bitmap: unify find_bit operations
[linux-2.6-microblaze.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42
43 static struct vfsmount *shm_mnt;
44
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81
82 #include <linux/uaccess.h>
83
84 #include "internal.h"
85
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_rwsem making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102         pgoff_t start;          /* start of range currently being fallocated */
103         pgoff_t next;           /* the next page offset to be fallocated */
104         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
105         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
106 };
107
108 struct shmem_options {
109         unsigned long long blocks;
110         unsigned long long inodes;
111         struct mempolicy *mpol;
112         kuid_t uid;
113         kgid_t gid;
114         umode_t mode;
115         bool full_inums;
116         int huge;
117         int seen;
118 #define SHMEM_SEEN_BLOCKS 1
119 #define SHMEM_SEEN_INODES 2
120 #define SHMEM_SEEN_HUGE 4
121 #define SHMEM_SEEN_INUMS 8
122 };
123
124 #ifdef CONFIG_TMPFS
125 static unsigned long shmem_default_max_blocks(void)
126 {
127         return totalram_pages() / 2;
128 }
129
130 static unsigned long shmem_default_max_inodes(void)
131 {
132         unsigned long nr_pages = totalram_pages();
133
134         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
135 }
136 #endif
137
138 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
139                              struct page **pagep, enum sgp_type sgp,
140                              gfp_t gfp, struct vm_area_struct *vma,
141                              vm_fault_t *fault_type);
142 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
143                 struct page **pagep, enum sgp_type sgp,
144                 gfp_t gfp, struct vm_area_struct *vma,
145                 struct vm_fault *vmf, vm_fault_t *fault_type);
146
147 int shmem_getpage(struct inode *inode, pgoff_t index,
148                 struct page **pagep, enum sgp_type sgp)
149 {
150         return shmem_getpage_gfp(inode, index, pagep, sgp,
151                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
152 }
153
154 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
155 {
156         return sb->s_fs_info;
157 }
158
159 /*
160  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
161  * for shared memory and for shared anonymous (/dev/zero) mappings
162  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
163  * consistent with the pre-accounting of private mappings ...
164  */
165 static inline int shmem_acct_size(unsigned long flags, loff_t size)
166 {
167         return (flags & VM_NORESERVE) ?
168                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
169 }
170
171 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
172 {
173         if (!(flags & VM_NORESERVE))
174                 vm_unacct_memory(VM_ACCT(size));
175 }
176
177 static inline int shmem_reacct_size(unsigned long flags,
178                 loff_t oldsize, loff_t newsize)
179 {
180         if (!(flags & VM_NORESERVE)) {
181                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
182                         return security_vm_enough_memory_mm(current->mm,
183                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
184                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
185                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
186         }
187         return 0;
188 }
189
190 /*
191  * ... whereas tmpfs objects are accounted incrementally as
192  * pages are allocated, in order to allow large sparse files.
193  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
194  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
195  */
196 static inline int shmem_acct_block(unsigned long flags, long pages)
197 {
198         if (!(flags & VM_NORESERVE))
199                 return 0;
200
201         return security_vm_enough_memory_mm(current->mm,
202                         pages * VM_ACCT(PAGE_SIZE));
203 }
204
205 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
206 {
207         if (flags & VM_NORESERVE)
208                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
209 }
210
211 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
212 {
213         struct shmem_inode_info *info = SHMEM_I(inode);
214         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
215
216         if (shmem_acct_block(info->flags, pages))
217                 return false;
218
219         if (sbinfo->max_blocks) {
220                 if (percpu_counter_compare(&sbinfo->used_blocks,
221                                            sbinfo->max_blocks - pages) > 0)
222                         goto unacct;
223                 percpu_counter_add(&sbinfo->used_blocks, pages);
224         }
225
226         return true;
227
228 unacct:
229         shmem_unacct_blocks(info->flags, pages);
230         return false;
231 }
232
233 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
234 {
235         struct shmem_inode_info *info = SHMEM_I(inode);
236         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
237
238         if (sbinfo->max_blocks)
239                 percpu_counter_sub(&sbinfo->used_blocks, pages);
240         shmem_unacct_blocks(info->flags, pages);
241 }
242
243 static const struct super_operations shmem_ops;
244 const struct address_space_operations shmem_aops;
245 static const struct file_operations shmem_file_operations;
246 static const struct inode_operations shmem_inode_operations;
247 static const struct inode_operations shmem_dir_inode_operations;
248 static const struct inode_operations shmem_special_inode_operations;
249 static const struct vm_operations_struct shmem_vm_ops;
250 static struct file_system_type shmem_fs_type;
251
252 bool vma_is_shmem(struct vm_area_struct *vma)
253 {
254         return vma->vm_ops == &shmem_vm_ops;
255 }
256
257 static LIST_HEAD(shmem_swaplist);
258 static DEFINE_MUTEX(shmem_swaplist_mutex);
259
260 /*
261  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
262  * produces a novel ino for the newly allocated inode.
263  *
264  * It may also be called when making a hard link to permit the space needed by
265  * each dentry. However, in that case, no new inode number is needed since that
266  * internally draws from another pool of inode numbers (currently global
267  * get_next_ino()). This case is indicated by passing NULL as inop.
268  */
269 #define SHMEM_INO_BATCH 1024
270 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
271 {
272         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
273         ino_t ino;
274
275         if (!(sb->s_flags & SB_KERNMOUNT)) {
276                 raw_spin_lock(&sbinfo->stat_lock);
277                 if (sbinfo->max_inodes) {
278                         if (!sbinfo->free_inodes) {
279                                 raw_spin_unlock(&sbinfo->stat_lock);
280                                 return -ENOSPC;
281                         }
282                         sbinfo->free_inodes--;
283                 }
284                 if (inop) {
285                         ino = sbinfo->next_ino++;
286                         if (unlikely(is_zero_ino(ino)))
287                                 ino = sbinfo->next_ino++;
288                         if (unlikely(!sbinfo->full_inums &&
289                                      ino > UINT_MAX)) {
290                                 /*
291                                  * Emulate get_next_ino uint wraparound for
292                                  * compatibility
293                                  */
294                                 if (IS_ENABLED(CONFIG_64BIT))
295                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
296                                                 __func__, MINOR(sb->s_dev));
297                                 sbinfo->next_ino = 1;
298                                 ino = sbinfo->next_ino++;
299                         }
300                         *inop = ino;
301                 }
302                 raw_spin_unlock(&sbinfo->stat_lock);
303         } else if (inop) {
304                 /*
305                  * __shmem_file_setup, one of our callers, is lock-free: it
306                  * doesn't hold stat_lock in shmem_reserve_inode since
307                  * max_inodes is always 0, and is called from potentially
308                  * unknown contexts. As such, use a per-cpu batched allocator
309                  * which doesn't require the per-sb stat_lock unless we are at
310                  * the batch boundary.
311                  *
312                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
313                  * shmem mounts are not exposed to userspace, so we don't need
314                  * to worry about things like glibc compatibility.
315                  */
316                 ino_t *next_ino;
317
318                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
319                 ino = *next_ino;
320                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
321                         raw_spin_lock(&sbinfo->stat_lock);
322                         ino = sbinfo->next_ino;
323                         sbinfo->next_ino += SHMEM_INO_BATCH;
324                         raw_spin_unlock(&sbinfo->stat_lock);
325                         if (unlikely(is_zero_ino(ino)))
326                                 ino++;
327                 }
328                 *inop = ino;
329                 *next_ino = ++ino;
330                 put_cpu();
331         }
332
333         return 0;
334 }
335
336 static void shmem_free_inode(struct super_block *sb)
337 {
338         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339         if (sbinfo->max_inodes) {
340                 raw_spin_lock(&sbinfo->stat_lock);
341                 sbinfo->free_inodes++;
342                 raw_spin_unlock(&sbinfo->stat_lock);
343         }
344 }
345
346 /**
347  * shmem_recalc_inode - recalculate the block usage of an inode
348  * @inode: inode to recalc
349  *
350  * We have to calculate the free blocks since the mm can drop
351  * undirtied hole pages behind our back.
352  *
353  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
354  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
355  *
356  * It has to be called with the spinlock held.
357  */
358 static void shmem_recalc_inode(struct inode *inode)
359 {
360         struct shmem_inode_info *info = SHMEM_I(inode);
361         long freed;
362
363         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
364         if (freed > 0) {
365                 info->alloced -= freed;
366                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
367                 shmem_inode_unacct_blocks(inode, freed);
368         }
369 }
370
371 bool shmem_charge(struct inode *inode, long pages)
372 {
373         struct shmem_inode_info *info = SHMEM_I(inode);
374         unsigned long flags;
375
376         if (!shmem_inode_acct_block(inode, pages))
377                 return false;
378
379         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
380         inode->i_mapping->nrpages += pages;
381
382         spin_lock_irqsave(&info->lock, flags);
383         info->alloced += pages;
384         inode->i_blocks += pages * BLOCKS_PER_PAGE;
385         shmem_recalc_inode(inode);
386         spin_unlock_irqrestore(&info->lock, flags);
387
388         return true;
389 }
390
391 void shmem_uncharge(struct inode *inode, long pages)
392 {
393         struct shmem_inode_info *info = SHMEM_I(inode);
394         unsigned long flags;
395
396         /* nrpages adjustment done by __delete_from_page_cache() or caller */
397
398         spin_lock_irqsave(&info->lock, flags);
399         info->alloced -= pages;
400         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
401         shmem_recalc_inode(inode);
402         spin_unlock_irqrestore(&info->lock, flags);
403
404         shmem_inode_unacct_blocks(inode, pages);
405 }
406
407 /*
408  * Replace item expected in xarray by a new item, while holding xa_lock.
409  */
410 static int shmem_replace_entry(struct address_space *mapping,
411                         pgoff_t index, void *expected, void *replacement)
412 {
413         XA_STATE(xas, &mapping->i_pages, index);
414         void *item;
415
416         VM_BUG_ON(!expected);
417         VM_BUG_ON(!replacement);
418         item = xas_load(&xas);
419         if (item != expected)
420                 return -ENOENT;
421         xas_store(&xas, replacement);
422         return 0;
423 }
424
425 /*
426  * Sometimes, before we decide whether to proceed or to fail, we must check
427  * that an entry was not already brought back from swap by a racing thread.
428  *
429  * Checking page is not enough: by the time a SwapCache page is locked, it
430  * might be reused, and again be SwapCache, using the same swap as before.
431  */
432 static bool shmem_confirm_swap(struct address_space *mapping,
433                                pgoff_t index, swp_entry_t swap)
434 {
435         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
436 }
437
438 /*
439  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
440  *
441  * SHMEM_HUGE_NEVER:
442  *      disables huge pages for the mount;
443  * SHMEM_HUGE_ALWAYS:
444  *      enables huge pages for the mount;
445  * SHMEM_HUGE_WITHIN_SIZE:
446  *      only allocate huge pages if the page will be fully within i_size,
447  *      also respect fadvise()/madvise() hints;
448  * SHMEM_HUGE_ADVISE:
449  *      only allocate huge pages if requested with fadvise()/madvise();
450  */
451
452 #define SHMEM_HUGE_NEVER        0
453 #define SHMEM_HUGE_ALWAYS       1
454 #define SHMEM_HUGE_WITHIN_SIZE  2
455 #define SHMEM_HUGE_ADVISE       3
456
457 /*
458  * Special values.
459  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
460  *
461  * SHMEM_HUGE_DENY:
462  *      disables huge on shm_mnt and all mounts, for emergency use;
463  * SHMEM_HUGE_FORCE:
464  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
465  *
466  */
467 #define SHMEM_HUGE_DENY         (-1)
468 #define SHMEM_HUGE_FORCE        (-2)
469
470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
471 /* ifdef here to avoid bloating shmem.o when not necessary */
472
473 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
474
475 bool shmem_is_huge(struct vm_area_struct *vma,
476                    struct inode *inode, pgoff_t index)
477 {
478         loff_t i_size;
479
480         if (shmem_huge == SHMEM_HUGE_DENY)
481                 return false;
482         if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
483             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
484                 return false;
485         if (shmem_huge == SHMEM_HUGE_FORCE)
486                 return true;
487
488         switch (SHMEM_SB(inode->i_sb)->huge) {
489         case SHMEM_HUGE_ALWAYS:
490                 return true;
491         case SHMEM_HUGE_WITHIN_SIZE:
492                 index = round_up(index + 1, HPAGE_PMD_NR);
493                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
494                 if (i_size >> PAGE_SHIFT >= index)
495                         return true;
496                 fallthrough;
497         case SHMEM_HUGE_ADVISE:
498                 if (vma && (vma->vm_flags & VM_HUGEPAGE))
499                         return true;
500                 fallthrough;
501         default:
502                 return false;
503         }
504 }
505
506 #if defined(CONFIG_SYSFS)
507 static int shmem_parse_huge(const char *str)
508 {
509         if (!strcmp(str, "never"))
510                 return SHMEM_HUGE_NEVER;
511         if (!strcmp(str, "always"))
512                 return SHMEM_HUGE_ALWAYS;
513         if (!strcmp(str, "within_size"))
514                 return SHMEM_HUGE_WITHIN_SIZE;
515         if (!strcmp(str, "advise"))
516                 return SHMEM_HUGE_ADVISE;
517         if (!strcmp(str, "deny"))
518                 return SHMEM_HUGE_DENY;
519         if (!strcmp(str, "force"))
520                 return SHMEM_HUGE_FORCE;
521         return -EINVAL;
522 }
523 #endif
524
525 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
526 static const char *shmem_format_huge(int huge)
527 {
528         switch (huge) {
529         case SHMEM_HUGE_NEVER:
530                 return "never";
531         case SHMEM_HUGE_ALWAYS:
532                 return "always";
533         case SHMEM_HUGE_WITHIN_SIZE:
534                 return "within_size";
535         case SHMEM_HUGE_ADVISE:
536                 return "advise";
537         case SHMEM_HUGE_DENY:
538                 return "deny";
539         case SHMEM_HUGE_FORCE:
540                 return "force";
541         default:
542                 VM_BUG_ON(1);
543                 return "bad_val";
544         }
545 }
546 #endif
547
548 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
549                 struct shrink_control *sc, unsigned long nr_to_split)
550 {
551         LIST_HEAD(list), *pos, *next;
552         LIST_HEAD(to_remove);
553         struct inode *inode;
554         struct shmem_inode_info *info;
555         struct page *page;
556         unsigned long batch = sc ? sc->nr_to_scan : 128;
557         int removed = 0, split = 0;
558
559         if (list_empty(&sbinfo->shrinklist))
560                 return SHRINK_STOP;
561
562         spin_lock(&sbinfo->shrinklist_lock);
563         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
564                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
565
566                 /* pin the inode */
567                 inode = igrab(&info->vfs_inode);
568
569                 /* inode is about to be evicted */
570                 if (!inode) {
571                         list_del_init(&info->shrinklist);
572                         removed++;
573                         goto next;
574                 }
575
576                 /* Check if there's anything to gain */
577                 if (round_up(inode->i_size, PAGE_SIZE) ==
578                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
579                         list_move(&info->shrinklist, &to_remove);
580                         removed++;
581                         goto next;
582                 }
583
584                 list_move(&info->shrinklist, &list);
585 next:
586                 if (!--batch)
587                         break;
588         }
589         spin_unlock(&sbinfo->shrinklist_lock);
590
591         list_for_each_safe(pos, next, &to_remove) {
592                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
593                 inode = &info->vfs_inode;
594                 list_del_init(&info->shrinklist);
595                 iput(inode);
596         }
597
598         list_for_each_safe(pos, next, &list) {
599                 int ret;
600
601                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
602                 inode = &info->vfs_inode;
603
604                 if (nr_to_split && split >= nr_to_split)
605                         goto leave;
606
607                 page = find_get_page(inode->i_mapping,
608                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
609                 if (!page)
610                         goto drop;
611
612                 /* No huge page at the end of the file: nothing to split */
613                 if (!PageTransHuge(page)) {
614                         put_page(page);
615                         goto drop;
616                 }
617
618                 /*
619                  * Leave the inode on the list if we failed to lock
620                  * the page at this time.
