Merge tag 'for-linus-5.14-1' of git://github.com/cminyard/linux-ipmi
[linux-2.6-microblaze.git] / mm / page-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Initial version
13  */
14
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/writeback.h>
24 #include <linux/init.h>
25 #include <linux/backing-dev.h>
26 #include <linux/task_io_accounting_ops.h>
27 #include <linux/blkdev.h>
28 #include <linux/mpage.h>
29 #include <linux/rmap.h>
30 #include <linux/percpu.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/pagevec.h>
36 #include <linux/timer.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/signal.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41
42 #include "internal.h"
43
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE               max(HZ/5, 1)
48
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
54
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
59
60 #define RATELIMIT_CALC_SHIFT    10
61
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67
68 /* The following parameters are exported via /proc/sys/vm */
69
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 int dirty_background_ratio = 10;
74
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 unsigned long dirty_background_bytes;
80
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 int vm_highmem_is_dirtyable;
86
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 int vm_dirty_ratio = 20;
91
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 unsigned long vm_dirty_bytes;
97
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109
110 /*
111  * Flag that makes the machine dump writes/reads and block dirtyings.
112  */
113 int block_dump;
114
115 /*
116  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117  * a full sync is triggered after this time elapses without any disk activity.
118  */
119 int laptop_mode;
120
121 EXPORT_SYMBOL(laptop_mode);
122
123 /* End of sysctl-exported parameters */
124
125 struct wb_domain global_wb_domain;
126
127 /* consolidated parameters for balance_dirty_pages() and its subroutines */
128 struct dirty_throttle_control {
129 #ifdef CONFIG_CGROUP_WRITEBACK
130         struct wb_domain        *dom;
131         struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
132 #endif
133         struct bdi_writeback    *wb;
134         struct fprop_local_percpu *wb_completions;
135
136         unsigned long           avail;          /* dirtyable */
137         unsigned long           dirty;          /* file_dirty + write + nfs */
138         unsigned long           thresh;         /* dirty threshold */
139         unsigned long           bg_thresh;      /* dirty background threshold */
140
141         unsigned long           wb_dirty;       /* per-wb counterparts */
142         unsigned long           wb_thresh;
143         unsigned long           wb_bg_thresh;
144
145         unsigned long           pos_ratio;
146 };
147
148 /*
149  * Length of period for aging writeout fractions of bdis. This is an
150  * arbitrarily chosen number. The longer the period, the slower fractions will
151  * reflect changes in current writeout rate.
152  */
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
154
155 #ifdef CONFIG_CGROUP_WRITEBACK
156
157 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
158                                 .dom = &global_wb_domain,               \
159                                 .wb_completions = &(__wb)->completions
160
161 #define GDTC_INIT_NO_WB         .dom = &global_wb_domain
162
163 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
164                                 .dom = mem_cgroup_wb_domain(__wb),      \
165                                 .wb_completions = &(__wb)->memcg_completions, \
166                                 .gdtc = __gdtc
167
168 static bool mdtc_valid(struct dirty_throttle_control *dtc)
169 {
170         return dtc->dom;
171 }
172
173 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
174 {
175         return dtc->dom;
176 }
177
178 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
179 {
180         return mdtc->gdtc;
181 }
182
183 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
184 {
185         return &wb->memcg_completions;
186 }
187
188 static void wb_min_max_ratio(struct bdi_writeback *wb,
189                              unsigned long *minp, unsigned long *maxp)
190 {
191         unsigned long this_bw = wb->avg_write_bandwidth;
192         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193         unsigned long long min = wb->bdi->min_ratio;
194         unsigned long long max = wb->bdi->max_ratio;
195
196         /*
197          * @wb may already be clean by the time control reaches here and
198          * the total may not include its bw.
199          */
200         if (this_bw < tot_bw) {
201                 if (min) {
202                         min *= this_bw;
203                         min = div64_ul(min, tot_bw);
204                 }
205                 if (max < 100) {
206                         max *= this_bw;
207                         max = div64_ul(max, tot_bw);
208                 }
209         }
210
211         *minp = min;
212         *maxp = max;
213 }
214
215 #else   /* CONFIG_CGROUP_WRITEBACK */
216
217 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
218                                 .wb_completions = &(__wb)->completions
219 #define GDTC_INIT_NO_WB
220 #define MDTC_INIT(__wb, __gdtc)
221
222 static bool mdtc_valid(struct dirty_throttle_control *dtc)
223 {
224         return false;
225 }
226
227 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
228 {
229         return &global_wb_domain;
230 }
231
232 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
233 {
234         return NULL;
235 }
236
237 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
238 {
239         return NULL;
240 }
241
242 static void wb_min_max_ratio(struct bdi_writeback *wb,
243                              unsigned long *minp, unsigned long *maxp)
244 {
245         *minp = wb->bdi->min_ratio;
246         *maxp = wb->bdi->max_ratio;
247 }
248
249 #endif  /* CONFIG_CGROUP_WRITEBACK */
250
251 /*
252  * In a memory zone, there is a certain amount of pages we consider
253  * available for the page cache, which is essentially the number of
254  * free and reclaimable pages, minus some zone reserves to protect
255  * lowmem and the ability to uphold the zone's watermarks without
256  * requiring writeback.
257  *
258  * This number of dirtyable pages is the base value of which the
259  * user-configurable dirty ratio is the effective number of pages that
260  * are allowed to be actually dirtied.  Per individual zone, or
261  * globally by using the sum of dirtyable pages over all zones.
262  *
263  * Because the user is allowed to specify the dirty limit globally as
264  * absolute number of bytes, calculating the per-zone dirty limit can
265  * require translating the configured limit into a percentage of
266  * global dirtyable memory first.
267  */
268
269 /**
270  * node_dirtyable_memory - number of dirtyable pages in a node
271  * @pgdat: the node
272  *
273  * Return: the node's number of pages potentially available for dirty
274  * page cache.  This is the base value for the per-node dirty limits.
275  */
276 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
277 {
278         unsigned long nr_pages = 0;
279         int z;
280
281         for (z = 0; z < MAX_NR_ZONES; z++) {
282                 struct zone *zone = pgdat->node_zones + z;
283
284                 if (!populated_zone(zone))
285                         continue;
286
287                 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
288         }
289
290         /*
291          * Pages reserved for the kernel should not be considered
292          * dirtyable, to prevent a situation where reclaim has to
293          * clean pages in order to balance the zones.
294          */
295         nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
296
297         nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
298         nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
299
300         return nr_pages;
301 }
302
303 static unsigned long highmem_dirtyable_memory(unsigned long total)
304 {
305 #ifdef CONFIG_HIGHMEM
306         int node;
307         unsigned long x = 0;
308         int i;
309
310         for_each_node_state(node, N_HIGH_MEMORY) {
311                 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
312                         struct zone *z;
313                         unsigned long nr_pages;
314
315                         if (!is_highmem_idx(i))
316                                 continue;
317
318                         z = &NODE_DATA(node)->node_zones[i];
319                         if (!populated_zone(z))
320                                 continue;
321
322                         nr_pages = zone_page_state(z, NR_FREE_PAGES);
323                         /* watch for underflows */
324                         nr_pages -= min(nr_pages, high_wmark_pages(z));
325                         nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
326                         nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
327                         x += nr_pages;
328                 }
329         }
330
331         /*
332          * Unreclaimable memory (kernel memory or anonymous memory
333          * without swap) can bring down the dirtyable pages below
334          * the zone's dirty balance reserve and the above calculation
335          * will underflow.  However we still want to add in nodes
336          * which are below threshold (negative values) to get a more
337          * accurate calculation but make sure that the total never
338          * underflows.
339          */
340         if ((long)x < 0)
341                 x = 0;
342
343         /*
344          * Make sure that the number of highmem pages is never larger
345          * than the number of the total dirtyable memory. This can only
346          * occur in very strange VM situations but we want to make sure
347          * that this does not occur.
348          */
349         return min(x, total);
350 #else
351         return 0;
352 #endif
353 }
354
355 /**
356  * global_dirtyable_memory - number of globally dirtyable pages
357  *
358  * Return: the global number of pages potentially available for dirty
359  * page cache.  This is the base value for the global dirty limits.
360  */
361 static unsigned long global_dirtyable_memory(void)
362 {
363         unsigned long x;
364
365         x = global_zone_page_state(NR_FREE_PAGES);
366         /*
367          * Pages reserved for the kernel should not be considered
368          * dirtyable, to prevent a situation where reclaim has to
369          * clean pages in order to balance the zones.
370          */
371         x -= min(x, totalreserve_pages);
372
373         x += global_node_page_state(NR_INACTIVE_FILE);
374         x += global_node_page_state(NR_ACTIVE_FILE);
375
376         if (!vm_highmem_is_dirtyable)
377                 x -= highmem_dirtyable_memory(x);
378
379         return x + 1;   /* Ensure that we never return 0 */
380 }
381
382 /**
383  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
384  * @dtc: dirty_throttle_control of interest
385  *
386  * Calculate @dtc->thresh and ->bg_thresh considering
387  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
388  * must ensure that @dtc->avail is set before calling this function.  The
389  * dirty limits will be lifted by 1/4 for real-time tasks.
390  */
391 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
392 {
393         const unsigned long available_memory = dtc->avail;
394         struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
395         unsigned long bytes = vm_dirty_bytes;
396         unsigned long bg_bytes = dirty_background_bytes;
397         /* convert ratios to per-PAGE_SIZE for higher precision */
398         unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
399         unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
400         unsigned long thresh;
401         unsigned long bg_thresh;
402         struct task_struct *tsk;
403
404         /* gdtc is !NULL iff @dtc is for memcg domain */
405         if (gdtc) {
406                 unsigned long global_avail = gdtc->avail;
407
408                 /*
409                  * The byte settings can't be applied directly to memcg
410                  * domains.  Convert them to ratios by scaling against
411                  * globally available memory.  As the ratios are in
412                  * per-PAGE_SIZE, they can be obtained by dividing bytes by
413                  * number of pages.
414                  */
415                 if (bytes)
416                         ratio = min(DIV_ROUND_UP(bytes, global_avail),
417                                     PAGE_SIZE);
418                 if (bg_bytes)
419                         bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
420                                        PAGE_SIZE);
421                 bytes = bg_bytes = 0;
422         }
423
424         if (bytes)
425                 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
426         else
427                 thresh = (ratio * available_memory) / PAGE_SIZE;
428
429         if (bg_bytes)
430                 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
431         else
432                 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
433
434         if (bg_thresh >= thresh)
435                 bg_thresh = thresh / 2;
436         tsk = current;
437         if (rt_task(tsk)) {
438                 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
439                 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
440         }
441         dtc->thresh = thresh;
442         dtc->bg_thresh = bg_thresh;
443
444         /* we should eventually report the domain in the TP */
445         if (!gdtc)
446                 trace_global_dirty_state(bg_thresh, thresh);
447 }
448
449 /**
450  * global_dirty_limits - background-writeback and dirty-throttling thresholds
451  * @pbackground: out parameter for bg_thresh
452  * @pdirty: out parameter for thresh
453  *
454  * Calculate bg_thresh and thresh for global_wb_domain.  See
455  * domain_dirty_limits() for details.
