Merge tag 'for-linus-4.14b-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / mm / page_io.c
1 /*
2  *  linux/mm/page_io.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, 
7  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
8  *  Removed race in async swapping. 14.4.1996. Bruno Haible
9  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
10  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
11  */
12
13 #include <linux/mm.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/gfp.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/bio.h>
19 #include <linux/swapops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/writeback.h>
22 #include <linux/frontswap.h>
23 #include <linux/blkdev.h>
24 #include <linux/uio.h>
25 #include <linux/sched/task.h>
26 #include <asm/pgtable.h>
27
28 static struct bio *get_swap_bio(gfp_t gfp_flags,
29                                 struct page *page, bio_end_io_t end_io)
30 {
31         int i, nr = hpage_nr_pages(page);
32         struct bio *bio;
33
34         bio = bio_alloc(gfp_flags, nr);
35         if (bio) {
36                 bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev);
37                 bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
38                 bio->bi_end_io = end_io;
39
40                 for (i = 0; i < nr; i++)
41                         bio_add_page(bio, page + i, PAGE_SIZE, 0);
42                 VM_BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE * nr);
43         }
44         return bio;
45 }
46
47 void end_swap_bio_write(struct bio *bio)
48 {
49         struct page *page = bio->bi_io_vec[0].bv_page;
50
51         if (bio->bi_status) {
52                 SetPageError(page);
53                 /*
54                  * We failed to write the page out to swap-space.
55                  * Re-dirty the page in order to avoid it being reclaimed.
56                  * Also print a dire warning that things will go BAD (tm)
57                  * very quickly.
58                  *
59                  * Also clear PG_reclaim to avoid rotate_reclaimable_page()
60                  */
61                 set_page_dirty(page);
62                 pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
63                          imajor(bio->bi_bdev->bd_inode),
64                          iminor(bio->bi_bdev->bd_inode),
65                          (unsigned long long)bio->bi_iter.bi_sector);
66                 ClearPageReclaim(page);
67         }
68         end_page_writeback(page);
69         bio_put(bio);
70 }
71
72 static void swap_slot_free_notify(struct page *page)
73 {
74         struct swap_info_struct *sis;
75         struct gendisk *disk;
76
77         /*
78          * There is no guarantee that the page is in swap cache - the software
79          * suspend code (at least) uses end_swap_bio_read() against a non-
80          * swapcache page.  So we must check PG_swapcache before proceeding with
81          * this optimization.
82          */
83         if (unlikely(!PageSwapCache(page)))
84                 return;
85
86         sis = page_swap_info(page);
87         if (!(sis->flags & SWP_BLKDEV))
88                 return;
89
90         /*
91          * The swap subsystem performs lazy swap slot freeing,
92          * expecting that the page will be swapped out again.
93          * So we can avoid an unnecessary write if the page
94          * isn't redirtied.
95          * This is good for real swap storage because we can
96          * reduce unnecessary I/O and enhance wear-leveling
97          * if an SSD is used as the as swap device.
98          * But if in-memory swap device (eg zram) is used,
99          * this causes a duplicated copy between uncompressed
100          * data in VM-owned memory and compressed data in
101          * zram-owned memory.  So let's free zram-owned memory
102          * and make the VM-owned decompressed page *dirty*,
103          * so the page should be swapped out somewhere again if
104          * we again wish to reclaim it.
105          */
106         disk = sis->bdev->bd_disk;
107         if (disk->fops->swap_slot_free_notify) {
108                 swp_entry_t entry;
109                 unsigned long offset;
110
111                 entry.val = page_private(page);
112                 offset = swp_offset(entry);
113
114                 SetPageDirty(page);
115                 disk->fops->swap_slot_free_notify(sis->bdev,
116                                 offset);
117         }
118 }
119
120 static void end_swap_bio_read(struct bio *bio)
121 {
122         struct page *page = bio->bi_io_vec[0].bv_page;
123         struct task_struct *waiter = bio->bi_private;
124
125         if (bio->bi_status) {
126                 SetPageError(page);
127                 ClearPageUptodate(page);
128                 pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
129                          imajor(bio->bi_bdev->bd_inode),
130                          iminor(bio->bi_bdev->bd_inode),
131                          (unsigned long long)bio->bi_iter.bi_sector);
132                 goto out;
133         }
134
135         SetPageUptodate(page);
136         swap_slot_free_notify(page);
137 out:
138         unlock_page(page);
139         WRITE_ONCE(bio->bi_private, NULL);
140         bio_put(bio);
141         wake_up_process(waiter);
142         put_task_struct(waiter);
143 }
144
145 int generic_swapfile_activate(struct swap_info_struct *sis,
146                                 struct file *swap_file,
147                                 sector_t *span)
148 {
149         struct address_space *mapping = swap_file->f_mapping;
150         struct inode *inode = mapping->host;
151         unsigned blocks_per_page;
152         unsigned long page_no;
153         unsigned blkbits;
154         sector_t probe_block;
155         sector_t last_block;
156         sector_t lowest_block = -1;
157         sector_t highest_block = 0;
158         int nr_extents = 0;
159         int ret;
160
161         blkbits = inode->i_blkbits;
162         blocks_per_page = PAGE_SIZE >> blkbits;
163
164         /*
165          * Map all the blocks into the extent list.  This code doesn't try
166          * to be very smart.
