Merge tag 'x86_urgent_for_v6.5_rc4' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / mm / pagewalk.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/highmem.h>
4 #include <linux/sched.h>
5 #include <linux/hugetlb.h>
6
7 /*
8  * We want to know the real level where a entry is located ignoring any
9  * folding of levels which may be happening. For example if p4d is folded then
10  * a missing entry found at level 1 (p4d) is actually at level 0 (pgd).
11  */
12 static int real_depth(int depth)
13 {
14         if (depth == 3 && PTRS_PER_PMD == 1)
15                 depth = 2;
16         if (depth == 2 && PTRS_PER_PUD == 1)
17                 depth = 1;
18         if (depth == 1 && PTRS_PER_P4D == 1)
19                 depth = 0;
20         return depth;
21 }
22
23 static int walk_pte_range_inner(pte_t *pte, unsigned long addr,
24                                 unsigned long end, struct mm_walk *walk)
25 {
26         const struct mm_walk_ops *ops = walk->ops;
27         int err = 0;
28
29         for (;;) {
30                 err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
31                 if (err)
32                        break;
33                 if (addr >= end - PAGE_SIZE)
34                         break;
35                 addr += PAGE_SIZE;
36                 pte++;
37         }
38         return err;
39 }
40
41 static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
42                           struct mm_walk *walk)
43 {
44         pte_t *pte;
45         int err = 0;
46         spinlock_t *ptl;
47
48         if (walk->no_vma) {
49                 /*
50                  * pte_offset_map() might apply user-specific validation.
51                  * Indeed, on x86_64 the pmd entries set up by init_espfix_ap()
52                  * fit its pmd_bad() check (_PAGE_NX set and _PAGE_RW clear),
53                  * and CONFIG_EFI_PGT_DUMP efi_mm goes so far as to walk them.
54                  */
55                 if (walk->mm == &init_mm || addr >= TASK_SIZE)
56                         pte = pte_offset_kernel(pmd, addr);
57                 else
58                         pte = pte_offset_map(pmd, addr);
59                 if (pte) {
60                         err = walk_pte_range_inner(pte, addr, end, walk);
61                         if (walk->mm != &init_mm)
62                                 pte_unmap(pte);
63                 }
64         } else {
65                 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
66                 if (pte) {
67                         err = walk_pte_range_inner(pte, addr, end, walk);
68                         pte_unmap_unlock(pte, ptl);
69                 }
70         }
71         if (!pte)
72                 walk->action = ACTION_AGAIN;
73         return err;
74 }
75
76 #ifdef CONFIG_ARCH_HAS_HUGEPD
77 static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr,
78                              unsigned long end, struct mm_walk *walk, int pdshift)
79 {
80         int err = 0;
81         const struct mm_walk_ops *ops = walk->ops;
82         int shift = hugepd_shift(*phpd);
83         int page_size = 1 << shift;
84
85         if (!ops->pte_entry)
86                 return 0;
87
88         if (addr & (page_size - 1))
89                 return 0;
90
91         for (;;) {
92                 pte_t *pte;
93
94                 spin_lock(&walk->mm->page_table_lock);
95                 pte = hugepte_offset(*phpd, addr, pdshift);
96                 err = ops->pte_entry(pte, addr, addr + page_size, walk);
97                 spin_unlock(&walk->mm->page_table_lock);
98
99                 if (err)
100                         break;
101                 if (addr >= end - page_size)
102                         break;
103                 addr += page_size;
104         }
105         return err;
106 }
107 #else
108 static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr,
109                              unsigned long end, struct mm_walk *walk, int pdshift)
110 {
111         return 0;
112 }
113 #endif
114
115 static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
116                           struct mm_walk *walk)
117 {
118         pmd_t *pmd;
119         unsigned long next;
120         const struct mm_walk_ops *ops = walk->ops;
121         int err = 0;
122         int depth = real_depth(3);
123
124         pmd = pmd_offset(pud, addr);
125         do {
126 again:
127                 next = pmd_addr_end(addr, end);
128                 if (pmd_none(*pmd)) {
129                         if (ops->pte_hole)
130                                 err = ops->pte_hole(addr, next, depth, walk);