621                  *
622                  * Waiting for the lock may lead to deadlock in the
623                  * reclaim path.
624                  */
625                 if (!trylock_page(page)) {
626                         put_page(page);
627                         goto leave;
628                 }
629
630                 ret = split_huge_page(page);
631                 unlock_page(page);
632                 put_page(page);
633
634                 /* If split failed leave the inode on the list */
635                 if (ret)
636                         goto leave;
637
638                 split++;
639 drop:
640                 list_del_init(&info->shrinklist);
641                 removed++;
642 leave:
643                 iput(inode);
644         }
645
646         spin_lock(&sbinfo->shrinklist_lock);
647         list_splice_tail(&list, &sbinfo->shrinklist);
648         sbinfo->shrinklist_len -= removed;
649         spin_unlock(&sbinfo->shrinklist_lock);
650
651         return split;
652 }
653
654 static long shmem_unused_huge_scan(struct super_block *sb,
655                 struct shrink_control *sc)
656 {
657         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
658
659         if (!READ_ONCE(sbinfo->shrinklist_len))
660                 return SHRINK_STOP;
661
662         return shmem_unused_huge_shrink(sbinfo, sc, 0);
663 }
664
665 static long shmem_unused_huge_count(struct super_block *sb,
666                 struct shrink_control *sc)
667 {
668         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
669         return READ_ONCE(sbinfo->shrinklist_len);
670 }
671 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
672
673 #define shmem_huge SHMEM_HUGE_DENY
674
675 bool shmem_is_huge(struct vm_area_struct *vma,
676                    struct inode *inode, pgoff_t index)
677 {
678         return false;
679 }
680
681 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
682                 struct shrink_control *sc, unsigned long nr_to_split)
683 {
684         return 0;
685 }
686 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
687
688 /*
689  * Like add_to_page_cache_locked, but error if expected item has gone.
690  */
691 static int shmem_add_to_page_cache(struct page *page,
692                                    struct address_space *mapping,
693                                    pgoff_t index, void *expected, gfp_t gfp,
694                                    struct mm_struct *charge_mm)
695 {
696         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
697         unsigned long i = 0;
698         unsigned long nr = compound_nr(page);
699         int error;
700
701         VM_BUG_ON_PAGE(PageTail(page), page);
702         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
703         VM_BUG_ON_PAGE(!PageLocked(page), page);
704         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
705         VM_BUG_ON(expected && PageTransHuge(page));
706
707         page_ref_add(page, nr);
708         page->mapping = mapping;
709         page->index = index;
710
711         if (!PageSwapCache(page)) {
712                 error = mem_cgroup_charge(page_folio(page), charge_mm, gfp);
713                 if (error) {
714                         if (PageTransHuge(page)) {
715                                 count_vm_event(THP_FILE_FALLBACK);
716                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
717                         }
718                         goto error;
719                 }
720         }
721         cgroup_throttle_swaprate(page, gfp);
722
723         do {
724                 void *entry;
725                 xas_lock_irq(&xas);
726                 entry = xas_find_conflict(&xas);
727                 if (entry != expected)
728                         xas_set_err(&xas, -EEXIST);
729                 xas_create_range(&xas);
730                 if (xas_error(&xas))
731                         goto unlock;
732 next:
733                 xas_store(&xas, page);
734                 if (++i < nr) {
735                         xas_next(&xas);
736                         goto next;
737                 }
738                 if (PageTransHuge(page)) {
739                         count_vm_event(THP_FILE_ALLOC);
740                         __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
741                 }
742                 mapping->nrpages += nr;
743                 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
744                 __mod_lruvec_page_state(page, NR_SHMEM, nr);
745 unlock:
746                 xas_unlock_irq(&xas);
747         } while (xas_nomem(&xas, gfp));
748
749         if (xas_error(&xas)) {
750                 error = xas_error(&xas);
751                 goto error;
752         }
753
754         return 0;
755 error:
756         page->mapping = NULL;
757         page_ref_sub(page, nr);
758         return error;
759 }
760
761 /*
762  * Like delete_from_page_cache, but substitutes swap for page.
763  */
764 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
765 {
766         struct address_space *mapping = page->mapping;
767         int error;
768
769         VM_BUG_ON_PAGE(PageCompound(page), page);
770
771         xa_lock_irq(&mapping->i_pages);
772         error = shmem_replace_entry(mapping, page->index, page, radswap);
773         page->mapping = NULL;
774         mapping->nrpages--;
775         __dec_lruvec_page_state(page, NR_FILE_PAGES);
776         __dec_lruvec_page_state(page, NR_SHMEM);
777         xa_unlock_irq(&mapping->i_pages);
778         put_page(page);
779         BUG_ON(error);
780 }
781
782 /*
783  * Remove swap entry from page cache, free the swap and its page cache.
784  */
785 static int shmem_free_swap(struct address_space *mapping,
786                            pgoff_t index, void *radswap)
787 {
788         void *old;
789
790         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
791         if (old != radswap)
792                 return -ENOENT;
793         free_swap_and_cache(radix_to_swp_entry(radswap));
794         return 0;
795 }
796
797 /*
798  * Determine (in bytes) how many of the shmem object's pages mapped by the
799  * given offsets are swapped out.
800  *
801  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
802  * as long as the inode doesn't go away and racy results are not a problem.
803  */
804 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
805                                                 pgoff_t start, pgoff_t end)
806 {
807         XA_STATE(xas, &mapping->i_pages, start);
808         struct page *page;
809         unsigned long swapped = 0;
810
811         rcu_read_lock();
812         xas_for_each(&xas, page, end - 1) {
813                 if (xas_retry(&xas, page))
814                         continue;
815                 if (xa_is_value(page))
816                         swapped++;
817
818                 if (need_resched()) {
819                         xas_pause(&xas);
820                         cond_resched_rcu();
821                 }
822         }
823
824         rcu_read_unlock();
825
826         return swapped << PAGE_SHIFT;
827 }
828
829 /*
830  * Determine (in bytes) how many of the shmem object's pages mapped by the
831  * given vma is swapped out.
832  *
833  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
834  * as long as the inode doesn't go away and racy results are not a problem.
835  */
836 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
837 {
838         struct inode *inode = file_inode(vma->vm_file);
839         struct shmem_inode_info *info = SHMEM_I(inode);
840         struct address_space *mapping = inode->i_mapping;
841         unsigned long swapped;
842
843         /* Be careful as we don't hold info->lock */
844         swapped = READ_ONCE(info->swapped);
845
846         /*
847          * The easier cases are when the shmem object has nothing in swap, or
848          * the vma maps it whole. Then we can simply use the stats that we
849          * already track.
850          */
851         if (!swapped)
852                 return 0;
853
854         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
855                 return swapped << PAGE_SHIFT;
856
857         /* Here comes the more involved part */
858         return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
859                                         vma->vm_pgoff + vma_pages(vma));
860 }
861
862 /*
863  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
864  */
865 void shmem_unlock_mapping(struct address_space *mapping)
866 {
867         struct pagevec pvec;
868         pgoff_t index = 0;
869
870         pagevec_init(&pvec);
871         /*
872          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
873          */
874         while (!mapping_unevictable(mapping)) {
875                 if (!pagevec_lookup(&pvec, mapping, &index))
876                         break;
877                 check_move_unevictable_pages(&pvec);
878                 pagevec_release(&pvec);
879                 cond_resched();
880         }
881 }
882
883 /*
884  * Check whether a hole-punch or truncation needs to split a huge page,
885  * returning true if no split was required, or the split has been successful.
886  *
887  * Eviction (or truncation to 0 size) should never need to split a huge page;
888  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
889  * head, and then succeeded to trylock on tail.
890  *
891  * A split can only succeed when there are no additional references on the
892  * huge page: so the split below relies upon find_get_entries() having stopped
893  * when it found a subpage of the huge page, without getting further references.
894  */
895 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
896 {
897         if (!PageTransCompound(page))
898                 return true;
899
900         /* Just proceed to delete a huge page wholly within the range punched */
901         if (PageHead(page) &&
902             page->index >= start && page->index + HPAGE_PMD_NR <= end)
903                 return true;
904
905         /* Try to split huge page, so we can truly punch the hole or truncate */
906         return split_huge_page(page) >= 0;
907 }
908
909 /*
910  * Remove range of pages and swap entries from page cache, and free them.
911  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
912  */
913 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
914                                                                  bool unfalloc)
915 {
916         struct address_space *mapping = inode->i_mapping;
917         struct shmem_inode_info *info = SHMEM_I(inode);
918         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
919         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
920         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
921         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
922         struct pagevec pvec;
923         pgoff_t indices[PAGEVEC_SIZE];
924         long nr_swaps_freed = 0;
925         pgoff_t index;
926         int i;
927
928         if (lend == -1)
929                 end = -1;       /* unsigned, so actually very big */
930
931         if (info->fallocend > start && info->fallocend <= end && !unfalloc)
932                 info->fallocend = start;
933
934         pagevec_init(&pvec);
935         index = start;
936         while (index < end && find_lock_entries(mapping, index, end - 1,
937                         &pvec, indices)) {
938                 for (i = 0; i < pagevec_count(&pvec); i++) {
939                         struct page *page = pvec.pages[i];
940
941                         index = indices[i];
942
943                         if (xa_is_value(page)) {
944                                 if (unfalloc)
945                                         continue;
946                                 nr_swaps_freed += !shmem_free_swap(mapping,
947                                                                 index, page);
948                                 continue;
949                         }
950                         index += thp_nr_pages(page) - 1;
951
952                         if (!unfalloc || !PageUptodate(page))
953                                 truncate_inode_page(mapping, page);
954                         unlock_page(page);
955                 }
956                 pagevec_remove_exceptionals(&pvec);
957                 pagevec_release(&pvec);
958                 cond_resched();
959                 index++;
960         }
961
962         if (partial_start) {
963                 struct page *page = NULL;
964                 shmem_getpage(inode, start - 1, &page, SGP_READ);
965                 if (page) {
966                         unsigned int top = PAGE_SIZE;
967                         if (start > end) {
968                                 top = partial_end;
969                                 partial_end = 0;
970                         }
971                         zero_user_segment(page, partial_start, top);
972                         set_page_dirty(page);
973                         unlock_page(page);
974                         put_page(page);
975                 }
976         }
977         if (partial_end) {
978                 struct page *page = NULL;
979                 shmem_getpage(inode, end, &page, SGP_READ);
980                 if (page) {
981                         zero_user_segment(page, 0, partial_end);
982                         set_page_dirty(page);
983                         unlock_page(page);
984                         put_page(page);
985                 }
986         }
987         if (start >= end)
988                 return;
989
990         index = start;
991         while (index < end) {
992                 cond_resched();
993
994                 if (!find_get_entries(mapping, index, end - 1, &pvec,
995                                 indices)) {
996                         /* If all gone or hole-punch or unfalloc, we're done */
997                         if (index == start || end != -1)
998                                 break;
999                         /* But if truncating, restart to make sure all gone */
1000                         index = start;
1001                         continue;
1002                 }
1003                 for (i = 0; i < pagevec_count(&pvec); i++) {
1004                         struct page *page = pvec.pages[i];
1005
1006                         index = indices[i];
1007                         if (xa_is_value(page)) {
1008                                 if (unfalloc)
1009                                         continue;
1010                                 if (shmem_free_swap(mapping, index, page)) {
1011                                         /* Swap was replaced by page: retry */
1012                                         index--;
1013                                         break;
1014                                 }
1015                                 nr_swaps_freed++;
1016                                 continue;
1017                         }
1018
1019                         lock_page(page);
1020
1021                         if (!unfalloc || !PageUptodate(page)) {
1022                                 if (page_mapping(page) != mapping) {
1023                                         /* Page was replaced by swap: retry */
1024                                         unlock_page(page);
1025                                         index--;
1026                                         break;
1027                                 }
1028                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1029                                 if (shmem_punch_compound(page, start, end))
1030                                         truncate_inode_page(mapping, page);
1031                                 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1032                                         /* Wipe the page and don't get stuck */
1033                                         clear_highpage(page);
1034                                         flush_dcache_page(page);
1035                                         set_page_dirty(page);
1036                                         if (index <
1037                                             round_up(start, HPAGE_PMD_NR))
1038                                                 start = index + 1;
1039                                 }
1040                         }
1041                         unlock_page(page);
1042                 }
1043                 pagevec_remove_exceptionals(&pvec);
1044                 pagevec_release(&pvec);
1045                 index++;
1046         }
1047
1048         spin_lock_irq(&info->lock);
1049         info->swapped -= nr_swaps_freed;
1050         shmem_recalc_inode(inode);
1051         spin_unlock_irq(&info->lock);
1052 }
1053
1054 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1055 {
1056         shmem_undo_range(inode, lstart, lend, false);
1057         inode->i_ctime = inode->i_mtime = current_time(inode);
1058 }
1059 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1060
1061 static int shmem_getattr(struct user_namespace *mnt_userns,
1062                          const struct path *path, struct kstat *stat,
1063                          u32 request_mask, unsigned int query_flags)
1064 {
1065         struct inode *inode = path->dentry->d_inode;
1066         struct shmem_inode_info *info = SHMEM_I(inode);
1067
1068         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1069                 spin_lock_irq(&info->lock);
1070                 shmem_recalc_inode(inode);
1071                 spin_unlock_irq(&info->lock);
1072         }
1073         generic_fillattr(&init_user_ns, inode, stat);
1074
1075         if (shmem_is_huge(NULL, inode, 0))
1076                 stat->blksize = HPAGE_PMD_SIZE;
1077
1078         return 0;
1079 }
1080
1081 static int shmem_setattr(struct user_namespace *mnt_userns,
1082                          struct dentry *dentry, struct iattr *attr)
1083 {
1084         struct inode *inode = d_inode(dentry);
1085         struct shmem_inode_info *info = SHMEM_I(inode);
1086         int error;
1087
1088         error = setattr_prepare(&init_user_ns, dentry, attr);
1089         if (error)
1090                 return error;
1091
1092         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1093                 loff_t oldsize = inode->i_size;
1094                 loff_t newsize = attr->ia_size;
1095
1096                 /* protected by i_rwsem */
1097                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1098                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1099                         return -EPERM;
1100
1101                 if (newsize != oldsize) {
1102                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1103                                         oldsize, newsize);
1104                         if (error)
1105                                 return error;
1106                         i_size_write(inode, newsize);
1107                         inode->i_ctime = inode->i_mtime = current_time(inode);
1108                 }
1109                 if (newsize <= oldsize) {
1110                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1111                         if (oldsize > holebegin)
1112                                 unmap_mapping_range(inode->i_mapping,
1113                                                         holebegin, 0, 1);
1114                         if (info->alloced)
1115                                 shmem_truncate_range(inode,
1116                                                         newsize, (loff_t)-1);
1117                         /* unmap again to remove racily COWed private pages */
1118                         if (oldsize > holebegin)
1119                                 unmap_mapping_range(inode->i_mapping,
1120                                                         holebegin, 0, 1);
1121                 }
1122         }
1123
1124         setattr_copy(&init_user_ns, inode, attr);
1125         if (attr->ia_valid & ATTR_MODE)
1126                 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1127         return error;
1128 }
1129
1130 static void shmem_evict_inode(struct inode *inode)
1131 {
1132         struct shmem_inode_info *info = SHMEM_I(inode);
1133         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1134
1135         if (shmem_mapping(inode->i_mapping)) {
1136                 shmem_unacct_size(info->flags, inode->i_size);
1137                 inode->i_size = 0;
1138                 shmem_truncate_range(inode, 0, (loff_t)-1);
1139                 if (!list_empty(&info->shrinklist)) {
1140                         spin_lock(&sbinfo->shrinklist_lock);
1141                         if (!list_empty(&info->shrinklist)) {
1142                                 list_del_init(&info->shrinklist);
1143                                 sbinfo->shrinklist_len--;
1144                         }
1145                         spin_unlock(&sbinfo->shrinklist_lock);
1146                 }
1147                 while (!list_empty(&info->swaplist)) {
1148                         /* Wait while shmem_unuse() is scanning this inode... */
1149                         wait_var_event(&info->stop_eviction,
1150                                        !atomic_read(&info->stop_eviction));
1151                         mutex_lock(&shmem_swaplist_mutex);
1152                         /* ...but beware of the race if we peeked too early */
1153                         if (!atomic_read(&info->stop_eviction))
1154                                 list_del_init(&info->swaplist);
1155                         mutex_unlock(&shmem_swaplist_mutex);
1156                 }
1157         }
1158
1159         simple_xattrs_free(&info->xattrs);
1160         WARN_ON(inode->i_blocks);
1161         shmem_free_inode(inode->i_sb);
1162         clear_inode(inode);
1163 }
1164
1165 static int shmem_find_swap_entries(struct address_space *mapping,
1166                                    pgoff_t start, unsigned int nr_entries,
1167                                    struct page **entries, pgoff_t *indices,
1168                                    unsigned int type, bool frontswap)
1169 {
1170         XA_STATE(xas, &mapping->i_pages, start);
1171         struct page *page;
1172         swp_entry_t entry;
1173         unsigned int ret = 0;
1174
1175         if (!nr_entries)
1176                 return 0;
1177
1178         rcu_read_lock();
1179         xas_for_each(&xas, page, ULONG_MAX) {
1180                 if (xas_retry(&xas, page))
1181                         continue;
1182
1183                 if (!xa_is_value(page))
1184                         continue;
1185
1186                 entry = radix_to_swp_entry(page);
1187                 if (swp_type(entry) != type)
1188                         continue;
1189                 if (frontswap &&
1190                     !frontswap_test(swap_info[type], swp_offset(entry)))
1191                         continue;
1192
1193                 indices[ret] = xas.xa_index;
1194                 entries[ret] = page;
1195
1196                 if (need_resched()) {
1197                         xas_pause(&xas);
1198                         cond_resched_rcu();
1199                 }
1200                 if (++ret == nr_entries)
1201                         break;
1202         }
1203         rcu_read_unlock();
1204
1205         return ret;
1206 }
1207
1208 /*
1209  * Move the swapped pages for an inode to page cache. Returns the count
1210  * of pages swapped in, or the error in case of failure.
