powerpc/step: Mark __copy_mem_out() and __emulate_dcbz() __always_inline
[linux-2.6-microblaze.git] / mm / pagewalk.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/highmem.h>
4 #include <linux/sched.h>
5 #include <linux/hugetlb.h>
6
7 /*
8  * We want to know the real level where a entry is located ignoring any
9  * folding of levels which may be happening. For example if p4d is folded then
10  * a missing entry found at level 1 (p4d) is actually at level 0 (pgd).
11  */
12 static int real_depth(int depth)
13 {
14         if (depth == 3 && PTRS_PER_PMD == 1)
15                 depth = 2;
16         if (depth == 2 && PTRS_PER_PUD == 1)
17                 depth = 1;
18         if (depth == 1 && PTRS_PER_P4D == 1)
19                 depth = 0;
20         return depth;
21 }
22
23 static int walk_pte_range_inner(pte_t *pte, unsigned long addr,
24                                 unsigned long end, struct mm_walk *walk)
25 {
26         const struct mm_walk_ops *ops = walk->ops;
27         int err = 0;
28
29         for (;;) {
30                 err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
31                 if (err)
32                        break;
33                 if (addr >= end - PAGE_SIZE)
34                         break;
35                 addr += PAGE_SIZE;
36                 pte++;
37         }
38         return err;
39 }
40
41 static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
42                           struct mm_walk *walk)
43 {
44         pte_t *pte;
45         int err = 0;
46         spinlock_t *ptl;
47
48         if (walk->no_vma) {
49                 /*
50                  * pte_offset_map() might apply user-specific validation.
51                  */
52                 if (walk->mm == &init_mm)
53                         pte = pte_offset_kernel(pmd, addr);
54                 else
55                         pte = pte_offset_map(pmd, addr);
56                 if (pte) {
57                         err = walk_pte_range_inner(pte, addr, end, walk);
58                         if (walk->mm != &init_mm)
59                                 pte_unmap(pte);
60                 }
61         } else {
62                 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
63                 if (pte) {
64                         err = walk_pte_range_inner(pte, addr, end, walk);
65                         pte_unmap_unlock(pte, ptl);
66                 }
67         }
68         if (!pte)
69                 walk->action = ACTION_AGAIN;
70         return err;
71 }
72
73 #ifdef CONFIG_ARCH_HAS_HUGEPD
74 static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr,
75                              unsigned long end, struct mm_walk *walk, int pdshift)
76 {
77         int err = 0;
78         const struct mm_walk_ops *ops = walk->ops;
79         int shift = hugepd_shift(*phpd);
80         int page_size = 1 << shift;
81
82         if (!ops->pte_entry)
83                 return 0;
84
85         if (addr & (page_size - 1))
86                 return 0;
87
88         for (;;) {
89                 pte_t *pte;
90
91                 spin_lock(&walk->mm->page_table_lock);
92                 pte = hugepte_offset(*phpd, addr, pdshift);
93                 err = ops->pte_entry(pte, addr, addr + page_size, walk);
94                 spin_unlock(&walk->mm->page_table_lock);
95
96                 if (err)
97                         break;
98                 if (addr >= end - page_size)
99                         break;
100                 addr += page_size;
101         }
102         return err;
103 }
104 #else
105 static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr,
106                              unsigned long end, struct mm_walk *walk, int pdshift)
107 {
108         return 0;
109 }
110 #endif
111
112 static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
113                           struct mm_walk *walk)
114 {
115         pmd_t *pmd;
116         unsigned long next;
117         const struct mm_walk_ops *ops = walk->ops;
118         int err = 0;
119         int depth = real_depth(3);
120
121         pmd = pmd_offset(pud, addr);
122         do {
123 again:
124                 next = pmd_addr_end(addr, end);
125                 if (pmd_none(*pmd)) {
126                         if (ops->pte_hole)
127                                 err = ops->pte_hole(addr, next, depth, walk);
128                         if (err)
129                                 break;
130                         continue;
131                 }
132
133                 walk->action = ACTION_SUBTREE;
134
135                 /*
136                  * This implies that each ->pmd_entry() handler
137                  * needs to know about pmd_trans_huge() pmds
138                  */
139                 if (ops->pmd_entry)
140                         err = ops->pmd_entry(pmd, addr, next, walk);
141                 if (err)
142                         break;
143
144                 if (walk->action == ACTION_AGAIN)
145                         goto again;
146
147                 /*
148                  * Check this here so we only break down trans_huge
