Merge tag 'asoc-fix-v5.3-rc3' of https://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / mm / page_io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/page_io.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, 
8  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
9  *  Removed race in async swapping. 14.4.1996. Bruno Haible
10  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
11  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
12  */
13
14 #include <linux/mm.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/gfp.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/bio.h>
20 #include <linux/swapops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/writeback.h>
23 #include <linux/frontswap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uio.h>
26 #include <linux/sched/task.h>
27 #include <asm/pgtable.h>
28
29 static struct bio *get_swap_bio(gfp_t gfp_flags,
30                                 struct page *page, bio_end_io_t end_io)
31 {
32         struct bio *bio;
33
34         bio = bio_alloc(gfp_flags, 1);
35         if (bio) {
36                 struct block_device *bdev;
37
38                 bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
39                 bio_set_dev(bio, bdev);
40                 bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
41                 bio->bi_end_io = end_io;
42
43                 bio_add_page(bio, page, PAGE_SIZE * hpage_nr_pages(page), 0);
44         }
45         return bio;
46 }
47
48 void end_swap_bio_write(struct bio *bio)
49 {
50         struct page *page = bio_first_page_all(bio);
51
52         if (bio->bi_status) {
53                 SetPageError(page);
54                 /*
55                  * We failed to write the page out to swap-space.
56                  * Re-dirty the page in order to avoid it being reclaimed.
57                  * Also print a dire warning that things will go BAD (tm)
58                  * very quickly.
59                  *
60                  * Also clear PG_reclaim to avoid rotate_reclaimable_page()
61                  */
62                 set_page_dirty(page);
63                 pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
64                          MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
65                          (unsigned long long)bio->bi_iter.bi_sector);
66                 ClearPageReclaim(page);
67         }
68         end_page_writeback(page);
69         bio_put(bio);
70 }
71
72 static void swap_slot_free_notify(struct page *page)
73 {
74         struct swap_info_struct *sis;
75         struct gendisk *disk;
76
77         /*
78          * There is no guarantee that the page is in swap cache - the software
79          * suspend code (at least) uses end_swap_bio_read() against a non-
80          * swapcache page.  So we must check PG_swapcache before proceeding with
81          * this optimization.
82          */
83         if (unlikely(!PageSwapCache(page)))
84                 return;
85
86         sis = page_swap_info(page);
87         if (!(sis->flags & SWP_BLKDEV))
88                 return;
89
90         /*
91          * The swap subsystem performs lazy swap slot freeing,
92          * expecting that the page will be swapped out again.
93          * So we can avoid an unnecessary write if the page
94          * isn't redirtied.
95          * This is good for real swap storage because we can
96          * reduce unnecessary I/O and enhance wear-leveling
97          * if an SSD is used as the as swap device.
98          * But if in-memory swap device (eg zram) is used,
99          * this causes a duplicated copy between uncompressed
100          * data in VM-owned memory and compressed data in
101          * zram-owned memory.  So let's free zram-owned memory
102          * and make the VM-owned decompressed page *dirty*,
103          * so the page should be swapped out somewhere again if
104          * we again wish to reclaim it.
105          */
106         disk = sis->bdev->bd_disk;
107         if (disk->fops->swap_slot_free_notify) {
108                 swp_entry_t entry;
109                 unsigned long offset;
110
111                 entry.val = page_private(page);
112                 offset = swp_offset(entry);
113
114                 SetPageDirty(page);
115                 disk->fops->swap_slot_free_notify(sis->bdev,
116                                 offset);
117         }
118 }
119
120 static void end_swap_bio_read(struct bio *bio)
121 {
122         struct page *page = bio_first_page_all(bio);
123         struct task_struct *waiter = bio->bi_private;
124
125         if (bio->bi_status) {
126                 SetPageError(page);
127                 ClearPageUptodate(page);
128                 pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
129                          MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
130                          (unsigned long long)bio->bi_iter.bi_sector);
131                 goto out;
132         }
133
134         SetPageUptodate(page);
135         swap_slot_free_notify(page);
136 out:
137         unlock_page(page);
138         WRITE_ONCE(bio->bi_private, NULL);
139         bio_put(bio);
140         blk_wake_io_task(waiter);
141         put_task_struct(waiter);
142 }
143
144 int generic_swapfile_activate(struct swap_info_struct *sis,
145                                 struct file *swap_file,
146                                 sector_t *span)
147 {
148         struct address_space *mapping = swap_file->f_mapping;
149         struct inode *inode = mapping->host;
150         unsigned blocks_per_page;
151         unsigned long page_no;
152         unsigned blkbits;
153         sector_t probe_block;
154         sector_t last_block;
155         sector_t lowest_block = -1;
156         sector_t highest_block = 0;
157         int nr_extents = 0;
158         int ret;
159
160         blkbits = inode->i_blkbits;
161         blocks_per_page = PAGE_SIZE >> blkbits;
162
163         /*
164          * Map all the blocks into the extent list.  This code doesn't try
165          * to be very smart.
