2df6a5370cd7ef27cead9fe7df4d4d6647277854
[linux-2.6-microblaze.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42
43 static struct vfsmount *shm_mnt;
44
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/blkdev.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82
83 #include <linux/uaccess.h>
84
85 #include "internal.h"
86
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_mutex making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103         pgoff_t start;          /* start of range currently being fallocated */
104         pgoff_t next;           /* the next page offset to be fallocated */
105         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
106         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
107 };
108
109 struct shmem_options {
110         unsigned long long blocks;
111         unsigned long long inodes;
112         struct mempolicy *mpol;
113         kuid_t uid;
114         kgid_t gid;
115         umode_t mode;
116         bool full_inums;
117         int huge;
118         int seen;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
122 #define SHMEM_SEEN_INUMS 8
123 };
124
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128         return totalram_pages() / 2;
129 }
130
131 static unsigned long shmem_default_max_inodes(void)
132 {
133         unsigned long nr_pages = totalram_pages();
134
135         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138
139 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
140                              struct page **pagep, enum sgp_type sgp,
141                              gfp_t gfp, struct vm_area_struct *vma,
142                              vm_fault_t *fault_type);
143 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
144                 struct page **pagep, enum sgp_type sgp,
145                 gfp_t gfp, struct vm_area_struct *vma,
146                 struct vm_fault *vmf, vm_fault_t *fault_type);
147
148 int shmem_getpage(struct inode *inode, pgoff_t index,
149                 struct page **pagep, enum sgp_type sgp)
150 {
151         return shmem_getpage_gfp(inode, index, pagep, sgp,
152                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
153 }
154
155 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
156 {
157         return sb->s_fs_info;
158 }
159
160 /*
161  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
162  * for shared memory and for shared anonymous (/dev/zero) mappings
163  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
164  * consistent with the pre-accounting of private mappings ...
165  */
166 static inline int shmem_acct_size(unsigned long flags, loff_t size)
167 {
168         return (flags & VM_NORESERVE) ?
169                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
170 }
171
172 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
173 {
174         if (!(flags & VM_NORESERVE))
175                 vm_unacct_memory(VM_ACCT(size));
176 }
177
178 static inline int shmem_reacct_size(unsigned long flags,
179                 loff_t oldsize, loff_t newsize)
180 {
181         if (!(flags & VM_NORESERVE)) {
182                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
183                         return security_vm_enough_memory_mm(current->mm,
184                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
185                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
186                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
187         }
188         return 0;
189 }
190
191 /*
192  * ... whereas tmpfs objects are accounted incrementally as
193  * pages are allocated, in order to allow large sparse files.
194  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
195  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
196  */
197 static inline int shmem_acct_block(unsigned long flags, long pages)
198 {
199         if (!(flags & VM_NORESERVE))
200                 return 0;
201
202         return security_vm_enough_memory_mm(current->mm,
203                         pages * VM_ACCT(PAGE_SIZE));
204 }
205
206 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
207 {
208         if (flags & VM_NORESERVE)
209                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
210 }
211
212 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
213 {
214         struct shmem_inode_info *info = SHMEM_I(inode);
215         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
216
217         if (shmem_acct_block(info->flags, pages))
218                 return false;
219
220         if (sbinfo->max_blocks) {
221                 if (percpu_counter_compare(&sbinfo->used_blocks,
222                                            sbinfo->max_blocks - pages) > 0)
223                         goto unacct;
224                 percpu_counter_add(&sbinfo->used_blocks, pages);
225         }
226
227         return true;
228
229 unacct:
230         shmem_unacct_blocks(info->flags, pages);
231         return false;
232 }
233
234 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
235 {
236         struct shmem_inode_info *info = SHMEM_I(inode);
237         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
238
239         if (sbinfo->max_blocks)
240                 percpu_counter_sub(&sbinfo->used_blocks, pages);
241         shmem_unacct_blocks(info->flags, pages);
242 }
243
244 static const struct super_operations shmem_ops;
245 const struct address_space_operations shmem_aops;
246 static const struct file_operations shmem_file_operations;
247 static const struct inode_operations shmem_inode_operations;
248 static const struct inode_operations shmem_dir_inode_operations;
249 static const struct inode_operations shmem_special_inode_operations;
250 static const struct vm_operations_struct shmem_vm_ops;
251 static struct file_system_type shmem_fs_type;
252
253 bool vma_is_shmem(struct vm_area_struct *vma)
254 {
255         return vma->vm_ops == &shmem_vm_ops;
256 }
257
258 static LIST_HEAD(shmem_swaplist);
259 static DEFINE_MUTEX(shmem_swaplist_mutex);
260
261 /*
262  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
263  * produces a novel ino for the newly allocated inode.
264  *
265  * It may also be called when making a hard link to permit the space needed by
266  * each dentry. However, in that case, no new inode number is needed since that
267  * internally draws from another pool of inode numbers (currently global
268  * get_next_ino()). This case is indicated by passing NULL as inop.
269  */
270 #define SHMEM_INO_BATCH 1024
271 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
272 {
273         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
274         ino_t ino;
275
276         if (!(sb->s_flags & SB_KERNMOUNT)) {
277                 raw_spin_lock(&sbinfo->stat_lock);
278                 if (sbinfo->max_inodes) {
279                         if (!sbinfo->free_inodes) {
280                                 raw_spin_unlock(&sbinfo->stat_lock);
281                                 return -ENOSPC;
282                         }
283                         sbinfo->free_inodes--;
284                 }
285                 if (inop) {
286                         ino = sbinfo->next_ino++;
287                         if (unlikely(is_zero_ino(ino)))
288                                 ino = sbinfo->next_ino++;
289                         if (unlikely(!sbinfo->full_inums &&
290                                      ino > UINT_MAX)) {
291                                 /*
292                                  * Emulate get_next_ino uint wraparound for
293                                  * compatibility
294                                  */
295                                 if (IS_ENABLED(CONFIG_64BIT))
296                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
297                                                 __func__, MINOR(sb->s_dev));
298                                 sbinfo->next_ino = 1;
299                                 ino = sbinfo->next_ino++;
300                         }
301                         *inop = ino;
302                 }
303                 raw_spin_unlock(&sbinfo->stat_lock);
304         } else if (inop) {
305                 /*
306                  * __shmem_file_setup, one of our callers, is lock-free: it
307                  * doesn't hold stat_lock in shmem_reserve_inode since
308                  * max_inodes is always 0, and is called from potentially
309                  * unknown contexts. As such, use a per-cpu batched allocator
310                  * which doesn't require the per-sb stat_lock unless we are at
311                  * the batch boundary.
312                  *
313                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
314                  * shmem mounts are not exposed to userspace, so we don't need
315                  * to worry about things like glibc compatibility.
316                  */
317                 ino_t *next_ino;
318
319                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
320                 ino = *next_ino;
321                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
322                         raw_spin_lock(&sbinfo->stat_lock);
323                         ino = sbinfo->next_ino;
324                         sbinfo->next_ino += SHMEM_INO_BATCH;
325                         raw_spin_unlock(&sbinfo->stat_lock);
326                         if (unlikely(is_zero_ino(ino)))
327                                 ino++;
328                 }
329                 *inop = ino;
330                 *next_ino = ++ino;
331                 put_cpu();
332         }
333
334         return 0;
335 }
336
337 static void shmem_free_inode(struct super_block *sb)
338 {
339         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
340         if (sbinfo->max_inodes) {
341                 raw_spin_lock(&sbinfo->stat_lock);
342                 sbinfo->free_inodes++;
343                 raw_spin_unlock(&sbinfo->stat_lock);
344         }
345 }
346
347 /**
348  * shmem_recalc_inode - recalculate the block usage of an inode
349  * @inode: inode to recalc
350  *
351  * We have to calculate the free blocks since the mm can drop
352  * undirtied hole pages behind our back.
353  *
354  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
355  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
356  *
357  * It has to be called with the spinlock held.
358  */
359 static void shmem_recalc_inode(struct inode *inode)
360 {
361         struct shmem_inode_info *info = SHMEM_I(inode);
362         long freed;
363
364         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
365         if (freed > 0) {
366                 info->alloced -= freed;
367                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
368                 shmem_inode_unacct_blocks(inode, freed);
369         }
370 }
371
372 bool shmem_charge(struct inode *inode, long pages)
373 {
374         struct shmem_inode_info *info = SHMEM_I(inode);
375         unsigned long flags;
376
377         if (!shmem_inode_acct_block(inode, pages))
378                 return false;
379
380         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
381         inode->i_mapping->nrpages += pages;
382
383         spin_lock_irqsave(&info->lock, flags);
384         info->alloced += pages;
385         inode->i_blocks += pages * BLOCKS_PER_PAGE;
386         shmem_recalc_inode(inode);
387         spin_unlock_irqrestore(&info->lock, flags);
388
389         return true;
390 }
391
392 void shmem_uncharge(struct inode *inode, long pages)
393 {
394         struct shmem_inode_info *info = SHMEM_I(inode);
395         unsigned long flags;
396
397         /* nrpages adjustment done by __delete_from_page_cache() or caller */
398
399         spin_lock_irqsave(&info->lock, flags);
400         info->alloced -= pages;
401         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
402         shmem_recalc_inode(inode);
403         spin_unlock_irqrestore(&info->lock, flags);
404
405         shmem_inode_unacct_blocks(inode, pages);
406 }
407
408 /*
409  * Replace item expected in xarray by a new item, while holding xa_lock.
410  */
411 static int shmem_replace_entry(struct address_space *mapping,
412                         pgoff_t index, void *expected, void *replacement)
413 {
414         XA_STATE(xas, &mapping->i_pages, index);
415         void *item;
416
417         VM_BUG_ON(!expected);
418         VM_BUG_ON(!replacement);
419         item = xas_load(&xas);
420         if (item != expected)
421                 return -ENOENT;
422         xas_store(&xas, replacement);
423         return 0;
424 }
425
426 /*
427  * Sometimes, before we decide whether to proceed or to fail, we must check
428  * that an entry was not already brought back from swap by a racing thread.
429  *
430  * Checking page is not enough: by the time a SwapCache page is locked, it
431  * might be reused, and again be SwapCache, using the same swap as before.
432  */
433 static bool shmem_confirm_swap(struct address_space *mapping,
434                                pgoff_t index, swp_entry_t swap)
435 {
436         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
437 }
438
439 /*
440  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
441  *
442  * SHMEM_HUGE_NEVER:
443  *      disables huge pages for the mount;
444  * SHMEM_HUGE_ALWAYS:
445  *      enables huge pages for the mount;
446  * SHMEM_HUGE_WITHIN_SIZE:
447  *      only allocate huge pages if the page will be fully within i_size,
448  *      also respect fadvise()/madvise() hints;
449  * SHMEM_HUGE_ADVISE:
450  *      only allocate huge pages if requested with fadvise()/madvise();
451  */
452
453 #define SHMEM_HUGE_NEVER        0
454 #define SHMEM_HUGE_ALWAYS       1
455 #define SHMEM_HUGE_WITHIN_SIZE  2
456 #define SHMEM_HUGE_ADVISE       3
457
458 /*
459  * Special values.
460  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
461  *
462  * SHMEM_HUGE_DENY:
463  *      disables huge on shm_mnt and all mounts, for emergency use;
464  * SHMEM_HUGE_FORCE:
465  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
466  *
467  */
468 #define SHMEM_HUGE_DENY         (-1)
469 #define SHMEM_HUGE_FORCE        (-2)
470
471 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
472 /* ifdef here to avoid bloating shmem.o when not necessary */
473
474 static int shmem_huge __read_mostly;
475
476 bool shmem_huge_enabled(struct vm_area_struct *vma)
477 {
478         struct inode *inode = file_inode(vma->vm_file);
479         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
480         loff_t i_size;
481         pgoff_t off;
482
483         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
484             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
485                 return false;
486         if (shmem_huge == SHMEM_HUGE_FORCE)
487                 return true;
488         if (shmem_huge == SHMEM_HUGE_DENY)
489                 return false;
490         switch (sbinfo->huge) {
491         case SHMEM_HUGE_NEVER:
492                 return false;
493         case SHMEM_HUGE_ALWAYS:
494                 return true;
495         case SHMEM_HUGE_WITHIN_SIZE:
496                 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
497                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
498                 if (i_size >= HPAGE_PMD_SIZE &&
499                                 i_size >> PAGE_SHIFT >= off)
500                         return true;
501                 fallthrough;
502         case SHMEM_HUGE_ADVISE:
503                 /* TODO: implement fadvise() hints */
504                 return (vma->vm_flags & VM_HUGEPAGE);
505         default:
506                 VM_BUG_ON(1);
507                 return false;
508         }
509 }
510
511 #if defined(CONFIG_SYSFS)
512 static int shmem_parse_huge(const char *str)
513 {
514         if (!strcmp(str, "never"))
515                 return SHMEM_HUGE_NEVER;
516         if (!strcmp(str, "always"))
517                 return SHMEM_HUGE_ALWAYS;
518         if (!strcmp(str, "within_size"))
519                 return SHMEM_HUGE_WITHIN_SIZE;
520         if (!strcmp(str, "advise"))
521                 return SHMEM_HUGE_ADVISE;
522         if (!strcmp(str, "deny"))
523                 return SHMEM_HUGE_DENY;
524         if (!strcmp(str, "force"))
525                 return SHMEM_HUGE_FORCE;
526         return -EINVAL;
527 }
528 #endif
529
530 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
531 static const char *shmem_format_huge(int huge)
532 {
533         switch (huge) {
534         case SHMEM_HUGE_NEVER:
535                 return "never";
536         case SHMEM_HUGE_ALWAYS:
537                 return "always";
538         case SHMEM_HUGE_WITHIN_SIZE:
539                 return "within_size";
540         case SHMEM_HUGE_ADVISE:
541                 return "advise";
542         case SHMEM_HUGE_DENY:
543                 return "deny";
544         case SHMEM_HUGE_FORCE:
545                 return "force";
546         default:
547                 VM_BUG_ON(1);
548                 return "bad_val";
549         }
550 }
551 #endif
552
553 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
554                 struct shrink_control *sc, unsigned long nr_to_split)
555 {
556         LIST_HEAD(list), *pos, *next;
557         LIST_HEAD(to_remove);
558         struct inode *inode;
559         struct shmem_inode_info *info;
560         struct page *page;
561         unsigned long batch = sc ? sc->nr_to_scan : 128;
562         int removed = 0, split = 0;
563
564         if (list_empty(&sbinfo->shrinklist))
565                 return SHRINK_STOP;
566
567         spin_lock(&sbinfo->shrinklist_lock);
568         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
569                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
570
571                 /* pin the inode */
572                 inode = igrab(&info->vfs_inode);
573
574                 /* inode is about to be evicted */
575                 if (!inode) {
576                         list_del_init(&info->shrinklist);
577                         removed++;
578                         goto next;
579                 }
580
581                 /* Check if there's anything to gain */
582                 if (round_up(inode->i_size, PAGE_SIZE) ==
583                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
584                         list_move(&info->shrinklist, &to_remove);
585                         removed++;
586                         goto next;
587                 }
588
589                 list_move(&info->shrinklist, &list);
590 next:
591                 if (!--batch)
592                         break;
593         }
594         spin_unlock(&sbinfo->shrinklist_lock);
595
596         list_for_each_safe(pos, next, &to_remove) {
597                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
598                 inode = &info->vfs_inode;
599                 list_del_init(&info->shrinklist);
600                 iput(inode);
601         }
602
603         list_for_each_safe(pos, next, &list) {
604                 int ret;
605
606                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
607                 inode = &info->vfs_inode;
608
609                 if (nr_to_split && split >= nr_to_split)
610                         goto leave;
611
612                 page = find_get_page(inode->i_mapping,
613                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
614                 if (!page)
615                         goto drop;
616
617                 /* No huge page at the end of the file: nothing to split */
618                 if (!PageTransHuge(page)) {
619                         put_page(page);
620                         goto drop;
621                 }
622
623                 /*
624                  * Leave the inode on the list if we failed to lock
625                  * the page at this time.
626                  *
627                  * Waiting for the lock may lead to deadlock in the
628                  * reclaim path.