149                  * pages when we _need_ to
150                  */
151                 if ((!walk->vma && (pmd_leaf(*pmd) || !pmd_present(*pmd))) ||
152                     walk->action == ACTION_CONTINUE ||
153                     !(ops->pte_entry))
154                         continue;
155
156                 if (walk->vma)
157                         split_huge_pmd(walk->vma, pmd, addr);
158
159                 if (is_hugepd(__hugepd(pmd_val(*pmd))))
160                         err = walk_hugepd_range((hugepd_t *)pmd, addr, next, walk, PMD_SHIFT);
161                 else
162                         err = walk_pte_range(pmd, addr, next, walk);
163                 if (err)
164                         break;
165
166                 if (walk->action == ACTION_AGAIN)
167                         goto again;
168
169         } while (pmd++, addr = next, addr != end);
170
171         return err;
172 }
173
174 static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
175                           struct mm_walk *walk)
176 {
177         pud_t *pud;
178         unsigned long next;
179         const struct mm_walk_ops *ops = walk->ops;
180         int err = 0;
181         int depth = real_depth(2);
182
183         pud = pud_offset(p4d, addr);
184         do {
185  again:
186                 next = pud_addr_end(addr, end);
187                 if (pud_none(*pud)) {
188                         if (ops->pte_hole)
189                                 err = ops->pte_hole(addr, next, depth, walk);
190                         if (err)
191                                 break;
192                         continue;
193                 }
194
195                 walk->action = ACTION_SUBTREE;
196
197                 if (ops->pud_entry)
198                         err = ops->pud_entry(pud, addr, next, walk);
199                 if (err)
200                         break;
201
202                 if (walk->action == ACTION_AGAIN)
203                         goto again;
204
205                 if ((!walk->vma && (pud_leaf(*pud) || !pud_present(*pud))) ||
206                     walk->action == ACTION_CONTINUE ||
207                     !(ops->pmd_entry || ops->pte_entry))
208                         continue;
209
210                 if (walk->vma)
211                         split_huge_pud(walk->vma, pud, addr);
212                 if (pud_none(*pud))
213                         goto again;
214
215                 if (is_hugepd(__hugepd(pud_val(*pud))))
216                         err = walk_hugepd_range((hugepd_t *)pud, addr, next, walk, PUD_SHIFT);
217                 else
218                         err = walk_pmd_range(pud, addr, next, walk);
219                 if (err)
220                         break;
221         } while (pud++, addr = next, addr != end);
222
223         return err;
224 }
225
226 static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
227                           struct mm_walk *walk)
228 {
229         p4d_t *p4d;
230         unsigned long next;
231         const struct mm_walk_ops *ops = walk->ops;
232         int err = 0;
233         int depth = real_depth(1);
234
235         p4d = p4d_offset(pgd, addr);
236         do {
237                 next = p4d_addr_end(addr, end);
238                 if (p4d_none_or_clear_bad(p4d)) {
239                         if (ops->pte_hole)
240                                 err = ops->pte_hole(addr, next, depth, walk);
241                         if (err)
242                                 break;
243                         continue;
244                 }
245                 if (ops->p4d_entry) {
246                         err = ops->p4d_entry(p4d, addr, next, walk);
247                         if (err)
248                                 break;
249                 }
250                 if (is_hugepd(__hugepd(p4d_val(*p4d))))
251                         err = walk_hugepd_range((hugepd_t *)p4d, addr, next, walk, P4D_SHIFT);
252                 else if (ops->pud_entry || ops->pmd_entry || ops->pte_entry)
253                         err = walk_pud_range(p4d, addr, next, walk);
254                 if (err)
255                         break;
256         } while (p4d++, addr = next, addr != end);
257
258         return err;
259 }
260
261 static int walk_pgd_range(unsigned long addr, unsigned long end,
262                           struct mm_walk *walk)
263 {
264         pgd_t *pgd;
265         unsigned long next;
266         const struct mm_walk_ops *ops = walk->ops;
267         int err = 0;
268
269         if (walk->pgd)
270                 pgd = walk->pgd + pgd_index(addr);
271         else
272                 pgd = pgd_offset(walk->mm, addr);
273         do {
274                 next = pgd_addr_end(addr, end);
275                 if (pgd_none_or_clear_bad(pgd)) {
276                         if (ops->pte_hole)
277                                 err = ops->pte_hole(addr, next, 0, walk);
278                         if (err)
279                                 break;
280                         continue;
281                 }
282                 if (ops->pgd_entry) {
283                         err = ops->pgd_entry(pgd, addr, next, walk);