456  */
457 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
458 {
459         struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
460
461         gdtc.avail = global_dirtyable_memory();
462         domain_dirty_limits(&gdtc);
463
464         *pbackground = gdtc.bg_thresh;
465         *pdirty = gdtc.thresh;
466 }
467
468 /**
469  * node_dirty_limit - maximum number of dirty pages allowed in a node
470  * @pgdat: the node
471  *
472  * Return: the maximum number of dirty pages allowed in a node, based
473  * on the node's dirtyable memory.
474  */
475 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
476 {
477         unsigned long node_memory = node_dirtyable_memory(pgdat);
478         struct task_struct *tsk = current;
479         unsigned long dirty;
480
481         if (vm_dirty_bytes)
482                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
483                         node_memory / global_dirtyable_memory();
484         else
485                 dirty = vm_dirty_ratio * node_memory / 100;
486
487         if (rt_task(tsk))
488                 dirty += dirty / 4;
489
490         return dirty;
491 }
492
493 /**
494  * node_dirty_ok - tells whether a node is within its dirty limits
495  * @pgdat: the node to check
496  *
497  * Return: %true when the dirty pages in @pgdat are within the node's
498  * dirty limit, %false if the limit is exceeded.
499  */
500 bool node_dirty_ok(struct pglist_data *pgdat)
501 {
502         unsigned long limit = node_dirty_limit(pgdat);
503         unsigned long nr_pages = 0;
504
505         nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
506         nr_pages += node_page_state(pgdat, NR_WRITEBACK);
507
508         return nr_pages <= limit;
509 }
510
511 int dirty_background_ratio_handler(struct ctl_table *table, int write,
512                 void *buffer, size_t *lenp, loff_t *ppos)
513 {
514         int ret;
515
516         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
517         if (ret == 0 && write)
518                 dirty_background_bytes = 0;
519         return ret;
520 }
521
522 int dirty_background_bytes_handler(struct ctl_table *table, int write,
523                 void *buffer, size_t *lenp, loff_t *ppos)
524 {
525         int ret;
526
527         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
528         if (ret == 0 && write)
529                 dirty_background_ratio = 0;
530         return ret;
531 }
532
533 int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
534                 size_t *lenp, loff_t *ppos)
535 {
536         int old_ratio = vm_dirty_ratio;
537         int ret;
538
539         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
540         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
541                 writeback_set_ratelimit();
542                 vm_dirty_bytes = 0;
543         }
544         return ret;
545 }
546
547 int dirty_bytes_handler(struct ctl_table *table, int write,
548                 void *buffer, size_t *lenp, loff_t *ppos)
549 {
550         unsigned long old_bytes = vm_dirty_bytes;
551         int ret;
552
553         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
554         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
555                 writeback_set_ratelimit();
556                 vm_dirty_ratio = 0;
557         }
558         return ret;
559 }
560
561 static unsigned long wp_next_time(unsigned long cur_time)
562 {
563         cur_time += VM_COMPLETIONS_PERIOD_LEN;
564         /* 0 has a special meaning... */
565         if (!cur_time)
566                 return 1;
567         return cur_time;
568 }
569
570 static void wb_domain_writeout_inc(struct wb_domain *dom,
571                                    struct fprop_local_percpu *completions,
572                                    unsigned int max_prop_frac)
573 {
574         __fprop_inc_percpu_max(&dom->completions, completions,
575                                max_prop_frac);
576         /* First event after period switching was turned off? */
577         if (unlikely(!dom->period_time)) {
578                 /*
579                  * We can race with other __bdi_writeout_inc calls here but
580                  * it does not cause any harm since the resulting time when
581                  * timer will fire and what is in writeout_period_time will be
582                  * roughly the same.
583                  */
584                 dom->period_time = wp_next_time(jiffies);
585                 mod_timer(&dom->period_timer, dom->period_time);
586         }
587 }
588
589 /*
590  * Increment @wb's writeout completion count and the global writeout
591  * completion count. Called from test_clear_page_writeback().
592  */
593 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
594 {
595         struct wb_domain *cgdom;
596
597         inc_wb_stat(wb, WB_WRITTEN);
598         wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
599                                wb->bdi->max_prop_frac);
600
601         cgdom = mem_cgroup_wb_domain(wb);
602         if (cgdom)
603                 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
604                                        wb->bdi->max_prop_frac);
605 }
606
607 void wb_writeout_inc(struct bdi_writeback *wb)
608 {
609         unsigned long flags;
610
611         local_irq_save(flags);
612         __wb_writeout_inc(wb);
613         local_irq_restore(flags);
614 }
615 EXPORT_SYMBOL_GPL(wb_writeout_inc);
616
617 /*
618  * On idle system, we can be called long after we scheduled because we use
619  * deferred timers so count with missed periods.
620  */
621 static void writeout_period(struct timer_list *t)
622 {
623         struct wb_domain *dom = from_timer(dom, t, period_timer);
624         int miss_periods = (jiffies - dom->period_time) /
625                                                  VM_COMPLETIONS_PERIOD_LEN;
626
627         if (fprop_new_period(&dom->completions, miss_periods + 1)) {
628                 dom->period_time = wp_next_time(dom->period_time +
629                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
630                 mod_timer(&dom->period_timer, dom->period_time);
631         } else {
632                 /*
633                  * Aging has zeroed all fractions. Stop wasting CPU on period
634                  * updates.
635                  */
636                 dom->period_time = 0;
637         }
638 }
639
640 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
641 {
642         memset(dom, 0, sizeof(*dom));
643
644         spin_lock_init(&dom->lock);
645
646         timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
647
648         dom->dirty_limit_tstamp = jiffies;
649
650         return fprop_global_init(&dom->completions, gfp);
651 }
652
653 #ifdef CONFIG_CGROUP_WRITEBACK
654 void wb_domain_exit(struct wb_domain *dom)
655 {
656         del_timer_sync(&dom->period_timer);
657         fprop_global_destroy(&dom->completions);
658 }
659 #endif
660
661 /*
662  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
663  * registered backing devices, which, for obvious reasons, can not
664  * exceed 100%.
665  */
666 static unsigned int bdi_min_ratio;
667
668 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
669 {
670         int ret = 0;
671
672         spin_lock_bh(&bdi_lock);
673         if (min_ratio > bdi->max_ratio) {
674                 ret = -EINVAL;
675         } else {
676                 min_ratio -= bdi->min_ratio;
677                 if (bdi_min_ratio + min_ratio < 100) {
678                         bdi_min_ratio += min_ratio;
679                         bdi->min_ratio += min_ratio;
680                 } else {
681                         ret = -EINVAL;
682                 }
683         }
684         spin_unlock_bh(&bdi_lock);
685
686         return ret;
687 }
688
689 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
690 {
691         int ret = 0;
692
693         if (max_ratio > 100)
694                 return -EINVAL;
695
696         spin_lock_bh(&bdi_lock);
697         if (bdi->min_ratio > max_ratio) {
698                 ret = -EINVAL;
699         } else {
700                 bdi->max_ratio = max_ratio;
701                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
702         }
703         spin_unlock_bh(&bdi_lock);
704
705         return ret;
706 }
707 EXPORT_SYMBOL(bdi_set_max_ratio);
708
709 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
710                                            unsigned long bg_thresh)
711 {
712         return (thresh + bg_thresh) / 2;
713 }
714
715 static unsigned long hard_dirty_limit(struct wb_domain *dom,
716                                       unsigned long thresh)
717 {
718         return max(thresh, dom->dirty_limit);
719 }
720
721 /*
722  * Memory which can be further allocated to a memcg domain is capped by
723  * system-wide clean memory excluding the amount being used in the domain.
724  */
725 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
726                             unsigned long filepages, unsigned long headroom)
727 {
728         struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
729         unsigned long clean = filepages - min(filepages, mdtc->dirty);
730         unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
731         unsigned long other_clean = global_clean - min(global_clean, clean);
732
733         mdtc->avail = filepages + min(headroom, other_clean);
734 }
735
736 /**
737  * __wb_calc_thresh - @wb's share of dirty throttling threshold
738  * @dtc: dirty_throttle_context of interest
739  *
740  * Note that balance_dirty_pages() will only seriously take it as a hard limit
741  * when sleeping max_pause per page is not enough to keep the dirty pages under
742  * control. For example, when the device is completely stalled due to some error
743  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
744  * In the other normal situations, it acts more gently by throttling the tasks
745  * more (rather than completely block them) when the wb dirty pages go high.
746  *
747  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
748  * - starving fast devices
749  * - piling up dirty pages (that will take long time to sync) on slow devices
750  *
751  * The wb's share of dirty limit will be adapting to its throughput and
752  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
753  *
754  * Return: @wb's dirty limit in pages. The term "dirty" in the context of
755  * dirty balancing includes all PG_dirty and PG_writeback pages.
756  */
757 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
758 {
759         struct wb_domain *dom = dtc_dom(dtc);
760         unsigned long thresh = dtc->thresh;
761         u64 wb_thresh;
762         unsigned long numerator, denominator;
763         unsigned long wb_min_ratio, wb_max_ratio;
764
765         /*
766          * Calculate this BDI's share of the thresh ratio.
767          */
768         fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
769                               &numerator, &denominator);
770
771         wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
772         wb_thresh *= numerator;
773         wb_thresh = div64_ul(wb_thresh, denominator);
774
775         wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
776
777         wb_thresh += (thresh * wb_min_ratio) / 100;
778         if (wb_thresh > (thresh * wb_max_ratio) / 100)
779                 wb_thresh = thresh * wb_max_ratio / 100;
780
781         return wb_thresh;
782 }
783
784 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
785 {
786         struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
787                                                .thresh = thresh };
788         return __wb_calc_thresh(&gdtc);
789 }
790
791 /*
792  *                           setpoint - dirty 3
793  *        f(dirty) := 1.0 + (----------------)
794  *                           limit - setpoint
795  *
796  * it's a 3rd order polynomial that subjects to
797  *
798  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
799  * (2) f(setpoint) = 1.0 => the balance point
800  * (3) f(limit)    = 0   => the hard limit
801  * (4) df/dx      <= 0   => negative feedback control
802  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
803  *     => fast response on large errors; small oscillation near setpoint
804  */
805 static long long pos_ratio_polynom(unsigned long setpoint,
806                                           unsigned long dirty,
807                                           unsigned long limit)
808 {
809         long long pos_ratio;
810         long x;
811
812         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
813                       (limit - setpoint) | 1);
814         pos_ratio = x;
815         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
816         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
817         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
818
819         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
820 }
821
822 /*
823  * Dirty position control.