1211  */
1212 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1213                                     pgoff_t *indices)
1214 {
1215         int i = 0;
1216         int ret = 0;
1217         int error = 0;
1218         struct address_space *mapping = inode->i_mapping;
1219
1220         for (i = 0; i < pvec.nr; i++) {
1221                 struct page *page = pvec.pages[i];
1222
1223                 if (!xa_is_value(page))
1224                         continue;
1225                 error = shmem_swapin_page(inode, indices[i],
1226                                           &page, SGP_CACHE,
1227                                           mapping_gfp_mask(mapping),
1228                                           NULL, NULL);
1229                 if (error == 0) {
1230                         unlock_page(page);
1231                         put_page(page);
1232                         ret++;
1233                 }
1234                 if (error == -ENOMEM)
1235                         break;
1236                 error = 0;
1237         }
1238         return error ? error : ret;
1239 }
1240
1241 /*
1242  * If swap found in inode, free it and move page from swapcache to filecache.
1243  */
1244 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1245                              bool frontswap, unsigned long *fs_pages_to_unuse)
1246 {
1247         struct address_space *mapping = inode->i_mapping;
1248         pgoff_t start = 0;
1249         struct pagevec pvec;
1250         pgoff_t indices[PAGEVEC_SIZE];
1251         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1252         int ret = 0;
1253
1254         pagevec_init(&pvec);
1255         do {
1256                 unsigned int nr_entries = PAGEVEC_SIZE;
1257
1258                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1259                         nr_entries = *fs_pages_to_unuse;
1260
1261                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1262                                                   pvec.pages, indices,
1263                                                   type, frontswap);
1264                 if (pvec.nr == 0) {
1265                         ret = 0;
1266                         break;
1267                 }
1268
1269                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1270                 if (ret < 0)
1271                         break;
1272
1273                 if (frontswap_partial) {
1274                         *fs_pages_to_unuse -= ret;
1275                         if (*fs_pages_to_unuse == 0) {
1276                                 ret = FRONTSWAP_PAGES_UNUSED;
1277                                 break;
1278                         }
1279                 }
1280
1281                 start = indices[pvec.nr - 1];
1282         } while (true);
1283
1284         return ret;
1285 }
1286
1287 /*
1288  * Read all the shared memory data that resides in the swap
1289  * device 'type' back into memory, so the swap device can be
1290  * unused.
1291  */
1292 int shmem_unuse(unsigned int type, bool frontswap,
1293                 unsigned long *fs_pages_to_unuse)
1294 {
1295         struct shmem_inode_info *info, *next;
1296         int error = 0;
1297
1298         if (list_empty(&shmem_swaplist))
1299                 return 0;
1300
1301         mutex_lock(&shmem_swaplist_mutex);
1302         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1303                 if (!info->swapped) {
1304                         list_del_init(&info->swaplist);
1305                         continue;
1306                 }
1307                 /*
1308                  * Drop the swaplist mutex while searching the inode for swap;
1309                  * but before doing so, make sure shmem_evict_inode() will not
1310                  * remove placeholder inode from swaplist, nor let it be freed
1311                  * (igrab() would protect from unlink, but not from unmount).
1312                  */
1313                 atomic_inc(&info->stop_eviction);
1314                 mutex_unlock(&shmem_swaplist_mutex);
1315
1316                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1317                                           fs_pages_to_unuse);
1318                 cond_resched();
1319
1320                 mutex_lock(&shmem_swaplist_mutex);
1321                 next = list_next_entry(info, swaplist);
1322                 if (!info->swapped)
1323                         list_del_init(&info->swaplist);
1324                 if (atomic_dec_and_test(&info->stop_eviction))
1325                         wake_up_var(&info->stop_eviction);
1326                 if (error)
1327                         break;
1328         }
1329         mutex_unlock(&shmem_swaplist_mutex);
1330
1331         return error;
1332 }
1333
1334 /*
1335  * Move the page from the page cache to the swap cache.
1336  */
1337 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1338 {
1339         struct shmem_inode_info *info;
1340         struct address_space *mapping;
1341         struct inode *inode;
1342         swp_entry_t swap;
1343         pgoff_t index;
1344
1345         /*
1346          * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1347          * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1348          * and its shmem_writeback() needs them to be split when swapping.
1349          */
1350         if (PageTransCompound(page)) {
1351                 /* Ensure the subpages are still dirty */
1352                 SetPageDirty(page);
1353                 if (split_huge_page(page) < 0)
1354                         goto redirty;
1355                 ClearPageDirty(page);
1356         }
1357
1358         BUG_ON(!PageLocked(page));
1359         mapping = page->mapping;
1360         index = page->index;
1361         inode = mapping->host;
1362         info = SHMEM_I(inode);
1363         if (info->flags & VM_LOCKED)
1364                 goto redirty;
1365         if (!total_swap_pages)
1366                 goto redirty;
1367
1368         /*
1369          * Our capabilities prevent regular writeback or sync from ever calling
1370          * shmem_writepage; but a stacking filesystem might use ->writepage of
1371          * its underlying filesystem, in which case tmpfs should write out to
1372          * swap only in response to memory pressure, and not for the writeback
1373          * threads or sync.
1374          */
1375         if (!wbc->for_reclaim) {
1376                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1377                 goto redirty;
1378         }
1379
1380         /*
1381          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1382          * value into swapfile.c, the only way we can correctly account for a
1383          * fallocated page arriving here is now to initialize it and write it.
1384          *
1385          * That's okay for a page already fallocated earlier, but if we have
1386          * not yet completed the fallocation, then (a) we want to keep track
1387          * of this page in case we have to undo it, and (b) it may not be a
1388          * good idea to continue anyway, once we're pushing into swap.  So
1389          * reactivate the page, and let shmem_fallocate() quit when too many.
1390          */
1391         if (!PageUptodate(page)) {
1392                 if (inode->i_private) {
1393                         struct shmem_falloc *shmem_falloc;
1394                         spin_lock(&inode->i_lock);
1395                         shmem_falloc = inode->i_private;
1396                         if (shmem_falloc &&
1397                             !shmem_falloc->waitq &&
1398                             index >= shmem_falloc->start &&
1399                             index < shmem_falloc->next)
1400                                 shmem_falloc->nr_unswapped++;
1401                         else
1402                                 shmem_falloc = NULL;
1403                         spin_unlock(&inode->i_lock);
1404                         if (shmem_falloc)
1405                                 goto redirty;
1406                 }
1407                 clear_highpage(page);
1408                 flush_dcache_page(page);
1409                 SetPageUptodate(page);
1410         }
1411
1412         swap = get_swap_page(page);
1413         if (!swap.val)
1414                 goto redirty;
1415
1416         /*
1417          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1418          * if it's not already there.  Do it now before the page is
1419          * moved to swap cache, when its pagelock no longer protects
1420          * the inode from eviction.  But don't unlock the mutex until
1421          * we've incremented swapped, because shmem_unuse_inode() will
1422          * prune a !swapped inode from the swaplist under this mutex.
1423          */
1424         mutex_lock(&shmem_swaplist_mutex);
1425         if (list_empty(&info->swaplist))
1426                 list_add(&info->swaplist, &shmem_swaplist);
1427
1428         if (add_to_swap_cache(page, swap,
1429                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1430                         NULL) == 0) {
1431                 spin_lock_irq(&info->lock);
1432                 shmem_recalc_inode(inode);
1433                 info->swapped++;
1434                 spin_unlock_irq(&info->lock);
1435
1436                 swap_shmem_alloc(swap);
1437                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1438
1439                 mutex_unlock(&shmem_swaplist_mutex);
1440                 BUG_ON(page_mapped(page));
1441                 swap_writepage(page, wbc);
1442                 return 0;
1443         }
1444
1445         mutex_unlock(&shmem_swaplist_mutex);
1446         put_swap_page(page, swap);
1447 redirty:
1448         set_page_dirty(page);
1449         if (wbc->for_reclaim)
1450                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1451         unlock_page(page);
1452         return 0;
1453 }
1454
1455 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1456 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1457 {
1458         char buffer[64];
1459
1460         if (!mpol || mpol->mode == MPOL_DEFAULT)
1461                 return;         /* show nothing */
1462
1463         mpol_to_str(buffer, sizeof(buffer), mpol);
1464
1465         seq_printf(seq, ",mpol=%s", buffer);
1466 }
1467
1468 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1469 {
1470         struct mempolicy *mpol = NULL;
1471         if (sbinfo->mpol) {
1472                 raw_spin_lock(&sbinfo->stat_lock);      /* prevent replace/use races */
1473                 mpol = sbinfo->mpol;
1474                 mpol_get(mpol);
1475                 raw_spin_unlock(&sbinfo->stat_lock);
1476         }
1477         return mpol;
1478 }
1479 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1480 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1481 {
1482 }
1483 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1484 {
1485         return NULL;
1486 }
1487 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1488 #ifndef CONFIG_NUMA
1489 #define vm_policy vm_private_data
1490 #endif
1491
1492 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1493                 struct shmem_inode_info *info, pgoff_t index)
1494 {
1495         /* Create a pseudo vma that just contains the policy */
1496         vma_init(vma, NULL);
1497         /* Bias interleave by inode number to distribute better across nodes */
1498         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1499         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1500 }
1501
1502 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1503 {
1504         /* Drop reference taken by mpol_shared_policy_lookup() */
1505         mpol_cond_put(vma->vm_policy);
1506 }
1507
1508 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1509                         struct shmem_inode_info *info, pgoff_t index)
1510 {
1511         struct vm_area_struct pvma;
1512         struct page *page;
1513         struct vm_fault vmf = {
1514                 .vma = &pvma,
1515         };
1516
1517         shmem_pseudo_vma_init(&pvma, info, index);
1518         page = swap_cluster_readahead(swap, gfp, &vmf);
1519         shmem_pseudo_vma_destroy(&pvma);
1520
1521         return page;
1522 }
1523
1524 /*
1525  * Make sure huge_gfp is always more limited than limit_gfp.
1526  * Some of the flags set permissions, while others set limitations.
1527  */
1528 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1529 {
1530         gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1531         gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1532         gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1533         gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1534
1535         /* Allow allocations only from the originally specified zones. */
1536         result |= zoneflags;
1537
1538         /*
1539          * Minimize the result gfp by taking the union with the deny flags,
1540          * and the intersection of the allow flags.
1541          */
1542         result |= (limit_gfp & denyflags);
1543         result |= (huge_gfp & limit_gfp) & allowflags;
1544
1545         return result;
1546 }
1547
1548 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1549                 struct shmem_inode_info *info, pgoff_t index)
1550 {
1551         struct vm_area_struct pvma;
1552         struct address_space *mapping = info->vfs_inode.i_mapping;
1553         pgoff_t hindex;
1554         struct page *page;
1555
1556         hindex = round_down(index, HPAGE_PMD_NR);
1557         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1558                                                                 XA_PRESENT))
1559                 return NULL;
1560
1561         shmem_pseudo_vma_init(&pvma, info, hindex);
1562         page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1563                                true);
1564         shmem_pseudo_vma_destroy(&pvma);
1565         if (page)
1566                 prep_transhuge_page(page);
1567         else
1568                 count_vm_event(THP_FILE_FALLBACK);
1569         return page;
1570 }
1571
1572 static struct page *shmem_alloc_page(gfp_t gfp,
1573                         struct shmem_inode_info *info, pgoff_t index)
1574 {
1575         struct vm_area_struct pvma;
1576         struct page *page;
1577
1578         shmem_pseudo_vma_init(&pvma, info, index);
1579         page = alloc_page_vma(gfp, &pvma, 0);
1580         shmem_pseudo_vma_destroy(&pvma);
1581
1582         return page;
1583 }
1584
1585 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1586                 struct inode *inode,
1587                 pgoff_t index, bool huge)
1588 {
1589         struct shmem_inode_info *info = SHMEM_I(inode);
1590         struct page *page;
1591         int nr;
1592         int err = -ENOSPC;
1593
1594         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1595                 huge = false;
1596         nr = huge ? HPAGE_PMD_NR : 1;
1597
1598         if (!shmem_inode_acct_block(inode, nr))
1599                 goto failed;
1600
1601         if (huge)
1602                 page = shmem_alloc_hugepage(gfp, info, index);
1603         else
1604                 page = shmem_alloc_page(gfp, info, index);
1605         if (page) {
1606                 __SetPageLocked(page);
1607                 __SetPageSwapBacked(page);
1608                 return page;
1609         }
1610
1611         err = -ENOMEM;
1612         shmem_inode_unacct_blocks(inode, nr);
1613 failed:
1614         return ERR_PTR(err);
1615 }
1616
1617 /*
1618  * When a page is moved from swapcache to shmem filecache (either by the
1619  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1620  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1621  * ignorance of the mapping it belongs to.  If that mapping has special
1622  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1623  * we may need to copy to a suitable page before moving to filecache.
1624  *
1625  * In a future release, this may well be extended to respect cpuset and
1626  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1627  * but for now it is a simple matter of zone.
1628  */
1629 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1630 {
1631         return page_zonenum(page) > gfp_zone(gfp);
1632 }
1633
1634 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1635                                 struct shmem_inode_info *info, pgoff_t index)
1636 {
1637         struct page *oldpage, *newpage;
1638         struct folio *old, *new;
1639         struct address_space *swap_mapping;
1640         swp_entry_t entry;
1641         pgoff_t swap_index;
1642         int error;
1643
1644         oldpage = *pagep;
1645         entry.val = page_private(oldpage);
1646         swap_index = swp_offset(entry);
1647         swap_mapping = page_mapping(oldpage);
1648
1649         /*
1650          * We have arrived here because our zones are constrained, so don't
1651          * limit chance of success by further cpuset and node constraints.