284                         if (err)
285                                 break;
286                 }
287                 if (is_hugepd(__hugepd(pgd_val(*pgd))))
288                         err = walk_hugepd_range((hugepd_t *)pgd, addr, next, walk, PGDIR_SHIFT);
289                 else if (ops->p4d_entry || ops->pud_entry || ops->pmd_entry || ops->pte_entry)
290                         err = walk_p4d_range(pgd, addr, next, walk);
291                 if (err)
292                         break;
293         } while (pgd++, addr = next, addr != end);
294
295         return err;
296 }
297
298 #ifdef CONFIG_HUGETLB_PAGE
299 static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
300                                        unsigned long end)
301 {
302         unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
303         return boundary < end ? boundary : end;
304 }
305
306 static int walk_hugetlb_range(unsigned long addr, unsigned long end,
307                               struct mm_walk *walk)
308 {
309         struct vm_area_struct *vma = walk->vma;
310         struct hstate *h = hstate_vma(vma);
311         unsigned long next;
312         unsigned long hmask = huge_page_mask(h);
313         unsigned long sz = huge_page_size(h);
314         pte_t *pte;
315         const struct mm_walk_ops *ops = walk->ops;
316         int err = 0;
317
318         hugetlb_vma_lock_read(vma);
319         do {
320                 next = hugetlb_entry_end(h, addr, end);
321                 pte = hugetlb_walk(vma, addr & hmask, sz);
322                 if (pte)
323                         err = ops->hugetlb_entry(pte, hmask, addr, next, walk);
324                 else if (ops->pte_hole)
325                         err = ops->pte_hole(addr, next, -1, walk);
326                 if (err)
327                         break;
328         } while (addr = next, addr != end);
329         hugetlb_vma_unlock_read(vma);
330
331         return err;
332 }
333
334 #else /* CONFIG_HUGETLB_PAGE */
335 static int walk_hugetlb_range(unsigned long addr, unsigned long end,
336                               struct mm_walk *walk)
337 {
338         return 0;
339 }
340
341 #endif /* CONFIG_HUGETLB_PAGE */
342
343 /*
344  * Decide whether we really walk over the current vma on [@start, @end)
345  * or skip it via the returned value. Return 0 if we do walk over the
346  * current vma, and return 1 if we skip the vma. Negative values means
347  * error, where we abort the current walk.
348  */
349 static int walk_page_test(unsigned long start, unsigned long end,
350                         struct mm_walk *walk)
351 {
352         struct vm_area_struct *vma = walk->vma;
353         const struct mm_walk_ops *ops = walk->ops;
354
355         if (ops->test_walk)
356                 return ops->test_walk(start, end, walk);
357
358         /*
359          * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
360          * range, so we don't walk over it as we do for normal vmas. However,
361          * Some callers are interested in handling hole range and they don't
362          * want to just ignore any single address range. Such users certainly
363          * define their ->pte_hole() callbacks, so let's delegate them to handle
364          * vma(VM_PFNMAP).
365          */
366         if (vma->vm_flags & VM_PFNMAP) {
367                 int err = 1;
368                 if (ops->pte_hole)
369                         err = ops->pte_hole(start, end, -1, walk);
370                 return err ? err : 1;
371         }
372         return 0;
373 }
374
375 static int __walk_page_range(unsigned long start, unsigned long end,
376                         struct mm_walk *walk)
377 {
378         int err = 0;
379         struct vm_area_struct *vma = walk->vma;
380         const struct mm_walk_ops *ops = walk->ops;
381
382         if (ops->pre_vma) {
383                 err = ops->pre_vma(start, end, walk);
384                 if (err)
385                         return err;
386         }
387
388         if (is_vm_hugetlb_page(vma)) {
389                 if (ops->hugetlb_entry)
390                         err = walk_hugetlb_range(start, end, walk);
391         } else
392                 err = walk_pgd_range(start, end, walk);
393
394         if (ops->post_vma)
395                 ops->post_vma(walk);
396
397         return err;
398 }
399
400 /**
401  * walk_page_range - walk page table with caller specific callbacks
402  * @mm:         mm_struct representing the target process of page table walk
403  * @start:      start address of the virtual address range
404  * @end:        end address of the virtual address range
405  * @ops:        operation to call during the walk
406  * @private:    private data for callbacks' usage
407  *
408  * Recursively walk the page table tree of the process represented by @mm
409  * within the virtual address range [@start, @end). During walking, we can do
410  * some caller-specific works for each entry, by setting up pmd_entry(),
411  * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
412  * callbacks, the associated entries/pages are just ignored.