629                  */
630                 if (!trylock_page(page)) {
631                         put_page(page);
632                         goto leave;
633                 }
634
635                 ret = split_huge_page(page);
636                 unlock_page(page);
637                 put_page(page);
638
639                 /* If split failed leave the inode on the list */
640                 if (ret)
641                         goto leave;
642
643                 split++;
644 drop:
645                 list_del_init(&info->shrinklist);
646                 removed++;
647 leave:
648                 iput(inode);
649         }
650
651         spin_lock(&sbinfo->shrinklist_lock);
652         list_splice_tail(&list, &sbinfo->shrinklist);
653         sbinfo->shrinklist_len -= removed;
654         spin_unlock(&sbinfo->shrinklist_lock);
655
656         return split;
657 }
658
659 static long shmem_unused_huge_scan(struct super_block *sb,
660                 struct shrink_control *sc)
661 {
662         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
663
664         if (!READ_ONCE(sbinfo->shrinklist_len))
665                 return SHRINK_STOP;
666
667         return shmem_unused_huge_shrink(sbinfo, sc, 0);
668 }
669
670 static long shmem_unused_huge_count(struct super_block *sb,
671                 struct shrink_control *sc)
672 {
673         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
674         return READ_ONCE(sbinfo->shrinklist_len);
675 }
676 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
677
678 #define shmem_huge SHMEM_HUGE_DENY
679
680 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
681                 struct shrink_control *sc, unsigned long nr_to_split)
682 {
683         return 0;
684 }
685 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
686
687 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
688 {
689         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
690             (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
691             shmem_huge != SHMEM_HUGE_DENY)
692                 return true;
693         return false;
694 }
695
696 /*
697  * Like add_to_page_cache_locked, but error if expected item has gone.
698  */
699 static int shmem_add_to_page_cache(struct page *page,
700                                    struct address_space *mapping,
701                                    pgoff_t index, void *expected, gfp_t gfp,
702                                    struct mm_struct *charge_mm)
703 {
704         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
705         unsigned long i = 0;
706         unsigned long nr = compound_nr(page);
707         int error;
708
709         VM_BUG_ON_PAGE(PageTail(page), page);
710         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
711         VM_BUG_ON_PAGE(!PageLocked(page), page);
712         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
713         VM_BUG_ON(expected && PageTransHuge(page));
714
715         page_ref_add(page, nr);
716         page->mapping = mapping;
717         page->index = index;
718
719         if (!PageSwapCache(page)) {
720                 error = mem_cgroup_charge(page, charge_mm, gfp);
721                 if (error) {
722                         if (PageTransHuge(page)) {
723                                 count_vm_event(THP_FILE_FALLBACK);
724                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
725                         }
726                         goto error;
727                 }
728         }
729         cgroup_throttle_swaprate(page, gfp);
730
731         do {
732                 void *entry;
733                 xas_lock_irq(&xas);
734                 entry = xas_find_conflict(&xas);
735                 if (entry != expected)
736                         xas_set_err(&xas, -EEXIST);
737                 xas_create_range(&xas);
738                 if (xas_error(&xas))
739                         goto unlock;
740 next:
741                 xas_store(&xas, page);
742                 if (++i < nr) {
743                         xas_next(&xas);
744                         goto next;
745                 }
746                 if (PageTransHuge(page)) {
747                         count_vm_event(THP_FILE_ALLOC);
748                         __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
749                 }
750                 mapping->nrpages += nr;
751                 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
752                 __mod_lruvec_page_state(page, NR_SHMEM, nr);
753 unlock:
754                 xas_unlock_irq(&xas);
755         } while (xas_nomem(&xas, gfp));
756
757         if (xas_error(&xas)) {
758                 error = xas_error(&xas);
759                 goto error;
760         }
761
762         return 0;
763 error:
764         page->mapping = NULL;
765         page_ref_sub(page, nr);
766         return error;
767 }
768
769 /*
770  * Like delete_from_page_cache, but substitutes swap for page.
771  */
772 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
773 {
774         struct address_space *mapping = page->mapping;
775         int error;
776
777         VM_BUG_ON_PAGE(PageCompound(page), page);
778
779         xa_lock_irq(&mapping->i_pages);
780         error = shmem_replace_entry(mapping, page->index, page, radswap);
781         page->mapping = NULL;
782         mapping->nrpages--;
783         __dec_lruvec_page_state(page, NR_FILE_PAGES);
784         __dec_lruvec_page_state(page, NR_SHMEM);
785         xa_unlock_irq(&mapping->i_pages);
786         put_page(page);
787         BUG_ON(error);
788 }
789
790 /*
791  * Remove swap entry from page cache, free the swap and its page cache.
792  */
793 static int shmem_free_swap(struct address_space *mapping,
794                            pgoff_t index, void *radswap)
795 {
796         void *old;
797
798         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
799         if (old != radswap)
800                 return -ENOENT;
801         free_swap_and_cache(radix_to_swp_entry(radswap));
802         return 0;
803 }
804
805 /*
806  * Determine (in bytes) how many of the shmem object's pages mapped by the
807  * given offsets are swapped out.
808  *
809  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
810  * as long as the inode doesn't go away and racy results are not a problem.
811  */
812 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
813                                                 pgoff_t start, pgoff_t end)
814 {
815         XA_STATE(xas, &mapping->i_pages, start);
816         struct page *page;
817         unsigned long swapped = 0;
818
819         rcu_read_lock();
820         xas_for_each(&xas, page, end - 1) {
821                 if (xas_retry(&xas, page))
822                         continue;
823                 if (xa_is_value(page))
824                         swapped++;
825
826                 if (need_resched()) {
827                         xas_pause(&xas);
828                         cond_resched_rcu();
829                 }
830         }
831
832         rcu_read_unlock();
833
834         return swapped << PAGE_SHIFT;
835 }
836
837 /*
838  * Determine (in bytes) how many of the shmem object's pages mapped by the
839  * given vma is swapped out.
840  *
841  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
842  * as long as the inode doesn't go away and racy results are not a problem.
843  */
844 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
845 {
846         struct inode *inode = file_inode(vma->vm_file);
847         struct shmem_inode_info *info = SHMEM_I(inode);
848         struct address_space *mapping = inode->i_mapping;
849         unsigned long swapped;
850
851         /* Be careful as we don't hold info->lock */
852         swapped = READ_ONCE(info->swapped);
853
854         /*
855          * The easier cases are when the shmem object has nothing in swap, or
856          * the vma maps it whole. Then we can simply use the stats that we
857          * already track.
858          */
859         if (!swapped)
860                 return 0;
861
862         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
863                 return swapped << PAGE_SHIFT;
864
865         /* Here comes the more involved part */
866         return shmem_partial_swap_usage(mapping,
867                         linear_page_index(vma, vma->vm_start),
868                         linear_page_index(vma, vma->vm_end));
869 }
870
871 /*
872  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
873  */
874 void shmem_unlock_mapping(struct address_space *mapping)
875 {
876         struct pagevec pvec;
877         pgoff_t index = 0;
878
879         pagevec_init(&pvec);
880         /*
881          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
882          */
883         while (!mapping_unevictable(mapping)) {
884                 if (!pagevec_lookup(&pvec, mapping, &index))
885                         break;
886                 check_move_unevictable_pages(&pvec);
887                 pagevec_release(&pvec);
888                 cond_resched();
889         }
890 }
891
892 /*
893  * Check whether a hole-punch or truncation needs to split a huge page,
894  * returning true if no split was required, or the split has been successful.
895  *
896  * Eviction (or truncation to 0 size) should never need to split a huge page;
897  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
898  * head, and then succeeded to trylock on tail.
899  *
900  * A split can only succeed when there are no additional references on the
901  * huge page: so the split below relies upon find_get_entries() having stopped
902  * when it found a subpage of the huge page, without getting further references.
903  */
904 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
905 {
906         if (!PageTransCompound(page))
907                 return true;
908
909         /* Just proceed to delete a huge page wholly within the range punched */
910         if (PageHead(page) &&
911             page->index >= start && page->index + HPAGE_PMD_NR <= end)
912                 return true;
913
914         /* Try to split huge page, so we can truly punch the hole or truncate */
915         return split_huge_page(page) >= 0;
916 }
917
918 /*
919  * Remove range of pages and swap entries from page cache, and free them.
920  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
921  */
922 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
923                                                                  bool unfalloc)
924 {
925         struct address_space *mapping = inode->i_mapping;
926         struct shmem_inode_info *info = SHMEM_I(inode);
927         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
928         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
929         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
930         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
931         struct pagevec pvec;
932         pgoff_t indices[PAGEVEC_SIZE];
933         long nr_swaps_freed = 0;
934         pgoff_t index;
935         int i;
936
937         if (lend == -1)
938                 end = -1;       /* unsigned, so actually very big */
939
940         if (info->fallocend > start && info->fallocend <= end && !unfalloc)
941                 info->fallocend = start;
942
943         pagevec_init(&pvec);
944         index = start;
945         while (index < end && find_lock_entries(mapping, index, end - 1,
946                         &pvec, indices)) {
947                 for (i = 0; i < pagevec_count(&pvec); i++) {
948                         struct page *page = pvec.pages[i];
949
950                         index = indices[i];
951
952                         if (xa_is_value(page)) {
953                                 if (unfalloc)
954                                         continue;
955                                 nr_swaps_freed += !shmem_free_swap(mapping,
956                                                                 index, page);
957                                 continue;
958                         }
959                         index += thp_nr_pages(page) - 1;
960
961                         if (!unfalloc || !PageUptodate(page))
962                                 truncate_inode_page(mapping, page);
963                         unlock_page(page);
964                 }
965                 pagevec_remove_exceptionals(&pvec);
966                 pagevec_release(&pvec);
967                 cond_resched();
968                 index++;
969         }
970
971         if (partial_start) {
972                 struct page *page = NULL;
973                 shmem_getpage(inode, start - 1, &page, SGP_READ);
974                 if (page) {
975                         unsigned int top = PAGE_SIZE;
976                         if (start > end) {
977                                 top = partial_end;
978                                 partial_end = 0;
979                         }
980                         zero_user_segment(page, partial_start, top);
981                         set_page_dirty(page);
982                         unlock_page(page);
983                         put_page(page);
984                 }
985         }
986         if (partial_end) {
987                 struct page *page = NULL;
988                 shmem_getpage(inode, end, &page, SGP_READ);
989                 if (page) {
990                         zero_user_segment(page, 0, partial_end);
991                         set_page_dirty(page);
992                         unlock_page(page);
993                         put_page(page);
994                 }
995         }
996         if (start >= end)
997                 return;
998
999         index = start;
1000         while (index < end) {
1001                 cond_resched();
1002
1003                 if (!find_get_entries(mapping, index, end - 1, &pvec,
1004                                 indices)) {
1005                         /* If all gone or hole-punch or unfalloc, we're done */
1006                         if (index == start || end != -1)
1007                                 break;
1008                         /* But if truncating, restart to make sure all gone */
1009                         index = start;
1010                         continue;
1011                 }
1012                 for (i = 0; i < pagevec_count(&pvec); i++) {
1013                         struct page *page = pvec.pages[i];
1014
1015                         index = indices[i];
1016                         if (xa_is_value(page)) {
1017                                 if (unfalloc)
1018                                         continue;
1019                                 if (shmem_free_swap(mapping, index, page)) {
1020                                         /* Swap was replaced by page: retry */
1021                                         index--;
1022                                         break;
1023                                 }
1024                                 nr_swaps_freed++;
1025                                 continue;
1026                         }
1027
1028                         lock_page(page);
1029
1030                         if (!unfalloc || !PageUptodate(page)) {
1031                                 if (page_mapping(page) != mapping) {
1032                                         /* Page was replaced by swap: retry */
1033                                         unlock_page(page);
1034                                         index--;
1035                                         break;
1036                                 }
1037                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1038                                 if (shmem_punch_compound(page, start, end))
1039                                         truncate_inode_page(mapping, page);
1040                                 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1041                                         /* Wipe the page and don't get stuck */
1042                                         clear_highpage(page);
1043                                         flush_dcache_page(page);
1044                                         set_page_dirty(page);
1045                                         if (index <
1046                                             round_up(start, HPAGE_PMD_NR))
1047                                                 start = index + 1;
1048                                 }
1049                         }
1050                         unlock_page(page);
1051                 }
1052                 pagevec_remove_exceptionals(&pvec);
1053                 pagevec_release(&pvec);
1054                 index++;
1055         }
1056
1057         spin_lock_irq(&info->lock);
1058         info->swapped -= nr_swaps_freed;
1059         shmem_recalc_inode(inode);
1060         spin_unlock_irq(&info->lock);
1061 }
1062
1063 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1064 {
1065         shmem_undo_range(inode, lstart, lend, false);
1066         inode->i_ctime = inode->i_mtime = current_time(inode);
1067 }
1068 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1069
1070 static int shmem_getattr(struct user_namespace *mnt_userns,
1071                          const struct path *path, struct kstat *stat,
1072                          u32 request_mask, unsigned int query_flags)
1073 {
1074         struct inode *inode = path->dentry->d_inode;
1075         struct shmem_inode_info *info = SHMEM_I(inode);
1076         struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1077
1078         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1079                 spin_lock_irq(&info->lock);
1080                 shmem_recalc_inode(inode);
1081                 spin_unlock_irq(&info->lock);
1082         }
1083         generic_fillattr(&init_user_ns, inode, stat);
1084
1085         if (is_huge_enabled(sb_info))
1086                 stat->blksize = HPAGE_PMD_SIZE;
1087
1088         return 0;
1089 }
1090
1091 static int shmem_setattr(struct user_namespace *mnt_userns,
1092                          struct dentry *dentry, struct iattr *attr)
1093 {
1094         struct inode *inode = d_inode(dentry);
1095         struct shmem_inode_info *info = SHMEM_I(inode);
1096         int error;
1097
1098         error = setattr_prepare(&init_user_ns, dentry, attr);
1099         if (error)
1100                 return error;
1101
1102         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1103                 loff_t oldsize = inode->i_size;
1104                 loff_t newsize = attr->ia_size;
1105
1106                 /* protected by i_mutex */
1107                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1108                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1109                         return -EPERM;
1110
1111                 if (newsize != oldsize) {
1112                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1113                                         oldsize, newsize);
1114                         if (error)
1115                                 return error;
1116                         i_size_write(inode, newsize);
1117                         inode->i_ctime = inode->i_mtime = current_time(inode);
1118                 }
1119                 if (newsize <= oldsize) {
1120                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1121                         if (oldsize > holebegin)
1122                                 unmap_mapping_range(inode->i_mapping,
1123                                                         holebegin, 0, 1);
1124                         if (info->alloced)
1125                                 shmem_truncate_range(inode,
1126                                                         newsize, (loff_t)-1);
1127                         /* unmap again to remove racily COWed private pages */
1128                         if (oldsize > holebegin)
1129                                 unmap_mapping_range(inode->i_mapping,
1130                                                         holebegin, 0, 1);
1131                 }
1132         }
1133
1134         setattr_copy(&init_user_ns, inode, attr);
1135         if (attr->ia_valid & ATTR_MODE)
1136                 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1137         return error;
1138 }
1139
1140 static void shmem_evict_inode(struct inode *inode)
1141 {
1142         struct shmem_inode_info *info = SHMEM_I(inode);
1143         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1144
1145         if (shmem_mapping(inode->i_mapping)) {
1146                 shmem_unacct_size(info->flags, inode->i_size);
1147                 inode->i_size = 0;
1148                 shmem_truncate_range(inode, 0, (loff_t)-1);
1149                 if (!list_empty(&info->shrinklist)) {
1150                         spin_lock(&sbinfo->shrinklist_lock);
1151                         if (!list_empty(&info->shrinklist)) {
1152                                 list_del_init(&info->shrinklist);
1153                                 sbinfo->shrinklist_len--;
1154                         }
1155                         spin_unlock(&sbinfo->shrinklist_lock);
1156                 }
1157                 while (!list_empty(&info->swaplist)) {
1158                         /* Wait while shmem_unuse() is scanning this inode... */
1159                         wait_var_event(&info->stop_eviction,
1160                                        !atomic_read(&info->stop_eviction));
1161                         mutex_lock(&shmem_swaplist_mutex);
1162                         /* ...but beware of the race if we peeked too early */
1163                         if (!atomic_read(&info->stop_eviction))
1164                                 list_del_init(&info->swaplist);
1165                         mutex_unlock(&shmem_swaplist_mutex);
1166                 }
1167         }
1168
1169         simple_xattrs_free(&info->xattrs);
1170         WARN_ON(inode->i_blocks);
1171         shmem_free_inode(inode->i_sb);
1172         clear_inode(inode);
1173 }
1174
1175 static int shmem_find_swap_entries(struct address_space *mapping,
1176                                    pgoff_t start, unsigned int nr_entries,
1177                                    struct page **entries, pgoff_t *indices,
1178                                    unsigned int type, bool frontswap)
1179 {
1180         XA_STATE(xas, &mapping->i_pages, start);
1181         struct page *page;
1182         swp_entry_t entry;
1183         unsigned int ret = 0;
1184
1185         if (!nr_entries)
1186                 return 0;
1187
1188         rcu_read_lock();
1189         xas_for_each(&xas, page, ULONG_MAX) {
1190                 if (xas_retry(&xas, page))
1191                         continue;
1192
1193                 if (!xa_is_value(page))
1194                         continue;
1195
1196                 entry = radix_to_swp_entry(page);
1197                 if (swp_type(entry) != type)
1198                         continue;
1199                 if (frontswap &&
1200                     !frontswap_test(swap_info[type], swp_offset(entry)))
1201                         continue;
1202
1203                 indices[ret] = xas.xa_index;
1204                 entries[ret] = page;
1205
1206                 if (need_resched()) {
1207                         xas_pause(&xas);
1208                         cond_resched_rcu();
1209                 }
1210                 if (++ret == nr_entries)
1211                         break;
1212         }
1213         rcu_read_unlock();
1214
1215         return ret;
1216 }
1217
1218 /*
1219  * Move the swapped pages for an inode to page cache. Returns the count
1220  * of pages swapped in, or the error in case of failure.