824  *
825  * (o) global/bdi setpoints
826  *
827  * We want the dirty pages be balanced around the global/wb setpoints.
828  * When the number of dirty pages is higher/lower than the setpoint, the
829  * dirty position control ratio (and hence task dirty ratelimit) will be
830  * decreased/increased to bring the dirty pages back to the setpoint.
831  *
832  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
833  *
834  *     if (dirty < setpoint) scale up   pos_ratio
835  *     if (dirty > setpoint) scale down pos_ratio
836  *
837  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
838  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
839  *
840  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
841  *
842  * (o) global control line
843  *
844  *     ^ pos_ratio
845  *     |
846  *     |            |<===== global dirty control scope ======>|
847  * 2.0  * * * * * * *
848  *     |            .*
849  *     |            . *
850  *     |            .   *
851  *     |            .     *
852  *     |            .        *
853  *     |            .            *
854  * 1.0 ................................*
855  *     |            .                  .     *
856  *     |            .                  .          *
857  *     |            .                  .              *
858  *     |            .                  .                 *
859  *     |            .                  .                    *
860  *   0 +------------.------------------.----------------------*------------->
861  *           freerun^          setpoint^                 limit^   dirty pages
862  *
863  * (o) wb control line
864  *
865  *     ^ pos_ratio
866  *     |
867  *     |            *
868  *     |              *
869  *     |                *
870  *     |                  *
871  *     |                    * |<=========== span ============>|
872  * 1.0 .......................*
873  *     |                      . *
874  *     |                      .   *
875  *     |                      .     *
876  *     |                      .       *
877  *     |                      .         *
878  *     |                      .           *
879  *     |                      .             *
880  *     |                      .               *
881  *     |                      .                 *
882  *     |                      .                   *
883  *     |                      .                     *
884  * 1/4 ...............................................* * * * * * * * * * * *
885  *     |                      .                         .
886  *     |                      .                           .
887  *     |                      .                             .
888  *   0 +----------------------.-------------------------------.------------->
889  *                wb_setpoint^                    x_intercept^
890  *
891  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
892  * be smoothly throttled down to normal if it starts high in situations like
893  * - start writing to a slow SD card and a fast disk at the same time. The SD
894  *   card's wb_dirty may rush to many times higher than wb_setpoint.
895  * - the wb dirty thresh drops quickly due to change of JBOD workload
896  */
897 static void wb_position_ratio(struct dirty_throttle_control *dtc)
898 {
899         struct bdi_writeback *wb = dtc->wb;
900         unsigned long write_bw = wb->avg_write_bandwidth;
901         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
902         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
903         unsigned long wb_thresh = dtc->wb_thresh;
904         unsigned long x_intercept;
905         unsigned long setpoint;         /* dirty pages' target balance point */
906         unsigned long wb_setpoint;
907         unsigned long span;
908         long long pos_ratio;            /* for scaling up/down the rate limit */
909         long x;
910
911         dtc->pos_ratio = 0;
912
913         if (unlikely(dtc->dirty >= limit))
914                 return;
915
916         /*
917          * global setpoint
918          *
919          * See comment for pos_ratio_polynom().
920          */
921         setpoint = (freerun + limit) / 2;
922         pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
923
924         /*
925          * The strictlimit feature is a tool preventing mistrusted filesystems
926          * from growing a large number of dirty pages before throttling. For
927          * such filesystems balance_dirty_pages always checks wb counters
928          * against wb limits. Even if global "nr_dirty" is under "freerun".
929          * This is especially important for fuse which sets bdi->max_ratio to
930          * 1% by default. Without strictlimit feature, fuse writeback may
931          * consume arbitrary amount of RAM because it is accounted in
932          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
933          *
934          * Here, in wb_position_ratio(), we calculate pos_ratio based on
935          * two values: wb_dirty and wb_thresh. Let's consider an example:
936          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
937          * limits are set by default to 10% and 20% (background and throttle).
938          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
939          * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
940          * about ~6K pages (as the average of background and throttle wb
941          * limits). The 3rd order polynomial will provide positive feedback if
942          * wb_dirty is under wb_setpoint and vice versa.
943          *
944          * Note, that we cannot use global counters in these calculations
945          * because we want to throttle process writing to a strictlimit wb
946          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
947          * in the example above).
948          */
949         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
950                 long long wb_pos_ratio;
951
952                 if (dtc->wb_dirty < 8) {
953                         dtc->pos_ratio = min_t(long long, pos_ratio * 2,
954                                            2 << RATELIMIT_CALC_SHIFT);
955                         return;
956                 }
957
958                 if (dtc->wb_dirty >= wb_thresh)
959                         return;
960
961                 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
962                                                     dtc->wb_bg_thresh);
963
964                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
965                         return;
966
967                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
968                                                  wb_thresh);
969
970                 /*
971                  * Typically, for strictlimit case, wb_setpoint << setpoint
972                  * and pos_ratio >> wb_pos_ratio. In the other words global
973                  * state ("dirty") is not limiting factor and we have to
974                  * make decision based on wb counters. But there is an
975                  * important case when global pos_ratio should get precedence:
976                  * global limits are exceeded (e.g. due to activities on other
977                  * wb's) while given strictlimit wb is below limit.
978                  *
979                  * "pos_ratio * wb_pos_ratio" would work for the case above,
980                  * but it would look too non-natural for the case of all
981                  * activity in the system coming from a single strictlimit wb
982                  * with bdi->max_ratio == 100%.
983                  *
984                  * Note that min() below somewhat changes the dynamics of the
985                  * control system. Normally, pos_ratio value can be well over 3
986                  * (when globally we are at freerun and wb is well below wb
987                  * setpoint). Now the maximum pos_ratio in the same situation
988                  * is 2. We might want to tweak this if we observe the control
989                  * system is too slow to adapt.
990                  */
991                 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
992                 return;
993         }
994
995         /*
996          * We have computed basic pos_ratio above based on global situation. If
997          * the wb is over/under its share of dirty pages, we want to scale
998          * pos_ratio further down/up. That is done by the following mechanism.
999          */
1000
1001         /*
1002          * wb setpoint
1003          *
1004          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1005          *
1006          *                        x_intercept - wb_dirty
1007          *                     := --------------------------
1008          *                        x_intercept - wb_setpoint
1009          *
1010          * The main wb control line is a linear function that subjects to
1011          *
1012          * (1) f(wb_setpoint) = 1.0
1013          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1014          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1015          *
1016          * For single wb case, the dirty pages are observed to fluctuate
1017          * regularly within range
1018          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1019          * for various filesystems, where (2) can yield in a reasonable 12.5%
1020          * fluctuation range for pos_ratio.
1021          *
1022          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1023          * own size, so move the slope over accordingly and choose a slope that
1024          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1025          */
1026         if (unlikely(wb_thresh > dtc->thresh))
1027                 wb_thresh = dtc->thresh;
1028         /*
1029          * It's very possible that wb_thresh is close to 0 not because the
1030          * device is slow, but that it has remained inactive for long time.
1031          * Honour such devices a reasonable good (hopefully IO efficient)
1032          * threshold, so that the occasional writes won't be blocked and active
1033          * writes can rampup the threshold quickly.
1034          */
1035         wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1036         /*
1037          * scale global setpoint to wb's:
1038          *      wb_setpoint = setpoint * wb_thresh / thresh
1039          */
1040         x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1041         wb_setpoint = setpoint * (u64)x >> 16;
1042         /*
1043          * Use span=(8*write_bw) in single wb case as indicated by
1044          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1045          *
1046          *        wb_thresh                    thresh - wb_thresh
1047          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1048          *         thresh                           thresh
1049          */
1050         span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1051         x_intercept = wb_setpoint + span;
1052
1053         if (dtc->wb_dirty < x_intercept - span / 4) {
1054                 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1055                                       (x_intercept - wb_setpoint) | 1);
1056         } else
1057                 pos_ratio /= 4;
1058
1059         /*
1060          * wb reserve area, safeguard against dirty pool underrun and disk idle
1061          * It may push the desired control point of global dirty pages higher
1062          * than setpoint.
1063          */
1064         x_intercept = wb_thresh / 2;
1065         if (dtc->wb_dirty < x_intercept) {
1066                 if (dtc->wb_dirty > x_intercept / 8)
1067                         pos_ratio = div_u64(pos_ratio * x_intercept,
1068                                             dtc->wb_dirty);
1069                 else
1070                         pos_ratio *= 8;
1071         }
1072
1073         dtc->pos_ratio = pos_ratio;
1074 }
1075
1076 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1077                                       unsigned long elapsed,
1078                                       unsigned long written)
1079 {
1080         const unsigned long period = roundup_pow_of_two(3 * HZ);
1081         unsigned long avg = wb->avg_write_bandwidth;
1082         unsigned long old = wb->write_bandwidth;
1083         u64 bw;
1084
1085         /*
1086          * bw = written * HZ / elapsed
1087          *
1088          *                   bw * elapsed + write_bandwidth * (period - elapsed)
1089          * write_bandwidth = ---------------------------------------------------
1090          *                                          period
1091          *
1092          * @written may have decreased due to account_page_redirty().
1093          * Avoid underflowing @bw calculation.
1094          */
1095         bw = written - min(written, wb->written_stamp);
1096         bw *= HZ;
1097         if (unlikely(elapsed > period)) {
1098                 bw = div64_ul(bw, elapsed);
1099                 avg = bw;
1100                 goto out;
1101         }
1102         bw += (u64)wb->write_bandwidth * (period - elapsed);
1103         bw >>= ilog2(period);
1104
1105         /*
1106          * one more level of smoothing, for filtering out sudden spikes
1107          */
1108         if (avg > old && old >= (unsigned long)bw)
1109                 avg -= (avg - old) >> 3;
1110
1111         if (avg < old && old <= (unsigned long)bw)
1112                 avg += (old - avg) >> 3;
1113
1114 out:
1115         /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1116         avg = max(avg, 1LU);
1117         if (wb_has_dirty_io(wb)) {
1118                 long delta = avg - wb->avg_write_bandwidth;
1119                 WARN_ON_ONCE(atomic_long_add_return(delta,
1120                                         &wb->bdi->tot_write_bandwidth) <= 0);
1121         }
1122         wb->write_bandwidth = bw;
1123         wb->avg_write_bandwidth = avg;
1124 }
1125
1126 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1127 {
1128         struct wb_domain *dom = dtc_dom(dtc);
1129         unsigned long thresh = dtc->thresh;
1130         unsigned long limit = dom->dirty_limit;
1131
1132         /*
1133          * Follow up in one step.