1652          */
1653         gfp &= ~GFP_CONSTRAINT_MASK;
1654         newpage = shmem_alloc_page(gfp, info, index);
1655         if (!newpage)
1656                 return -ENOMEM;
1657
1658         get_page(newpage);
1659         copy_highpage(newpage, oldpage);
1660         flush_dcache_page(newpage);
1661
1662         __SetPageLocked(newpage);
1663         __SetPageSwapBacked(newpage);
1664         SetPageUptodate(newpage);
1665         set_page_private(newpage, entry.val);
1666         SetPageSwapCache(newpage);
1667
1668         /*
1669          * Our caller will very soon move newpage out of swapcache, but it's
1670          * a nice clean interface for us to replace oldpage by newpage there.
1671          */
1672         xa_lock_irq(&swap_mapping->i_pages);
1673         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1674         if (!error) {
1675                 old = page_folio(oldpage);
1676                 new = page_folio(newpage);
1677                 mem_cgroup_migrate(old, new);
1678                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1679                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1680         }
1681         xa_unlock_irq(&swap_mapping->i_pages);
1682
1683         if (unlikely(error)) {
1684                 /*
1685                  * Is this possible?  I think not, now that our callers check
1686                  * both PageSwapCache and page_private after getting page lock;
1687                  * but be defensive.  Reverse old to newpage for clear and free.
1688                  */
1689                 oldpage = newpage;
1690         } else {
1691                 lru_cache_add(newpage);
1692                 *pagep = newpage;
1693         }
1694
1695         ClearPageSwapCache(oldpage);
1696         set_page_private(oldpage, 0);
1697
1698         unlock_page(oldpage);
1699         put_page(oldpage);
1700         put_page(oldpage);
1701         return error;
1702 }
1703
1704 /*
1705  * Swap in the page pointed to by *pagep.
1706  * Caller has to make sure that *pagep contains a valid swapped page.
1707  * Returns 0 and the page in pagep if success. On failure, returns the
1708  * error code and NULL in *pagep.
1709  */
1710 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1711                              struct page **pagep, enum sgp_type sgp,
1712                              gfp_t gfp, struct vm_area_struct *vma,
1713                              vm_fault_t *fault_type)
1714 {
1715         struct address_space *mapping = inode->i_mapping;
1716         struct shmem_inode_info *info = SHMEM_I(inode);
1717         struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1718         struct page *page;
1719         swp_entry_t swap;
1720         int error;
1721
1722         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1723         swap = radix_to_swp_entry(*pagep);
1724         *pagep = NULL;
1725
1726         /* Look it up and read it in.. */
1727         page = lookup_swap_cache(swap, NULL, 0);
1728         if (!page) {
1729                 /* Or update major stats only when swapin succeeds?? */
1730                 if (fault_type) {
1731                         *fault_type |= VM_FAULT_MAJOR;
1732                         count_vm_event(PGMAJFAULT);
1733                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1734                 }
1735                 /* Here we actually start the io */
1736                 page = shmem_swapin(swap, gfp, info, index);
1737                 if (!page) {
1738                         error = -ENOMEM;
1739                         goto failed;
1740                 }
1741         }
1742
1743         /* We have to do this with page locked to prevent races */
1744         lock_page(page);
1745         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1746             !shmem_confirm_swap(mapping, index, swap)) {
1747                 error = -EEXIST;
1748                 goto unlock;
1749         }
1750         if (!PageUptodate(page)) {
1751                 error = -EIO;
1752                 goto failed;
1753         }
1754         wait_on_page_writeback(page);
1755
1756         /*
1757          * Some architectures may have to restore extra metadata to the
1758          * physical page after reading from swap.
1759          */
1760         arch_swap_restore(swap, page);
1761
1762         if (shmem_should_replace_page(page, gfp)) {
1763                 error = shmem_replace_page(&page, gfp, info, index);
1764                 if (error)
1765                         goto failed;
1766         }
1767
1768         error = shmem_add_to_page_cache(page, mapping, index,
1769                                         swp_to_radix_entry(swap), gfp,
1770                                         charge_mm);
1771         if (error)
1772                 goto failed;
1773
1774         spin_lock_irq(&info->lock);
1775         info->swapped--;
1776         shmem_recalc_inode(inode);
1777         spin_unlock_irq(&info->lock);
1778
1779         if (sgp == SGP_WRITE)
1780                 mark_page_accessed(page);
1781
1782         delete_from_swap_cache(page);
1783         set_page_dirty(page);
1784         swap_free(swap);
1785
1786         *pagep = page;
1787         return 0;
1788 failed:
1789         if (!shmem_confirm_swap(mapping, index, swap))
1790                 error = -EEXIST;
1791 unlock:
1792         if (page) {
1793                 unlock_page(page);
1794                 put_page(page);
1795         }
1796
1797         return error;
1798 }
1799
1800 /*
1801  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1802  *
1803  * If we allocate a new one we do not mark it dirty. That's up to the
1804  * vm. If we swap it in we mark it dirty since we also free the swap
1805  * entry since a page cannot live in both the swap and page cache.
1806  *
1807  * vma, vmf, and fault_type are only supplied by shmem_fault:
1808  * otherwise they are NULL.
1809  */
1810 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1811         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1812         struct vm_area_struct *vma, struct vm_fault *vmf,
1813                         vm_fault_t *fault_type)
1814 {
1815         struct address_space *mapping = inode->i_mapping;
1816         struct shmem_inode_info *info = SHMEM_I(inode);
1817         struct shmem_sb_info *sbinfo;
1818         struct mm_struct *charge_mm;
1819         struct page *page;
1820         pgoff_t hindex = index;
1821         gfp_t huge_gfp;
1822         int error;
1823         int once = 0;
1824         int alloced = 0;
1825
1826         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1827                 return -EFBIG;
1828 repeat:
1829         if (sgp <= SGP_CACHE &&
1830             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1831                 return -EINVAL;
1832         }
1833
1834         sbinfo = SHMEM_SB(inode->i_sb);
1835         charge_mm = vma ? vma->vm_mm : NULL;
1836
1837         page = pagecache_get_page(mapping, index,
1838                                         FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1839
1840         if (page && vma && userfaultfd_minor(vma)) {
1841                 if (!xa_is_value(page)) {
1842                         unlock_page(page);
1843                         put_page(page);
1844                 }
1845                 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1846                 return 0;
1847         }
1848
1849         if (xa_is_value(page)) {
1850                 error = shmem_swapin_page(inode, index, &page,
1851                                           sgp, gfp, vma, fault_type);
1852                 if (error == -EEXIST)
1853                         goto repeat;
1854
1855                 *pagep = page;
1856                 return error;
1857         }
1858
1859         if (page) {
1860                 hindex = page->index;
1861                 if (sgp == SGP_WRITE)
1862                         mark_page_accessed(page);
1863                 if (PageUptodate(page))
1864                         goto out;
1865                 /* fallocated page */
1866                 if (sgp != SGP_READ)
1867                         goto clear;
1868                 unlock_page(page);
1869                 put_page(page);
1870         }
1871
1872         /*
1873          * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1874          * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1875          */
1876         *pagep = NULL;
1877         if (sgp == SGP_READ)
1878                 return 0;
1879         if (sgp == SGP_NOALLOC)
1880                 return -ENOENT;
1881
1882         /*
1883          * Fast cache lookup and swap lookup did not find it: allocate.
1884          */
1885
1886         if (vma && userfaultfd_missing(vma)) {
1887                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1888                 return 0;
1889         }
1890
1891         /* Never use a huge page for shmem_symlink() */
1892         if (S_ISLNK(inode->i_mode))
1893                 goto alloc_nohuge;
1894         if (!shmem_is_huge(vma, inode, index))
1895                 goto alloc_nohuge;
1896
1897         huge_gfp = vma_thp_gfp_mask(vma);
1898         huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1899         page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1900         if (IS_ERR(page)) {
1901 alloc_nohuge:
1902                 page = shmem_alloc_and_acct_page(gfp, inode,
1903                                                  index, false);
1904         }
1905         if (IS_ERR(page)) {
1906                 int retry = 5;
1907
1908                 error = PTR_ERR(page);
1909                 page = NULL;
1910                 if (error != -ENOSPC)
1911                         goto unlock;
1912                 /*
1913                  * Try to reclaim some space by splitting a huge page
1914                  * beyond i_size on the filesystem.
1915                  */
1916                 while (retry--) {
1917                         int ret;
1918
1919                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1920                         if (ret == SHRINK_STOP)
1921                                 break;
1922                         if (ret)
1923                                 goto alloc_nohuge;
1924                 }
1925                 goto unlock;
1926         }
1927
1928         if (PageTransHuge(page))
1929                 hindex = round_down(index, HPAGE_PMD_NR);
1930         else
1931                 hindex = index;
1932
1933         if (sgp == SGP_WRITE)
1934                 __SetPageReferenced(page);
1935
1936         error = shmem_add_to_page_cache(page, mapping, hindex,
1937                                         NULL, gfp & GFP_RECLAIM_MASK,
1938                                         charge_mm);
1939         if (error)
1940                 goto unacct;
1941         lru_cache_add(page);
1942
1943         spin_lock_irq(&info->lock);
1944         info->alloced += compound_nr(page);
1945         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1946         shmem_recalc_inode(inode);
1947         spin_unlock_irq(&info->lock);
1948         alloced = true;
1949
1950         if (PageTransHuge(page) &&
1951             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1952                         hindex + HPAGE_PMD_NR - 1) {
1953                 /*
1954                  * Part of the huge page is beyond i_size: subject
1955                  * to shrink under memory pressure.
1956                  */
1957                 spin_lock(&sbinfo->shrinklist_lock);
1958                 /*
1959                  * _careful to defend against unlocked access to
1960                  * ->shrink_list in shmem_unused_huge_shrink()
1961                  */
1962                 if (list_empty_careful(&info->shrinklist)) {
1963                         list_add_tail(&info->shrinklist,
1964                                       &sbinfo->shrinklist);
1965                         sbinfo->shrinklist_len++;
1966                 }
1967                 spin_unlock(&sbinfo->shrinklist_lock);
1968         }
1969
1970         /*
1971          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1972          */
1973         if (sgp == SGP_FALLOC)
1974                 sgp = SGP_WRITE;
1975 clear:
1976         /*
1977          * Let SGP_WRITE caller clear ends if write does not fill page;
1978          * but SGP_FALLOC on a page fallocated earlier must initialize
1979          * it now, lest undo on failure cancel our earlier guarantee.
1980          */
1981         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1982                 int i;
1983
1984                 for (i = 0; i < compound_nr(page); i++) {
1985                         clear_highpage(page + i);
1986                         flush_dcache_page(page + i);
1987                 }
1988                 SetPageUptodate(page);
1989         }
1990
1991         /* Perhaps the file has been truncated since we checked */
1992         if (sgp <= SGP_CACHE &&
1993             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1994                 if (alloced) {
1995                         ClearPageDirty(page);
1996                         delete_from_page_cache(page);
1997                         spin_lock_irq(&info->lock);
1998                         shmem_recalc_inode(inode);
1999                         spin_unlock_irq(&info->lock);
2000                 }
2001                 error = -EINVAL;
2002                 goto unlock;
2003         }
2004 out:
2005         *pagep = page + index - hindex;
2006         return 0;
2007
2008         /*
2009          * Error recovery.
2010          */
2011 unacct:
2012         shmem_inode_unacct_blocks(inode, compound_nr(page));
2013
2014         if (PageTransHuge(page)) {
2015                 unlock_page(page);
2016                 put_page(page);
2017                 goto alloc_nohuge;
2018         }
2019 unlock:
2020         if (page) {
2021                 unlock_page(page);
2022                 put_page(page);
2023         }
2024         if (error == -ENOSPC && !once++) {
2025                 spin_lock_irq(&info->lock);
2026                 shmem_recalc_inode(inode);
2027                 spin_unlock_irq(&info->lock);
2028                 goto repeat;
2029         }
2030         if (error == -EEXIST)
2031                 goto repeat;
2032         return error;
2033 }
2034
2035 /*
2036  * This is like autoremove_wake_function, but it removes the wait queue
2037  * entry unconditionally - even if something else had already woken the
2038  * target.
2039  */
2040 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2041 {
2042         int ret = default_wake_function(wait, mode, sync, key);
2043         list_del_init(&wait->entry);
2044         return ret;
2045 }
2046
2047 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2048 {
2049         struct vm_area_struct *vma = vmf->vma;
2050         struct inode *inode = file_inode(vma->vm_file);
2051         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2052         int err;
2053         vm_fault_t ret = VM_FAULT_LOCKED;
2054
2055         /*
2056          * Trinity finds that probing a hole which tmpfs is punching can
2057          * prevent the hole-punch from ever completing: which in turn
2058          * locks writers out with its hold on i_rwsem.  So refrain from
2059          * faulting pages into the hole while it's being punched.  Although
2060          * shmem_undo_range() does remove the additions, it may be unable to
2061          * keep up, as each new page needs its own unmap_mapping_range() call,
2062          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2063          *
2064          * It does not matter if we sometimes reach this check just before the
2065          * hole-punch begins, so that one fault then races with the punch:
2066          * we just need to make racing faults a rare case.
2067          *
2068          * The implementation below would be much simpler if we just used a
2069          * standard mutex or completion: but we cannot take i_rwsem in fault,
2070          * and bloating every shmem inode for this unlikely case would be sad.
2071          */
2072         if (unlikely(inode->i_private)) {
2073                 struct shmem_falloc *shmem_falloc;
2074
2075                 spin_lock(&inode->i_lock);
2076                 shmem_falloc = inode->i_private;
2077                 if (shmem_falloc &&
2078                     shmem_falloc->waitq &&
2079                     vmf->pgoff >= shmem_falloc->start &&
2080                     vmf->pgoff < shmem_falloc->next) {
2081                         struct file *fpin;
2082                         wait_queue_head_t *shmem_falloc_waitq;
2083                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2084
2085                         ret = VM_FAULT_NOPAGE;
2086                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2087                         if (fpin)
2088                                 ret = VM_FAULT_RETRY;
2089
2090                         shmem_falloc_waitq = shmem_falloc->waitq;
2091                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2092                                         TASK_UNINTERRUPTIBLE);
2093                         spin_unlock(&inode->i_lock);
2094                         schedule();
2095
2096                         /*
2097                          * shmem_falloc_waitq points into the shmem_fallocate()
2098                          * stack of the hole-punching task: shmem_falloc_waitq
2099                          * is usually invalid by the time we reach here, but
2100                          * finish_wait() does not dereference it in that case;
2101                          * though i_lock needed lest racing with wake_up_all().
2102                          */
2103                         spin_lock(&inode->i_lock);
2104                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2105                         spin_unlock(&inode->i_lock);
2106
2107                         if (fpin)
2108                                 fput(fpin);
2109                         return ret;
2110                 }
2111                 spin_unlock(&inode->i_lock);
2112         }
2113
2114         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2115                                   gfp, vma, vmf, &ret);
2116         if (err)
2117                 return vmf_error(err);
2118         return ret;
2119 }
2120
2121 unsigned long shmem_get_unmapped_area(struct file *file,
2122                                       unsigned long uaddr, unsigned long len,
2123                                       unsigned long pgoff, unsigned long flags)
2124 {
2125         unsigned long (*get_area)(struct file *,
2126                 unsigned long, unsigned long, unsigned long, unsigned long);
2127         unsigned long addr;
2128         unsigned long offset;
2129         unsigned long inflated_len;
2130         unsigned long inflated_addr;
2131         unsigned long inflated_offset;
2132
2133         if (len > TASK_SIZE)
2134                 return -ENOMEM;
2135
2136         get_area = current->mm->get_unmapped_area;
2137         addr = get_area(file, uaddr, len, pgoff, flags);
2138
2139         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2140                 return addr;
2141         if (IS_ERR_VALUE(addr))
2142                 return addr;
2143         if (addr & ~PAGE_MASK)
2144                 return addr;
2145         if (addr > TASK_SIZE - len)
2146                 return addr;
2147
2148         if (shmem_huge == SHMEM_HUGE_DENY)
2149                 return addr;
2150         if (len < HPAGE_PMD_SIZE)
2151                 return addr;
2152         if (flags & MAP_FIXED)
2153                 return addr;
2154         /*
2155          * Our priority is to support MAP_SHARED mapped hugely;
2156          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2157          * But if caller specified an address hint and we allocated area there
2158          * successfully, respect that as before.