1221  */
1222 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1223                                     pgoff_t *indices)
1224 {
1225         int i = 0;
1226         int ret = 0;
1227         int error = 0;
1228         struct address_space *mapping = inode->i_mapping;
1229
1230         for (i = 0; i < pvec.nr; i++) {
1231                 struct page *page = pvec.pages[i];
1232
1233                 if (!xa_is_value(page))
1234                         continue;
1235                 error = shmem_swapin_page(inode, indices[i],
1236                                           &page, SGP_CACHE,
1237                                           mapping_gfp_mask(mapping),
1238                                           NULL, NULL);
1239                 if (error == 0) {
1240                         unlock_page(page);
1241                         put_page(page);
1242                         ret++;
1243                 }
1244                 if (error == -ENOMEM)
1245                         break;
1246                 error = 0;
1247         }
1248         return error ? error : ret;
1249 }
1250
1251 /*
1252  * If swap found in inode, free it and move page from swapcache to filecache.
1253  */
1254 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1255                              bool frontswap, unsigned long *fs_pages_to_unuse)
1256 {
1257         struct address_space *mapping = inode->i_mapping;
1258         pgoff_t start = 0;
1259         struct pagevec pvec;
1260         pgoff_t indices[PAGEVEC_SIZE];
1261         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1262         int ret = 0;
1263
1264         pagevec_init(&pvec);
1265         do {
1266                 unsigned int nr_entries = PAGEVEC_SIZE;
1267
1268                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1269                         nr_entries = *fs_pages_to_unuse;
1270
1271                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1272                                                   pvec.pages, indices,
1273                                                   type, frontswap);
1274                 if (pvec.nr == 0) {
1275                         ret = 0;
1276                         break;
1277                 }
1278
1279                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1280                 if (ret < 0)
1281                         break;
1282
1283                 if (frontswap_partial) {
1284                         *fs_pages_to_unuse -= ret;
1285                         if (*fs_pages_to_unuse == 0) {
1286                                 ret = FRONTSWAP_PAGES_UNUSED;
1287                                 break;
1288                         }
1289                 }
1290
1291                 start = indices[pvec.nr - 1];
1292         } while (true);
1293
1294         return ret;
1295 }
1296
1297 /*
1298  * Read all the shared memory data that resides in the swap
1299  * device 'type' back into memory, so the swap device can be
1300  * unused.
1301  */
1302 int shmem_unuse(unsigned int type, bool frontswap,
1303                 unsigned long *fs_pages_to_unuse)
1304 {
1305         struct shmem_inode_info *info, *next;
1306         int error = 0;
1307
1308         if (list_empty(&shmem_swaplist))
1309                 return 0;
1310
1311         mutex_lock(&shmem_swaplist_mutex);
1312         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1313                 if (!info->swapped) {
1314                         list_del_init(&info->swaplist);
1315                         continue;
1316                 }
1317                 /*
1318                  * Drop the swaplist mutex while searching the inode for swap;
1319                  * but before doing so, make sure shmem_evict_inode() will not
1320                  * remove placeholder inode from swaplist, nor let it be freed
1321                  * (igrab() would protect from unlink, but not from unmount).
1322                  */
1323                 atomic_inc(&info->stop_eviction);
1324                 mutex_unlock(&shmem_swaplist_mutex);
1325
1326                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1327                                           fs_pages_to_unuse);
1328                 cond_resched();
1329
1330                 mutex_lock(&shmem_swaplist_mutex);
1331                 next = list_next_entry(info, swaplist);
1332                 if (!info->swapped)
1333                         list_del_init(&info->swaplist);
1334                 if (atomic_dec_and_test(&info->stop_eviction))
1335                         wake_up_var(&info->stop_eviction);
1336                 if (error)
1337                         break;
1338         }
1339         mutex_unlock(&shmem_swaplist_mutex);
1340
1341         return error;
1342 }
1343
1344 /*
1345  * Move the page from the page cache to the swap cache.
1346  */
1347 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1348 {
1349         struct shmem_inode_info *info;
1350         struct address_space *mapping;
1351         struct inode *inode;
1352         swp_entry_t swap;
1353         pgoff_t index;
1354
1355         VM_BUG_ON_PAGE(PageCompound(page), page);
1356         BUG_ON(!PageLocked(page));
1357         mapping = page->mapping;
1358         index = page->index;
1359         inode = mapping->host;
1360         info = SHMEM_I(inode);
1361         if (info->flags & VM_LOCKED)
1362                 goto redirty;
1363         if (!total_swap_pages)
1364                 goto redirty;
1365
1366         /*
1367          * Our capabilities prevent regular writeback or sync from ever calling
1368          * shmem_writepage; but a stacking filesystem might use ->writepage of
1369          * its underlying filesystem, in which case tmpfs should write out to
1370          * swap only in response to memory pressure, and not for the writeback
1371          * threads or sync.
1372          */
1373         if (!wbc->for_reclaim) {
1374                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1375                 goto redirty;
1376         }
1377
1378         /*
1379          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1380          * value into swapfile.c, the only way we can correctly account for a
1381          * fallocated page arriving here is now to initialize it and write it.
1382          *
1383          * That's okay for a page already fallocated earlier, but if we have
1384          * not yet completed the fallocation, then (a) we want to keep track
1385          * of this page in case we have to undo it, and (b) it may not be a
1386          * good idea to continue anyway, once we're pushing into swap.  So
1387          * reactivate the page, and let shmem_fallocate() quit when too many.
1388          */
1389         if (!PageUptodate(page)) {
1390                 if (inode->i_private) {
1391                         struct shmem_falloc *shmem_falloc;
1392                         spin_lock(&inode->i_lock);
1393                         shmem_falloc = inode->i_private;
1394                         if (shmem_falloc &&
1395                             !shmem_falloc->waitq &&
1396                             index >= shmem_falloc->start &&
1397                             index < shmem_falloc->next)
1398                                 shmem_falloc->nr_unswapped++;
1399                         else
1400                                 shmem_falloc = NULL;
1401                         spin_unlock(&inode->i_lock);
1402                         if (shmem_falloc)
1403                                 goto redirty;
1404                 }
1405                 clear_highpage(page);
1406                 flush_dcache_page(page);
1407                 SetPageUptodate(page);
1408         }
1409
1410         swap = get_swap_page(page);
1411         if (!swap.val)
1412                 goto redirty;
1413
1414         /*
1415          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1416          * if it's not already there.  Do it now before the page is
1417          * moved to swap cache, when its pagelock no longer protects
1418          * the inode from eviction.  But don't unlock the mutex until
1419          * we've incremented swapped, because shmem_unuse_inode() will
1420          * prune a !swapped inode from the swaplist under this mutex.
1421          */
1422         mutex_lock(&shmem_swaplist_mutex);
1423         if (list_empty(&info->swaplist))
1424                 list_add(&info->swaplist, &shmem_swaplist);
1425
1426         if (add_to_swap_cache(page, swap,
1427                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1428                         NULL) == 0) {
1429                 spin_lock_irq(&info->lock);
1430                 shmem_recalc_inode(inode);
1431                 info->swapped++;
1432                 spin_unlock_irq(&info->lock);
1433
1434                 swap_shmem_alloc(swap);
1435                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1436
1437                 mutex_unlock(&shmem_swaplist_mutex);
1438                 BUG_ON(page_mapped(page));
1439                 swap_writepage(page, wbc);
1440                 return 0;
1441         }
1442
1443         mutex_unlock(&shmem_swaplist_mutex);
1444         put_swap_page(page, swap);
1445 redirty:
1446         set_page_dirty(page);
1447         if (wbc->for_reclaim)
1448                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1449         unlock_page(page);
1450         return 0;
1451 }
1452
1453 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1454 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1455 {
1456         char buffer[64];
1457
1458         if (!mpol || mpol->mode == MPOL_DEFAULT)
1459                 return;         /* show nothing */
1460
1461         mpol_to_str(buffer, sizeof(buffer), mpol);
1462
1463         seq_printf(seq, ",mpol=%s", buffer);
1464 }
1465
1466 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1467 {
1468         struct mempolicy *mpol = NULL;
1469         if (sbinfo->mpol) {
1470                 raw_spin_lock(&sbinfo->stat_lock);      /* prevent replace/use races */
1471                 mpol = sbinfo->mpol;
1472                 mpol_get(mpol);
1473                 raw_spin_unlock(&sbinfo->stat_lock);
1474         }
1475         return mpol;
1476 }
1477 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1478 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1479 {
1480 }
1481 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1482 {
1483         return NULL;
1484 }
1485 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1486 #ifndef CONFIG_NUMA
1487 #define vm_policy vm_private_data
1488 #endif
1489
1490 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1491                 struct shmem_inode_info *info, pgoff_t index)
1492 {
1493         /* Create a pseudo vma that just contains the policy */
1494         vma_init(vma, NULL);
1495         /* Bias interleave by inode number to distribute better across nodes */
1496         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1497         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1498 }
1499
1500 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1501 {
1502         /* Drop reference taken by mpol_shared_policy_lookup() */
1503         mpol_cond_put(vma->vm_policy);
1504 }
1505
1506 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1507                         struct shmem_inode_info *info, pgoff_t index)
1508 {
1509         struct vm_area_struct pvma;
1510         struct page *page;
1511         struct vm_fault vmf = {
1512                 .vma = &pvma,
1513         };
1514
1515         shmem_pseudo_vma_init(&pvma, info, index);
1516         page = swap_cluster_readahead(swap, gfp, &vmf);
1517         shmem_pseudo_vma_destroy(&pvma);
1518
1519         return page;
1520 }
1521
1522 /*
1523  * Make sure huge_gfp is always more limited than limit_gfp.
1524  * Some of the flags set permissions, while others set limitations.
1525  */
1526 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1527 {
1528         gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1529         gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1530         gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1531         gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1532
1533         /* Allow allocations only from the originally specified zones. */
1534         result |= zoneflags;
1535
1536         /*
1537          * Minimize the result gfp by taking the union with the deny flags,
1538          * and the intersection of the allow flags.
1539          */
1540         result |= (limit_gfp & denyflags);
1541         result |= (huge_gfp & limit_gfp) & allowflags;
1542
1543         return result;
1544 }
1545
1546 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1547                 struct shmem_inode_info *info, pgoff_t index)
1548 {
1549         struct vm_area_struct pvma;
1550         struct address_space *mapping = info->vfs_inode.i_mapping;
1551         pgoff_t hindex;
1552         struct page *page;
1553
1554         hindex = round_down(index, HPAGE_PMD_NR);
1555         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1556                                                                 XA_PRESENT))
1557                 return NULL;
1558
1559         shmem_pseudo_vma_init(&pvma, info, hindex);
1560         page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1561                                true);
1562         shmem_pseudo_vma_destroy(&pvma);
1563         if (page)
1564                 prep_transhuge_page(page);
1565         else
1566                 count_vm_event(THP_FILE_FALLBACK);
1567         return page;
1568 }
1569
1570 static struct page *shmem_alloc_page(gfp_t gfp,
1571                         struct shmem_inode_info *info, pgoff_t index)
1572 {
1573         struct vm_area_struct pvma;
1574         struct page *page;
1575
1576         shmem_pseudo_vma_init(&pvma, info, index);
1577         page = alloc_page_vma(gfp, &pvma, 0);
1578         shmem_pseudo_vma_destroy(&pvma);
1579
1580         return page;
1581 }
1582
1583 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1584                 struct inode *inode,
1585                 pgoff_t index, bool huge)
1586 {
1587         struct shmem_inode_info *info = SHMEM_I(inode);
1588         struct page *page;
1589         int nr;
1590         int err = -ENOSPC;
1591
1592         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1593                 huge = false;
1594         nr = huge ? HPAGE_PMD_NR : 1;
1595
1596         if (!shmem_inode_acct_block(inode, nr))
1597                 goto failed;
1598
1599         if (huge)
1600                 page = shmem_alloc_hugepage(gfp, info, index);
1601         else
1602                 page = shmem_alloc_page(gfp, info, index);
1603         if (page) {
1604                 __SetPageLocked(page);
1605                 __SetPageSwapBacked(page);
1606                 return page;
1607         }
1608
1609         err = -ENOMEM;
1610         shmem_inode_unacct_blocks(inode, nr);
1611 failed:
1612         return ERR_PTR(err);
1613 }
1614
1615 /*
1616  * When a page is moved from swapcache to shmem filecache (either by the
1617  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1618  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1619  * ignorance of the mapping it belongs to.  If that mapping has special
1620  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1621  * we may need to copy to a suitable page before moving to filecache.
1622  *
1623  * In a future release, this may well be extended to respect cpuset and
1624  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1625  * but for now it is a simple matter of zone.
1626  */
1627 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1628 {
1629         return page_zonenum(page) > gfp_zone(gfp);
1630 }
1631
1632 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1633                                 struct shmem_inode_info *info, pgoff_t index)
1634 {
1635         struct page *oldpage, *newpage;
1636         struct address_space *swap_mapping;
1637         swp_entry_t entry;
1638         pgoff_t swap_index;
1639         int error;
1640
1641         oldpage = *pagep;
1642         entry.val = page_private(oldpage);
1643         swap_index = swp_offset(entry);
1644         swap_mapping = page_mapping(oldpage);
1645
1646         /*
1647          * We have arrived here because our zones are constrained, so don't
1648          * limit chance of success by further cpuset and node constraints.
1649          */
1650         gfp &= ~GFP_CONSTRAINT_MASK;
1651         newpage = shmem_alloc_page(gfp, info, index);
1652         if (!newpage)
1653                 return -ENOMEM;
1654
1655         get_page(newpage);
1656         copy_highpage(newpage, oldpage);
1657         flush_dcache_page(newpage);
1658
1659         __SetPageLocked(newpage);
1660         __SetPageSwapBacked(newpage);
1661         SetPageUptodate(newpage);
1662         set_page_private(newpage, entry.val);
1663         SetPageSwapCache(newpage);
1664
1665         /*
1666          * Our caller will very soon move newpage out of swapcache, but it's
1667          * a nice clean interface for us to replace oldpage by newpage there.
1668          */
1669         xa_lock_irq(&swap_mapping->i_pages);
1670         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1671         if (!error) {
1672                 mem_cgroup_migrate(oldpage, newpage);
1673                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1674                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1675         }
1676         xa_unlock_irq(&swap_mapping->i_pages);
1677
1678         if (unlikely(error)) {
1679                 /*
1680                  * Is this possible?  I think not, now that our callers check
1681                  * both PageSwapCache and page_private after getting page lock;
1682                  * but be defensive.  Reverse old to newpage for clear and free.