1134          */
1135         if (limit < thresh) {
1136                 limit = thresh;
1137                 goto update;
1138         }
1139
1140         /*
1141          * Follow down slowly. Use the higher one as the target, because thresh
1142          * may drop below dirty. This is exactly the reason to introduce
1143          * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1144          */
1145         thresh = max(thresh, dtc->dirty);
1146         if (limit > thresh) {
1147                 limit -= (limit - thresh) >> 5;
1148                 goto update;
1149         }
1150         return;
1151 update:
1152         dom->dirty_limit = limit;
1153 }
1154
1155 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1156                                     unsigned long now)
1157 {
1158         struct wb_domain *dom = dtc_dom(dtc);
1159
1160         /*
1161          * check locklessly first to optimize away locking for the most time
1162          */
1163         if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1164                 return;
1165
1166         spin_lock(&dom->lock);
1167         if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1168                 update_dirty_limit(dtc);
1169                 dom->dirty_limit_tstamp = now;
1170         }
1171         spin_unlock(&dom->lock);
1172 }
1173
1174 /*
1175  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1176  *
1177  * Normal wb tasks will be curbed at or below it in long term.
1178  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1179  */
1180 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1181                                       unsigned long dirtied,
1182                                       unsigned long elapsed)
1183 {
1184         struct bdi_writeback *wb = dtc->wb;
1185         unsigned long dirty = dtc->dirty;
1186         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1187         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1188         unsigned long setpoint = (freerun + limit) / 2;
1189         unsigned long write_bw = wb->avg_write_bandwidth;
1190         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1191         unsigned long dirty_rate;
1192         unsigned long task_ratelimit;
1193         unsigned long balanced_dirty_ratelimit;
1194         unsigned long step;
1195         unsigned long x;
1196         unsigned long shift;
1197
1198         /*
1199          * The dirty rate will match the writeout rate in long term, except
1200          * when dirty pages are truncated by userspace or re-dirtied by FS.
1201          */
1202         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1203
1204         /*
1205          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1206          */
1207         task_ratelimit = (u64)dirty_ratelimit *
1208                                         dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1209         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1210
1211         /*
1212          * A linear estimation of the "balanced" throttle rate. The theory is,
1213          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1214          * dirty_rate will be measured to be (N * task_ratelimit). So the below
1215          * formula will yield the balanced rate limit (write_bw / N).
1216          *
1217          * Note that the expanded form is not a pure rate feedback:
1218          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1219          * but also takes pos_ratio into account:
1220          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1221          *
1222          * (1) is not realistic because pos_ratio also takes part in balancing
1223          * the dirty rate.  Consider the state
1224          *      pos_ratio = 0.5                                              (3)
1225          *      rate = 2 * (write_bw / N)                                    (4)
1226          * If (1) is used, it will stuck in that state! Because each dd will
1227          * be throttled at
1228          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1229          * yielding
1230          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1231          * put (6) into (1) we get
1232          *      rate_(i+1) = rate_(i)                                        (7)
1233          *
1234          * So we end up using (2) to always keep
1235          *      rate_(i+1) ~= (write_bw / N)                                 (8)
1236          * regardless of the value of pos_ratio. As long as (8) is satisfied,
1237          * pos_ratio is able to drive itself to 1.0, which is not only where
1238          * the dirty count meet the setpoint, but also where the slope of
1239          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1240          */
1241         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1242                                            dirty_rate | 1);
1243         /*
1244          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1245          */
1246         if (unlikely(balanced_dirty_ratelimit > write_bw))
1247                 balanced_dirty_ratelimit = write_bw;
1248
1249         /*
1250          * We could safely do this and return immediately:
1251          *
1252          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1253          *
1254          * However to get a more stable dirty_ratelimit, the below elaborated
1255          * code makes use of task_ratelimit to filter out singular points and
1256          * limit the step size.
1257          *
1258          * The below code essentially only uses the relative value of
1259          *
1260          *      task_ratelimit - dirty_ratelimit
1261          *      = (pos_ratio - 1) * dirty_ratelimit
1262          *
1263          * which reflects the direction and size of dirty position error.
1264          */
1265
1266         /*
1267          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1268          * task_ratelimit is on the same side of dirty_ratelimit, too.
1269          * For example, when
1270          * - dirty_ratelimit > balanced_dirty_ratelimit
1271          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1272          * lowering dirty_ratelimit will help meet both the position and rate
1273          * control targets. Otherwise, don't update dirty_ratelimit if it will
1274          * only help meet the rate target. After all, what the users ultimately
1275          * feel and care are stable dirty rate and small position error.
1276          *
1277          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1278          * and filter out the singular points of balanced_dirty_ratelimit. Which
1279          * keeps jumping around randomly and can even leap far away at times
1280          * due to the small 200ms estimation period of dirty_rate (we want to
1281          * keep that period small to reduce time lags).
1282          */
1283         step = 0;
1284
1285         /*
1286          * For strictlimit case, calculations above were based on wb counters
1287          * and limits (starting from pos_ratio = wb_position_ratio() and up to
1288          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1289          * Hence, to calculate "step" properly, we have to use wb_dirty as
1290          * "dirty" and wb_setpoint as "setpoint".
1291          *
1292          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1293          * it's possible that wb_thresh is close to zero due to inactivity
1294          * of backing device.
1295          */
1296         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1297                 dirty = dtc->wb_dirty;
1298                 if (dtc->wb_dirty < 8)
1299                         setpoint = dtc->wb_dirty + 1;
1300                 else
1301                         setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1302         }
1303
1304         if (dirty < setpoint) {
1305                 x = min3(wb->balanced_dirty_ratelimit,
1306                          balanced_dirty_ratelimit, task_ratelimit);
1307                 if (dirty_ratelimit < x)
1308                         step = x - dirty_ratelimit;
1309         } else {
1310                 x = max3(wb->balanced_dirty_ratelimit,
1311                          balanced_dirty_ratelimit, task_ratelimit);
1312                 if (dirty_ratelimit > x)
1313                         step = dirty_ratelimit - x;
1314         }
1315
1316         /*
1317          * Don't pursue 100% rate matching. It's impossible since the balanced
1318          * rate itself is constantly fluctuating. So decrease the track speed
1319          * when it gets close to the target. Helps eliminate pointless tremors.
1320          */
1321         shift = dirty_ratelimit / (2 * step + 1);
1322         if (shift < BITS_PER_LONG)
1323                 step = DIV_ROUND_UP(step >> shift, 8);
1324         else
1325                 step = 0;
1326
1327         if (dirty_ratelimit < balanced_dirty_ratelimit)
1328                 dirty_ratelimit += step;
1329         else
1330                 dirty_ratelimit -= step;
1331
1332         wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1333         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1334
1335         trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1336 }
1337
1338 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1339                                   struct dirty_throttle_control *mdtc,
1340                                   unsigned long start_time,
1341                                   bool update_ratelimit)
1342 {
1343         struct bdi_writeback *wb = gdtc->wb;
1344         unsigned long now = jiffies;
1345         unsigned long elapsed = now - wb->bw_time_stamp;
1346         unsigned long dirtied;
1347         unsigned long written;
1348
1349         lockdep_assert_held(&wb->list_lock);
1350
1351         /*
1352          * rate-limit, only update once every 200ms.
1353          */
1354         if (elapsed < BANDWIDTH_INTERVAL)
1355                 return;
1356
1357         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1358         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1359
1360         /*
1361          * Skip quiet periods when disk bandwidth is under-utilized.
1362          * (at least 1s idle time between two flusher runs)
1363          */
1364         if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1365                 goto snapshot;
1366
1367         if (update_ratelimit) {
1368                 domain_update_bandwidth(gdtc, now);
1369                 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1370
1371                 /*
1372                  * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1373                  * compiler has no way to figure that out.  Help it.
1374                  */
1375                 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1376                         domain_update_bandwidth(mdtc, now);
1377                         wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1378                 }
1379         }
1380         wb_update_write_bandwidth(wb, elapsed, written);
1381
1382 snapshot:
1383         wb->dirtied_stamp = dirtied;
1384         wb->written_stamp = written;
1385         wb->bw_time_stamp = now;
1386 }
1387
1388 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1389 {
1390         struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1391
1392         __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1393 }
1394
1395 /*
1396  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1397  * will look to see if it needs to start dirty throttling.
1398  *
1399  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1400  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1401  * (the number of pages we may dirty without exceeding the dirty limits).
1402  */
1403 static unsigned long dirty_poll_interval(unsigned long dirty,
1404                                          unsigned long thresh)
1405 {
1406         if (thresh > dirty)
1407                 return 1UL << (ilog2(thresh - dirty) >> 1);
1408
1409         return 1;
1410 }
1411
1412 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1413                                   unsigned long wb_dirty)
1414 {
1415         unsigned long bw = wb->avg_write_bandwidth;
1416         unsigned long t;
1417
1418         /*
1419          * Limit pause time for small memory systems. If sleeping for too long
1420          * time, a small pool of dirty/writeback pages may go empty and disk go
1421          * idle.
1422          *
1423          * 8 serves as the safety ratio.
1424          */
1425         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1426         t++;
1427
1428         return min_t(unsigned long, t, MAX_PAUSE);
1429 }
1430
1431 static long wb_min_pause(struct bdi_writeback *wb,
1432                          long max_pause,
1433                          unsigned long task_ratelimit,
1434                          unsigned long dirty_ratelimit,
1435                          int *nr_dirtied_pause)
1436 {
1437         long hi = ilog2(wb->avg_write_bandwidth);
1438         long lo = ilog2(wb->dirty_ratelimit);
1439         long t;         /* target pause */
1440         long pause;     /* estimated next pause */
1441         int pages;      /* target nr_dirtied_pause */
1442
1443         /* target for 10ms pause on 1-dd case */
1444         t = max(1, HZ / 100);
1445
1446         /*
1447          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1448          * overheads.
1449          *
1450          * (N * 10ms) on 2^N concurrent tasks.
1451          */
1452         if (hi > lo)
1453                 t += (hi - lo) * (10 * HZ) / 1024;
1454
1455         /*
1456          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1457          * on the much more stable dirty_ratelimit. However the next pause time
1458          * will be computed based on task_ratelimit and the two rate limits may
1459          * depart considerably at some time. Especially if task_ratelimit goes
1460          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1461          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1462          * result task_ratelimit won't be executed faithfully, which could
1463          * eventually bring down dirty_ratelimit.