131                         if (err)
132                                 break;
133                         continue;
134                 }
135
136                 walk->action = ACTION_SUBTREE;
137
138                 /*
139                  * This implies that each ->pmd_entry() handler
140                  * needs to know about pmd_trans_huge() pmds
141                  */
142                 if (ops->pmd_entry)
143                         err = ops->pmd_entry(pmd, addr, next, walk);
144                 if (err)
145                         break;
146
147                 if (walk->action == ACTION_AGAIN)
148                         goto again;
149
150                 /*
151                  * Check this here so we only break down trans_huge
152                  * pages when we _need_ to
153                  */
154                 if ((!walk->vma && (pmd_leaf(*pmd) || !pmd_present(*pmd))) ||
155                     walk->action == ACTION_CONTINUE ||
156                     !(ops->pte_entry))
157                         continue;
158
159                 if (walk->vma)
160                         split_huge_pmd(walk->vma, pmd, addr);
161
162                 if (is_hugepd(__hugepd(pmd_val(*pmd))))
163                         err = walk_hugepd_range((hugepd_t *)pmd, addr, next, walk, PMD_SHIFT);
164                 else
165                         err = walk_pte_range(pmd, addr, next, walk);
166                 if (err)
167                         break;
168
169                 if (walk->action == ACTION_AGAIN)
170                         goto again;
171
172         } while (pmd++, addr = next, addr != end);
173
174         return err;
175 }
176
177 static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
178                           struct mm_walk *walk)
179 {
180         pud_t *pud;
181         unsigned long next;
182         const struct mm_walk_ops *ops = walk->ops;
183         int err = 0;
184         int depth = real_depth(2);
185
186         pud = pud_offset(p4d, addr);
187         do {
188  again:
189                 next = pud_addr_end(addr, end);
190                 if (pud_none(*pud)) {
191                         if (ops->pte_hole)
192                                 err = ops->pte_hole(addr, next, depth, walk);
193                         if (err)
194                                 break;
195                         continue;
196                 }
197
198                 walk->action = ACTION_SUBTREE;
199
200                 if (ops->pud_entry)
201                         err = ops->pud_entry(pud, addr, next, walk);
202                 if (err)
203                         break;
204
205                 if (walk->action == ACTION_AGAIN)
206                         goto again;
207
208                 if ((!walk->vma && (pud_leaf(*pud) || !pud_present(*pud))) ||
209                     walk->action == ACTION_CONTINUE ||
210                     !(ops->pmd_entry || ops->pte_entry))
211                         continue;
212
213                 if (walk->vma)
214                         split_huge_pud(walk->vma, pud, addr);
215                 if (pud_none(*pud))
216                         goto again;
217
218                 if (is_hugepd(__hugepd(pud_val(*pud))))
219                         err = walk_hugepd_range((hugepd_t *)pud, addr, next, walk, PUD_SHIFT);
220                 else
221                         err = walk_pmd_range(pud, addr, next, walk);
222                 if (err)
223                         break;
224         } while (pud++, addr = next, addr != end);
225
226         return err;
227 }
228
229 static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
230                           struct mm_walk *walk)
231 {
232         p4d_t *p4d;
233         unsigned long next;
234         const struct mm_walk_ops *ops = walk->ops;
235         int err = 0;
236         int depth = real_depth(1);
237
238         p4d = p4d_offset(pgd, addr);
239         do {
240                 next = p4d_addr_end(addr, end);
241                 if (p4d_none_or_clear_bad(p4d)) {
242                         if (ops->pte_hole)
243                                 err = ops->pte_hole(addr, next, depth, walk);
244                         if (err)
245                                 break;
246                         continue;
247                 }
248                 if (ops->p4d_entry) {
249                         err = ops->p4d_entry(p4d, addr, next, walk);
250                         if (err)
251                                 break;
252                 }
253                 if (is_hugepd(__hugepd(p4d_val(*p4d))))