413  * The return values of these callbacks are commonly defined like below:
414  *
415  *  - 0  : succeeded to handle the current entry, and if you don't reach the
416  *         end address yet, continue to walk.
417  *  - >0 : succeeded to handle the current entry, and return to the caller
418  *         with caller specific value.
419  *  - <0 : failed to handle the current entry, and return to the caller
420  *         with error code.
421  *
422  * Before starting to walk page table, some callers want to check whether
423  * they really want to walk over the current vma, typically by checking
424  * its vm_flags. walk_page_test() and @ops->test_walk() are used for this
425  * purpose.
426  *
427  * If operations need to be staged before and committed after a vma is walked,
428  * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(),
429  * since it is intended to handle commit-type operations, can't return any
430  * errors.
431  *
432  * struct mm_walk keeps current values of some common data like vma and pmd,
433  * which are useful for the access from callbacks. If you want to pass some
434  * caller-specific data to callbacks, @private should be helpful.
435  *
436  * Locking:
437  *   Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock,
438  *   because these function traverse vma list and/or access to vma's data.
439  */
440 int walk_page_range(struct mm_struct *mm, unsigned long start,
441                 unsigned long end, const struct mm_walk_ops *ops,
442                 void *private)
443 {
444         int err = 0;
445         unsigned long next;
446         struct vm_area_struct *vma;
447         struct mm_walk walk = {
448                 .ops            = ops,
449                 .mm             = mm,
450                 .private        = private,
451         };
452
453         if (start >= end)
454                 return -EINVAL;
455
456         if (!walk.mm)
457                 return -EINVAL;
458
459         mmap_assert_locked(walk.mm);
460
461         vma = find_vma(walk.mm, start);
462         do {
463                 if (!vma) { /* after the last vma */
464                         walk.vma = NULL;
465                         next = end;
466                         if (ops->pte_hole)
467                                 err = ops->pte_hole(start, next, -1, &walk);
468                 } else if (start < vma->vm_start) { /* outside vma */
469                         walk.vma = NULL;
470                         next = min(end, vma->vm_start);
471                         if (ops->pte_hole)
472                                 err = ops->pte_hole(start, next, -1, &walk);
473                 } else { /* inside vma */
474                         walk.vma = vma;
475                         next = min(end, vma->vm_end);
476                         vma = find_vma(mm, vma->vm_end);
477
478                         err = walk_page_test(start, next, &walk);
479                         if (err > 0) {
480                                 /*
481                                  * positive return values are purely for
482                                  * controlling the pagewalk, so should never
483                                  * be passed to the callers.
484                                  */
485                                 err = 0;
486                                 continue;
487                         }
488                         if (err < 0)
489                                 break;
490                         err = __walk_page_range(start, next, &walk);
491                 }
492                 if (err)
493                         break;
494         } while (start = next, start < end);
495         return err;
496 }
497
498 /**
499  * walk_page_range_novma - walk a range of pagetables not backed by a vma
500  * @mm:         mm_struct representing the target process of page table walk
501  * @start:      start address of the virtual address range
502  * @end:        end address of the virtual address range
503  * @ops:        operation to call during the walk
504  * @pgd:        pgd to walk if different from mm->pgd
505  * @private:    private data for callbacks' usage
506  *
507  * Similar to walk_page_range() but can walk any page tables even if they are
508  * not backed by VMAs. Because 'unusual' entries may be walked this function
509  * will also not lock the PTEs for the pte_entry() callback. This is useful for
510  * walking the kernel pages tables or page tables for firmware.