1464          *
1465          * We apply two rules to fix it up:
1466          * 1) try to estimate the next pause time and if necessary, use a lower
1467          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1468          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1469          * 2) limit the target pause time to max_pause/2, so that the normal
1470          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1471          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1472          */
1473         t = min(t, 1 + max_pause / 2);
1474         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1475
1476         /*
1477          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1478          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1479          * When the 16 consecutive reads are often interrupted by some dirty
1480          * throttling pause during the async writes, cfq will go into idles
1481          * (deadline is fine). So push nr_dirtied_pause as high as possible
1482          * until reaches DIRTY_POLL_THRESH=32 pages.
1483          */
1484         if (pages < DIRTY_POLL_THRESH) {
1485                 t = max_pause;
1486                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1487                 if (pages > DIRTY_POLL_THRESH) {
1488                         pages = DIRTY_POLL_THRESH;
1489                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1490                 }
1491         }
1492
1493         pause = HZ * pages / (task_ratelimit + 1);
1494         if (pause > max_pause) {
1495                 t = max_pause;
1496                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1497         }
1498
1499         *nr_dirtied_pause = pages;
1500         /*
1501          * The minimal pause time will normally be half the target pause time.
1502          */
1503         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1504 }
1505
1506 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1507 {
1508         struct bdi_writeback *wb = dtc->wb;
1509         unsigned long wb_reclaimable;
1510
1511         /*
1512          * wb_thresh is not treated as some limiting factor as
1513          * dirty_thresh, due to reasons
1514          * - in JBOD setup, wb_thresh can fluctuate a lot
1515          * - in a system with HDD and USB key, the USB key may somehow
1516          *   go into state (wb_dirty >> wb_thresh) either because
1517          *   wb_dirty starts high, or because wb_thresh drops low.
1518          *   In this case we don't want to hard throttle the USB key
1519          *   dirtiers for 100 seconds until wb_dirty drops under
1520          *   wb_thresh. Instead the auxiliary wb control line in
1521          *   wb_position_ratio() will let the dirtier task progress
1522          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1523          */
1524         dtc->wb_thresh = __wb_calc_thresh(dtc);
1525         dtc->wb_bg_thresh = dtc->thresh ?
1526                 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1527
1528         /*
1529          * In order to avoid the stacked BDI deadlock we need
1530          * to ensure we accurately count the 'dirty' pages when
1531          * the threshold is low.
1532          *
1533          * Otherwise it would be possible to get thresh+n pages
1534          * reported dirty, even though there are thresh-m pages
1535          * actually dirty; with m+n sitting in the percpu
1536          * deltas.
1537          */
1538         if (dtc->wb_thresh < 2 * wb_stat_error()) {
1539                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1540                 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1541         } else {
1542                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1543                 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1544         }
1545 }
1546
1547 /*
1548  * balance_dirty_pages() must be called by processes which are generating dirty
1549  * data.  It looks at the number of dirty pages in the machine and will force
1550  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1551  * If we're over `background_thresh' then the writeback threads are woken to
1552  * perform some writeout.
1553  */
1554 static void balance_dirty_pages(struct bdi_writeback *wb,
1555                                 unsigned long pages_dirtied)
1556 {
1557         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1558         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1559         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1560         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1561                                                      &mdtc_stor : NULL;
1562         struct dirty_throttle_control *sdtc;
1563         unsigned long nr_reclaimable;   /* = file_dirty */
1564         long period;
1565         long pause;
1566         long max_pause;
1567         long min_pause;
1568         int nr_dirtied_pause;
1569         bool dirty_exceeded = false;
1570         unsigned long task_ratelimit;
1571         unsigned long dirty_ratelimit;
1572         struct backing_dev_info *bdi = wb->bdi;
1573         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1574         unsigned long start_time = jiffies;
1575
1576         for (;;) {
1577                 unsigned long now = jiffies;
1578                 unsigned long dirty, thresh, bg_thresh;
1579                 unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1580                 unsigned long m_thresh = 0;
1581                 unsigned long m_bg_thresh = 0;
1582
1583                 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1584                 gdtc->avail = global_dirtyable_memory();
1585                 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1586
1587                 domain_dirty_limits(gdtc);
1588
1589                 if (unlikely(strictlimit)) {
1590                         wb_dirty_limits(gdtc);
1591
1592                         dirty = gdtc->wb_dirty;
1593                         thresh = gdtc->wb_thresh;
1594                         bg_thresh = gdtc->wb_bg_thresh;
1595                 } else {
1596                         dirty = gdtc->dirty;
1597                         thresh = gdtc->thresh;
1598                         bg_thresh = gdtc->bg_thresh;
1599                 }
1600
1601                 if (mdtc) {
1602                         unsigned long filepages, headroom, writeback;
1603
1604                         /*
1605                          * If @wb belongs to !root memcg, repeat the same
1606                          * basic calculations for the memcg domain.
1607                          */
1608                         mem_cgroup_wb_stats(wb, &filepages, &headroom,
1609                                             &mdtc->dirty, &writeback);
1610                         mdtc->dirty += writeback;
1611                         mdtc_calc_avail(mdtc, filepages, headroom);
1612
1613                         domain_dirty_limits(mdtc);
1614
1615                         if (unlikely(strictlimit)) {
1616                                 wb_dirty_limits(mdtc);
1617                                 m_dirty = mdtc->wb_dirty;
1618                                 m_thresh = mdtc->wb_thresh;
1619                                 m_bg_thresh = mdtc->wb_bg_thresh;
1620                         } else {
1621                                 m_dirty = mdtc->dirty;
1622                                 m_thresh = mdtc->thresh;
1623                                 m_bg_thresh = mdtc->bg_thresh;
1624                         }
1625                 }
1626
1627                 /*
1628                  * Throttle it only when the background writeback cannot
1629                  * catch-up. This avoids (excessively) small writeouts
1630                  * when the wb limits are ramping up in case of !strictlimit.
1631                  *
1632                  * In strictlimit case make decision based on the wb counters
1633                  * and limits. Small writeouts when the wb limits are ramping
1634                  * up are the price we consciously pay for strictlimit-ing.
1635                  *
1636                  * If memcg domain is in effect, @dirty should be under
1637                  * both global and memcg freerun ceilings.
1638                  */
1639                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1640                     (!mdtc ||
1641                      m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1642                         unsigned long intv;
1643                         unsigned long m_intv;
1644
1645 free_running:
1646                         intv = dirty_poll_interval(dirty, thresh);
1647                         m_intv = ULONG_MAX;
1648
1649                         current->dirty_paused_when = now;
1650                         current->nr_dirtied = 0;
1651                         if (mdtc)
1652                                 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1653                         current->nr_dirtied_pause = min(intv, m_intv);
1654                         break;
1655                 }
1656
1657                 if (unlikely(!writeback_in_progress(wb)))
1658                         wb_start_background_writeback(wb);
1659
1660                 mem_cgroup_flush_foreign(wb);
1661
1662                 /*
1663                  * Calculate global domain's pos_ratio and select the
1664                  * global dtc by default.
1665                  */
1666                 if (!strictlimit) {
1667                         wb_dirty_limits(gdtc);
1668
1669                         if ((current->flags & PF_LOCAL_THROTTLE) &&
1670                             gdtc->wb_dirty <
1671                             dirty_freerun_ceiling(gdtc->wb_thresh,
1672                                                   gdtc->wb_bg_thresh))
1673                                 /*
1674                                  * LOCAL_THROTTLE tasks must not be throttled
1675                                  * when below the per-wb freerun ceiling.
1676                                  */
1677                                 goto free_running;
1678                 }
1679
1680                 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1681                         ((gdtc->dirty > gdtc->thresh) || strictlimit);
1682
1683                 wb_position_ratio(gdtc);
1684                 sdtc = gdtc;
1685
1686                 if (mdtc) {
1687                         /*
1688                          * If memcg domain is in effect, calculate its
1689                          * pos_ratio.  @wb should satisfy constraints from
1690                          * both global and memcg domains.  Choose the one
1691                          * w/ lower pos_ratio.
1692                          */
1693                         if (!strictlimit) {
1694                                 wb_dirty_limits(mdtc);
1695
1696                                 if ((current->flags & PF_LOCAL_THROTTLE) &&
1697                                     mdtc->wb_dirty <
1698                                     dirty_freerun_ceiling(mdtc->wb_thresh,
1699                                                           mdtc->wb_bg_thresh))
1700                                         /*
1701                                          * LOCAL_THROTTLE tasks must not be
1702                                          * throttled when below the per-wb
1703                                          * freerun ceiling.
1704                                          */
1705                                         goto free_running;
1706                         }
1707                         dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1708                                 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1709
1710                         wb_position_ratio(mdtc);
1711                         if (mdtc->pos_ratio < gdtc->pos_ratio)
1712                                 sdtc = mdtc;
1713                 }
1714
1715                 if (dirty_exceeded && !wb->dirty_exceeded)
1716                         wb->dirty_exceeded = 1;
1717
1718                 if (time_is_before_jiffies(wb->bw_time_stamp +
1719                                            BANDWIDTH_INTERVAL)) {
1720                         spin_lock(&wb->list_lock);
1721                         __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1722                         spin_unlock(&wb->list_lock);
1723                 }
1724
1725                 /* throttle according to the chosen dtc */
1726                 dirty_ratelimit = wb->dirty_ratelimit;
1727                 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1728                                                         RATELIMIT_CALC_SHIFT;
1729                 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1730                 min_pause = wb_min_pause(wb, max_pause,
1731                                          task_ratelimit, dirty_ratelimit,
1732                                          &nr_dirtied_pause);
1733
1734                 if (unlikely(task_ratelimit == 0)) {
1735                         period = max_pause;
1736                         pause = max_pause;
1737                         goto pause;
1738                 }
1739                 period = HZ * pages_dirtied / task_ratelimit;
1740                 pause = period;
1741                 if (current->dirty_paused_when)
1742                         pause -= now - current->dirty_paused_when;
1743                 /*
1744                  * For less than 1s think time (ext3/4 may block the dirtier
1745                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1746                  * however at much less frequency), try to compensate it in
1747                  * future periods by updating the virtual time; otherwise just
1748                  * do a reset, as it may be a light dirtier.