166          */
167         probe_block = 0;
168         page_no = 0;
169         last_block = i_size_read(inode) >> blkbits;
170         while ((probe_block + blocks_per_page) <= last_block &&
171                         page_no < sis->max) {
172                 unsigned block_in_page;
173                 sector_t first_block;
174
175                 cond_resched();
176
177                 first_block = bmap(inode, probe_block);
178                 if (first_block == 0)
179                         goto bad_bmap;
180
181                 /*
182                  * It must be PAGE_SIZE aligned on-disk
183                  */
184                 if (first_block & (blocks_per_page - 1)) {
185                         probe_block++;
186                         goto reprobe;
187                 }
188
189                 for (block_in_page = 1; block_in_page < blocks_per_page;
190                                         block_in_page++) {
191                         sector_t block;
192
193                         block = bmap(inode, probe_block + block_in_page);
194                         if (block == 0)
195                                 goto bad_bmap;
196                         if (block != first_block + block_in_page) {
197                                 /* Discontiguity */
198                                 probe_block++;
199                                 goto reprobe;
200                         }
201                 }
202
203                 first_block >>= (PAGE_SHIFT - blkbits);
204                 if (page_no) {  /* exclude the header page */
205                         if (first_block < lowest_block)
206                                 lowest_block = first_block;
207                         if (first_block > highest_block)
208                                 highest_block = first_block;
209                 }
210
211                 /*
212                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
213                  */
214                 ret = add_swap_extent(sis, page_no, 1, first_block);
215                 if (ret < 0)
216                         goto out;
217                 nr_extents += ret;
218                 page_no++;
219                 probe_block += blocks_per_page;
220 reprobe:
221                 continue;
222         }
223         ret = nr_extents;
224         *span = 1 + highest_block - lowest_block;
225         if (page_no == 0)
226                 page_no = 1;    /* force Empty message */
227         sis->max = page_no;
228         sis->pages = page_no - 1;
229         sis->highest_bit = page_no - 1;
230 out:
231         return ret;
232 bad_bmap:
233         pr_err("swapon: swapfile has holes\n");
234         ret = -EINVAL;
235         goto out;
236 }
237
238 /*
239  * We may have stale swap cache pages in memory: notice
240  * them here and get rid of the unnecessary final write.
241  */
242 int swap_writepage(struct page *page, struct writeback_control *wbc)
243 {
244         int ret = 0;
245
246         if (try_to_free_swap(page)) {
247                 unlock_page(page);
248                 goto out;
249         }
250         if (frontswap_store(page) == 0) {
251                 set_page_writeback(page);
252                 unlock_page(page);
253                 end_page_writeback(page);
254                 goto out;
255         }
256         ret = __swap_writepage(page, wbc, end_swap_bio_write);
257 out:
258         return ret;
259 }
260
261 static sector_t swap_page_sector(struct page *page)
262 {
263         return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
264 }
265
266 static inline void count_swpout_vm_event(struct page *page)
267 {
268 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
269         if (unlikely(PageTransHuge(page)))
270                 count_vm_event(THP_SWPOUT);
271 #endif
272         count_vm_events(PSWPOUT, hpage_nr_pages(page));
273 }
274
275 int __swap_writepage(struct page *page, struct writeback_control *wbc,
276                 bio_end_io_t end_write_func)
277 {
278         struct bio *bio;
279         int ret;
280         struct swap_info_struct *sis = page_swap_info(page);
281
282         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
283         if (sis->flags & SWP_FS) {
284                 struct kiocb kiocb;
285                 struct file *swap_file = sis->swap_file;
286                 struct address_space *mapping = swap_file->f_mapping;
287                 struct bio_vec bv = {
288                         .bv_page = page,
289                         .bv_len  = PAGE_SIZE,
290                         .bv_offset = 0
291                 };
292                 struct iov_iter from;
293
294                 iov_iter_bvec(&from, WRITE, &bv, 1, PAGE_SIZE);
295                 init_sync_kiocb(&kiocb, swap_file);
296                 kiocb.ki_pos = page_file_offset(page);
297
298                 set_page_writeback(page);
299                 unlock_page(page);
300                 ret = mapping->a_ops->direct_IO(&kiocb, &from);
301                 if (ret == PAGE_SIZE) {
302                         count_vm_event(PSWPOUT);
303                         ret = 0;
304                 } else {
305                         /*
306                          * In the case of swap-over-nfs, this can be a
307                          * temporary failure if the system has limited
308                          * memory for allocating transmit buffers.