2159          */
2160         if (uaddr == addr)
2161                 return addr;
2162
2163         if (shmem_huge != SHMEM_HUGE_FORCE) {
2164                 struct super_block *sb;
2165
2166                 if (file) {
2167                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2168                         sb = file_inode(file)->i_sb;
2169                 } else {
2170                         /*
2171                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2172                          * for "/dev/zero", to create a shared anonymous object.
2173                          */
2174                         if (IS_ERR(shm_mnt))
2175                                 return addr;
2176                         sb = shm_mnt->mnt_sb;
2177                 }
2178                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2179                         return addr;
2180         }
2181
2182         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2183         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2184                 return addr;
2185         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2186                 return addr;
2187
2188         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2189         if (inflated_len > TASK_SIZE)
2190                 return addr;
2191         if (inflated_len < len)
2192                 return addr;
2193
2194         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2195         if (IS_ERR_VALUE(inflated_addr))
2196                 return addr;
2197         if (inflated_addr & ~PAGE_MASK)
2198                 return addr;
2199
2200         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2201         inflated_addr += offset - inflated_offset;
2202         if (inflated_offset > offset)
2203                 inflated_addr += HPAGE_PMD_SIZE;
2204
2205         if (inflated_addr > TASK_SIZE - len)
2206                 return addr;
2207         return inflated_addr;
2208 }
2209
2210 #ifdef CONFIG_NUMA
2211 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2212 {
2213         struct inode *inode = file_inode(vma->vm_file);
2214         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2215 }
2216
2217 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2218                                           unsigned long addr)
2219 {
2220         struct inode *inode = file_inode(vma->vm_file);
2221         pgoff_t index;
2222
2223         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2224         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2225 }
2226 #endif
2227
2228 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2229 {
2230         struct inode *inode = file_inode(file);
2231         struct shmem_inode_info *info = SHMEM_I(inode);
2232         int retval = -ENOMEM;
2233
2234         /*
2235          * What serializes the accesses to info->flags?
2236          * ipc_lock_object() when called from shmctl_do_lock(),
2237          * no serialization needed when called from shm_destroy().
2238          */
2239         if (lock && !(info->flags & VM_LOCKED)) {
2240                 if (!user_shm_lock(inode->i_size, ucounts))
2241                         goto out_nomem;
2242                 info->flags |= VM_LOCKED;
2243                 mapping_set_unevictable(file->f_mapping);
2244         }
2245         if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2246                 user_shm_unlock(inode->i_size, ucounts);
2247                 info->flags &= ~VM_LOCKED;
2248                 mapping_clear_unevictable(file->f_mapping);
2249         }
2250         retval = 0;
2251
2252 out_nomem:
2253         return retval;
2254 }
2255
2256 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2257 {
2258         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2259         int ret;
2260
2261         ret = seal_check_future_write(info->seals, vma);
2262         if (ret)
2263                 return ret;
2264
2265         /* arm64 - allow memory tagging on RAM-based files */
2266         vma->vm_flags |= VM_MTE_ALLOWED;
2267
2268         file_accessed(file);
2269         vma->vm_ops = &shmem_vm_ops;
2270         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2271                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2272                         (vma->vm_end & HPAGE_PMD_MASK)) {
2273                 khugepaged_enter(vma, vma->vm_flags);
2274         }
2275         return 0;
2276 }
2277
2278 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2279                                      umode_t mode, dev_t dev, unsigned long flags)
2280 {
2281         struct inode *inode;
2282         struct shmem_inode_info *info;
2283         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2284         ino_t ino;
2285
2286         if (shmem_reserve_inode(sb, &ino))
2287                 return NULL;
2288
2289         inode = new_inode(sb);
2290         if (inode) {
2291                 inode->i_ino = ino;
2292                 inode_init_owner(&init_user_ns, inode, dir, mode);
2293                 inode->i_blocks = 0;
2294                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2295                 inode->i_generation = prandom_u32();
2296                 info = SHMEM_I(inode);
2297                 memset(info, 0, (char *)inode - (char *)info);
2298                 spin_lock_init(&info->lock);
2299                 atomic_set(&info->stop_eviction, 0);
2300                 info->seals = F_SEAL_SEAL;
2301                 info->flags = flags & VM_NORESERVE;
2302                 INIT_LIST_HEAD(&info->shrinklist);
2303                 INIT_LIST_HEAD(&info->swaplist);
2304                 simple_xattrs_init(&info->xattrs);
2305                 cache_no_acl(inode);
2306                 mapping_set_large_folios(inode->i_mapping);
2307
2308                 switch (mode & S_IFMT) {
2309                 default:
2310                         inode->i_op = &shmem_special_inode_operations;
2311                         init_special_inode(inode, mode, dev);
2312                         break;
2313                 case S_IFREG:
2314                         inode->i_mapping->a_ops = &shmem_aops;
2315                         inode->i_op = &shmem_inode_operations;
2316                         inode->i_fop = &shmem_file_operations;
2317                         mpol_shared_policy_init(&info->policy,
2318                                                  shmem_get_sbmpol(sbinfo));
2319                         break;
2320                 case S_IFDIR:
2321                         inc_nlink(inode);
2322                         /* Some things misbehave if size == 0 on a directory */
2323                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2324                         inode->i_op = &shmem_dir_inode_operations;
2325                         inode->i_fop = &simple_dir_operations;
2326                         break;
2327                 case S_IFLNK:
2328                         /*
2329                          * Must not load anything in the rbtree,
2330                          * mpol_free_shared_policy will not be called.
2331                          */
2332                         mpol_shared_policy_init(&info->policy, NULL);
2333                         break;
2334                 }
2335
2336                 lockdep_annotate_inode_mutex_key(inode);
2337         } else
2338                 shmem_free_inode(sb);
2339         return inode;
2340 }
2341
2342 #ifdef CONFIG_USERFAULTFD
2343 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2344                            pmd_t *dst_pmd,
2345                            struct vm_area_struct *dst_vma,
2346                            unsigned long dst_addr,
2347                            unsigned long src_addr,
2348                            bool zeropage,
2349                            struct page **pagep)
2350 {
2351         struct inode *inode = file_inode(dst_vma->vm_file);
2352         struct shmem_inode_info *info = SHMEM_I(inode);
2353         struct address_space *mapping = inode->i_mapping;
2354         gfp_t gfp = mapping_gfp_mask(mapping);
2355         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2356         void *page_kaddr;
2357         struct page *page;
2358         int ret;
2359         pgoff_t max_off;
2360
2361         if (!shmem_inode_acct_block(inode, 1)) {
2362                 /*
2363                  * We may have got a page, returned -ENOENT triggering a retry,
2364                  * and now we find ourselves with -ENOMEM. Release the page, to
2365                  * avoid a BUG_ON in our caller.
2366                  */
2367                 if (unlikely(*pagep)) {
2368                         put_page(*pagep);
2369                         *pagep = NULL;
2370                 }
2371                 return -ENOMEM;
2372         }
2373
2374         if (!*pagep) {
2375                 ret = -ENOMEM;
2376                 page = shmem_alloc_page(gfp, info, pgoff);
2377                 if (!page)
2378                         goto out_unacct_blocks;
2379
2380                 if (!zeropage) {        /* COPY */
2381                         page_kaddr = kmap_atomic(page);
2382                         ret = copy_from_user(page_kaddr,
2383                                              (const void __user *)src_addr,
2384                                              PAGE_SIZE);
2385                         kunmap_atomic(page_kaddr);
2386
2387                         /* fallback to copy_from_user outside mmap_lock */
2388                         if (unlikely(ret)) {
2389                                 *pagep = page;
2390                                 ret = -ENOENT;
2391                                 /* don't free the page */
2392                                 goto out_unacct_blocks;
2393                         }
2394                 } else {                /* ZEROPAGE */
2395                         clear_highpage(page);
2396                 }
2397         } else {
2398                 page = *pagep;
2399                 *pagep = NULL;
2400         }
2401
2402         VM_BUG_ON(PageLocked(page));
2403         VM_BUG_ON(PageSwapBacked(page));
2404         __SetPageLocked(page);
2405         __SetPageSwapBacked(page);
2406         __SetPageUptodate(page);
2407
2408         ret = -EFAULT;
2409         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2410         if (unlikely(pgoff >= max_off))
2411                 goto out_release;
2412
2413         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2414                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2415         if (ret)
2416                 goto out_release;
2417
2418         ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2419                                        page, true, false);
2420         if (ret)
2421                 goto out_delete_from_cache;
2422
2423         spin_lock_irq(&info->lock);
2424         info->alloced++;
2425         inode->i_blocks += BLOCKS_PER_PAGE;
2426         shmem_recalc_inode(inode);
2427         spin_unlock_irq(&info->lock);
2428
2429         unlock_page(page);
2430         return 0;
2431 out_delete_from_cache:
2432         delete_from_page_cache(page);
2433 out_release:
2434         unlock_page(page);
2435         put_page(page);
2436 out_unacct_blocks:
2437         shmem_inode_unacct_blocks(inode, 1);
2438         return ret;
2439 }
2440 #endif /* CONFIG_USERFAULTFD */
2441
2442 #ifdef CONFIG_TMPFS
2443 static const struct inode_operations shmem_symlink_inode_operations;
2444 static const struct inode_operations shmem_short_symlink_operations;
2445
2446 #ifdef CONFIG_TMPFS_XATTR
2447 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2448 #else
2449 #define shmem_initxattrs NULL
2450 #endif
2451
2452 static int
2453 shmem_write_begin(struct file *file, struct address_space *mapping,
2454                         loff_t pos, unsigned len, unsigned flags,
2455                         struct page **pagep, void **fsdata)
2456 {
2457         struct inode *inode = mapping->host;
2458         struct shmem_inode_info *info = SHMEM_I(inode);
2459         pgoff_t index = pos >> PAGE_SHIFT;
2460
2461         /* i_rwsem is held by caller */
2462         if (unlikely(info->seals & (F_SEAL_GROW |
2463                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2464                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2465                         return -EPERM;
2466                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2467                         return -EPERM;
2468         }
2469
2470         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2471 }
2472
2473 static int
2474 shmem_write_end(struct file *file, struct address_space *mapping,
2475                         loff_t pos, unsigned len, unsigned copied,
2476                         struct page *page, void *fsdata)
2477 {
2478         struct inode *inode = mapping->host;
2479
2480         if (pos + copied > inode->i_size)
2481                 i_size_write(inode, pos + copied);
2482
2483         if (!PageUptodate(page)) {
2484                 struct page *head = compound_head(page);
2485                 if (PageTransCompound(page)) {
2486                         int i;
2487
2488                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2489                                 if (head + i == page)
2490                                         continue;
2491                                 clear_highpage(head + i);
2492                                 flush_dcache_page(head + i);
2493                         }
2494                 }
2495                 if (copied < PAGE_SIZE) {
2496                         unsigned from = pos & (PAGE_SIZE - 1);
2497                         zero_user_segments(page, 0, from,
2498                                         from + copied, PAGE_SIZE);
2499                 }
2500                 SetPageUptodate(head);
2501         }
2502         set_page_dirty(page);
2503         unlock_page(page);
2504         put_page(page);
2505
2506         return copied;
2507 }
2508
2509 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2510 {
2511         struct file *file = iocb->ki_filp;
2512         struct inode *inode = file_inode(file);
2513         struct address_space *mapping = inode->i_mapping;
2514         pgoff_t index;
2515         unsigned long offset;
2516         enum sgp_type sgp = SGP_READ;
2517         int error = 0;
2518         ssize_t retval = 0;
2519         loff_t *ppos = &iocb->ki_pos;
2520
2521         /*
2522          * Might this read be for a stacking filesystem?  Then when reading
2523          * holes of a sparse file, we actually need to allocate those pages,
2524          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2525          */
2526         if (!iter_is_iovec(to))
2527                 sgp = SGP_CACHE;
2528
2529         index = *ppos >> PAGE_SHIFT;
2530         offset = *ppos & ~PAGE_MASK;
2531
2532         for (;;) {
2533                 struct page *page = NULL;
2534                 pgoff_t end_index;
2535                 unsigned long nr, ret;
2536                 loff_t i_size = i_size_read(inode);
2537
2538                 end_index = i_size >> PAGE_SHIFT;
2539                 if (index > end_index)
2540                         break;
2541                 if (index == end_index) {
2542                         nr = i_size & ~PAGE_MASK;
2543                         if (nr <= offset)
2544                                 break;
2545                 }
2546
2547                 error = shmem_getpage(inode, index, &page, sgp);
2548                 if (error) {
2549                         if (error == -EINVAL)
2550                                 error = 0;
2551                         break;
2552                 }
2553                 if (page) {
2554                         if (sgp == SGP_CACHE)
2555                                 set_page_dirty(page);
2556                         unlock_page(page);
2557                 }
2558
2559                 /*
2560                  * We must evaluate after, since reads (unlike writes)
2561                  * are called without i_rwsem protection against truncate
2562                  */
2563                 nr = PAGE_SIZE;
2564                 i_size = i_size_read(inode);
2565                 end_index = i_size >> PAGE_SHIFT;
2566                 if (index == end_index) {
2567                         nr = i_size & ~PAGE_MASK;
2568                         if (nr <= offset) {
2569                                 if (page)
2570                                         put_page(page);
2571                                 break;
2572                         }
2573                 }
2574                 nr -= offset;
2575
2576                 if (page) {
2577                         /*
2578                          * If users can be writing to this page using arbitrary
2579                          * virtual addresses, take care about potential aliasing
2580                          * before reading the page on the kernel side.
2581                          */
2582                         if (mapping_writably_mapped(mapping))
2583                                 flush_dcache_page(page);
2584                         /*
2585                          * Mark the page accessed if we read the beginning.
2586                          */
2587                         if (!offset)
2588                                 mark_page_accessed(page);
2589                 } else {
2590                         page = ZERO_PAGE(0);
2591                         get_page(page);
2592                 }
2593
2594                 /*
2595                  * Ok, we have the page, and it's up-to-date, so
2596                  * now we can copy it to user space...