167          */
168         probe_block = 0;
169         page_no = 0;
170         last_block = i_size_read(inode) >> blkbits;
171         while ((probe_block + blocks_per_page) <= last_block &&
172                         page_no < sis->max) {
173                 unsigned block_in_page;
174                 sector_t first_block;
175
176                 cond_resched();
177
178                 first_block = bmap(inode, probe_block);
179                 if (first_block == 0)
180                         goto bad_bmap;
181
182                 /*
183                  * It must be PAGE_SIZE aligned on-disk
184                  */
185                 if (first_block & (blocks_per_page - 1)) {
186                         probe_block++;
187                         goto reprobe;
188                 }
189
190                 for (block_in_page = 1; block_in_page < blocks_per_page;
191                                         block_in_page++) {
192                         sector_t block;
193
194                         block = bmap(inode, probe_block + block_in_page);
195                         if (block == 0)
196                                 goto bad_bmap;
197                         if (block != first_block + block_in_page) {
198                                 /* Discontiguity */
199                                 probe_block++;
200                                 goto reprobe;
201                         }
202                 }
203
204                 first_block >>= (PAGE_SHIFT - blkbits);
205                 if (page_no) {  /* exclude the header page */
206                         if (first_block < lowest_block)
207                                 lowest_block = first_block;
208                         if (first_block > highest_block)
209                                 highest_block = first_block;
210                 }
211
212                 /*
213                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
214                  */
215                 ret = add_swap_extent(sis, page_no, 1, first_block);
216                 if (ret < 0)
217                         goto out;
218                 nr_extents += ret;
219                 page_no++;
220                 probe_block += blocks_per_page;
221 reprobe:
222                 continue;
223         }
224         ret = nr_extents;
225         *span = 1 + highest_block - lowest_block;
226         if (page_no == 0)
227                 page_no = 1;    /* force Empty message */
228         sis->max = page_no;
229         sis->pages = page_no - 1;
230         sis->highest_bit = page_no - 1;
231 out:
232         return ret;
233 bad_bmap:
234         pr_err("swapon: swapfile has holes\n");
235         ret = -EINVAL;
236         goto out;
237 }
238
239 /*
240  * We may have stale swap cache pages in memory: notice
241  * them here and get rid of the unnecessary final write.
242  */
243 int swap_writepage(struct page *page, struct writeback_control *wbc)
244 {
245         int ret = 0;
246
247         if (try_to_free_swap(page)) {
248                 unlock_page(page);
249                 goto out;
250         }
251         if (frontswap_store(page) == 0) {
252                 set_page_writeback(page);
253                 unlock_page(page);
254                 end_page_writeback(page);
255                 goto out;
256         }
257         ret = __swap_writepage(page, wbc, end_swap_bio_write);
258 out:
259         return ret;
260 }
261
262 static sector_t swap_page_sector(struct page *page)
263 {
264         return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
265 }
266
267 static inline void count_swpout_vm_event(struct page *page)
268 {
269 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
270         if (unlikely(PageTransHuge(page)))
271                 count_vm_event(THP_SWPOUT);
272 #endif
273         count_vm_events(PSWPOUT, hpage_nr_pages(page));
274 }
275
276 int __swap_writepage(struct page *page, struct writeback_control *wbc,
277                 bio_end_io_t end_write_func)
278 {
279         struct bio *bio;
280         int ret;
281         struct swap_info_struct *sis = page_swap_info(page);
282
283         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
284         if (sis->flags & SWP_FILE) {
285                 struct kiocb kiocb;
286                 struct file *swap_file = sis->swap_file;
287                 struct address_space *mapping = swap_file->f_mapping;
288                 struct bio_vec bv = {
289                         .bv_page = page,
290                         .bv_len  = PAGE_SIZE,
291                         .bv_offset = 0
292                 };
293                 struct iov_iter from;
294
295                 iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
296                 init_sync_kiocb(&kiocb, swap_file);
297                 kiocb.ki_pos = page_file_offset(page);
298
299                 set_page_writeback(page);
300                 unlock_page(page);
301                 ret = mapping->a_ops->direct_IO(&kiocb, &from);
302                 if (ret == PAGE_SIZE) {
303                         count_vm_event(PSWPOUT);
304                         ret = 0;
305                 } else {
306                         /*
307                          * In the case of swap-over-nfs, this can be a
308                          * temporary failure if the system has limited
309                          * memory for allocating transmit buffers.