254                         err = walk_hugepd_range((hugepd_t *)p4d, addr, next, walk, P4D_SHIFT);
255                 else if (ops->pud_entry || ops->pmd_entry || ops->pte_entry)
256                         err = walk_pud_range(p4d, addr, next, walk);
257                 if (err)
258                         break;
259         } while (p4d++, addr = next, addr != end);
260
261         return err;
262 }
263
264 static int walk_pgd_range(unsigned long addr, unsigned long end,
265                           struct mm_walk *walk)
266 {
267         pgd_t *pgd;
268         unsigned long next;
269         const struct mm_walk_ops *ops = walk->ops;
270         int err = 0;
271
272         if (walk->pgd)
273                 pgd = walk->pgd + pgd_index(addr);
274         else
275                 pgd = pgd_offset(walk->mm, addr);
276         do {
277                 next = pgd_addr_end(addr, end);
278                 if (pgd_none_or_clear_bad(pgd)) {
279                         if (ops->pte_hole)
280                                 err = ops->pte_hole(addr, next, 0, walk);
281                         if (err)
282                                 break;
283                         continue;
284                 }
285                 if (ops->pgd_entry) {
286                         err = ops->pgd_entry(pgd, addr, next, walk);
287                         if (err)
288                                 break;
289                 }
290                 if (is_hugepd(__hugepd(pgd_val(*pgd))))
291                         err = walk_hugepd_range((hugepd_t *)pgd, addr, next, walk, PGDIR_SHIFT);
292                 else if (ops->p4d_entry || ops->pud_entry || ops->pmd_entry || ops->pte_entry)
293                         err = walk_p4d_range(pgd, addr, next, walk);
294                 if (err)
295                         break;
296         } while (pgd++, addr = next, addr != end);
297
298         return err;
299 }
300
301 #ifdef CONFIG_HUGETLB_PAGE
302 static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
303                                        unsigned long end)
304 {
305         unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
306         return boundary < end ? boundary : end;
307 }
308
309 static int walk_hugetlb_range(unsigned long addr, unsigned long end,
310                               struct mm_walk *walk)
311 {
312         struct vm_area_struct *vma = walk->vma;
313         struct hstate *h = hstate_vma(vma);
314         unsigned long next;
315         unsigned long hmask = huge_page_mask(h);
316         unsigned long sz = huge_page_size(h);
317         pte_t *pte;
318         const struct mm_walk_ops *ops = walk->ops;
319         int err = 0;
320
321         hugetlb_vma_lock_read(vma);
322         do {
323                 next = hugetlb_entry_end(h, addr, end);
324                 pte = hugetlb_walk(vma, addr & hmask, sz);
325                 if (pte)
326                         err = ops->hugetlb_entry(pte, hmask, addr, next, walk);
327                 else if (ops->pte_hole)
328                         err = ops->pte_hole(addr, next, -1, walk);
329                 if (err)
330                         break;
331         } while (addr = next, addr != end);
332         hugetlb_vma_unlock_read(vma);
333
334         return err;
335 }
336
337 #else /* CONFIG_HUGETLB_PAGE */
338 static int walk_hugetlb_range(unsigned long addr, unsigned long end,
339                               struct mm_walk *walk)
340 {
341         return 0;
342 }
343
344 #endif /* CONFIG_HUGETLB_PAGE */
345
346 /*
347  * Decide whether we really walk over the current vma on [@start, @end)
348  * or skip it via the returned value. Return 0 if we do walk over the
349  * current vma, and return 1 if we skip the vma. Negative values means
350  * error, where we abort the current walk.
351  */
352 static int walk_page_test(unsigned long start, unsigned long end,
353                         struct mm_walk *walk)
354 {
355         struct vm_area_struct *vma = walk->vma;
356         const struct mm_walk_ops *ops = walk->ops;
357
358         if (ops->test_walk)
359                 return ops->test_walk(start, end, walk);
360
361         /*
362          * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
363          * range, so we don't walk over it as we do for normal vmas. However,
364          * Some callers are interested in handling hole range and they don't
365          * want to just ignore any single address range. Such users certainly
366          * define their ->pte_hole() callbacks, so let's delegate them to handle
367          * vma(VM_PFNMAP).