2597                  */
2598                 ret = copy_page_to_iter(page, offset, nr, to);
2599                 retval += ret;
2600                 offset += ret;
2601                 index += offset >> PAGE_SHIFT;
2602                 offset &= ~PAGE_MASK;
2603
2604                 put_page(page);
2605                 if (!iov_iter_count(to))
2606                         break;
2607                 if (ret < nr) {
2608                         error = -EFAULT;
2609                         break;
2610                 }
2611                 cond_resched();
2612         }
2613
2614         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2615         file_accessed(file);
2616         return retval ? retval : error;
2617 }
2618
2619 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2620 {
2621         struct address_space *mapping = file->f_mapping;
2622         struct inode *inode = mapping->host;
2623
2624         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2625                 return generic_file_llseek_size(file, offset, whence,
2626                                         MAX_LFS_FILESIZE, i_size_read(inode));
2627         if (offset < 0)
2628                 return -ENXIO;
2629
2630         inode_lock(inode);
2631         /* We're holding i_rwsem so we can access i_size directly */
2632         offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2633         if (offset >= 0)
2634                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2635         inode_unlock(inode);
2636         return offset;
2637 }
2638
2639 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2640                                                          loff_t len)
2641 {
2642         struct inode *inode = file_inode(file);
2643         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2644         struct shmem_inode_info *info = SHMEM_I(inode);
2645         struct shmem_falloc shmem_falloc;
2646         pgoff_t start, index, end, undo_fallocend;
2647         int error;
2648
2649         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2650                 return -EOPNOTSUPP;
2651
2652         inode_lock(inode);
2653
2654         if (mode & FALLOC_FL_PUNCH_HOLE) {
2655                 struct address_space *mapping = file->f_mapping;
2656                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2657                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2658                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2659
2660                 /* protected by i_rwsem */
2661                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2662                         error = -EPERM;
2663                         goto out;
2664                 }
2665
2666                 shmem_falloc.waitq = &shmem_falloc_waitq;
2667                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2668                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2669                 spin_lock(&inode->i_lock);
2670                 inode->i_private = &shmem_falloc;
2671                 spin_unlock(&inode->i_lock);
2672
2673                 if ((u64)unmap_end > (u64)unmap_start)
2674                         unmap_mapping_range(mapping, unmap_start,
2675                                             1 + unmap_end - unmap_start, 0);
2676                 shmem_truncate_range(inode, offset, offset + len - 1);
2677                 /* No need to unmap again: hole-punching leaves COWed pages */
2678
2679                 spin_lock(&inode->i_lock);
2680                 inode->i_private = NULL;
2681                 wake_up_all(&shmem_falloc_waitq);
2682                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2683                 spin_unlock(&inode->i_lock);
2684                 error = 0;
2685                 goto out;
2686         }
2687
2688         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2689         error = inode_newsize_ok(inode, offset + len);
2690         if (error)
2691                 goto out;
2692
2693         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2694                 error = -EPERM;
2695                 goto out;
2696         }
2697
2698         start = offset >> PAGE_SHIFT;
2699         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2700         /* Try to avoid a swapstorm if len is impossible to satisfy */
2701         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2702                 error = -ENOSPC;
2703                 goto out;
2704         }
2705
2706         shmem_falloc.waitq = NULL;
2707         shmem_falloc.start = start;
2708         shmem_falloc.next  = start;
2709         shmem_falloc.nr_falloced = 0;
2710         shmem_falloc.nr_unswapped = 0;
2711         spin_lock(&inode->i_lock);
2712         inode->i_private = &shmem_falloc;
2713         spin_unlock(&inode->i_lock);
2714
2715         /*
2716          * info->fallocend is only relevant when huge pages might be
2717          * involved: to prevent split_huge_page() freeing fallocated
2718          * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2719          */
2720         undo_fallocend = info->fallocend;
2721         if (info->fallocend < end)
2722                 info->fallocend = end;
2723
2724         for (index = start; index < end; ) {
2725                 struct page *page;
2726
2727                 /*
2728                  * Good, the fallocate(2) manpage permits EINTR: we may have
2729                  * been interrupted because we are using up too much memory.
2730                  */
2731                 if (signal_pending(current))
2732                         error = -EINTR;
2733                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2734                         error = -ENOMEM;
2735                 else
2736                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2737                 if (error) {
2738                         info->fallocend = undo_fallocend;
2739                         /* Remove the !PageUptodate pages we added */
2740                         if (index > start) {
2741                                 shmem_undo_range(inode,
2742                                     (loff_t)start << PAGE_SHIFT,
2743                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2744                         }
2745                         goto undone;
2746                 }
2747
2748                 index++;
2749                 /*
2750                  * Here is a more important optimization than it appears:
2751                  * a second SGP_FALLOC on the same huge page will clear it,
2752                  * making it PageUptodate and un-undoable if we fail later.
2753                  */
2754                 if (PageTransCompound(page)) {
2755                         index = round_up(index, HPAGE_PMD_NR);
2756                         /* Beware 32-bit wraparound */
2757                         if (!index)
2758                                 index--;
2759                 }
2760
2761                 /*
2762                  * Inform shmem_writepage() how far we have reached.
2763                  * No need for lock or barrier: we have the page lock.
2764                  */
2765                 if (!PageUptodate(page))
2766                         shmem_falloc.nr_falloced += index - shmem_falloc.next;
2767                 shmem_falloc.next = index;
2768
2769                 /*
2770                  * If !PageUptodate, leave it that way so that freeable pages
2771                  * can be recognized if we need to rollback on error later.
2772                  * But set_page_dirty so that memory pressure will swap rather
2773                  * than free the pages we are allocating (and SGP_CACHE pages
2774                  * might still be clean: we now need to mark those dirty too).
2775                  */
2776                 set_page_dirty(page);
2777                 unlock_page(page);
2778                 put_page(page);
2779                 cond_resched();
2780         }
2781
2782         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2783                 i_size_write(inode, offset + len);
2784         inode->i_ctime = current_time(inode);
2785 undone:
2786         spin_lock(&inode->i_lock);
2787         inode->i_private = NULL;
2788         spin_unlock(&inode->i_lock);
2789 out:
2790         inode_unlock(inode);
2791         return error;
2792 }
2793
2794 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2795 {
2796         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2797
2798         buf->f_type = TMPFS_MAGIC;
2799         buf->f_bsize = PAGE_SIZE;
2800         buf->f_namelen = NAME_MAX;
2801         if (sbinfo->max_blocks) {
2802                 buf->f_blocks = sbinfo->max_blocks;
2803                 buf->f_bavail =
2804                 buf->f_bfree  = sbinfo->max_blocks -
2805                                 percpu_counter_sum(&sbinfo->used_blocks);
2806         }
2807         if (sbinfo->max_inodes) {
2808                 buf->f_files = sbinfo->max_inodes;
2809                 buf->f_ffree = sbinfo->free_inodes;
2810         }
2811         /* else leave those fields 0 like simple_statfs */
2812
2813         buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2814
2815         return 0;
2816 }
2817
2818 /*
2819  * File creation. Allocate an inode, and we're done..
2820  */
2821 static int
2822 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2823             struct dentry *dentry, umode_t mode, dev_t dev)
2824 {
2825         struct inode *inode;
2826         int error = -ENOSPC;
2827
2828         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2829         if (inode) {
2830                 error = simple_acl_create(dir, inode);
2831                 if (error)
2832                         goto out_iput;
2833                 error = security_inode_init_security(inode, dir,
2834                                                      &dentry->d_name,
2835                                                      shmem_initxattrs, NULL);
2836                 if (error && error != -EOPNOTSUPP)
2837                         goto out_iput;
2838
2839                 error = 0;
2840                 dir->i_size += BOGO_DIRENT_SIZE;
2841                 dir->i_ctime = dir->i_mtime = current_time(dir);
2842                 d_instantiate(dentry, inode);
2843                 dget(dentry); /* Extra count - pin the dentry in core */
2844         }
2845         return error;
2846 out_iput:
2847         iput(inode);
2848         return error;
2849 }
2850
2851 static int
2852 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2853               struct dentry *dentry, umode_t mode)
2854 {
2855         struct inode *inode;
2856         int error = -ENOSPC;
2857
2858         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2859         if (inode) {
2860                 error = security_inode_init_security(inode, dir,
2861                                                      NULL,
2862                                                      shmem_initxattrs, NULL);
2863                 if (error && error != -EOPNOTSUPP)
2864                         goto out_iput;
2865                 error = simple_acl_create(dir, inode);
2866                 if (error)
2867                         goto out_iput;
2868                 d_tmpfile(dentry, inode);
2869         }
2870         return error;
2871 out_iput:
2872         iput(inode);
2873         return error;
2874 }
2875
2876 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2877                        struct dentry *dentry, umode_t mode)
2878 {
2879         int error;
2880
2881         if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2882                                  mode | S_IFDIR, 0)))
2883                 return error;
2884         inc_nlink(dir);
2885         return 0;
2886 }
2887
2888 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2889                         struct dentry *dentry, umode_t mode, bool excl)
2890 {
2891         return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2892 }
2893
2894 /*
2895  * Link a file..
2896  */
2897 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2898 {
2899         struct inode *inode = d_inode(old_dentry);
2900         int ret = 0;
2901
2902         /*
2903          * No ordinary (disk based) filesystem counts links as inodes;
2904          * but each new link needs a new dentry, pinning lowmem, and
2905          * tmpfs dentries cannot be pruned until they are unlinked.
2906          * But if an O_TMPFILE file is linked into the tmpfs, the
2907          * first link must skip that, to get the accounting right.
2908          */
2909         if (inode->i_nlink) {
2910                 ret = shmem_reserve_inode(inode->i_sb, NULL);
2911                 if (ret)
2912                         goto out;
2913         }
2914
2915         dir->i_size += BOGO_DIRENT_SIZE;
2916         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2917         inc_nlink(inode);
2918         ihold(inode);   /* New dentry reference */
2919         dget(dentry);           /* Extra pinning count for the created dentry */
2920         d_instantiate(dentry, inode);
2921 out:
2922         return ret;
2923 }
2924
2925 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2926 {
2927         struct inode *inode = d_inode(dentry);
2928
2929         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2930                 shmem_free_inode(inode->i_sb);
2931
2932         dir->i_size -= BOGO_DIRENT_SIZE;
2933         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2934         drop_nlink(inode);
2935         dput(dentry);   /* Undo the count from "create" - this does all the work */
2936         return 0;
2937 }
2938
2939 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2940 {
2941         if (!simple_empty(dentry))
2942                 return -ENOTEMPTY;
2943
2944         drop_nlink(d_inode(dentry));
2945         drop_nlink(dir);
2946         return shmem_unlink(dir, dentry);
2947 }
2948
2949 static int shmem_whiteout(struct user_namespace *mnt_userns,
2950                           struct inode *old_dir, struct dentry *old_dentry)
2951 {
2952         struct dentry *whiteout;
2953         int error;
2954
2955         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2956         if (!whiteout)
2957                 return -ENOMEM;
2958
2959         error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2960                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2961         dput(whiteout);
2962         if (error)
2963                 return error;
2964
2965         /*
2966          * Cheat and hash the whiteout while the old dentry is still in
2967          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2968          *
2969          * d_lookup() will consistently find one of them at this point,
2970          * not sure which one, but that isn't even important.
2971          */
2972         d_rehash(whiteout);
2973         return 0;
2974 }
2975
2976 /*
2977  * The VFS layer already does all the dentry stuff for rename,
2978  * we just have to decrement the usage count for the target if
2979  * it exists so that the VFS layer correctly free's it when it
2980  * gets overwritten.
2981  */
2982 static int shmem_rename2(struct user_namespace *mnt_userns,
2983                          struct inode *old_dir, struct dentry *old_dentry,
2984                          struct inode *new_dir, struct dentry *new_dentry,
2985                          unsigned int flags)
2986 {
2987         struct inode *inode = d_inode(old_dentry);
2988         int they_are_dirs = S_ISDIR(inode->i_mode);
2989
2990         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2991                 return -EINVAL;
2992
2993         if (flags & RENAME_EXCHANGE)
2994                 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
2995
2996         if (!simple_empty(new_dentry))
2997                 return -ENOTEMPTY;
2998
2999         if (flags & RENAME_WHITEOUT) {
3000                 int error;
3001
3002                 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3003                 if (error)
3004                         return error;
3005         }
3006
3007         if (d_really_is_positive(new_dentry)) {
3008                 (void) shmem_unlink(new_dir, new_dentry);
3009                 if (they_are_dirs) {
3010                         drop_nlink(d_inode(new_dentry));
3011                         drop_nlink(old_dir);
3012                 }
3013         } else if (they_are_dirs) {
3014                 drop_nlink(old_dir);
3015                 inc_nlink(new_dir);
3016         }
3017
3018         old_dir->i_size -= BOGO_DIRENT_SIZE;
3019         new_dir->i_size += BOGO_DIRENT_SIZE;
3020         old_dir->i_ctime = old_dir->i_mtime =
3021         new_dir->i_ctime = new_dir->i_mtime =
3022         inode->i_ctime = current_time(old_dir);
3023         return 0;
3024 }
3025
3026 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3027                          struct dentry *dentry, const char *symname)
3028 {
3029         int error;
3030         int len;
3031         struct inode *inode;
3032         struct page *page;
3033
3034         len = strlen(symname) + 1;
3035         if (len > PAGE_SIZE)
3036                 return -ENAMETOOLONG;
3037
3038         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3039                                 VM_NORESERVE);
3040         if (!inode)
3041                 return -ENOSPC;
3042
3043         error = security_inode_init_security(inode, dir, &dentry->d_name,
3044                                              shmem_initxattrs, NULL);
3045         if (error && error != -EOPNOTSUPP) {
3046                 iput(inode);
3047                 return error;
3048         }
3049
3050         inode->i_size = len-1;
3051         if (len <= SHORT_SYMLINK_LEN) {
3052                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3053                 if (!inode->i_link) {
3054                         iput(inode);
3055                         return -ENOMEM;
3056                 }
3057                 inode->i_op = &shmem_short_symlink_operations;
3058         } else {
3059                 inode_nohighmem(inode);
3060                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3061                 if (error) {
3062                         iput(inode);
3063                         return error;
3064                 }
3065                 inode->i_mapping->a_ops = &shmem_aops;
3066                 inode->i_op = &shmem_symlink_inode_operations;
3067                 memcpy(page_address(page), symname, len);
3068                 SetPageUptodate(page);
3069                 set_page_dirty(page);
3070                 unlock_page(page);
3071                 put_page(page);
3072         }
3073         dir->i_size += BOGO_DIRENT_SIZE;
3074         dir->i_ctime = dir->i_mtime = current_time(dir);
3075         d_instantiate(dentry, inode);
3076         dget(dentry);
3077         return 0;
3078 }
3079
3080 static void shmem_put_link(void *arg)
3081 {
3082         mark_page_accessed(arg);
3083         put_page(arg);
3084 }
3085
3086 static const char *shmem_get_link(struct dentry *dentry,
3087                                   struct inode *inode,
3088                                   struct delayed_call *done)
3089 {
3090         struct page *page = NULL;
3091         int error;
3092         if (!dentry) {
3093                 page = find_get_page(inode->i_mapping, 0);
3094                 if (!page)
3095                         return ERR_PTR(-ECHILD);
3096                 if (!PageUptodate(page)) {
3097                         put_page(page);
3098                         return ERR_PTR(-ECHILD);
3099                 }
3100         } else {
3101                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3102                 if (error)
3103                         return ERR_PTR(error);
3104                 unlock_page(page);
3105         }
3106         set_delayed_call(done, shmem_put_link, page);
3107         return page_address(page);
3108 }
3109
3110 #ifdef CONFIG_TMPFS_XATTR
3111 /*
3112  * Superblocks without xattr inode operations may get some security.* xattr
3113  * support from the LSM "for free". As soon as we have any other xattrs
3114  * like ACLs, we also need to implement the security.* handlers at
3115  * filesystem level, though.
3116  */
3117
3118 /*
3119  * Callback for security_inode_init_security() for acquiring xattrs.