1683                  */
1684                 oldpage = newpage;
1685         } else {
1686                 lru_cache_add(newpage);
1687                 *pagep = newpage;
1688         }
1689
1690         ClearPageSwapCache(oldpage);
1691         set_page_private(oldpage, 0);
1692
1693         unlock_page(oldpage);
1694         put_page(oldpage);
1695         put_page(oldpage);
1696         return error;
1697 }
1698
1699 /*
1700  * Swap in the page pointed to by *pagep.
1701  * Caller has to make sure that *pagep contains a valid swapped page.
1702  * Returns 0 and the page in pagep if success. On failure, returns the
1703  * error code and NULL in *pagep.
1704  */
1705 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1706                              struct page **pagep, enum sgp_type sgp,
1707                              gfp_t gfp, struct vm_area_struct *vma,
1708                              vm_fault_t *fault_type)
1709 {
1710         struct address_space *mapping = inode->i_mapping;
1711         struct shmem_inode_info *info = SHMEM_I(inode);
1712         struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1713         struct page *page;
1714         swp_entry_t swap;
1715         int error;
1716
1717         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1718         swap = radix_to_swp_entry(*pagep);
1719         *pagep = NULL;
1720
1721         /* Look it up and read it in.. */
1722         page = lookup_swap_cache(swap, NULL, 0);
1723         if (!page) {
1724                 /* Or update major stats only when swapin succeeds?? */
1725                 if (fault_type) {
1726                         *fault_type |= VM_FAULT_MAJOR;
1727                         count_vm_event(PGMAJFAULT);
1728                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1729                 }
1730                 /* Here we actually start the io */
1731                 page = shmem_swapin(swap, gfp, info, index);
1732                 if (!page) {
1733                         error = -ENOMEM;
1734                         goto failed;
1735                 }
1736         }
1737
1738         /* We have to do this with page locked to prevent races */
1739         lock_page(page);
1740         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1741             !shmem_confirm_swap(mapping, index, swap)) {
1742                 error = -EEXIST;
1743                 goto unlock;
1744         }
1745         if (!PageUptodate(page)) {
1746                 error = -EIO;
1747                 goto failed;
1748         }
1749         wait_on_page_writeback(page);
1750
1751         /*
1752          * Some architectures may have to restore extra metadata to the
1753          * physical page after reading from swap.
1754          */
1755         arch_swap_restore(swap, page);
1756
1757         if (shmem_should_replace_page(page, gfp)) {
1758                 error = shmem_replace_page(&page, gfp, info, index);
1759                 if (error)
1760                         goto failed;
1761         }
1762
1763         error = shmem_add_to_page_cache(page, mapping, index,
1764                                         swp_to_radix_entry(swap), gfp,
1765                                         charge_mm);
1766         if (error)
1767                 goto failed;
1768
1769         spin_lock_irq(&info->lock);
1770         info->swapped--;
1771         shmem_recalc_inode(inode);
1772         spin_unlock_irq(&info->lock);
1773
1774         if (sgp == SGP_WRITE)
1775                 mark_page_accessed(page);
1776
1777         delete_from_swap_cache(page);
1778         set_page_dirty(page);
1779         swap_free(swap);
1780
1781         *pagep = page;
1782         return 0;
1783 failed:
1784         if (!shmem_confirm_swap(mapping, index, swap))
1785                 error = -EEXIST;
1786 unlock:
1787         if (page) {
1788                 unlock_page(page);
1789                 put_page(page);
1790         }
1791
1792         return error;
1793 }
1794
1795 /*
1796  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1797  *
1798  * If we allocate a new one we do not mark it dirty. That's up to the
1799  * vm. If we swap it in we mark it dirty since we also free the swap
1800  * entry since a page cannot live in both the swap and page cache.
1801  *
1802  * vma, vmf, and fault_type are only supplied by shmem_fault:
1803  * otherwise they are NULL.
1804  */
1805 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1806         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1807         struct vm_area_struct *vma, struct vm_fault *vmf,
1808                         vm_fault_t *fault_type)
1809 {
1810         struct address_space *mapping = inode->i_mapping;
1811         struct shmem_inode_info *info = SHMEM_I(inode);
1812         struct shmem_sb_info *sbinfo;
1813         struct mm_struct *charge_mm;
1814         struct page *page;
1815         enum sgp_type sgp_huge = sgp;
1816         pgoff_t hindex = index;
1817         gfp_t huge_gfp;
1818         int error;
1819         int once = 0;
1820         int alloced = 0;
1821
1822         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1823                 return -EFBIG;
1824         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1825                 sgp = SGP_CACHE;
1826 repeat:
1827         if (sgp <= SGP_CACHE &&
1828             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1829                 return -EINVAL;
1830         }
1831
1832         sbinfo = SHMEM_SB(inode->i_sb);
1833         charge_mm = vma ? vma->vm_mm : NULL;
1834
1835         page = pagecache_get_page(mapping, index,
1836                                         FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1837
1838         if (page && vma && userfaultfd_minor(vma)) {
1839                 if (!xa_is_value(page)) {
1840                         unlock_page(page);
1841                         put_page(page);
1842                 }
1843                 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1844                 return 0;
1845         }
1846
1847         if (xa_is_value(page)) {
1848                 error = shmem_swapin_page(inode, index, &page,
1849                                           sgp, gfp, vma, fault_type);
1850                 if (error == -EEXIST)
1851                         goto repeat;
1852
1853                 *pagep = page;
1854                 return error;
1855         }
1856
1857         if (page)
1858                 hindex = page->index;
1859         if (page && sgp == SGP_WRITE)
1860                 mark_page_accessed(page);
1861
1862         /* fallocated page? */
1863         if (page && !PageUptodate(page)) {
1864                 if (sgp != SGP_READ)
1865                         goto clear;
1866                 unlock_page(page);
1867                 put_page(page);
1868                 page = NULL;
1869                 hindex = index;
1870         }
1871         if (page || sgp == SGP_READ)
1872                 goto out;
1873
1874         /*
1875          * Fast cache lookup did not find it:
1876          * bring it back from swap or allocate.
1877          */
1878
1879         if (vma && userfaultfd_missing(vma)) {
1880                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1881                 return 0;
1882         }
1883
1884         /* shmem_symlink() */
1885         if (!shmem_mapping(mapping))
1886                 goto alloc_nohuge;
1887         if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1888                 goto alloc_nohuge;
1889         if (shmem_huge == SHMEM_HUGE_FORCE)
1890                 goto alloc_huge;
1891         switch (sbinfo->huge) {
1892         case SHMEM_HUGE_NEVER:
1893                 goto alloc_nohuge;
1894         case SHMEM_HUGE_WITHIN_SIZE: {
1895                 loff_t i_size;
1896                 pgoff_t off;
1897
1898                 off = round_up(index, HPAGE_PMD_NR);
1899                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1900                 if (i_size >= HPAGE_PMD_SIZE &&
1901                     i_size >> PAGE_SHIFT >= off)
1902                         goto alloc_huge;
1903
1904                 fallthrough;
1905         }
1906         case SHMEM_HUGE_ADVISE:
1907                 if (sgp_huge == SGP_HUGE)
1908                         goto alloc_huge;
1909                 /* TODO: implement fadvise() hints */
1910                 goto alloc_nohuge;
1911         }
1912
1913 alloc_huge:
1914         huge_gfp = vma_thp_gfp_mask(vma);
1915         huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1916         page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1917         if (IS_ERR(page)) {
1918 alloc_nohuge:
1919                 page = shmem_alloc_and_acct_page(gfp, inode,
1920                                                  index, false);
1921         }
1922         if (IS_ERR(page)) {
1923                 int retry = 5;
1924
1925                 error = PTR_ERR(page);
1926                 page = NULL;
1927                 if (error != -ENOSPC)
1928                         goto unlock;
1929                 /*
1930                  * Try to reclaim some space by splitting a huge page
1931                  * beyond i_size on the filesystem.
1932                  */
1933                 while (retry--) {
1934                         int ret;
1935
1936                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1937                         if (ret == SHRINK_STOP)
1938                                 break;
1939                         if (ret)
1940                                 goto alloc_nohuge;
1941                 }
1942                 goto unlock;
1943         }
1944
1945         if (PageTransHuge(page))
1946                 hindex = round_down(index, HPAGE_PMD_NR);
1947         else
1948                 hindex = index;
1949
1950         if (sgp == SGP_WRITE)
1951                 __SetPageReferenced(page);
1952
1953         error = shmem_add_to_page_cache(page, mapping, hindex,
1954                                         NULL, gfp & GFP_RECLAIM_MASK,
1955                                         charge_mm);
1956         if (error)
1957                 goto unacct;
1958         lru_cache_add(page);
1959
1960         spin_lock_irq(&info->lock);
1961         info->alloced += compound_nr(page);
1962         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1963         shmem_recalc_inode(inode);
1964         spin_unlock_irq(&info->lock);
1965         alloced = true;
1966
1967         if (PageTransHuge(page) &&
1968             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1969                         hindex + HPAGE_PMD_NR - 1) {
1970                 /*
1971                  * Part of the huge page is beyond i_size: subject
1972                  * to shrink under memory pressure.
1973                  */
1974                 spin_lock(&sbinfo->shrinklist_lock);
1975                 /*
1976                  * _careful to defend against unlocked access to
1977                  * ->shrink_list in shmem_unused_huge_shrink()
1978                  */
1979                 if (list_empty_careful(&info->shrinklist)) {
1980                         list_add_tail(&info->shrinklist,
1981                                       &sbinfo->shrinklist);
1982                         sbinfo->shrinklist_len++;
1983                 }
1984                 spin_unlock(&sbinfo->shrinklist_lock);
1985         }
1986
1987         /*
1988          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1989          */
1990         if (sgp == SGP_FALLOC)
1991                 sgp = SGP_WRITE;
1992 clear:
1993         /*
1994          * Let SGP_WRITE caller clear ends if write does not fill page;
1995          * but SGP_FALLOC on a page fallocated earlier must initialize
1996          * it now, lest undo on failure cancel our earlier guarantee.
1997          */
1998         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1999                 int i;
2000
2001                 for (i = 0; i < compound_nr(page); i++) {
2002                         clear_highpage(page + i);
2003                         flush_dcache_page(page + i);
2004                 }
2005                 SetPageUptodate(page);
2006         }
2007
2008         /* Perhaps the file has been truncated since we checked */
2009         if (sgp <= SGP_CACHE &&
2010             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2011                 if (alloced) {
2012                         ClearPageDirty(page);
2013                         delete_from_page_cache(page);
2014                         spin_lock_irq(&info->lock);
2015                         shmem_recalc_inode(inode);
2016                         spin_unlock_irq(&info->lock);
2017                 }
2018                 error = -EINVAL;
2019                 goto unlock;
2020         }
2021 out:
2022         *pagep = page + index - hindex;
2023         return 0;
2024
2025         /*
2026          * Error recovery.
2027          */
2028 unacct:
2029         shmem_inode_unacct_blocks(inode, compound_nr(page));
2030
2031         if (PageTransHuge(page)) {
2032                 unlock_page(page);
2033                 put_page(page);
2034                 goto alloc_nohuge;
2035         }
2036 unlock:
2037         if (page) {
2038                 unlock_page(page);
2039                 put_page(page);
2040         }
2041         if (error == -ENOSPC && !once++) {
2042                 spin_lock_irq(&info->lock);
2043                 shmem_recalc_inode(inode);
2044                 spin_unlock_irq(&info->lock);
2045                 goto repeat;
2046         }
2047         if (error == -EEXIST)
2048                 goto repeat;
2049         return error;
2050 }
2051
2052 /*
2053  * This is like autoremove_wake_function, but it removes the wait queue
2054  * entry unconditionally - even if something else had already woken the
2055  * target.
2056  */
2057 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2058 {
2059         int ret = default_wake_function(wait, mode, sync, key);
2060         list_del_init(&wait->entry);
2061         return ret;
2062 }
2063
2064 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2065 {
2066         struct vm_area_struct *vma = vmf->vma;
2067         struct inode *inode = file_inode(vma->vm_file);
2068         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2069         enum sgp_type sgp;
2070         int err;
2071         vm_fault_t ret = VM_FAULT_LOCKED;
2072
2073         /*
2074          * Trinity finds that probing a hole which tmpfs is punching can
2075          * prevent the hole-punch from ever completing: which in turn
2076          * locks writers out with its hold on i_mutex.  So refrain from
2077          * faulting pages into the hole while it's being punched.  Although
2078          * shmem_undo_range() does remove the additions, it may be unable to
2079          * keep up, as each new page needs its own unmap_mapping_range() call,
2080          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2081          *
2082          * It does not matter if we sometimes reach this check just before the
2083          * hole-punch begins, so that one fault then races with the punch:
2084          * we just need to make racing faults a rare case.
2085          *
2086          * The implementation below would be much simpler if we just used a
2087          * standard mutex or completion: but we cannot take i_mutex in fault,
2088          * and bloating every shmem inode for this unlikely case would be sad.
2089          */
2090         if (unlikely(inode->i_private)) {
2091                 struct shmem_falloc *shmem_falloc;
2092
2093                 spin_lock(&inode->i_lock);
2094                 shmem_falloc = inode->i_private;
2095                 if (shmem_falloc &&
2096                     shmem_falloc->waitq &&
2097                     vmf->pgoff >= shmem_falloc->start &&
2098                     vmf->pgoff < shmem_falloc->next) {
2099                         struct file *fpin;
2100                         wait_queue_head_t *shmem_falloc_waitq;
2101                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2102
2103                         ret = VM_FAULT_NOPAGE;
2104                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2105                         if (fpin)
2106                                 ret = VM_FAULT_RETRY;
2107
2108                         shmem_falloc_waitq = shmem_falloc->waitq;
2109                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2110                                         TASK_UNINTERRUPTIBLE);
2111                         spin_unlock(&inode->i_lock);
2112                         schedule();
2113
2114                         /*
2115                          * shmem_falloc_waitq points into the shmem_fallocate()
2116                          * stack of the hole-punching task: shmem_falloc_waitq
2117                          * is usually invalid by the time we reach here, but
2118                          * finish_wait() does not dereference it in that case;
2119                          * though i_lock needed lest racing with wake_up_all().
2120                          */
2121                         spin_lock(&inode->i_lock);
2122                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2123                         spin_unlock(&inode->i_lock);
2124
2125                         if (fpin)
2126                                 fput(fpin);
2127                         return ret;
2128                 }
2129                 spin_unlock(&inode->i_lock);
2130         }
2131
2132         sgp = SGP_CACHE;
2133
2134         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2135             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2136                 sgp = SGP_NOHUGE;
2137         else if (vma->vm_flags & VM_HUGEPAGE)
2138                 sgp = SGP_HUGE;
2139
2140         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2141                                   gfp, vma, vmf, &ret);
2142         if (err)
2143                 return vmf_error(err);
2144         return ret;
2145 }
2146
2147 unsigned long shmem_get_unmapped_area(struct file *file,
2148                                       unsigned long uaddr, unsigned long len,
2149                                       unsigned long pgoff, unsigned long flags)
2150 {
2151         unsigned long (*get_area)(struct file *,
2152                 unsigned long, unsigned long, unsigned long, unsigned long);
2153         unsigned long addr;
2154         unsigned long offset;
2155         unsigned long inflated_len;
2156         unsigned long inflated_addr;
2157         unsigned long inflated_offset;
2158
2159         if (len > TASK_SIZE)
2160                 return -ENOMEM;
2161
2162         get_area = current->mm->get_unmapped_area;
2163         addr = get_area(file, uaddr, len, pgoff, flags);
2164
2165         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2166                 return addr;
2167         if (IS_ERR_VALUE(addr))
2168                 return addr;
2169         if (addr & ~PAGE_MASK)
2170                 return addr;
2171         if (addr > TASK_SIZE - len)
2172                 return addr;
2173
2174         if (shmem_huge == SHMEM_HUGE_DENY)
2175                 return addr;
2176         if (len < HPAGE_PMD_SIZE)
2177                 return addr;
2178         if (flags & MAP_FIXED)
2179                 return addr;
2180         /*
2181          * Our priority is to support MAP_SHARED mapped hugely;
2182          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2183          * But if caller specified an address hint and we allocated area there
2184          * successfully, respect that as before.