368          */
369         if (vma->vm_flags & VM_PFNMAP) {
370                 int err = 1;
371                 if (ops->pte_hole)
372                         err = ops->pte_hole(start, end, -1, walk);
373                 return err ? err : 1;
374         }
375         return 0;
376 }
377
378 static int __walk_page_range(unsigned long start, unsigned long end,
379                         struct mm_walk *walk)
380 {
381         int err = 0;
382         struct vm_area_struct *vma = walk->vma;
383         const struct mm_walk_ops *ops = walk->ops;
384
385         if (ops->pre_vma) {
386                 err = ops->pre_vma(start, end, walk);
387                 if (err)
388                         return err;
389         }
390
391         if (is_vm_hugetlb_page(vma)) {
392                 if (ops->hugetlb_entry)
393                         err = walk_hugetlb_range(start, end, walk);
394         } else
395                 err = walk_pgd_range(start, end, walk);
396
397         if (ops->post_vma)
398                 ops->post_vma(walk);
399
400         return err;
401 }
402
403 /**
404  * walk_page_range - walk page table with caller specific callbacks
405  * @mm:         mm_struct representing the target process of page table walk
406  * @start:      start address of the virtual address range
407  * @end:        end address of the virtual address range
408  * @ops:        operation to call during the walk
409  * @private:    private data for callbacks' usage
410  *
411  * Recursively walk the page table tree of the process represented by @mm
412  * within the virtual address range [@start, @end). During walking, we can do
413  * some caller-specific works for each entry, by setting up pmd_entry(),
414  * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
415  * callbacks, the associated entries/pages are just ignored.
416  * The return values of these callbacks are commonly defined like below:
417  *
418  *  - 0  : succeeded to handle the current entry, and if you don't reach the
419  *         end address yet, continue to walk.
420  *  - >0 : succeeded to handle the current entry, and return to the caller
421  *         with caller specific value.
422  *  - <0 : failed to handle the current entry, and return to the caller
423  *         with error code.
424  *
425  * Before starting to walk page table, some callers want to check whether
426  * they really want to walk over the current vma, typically by checking
427  * its vm_flags. walk_page_test() and @ops->test_walk() are used for this
428  * purpose.
429  *
430  * If operations need to be staged before and committed after a vma is walked,
431  * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(),
432  * since it is intended to handle commit-type operations, can't return any
433  * errors.
434  *
435  * struct mm_walk keeps current values of some common data like vma and pmd,
436  * which are useful for the access from callbacks. If you want to pass some
437  * caller-specific data to callbacks, @private should be helpful.
438  *
439  * Locking:
440  *   Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock,
441  *   because these function traverse vma list and/or access to vma's data.
442  */
443 int walk_page_range(struct mm_struct *mm, unsigned long start,
444                 unsigned long end, const struct mm_walk_ops *ops,
445                 void *private)
446 {
447         int err = 0;
448         unsigned long next;
449         struct vm_area_struct *vma;
450         struct mm_walk walk = {
451                 .ops            = ops,
452                 .mm             = mm,
453                 .private        = private,
454         };
455
456         if (start >= end)
457                 return -EINVAL;
458
459         if (!walk.mm)
460                 return -EINVAL;
461
462         mmap_assert_locked(walk.mm);
463
464         vma = find_vma(walk.mm, start);
465         do {
466                 if (!vma) { /* after the last vma */
467                         walk.vma = NULL;
468                         next = end;
469                         if (ops->pte_hole)
470                                 err = ops->pte_hole(start, next, -1, &walk);
471                 } else if (start < vma->vm_start) { /* outside vma */
472                         walk.vma = NULL;
473                         next = min(end, vma->vm_start);
474                         if (ops->pte_hole)
475                                 err = ops->pte_hole(start, next, -1, &walk);
476                 } else { /* inside vma */
477                         walk.vma = vma;
478                         next = min(end, vma->vm_end);
479                         vma = find_vma(mm, vma->vm_end);
480
481                         err = walk_page_test(start, next, &walk);
482                         if (err > 0) {
483                                 /*
484                                  * positive return values are purely for
485                                  * controlling the pagewalk, so should never
486                                  * be passed to the callers.
487                                  */
488                                 err = 0;
489                                 continue;
490                         }
491                         if (err < 0)
492                                 break;
493                         err = __walk_page_range(start, next, &walk);
494                 }
495                 if (err)
496                         break;
497         } while (start = next, start < end);
498         return err;
499 }
500
501 /**
502  * walk_page_range_novma - walk a range of pagetables not backed by a vma
503  * @mm:         mm_struct representing the target process of page table walk
504  * @start:      start address of the virtual address range
505  * @end:        end address of the virtual address range
506  * @ops:        operation to call during the walk
507  * @pgd:        pgd to walk if different from mm->pgd
508  * @private:    private data for callbacks' usage
509  *
510  * Similar to walk_page_range() but can walk any page tables even if they are
511  * not backed by VMAs. Because 'unusual' entries may be walked this function
512  * will also not lock the PTEs for the pte_entry() callback. This is useful for
513  * walking the kernel pages tables or page tables for firmware.