3120  */
3121 static int shmem_initxattrs(struct inode *inode,
3122                             const struct xattr *xattr_array,
3123                             void *fs_info)
3124 {
3125         struct shmem_inode_info *info = SHMEM_I(inode);
3126         const struct xattr *xattr;
3127         struct simple_xattr *new_xattr;
3128         size_t len;
3129
3130         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3131                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3132                 if (!new_xattr)
3133                         return -ENOMEM;
3134
3135                 len = strlen(xattr->name) + 1;
3136                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3137                                           GFP_KERNEL);
3138                 if (!new_xattr->name) {
3139                         kvfree(new_xattr);
3140                         return -ENOMEM;
3141                 }
3142
3143                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3144                        XATTR_SECURITY_PREFIX_LEN);
3145                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3146                        xattr->name, len);
3147
3148                 simple_xattr_list_add(&info->xattrs, new_xattr);
3149         }
3150
3151         return 0;
3152 }
3153
3154 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3155                                    struct dentry *unused, struct inode *inode,
3156                                    const char *name, void *buffer, size_t size)
3157 {
3158         struct shmem_inode_info *info = SHMEM_I(inode);
3159
3160         name = xattr_full_name(handler, name);
3161         return simple_xattr_get(&info->xattrs, name, buffer, size);
3162 }
3163
3164 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3165                                    struct user_namespace *mnt_userns,
3166                                    struct dentry *unused, struct inode *inode,
3167                                    const char *name, const void *value,
3168                                    size_t size, int flags)
3169 {
3170         struct shmem_inode_info *info = SHMEM_I(inode);
3171
3172         name = xattr_full_name(handler, name);
3173         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3174 }
3175
3176 static const struct xattr_handler shmem_security_xattr_handler = {
3177         .prefix = XATTR_SECURITY_PREFIX,
3178         .get = shmem_xattr_handler_get,
3179         .set = shmem_xattr_handler_set,
3180 };
3181
3182 static const struct xattr_handler shmem_trusted_xattr_handler = {
3183         .prefix = XATTR_TRUSTED_PREFIX,
3184         .get = shmem_xattr_handler_get,
3185         .set = shmem_xattr_handler_set,
3186 };
3187
3188 static const struct xattr_handler *shmem_xattr_handlers[] = {
3189 #ifdef CONFIG_TMPFS_POSIX_ACL
3190         &posix_acl_access_xattr_handler,
3191         &posix_acl_default_xattr_handler,
3192 #endif
3193         &shmem_security_xattr_handler,
3194         &shmem_trusted_xattr_handler,
3195         NULL
3196 };
3197
3198 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3199 {
3200         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3201         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3202 }
3203 #endif /* CONFIG_TMPFS_XATTR */
3204
3205 static const struct inode_operations shmem_short_symlink_operations = {
3206         .get_link       = simple_get_link,
3207 #ifdef CONFIG_TMPFS_XATTR
3208         .listxattr      = shmem_listxattr,
3209 #endif
3210 };
3211
3212 static const struct inode_operations shmem_symlink_inode_operations = {
3213         .get_link       = shmem_get_link,
3214 #ifdef CONFIG_TMPFS_XATTR
3215         .listxattr      = shmem_listxattr,
3216 #endif
3217 };
3218
3219 static struct dentry *shmem_get_parent(struct dentry *child)
3220 {
3221         return ERR_PTR(-ESTALE);
3222 }
3223
3224 static int shmem_match(struct inode *ino, void *vfh)
3225 {
3226         __u32 *fh = vfh;
3227         __u64 inum = fh[2];
3228         inum = (inum << 32) | fh[1];
3229         return ino->i_ino == inum && fh[0] == ino->i_generation;
3230 }
3231
3232 /* Find any alias of inode, but prefer a hashed alias */
3233 static struct dentry *shmem_find_alias(struct inode *inode)
3234 {
3235         struct dentry *alias = d_find_alias(inode);
3236
3237         return alias ?: d_find_any_alias(inode);
3238 }
3239
3240
3241 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3242                 struct fid *fid, int fh_len, int fh_type)
3243 {
3244         struct inode *inode;
3245         struct dentry *dentry = NULL;
3246         u64 inum;
3247
3248         if (fh_len < 3)
3249                 return NULL;
3250
3251         inum = fid->raw[2];
3252         inum = (inum << 32) | fid->raw[1];
3253
3254         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3255                         shmem_match, fid->raw);
3256         if (inode) {
3257                 dentry = shmem_find_alias(inode);
3258                 iput(inode);
3259         }
3260
3261         return dentry;
3262 }
3263
3264 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3265                                 struct inode *parent)
3266 {
3267         if (*len < 3) {
3268                 *len = 3;
3269                 return FILEID_INVALID;
3270         }
3271
3272         if (inode_unhashed(inode)) {
3273                 /* Unfortunately insert_inode_hash is not idempotent,
3274                  * so as we hash inodes here rather than at creation
3275                  * time, we need a lock to ensure we only try
3276                  * to do it once
3277                  */
3278                 static DEFINE_SPINLOCK(lock);
3279                 spin_lock(&lock);
3280                 if (inode_unhashed(inode))
3281                         __insert_inode_hash(inode,
3282                                             inode->i_ino + inode->i_generation);
3283                 spin_unlock(&lock);
3284         }
3285
3286         fh[0] = inode->i_generation;
3287         fh[1] = inode->i_ino;
3288         fh[2] = ((__u64)inode->i_ino) >> 32;
3289
3290         *len = 3;
3291         return 1;
3292 }
3293
3294 static const struct export_operations shmem_export_ops = {
3295         .get_parent     = shmem_get_parent,
3296         .encode_fh      = shmem_encode_fh,
3297         .fh_to_dentry   = shmem_fh_to_dentry,
3298 };
3299
3300 enum shmem_param {
3301         Opt_gid,
3302         Opt_huge,
3303         Opt_mode,
3304         Opt_mpol,
3305         Opt_nr_blocks,
3306         Opt_nr_inodes,
3307         Opt_size,
3308         Opt_uid,
3309         Opt_inode32,
3310         Opt_inode64,
3311 };
3312
3313 static const struct constant_table shmem_param_enums_huge[] = {
3314         {"never",       SHMEM_HUGE_NEVER },
3315         {"always",      SHMEM_HUGE_ALWAYS },
3316         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3317         {"advise",      SHMEM_HUGE_ADVISE },
3318         {}
3319 };
3320
3321 const struct fs_parameter_spec shmem_fs_parameters[] = {
3322         fsparam_u32   ("gid",           Opt_gid),
3323         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3324         fsparam_u32oct("mode",          Opt_mode),
3325         fsparam_string("mpol",          Opt_mpol),
3326         fsparam_string("nr_blocks",     Opt_nr_blocks),
3327         fsparam_string("nr_inodes",     Opt_nr_inodes),
3328         fsparam_string("size",          Opt_size),
3329         fsparam_u32   ("uid",           Opt_uid),
3330         fsparam_flag  ("inode32",       Opt_inode32),
3331         fsparam_flag  ("inode64",       Opt_inode64),
3332         {}
3333 };
3334
3335 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3336 {
3337         struct shmem_options *ctx = fc->fs_private;
3338         struct fs_parse_result result;
3339         unsigned long long size;
3340         char *rest;
3341         int opt;
3342
3343         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3344         if (opt < 0)
3345                 return opt;
3346
3347         switch (opt) {
3348         case Opt_size:
3349                 size = memparse(param->string, &rest);
3350                 if (*rest == '%') {
3351                         size <<= PAGE_SHIFT;
3352                         size *= totalram_pages();
3353                         do_div(size, 100);
3354                         rest++;
3355                 }
3356                 if (*rest)
3357                         goto bad_value;
3358                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3359                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3360                 break;
3361         case Opt_nr_blocks:
3362                 ctx->blocks = memparse(param->string, &rest);
3363                 if (*rest)
3364                         goto bad_value;
3365                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3366                 break;
3367         case Opt_nr_inodes:
3368                 ctx->inodes = memparse(param->string, &rest);
3369                 if (*rest)
3370                         goto bad_value;
3371                 ctx->seen |= SHMEM_SEEN_INODES;
3372                 break;
3373         case Opt_mode:
3374                 ctx->mode = result.uint_32 & 07777;
3375                 break;
3376         case Opt_uid:
3377                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3378                 if (!uid_valid(ctx->uid))
3379                         goto bad_value;
3380                 break;
3381         case Opt_gid:
3382                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3383                 if (!gid_valid(ctx->gid))
3384                         goto bad_value;
3385                 break;
3386         case Opt_huge:
3387                 ctx->huge = result.uint_32;
3388                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3389                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3390                       has_transparent_hugepage()))
3391                         goto unsupported_parameter;
3392                 ctx->seen |= SHMEM_SEEN_HUGE;
3393                 break;
3394         case Opt_mpol:
3395                 if (IS_ENABLED(CONFIG_NUMA)) {
3396                         mpol_put(ctx->mpol);
3397                         ctx->mpol = NULL;
3398                         if (mpol_parse_str(param->string, &ctx->mpol))
3399                                 goto bad_value;
3400                         break;
3401                 }
3402                 goto unsupported_parameter;
3403         case Opt_inode32:
3404                 ctx->full_inums = false;
3405                 ctx->seen |= SHMEM_SEEN_INUMS;
3406                 break;
3407         case Opt_inode64:
3408                 if (sizeof(ino_t) < 8) {
3409                         return invalfc(fc,
3410                                        "Cannot use inode64 with <64bit inums in kernel\n");
3411                 }
3412                 ctx->full_inums = true;
3413                 ctx->seen |= SHMEM_SEEN_INUMS;
3414                 break;
3415         }
3416         return 0;
3417
3418 unsupported_parameter:
3419         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3420 bad_value:
3421         return invalfc(fc, "Bad value for '%s'", param->key);
3422 }
3423
3424 static int shmem_parse_options(struct fs_context *fc, void *data)
3425 {
3426         char *options = data;
3427
3428         if (options) {
3429                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3430                 if (err)
3431                         return err;
3432         }
3433
3434         while (options != NULL) {
3435                 char *this_char = options;
3436                 for (;;) {
3437                         /*
3438                          * NUL-terminate this option: unfortunately,
3439                          * mount options form a comma-separated list,
3440                          * but mpol's nodelist may also contain commas.
3441                          */
3442                         options = strchr(options, ',');
3443                         if (options == NULL)
3444                                 break;
3445                         options++;
3446                         if (!isdigit(*options)) {
3447                                 options[-1] = '\0';
3448                                 break;
3449                         }
3450                 }
3451                 if (*this_char) {
3452                         char *value = strchr(this_char, '=');
3453                         size_t len = 0;
3454                         int err;
3455
3456                         if (value) {
3457                                 *value++ = '\0';
3458                                 len = strlen(value);
3459                         }
3460                         err = vfs_parse_fs_string(fc, this_char, value, len);
3461                         if (err < 0)
3462                                 return err;
3463                 }
3464         }
3465         return 0;
3466 }
3467
3468 /*
3469  * Reconfigure a shmem filesystem.
3470  *
3471  * Note that we disallow change from limited->unlimited blocks/inodes while any
3472  * are in use; but we must separately disallow unlimited->limited, because in
3473  * that case we have no record of how much is already in use.
3474  */
3475 static int shmem_reconfigure(struct fs_context *fc)
3476 {
3477         struct shmem_options *ctx = fc->fs_private;
3478         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3479         unsigned long inodes;
3480         struct mempolicy *mpol = NULL;
3481         const char *err;
3482
3483         raw_spin_lock(&sbinfo->stat_lock);
3484         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3485         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3486                 if (!sbinfo->max_blocks) {
3487                         err = "Cannot retroactively limit size";
3488                         goto out;
3489                 }
3490                 if (percpu_counter_compare(&sbinfo->used_blocks,
3491                                            ctx->blocks) > 0) {
3492                         err = "Too small a size for current use";
3493                         goto out;
3494                 }
3495         }
3496         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3497                 if (!sbinfo->max_inodes) {
3498                         err = "Cannot retroactively limit inodes";
3499                         goto out;
3500                 }
3501                 if (ctx->inodes < inodes) {
3502                         err = "Too few inodes for current use";
3503                         goto out;
3504                 }
3505         }
3506
3507         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3508             sbinfo->next_ino > UINT_MAX) {
3509                 err = "Current inum too high to switch to 32-bit inums";
3510                 goto out;
3511         }
3512
3513         if (ctx->seen & SHMEM_SEEN_HUGE)
3514                 sbinfo->huge = ctx->huge;
3515         if (ctx->seen & SHMEM_SEEN_INUMS)
3516                 sbinfo->full_inums = ctx->full_inums;
3517         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3518                 sbinfo->max_blocks  = ctx->blocks;
3519         if (ctx->seen & SHMEM_SEEN_INODES) {
3520                 sbinfo->max_inodes  = ctx->inodes;
3521                 sbinfo->free_inodes = ctx->inodes - inodes;
3522         }
3523
3524         /*
3525          * Preserve previous mempolicy unless mpol remount option was specified.
3526          */
3527         if (ctx->mpol) {
3528                 mpol = sbinfo->mpol;
3529                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3530                 ctx->mpol = NULL;
3531         }
3532         raw_spin_unlock(&sbinfo->stat_lock);
3533         mpol_put(mpol);
3534         return 0;
3535 out:
3536         raw_spin_unlock(&sbinfo->stat_lock);
3537         return invalfc(fc, "%s", err);
3538 }
3539
3540 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3541 {
3542         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3543
3544         if (sbinfo->max_blocks != shmem_default_max_blocks())
3545                 seq_printf(seq, ",size=%luk",
3546                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3547         if (sbinfo->max_inodes != shmem_default_max_inodes())
3548                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3549         if (sbinfo->mode != (0777 | S_ISVTX))
3550                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3551         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3552                 seq_printf(seq, ",uid=%u",
3553                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3554         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3555                 seq_printf(seq, ",gid=%u",
3556                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3557
3558         /*
3559          * Showing inode{64,32} might be useful even if it's the system default,
3560          * since then people don't have to resort to checking both here and
3561          * /proc/config.gz to confirm 64-bit inums were successfully applied
3562          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3563          *
3564          * We hide it when inode64 isn't the default and we are using 32-bit
3565          * inodes, since that probably just means the feature isn't even under
3566          * consideration.
3567          *
3568          * As such:
3569          *
3570          *                     +-----------------+-----------------+
3571          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3572          *  +------------------+-----------------+-----------------+
3573          *  | full_inums=true  | show            | show            |
3574          *  | full_inums=false | show            | hide            |
3575          *  +------------------+-----------------+-----------------+
3576          *
3577          */
3578         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3579                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3580 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3581         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3582         if (sbinfo->huge)
3583                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3584 #endif
3585         shmem_show_mpol(seq, sbinfo->mpol);
3586         return 0;
3587 }
3588
3589 #endif /* CONFIG_TMPFS */
3590
3591 static void shmem_put_super(struct super_block *sb)
3592 {
3593         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3594
3595         free_percpu(sbinfo->ino_batch);
3596         percpu_counter_destroy(&sbinfo->used_blocks);
3597         mpol_put(sbinfo->mpol);
3598         kfree(sbinfo);
3599         sb->s_fs_info = NULL;
3600 }
3601
3602 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3603 {
3604         struct shmem_options *ctx = fc->fs_private;
3605         struct inode *inode;
3606         struct shmem_sb_info *sbinfo;
3607
3608         /* Round up to L1_CACHE_BYTES to resist false sharing */
3609         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3610                                 L1_CACHE_BYTES), GFP_KERNEL);
3611         if (!sbinfo)
3612                 return -ENOMEM;
3613
3614         sb->s_fs_info = sbinfo;
3615
3616 #ifdef CONFIG_TMPFS
3617         /*
3618          * Per default we only allow half of the physical ram per
3619          * tmpfs instance, limiting inodes to one per page of lowmem;
3620          * but the internal instance is left unlimited.