2185          */
2186         if (uaddr == addr)
2187                 return addr;
2188
2189         if (shmem_huge != SHMEM_HUGE_FORCE) {
2190                 struct super_block *sb;
2191
2192                 if (file) {
2193                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2194                         sb = file_inode(file)->i_sb;
2195                 } else {
2196                         /*
2197                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2198                          * for "/dev/zero", to create a shared anonymous object.
2199                          */
2200                         if (IS_ERR(shm_mnt))
2201                                 return addr;
2202                         sb = shm_mnt->mnt_sb;
2203                 }
2204                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2205                         return addr;
2206         }
2207
2208         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2209         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2210                 return addr;
2211         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2212                 return addr;
2213
2214         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2215         if (inflated_len > TASK_SIZE)
2216                 return addr;
2217         if (inflated_len < len)
2218                 return addr;
2219
2220         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2221         if (IS_ERR_VALUE(inflated_addr))
2222                 return addr;
2223         if (inflated_addr & ~PAGE_MASK)
2224                 return addr;
2225
2226         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2227         inflated_addr += offset - inflated_offset;
2228         if (inflated_offset > offset)
2229                 inflated_addr += HPAGE_PMD_SIZE;
2230
2231         if (inflated_addr > TASK_SIZE - len)
2232                 return addr;
2233         return inflated_addr;
2234 }
2235
2236 #ifdef CONFIG_NUMA
2237 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2238 {
2239         struct inode *inode = file_inode(vma->vm_file);
2240         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2241 }
2242
2243 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2244                                           unsigned long addr)
2245 {
2246         struct inode *inode = file_inode(vma->vm_file);
2247         pgoff_t index;
2248
2249         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2250         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2251 }
2252 #endif
2253
2254 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2255 {
2256         struct inode *inode = file_inode(file);
2257         struct shmem_inode_info *info = SHMEM_I(inode);
2258         int retval = -ENOMEM;
2259
2260         /*
2261          * What serializes the accesses to info->flags?
2262          * ipc_lock_object() when called from shmctl_do_lock(),
2263          * no serialization needed when called from shm_destroy().
2264          */
2265         if (lock && !(info->flags & VM_LOCKED)) {
2266                 if (!user_shm_lock(inode->i_size, ucounts))
2267                         goto out_nomem;
2268                 info->flags |= VM_LOCKED;
2269                 mapping_set_unevictable(file->f_mapping);
2270         }
2271         if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2272                 user_shm_unlock(inode->i_size, ucounts);
2273                 info->flags &= ~VM_LOCKED;
2274                 mapping_clear_unevictable(file->f_mapping);
2275         }
2276         retval = 0;
2277
2278 out_nomem:
2279         return retval;
2280 }
2281
2282 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2283 {
2284         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2285         int ret;
2286
2287         ret = seal_check_future_write(info->seals, vma);
2288         if (ret)
2289                 return ret;
2290
2291         /* arm64 - allow memory tagging on RAM-based files */
2292         vma->vm_flags |= VM_MTE_ALLOWED;
2293
2294         file_accessed(file);
2295         vma->vm_ops = &shmem_vm_ops;
2296         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2297                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2298                         (vma->vm_end & HPAGE_PMD_MASK)) {
2299                 khugepaged_enter(vma, vma->vm_flags);
2300         }
2301         return 0;
2302 }
2303
2304 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2305                                      umode_t mode, dev_t dev, unsigned long flags)
2306 {
2307         struct inode *inode;
2308         struct shmem_inode_info *info;
2309         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2310         ino_t ino;
2311
2312         if (shmem_reserve_inode(sb, &ino))
2313                 return NULL;
2314
2315         inode = new_inode(sb);
2316         if (inode) {
2317                 inode->i_ino = ino;
2318                 inode_init_owner(&init_user_ns, inode, dir, mode);
2319                 inode->i_blocks = 0;
2320                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2321                 inode->i_generation = prandom_u32();
2322                 info = SHMEM_I(inode);
2323                 memset(info, 0, (char *)inode - (char *)info);
2324                 spin_lock_init(&info->lock);
2325                 atomic_set(&info->stop_eviction, 0);
2326                 info->seals = F_SEAL_SEAL;
2327                 info->flags = flags & VM_NORESERVE;
2328                 INIT_LIST_HEAD(&info->shrinklist);
2329                 INIT_LIST_HEAD(&info->swaplist);
2330                 simple_xattrs_init(&info->xattrs);
2331                 cache_no_acl(inode);
2332
2333                 switch (mode & S_IFMT) {
2334                 default:
2335                         inode->i_op = &shmem_special_inode_operations;
2336                         init_special_inode(inode, mode, dev);
2337                         break;
2338                 case S_IFREG:
2339                         inode->i_mapping->a_ops = &shmem_aops;
2340                         inode->i_op = &shmem_inode_operations;
2341                         inode->i_fop = &shmem_file_operations;
2342                         mpol_shared_policy_init(&info->policy,
2343                                                  shmem_get_sbmpol(sbinfo));
2344                         break;
2345                 case S_IFDIR:
2346                         inc_nlink(inode);
2347                         /* Some things misbehave if size == 0 on a directory */
2348                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2349                         inode->i_op = &shmem_dir_inode_operations;
2350                         inode->i_fop = &simple_dir_operations;
2351                         break;
2352                 case S_IFLNK:
2353                         /*
2354                          * Must not load anything in the rbtree,
2355                          * mpol_free_shared_policy will not be called.
2356                          */
2357                         mpol_shared_policy_init(&info->policy, NULL);
2358                         break;
2359                 }
2360
2361                 lockdep_annotate_inode_mutex_key(inode);
2362         } else
2363                 shmem_free_inode(sb);
2364         return inode;
2365 }
2366
2367 #ifdef CONFIG_USERFAULTFD
2368 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2369                            pmd_t *dst_pmd,
2370                            struct vm_area_struct *dst_vma,
2371                            unsigned long dst_addr,
2372                            unsigned long src_addr,
2373                            bool zeropage,
2374                            struct page **pagep)
2375 {
2376         struct inode *inode = file_inode(dst_vma->vm_file);
2377         struct shmem_inode_info *info = SHMEM_I(inode);
2378         struct address_space *mapping = inode->i_mapping;
2379         gfp_t gfp = mapping_gfp_mask(mapping);
2380         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2381         void *page_kaddr;
2382         struct page *page;
2383         int ret;
2384         pgoff_t max_off;
2385
2386         if (!shmem_inode_acct_block(inode, 1)) {
2387                 /*
2388                  * We may have got a page, returned -ENOENT triggering a retry,
2389                  * and now we find ourselves with -ENOMEM. Release the page, to
2390                  * avoid a BUG_ON in our caller.
2391                  */
2392                 if (unlikely(*pagep)) {
2393                         put_page(*pagep);
2394                         *pagep = NULL;
2395                 }
2396                 return -ENOMEM;
2397         }
2398
2399         if (!*pagep) {
2400                 ret = -ENOMEM;
2401                 page = shmem_alloc_page(gfp, info, pgoff);
2402                 if (!page)
2403                         goto out_unacct_blocks;
2404
2405                 if (!zeropage) {        /* COPY */
2406                         page_kaddr = kmap_atomic(page);
2407                         ret = copy_from_user(page_kaddr,
2408                                              (const void __user *)src_addr,
2409                                              PAGE_SIZE);
2410                         kunmap_atomic(page_kaddr);
2411
2412                         /* fallback to copy_from_user outside mmap_lock */
2413                         if (unlikely(ret)) {
2414                                 *pagep = page;
2415                                 ret = -ENOENT;
2416                                 /* don't free the page */
2417                                 goto out_unacct_blocks;
2418                         }
2419                 } else {                /* ZEROPAGE */
2420                         clear_highpage(page);
2421                 }
2422         } else {
2423                 page = *pagep;
2424                 *pagep = NULL;
2425         }
2426
2427         VM_BUG_ON(PageLocked(page));
2428         VM_BUG_ON(PageSwapBacked(page));
2429         __SetPageLocked(page);
2430         __SetPageSwapBacked(page);
2431         __SetPageUptodate(page);
2432
2433         ret = -EFAULT;
2434         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2435         if (unlikely(pgoff >= max_off))
2436                 goto out_release;
2437
2438         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2439                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2440         if (ret)
2441                 goto out_release;
2442
2443         ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2444                                        page, true, false);
2445         if (ret)
2446                 goto out_delete_from_cache;
2447
2448         spin_lock_irq(&info->lock);
2449         info->alloced++;
2450         inode->i_blocks += BLOCKS_PER_PAGE;
2451         shmem_recalc_inode(inode);
2452         spin_unlock_irq(&info->lock);
2453
2454         SetPageDirty(page);
2455         unlock_page(page);
2456         return 0;
2457 out_delete_from_cache:
2458         delete_from_page_cache(page);
2459 out_release:
2460         unlock_page(page);
2461         put_page(page);
2462 out_unacct_blocks:
2463         shmem_inode_unacct_blocks(inode, 1);
2464         return ret;
2465 }
2466 #endif /* CONFIG_USERFAULTFD */
2467
2468 #ifdef CONFIG_TMPFS
2469 static const struct inode_operations shmem_symlink_inode_operations;
2470 static const struct inode_operations shmem_short_symlink_operations;
2471
2472 #ifdef CONFIG_TMPFS_XATTR
2473 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2474 #else
2475 #define shmem_initxattrs NULL
2476 #endif
2477
2478 static int
2479 shmem_write_begin(struct file *file, struct address_space *mapping,
2480                         loff_t pos, unsigned len, unsigned flags,
2481                         struct page **pagep, void **fsdata)
2482 {
2483         struct inode *inode = mapping->host;
2484         struct shmem_inode_info *info = SHMEM_I(inode);
2485         pgoff_t index = pos >> PAGE_SHIFT;
2486
2487         /* i_mutex is held by caller */
2488         if (unlikely(info->seals & (F_SEAL_GROW |
2489                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2490                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2491                         return -EPERM;
2492                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2493                         return -EPERM;
2494         }
2495
2496         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2497 }
2498
2499 static int
2500 shmem_write_end(struct file *file, struct address_space *mapping,
2501                         loff_t pos, unsigned len, unsigned copied,
2502                         struct page *page, void *fsdata)
2503 {
2504         struct inode *inode = mapping->host;
2505
2506         if (pos + copied > inode->i_size)
2507                 i_size_write(inode, pos + copied);
2508
2509         if (!PageUptodate(page)) {
2510                 struct page *head = compound_head(page);
2511                 if (PageTransCompound(page)) {
2512                         int i;
2513
2514                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2515                                 if (head + i == page)
2516                                         continue;
2517                                 clear_highpage(head + i);
2518                                 flush_dcache_page(head + i);
2519                         }
2520                 }
2521                 if (copied < PAGE_SIZE) {
2522                         unsigned from = pos & (PAGE_SIZE - 1);
2523                         zero_user_segments(page, 0, from,
2524                                         from + copied, PAGE_SIZE);
2525                 }
2526                 SetPageUptodate(head);
2527         }
2528         set_page_dirty(page);
2529         unlock_page(page);
2530         put_page(page);
2531
2532         return copied;
2533 }
2534
2535 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2536 {
2537         struct file *file = iocb->ki_filp;
2538         struct inode *inode = file_inode(file);
2539         struct address_space *mapping = inode->i_mapping;
2540         pgoff_t index;
2541         unsigned long offset;
2542         enum sgp_type sgp = SGP_READ;
2543         int error = 0;
2544         ssize_t retval = 0;
2545         loff_t *ppos = &iocb->ki_pos;
2546
2547         /*
2548          * Might this read be for a stacking filesystem?  Then when reading
2549          * holes of a sparse file, we actually need to allocate those pages,
2550          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2551          */
2552         if (!iter_is_iovec(to))
2553                 sgp = SGP_CACHE;
2554
2555         index = *ppos >> PAGE_SHIFT;
2556         offset = *ppos & ~PAGE_MASK;
2557
2558         for (;;) {
2559                 struct page *page = NULL;
2560                 pgoff_t end_index;
2561                 unsigned long nr, ret;
2562                 loff_t i_size = i_size_read(inode);
2563
2564                 end_index = i_size >> PAGE_SHIFT;
2565                 if (index > end_index)
2566                         break;
2567                 if (index == end_index) {
2568                         nr = i_size & ~PAGE_MASK;
2569                         if (nr <= offset)
2570                                 break;
2571                 }
2572
2573                 error = shmem_getpage(inode, index, &page, sgp);
2574                 if (error) {
2575                         if (error == -EINVAL)
2576                                 error = 0;
2577                         break;
2578                 }
2579                 if (page) {
2580                         if (sgp == SGP_CACHE)
2581                                 set_page_dirty(page);
2582                         unlock_page(page);
2583                 }
2584
2585                 /*
2586                  * We must evaluate after, since reads (unlike writes)
2587                  * are called without i_mutex protection against truncate
2588                  */
2589                 nr = PAGE_SIZE;
2590                 i_size = i_size_read(inode);
2591                 end_index = i_size >> PAGE_SHIFT;
2592                 if (index == end_index) {
2593                         nr = i_size & ~PAGE_MASK;
2594                         if (nr <= offset) {
2595                                 if (page)
2596                                         put_page(page);
2597                                 break;
2598                         }
2599                 }
2600                 nr -= offset;
2601
2602                 if (page) {
2603                         /*
2604                          * If users can be writing to this page using arbitrary
2605                          * virtual addresses, take care about potential aliasing
2606                          * before reading the page on the kernel side.
2607                          */
2608                         if (mapping_writably_mapped(mapping))
2609                                 flush_dcache_page(page);
2610                         /*
2611                          * Mark the page accessed if we read the beginning.
2612                          */
2613                         if (!offset)
2614                                 mark_page_accessed(page);
2615                 } else {
2616                         page = ZERO_PAGE(0);
2617                         get_page(page);
2618                 }
2619
2620                 /*
2621                  * Ok, we have the page, and it's up-to-date, so
2622                  * now we can copy it to user space...
2623                  */
2624                 ret = copy_page_to_iter(page, offset, nr, to);
2625                 retval += ret;
2626                 offset += ret;
2627                 index += offset >> PAGE_SHIFT;
2628                 offset &= ~PAGE_MASK;
2629
2630                 put_page(page);
2631                 if (!iov_iter_count(to))
2632                         break;
2633                 if (ret < nr) {
2634                         error = -EFAULT;
2635                         break;
2636                 }
2637                 cond_resched();
2638         }
2639
2640         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2641         file_accessed(file);
2642         return retval ? retval : error;
2643 }
2644
2645 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2646 {
2647         struct address_space *mapping = file->f_mapping;
2648         struct inode *inode = mapping->host;
2649
2650         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2651                 return generic_file_llseek_size(file, offset, whence,
2652                                         MAX_LFS_FILESIZE, i_size_read(inode));
2653         if (offset < 0)
2654                 return -ENXIO;
2655
2656         inode_lock(inode);
2657         /* We're holding i_mutex so we can access i_size directly */
2658         offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2659         if (offset >= 0)
2660                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2661         inode_unlock(inode);
2662         return offset;
2663 }
2664
2665 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2666                                                          loff_t len)
2667 {
2668         struct inode *inode = file_inode(file);
2669         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2670         struct shmem_inode_info *info = SHMEM_I(inode);
2671         struct shmem_falloc shmem_falloc;
2672         pgoff_t start, index, end, undo_fallocend;
2673         int error;
2674
2675         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2676                 return -EOPNOTSUPP;
2677
2678         inode_lock(inode);
2679
2680         if (mode & FALLOC_FL_PUNCH_HOLE) {
2681                 struct address_space *mapping = file->f_mapping;
2682                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2683                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2684                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2685
2686                 /* protected by i_mutex */
2687                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2688                         error = -EPERM;
2689                         goto out;
2690                 }
2691
2692                 shmem_falloc.waitq = &shmem_falloc_waitq;
2693                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2694                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2695                 spin_lock(&inode->i_lock);
2696                 inode->i_private = &shmem_falloc;
2697                 spin_unlock(&inode->i_lock);
2698
2699                 if ((u64)unmap_end > (u64)unmap_start)
2700                         unmap_mapping_range(mapping, unmap_start,
2701                                             1 + unmap_end - unmap_start, 0);
2702                 shmem_truncate_range(inode, offset, offset + len - 1);
2703                 /* No need to unmap again: hole-punching leaves COWed pages */
2704
2705                 spin_lock(&inode->i_lock);
2706                 inode->i_private = NULL;
2707                 wake_up_all(&shmem_falloc_waitq);
2708                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2709                 spin_unlock(&inode->i_lock);
2710                 error = 0;
2711                 goto out;
2712         }
2713
2714         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2715         error = inode_newsize_ok(inode, offset + len);
2716         if (error)
2717                 goto out;
2718
2719         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2720                 error = -EPERM;
2721                 goto out;
2722         }
2723
2724         start = offset >> PAGE_SHIFT;
2725         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2726         /* Try to avoid a swapstorm if len is impossible to satisfy */
2727         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2728                 error = -ENOSPC;
2729                 goto out;
2730         }
2731
2732         shmem_falloc.waitq = NULL;
2733         shmem_falloc.start = start;
2734         shmem_falloc.next  = start;
2735         shmem_falloc.nr_falloced = 0;
2736         shmem_falloc.nr_unswapped = 0;
2737         spin_lock(&inode->i_lock);
2738         inode->i_private = &shmem_falloc;
2739         spin_unlock(&inode->i_lock);
2740
2741         /*
2742          * info->fallocend is only relevant when huge pages might be
2743          * involved: to prevent split_huge_page() freeing fallocated
2744          * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2745          */
2746         undo_fallocend = info->fallocend;
2747         if (info->fallocend < end)
2748                 info->fallocend = end;
2749
2750         for (index = start; index < end; ) {
2751                 struct page *page;
2752
2753                 /*
2754                  * Good, the fallocate(2) manpage permits EINTR: we may have
2755                  * been interrupted because we are using up too much memory.
