem_init_inode(void *foo)
3766 {
3767         struct shmem_inode_info *info = foo;
3768         inode_init_once(&info->vfs_inode);
3769 }
3770
3771 static void shmem_init_inodecache(void)
3772 {
3773         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3774                                 sizeof(struct shmem_inode_info),
3775                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3776 }
3777
3778 static void shmem_destroy_inodecache(void)
3779 {
3780         kmem_cache_destroy(shmem_inode_cachep);
3781 }
3782
3783 const struct address_space_operations shmem_aops = {
3784         .writepage      = shmem_writepage,
3785         .set_page_dirty = __set_page_dirty_no_writeback,
3786 #ifdef CONFIG_TMPFS
3787         .write_begin    = shmem_write_begin,
3788         .write_end      = shmem_write_end,
3789 #endif
3790 #ifdef CONFIG_MIGRATION
3791         .migratepage    = migrate_page,
3792 #endif
3793         .error_remove_page = generic_error_remove_page,
3794 };
3795 EXPORT_SYMBOL(shmem_aops);
3796
3797 static const struct file_operations shmem_file_operations = {
3798         .mmap           = shmem_mmap,
3799         .get_unmapped_area = shmem_get_unmapped_area,
3800 #ifdef CONFIG_TMPFS
3801         .llseek         = shmem_file_llseek,
3802         .read_iter      = shmem_file_read_iter,
3803         .write_iter     = generic_file_write_iter,
3804         .fsync          = noop_fsync,
3805         .splice_read    = generic_file_splice_read,
3806         .splice_write   = iter_file_splice_write,
3807         .fallocate      = shmem_fallocate,
3808 #endif
3809 };
3810
3811 static const struct inode_operations shmem_inode_operations = {
3812         .getattr        = shmem_getattr,
3813         .setattr        = shmem_setattr,
3814 #ifdef CONFIG_TMPFS_XATTR
3815         .listxattr      = shmem_listxattr,
3816         .set_acl        = simple_set_acl,
3817 #endif
3818 };
3819
3820 static const struct inode_operations shmem_dir_inode_operations = {
3821 #ifdef CONFIG_TMPFS
3822         .create         = shmem_create,
3823         .lookup         = simple_lookup,
3824         .link           = shmem_link,
3825         .unlink         = shmem_unlink,
3826         .symlink        = shmem_symlink,
3827         .mkdir          = shmem_mkdir,
3828         .rmdir          = shmem_rmdir,
3829         .mknod          = shmem_mknod,
3830         .rename         = shmem_rename2,
3831         .tmpfile        = shmem_tmpfile,
3832 #endif
3833 #ifdef CONFIG_TMPFS_XATTR
3834         .listxattr      = shmem_listxattr,
3835 #endif
3836 #ifdef CONFIG_TMPFS_POSIX_ACL
3837         .setattr        = shmem_setattr,
3838         .set_acl        = simple_set_acl,
3839 #endif
3840 };
3841
3842 static const struct inode_operations shmem_special_inode_operations = {
3843 #ifdef CONFIG_TMPFS_XATTR
3844         .listxattr      = shmem_listxattr,
3845 #endif
3846 #ifdef CONFIG_TMPFS_POSIX_ACL
3847         .setattr        = shmem_setattr,
3848         .set_acl        = simple_set_acl,
3849 #endif
3850 };
3851
3852 static const struct super_operations shmem_ops = {
3853         .alloc_inode    = shmem_alloc_inode,
3854         .free_inode     = shmem_free_in_core_inode,
3855         .destroy_inode  = shmem_destroy_inode,
3856 #ifdef CONFIG_TMPFS
3857         .statfs         = shmem_statfs,
3858         .show_options   = shmem_show_options,
3859 #endif
3860         .evict_inode    = shmem_evict_inode,
3861         .drop_inode     = generic_delete_inode,
3862         .put_super      = shmem_put_super,
3863 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3864         .nr_cached_objects      = shmem_unused_huge_count,
3865         .free_cached_objects    = shmem_unused_huge_scan,
3866 #endif
3867 };
3868
3869 static const struct vm_operations_struct shmem_vm_ops = {
3870         .fault          = shmem_fault,
3871         .map_pages      = filemap_map_pages,
3872 #ifdef CONFIG_NUMA
3873         .set_policy     = shmem_set_policy,
3874         .get_policy     = shmem_get_policy,
3875 #endif
3876 };
3877
3878 int shmem_init_fs_context(struct fs_context *fc)
3879 {
3880         struct shmem_options *ctx;
3881
3882         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3883         if (!ctx)
3884                 return -ENOMEM;
3885
3886         ctx->mode = 0777 | S_ISVTX;
3887         ctx->uid = current_fsuid();
3888         ctx->gid = current_fsgid();
3889
3890         fc->fs_private = ctx;
3891         fc->ops = &shmem_fs_context_ops;
3892         return 0;
3893 }
3894