310                          * Mark the page dirty and avoid
311                          * rotate_reclaimable_page but rate-limit the
312                          * messages but do not flag PageError like
313                          * the normal direct-to-bio case as it could
314                          * be temporary.
315                          */
316                         set_page_dirty(page);
317                         ClearPageReclaim(page);
318                         pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
319                                            page_file_offset(page));
320                 }
321                 end_page_writeback(page);
322                 return ret;
323         }
324
325         ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
326         if (!ret) {
327                 count_swpout_vm_event(page);
328                 return 0;
329         }
330
331         ret = 0;
332         bio = get_swap_bio(GFP_NOIO, page, end_write_func);
333         if (bio == NULL) {
334                 set_page_dirty(page);
335                 unlock_page(page);
336                 ret = -ENOMEM;
337                 goto out;
338         }
339         bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
340         count_swpout_vm_event(page);
341         set_page_writeback(page);
342         unlock_page(page);
343         submit_bio(bio);
344 out:
345         return ret;
346 }
347
348 int swap_readpage(struct page *page, bool do_poll)
349 {
350         struct bio *bio;
351         int ret = 0;
352         struct swap_info_struct *sis = page_swap_info(page);
353         blk_qc_t qc;
354         struct block_device *bdev;
355
356         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
357         VM_BUG_ON_PAGE(!PageLocked(page), page);
358         VM_BUG_ON_PAGE(PageUptodate(page), page);
359         if (frontswap_load(page) == 0) {
360                 SetPageUptodate(page);
361                 unlock_page(page);
362                 goto out;
363         }
364
365         if (sis->flags & SWP_FILE) {
366                 struct file *swap_file = sis->swap_file;
367                 struct address_space *mapping = swap_file->f_mapping;
368
369                 ret = mapping->a_ops->readpage(swap_file, page);
370                 if (!ret)
371                         count_vm_event(PSWPIN);
372                 return ret;
373         }
374
375         ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
376         if (!ret) {
377                 if (trylock_page(page)) {
378                         swap_slot_free_notify(page);
379                         unlock_page(page);
380                 }
381
382                 count_vm_event(PSWPIN);
383                 return 0;
384         }
385
386         ret = 0;
387         bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
388         if (bio == NULL) {
389                 unlock_page(page);
390                 ret = -ENOMEM;
391                 goto out;
392         }
393         bdev = bio->bi_bdev;
394         /*
395          * Keep this task valid during swap readpage because the oom killer may
396          * attempt to access it in the page fault retry time check.
397          */
398         get_task_struct(current);
399         bio->bi_private = current;
400         bio_set_op_attrs(bio, REQ_OP_READ, 0);
401         count_vm_event(PSWPIN);
402         bio_get(bio);
403         qc = submit_bio(bio);
404         while (do_poll) {
405                 set_current_state(TASK_UNINTERRUPTIBLE);
406                 if (!READ_ONCE(bio->bi_private))
407                         break;
408
409                 if (!blk_mq_poll(bdev_get_queue(bdev), qc))
410                         break;
411         }
412         __set_current_state(TASK_RUNNING);
413         bio_put(bio);
414
415 out:
416         return ret;
417 }
418
419 int swap_set_page_dirty(struct page *page)
420 {
421         struct swap_info_struct *sis = page_swap_info(page);
422
423         if (sis->flags & SWP_FILE) {
424                 struct address_space *mapping = sis->swap_file->f_mapping;
425
426                 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
427                 return mapping->a_ops->set_page_dirty(page);
428         } else {
429                 return __set_page_dirty_no_writeback(page);
430         }
431 }