1749                  */
1750                 if (pause < min_pause) {
1751                         trace_balance_dirty_pages(wb,
1752                                                   sdtc->thresh,
1753                                                   sdtc->bg_thresh,
1754                                                   sdtc->dirty,
1755                                                   sdtc->wb_thresh,
1756                                                   sdtc->wb_dirty,
1757                                                   dirty_ratelimit,
1758                                                   task_ratelimit,
1759                                                   pages_dirtied,
1760                                                   period,
1761                                                   min(pause, 0L),
1762                                                   start_time);
1763                         if (pause < -HZ) {
1764                                 current->dirty_paused_when = now;
1765                                 current->nr_dirtied = 0;
1766                         } else if (period) {
1767                                 current->dirty_paused_when += period;
1768                                 current->nr_dirtied = 0;
1769                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1770                                 current->nr_dirtied_pause += pages_dirtied;
1771                         break;
1772                 }
1773                 if (unlikely(pause > max_pause)) {
1774                         /* for occasional dropped task_ratelimit */
1775                         now += min(pause - max_pause, max_pause);
1776                         pause = max_pause;
1777                 }
1778
1779 pause:
1780                 trace_balance_dirty_pages(wb,
1781                                           sdtc->thresh,
1782                                           sdtc->bg_thresh,
1783                                           sdtc->dirty,
1784                                           sdtc->wb_thresh,
1785                                           sdtc->wb_dirty,
1786                                           dirty_ratelimit,
1787                                           task_ratelimit,
1788                                           pages_dirtied,
1789                                           period,
1790                                           pause,
1791                                           start_time);
1792                 __set_current_state(TASK_KILLABLE);
1793                 wb->dirty_sleep = now;
1794                 io_schedule_timeout(pause);
1795
1796                 current->dirty_paused_when = now + pause;
1797                 current->nr_dirtied = 0;
1798                 current->nr_dirtied_pause = nr_dirtied_pause;
1799
1800                 /*
1801                  * This is typically equal to (dirty < thresh) and can also
1802                  * keep "1000+ dd on a slow USB stick" under control.
1803                  */
1804                 if (task_ratelimit)
1805                         break;
1806
1807                 /*
1808                  * In the case of an unresponsive NFS server and the NFS dirty
1809                  * pages exceeds dirty_thresh, give the other good wb's a pipe
1810                  * to go through, so that tasks on them still remain responsive.
1811                  *
1812                  * In theory 1 page is enough to keep the consumer-producer
1813                  * pipe going: the flusher cleans 1 page => the task dirties 1
1814                  * more page. However wb_dirty has accounting errors.  So use
1815                  * the larger and more IO friendly wb_stat_error.
1816                  */
1817                 if (sdtc->wb_dirty <= wb_stat_error())
1818                         break;
1819
1820                 if (fatal_signal_pending(current))
1821                         break;
1822         }
1823
1824         if (!dirty_exceeded && wb->dirty_exceeded)
1825                 wb->dirty_exceeded = 0;
1826
1827         if (writeback_in_progress(wb))
1828                 return;
1829
1830         /*
1831          * In laptop mode, we wait until hitting the higher threshold before
1832          * starting background writeout, and then write out all the way down
1833          * to the lower threshold.  So slow writers cause minimal disk activity.
1834          *
1835          * In normal mode, we start background writeout at the lower
1836          * background_thresh, to keep the amount of dirty memory low.
1837          */
1838         if (laptop_mode)
1839                 return;
1840
1841         if (nr_reclaimable > gdtc->bg_thresh)
1842                 wb_start_background_writeback(wb);
1843 }
1844
1845 static DEFINE_PER_CPU(int, bdp_ratelimits);
1846
1847 /*
1848  * Normal tasks are throttled by
1849  *      loop {
1850  *              dirty tsk->nr_dirtied_pause pages;
1851  *              take a snap in balance_dirty_pages();
1852  *      }
1853  * However there is a worst case. If every task exit immediately when dirtied
1854  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1855  * called to throttle the page dirties. The solution is to save the not yet
1856  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1857  * randomly into the running tasks. This works well for the above worst case,
1858  * as the new task will pick up and accumulate the old task's leaked dirty
1859  * count and eventually get throttled.
1860  */
1861 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1862
1863 /**
1864  * balance_dirty_pages_ratelimited - balance dirty memory state
1865  * @mapping: address_space which was dirtied
1866  *
1867  * Processes which are dirtying memory should call in here once for each page
1868  * which was newly dirtied.  The function will periodically check the system's
1869  * dirty state and will initiate writeback if needed.
1870  *
1871  * Once we're over the dirty memory limit we decrease the ratelimiting
1872  * by a lot, to prevent individual processes from overshooting the limit
1873  * by (ratelimit_pages) each.
1874  */
1875 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1876 {
1877         struct inode *inode = mapping->host;
1878         struct backing_dev_info *bdi = inode_to_bdi(inode);
1879         struct bdi_writeback *wb = NULL;
1880         int ratelimit;
1881         int *p;
1882
1883         if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
1884                 return;
1885
1886         if (inode_cgwb_enabled(inode))
1887                 wb = wb_get_create_current(bdi, GFP_KERNEL);
1888         if (!wb)
1889                 wb = &bdi->wb;
1890
1891         ratelimit = current->nr_dirtied_pause;
1892         if (wb->dirty_exceeded)
1893                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1894
1895         preempt_disable();
1896         /*
1897          * This prevents one CPU to accumulate too many dirtied pages without
1898          * calling into balance_dirty_pages(), which can happen when there are
1899          * 1000+ tasks, all of them start dirtying pages at exactly the same
1900          * time, hence all honoured too large initial task->nr_dirtied_pause.
1901          */
1902         p =  this_cpu_ptr(&bdp_ratelimits);
1903         if (unlikely(current->nr_dirtied >= ratelimit))
1904                 *p = 0;
1905         else if (unlikely(*p >= ratelimit_pages)) {
1906                 *p = 0;
1907                 ratelimit = 0;
1908         }
1909         /*
1910          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1911          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1912          * the dirty throttling and livelock other long-run dirtiers.
1913          */
1914         p = this_cpu_ptr(&dirty_throttle_leaks);
1915         if (*p > 0 && current->nr_dirtied < ratelimit) {
1916                 unsigned long nr_pages_dirtied;
1917                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1918                 *p -= nr_pages_dirtied;
1919                 current->nr_dirtied += nr_pages_dirtied;
1920         }
1921         preempt_enable();
1922
1923         if (unlikely(current->nr_dirtied >= ratelimit))
1924                 balance_dirty_pages(wb, current->nr_dirtied);
1925
1926         wb_put(wb);
1927 }
1928 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1929
1930 /**
1931  * wb_over_bg_thresh - does @wb need to be written back?
1932  * @wb: bdi_writeback of interest
1933  *
1934  * Determines whether background writeback should keep writing @wb or it's
1935  * clean enough.
1936  *
1937  * Return: %true if writeback should continue.
1938  */
1939 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1940 {
1941         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1942         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1943         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1944         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1945                                                      &mdtc_stor : NULL;
1946         unsigned long reclaimable;
1947         unsigned long thresh;
1948
1949         /*
1950          * Similar to balance_dirty_pages() but ignores pages being written
1951          * as we're trying to decide whether to put more under writeback.
1952          */
1953         gdtc->avail = global_dirtyable_memory();
1954         gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
1955         domain_dirty_limits(gdtc);
1956
1957         if (gdtc->dirty > gdtc->bg_thresh)
1958                 return true;
1959
1960         thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
1961         if (thresh < 2 * wb_stat_error())
1962                 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1963         else
1964                 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1965
1966         if (reclaimable > thresh)
1967                 return true;
1968
1969         if (mdtc) {
1970                 unsigned long filepages, headroom, writeback;
1971
1972                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1973                                     &writeback);
1974                 mdtc_calc_avail(mdtc, filepages, headroom);
1975                 domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
1976
1977                 if (mdtc->dirty > mdtc->bg_thresh)
1978                         return true;
1979
1980                 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
1981                 if (thresh < 2 * wb_stat_error())
1982                         reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1983                 else
1984                         reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1985
1986                 if (reclaimable > thresh)
1987                         return true;
1988         }
1989
1990         return false;
1991 }
1992
1993 /*
1994  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1995  */
1996 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1997                 void *buffer, size_t *length, loff_t *ppos)
1998 {
1999         unsigned int old_interval = dirty_writeback_interval;
2000         int ret;
2001
2002         ret = proc_dointvec(table, write, buffer, length, ppos);
2003
2004         /*
2005          * Writing 0 to dirty_writeback_interval will disable periodic writeback
2006          * and a different non-zero value will wakeup the writeback threads.
2007          * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2008          * iterate over all bdis and wbs.
2009          * The reason we do this is to make the change take effect immediately.
2010          */
2011         if (!ret && write && dirty_writeback_interval &&
2012                 dirty_writeback_interval != old_interval)
2013                 wakeup_flusher_threads(WB_REASON_PERIODIC);
2014
2015         return ret;
2016 }
2017
2018 #ifdef CONFIG_BLOCK
2019 void laptop_mode_timer_fn(struct timer_list *t)
2020 {
2021         struct backing_dev_info *backing_dev_info =
2022                 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2023
2024         wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2025 }
2026
2027 /*
2028  * We've spun up the disk and we're in laptop mode: schedule writeback
2029  * of all dirty data a few seconds from now.  If the flush is already scheduled
2030  * then push it back - the user is still using the disk.
2031  */
2032 void laptop_io_completion(struct backing_dev_info *info)
2033 {
2034         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2035 }
2036
2037 /*
2038  * We're in laptop mode and we've just synced. The sync's writes will have
2039  * caused another writeback to be scheduled by laptop_io_completion.
2040  * Nothing needs to be written back anymore, so we unschedule the writeback.
2041  */
2042 void laptop_sync_completion(void)
2043 {
2044         struct backing_dev_info *bdi;
2045
2046         rcu_read_lock();
2047
2048         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2049                 del_timer(&bdi->laptop_mode_wb_timer);
2050
2051         rcu_read_unlock();
2052 }
2053 #endif
2054
2055 /*
2056  * If ratelimit_pages is too high then we can get into dirty-data overload
2057  * if a large number of processes all perform writes at the same time.
2058  *
2059  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2060  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2061  * thresholds.
2062  */
2063
2064 void writeback_set_ratelimit(void)
2065 {
2066         struct wb_domain *dom = &global_wb_domain;
2067         unsigned long background_thresh;
2068         unsigned long dirty_thresh;
2069
2070         global_dirty_limits(&background_thresh, &dirty_thresh);
2071         dom->dirty_limit = dirty_thresh;
2072         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2073         if (ratelimit_pages < 16)
2074                 ratelimit_pages = 16;
2075 }
2076
2077 static int page_writeback_cpu_online(unsigned int cpu)
2078 {
2079         writeback_set_ratelimit();
2080         return 0;
2081 }
2082
2083 /*
2084  * Called early on to tune the page writeback dirty limits.
2085  *
2086  * We used to scale dirty pages according to how total memory
2087  * related to pages that could be allocated for buffers.
2088  *
2089  * However, that was when we used "dirty_ratio" to scale with
2090  * all memory, and we don't do that any more. "dirty_ratio"
2091  * is now applied to total non-HIGHPAGE memory, and as such we can't
2092  * get into the old insane situation any more where we had
2093  * large amounts of dirty pages compared to a small amount of
2094  * non-HIGHMEM memory.