2756                  */
2757                 if (signal_pending(current))
2758                         error = -EINTR;
2759                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2760                         error = -ENOMEM;
2761                 else
2762                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2763                 if (error) {
2764                         info->fallocend = undo_fallocend;
2765                         /* Remove the !PageUptodate pages we added */
2766                         if (index > start) {
2767                                 shmem_undo_range(inode,
2768                                     (loff_t)start << PAGE_SHIFT,
2769                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2770                         }
2771                         goto undone;
2772                 }
2773
2774                 index++;
2775                 /*
2776                  * Here is a more important optimization than it appears:
2777                  * a second SGP_FALLOC on the same huge page will clear it,
2778                  * making it PageUptodate and un-undoable if we fail later.
2779                  */
2780                 if (PageTransCompound(page)) {
2781                         index = round_up(index, HPAGE_PMD_NR);
2782                         /* Beware 32-bit wraparound */
2783                         if (!index)
2784                                 index--;
2785                 }
2786
2787                 /*
2788                  * Inform shmem_writepage() how far we have reached.
2789                  * No need for lock or barrier: we have the page lock.
2790                  */
2791                 if (!PageUptodate(page))
2792                         shmem_falloc.nr_falloced += index - shmem_falloc.next;
2793                 shmem_falloc.next = index;
2794
2795                 /*
2796                  * If !PageUptodate, leave it that way so that freeable pages
2797                  * can be recognized if we need to rollback on error later.
2798                  * But set_page_dirty so that memory pressure will swap rather
2799                  * than free the pages we are allocating (and SGP_CACHE pages
2800                  * might still be clean: we now need to mark those dirty too).
2801                  */
2802                 set_page_dirty(page);
2803                 unlock_page(page);
2804                 put_page(page);
2805                 cond_resched();
2806         }
2807
2808         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2809                 i_size_write(inode, offset + len);
2810         inode->i_ctime = current_time(inode);
2811 undone:
2812         spin_lock(&inode->i_lock);
2813         inode->i_private = NULL;
2814         spin_unlock(&inode->i_lock);
2815 out:
2816         inode_unlock(inode);
2817         return error;
2818 }
2819
2820 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2821 {
2822         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2823
2824         buf->f_type = TMPFS_MAGIC;
2825         buf->f_bsize = PAGE_SIZE;
2826         buf->f_namelen = NAME_MAX;
2827         if (sbinfo->max_blocks) {
2828                 buf->f_blocks = sbinfo->max_blocks;
2829                 buf->f_bavail =
2830                 buf->f_bfree  = sbinfo->max_blocks -
2831                                 percpu_counter_sum(&sbinfo->used_blocks);
2832         }
2833         if (sbinfo->max_inodes) {
2834                 buf->f_files = sbinfo->max_inodes;
2835                 buf->f_ffree = sbinfo->free_inodes;
2836         }
2837         /* else leave those fields 0 like simple_statfs */
2838
2839         buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2840
2841         return 0;
2842 }
2843
2844 /*
2845  * File creation. Allocate an inode, and we're done..
2846  */
2847 static int
2848 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2849             struct dentry *dentry, umode_t mode, dev_t dev)
2850 {
2851         struct inode *inode;
2852         int error = -ENOSPC;
2853
2854         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2855         if (inode) {
2856                 error = simple_acl_create(dir, inode);
2857                 if (error)
2858                         goto out_iput;
2859                 error = security_inode_init_security(inode, dir,
2860                                                      &dentry->d_name,
2861                                                      shmem_initxattrs, NULL);
2862                 if (error && error != -EOPNOTSUPP)
2863                         goto out_iput;
2864
2865                 error = 0;
2866                 dir->i_size += BOGO_DIRENT_SIZE;
2867                 dir->i_ctime = dir->i_mtime = current_time(dir);
2868                 d_instantiate(dentry, inode);
2869                 dget(dentry); /* Extra count - pin the dentry in core */
2870         }
2871         return error;
2872 out_iput:
2873         iput(inode);
2874         return error;
2875 }
2876
2877 static int
2878 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2879               struct dentry *dentry, umode_t mode)
2880 {
2881         struct inode *inode;
2882         int error = -ENOSPC;
2883
2884         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2885         if (inode) {
2886                 error = security_inode_init_security(inode, dir,
2887                                                      NULL,
2888                                                      shmem_initxattrs, NULL);
2889                 if (error && error != -EOPNOTSUPP)
2890                         goto out_iput;
2891                 error = simple_acl_create(dir, inode);
2892                 if (error)
2893                         goto out_iput;
2894                 d_tmpfile(dentry, inode);
2895         }
2896         return error;
2897 out_iput:
2898         iput(inode);
2899         return error;
2900 }
2901
2902 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2903                        struct dentry *dentry, umode_t mode)
2904 {
2905         int error;
2906
2907         if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2908                                  mode | S_IFDIR, 0)))
2909                 return error;
2910         inc_nlink(dir);
2911         return 0;
2912 }
2913
2914 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2915                         struct dentry *dentry, umode_t mode, bool excl)
2916 {
2917         return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2918 }
2919
2920 /*
2921  * Link a file..
2922  */
2923 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2924 {
2925         struct inode *inode = d_inode(old_dentry);
2926         int ret = 0;
2927
2928         /*
2929          * No ordinary (disk based) filesystem counts links as inodes;
2930          * but each new link needs a new dentry, pinning lowmem, and
2931          * tmpfs dentries cannot be pruned until they are unlinked.
2932          * But if an O_TMPFILE file is linked into the tmpfs, the
2933          * first link must skip that, to get the accounting right.
2934          */
2935         if (inode->i_nlink) {
2936                 ret = shmem_reserve_inode(inode->i_sb, NULL);
2937                 if (ret)
2938                         goto out;
2939         }
2940
2941         dir->i_size += BOGO_DIRENT_SIZE;
2942         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2943         inc_nlink(inode);
2944         ihold(inode);   /* New dentry reference */
2945         dget(dentry);           /* Extra pinning count for the created dentry */
2946         d_instantiate(dentry, inode);
2947 out:
2948         return ret;
2949 }
2950
2951 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2952 {
2953         struct inode *inode = d_inode(dentry);
2954
2955         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2956                 shmem_free_inode(inode->i_sb);
2957
2958         dir->i_size -= BOGO_DIRENT_SIZE;
2959         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2960         drop_nlink(inode);
2961         dput(dentry);   /* Undo the count from "create" - this does all the work */
2962         return 0;
2963 }
2964
2965 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2966 {
2967         if (!simple_empty(dentry))
2968                 return -ENOTEMPTY;
2969
2970         drop_nlink(d_inode(dentry));
2971         drop_nlink(dir);
2972         return shmem_unlink(dir, dentry);
2973 }
2974
2975 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2976 {
2977         bool old_is_dir = d_is_dir(old_dentry);
2978         bool new_is_dir = d_is_dir(new_dentry);
2979
2980         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2981                 if (old_is_dir) {
2982                         drop_nlink(old_dir);
2983                         inc_nlink(new_dir);
2984                 } else {
2985                         drop_nlink(new_dir);
2986                         inc_nlink(old_dir);
2987                 }
2988         }
2989         old_dir->i_ctime = old_dir->i_mtime =
2990         new_dir->i_ctime = new_dir->i_mtime =
2991         d_inode(old_dentry)->i_ctime =
2992         d_inode(new_dentry)->i_ctime = current_time(old_dir);
2993
2994         return 0;
2995 }
2996
2997 static int shmem_whiteout(struct user_namespace *mnt_userns,
2998                           struct inode *old_dir, struct dentry *old_dentry)
2999 {
3000         struct dentry *whiteout;
3001         int error;
3002
3003         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3004         if (!whiteout)
3005                 return -ENOMEM;
3006
3007         error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3008                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3009         dput(whiteout);
3010         if (error)
3011                 return error;
3012
3013         /*
3014          * Cheat and hash the whiteout while the old dentry is still in
3015          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3016          *
3017          * d_lookup() will consistently find one of them at this point,
3018          * not sure which one, but that isn't even important.
3019          */
3020         d_rehash(whiteout);
3021         return 0;
3022 }
3023
3024 /*
3025  * The VFS layer already does all the dentry stuff for rename,
3026  * we just have to decrement the usage count for the target if
3027  * it exists so that the VFS layer correctly free's it when it
3028  * gets overwritten.
3029  */
3030 static int shmem_rename2(struct user_namespace *mnt_userns,
3031                          struct inode *old_dir, struct dentry *old_dentry,
3032                          struct inode *new_dir, struct dentry *new_dentry,
3033                          unsigned int flags)
3034 {
3035         struct inode *inode = d_inode(old_dentry);
3036         int they_are_dirs = S_ISDIR(inode->i_mode);
3037
3038         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3039                 return -EINVAL;
3040
3041         if (flags & RENAME_EXCHANGE)
3042                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3043
3044         if (!simple_empty(new_dentry))
3045                 return -ENOTEMPTY;
3046
3047         if (flags & RENAME_WHITEOUT) {
3048                 int error;
3049
3050                 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3051                 if (error)
3052                         return error;
3053         }
3054
3055         if (d_really_is_positive(new_dentry)) {
3056                 (void) shmem_unlink(new_dir, new_dentry);
3057                 if (they_are_dirs) {
3058                         drop_nlink(d_inode(new_dentry));
3059                         drop_nlink(old_dir);
3060                 }
3061         } else if (they_are_dirs) {
3062                 drop_nlink(old_dir);
3063                 inc_nlink(new_dir);
3064         }
3065
3066         old_dir->i_size -= BOGO_DIRENT_SIZE;
3067         new_dir->i_size += BOGO_DIRENT_SIZE;
3068         old_dir->i_ctime = old_dir->i_mtime =
3069         new_dir->i_ctime = new_dir->i_mtime =
3070         inode->i_ctime = current_time(old_dir);
3071         return 0;
3072 }
3073
3074 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3075                          struct dentry *dentry, const char *symname)
3076 {
3077         int error;
3078         int len;
3079         struct inode *inode;
3080         struct page *page;
3081
3082         len = strlen(symname) + 1;
3083         if (len > PAGE_SIZE)
3084                 return -ENAMETOOLONG;
3085
3086         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3087                                 VM_NORESERVE);
3088         if (!inode)
3089                 return -ENOSPC;
3090
3091         error = security_inode_init_security(inode, dir, &dentry->d_name,
3092                                              shmem_initxattrs, NULL);
3093         if (error && error != -EOPNOTSUPP) {
3094                 iput(inode);
3095                 return error;
3096         }
3097
3098         inode->i_size = len-1;
3099         if (len <= SHORT_SYMLINK_LEN) {
3100                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3101                 if (!inode->i_link) {
3102                         iput(inode);
3103                         return -ENOMEM;
3104                 }
3105                 inode->i_op = &shmem_short_symlink_operations;
3106         } else {
3107                 inode_nohighmem(inode);
3108                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3109                 if (error) {
3110                         iput(inode);
3111                         return error;
3112                 }
3113                 inode->i_mapping->a_ops = &shmem_aops;
3114                 inode->i_op = &shmem_symlink_inode_operations;
3115                 memcpy(page_address(page), symname, len);
3116                 SetPageUptodate(page);
3117                 set_page_dirty(page);
3118                 unlock_page(page);
3119                 put_page(page);
3120         }
3121         dir->i_size += BOGO_DIRENT_SIZE;
3122         dir->i_ctime = dir->i_mtime = current_time(dir);
3123         d_instantiate(dentry, inode);
3124         dget(dentry);
3125         return 0;
3126 }
3127
3128 static void shmem_put_link(void *arg)
3129 {
3130         mark_page_accessed(arg);
3131         put_page(arg);
3132 }
3133
3134 static const char *shmem_get_link(struct dentry *dentry,
3135                                   struct inode *inode,
3136                                   struct delayed_call *done)
3137 {
3138         struct page *page = NULL;
3139         int error;
3140         if (!dentry) {
3141                 page = find_get_page(inode->i_mapping, 0);
3142                 if (!page)
3143                         return ERR_PTR(-ECHILD);
3144                 if (!PageUptodate(page)) {
3145                         put_page(page);
3146                         return ERR_PTR(-ECHILD);
3147                 }
3148         } else {
3149                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3150                 if (error)
3151                         return ERR_PTR(error);
3152                 unlock_page(page);
3153         }
3154         set_delayed_call(done, shmem_put_link, page);
3155         return page_address(page);
3156 }
3157
3158 #ifdef CONFIG_TMPFS_XATTR
3159 /*
3160  * Superblocks without xattr inode operations may get some security.* xattr
3161  * support from the LSM "for free". As soon as we have any other xattrs
3162  * like ACLs, we also need to implement the security.* handlers at
3163  * filesystem level, though.
3164  */
3165
3166 /*
3167  * Callback for security_inode_init_security() for acquiring xattrs.