514  */
515 int walk_page_range_novma(struct mm_struct *mm, unsigned long start,
516                           unsigned long end, const struct mm_walk_ops *ops,
517                           pgd_t *pgd,
518                           void *private)
519 {
520         struct mm_walk walk = {
521                 .ops            = ops,
522                 .mm             = mm,
523                 .pgd            = pgd,
524                 .private        = private,
525                 .no_vma         = true
526         };
527
528         if (start >= end || !walk.mm)
529                 return -EINVAL;
530
531         mmap_assert_write_locked(walk.mm);
532
533         return walk_pgd_range(start, end, &walk);
534 }
535
536 int walk_page_range_vma(struct vm_area_struct *vma, unsigned long start,
537                         unsigned long end, const struct mm_walk_ops *ops,
538                         void *private)
539 {
540         struct mm_walk walk = {
541                 .ops            = ops,
542                 .mm             = vma->vm_mm,
543                 .vma            = vma,
544                 .private        = private,
545         };
546
547         if (start >= end || !walk.mm)
548                 return -EINVAL;
549         if (start < vma->vm_start || end > vma->vm_end)
550                 return -EINVAL;
551
552         mmap_assert_locked(walk.mm);
553         return __walk_page_range(start, end, &walk);
554 }
555
556 int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops,
557                 void *private)
558 {
559         struct mm_walk walk = {
560                 .ops            = ops,
561                 .mm             = vma->vm_mm,
562                 .vma            = vma,
563                 .private        = private,
564         };
565
566         if (!walk.mm)
567                 return -EINVAL;
568
569         mmap_assert_locked(walk.mm);
570         return __walk_page_range(vma->vm_start, vma->vm_end, &walk);
571 }
572
573 /**
574  * walk_page_mapping - walk all memory areas mapped into a struct address_space.
575  * @mapping: Pointer to the struct address_space
576  * @first_index: First page offset in the address_space
577  * @nr: Number of incremental page offsets to cover
578  * @ops:        operation to call during the walk
579  * @private:    private data for callbacks' usage
580  *
581  * This function walks all memory areas mapped into a struct address_space.
582  * The walk is limited to only the given page-size index range, but if
583  * the index boundaries cross a huge page-table entry, that entry will be
584  * included.
585  *
586  * Also see walk_page_range() for additional information.
587  *
588  * Locking:
589  *   This function can't require that the struct mm_struct::mmap_lock is held,
590  *   since @mapping may be mapped by multiple processes. Instead
591  *   @mapping->i_mmap_rwsem must be held. This might have implications in the
592  *   callbacks, and it's up tho the caller to ensure that the
593  *   struct mm_struct::mmap_lock is not needed.
594  *
595  *   Also this means that a caller can't rely on the struct
596  *   vm_area_struct::vm_flags to be constant across a call,
597  *   except for immutable flags. Callers requiring this shouldn't use
598  *   this function.
599  *
600  * Return: 0 on success, negative error code on failure, positive number on
601  * caller defined premature termination.
602  */
603 int walk_page_mapping(struct address_space *mapping, pgoff_t first_index,
604                       pgoff_t nr, const struct mm_walk_ops *ops,
605                       void *private)
606 {
607         struct mm_walk walk = {
608                 .ops            = ops,
609                 .private        = private,
610         };
611         struct vm_area_struct *vma;
612         pgoff_t vba, vea, cba, cea;
613         unsigned long start_addr, end_addr;
614         int err = 0;
615
616         lockdep_assert_held(&mapping->i_mmap_rwsem);
617         vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index,
618                                   first_index + nr - 1) {
619                 /* Clip to the vma */
620                 vba = vma->vm_pgoff;
621                 vea = vba + vma_pages(vma);
622                 cba = first_index;
623                 cba = max(cba, vba);
624                 cea = first_index + nr;
625                 cea = min(cea, vea);
626
627                 start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start;
628                 end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start;
629                 if (start_addr >= end_addr)
630                         continue;
631
632                 walk.vma = vma;
633                 walk.mm = vma->vm_mm;
634
635                 err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
636                 if (err > 0) {
637                         err = 0;
638                         break;
639                 } else if (err < 0)
640                         break;
641
642                 err = __walk_page_range(start_addr, end_addr, &walk);
643                 if (err)
644                         break;
645         }
646
647         return err;
648 }