2095  *
2096  * But we might still want to scale the dirty_ratio by how
2097  * much memory the box has..
2098  */
2099 void __init page_writeback_init(void)
2100 {
2101         BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2102
2103         cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2104                           page_writeback_cpu_online, NULL);
2105         cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2106                           page_writeback_cpu_online);
2107 }
2108
2109 /**
2110  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2111  * @mapping: address space structure to write
2112  * @start: starting page index
2113  * @end: ending page index (inclusive)
2114  *
2115  * This function scans the page range from @start to @end (inclusive) and tags
2116  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2117  * that write_cache_pages (or whoever calls this function) will then use
2118  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2119  * used to avoid livelocking of writeback by a process steadily creating new
2120  * dirty pages in the file (thus it is important for this function to be quick
2121  * so that it can tag pages faster than a dirtying process can create them).
2122  */
2123 void tag_pages_for_writeback(struct address_space *mapping,
2124                              pgoff_t start, pgoff_t end)
2125 {
2126         XA_STATE(xas, &mapping->i_pages, start);
2127         unsigned int tagged = 0;
2128         void *page;
2129
2130         xas_lock_irq(&xas);
2131         xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2132                 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2133                 if (++tagged % XA_CHECK_SCHED)
2134                         continue;
2135
2136                 xas_pause(&xas);
2137                 xas_unlock_irq(&xas);
2138                 cond_resched();
2139                 xas_lock_irq(&xas);
2140         }
2141         xas_unlock_irq(&xas);
2142 }
2143 EXPORT_SYMBOL(tag_pages_for_writeback);
2144
2145 /**
2146  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2147  * @mapping: address space structure to write
2148  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2149  * @writepage: function called for each page
2150  * @data: data passed to writepage function
2151  *
2152  * If a page is already under I/O, write_cache_pages() skips it, even
2153  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2154  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2155  * and msync() need to guarantee that all the data which was dirty at the time
2156  * the call was made get new I/O started against them.  If wbc->sync_mode is
2157  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2158  * existing IO to complete.
2159  *
2160  * To avoid livelocks (when other process dirties new pages), we first tag
2161  * pages which should be written back with TOWRITE tag and only then start
2162  * writing them. For data-integrity sync we have to be careful so that we do
2163  * not miss some pages (e.g., because some other process has cleared TOWRITE
2164  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2165  * by the process clearing the DIRTY tag (and submitting the page for IO).
2166  *
2167  * To avoid deadlocks between range_cyclic writeback and callers that hold
2168  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2169  * we do not loop back to the start of the file. Doing so causes a page
2170  * lock/page writeback access order inversion - we should only ever lock
2171  * multiple pages in ascending page->index order, and looping back to the start
2172  * of the file violates that rule and causes deadlocks.
2173  *
2174  * Return: %0 on success, negative error code otherwise
2175  */
2176 int write_cache_pages(struct address_space *mapping,
2177                       struct writeback_control *wbc, writepage_t writepage,
2178                       void *data)
2179 {
2180         int ret = 0;
2181         int done = 0;
2182         int error;
2183         struct pagevec pvec;
2184         int nr_pages;
2185         pgoff_t index;
2186         pgoff_t end;            /* Inclusive */
2187         pgoff_t done_index;
2188         int range_whole = 0;
2189         xa_mark_t tag;
2190
2191         pagevec_init(&pvec);
2192         if (wbc->range_cyclic) {
2193                 index = mapping->writeback_index; /* prev offset */
2194                 end = -1;
2195         } else {
2196                 index = wbc->range_start >> PAGE_SHIFT;
2197                 end = wbc->range_end >> PAGE_SHIFT;
2198                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2199                         range_whole = 1;
2200         }
2201         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2202                 tag_pages_for_writeback(mapping, index, end);
2203                 tag = PAGECACHE_TAG_TOWRITE;
2204         } else {
2205                 tag = PAGECACHE_TAG_DIRTY;
2206         }
2207         done_index = index;
2208         while (!done && (index <= end)) {
2209                 int i;
2210
2211                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2212                                 tag);
2213                 if (nr_pages == 0)
2214                         break;
2215
2216                 for (i = 0; i < nr_pages; i++) {
2217                         struct page *page = pvec.pages[i];
2218
2219                         done_index = page->index;
2220
2221                         lock_page(page);
2222
2223                         /*
2224                          * Page truncated or invalidated. We can freely skip it
2225                          * then, even for data integrity operations: the page
2226                          * has disappeared concurrently, so there could be no
2227                          * real expectation of this data integrity operation
2228                          * even if there is now a new, dirty page at the same
2229                          * pagecache address.
2230                          */
2231                         if (unlikely(page->mapping != mapping)) {
2232 continue_unlock:
2233                                 unlock_page(page);
2234                                 continue;
2235                         }
2236
2237                         if (!PageDirty(page)) {
2238                                 /* someone wrote it for us */
2239                                 goto continue_unlock;
2240                         }
2241
2242                         if (PageWriteback(page)) {
2243                                 if (wbc->sync_mode != WB_SYNC_NONE)
2244                                         wait_on_page_writeback(page);
2245                                 else
2246                                         goto continue_unlock;
2247                         }
2248
2249                         BUG_ON(PageWriteback(page));
2250                         if (!clear_page_dirty_for_io(page))
2251                                 goto continue_unlock;
2252
2253                         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2254                         error = (*writepage)(page, wbc, data);
2255                         if (unlikely(error)) {
2256                                 /*
2257                                  * Handle errors according to the type of
2258                                  * writeback. There's no need to continue for
2259                                  * background writeback. Just push done_index
2260                                  * past this page so media errors won't choke
2261                                  * writeout for the entire file. For integrity
2262                                  * writeback, we must process the entire dirty
2263                                  * set regardless of errors because the fs may
2264                                  * still have state to clear for each page. In
2265                                  * that case we continue processing and return
2266                                  * the first error.
2267                                  */
2268                                 if (error == AOP_WRITEPAGE_ACTIVATE) {
2269                                         unlock_page(page);
2270                                         error = 0;
2271                                 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2272                                         ret = error;
2273                                         done_index = page->index + 1;
2274                                         done = 1;
2275                                         break;
2276                                 }
2277                                 if (!ret)
2278                                         ret = error;
2279                         }
2280
2281                         /*
2282                          * We stop writing back only if we are not doing
2283                          * integrity sync. In case of integrity sync we have to
2284                          * keep going until we have written all the pages
2285                          * we tagged for writeback prior to entering this loop.
2286                          */
2287                         if (--wbc->nr_to_write <= 0 &&
2288                             wbc->sync_mode == WB_SYNC_NONE) {
2289                                 done = 1;
2290                                 break;
2291                         }
2292                 }
2293                 pagevec_release(&pvec);
2294                 cond_resched();
2295         }
2296
2297         /*
2298          * If we hit the last page and there is more work to be done: wrap
2299          * back the index back to the start of the file for the next
2300          * time we are called.
2301          */
2302         if (wbc->range_cyclic && !done)
2303                 done_index = 0;
2304         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2305                 mapping->writeback_index = done_index;
2306
2307         return ret;
2308 }
2309 EXPORT_SYMBOL(write_cache_pages);
2310
2311 /*
2312  * Function used by generic_writepages to call the real writepage
2313  * function and set the mapping flags on error
2314  */
2315 static int __writepage(struct page *page, struct writeback_control *wbc,
2316                        void *data)
2317 {
2318         struct address_space *mapping = data;
2319         int ret = mapping->a_ops->writepage(page, wbc);
2320         mapping_set_error(mapping, ret);
2321         return ret;
2322 }
2323
2324 /**
2325  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2326  * @mapping: address space structure to write
2327  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2328  *
2329  * This is a library function, which implements the writepages()
2330  * address_space_operation.
2331  *
2332  * Return: %0 on success, negative error code otherwise
2333  */
2334 int generic_writepages(struct address_space *mapping,
2335                        struct writeback_control *wbc)
2336 {
2337         struct blk_plug plug;
2338         int ret;
2339
2340         /* deal with chardevs and other special file */
2341         if (!mapping->a_ops->writepage)
2342                 return 0;
2343
2344         blk_start_plug(&plug);
2345         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2346         blk_finish_plug(&plug);
2347         return ret;
2348 }
2349
2350 EXPORT_SYMBOL(generic_writepages);
2351
2352 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2353 {
2354         int ret;
2355
2356         if (wbc->nr_to_write <= 0)
2357                 return 0;
2358         while (1) {
2359                 if (mapping->a_ops->writepages)
2360                         ret = mapping->a_ops->writepages(mapping, wbc);
2361                 else
2362                         ret = generic_writepages(mapping, wbc);
2363                 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2364                         break;
2365                 cond_resched();
2366                 congestion_wait(BLK_RW_ASYNC, HZ/50);
2367         }
2368         return ret;
2369 }
2370
2371 /**
2372  * write_one_page - write out a single page and wait on I/O
2373  * @page: the page to write
2374  *
2375  * The page must be locked by the caller and will be unlocked upon return.
2376  *
2377  * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2378  * function returns.
2379  *
2380  * Return: %0 on success, negative error code otherwise
2381  */
2382 int write_one_page(struct page *page)
2383 {
2384         struct address_space *mapping = page->mapping;
2385         int ret = 0;
2386         struct writeback_control wbc = {
2387                 .sync_mode = WB_SYNC_ALL,
2388                 .nr_to_write = 1,
2389         };
2390
2391         BUG_ON(!PageLocked(page));
2392
2393         wait_on_page_writeback(page);
2394
2395         if (clear_page_dirty_for_io(page)) {
2396                 get_page(page);
2397                 ret = mapping->a_ops->writepage(page, &wbc);
2398                 if (ret == 0)
2399                         wait_on_page_writeback(page);
2400                 put_page(page);
2401         } else {
2402                 unlock_page(page);
2403         }
2404
2405         if (!ret)
2406                 ret = filemap_check_errors(mapping);
2407         return ret;
2408 }
2409 EXPORT_SYMBOL(write_one_page);
2410
2411 /*
2412  * For address_spaces which do not use buffers nor write back.
2413  */
2414 int __set_page_dirty_no_writeback(struct page *page)
2415 {
2416         if (!PageDirty(page))
2417                 return !TestSetPageDirty(page);
2418         return 0;
2419 }
2420 EXPORT_SYMBOL(__set_page_dirty_no_writeback);
2421
2422 /*
2423  * Helper function for set_page_dirty family.
2424  *
2425  * Caller must hold lock_page_memcg().
2426  *
2427  * NOTE: This relies on being atomic wrt interrupts.