309                          * Mark the page dirty and avoid
310                          * rotate_reclaimable_page but rate-limit the
311                          * messages but do not flag PageError like
312                          * the normal direct-to-bio case as it could
313                          * be temporary.
314                          */
315                         set_page_dirty(page);
316                         ClearPageReclaim(page);
317                         pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
318                                            page_file_offset(page));
319                 }
320                 end_page_writeback(page);
321                 return ret;
322         }
323
324         ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
325         if (!ret) {
326                 count_swpout_vm_event(page);
327                 return 0;
328         }
329
330         ret = 0;
331         bio = get_swap_bio(GFP_NOIO, page, end_write_func);
332         if (bio == NULL) {
333                 set_page_dirty(page);
334                 unlock_page(page);
335                 ret = -ENOMEM;
336                 goto out;
337         }
338         bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
339         bio_associate_blkg_from_page(bio, page);
340         count_swpout_vm_event(page);
341         set_page_writeback(page);
342         unlock_page(page);
343         submit_bio(bio);
344 out:
345         return ret;
346 }
347
348 int swap_readpage(struct page *page, bool synchronous)
349 {
350         struct bio *bio;
351         int ret = 0;
352         struct swap_info_struct *sis = page_swap_info(page);
353         blk_qc_t qc;
354         struct gendisk *disk;
355
356         VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
357         VM_BUG_ON_PAGE(!PageLocked(page), page);
358         VM_BUG_ON_PAGE(PageUptodate(page), page);
359         if (frontswap_load(page) == 0) {
360                 SetPageUptodate(page);
361                 unlock_page(page);
362                 goto out;
363         }
364
365         if (sis->flags & SWP_FS) {
366                 struct file *swap_file = sis->swap_file;
367                 struct address_space *mapping = swap_file->f_mapping;
368
369                 ret = mapping->a_ops->readpage(swap_file, page);
370                 if (!ret)
371                         count_vm_event(PSWPIN);
372                 return ret;
373         }
374
375         ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
376         if (!ret) {
377                 if (trylock_page(page)) {
378                         swap_slot_free_notify(page);
379                         unlock_page(page);
380                 }
381
382                 count_vm_event(PSWPIN);
383                 return 0;
384         }
385
386         ret = 0;
387         bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
388         if (bio == NULL) {
389                 unlock_page(page);
390                 ret = -ENOMEM;
391                 goto out;
392         }
393         disk = bio->bi_disk;
394         /*
395          * Keep this task valid during swap readpage because the oom killer may
396          * attempt to access it in the page fault retry time check.
397          */
398         get_task_struct(current);
399         bio->bi_private = current;
400         bio_set_op_attrs(bio, REQ_OP_READ, 0);
401         if (synchronous)
402                 bio->bi_opf |= REQ_HIPRI;
403         count_vm_event(PSWPIN);
404         bio_get(bio);
405         qc = submit_bio(bio);
406         while (synchronous) {
407                 set_current_state(TASK_UNINTERRUPTIBLE);
408                 if (!READ_ONCE(bio->bi_private))
409                         break;
410
411                 if (!blk_poll(disk->queue, qc, true))
412                         io_schedule();
413         }
414         __set_current_state(TASK_RUNNING);
415         bio_put(bio);
416
417 out:
418         return ret;
419 }
420
421 int swap_set_page_dirty(struct page *page)
422 {
423         struct swap_info_struct *sis = page_swap_info(page);
424
425         if (sis->flags & SWP_FS) {
426                 struct address_space *mapping = sis->swap_file->f_mapping;
427
428                 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
429                 return mapping->a_ops->set_page_dirty(page);
430         } else {
431                 return __set_page_dirty_no_writeback(page);
432         }
433 }