3621          */
3622         if (!(sb->s_flags & SB_KERNMOUNT)) {
3623                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3624                         ctx->blocks = shmem_default_max_blocks();
3625                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3626                         ctx->inodes = shmem_default_max_inodes();
3627                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3628                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3629         } else {
3630                 sb->s_flags |= SB_NOUSER;
3631         }
3632         sb->s_export_op = &shmem_export_ops;
3633         sb->s_flags |= SB_NOSEC;
3634 #else
3635         sb->s_flags |= SB_NOUSER;
3636 #endif
3637         sbinfo->max_blocks = ctx->blocks;
3638         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3639         if (sb->s_flags & SB_KERNMOUNT) {
3640                 sbinfo->ino_batch = alloc_percpu(ino_t);
3641                 if (!sbinfo->ino_batch)
3642                         goto failed;
3643         }
3644         sbinfo->uid = ctx->uid;
3645         sbinfo->gid = ctx->gid;
3646         sbinfo->full_inums = ctx->full_inums;
3647         sbinfo->mode = ctx->mode;
3648         sbinfo->huge = ctx->huge;
3649         sbinfo->mpol = ctx->mpol;
3650         ctx->mpol = NULL;
3651
3652         raw_spin_lock_init(&sbinfo->stat_lock);
3653         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3654                 goto failed;
3655         spin_lock_init(&sbinfo->shrinklist_lock);
3656         INIT_LIST_HEAD(&sbinfo->shrinklist);
3657
3658         sb->s_maxbytes = MAX_LFS_FILESIZE;
3659         sb->s_blocksize = PAGE_SIZE;
3660         sb->s_blocksize_bits = PAGE_SHIFT;
3661         sb->s_magic = TMPFS_MAGIC;
3662         sb->s_op = &shmem_ops;
3663         sb->s_time_gran = 1;
3664 #ifdef CONFIG_TMPFS_XATTR
3665         sb->s_xattr = shmem_xattr_handlers;
3666 #endif
3667 #ifdef CONFIG_TMPFS_POSIX_ACL
3668         sb->s_flags |= SB_POSIXACL;
3669 #endif
3670         uuid_gen(&sb->s_uuid);
3671
3672         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3673         if (!inode)
3674                 goto failed;
3675         inode->i_uid = sbinfo->uid;
3676         inode->i_gid = sbinfo->gid;
3677         sb->s_root = d_make_root(inode);
3678         if (!sb->s_root)
3679                 goto failed;
3680         return 0;
3681
3682 failed:
3683         shmem_put_super(sb);
3684         return -ENOMEM;
3685 }
3686
3687 static int shmem_get_tree(struct fs_context *fc)
3688 {
3689         return get_tree_nodev(fc, shmem_fill_super);
3690 }
3691
3692 static void shmem_free_fc(struct fs_context *fc)
3693 {
3694         struct shmem_options *ctx = fc->fs_private;
3695
3696         if (ctx) {
3697                 mpol_put(ctx->mpol);
3698                 kfree(ctx);
3699         }
3700 }
3701
3702 static const struct fs_context_operations shmem_fs_context_ops = {
3703         .free                   = shmem_free_fc,
3704         .get_tree               = shmem_get_tree,
3705 #ifdef CONFIG_TMPFS
3706         .parse_monolithic       = shmem_parse_options,
3707         .parse_param            = shmem_parse_one,
3708         .reconfigure            = shmem_reconfigure,
3709 #endif
3710 };
3711
3712 static struct kmem_cache *shmem_inode_cachep;
3713
3714 static struct inode *shmem_alloc_inode(struct super_block *sb)
3715 {
3716         struct shmem_inode_info *info;
3717         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3718         if (!info)
3719                 return NULL;
3720         return &info->vfs_inode;
3721 }
3722
3723 static void shmem_free_in_core_inode(struct inode *inode)
3724 {
3725         if (S_ISLNK(inode->i_mode))
3726                 kfree(inode->i_link);
3727         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3728 }
3729
3730 static void shmem_destroy_inode(struct inode *inode)
3731 {
3732         if (S_ISREG(inode->i_mode))
3733                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3734 }
3735
3736 static void shmem_init_inode(void *foo)
3737 {
3738         struct shmem_inode_info *info = foo;
3739         inode_init_once(&info->vfs_inode);
3740 }
3741
3742 static void shmem_init_inodecache(void)
3743 {
3744         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3745                                 sizeof(struct shmem_inode_info),
3746                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3747 }
3748
3749 static void shmem_destroy_inodecache(void)
3750 {
3751         kmem_cache_destroy(shmem_inode_cachep);
3752 }
3753
3754 const struct address_space_operations shmem_aops = {
3755         .writepage      = shmem_writepage,
3756         .set_page_dirty = __set_page_dirty_no_writeback,
3757 #ifdef CONFIG_TMPFS
3758         .write_begin    = shmem_write_begin,
3759         .write_end      = shmem_write_end,
3760 #endif
3761 #ifdef CONFIG_MIGRATION
3762         .migratepage    = migrate_page,
3763 #endif
3764         .error_remove_page = generic_error_remove_page,
3765 };
3766 EXPORT_SYMBOL(shmem_aops);
3767
3768 static const struct file_operations shmem_file_operations = {
3769         .mmap           = shmem_mmap,
3770         .get_unmapped_area = shmem_get_unmapped_area,
3771 #ifdef CONFIG_TMPFS
3772         .llseek         = shmem_file_llseek,
3773         .read_iter      = shmem_file_read_iter,
3774         .write_iter     = generic_file_write_iter,
3775         .fsync          = noop_fsync,
3776         .splice_read    = generic_file_splice_read,
3777         .splice_write   = iter_file_splice_write,
3778         .fallocate      = shmem_fallocate,
3779 #endif
3780 };
3781
3782 static const struct inode_operations shmem_inode_operations = {
3783         .getattr        = shmem_getattr,
3784         .setattr        = shmem_setattr,
3785 #ifdef CONFIG_TMPFS_XATTR
3786         .listxattr      = shmem_listxattr,
3787         .set_acl        = simple_set_acl,
3788 #endif
3789 };
3790
3791 static const struct inode_operations shmem_dir_inode_operations = {
3792 #ifdef CONFIG_TMPFS
3793         .create         = shmem_create,
3794         .lookup         = simple_lookup,
3795         .link           = shmem_link,
3796         .unlink         = shmem_unlink,
3797         .symlink        = shmem_symlink,
3798         .mkdir          = shmem_mkdir,
3799         .rmdir          = shmem_rmdir,
3800         .mknod          = shmem_mknod,
3801         .rename         = shmem_rename2,
3802         .tmpfile        = shmem_tmpfile,
3803 #endif
3804 #ifdef CONFIG_TMPFS_XATTR
3805         .listxattr      = shmem_listxattr,
3806 #endif
3807 #ifdef CONFIG_TMPFS_POSIX_ACL
3808         .setattr        = shmem_setattr,
3809         .set_acl        = simple_set_acl,
3810 #endif
3811 };
3812
3813 static const struct inode_operations shmem_special_inode_operations = {
3814 #ifdef CONFIG_TMPFS_XATTR
3815         .listxattr      = shmem_listxattr,
3816 #endif
3817 #ifdef CONFIG_TMPFS_POSIX_ACL
3818         .setattr        = shmem_setattr,
3819         .set_acl        = simple_set_acl,
3820 #endif
3821 };
3822
3823 static const struct super_operations shmem_ops = {
3824         .alloc_inode    = shmem_alloc_inode,
3825         .free_inode     = shmem_free_in_core_inode,
3826         .destroy_inode  = shmem_destroy_inode,
3827 #ifdef CONFIG_TMPFS
3828         .statfs         = shmem_statfs,
3829         .show_options   = shmem_show_options,
3830 #endif
3831         .evict_inode    = shmem_evict_inode,
3832         .drop_inode     = generic_delete_inode,
3833         .put_super      = shmem_put_super,
3834 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3835         .nr_cached_objects      = shmem_unused_huge_count,
3836         .free_cached_objects    = shmem_unused_huge_scan,
3837 #endif
3838 };
3839
3840 static const struct vm_operations_struct shmem_vm_ops = {
3841         .fault          = shmem_fault,
3842         .map_pages      = filemap_map_pages,
3843 #ifdef CONFIG_NUMA
3844         .set_policy     = shmem_set_policy,
3845         .get_policy     = shmem_get_policy,
3846 #endif
3847 };
3848
3849 int shmem_init_fs_context(struct fs_context *fc)
3850 {
3851         struct shmem_options *ctx;
3852
3853         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3854         if (!ctx)
3855                 return -ENOMEM;
3856
3857         ctx->mode = 0777 | S_ISVTX;
3858         ctx->uid = current_fsuid();
3859         ctx->gid = current_fsgid();
3860
3861         fc->fs_private = ctx;
3862         fc->ops = &shmem_fs_context_ops;
3863         return 0;
3864 }
3865
3866 static struct file_system_type shmem_fs_type = {
3867         .owner          = THIS_MODULE,
3868         .name           = "tmpfs",
3869         .init_fs_context = shmem_init_fs_context,
3870 #ifdef CONFIG_TMPFS
3871         .parameters     = shmem_fs_parameters,
3872 #endif
3873         .kill_sb        = kill_litter_super,
3874         .fs_flags       = FS_USERNS_MOUNT,
3875 };
3876
3877 int __init shmem_init(void)
3878 {
3879         int error;
3880
3881         shmem_init_inodecache();
3882
3883         error = register_filesystem(&shmem_fs_type);
3884         if (error) {
3885                 pr_err("Could not register tmpfs\n");
3886                 goto out2;
3887         }
3888
3889         shm_mnt = kern_mount(&shmem_fs_type);
3890         if (IS_ERR(shm_mnt)) {
3891                 error = PTR_ERR(shm_mnt);
3892                 pr_err("Could not kern_mount tmpfs\n");
3893                 goto out1;
3894         }
3895
3896 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3897         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3898                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3899         else
3900                 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3901 #endif
3902         return 0;
3903
3904 out1:
3905         unregister_filesystem(&shmem_fs_type);
3906 out2:
3907         shmem_destroy_inodecache();
3908         shm_mnt = ERR_PTR(error);
3909         return error;
3910 }
3911
3912 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3913 static ssize_t shmem_enabled_show(struct kobject *kobj,
3914                                   struct kobj_attribute *attr, char *buf)
3915 {
3916         static const int values[] = {
3917                 SHMEM_HUGE_ALWAYS,
3918                 SHMEM_HUGE_WITHIN_SIZE,
3919                 SHMEM_HUGE_ADVISE,
3920                 SHMEM_HUGE_NEVER,
3921                 SHMEM_HUGE_DENY,
3922                 SHMEM_HUGE_FORCE,
3923         };
3924         int len = 0;
3925         int i;
3926
3927         for (i = 0; i < ARRAY_SIZE(values); i++) {
3928                 len += sysfs_emit_at(buf, len,
3929                                      shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3930                                      i ? " " : "",
3931                                      shmem_format_huge(values[i]));
3932         }
3933
3934         len += sysfs_emit_at(buf, len, "\n");
3935
3936         return len;
3937 }
3938
3939 static ssize_t shmem_enabled_store(struct kobject *kobj,
3940                 struct kobj_attribute *attr, const char *buf, size_t count)
3941 {
3942         char tmp[16];
3943         int huge;
3944
3945         if (count + 1 > sizeof(tmp))
3946                 return -EINVAL;
3947         memcpy(tmp, buf, count);
3948         tmp[count] = '\0';
3949         if (count && tmp[count - 1] == '\n')
3950                 tmp[count - 1] = '\0';
3951
3952         huge = shmem_parse_huge(tmp);
3953         if (huge == -EINVAL)
3954                 return -EINVAL;
3955         if (!has_transparent_hugepage() &&
3956                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3957                 return -EINVAL;
3958
3959         shmem_huge = huge;
3960         if (shmem_huge > SHMEM_HUGE_DENY)
3961                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3962         return count;
3963 }
3964
3965 struct kobj_attribute shmem_enabled_attr =
3966         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3967 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3968
3969 #else /* !CONFIG_SHMEM */
3970
3971 /*
3972  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3973  *
3974  * This is intended for small system where the benefits of the full
3975  * shmem code (swap-backed and resource-limited) are outweighed by
3976  * their complexity. On systems without swap this code should be
3977  * effectively equivalent, but much lighter weight.
3978  */
3979
3980 static struct file_system_type shmem_fs_type = {
3981         .name           = "tmpfs",
3982         .init_fs_context = ramfs_init_fs_context,
3983         .parameters     = ramfs_fs_parameters,
3984         .kill_sb        = kill_litter_super,
3985         .fs_flags       = FS_USERNS_MOUNT,
3986 };
3987
3988 int __init shmem_init(void)
3989 {
3990         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3991
3992         shm_mnt = kern_mount(&shmem_fs_type);
3993         BUG_ON(IS_ERR(shm_mnt));
3994
3995         return 0;
3996 }
3997
3998 int shmem_unuse(unsigned int type, bool frontswap,
3999                 unsigned long *fs_pages_to_unuse)
4000 {
4001         return 0;
4002 }
4003
4004 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4005 {
4006         return 0;
4007 }
4008
4009 void shmem_unlock_mapping(struct address_space *mapping)
4010 {
4011 }
4012
4013 #ifdef CONFIG_MMU
4014 unsigned long shmem_get_unmapped_area(struct file *file,
4015                                       unsigned long addr, unsigned long len,
4016                                       unsigned long pgoff, unsigned long flags)
4017 {
4018         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4019 }
4020 #endif
4021
4022 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4023 {
4024         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4025 }
4026 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4027
4028 #define shmem_vm_ops                            generic_file_vm_ops
4029 #define shmem_file_operations                   ramfs_file_operations
4030 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4031 #define shmem_acct_size(flags, size)            0
4032 #define shmem_unacct_size(flags, size)          do {} while (0)
4033
4034 #endif /* CONFIG_SHMEM */
4035
4036 /* common code */
4037
4038 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4039                                        unsigned long flags, unsigned int i_flags)
4040 {
4041         struct inode *inode;
4042         struct file *res;
4043
4044         if (IS_ERR(mnt))
4045                 return ERR_CAST(mnt);
4046
4047         if (size < 0 || size > MAX_LFS_FILESIZE)
4048                 return ERR_PTR(-EINVAL);
4049
4050         if (shmem_acct_size(flags, size))
4051                 return ERR_PTR(-ENOMEM);
4052
4053         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4054                                 flags);
4055         if (unlikely(!inode)) {
4056                 shmem_unacct_size(flags, size);
4057                 return ERR_PTR(-ENOSPC);
4058         }
4059         inode->i_flags |= i_flags;
4060         inode->i_size = size;
4061         clear_nlink(inode);     /* It is unlinked */
4062         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4063         if (!IS_ERR(res))
4064                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4065                                 &shmem_file_operations);
4066         if (IS_ERR(res))
4067                 iput(inode);
4068         return res;
4069 }
4070
4071 /**
4072  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4073  *      kernel internal.  There will be NO LSM permission checks against the
4074  *      underlying inode.  So users of this interface must do LSM checks at a
4075  *      higher layer.  The users are the big_key and shm implementations.  LSM
4076  *      checks are provided at the key or shm level rather than the inode.
4077  * @name: name for dentry (to be seen in /proc/<pid>/maps
4078  * @size: size to be set for the file
4079  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4080  */
4081 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4082 {
4083         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4084 }
4085
4086 /**
4087  * shmem_file_setup - get an unlinked file living in tmpfs
4088  * @name: name for dentry (to be seen in /proc/<pid>/maps
4089  * @size: size to be set for the file
4090  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4091  */
4092 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4093 {
4094         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4095 }
4096 EXPORT_SYMBOL_GPL(shmem_file_setup);
4097
4098 /**
4099  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4100  * @mnt: the tmpfs mount where the file will be created
4101  * @name: name for dentry (to be seen in /proc/<pid>/maps
4102  * @size: size to be set for the file
4103  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4104  */
4105 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4106                                        loff_t size, unsigned long flags)
4107 {
4108         return __shmem_file_setup(mnt, name, size, flags, 0);
4109 }
4110 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4111
4112 /**
4113  * shmem_zero_setup - setup a shared anonymous mapping
4114  * @vma: the vma to be mmapped is prepared by do_mmap
4115  */
4116 int shmem_zero_setup(struct vm_area_struct *vma)
4117 {
4118         struct file *file;
4119         loff_t size = vma->vm_end - vma->vm_start;
4120
4121         /*
4122          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4123          * between XFS directory reading and selinux: since this file is only
4124          * accessible to the user through its mapping, use S_PRIVATE flag to
4125          * bypass file security, in the same way as shmem_kernel_file_setup().
4126          */
4127         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4128         if (IS_ERR(file))
4129                 return PTR_ERR(file);
4130
4131         if (vma->vm_file)
4132                 fput(vma->vm_file);
4133         vma->vm_file = file;
4134         vma->vm_ops = &shmem_vm_ops;
4135
4136         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4137                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4138                         (vma->vm_end & HPAGE_PMD_MASK)) {
4139                 khugepaged_enter(vma, vma->vm_flags);
4140         }
4141
4142         return 0;
4143 }
4144
4145 /**
4146  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4147  * @mapping:    the page's address_space
4148  * @index:      the page index
4149  * @gfp:        the page allocator flags to use if allocating
4150  *
4151  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4152  * with any new page allocations done using the specified allocation flags.
4153  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4154  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4155  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4156  *
4157  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4158  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4159  */
4160 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4161                                          pgoff_t index, gfp_t gfp)
4162 {
4163 #ifdef CONFIG_SHMEM
4164         struct inode *inode = mapping->host;
4165         struct page *page;
4166         int error;
4167
4168         BUG_ON(!shmem_mapping(mapping));
4169         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4170                                   gfp, NULL, NULL, NULL);
4171         if (error)
4172                 page = ERR_PTR(error);
4173         else
4174                 unlock_page(page);
4175         return page;
4176 #else
4177         /*
4178          * The tiny !SHMEM case uses ramfs without swap
4179          */
4180         return read_cache_page_gfp(mapping, index, gfp);
4181 #endif
4182 }
4183 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);