3895 static struct file_system_type shmem_fs_type = {
3896         .owner          = THIS_MODULE,
3897         .name           = "tmpfs",
3898         .init_fs_context = shmem_init_fs_context,
3899 #ifdef CONFIG_TMPFS
3900         .parameters     = shmem_fs_parameters,
3901 #endif
3902         .kill_sb        = kill_litter_super,
3903         .fs_flags       = FS_USERNS_MOUNT | FS_THP_SUPPORT,
3904 };
3905
3906 int __init shmem_init(void)
3907 {
3908         int error;
3909
3910         shmem_init_inodecache();
3911
3912         error = register_filesystem(&shmem_fs_type);
3913         if (error) {
3914                 pr_err("Could not register tmpfs\n");
3915                 goto out2;
3916         }
3917
3918         shm_mnt = kern_mount(&shmem_fs_type);
3919         if (IS_ERR(shm_mnt)) {
3920                 error = PTR_ERR(shm_mnt);
3921                 pr_err("Could not kern_mount tmpfs\n");
3922                 goto out1;
3923         }
3924
3925 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3926         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3927                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3928         else
3929                 shmem_huge = 0; /* just in case it was patched */
3930 #endif
3931         return 0;
3932
3933 out1:
3934         unregister_filesystem(&shmem_fs_type);
3935 out2:
3936         shmem_destroy_inodecache();
3937         shm_mnt = ERR_PTR(error);
3938         return error;
3939 }
3940
3941 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3942 static ssize_t shmem_enabled_show(struct kobject *kobj,
3943                                   struct kobj_attribute *attr, char *buf)
3944 {
3945         static const int values[] = {
3946                 SHMEM_HUGE_ALWAYS,
3947                 SHMEM_HUGE_WITHIN_SIZE,
3948                 SHMEM_HUGE_ADVISE,
3949                 SHMEM_HUGE_NEVER,
3950                 SHMEM_HUGE_DENY,
3951                 SHMEM_HUGE_FORCE,
3952         };
3953         int len = 0;
3954         int i;
3955
3956         for (i = 0; i < ARRAY_SIZE(values); i++) {
3957                 len += sysfs_emit_at(buf, len,
3958                                      shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3959                                      i ? " " : "",
3960                                      shmem_format_huge(values[i]));
3961         }
3962
3963         len += sysfs_emit_at(buf, len, "\n");
3964
3965         return len;
3966 }
3967
3968 static ssize_t shmem_enabled_store(struct kobject *kobj,
3969                 struct kobj_attribute *attr, const char *buf, size_t count)
3970 {
3971         char tmp[16];
3972         int huge;
3973
3974         if (count + 1 > sizeof(tmp))
3975                 return -EINVAL;
3976         memcpy(tmp, buf, count);
3977         tmp[count] = '\0';
3978         if (count && tmp[count - 1] == '\n')
3979                 tmp[count - 1] = '\0';
3980
3981         huge = shmem_parse_huge(tmp);
3982         if (huge == -EINVAL)
3983                 return -EINVAL;
3984         if (!has_transparent_hugepage() &&
3985                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3986                 return -EINVAL;
3987
3988         shmem_huge = huge;
3989         if (shmem_huge > SHMEM_HUGE_DENY)
3990                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3991         return count;
3992 }
3993
3994 struct kobj_attribute shmem_enabled_attr =
3995         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3996 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3997
3998 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3999 bool shmem_huge_enabled(struct vm_area_struct *vma)
4000 {
4001         struct inode *inode = file_inode(vma->vm_file);
4002         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4003         loff_t i_size;
4004         pgoff_t off;
4005
4006         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4007             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4008                 return false;
4009         if (shmem_huge == SHMEM_HUGE_FORCE)
4010                 return true;
4011         if (shmem_huge == SHMEM_HUGE_DENY)
4012                 return false;
4013         switch (sbinfo->huge) {
4014                 case SHMEM_HUGE_NEVER:
4015                         return false;
4016                 case SHMEM_HUGE_ALWAYS:
4017                         return true;
4018                 case SHMEM_HUGE_WITHIN_SIZE:
4019                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4020                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
4021                         if (i_size >= HPAGE_PMD_SIZE &&
4022                                         i_size >> PAGE_SHIFT >= off)
4023                                 return true;
4024                         fallthrough;
4025                 case SHMEM_HUGE_ADVISE:
4026                         /* TODO: implement fadvise() hints */
4027                         return (vma->vm_flags & VM_HUGEPAGE);
4028                 default:
4029                         VM_BUG_ON(1);
4030                         return false;
4031         }
4032 }
4033 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4034
4035 #else /* !CONFIG_SHMEM */
4036
4037 /*
4038  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4039  *
4040  * This is intended for small system where the benefits of the full
4041  * shmem code (swap-backed and resource-limited) are outweighed by
4042  * their complexity. On systems without swap this code should be
4043  * effectively equivalent, but much lighter weight.
4044  */
4045
4046 static struct file_system_type shmem_fs_type = {
4047         .name           = "tmpfs",
4048         .init_fs_context = ramfs_init_fs_context,
4049         .parameters     = ramfs_fs_parameters,
4050         .kill_sb        = kill_litter_super,
4051         .fs_flags       = FS_USERNS_MOUNT,
4052 };
4053
4054 int __init shmem_init(void)
4055 {
4056         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4057
4058         shm_mnt = kern_mount(&shmem_fs_type);
4059         BUG_ON(IS_ERR(shm_mnt));
4060
4061         return 0;
4062 }
4063
4064 int shmem_unuse(unsigned int type, bool frontswap,
4065                 unsigned long *fs_pages_to_unuse)
4066 {
4067         return 0;
4068 }
4069
4070 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4071 {
4072         return 0;
4073 }
4074
4075 void shmem_unlock_mapping(struct address_space *mapping)
4076 {
4077 }
4078
4079 #ifdef CONFIG_MMU
4080 unsigned long shmem_get_unmapped_area(struct file *file,
4081                                       unsigned long addr, unsigned long len,
4082                                       unsigned long pgoff, unsigned long flags)
4083 {
4084         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4085 }
4086 #endif
4087
4088 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4089 {
4090         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4091 }
4092 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4093
4094 #define shmem_vm_ops                            generic_file_vm_ops
4095 #define shmem_file_operations                   ramfs_file_operations
4096 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4097 #define shmem_acct_size(flags, size)            0
4098 #define shmem_unacct_size(flags, size)          do {} while (0)
4099
4100 #endif /* CONFIG_SHMEM */
4101
4102 /* common code */
4103
4104 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4105                                        unsigned long flags, unsigned int i_flags)
4106 {
4107         struct inode *inode;
4108         struct file *res;
4109
4110         if (IS_ERR(mnt))
4111                 return ERR_CAST(mnt);
4112
4113         if (size < 0 || size > MAX_LFS_FILESIZE)
4114                 return ERR_PTR(-EINVAL);
4115
4116         if (shmem_acct_size(flags, size))
4117                 return ERR_PTR(-ENOMEM);
4118
4119         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4120                                 flags);
4121         if (unlikely(!inode)) {
4122                 shmem_unacct_size(flags, size);
4123                 return ERR_PTR(-ENOSPC);
4124         }
4125         inode->i_flags |= i_flags;
4126         inode->i_size = size;
4127         clear_nlink(inode);     /* It is unlinked */
4128         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4129         if (!IS_ERR(res))
4130                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4131                                 &shmem_file_operations);
4132         if (IS_ERR(res))
4133                 iput(inode);
4134         return res;
4135 }
4136
4137 /**
4138  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4139  *      kernel internal.  There will be NO LSM permission checks against the
4140  *      underlying inode.  So users of this interface must do LSM checks at a
4141  *      higher layer.  The users are the big_key and shm implementations.  LSM
4142  *      checks are provided at the key or shm level rather than the inode.