511  */
512 int walk_page_range_novma(struct mm_struct *mm, unsigned long start,
513                           unsigned long end, const struct mm_walk_ops *ops,
514                           pgd_t *pgd,
515                           void *private)
516 {
517         struct mm_walk walk = {
518                 .ops            = ops,
519                 .mm             = mm,
520                 .pgd            = pgd,
521                 .private        = private,
522                 .no_vma         = true
523         };
524
525         if (start >= end || !walk.mm)
526                 return -EINVAL;
527
528         mmap_assert_write_locked(walk.mm);
529
530         return walk_pgd_range(start, end, &walk);
531 }
532
533 int walk_page_range_vma(struct vm_area_struct *vma, unsigned long start,
534                         unsigned long end, const struct mm_walk_ops *ops,
535                         void *private)
536 {
537         struct mm_walk walk = {
538                 .ops            = ops,
539                 .mm             = vma->vm_mm,
540                 .vma            = vma,
541                 .private        = private,
542         };
543
544         if (start >= end || !walk.mm)
545                 return -EINVAL;
546         if (start < vma->vm_start || end > vma->vm_end)
547                 return -EINVAL;
548
549         mmap_assert_locked(walk.mm);
550         return __walk_page_range(start, end, &walk);
551 }
552
553 int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops,
554                 void *private)
555 {
556         struct mm_walk walk = {
557                 .ops            = ops,
558                 .mm             = vma->vm_mm,
559                 .vma            = vma,
560                 .private        = private,
561         };
562
563         if (!walk.mm)
564                 return -EINVAL;
565
566         mmap_assert_locked(walk.mm);
567         return __walk_page_range(vma->vm_start, vma->vm_end, &walk);
568 }
569
570 /**
571  * walk_page_mapping - walk all memory areas mapped into a struct address_space.
572  * @mapping: Pointer to the struct address_space
573  * @first_index: First page offset in the address_space
574  * @nr: Number of incremental page offsets to cover
575  * @ops:        operation to call during the walk
576  * @private:    private data for callbacks' usage
577  *
578  * This function walks all memory areas mapped into a struct address_space.
579  * The walk is limited to only the given page-size index range, but if
580  * the index boundaries cross a huge page-table entry, that entry will be
581  * included.
582  *
583  * Also see walk_page_range() for additional information.
584  *
585  * Locking:
586  *   This function can't require that the struct mm_struct::mmap_lock is held,
587  *   since @mapping may be mapped by multiple processes. Instead
588  *   @mapping->i_mmap_rwsem must be held. This might have implications in the
589  *   callbacks, and it's up tho the caller to ensure that the
590  *   struct mm_struct::mmap_lock is not needed.
591  *
592  *   Also this means that a caller can't rely on the struct
593  *   vm_area_struct::vm_flags to be constant across a call,
594  *   except for immutable flags. Callers requiring this shouldn't use
595  *   this function.
596  *
597  * Return: 0 on success, negative error code on failure, positive number on
598  * caller defined premature termination.
599  */
600 int walk_page_mapping(struct address_space *mapping, pgoff_t first_index,
601                       pgoff_t nr, const struct mm_walk_ops *ops,
602                       void *private)
603 {
604         struct mm_walk walk = {
605                 .ops            = ops,
606                 .private        = private,
607         };
608         struct vm_area_struct *vma;
609         pgoff_t vba, vea, cba, cea;
610         unsigned long start_addr, end_addr;
611         int err = 0;
612
613         lockdep_assert_held(&mapping->i_mmap_rwsem);
614         vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index,
615                                   first_index + nr - 1) {
616                 /* Clip to the vma */
617                 vba = vma->vm_pgoff;
618                 vea = vba + vma_pages(vma);
619                 cba = first_index;
620                 cba = max(cba, vba);
621                 cea = first_index + nr;
622                 cea = min(cea, vea);
623
624                 start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start;
625                 end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start;
626                 if (start_addr >= end_addr)
627                         continue;
628
629                 walk.vma = vma;
630                 walk.mm = vma->vm_mm;
631
632                 err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
633                 if (err > 0) {
634                         err = 0;
635                         break;
636                 } else if (err < 0)
637                         break;
638
639                 err = __walk_page_range(start_addr, end_addr, &walk);
640                 if (err)
641                         break;
642         }
643
644         return err;
645 }