3168  */
3169 static int shmem_initxattrs(struct inode *inode,
3170                             const struct xattr *xattr_array,
3171                             void *fs_info)
3172 {
3173         struct shmem_inode_info *info = SHMEM_I(inode);
3174         const struct xattr *xattr;
3175         struct simple_xattr *new_xattr;
3176         size_t len;
3177
3178         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3179                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3180                 if (!new_xattr)
3181                         return -ENOMEM;
3182
3183                 len = strlen(xattr->name) + 1;
3184                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3185                                           GFP_KERNEL);
3186                 if (!new_xattr->name) {
3187                         kvfree(new_xattr);
3188                         return -ENOMEM;
3189                 }
3190
3191                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3192                        XATTR_SECURITY_PREFIX_LEN);
3193                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3194                        xattr->name, len);
3195
3196                 simple_xattr_list_add(&info->xattrs, new_xattr);
3197         }
3198
3199         return 0;
3200 }
3201
3202 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3203                                    struct dentry *unused, struct inode *inode,
3204                                    const char *name, void *buffer, size_t size)
3205 {
3206         struct shmem_inode_info *info = SHMEM_I(inode);
3207
3208         name = xattr_full_name(handler, name);
3209         return simple_xattr_get(&info->xattrs, name, buffer, size);
3210 }
3211
3212 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3213                                    struct user_namespace *mnt_userns,
3214                                    struct dentry *unused, struct inode *inode,
3215                                    const char *name, const void *value,
3216                                    size_t size, int flags)
3217 {
3218         struct shmem_inode_info *info = SHMEM_I(inode);
3219
3220         name = xattr_full_name(handler, name);
3221         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3222 }
3223
3224 static const struct xattr_handler shmem_security_xattr_handler = {
3225         .prefix = XATTR_SECURITY_PREFIX,
3226         .get = shmem_xattr_handler_get,
3227         .set = shmem_xattr_handler_set,
3228 };
3229
3230 static const struct xattr_handler shmem_trusted_xattr_handler = {
3231         .prefix = XATTR_TRUSTED_PREFIX,
3232         .get = shmem_xattr_handler_get,
3233         .set = shmem_xattr_handler_set,
3234 };
3235
3236 static const struct xattr_handler *shmem_xattr_handlers[] = {
3237 #ifdef CONFIG_TMPFS_POSIX_ACL
3238         &posix_acl_access_xattr_handler,
3239         &posix_acl_default_xattr_handler,
3240 #endif
3241         &shmem_security_xattr_handler,
3242         &shmem_trusted_xattr_handler,
3243         NULL
3244 };
3245
3246 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3247 {
3248         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3249         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3250 }
3251 #endif /* CONFIG_TMPFS_XATTR */
3252
3253 static const struct inode_operations shmem_short_symlink_operations = {
3254         .get_link       = simple_get_link,
3255 #ifdef CONFIG_TMPFS_XATTR
3256         .listxattr      = shmem_listxattr,
3257 #endif
3258 };
3259
3260 static const struct inode_operations shmem_symlink_inode_operations = {
3261         .get_link       = shmem_get_link,
3262 #ifdef CONFIG_TMPFS_XATTR
3263         .listxattr      = shmem_listxattr,
3264 #endif
3265 };
3266
3267 static struct dentry *shmem_get_parent(struct dentry *child)
3268 {
3269         return ERR_PTR(-ESTALE);
3270 }
3271
3272 static int shmem_match(struct inode *ino, void *vfh)
3273 {
3274         __u32 *fh = vfh;
3275         __u64 inum = fh[2];
3276         inum = (inum << 32) | fh[1];
3277         return ino->i_ino == inum && fh[0] == ino->i_generation;
3278 }
3279
3280 /* Find any alias of inode, but prefer a hashed alias */
3281 static struct dentry *shmem_find_alias(struct inode *inode)
3282 {
3283         struct dentry *alias = d_find_alias(inode);
3284
3285         return alias ?: d_find_any_alias(inode);
3286 }
3287
3288
3289 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3290                 struct fid *fid, int fh_len, int fh_type)
3291 {
3292         struct inode *inode;
3293         struct dentry *dentry = NULL;
3294         u64 inum;
3295
3296         if (fh_len < 3)
3297                 return NULL;
3298
3299         inum = fid->raw[2];
3300         inum = (inum << 32) | fid->raw[1];
3301
3302         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3303                         shmem_match, fid->raw);
3304         if (inode) {
3305                 dentry = shmem_find_alias(inode);
3306                 iput(inode);
3307         }
3308
3309         return dentry;
3310 }
3311
3312 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3313                                 struct inode *parent)
3314 {
3315         if (*len < 3) {
3316                 *len = 3;
3317                 return FILEID_INVALID;
3318         }
3319
3320         if (inode_unhashed(inode)) {
3321                 /* Unfortunately insert_inode_hash is not idempotent,
3322                  * so as we hash inodes here rather than at creation
3323                  * time, we need a lock to ensure we only try
3324                  * to do it once
3325                  */
3326                 static DEFINE_SPINLOCK(lock);
3327                 spin_lock(&lock);
3328                 if (inode_unhashed(inode))
3329                         __insert_inode_hash(inode,
3330                                             inode->i_ino + inode->i_generation);
3331                 spin_unlock(&lock);
3332         }
3333
3334         fh[0] = inode->i_generation;
3335         fh[1] = inode->i_ino;
3336         fh[2] = ((__u64)inode->i_ino) >> 32;
3337
3338         *len = 3;
3339         return 1;
3340 }
3341
3342 static const struct export_operations shmem_export_ops = {
3343         .get_parent     = shmem_get_parent,
3344         .encode_fh      = shmem_encode_fh,
3345         .fh_to_dentry   = shmem_fh_to_dentry,
3346 };
3347
3348 enum shmem_param {
3349         Opt_gid,
3350         Opt_huge,
3351         Opt_mode,
3352         Opt_mpol,
3353         Opt_nr_blocks,
3354         Opt_nr_inodes,
3355         Opt_size,
3356         Opt_uid,
3357         Opt_inode32,
3358         Opt_inode64,
3359 };
3360
3361 static const struct constant_table shmem_param_enums_huge[] = {
3362         {"never",       SHMEM_HUGE_NEVER },
3363         {"always",      SHMEM_HUGE_ALWAYS },
3364         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3365         {"advise",      SHMEM_HUGE_ADVISE },
3366         {}
3367 };
3368
3369 const struct fs_parameter_spec shmem_fs_parameters[] = {
3370         fsparam_u32   ("gid",           Opt_gid),
3371         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3372         fsparam_u32oct("mode",          Opt_mode),
3373         fsparam_string("mpol",          Opt_mpol),
3374         fsparam_string("nr_blocks",     Opt_nr_blocks),
3375         fsparam_string("nr_inodes",     Opt_nr_inodes),
3376         fsparam_string("size",          Opt_size),
3377         fsparam_u32   ("uid",           Opt_uid),
3378         fsparam_flag  ("inode32",       Opt_inode32),
3379         fsparam_flag  ("inode64",       Opt_inode64),
3380         {}
3381 };
3382
3383 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3384 {
3385         struct shmem_options *ctx = fc->fs_private;
3386         struct fs_parse_result result;
3387         unsigned long long size;
3388         char *rest;
3389         int opt;
3390
3391         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3392         if (opt < 0)
3393                 return opt;
3394
3395         switch (opt) {
3396         case Opt_size:
3397                 size = memparse(param->string, &rest);
3398                 if (*rest == '%') {
3399                         size <<= PAGE_SHIFT;
3400                         size *= totalram_pages();
3401                         do_div(size, 100);
3402                         rest++;
3403                 }
3404                 if (*rest)
3405                         goto bad_value;
3406                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3407                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3408                 break;
3409         case Opt_nr_blocks:
3410                 ctx->blocks = memparse(param->string, &rest);
3411                 if (*rest)
3412                         goto bad_value;
3413                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3414                 break;
3415         case Opt_nr_inodes:
3416                 ctx->inodes = memparse(param->string, &rest);
3417                 if (*rest)
3418                         goto bad_value;
3419                 ctx->seen |= SHMEM_SEEN_INODES;
3420                 break;
3421         case Opt_mode:
3422                 ctx->mode = result.uint_32 & 07777;
3423                 break;
3424         case Opt_uid:
3425                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3426                 if (!uid_valid(ctx->uid))
3427                         goto bad_value;
3428                 break;
3429         case Opt_gid:
3430                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3431                 if (!gid_valid(ctx->gid))
3432                         goto bad_value;
3433                 break;
3434         case Opt_huge:
3435                 ctx->huge = result.uint_32;
3436                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3437                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3438                       has_transparent_hugepage()))
3439                         goto unsupported_parameter;
3440                 ctx->seen |= SHMEM_SEEN_HUGE;
3441                 break;
3442         case Opt_mpol:
3443                 if (IS_ENABLED(CONFIG_NUMA)) {
3444                         mpol_put(ctx->mpol);
3445                         ctx->mpol = NULL;
3446                         if (mpol_parse_str(param->string, &ctx->mpol))
3447                                 goto bad_value;
3448                         break;
3449                 }
3450                 goto unsupported_parameter;
3451         case Opt_inode32:
3452                 ctx->full_inums = false;
3453                 ctx->seen |= SHMEM_SEEN_INUMS;
3454                 break;
3455         case Opt_inode64:
3456                 if (sizeof(ino_t) < 8) {
3457                         return invalfc(fc,
3458                                        "Cannot use inode64 with <64bit inums in kernel\n");
3459                 }
3460                 ctx->full_inums = true;
3461                 ctx->seen |= SHMEM_SEEN_INUMS;
3462                 break;
3463         }
3464         return 0;
3465
3466 unsupported_parameter:
3467         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3468 bad_value:
3469         return invalfc(fc, "Bad value for '%s'", param->key);
3470 }
3471
3472 static int shmem_parse_options(struct fs_context *fc, void *data)
3473 {
3474         char *options = data;
3475
3476         if (options) {
3477                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3478                 if (err)
3479                         return err;
3480         }
3481
3482         while (options != NULL) {
3483                 char *this_char = options;
3484                 for (;;) {
3485                         /*
3486                          * NUL-terminate this option: unfortunately,
3487                          * mount options form a comma-separated list,
3488                          * but mpol's nodelist may also contain commas.
3489                          */
3490                         options = strchr(options, ',');
3491                         if (options == NULL)
3492                                 break;
3493                         options++;
3494                         if (!isdigit(*options)) {
3495                                 options[-1] = '\0';
3496                                 break;
3497                         }
3498                 }
3499                 if (*this_char) {
3500                         char *value = strchr(this_char, '=');
3501                         size_t len = 0;
3502                         int err;
3503
3504                         if (value) {
3505                                 *value++ = '\0';
3506                                 len = strlen(value);
3507                         }
3508                         err = vfs_parse_fs_string(fc, this_char, value, len);
3509                         if (err < 0)
3510                                 return err;
3511                 }
3512         }
3513         return 0;
3514 }
3515
3516 /*
3517  * Reconfigure a shmem filesystem.
3518  *
3519  * Note that we disallow change from limited->unlimited blocks/inodes while any
3520  * are in use; but we must separately disallow unlimited->limited, because in
3521  * that case we have no record of how much is already in use.
3522  */
3523 static int shmem_reconfigure(struct fs_context *fc)
3524 {
3525         struct shmem_options *ctx = fc->fs_private;
3526         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3527         unsigned long inodes;
3528         struct mempolicy *mpol = NULL;
3529         const char *err;
3530
3531         raw_spin_lock(&sbinfo->stat_lock);
3532         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3533         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3534                 if (!sbinfo->max_blocks) {
3535                         err = "Cannot retroactively limit size";
3536                         goto out;
3537                 }
3538                 if (percpu_counter_compare(&sbinfo->used_blocks,
3539                                            ctx->blocks) > 0) {
3540                         err = "Too small a size for current use";
3541                         goto out;
3542                 }
3543         }
3544         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3545                 if (!sbinfo->max_inodes) {
3546                         err = "Cannot retroactively limit inodes";
3547                         goto out;
3548                 }
3549                 if (ctx->inodes < inodes) {
3550                         err = "Too few inodes for current use";
3551                         goto out;
3552                 }
3553         }
3554
3555         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3556             sbinfo->next_ino > UINT_MAX) {
3557                 err = "Current inum too high to switch to 32-bit inums";
3558                 goto out;
3559         }
3560
3561         if (ctx->seen & SHMEM_SEEN_HUGE)
3562                 sbinfo->huge = ctx->huge;
3563         if (ctx->seen & SHMEM_SEEN_INUMS)
3564                 sbinfo->full_inums = ctx->full_inums;
3565         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3566                 sbinfo->max_blocks  = ctx->blocks;
3567         if (ctx->seen & SHMEM_SEEN_INODES) {
3568                 sbinfo->max_inodes  = ctx->inodes;
3569                 sbinfo->free_inodes = ctx->inodes - inodes;
3570         }
3571
3572         /*
3573          * Preserve previous mempolicy unless mpol remount option was specified.
3574          */
3575         if (ctx->mpol) {
3576                 mpol = sbinfo->mpol;
3577                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3578                 ctx->mpol = NULL;
3579         }
3580         raw_spin_unlock(&sbinfo->stat_lock);
3581         mpol_put(mpol);
3582         return 0;
3583 out:
3584         raw_spin_unlock(&sbinfo->stat_lock);
3585         return invalfc(fc, "%s", err);
3586 }
3587
3588 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3589 {
3590         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3591
3592         if (sbinfo->max_blocks != shmem_default_max_blocks())
3593                 seq_printf(seq, ",size=%luk",
3594                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3595         if (sbinfo->max_inodes != shmem_default_max_inodes())
3596                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3597         if (sbinfo->mode != (0777 | S_ISVTX))
3598                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3599         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3600                 seq_printf(seq, ",uid=%u",
3601                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3602         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3603                 seq_printf(seq, ",gid=%u",
3604                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3605
3606         /*
3607          * Showing inode{64,32} might be useful even if it's the system default,
3608          * since then people don't have to resort to checking both here and
3609          * /proc/config.gz to confirm 64-bit inums were successfully applied
3610          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3611          *
3612          * We hide it when inode64 isn't the default and we are using 32-bit
3613          * inodes, since that probably just means the feature isn't even under
3614          * consideration.
3615          *
3616          * As such:
3617          *
3618          *                     +-----------------+-----------------+
3619          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3620          *  +------------------+-----------------+-----------------+
3621          *  | full_inums=true  | show            | show            |
3622          *  | full_inums=false | show            | hide            |
3623          *  +------------------+-----------------+-----------------+
3624          *
3625          */
3626         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3627                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3628 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3629         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3630         if (sbinfo->huge)
3631                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3632 #endif
3633         shmem_show_mpol(seq, sbinfo->mpol);
3634         return 0;
3635 }
3636
3637 #endif /* CONFIG_TMPFS */
3638
3639 static void shmem_put_super(struct super_block *sb)
3640 {
3641         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3642
3643         free_percpu(sbinfo->ino_batch);
3644         percpu_counter_destroy(&sbinfo->used_blocks);
3645         mpol_put(sbinfo->mpol);
3646         kfree(sbinfo);
3647         sb->s_fs_info = NULL;
3648 }
3649
3650 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3651 {
3652         struct shmem_options *ctx = fc->fs_private;
3653         struct inode *inode;
3654         struct shmem_sb_info *sbinfo;
3655
3656         /* Round up to L1_CACHE_BYTES to resist false sharing */
3657         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3658                                 L1_CACHE_BYTES), GFP_KERNEL);
3659         if (!sbinfo)
3660                 return -ENOMEM;
3661
3662         sb->s_fs_info = sbinfo;
3663
3664 #ifdef CONFIG_TMPFS
3665         /*
3666          * Per default we only allow half of the physical ram per
3667          * tmpfs instance, limiting inodes to one per page of lowmem;
3668          * but the internal instance is left unlimited.