4143  * @name: name for dentry (to be seen in /proc/<pid>/maps
4144  * @size: size to be set for the file
4145  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4146  */
4147 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4148 {
4149         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4150 }
4151
4152 /**
4153  * shmem_file_setup - get an unlinked file living in tmpfs
4154  * @name: name for dentry (to be seen in /proc/<pid>/maps
4155  * @size: size to be set for the file
4156  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4157  */
4158 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4159 {
4160         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4161 }
4162 EXPORT_SYMBOL_GPL(shmem_file_setup);
4163
4164 /**
4165  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4166  * @mnt: the tmpfs mount where the file will be created
4167  * @name: name for dentry (to be seen in /proc/<pid>/maps
4168  * @size: size to be set for the file
4169  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4170  */
4171 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4172                                        loff_t size, unsigned long flags)
4173 {
4174         return __shmem_file_setup(mnt, name, size, flags, 0);
4175 }
4176 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4177
4178 /**
4179  * shmem_zero_setup - setup a shared anonymous mapping
4180  * @vma: the vma to be mmapped is prepared by do_mmap
4181  */
4182 int shmem_zero_setup(struct vm_area_struct *vma)
4183 {
4184         struct file *file;
4185         loff_t size = vma->vm_end - vma->vm_start;
4186
4187         /*
4188          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4189          * between XFS directory reading and selinux: since this file is only
4190          * accessible to the user through its mapping, use S_PRIVATE flag to
4191          * bypass file security, in the same way as shmem_kernel_file_setup().
4192          */
4193         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4194         if (IS_ERR(file))
4195                 return PTR_ERR(file);
4196
4197         if (vma->vm_file)
4198                 fput(vma->vm_file);
4199         vma->vm_file = file;
4200         vma->vm_ops = &shmem_vm_ops;
4201
4202         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4203                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4204                         (vma->vm_end & HPAGE_PMD_MASK)) {
4205                 khugepaged_enter(vma, vma->vm_flags);
4206         }
4207
4208         return 0;
4209 }
4210
4211 /**
4212  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4213  * @mapping:    the page's address_space
4214  * @index:      the page index
4215  * @gfp:        the page allocator flags to use if allocating
4216  *
4217  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4218  * with any new page allocations done using the specified allocation flags.
4219  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4220  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4221  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4222  *
4223  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4224  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4225  */
4226 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4227                                          pgoff_t index, gfp_t gfp)
4228 {
4229 #ifdef CONFIG_SHMEM
4230         struct inode *inode = mapping->host;
4231         struct page *page;
4232         int error;
4233
4234         BUG_ON(!shmem_mapping(mapping));
4235         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4236                                   gfp, NULL, NULL, NULL);
4237         if (error)
4238                 page = ERR_PTR(error);
4239         else
4240                 unlock_page(page);
4241         return page;
4242 #else
4243         /*
4244          * The tiny !SHMEM case uses ramfs without swap
4245          */
4246         return read_cache_page_gfp(mapping, index, gfp);
4247 #endif
4248 }
4249 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);