3669          */
3670         if (!(sb->s_flags & SB_KERNMOUNT)) {
3671                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3672                         ctx->blocks = shmem_default_max_blocks();
3673                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3674                         ctx->inodes = shmem_default_max_inodes();
3675                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3676                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3677         } else {
3678                 sb->s_flags |= SB_NOUSER;
3679         }
3680         sb->s_export_op = &shmem_export_ops;
3681         sb->s_flags |= SB_NOSEC;
3682 #else
3683         sb->s_flags |= SB_NOUSER;
3684 #endif
3685         sbinfo->max_blocks = ctx->blocks;
3686         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3687         if (sb->s_flags & SB_KERNMOUNT) {
3688                 sbinfo->ino_batch = alloc_percpu(ino_t);
3689                 if (!sbinfo->ino_batch)
3690                         goto failed;
3691         }
3692         sbinfo->uid = ctx->uid;
3693         sbinfo->gid = ctx->gid;
3694         sbinfo->full_inums = ctx->full_inums;
3695         sbinfo->mode = ctx->mode;
3696         sbinfo->huge = ctx->huge;
3697         sbinfo->mpol = ctx->mpol;
3698         ctx->mpol = NULL;
3699
3700         raw_spin_lock_init(&sbinfo->stat_lock);
3701         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3702                 goto failed;
3703         spin_lock_init(&sbinfo->shrinklist_lock);
3704         INIT_LIST_HEAD(&sbinfo->shrinklist);
3705
3706         sb->s_maxbytes = MAX_LFS_FILESIZE;
3707         sb->s_blocksize = PAGE_SIZE;
3708         sb->s_blocksize_bits = PAGE_SHIFT;
3709         sb->s_magic = TMPFS_MAGIC;
3710         sb->s_op = &shmem_ops;
3711         sb->s_time_gran = 1;
3712 #ifdef CONFIG_TMPFS_XATTR
3713         sb->s_xattr = shmem_xattr_handlers;
3714 #endif
3715 #ifdef CONFIG_TMPFS_POSIX_ACL
3716         sb->s_flags |= SB_POSIXACL;
3717 #endif
3718         uuid_gen(&sb->s_uuid);
3719
3720         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3721         if (!inode)
3722                 goto failed;
3723         inode->i_uid = sbinfo->uid;
3724         inode->i_gid = sbinfo->gid;
3725         sb->s_root = d_make_root(inode);
3726         if (!sb->s_root)
3727                 goto failed;
3728         return 0;
3729
3730 failed:
3731         shmem_put_super(sb);
3732         return -ENOMEM;
3733 }
3734
3735 static int shmem_get_tree(struct fs_context *fc)
3736 {
3737         return get_tree_nodev(fc, shmem_fill_super);
3738 }
3739
3740 static void shmem_free_fc(struct fs_context *fc)
3741 {
3742         struct shmem_options *ctx = fc->fs_private;
3743
3744         if (ctx) {
3745                 mpol_put(ctx->mpol);
3746                 kfree(ctx);
3747         }
3748 }
3749
3750 static const struct fs_context_operations shmem_fs_context_ops = {
3751         .free                   = shmem_free_fc,
3752         .get_tree               = shmem_get_tree,
3753 #ifdef CONFIG_TMPFS
3754         .parse_monolithic       = shmem_parse_options,
3755         .parse_param            = shmem_parse_one,
3756         .reconfigure            = shmem_reconfigure,
3757 #endif
3758 };
3759
3760 static struct kmem_cache *shmem_inode_cachep;
3761
3762 static struct inode *shmem_alloc_inode(struct super_block *sb)
3763 {
3764         struct shmem_inode_info *info;
3765         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3766         if (!info)
3767                 return NULL;
3768         return &info->vfs_inode;
3769 }
3770
3771 static void shmem_free_in_core_inode(struct inode *inode)
3772 {
3773         if (S_ISLNK(inode->i_mode))
3774                 kfree(inode->i_link);
3775         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3776 }
3777
3778 static void shmem_destroy_inode(struct inode *inode)
3779 {
3780         if (S_ISREG(inode->i_mode))
3781                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3782 }
3783
3784 static void shmem_init_inode(void *foo)
3785 {
3786         struct shmem_inode_info *info = foo;
3787         inode_init_once(&info->vfs_inode);
3788 }
3789
3790 static void shmem_init_inodecache(void)
3791 {
3792         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3793                                 sizeof(struct shmem_inode_info),
3794                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3795 }
3796
3797 static void shmem_destroy_inodecache(void)
3798 {
3799         kmem_cache_destroy(shmem_inode_cachep);
3800 }
3801
3802 const struct address_space_operations shmem_aops = {
3803         .writepage      = shmem_writepage,
3804         .set_page_dirty = __set_page_dirty_no_writeback,
3805 #ifdef CONFIG_TMPFS
3806         .write_begin    = shmem_write_begin,
3807         .write_end      = shmem_write_end,
3808 #endif
3809 #ifdef CONFIG_MIGRATION
3810         .migratepage    = migrate_page,
3811 #endif
3812         .error_remove_page = generic_error_remove_page,
3813 };
3814 EXPORT_SYMBOL(shmem_aops);
3815
3816 static const struct file_operations shmem_file_operations = {
3817         .mmap           = shmem_mmap,
3818         .get_unmapped_area = shmem_get_unmapped_area,
3819 #ifdef CONFIG_TMPFS
3820         .llseek         = shmem_file_llseek,
3821         .read_iter      = shmem_file_read_iter,
3822         .write_iter     = generic_file_write_iter,
3823         .fsync          = noop_fsync,
3824         .splice_read    = generic_file_splice_read,
3825         .splice_write   = iter_file_splice_write,
3826         .fallocate      = shmem_fallocate,
3827 #endif
3828 };
3829
3830 static const struct inode_operations shmem_inode_operations = {
3831         .getattr        = shmem_getattr,
3832         .setattr        = shmem_setattr,
3833 #ifdef CONFIG_TMPFS_XATTR
3834         .listxattr      = shmem_listxattr,
3835         .set_acl        = simple_set_acl,
3836 #endif
3837 };
3838
3839 static const struct inode_operations shmem_dir_inode_operations = {
3840 #ifdef CONFIG_TMPFS
3841         .create         = shmem_create,
3842         .lookup         = simple_lookup,
3843         .link           = shmem_link,
3844         .unlink         = shmem_unlink,
3845         .symlink        = shmem_symlink,
3846         .mkdir          = shmem_mkdir,
3847         .rmdir          = shmem_rmdir,
3848         .mknod          = shmem_mknod,
3849         .rename         = shmem_rename2,
3850         .tmpfile        = shmem_tmpfile,
3851 #endif
3852 #ifdef CONFIG_TMPFS_XATTR
3853         .listxattr      = shmem_listxattr,
3854 #endif
3855 #ifdef CONFIG_TMPFS_POSIX_ACL
3856         .setattr        = shmem_setattr,
3857         .set_acl        = simple_set_acl,
3858 #endif
3859 };
3860
3861 static const struct inode_operations shmem_special_inode_operations = {
3862 #ifdef CONFIG_TMPFS_XATTR
3863         .listxattr      = shmem_listxattr,
3864 #endif
3865 #ifdef CONFIG_TMPFS_POSIX_ACL
3866         .setattr        = shmem_setattr,
3867         .set_acl        = simple_set_acl,
3868 #endif
3869 };
3870
3871 static const struct super_operations shmem_ops = {
3872         .alloc_inode    = shmem_alloc_inode,
3873         .free_inode     = shmem_free_in_core_inode,
3874         .destroy_inode  = shmem_destroy_inode,
3875 #ifdef CONFIG_TMPFS
3876         .statfs         = shmem_statfs,
3877         .show_options   = shmem_show_options,
3878 #endif
3879         .evict_inode    = shmem_evict_inode,
3880         .drop_inode     = generic_delete_inode,
3881         .put_super      = shmem_put_super,
3882 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3883         .nr_cached_objects      = shmem_unused_huge_count,
3884         .free_cached_objects    = shmem_unused_huge_scan,
3885 #endif
3886 };
3887
3888 static const struct vm_operations_struct shmem_vm_ops = {
3889         .fault          = shmem_fault,
3890         .map_pages      = filemap_map_pages,
3891 #ifdef CONFIG_NUMA
3892         .set_policy     = shmem_set_policy,
3893         .get_policy     = shmem_get_policy,
3894 #endif
3895 };
3896
3897 int shmem_init_fs_context(struct fs_context *fc)
3898 {
3899         struct shmem_options *ctx;
3900
3901         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3902         if (!ctx)
3903                 return -ENOMEM;
3904
3905         ctx->mode = 0777 | S_ISVTX;
3906         ctx->uid = current_fsuid();
3907         ctx->gid = current_fsgid();
3908
3909         fc->fs_private = ctx;
3910         fc->ops = &shmem_fs_context_ops;
3911         return 0;
3912 }
3913
3914 static struct file_system_type shmem_fs_type = {
3915         .owner          = THIS_MODULE,
3916         .name           = "tmpfs",
3917         .init_fs_context = shmem_init_fs_context,
3918 #ifdef CONFIG_TMPFS
3919         .parameters     = shmem_fs_parameters,
3920 #endif
3921         .kill_sb        = kill_litter_super,
3922         .fs_flags       = FS_USERNS_MOUNT | FS_THP_SUPPORT,
3923 };
3924
3925 int __init shmem_init(void)
3926 {
3927         int error;
3928
3929         shmem_init_inodecache();
3930
3931         error = register_filesystem(&shmem_fs_type);
3932         if (error) {
3933                 pr_err("Could not register tmpfs\n");
3934                 goto out2;
3935         }
3936
3937         shm_mnt = kern_mount(&shmem_fs_type);
3938         if (IS_ERR(shm_mnt)) {
3939                 error = PTR_ERR(shm_mnt);
3940                 pr_err("Could not kern_mount tmpfs\n");
3941                 goto out1;
3942         }
3943
3944 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3945         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3946                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3947         else
3948                 shmem_huge = 0; /* just in case it was patched */
3949 #endif
3950         return 0;
3951
3952 out1:
3953         unregister_filesystem(&shmem_fs_type);
3954 out2:
3955         shmem_destroy_inodecache();
3956         shm_mnt = ERR_PTR(error);
3957         return error;
3958 }
3959
3960 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3961 static ssize_t shmem_enabled_show(struct kobject *kobj,
3962                                   struct kobj_attribute *attr, char *buf)
3963 {
3964         static const int values[] = {
3965                 SHMEM_HUGE_ALWAYS,
3966                 SHMEM_HUGE_WITHIN_SIZE,
3967                 SHMEM_HUGE_ADVISE,
3968                 SHMEM_HUGE_NEVER,
3969                 SHMEM_HUGE_DENY,
3970                 SHMEM_HUGE_FORCE,
3971         };
3972         int len = 0;
3973         int i;
3974
3975         for (i = 0; i < ARRAY_SIZE(values); i++) {
3976                 len += sysfs_emit_at(buf, len,
3977                                      shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3978                                      i ? " " : "",
3979                                      shmem_format_huge(values[i]));
3980         }
3981
3982         len += sysfs_emit_at(buf, len, "\n");
3983
3984         return len;
3985 }
3986
3987 static ssize_t shmem_enabled_store(struct kobject *kobj,
3988                 struct kobj_attribute *attr, const char *buf, size_t count)
3989 {
3990         char tmp[16];
3991         int huge;
3992
3993         if (count + 1 > sizeof(tmp))
3994                 return -EINVAL;
3995         memcpy(tmp, buf, count);
3996         tmp[count] = '\0';
3997         if (count && tmp[count - 1] == '\n')
3998                 tmp[count - 1] = '\0';
3999
4000         huge = shmem_parse_huge(tmp);
4001         if (huge == -EINVAL)
4002                 return -EINVAL;
4003         if (!has_transparent_hugepage() &&
4004                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4005                 return -EINVAL;
4006
4007         shmem_huge = huge;
4008         if (shmem_huge > SHMEM_HUGE_DENY)
4009                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4010         return count;
4011 }
4012
4013 struct kobj_attribute shmem_enabled_attr =
4014         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4015 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4016
4017 #else /* !CONFIG_SHMEM */
4018
4019 /*
4020  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4021  *
4022  * This is intended for small system where the benefits of the full
4023  * shmem code (swap-backed and resource-limited) are outweighed by
4024  * their complexity. On systems without swap this code should be
4025  * effectively equivalent, but much lighter weight.
4026  */
4027
4028 static struct file_system_type shmem_fs_type = {
4029         .name           = "tmpfs",
4030         .init_fs_context = ramfs_init_fs_context,
4031         .parameters     = ramfs_fs_parameters,
4032         .kill_sb        = kill_litter_super,
4033         .fs_flags       = FS_USERNS_MOUNT,
4034 };
4035
4036 int __init shmem_init(void)
4037 {
4038         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4039
4040         shm_mnt = kern_mount(&shmem_fs_type);
4041         BUG_ON(IS_ERR(shm_mnt));
4042
4043         return 0;
4044 }
4045
4046 int shmem_unuse(unsigned int type, bool frontswap,
4047                 unsigned long *fs_pages_to_unuse)
4048 {
4049         return 0;
4050 }
4051
4052 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4053 {
4054         return 0;
4055 }
4056
4057 void shmem_unlock_mapping(struct address_space *mapping)
4058 {
4059 }
4060
4061 #ifdef CONFIG_MMU
4062 unsigned long shmem_get_unmapped_area(struct file *file,
4063                                       unsigned long addr, unsigned long len,
4064                                       unsigned long pgoff, unsigned long flags)
4065 {
4066         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4067 }
4068 #endif
4069
4070 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4071 {
4072         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4073 }
4074 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4075
4076 #define shmem_vm_ops                            generic_file_vm_ops
4077 #define shmem_file_operations                   ramfs_file_operations
4078 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4079 #define shmem_acct_size(flags, size)            0
4080 #define shmem_unacct_size(flags, size)          do {} while (0)
4081
4082 #endif /* CONFIG_SHMEM */
4083
4084 /* common code */
4085
4086 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4087                                        unsigned long flags, unsigned int i_flags)
4088 {
4089         struct inode *inode;
4090         struct file *res;
4091
4092         if (IS_ERR(mnt))
4093                 return ERR_CAST(mnt);
4094
4095         if (size < 0 || size > MAX_LFS_FILESIZE)
4096                 return ERR_PTR(-EINVAL);
4097
4098         if (shmem_acct_size(flags, size))
4099                 return ERR_PTR(-ENOMEM);
4100
4101         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4102                                 flags);
4103         if (unlikely(!inode)) {
4104                 shmem_unacct_size(flags, size);
4105                 return ERR_PTR(-ENOSPC);
4106         }
4107         inode->i_flags |= i_flags;
4108         inode->i_size = size;
4109         clear_nlink(inode);     /* It is unlinked */
4110         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4111         if (!IS_ERR(res))
4112                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4113                                 &shmem_file_operations);
4114         if (IS_ERR(res))
4115                 iput(inode);
4116         return res;
4117 }
4118
4119 /**
4120  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4121  *      kernel internal.  There will be NO LSM permission checks against the
4122  *      underlying inode.  So users of this interface must do LSM checks at a
4123  *      higher layer.  The users are the big_key and shm implementations.  LSM
4124  *      checks are provided at the key or shm level rather than the inode.
4125  * @name: name for dentry (to be seen in /proc/<pid>/maps
4126  * @size: size to be set for the file
4127  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4128  */
4129 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4130 {
4131         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4132 }
4133
4134 /**
4135  * shmem_file_setup - get an unlinked file living in tmpfs
4136  * @name: name for dentry (to be seen in /proc/<pid>/maps
4137  * @size: size to be set for the file
4138  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4139  */
4140 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4141 {
4142         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4143 }
4144 EXPORT_SYMBOL_GPL(shmem_file_setup);
4145
4146 /**
4147  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4148  * @mnt: the tmpfs mount where the file will be created
4149  * @name: name for dentry (to be seen in /proc/<pid>/maps
4150  * @size: size to be set for the file
4151  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4152  */
4153 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4154                                        loff_t size, unsigned long flags)
4155 {
4156         return __shmem_file_setup(mnt, name, size, flags, 0);
4157 }
4158 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4159
4160 /**
4161  * shmem_zero_setup - setup a shared anonymous mapping
4162  * @vma: the vma to be mmapped is prepared by do_mmap
4163  */
4164 int shmem_zero_setup(struct vm_area_struct *vma)
4165 {
4166         struct file *file;
4167         loff_t size = vma->vm_end - vma->vm_start;
4168
4169         /*
4170          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4171          * between XFS directory reading and selinux: since this file is only
4172          * accessible to the user through its mapping, use S_PRIVATE flag to
4173          * bypass file security, in the same way as shmem_kernel_file_setup().
4174          */
4175         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4176         if (IS_ERR(file))
4177                 return PTR_ERR(file);
4178
4179         if (vma->vm_file)
4180                 fput(vma->vm_file);
4181         vma->vm_file = file;
4182         vma->vm_ops = &shmem_vm_ops;
4183
4184         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4185                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4186                         (vma->vm_end & HPAGE_PMD_MASK)) {
4187                 khugepaged_enter(vma, vma->vm_flags);
4188         }
4189
4190         return 0;
4191 }
4192
4193 /**
4194  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4195  * @mapping:    the page's address_space
4196  * @index:      the page index
4197  * @gfp:        the page allocator flags to use if allocating
4198  *
4199  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4200  * with any new page allocations done using the specified allocation flags.
4201  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4202  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4203  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4204  *
4205  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4206  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4207  */
4208 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4209                                          pgoff_t index, gfp_t gfp)
4210 {
4211 #ifdef CONFIG_SHMEM
4212         struct inode *inode = mapping->host;
4213         struct page *page;
4214         int error;
4215
4216         BUG_ON(!shmem_mapping(mapping));
4217         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4218                                   gfp, NULL, NULL, NULL);
4219         if (error)
4220                 page = ERR_PTR(error);
4221         else
4222                 unlock_page(page);
4223         return page;
4224 #else
4225         /*
4226          * The tiny !SHMEM case uses ramfs without swap
4227          */
4228         return read_cache_page_gfp(mapping, index, gfp);
4229 #endif
4230 }
4231 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);