2428  */
2429 static void account_page_dirtied(struct page *page,
2430                 struct address_space *mapping)
2431 {
2432         struct inode *inode = mapping->host;
2433
2434         trace_writeback_dirty_page(page, mapping);
2435
2436         if (mapping_can_writeback(mapping)) {
2437                 struct bdi_writeback *wb;
2438
2439                 inode_attach_wb(inode, page);
2440                 wb = inode_to_wb(inode);
2441
2442                 __inc_lruvec_page_state(page, NR_FILE_DIRTY);
2443                 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2444                 __inc_node_page_state(page, NR_DIRTIED);
2445                 inc_wb_stat(wb, WB_RECLAIMABLE);
2446                 inc_wb_stat(wb, WB_DIRTIED);
2447                 task_io_account_write(PAGE_SIZE);
2448                 current->nr_dirtied++;
2449                 __this_cpu_inc(bdp_ratelimits);
2450
2451                 mem_cgroup_track_foreign_dirty(page, wb);
2452         }
2453 }
2454
2455 /*
2456  * Helper function for deaccounting dirty page without writeback.
2457  *
2458  * Caller must hold lock_page_memcg().
2459  */
2460 void account_page_cleaned(struct page *page, struct address_space *mapping,
2461                           struct bdi_writeback *wb)
2462 {
2463         if (mapping_can_writeback(mapping)) {
2464                 dec_lruvec_page_state(page, NR_FILE_DIRTY);
2465                 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2466                 dec_wb_stat(wb, WB_RECLAIMABLE);
2467                 task_io_account_cancelled_write(PAGE_SIZE);
2468         }
2469 }
2470
2471 /*
2472  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
2473  * dirty.
2474  *
2475  * If warn is true, then emit a warning if the page is not uptodate and has
2476  * not been truncated.
2477  *
2478  * The caller must hold lock_page_memcg().
2479  */
2480 void __set_page_dirty(struct page *page, struct address_space *mapping,
2481                              int warn)
2482 {
2483         unsigned long flags;
2484
2485         xa_lock_irqsave(&mapping->i_pages, flags);
2486         if (page->mapping) {    /* Race with truncate? */
2487                 WARN_ON_ONCE(warn && !PageUptodate(page));
2488                 account_page_dirtied(page, mapping);
2489                 __xa_set_mark(&mapping->i_pages, page_index(page),
2490                                 PAGECACHE_TAG_DIRTY);
2491         }
2492         xa_unlock_irqrestore(&mapping->i_pages, flags);
2493 }
2494
2495 /*
2496  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2497  * the xarray.
2498  *
2499  * This is also used when a single buffer is being dirtied: we want to set the
2500  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2501  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2502  *
2503  * The caller must ensure this doesn't race with truncation.  Most will simply
2504  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2505  * the pte lock held, which also locks out truncation.
2506  */
2507 int __set_page_dirty_nobuffers(struct page *page)
2508 {
2509         lock_page_memcg(page);
2510         if (!TestSetPageDirty(page)) {
2511                 struct address_space *mapping = page_mapping(page);
2512
2513                 if (!mapping) {
2514                         unlock_page_memcg(page);
2515                         return 1;
2516                 }
2517                 __set_page_dirty(page, mapping, !PagePrivate(page));
2518                 unlock_page_memcg(page);
2519
2520                 if (mapping->host) {
2521                         /* !PageAnon && !swapper_space */
2522                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2523                 }
2524                 return 1;
2525         }
2526         unlock_page_memcg(page);
2527         return 0;
2528 }
2529 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2530
2531 /*
2532  * Call this whenever redirtying a page, to de-account the dirty counters
2533  * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2534  * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2535  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2536  * control.
2537  */
2538 void account_page_redirty(struct page *page)
2539 {
2540         struct address_space *mapping = page->mapping;
2541
2542         if (mapping && mapping_can_writeback(mapping)) {
2543                 struct inode *inode = mapping->host;
2544                 struct bdi_writeback *wb;
2545                 struct wb_lock_cookie cookie = {};
2546
2547                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2548                 current->nr_dirtied--;
2549                 dec_node_page_state(page, NR_DIRTIED);
2550                 dec_wb_stat(wb, WB_DIRTIED);
2551                 unlocked_inode_to_wb_end(inode, &cookie);
2552         }
2553 }
2554 EXPORT_SYMBOL(account_page_redirty);
2555
2556 /*
2557  * When a writepage implementation decides that it doesn't want to write this
2558  * page for some reason, it should redirty the locked page via
2559  * redirty_page_for_writepage() and it should then unlock the page and return 0
2560  */
2561 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2562 {
2563         int ret;
2564
2565         wbc->pages_skipped++;
2566         ret = __set_page_dirty_nobuffers(page);
2567         account_page_redirty(page);
2568         return ret;
2569 }
2570 EXPORT_SYMBOL(redirty_page_for_writepage);
2571
2572 /*
2573  * Dirty a page.
2574  *
2575  * For pages with a mapping this should be done under the page lock for the
2576  * benefit of asynchronous memory errors who prefer a consistent dirty state.
2577  * This rule can be broken in some special cases, but should be better not to.
2578  */
2579 int set_page_dirty(struct page *page)
2580 {
2581         struct address_space *mapping = page_mapping(page);
2582
2583         page = compound_head(page);
2584         if (likely(mapping)) {
2585                 /*
2586                  * readahead/lru_deactivate_page could remain
2587                  * PG_readahead/PG_reclaim due to race with end_page_writeback
2588                  * About readahead, if the page is written, the flags would be
2589                  * reset. So no problem.
2590                  * About lru_deactivate_page, if the page is redirty, the flag
2591                  * will be reset. So no problem. but if the page is used by readahead
2592                  * it will confuse readahead and make it restart the size rampup
2593                  * process. But it's a trivial problem.
2594                  */
2595                 if (PageReclaim(page))
2596                         ClearPageReclaim(page);
2597                 return mapping->a_ops->set_page_dirty(page);
2598         }
2599         if (!PageDirty(page)) {
2600                 if (!TestSetPageDirty(page))
2601                         return 1;
2602         }
2603         return 0;
2604 }
2605 EXPORT_SYMBOL(set_page_dirty);
2606
2607 /*
2608  * set_page_dirty() is racy if the caller has no reference against
2609  * page->mapping->host, and if the page is unlocked.  This is because another
2610  * CPU could truncate the page off the mapping and then free the mapping.
2611  *
2612  * Usually, the page _is_ locked, or the caller is a user-space process which
2613  * holds a reference on the inode by having an open file.
2614  *
2615  * In other cases, the page should be locked before running set_page_dirty().
2616  */
2617 int set_page_dirty_lock(struct page *page)
2618 {
2619         int ret;
2620
2621         lock_page(page);
2622         ret = set_page_dirty(page);
2623         unlock_page(page);
2624         return ret;
2625 }
2626 EXPORT_SYMBOL(set_page_dirty_lock);
2627
2628 /*
2629  * This cancels just the dirty bit on the kernel page itself, it does NOT
2630  * actually remove dirty bits on any mmap's that may be around. It also
2631  * leaves the page tagged dirty, so any sync activity will still find it on
2632  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2633  * look at the dirty bits in the VM.
2634  *
2635  * Doing this should *normally* only ever be done when a page is truncated,
2636  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2637  * this when it notices that somebody has cleaned out all the buffers on a
2638  * page without actually doing it through the VM. Can you say "ext3 is
2639  * horribly ugly"? Thought you could.
2640  */
2641 void __cancel_dirty_page(struct page *page)
2642 {
2643         struct address_space *mapping = page_mapping(page);
2644
2645         if (mapping_can_writeback(mapping)) {
2646                 struct inode *inode = mapping->host;
2647                 struct bdi_writeback *wb;
2648                 struct wb_lock_cookie cookie = {};
2649
2650                 lock_page_memcg(page);
2651                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2652
2653                 if (TestClearPageDirty(page))
2654                         account_page_cleaned(page, mapping, wb);
2655
2656                 unlocked_inode_to_wb_end(inode, &cookie);
2657                 unlock_page_memcg(page);
2658         } else {
2659                 ClearPageDirty(page);
2660         }
2661 }
2662 EXPORT_SYMBOL(__cancel_dirty_page);
2663
2664 /*
2665  * Clear a page's dirty flag, while caring for dirty memory accounting.
2666  * Returns true if the page was previously dirty.
2667  *
2668  * This is for preparing to put the page under writeout.  We leave the page
2669  * tagged as dirty in the xarray so that a concurrent write-for-sync
2670  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2671  * implementation will run either set_page_writeback() or set_page_dirty(),
2672  * at which stage we bring the page's dirty flag and xarray dirty tag
2673  * back into sync.
2674  *
2675  * This incoherency between the page's dirty flag and xarray tag is
2676  * unfortunate, but it only exists while the page is locked.
2677  */
2678 int clear_page_dirty_for_io(struct page *page)
2679 {
2680         struct address_space *mapping = page_mapping(page);
2681         int ret = 0;
2682
2683         VM_BUG_ON_PAGE(!PageLocked(page), page);
2684
2685         if (mapping && mapping_can_writeback(mapping)) {
2686                 struct inode *inode = mapping->host;
2687                 struct bdi_writeback *wb;
2688                 struct wb_lock_cookie cookie = {};
2689
2690                 /*
2691                  * Yes, Virginia, this is indeed insane.
2692                  *
2693                  * We use this sequence to make sure that
2694                  *  (a) we account for dirty stats properly
2695                  *  (b) we tell the low-level filesystem to
2696                  *      mark the whole page dirty if it was
2697                  *      dirty in a pagetable. Only to then
2698                  *  (c) clean the page again and return 1 to
2699                  *      cause the writeback.
2700                  *
2701                  * This way we avoid all nasty races with the
2702                  * dirty bit in multiple places and clearing
2703                  * them concurrently from different threads.
2704                  *
2705                  * Note! Normally the "set_page_dirty(page)"
2706                  * has no effect on the actual dirty bit - since
2707                  * that will already usually be set. But we
2708                  * need the side effects, and it can help us
2709                  * avoid races.
2710                  *
2711                  * We basically use the page "master dirty bit"
2712                  * as a serialization point for all the different
2713                  * threads doing their things.
2714                  */
2715                 if (page_mkclean(page))
2716                         set_page_dirty(page);
2717                 /*
2718                  * We carefully synchronise fault handlers against
2719                  * installing a dirty pte and marking the page dirty
2720                  * at this point.  We do this by having them hold the
2721                  * page lock while dirtying the page, and pages are
2722                  * always locked coming in here, so we get the desired
2723                  * exclusion.
2724                  */
2725                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2726                 if (TestClearPageDirty(page)) {
2727                         dec_lruvec_page_state(page, NR_FILE_DIRTY);
2728                         dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2729                         dec_wb_stat(wb, WB_RECLAIMABLE);
2730                         ret = 1;
2731                 }
2732                 unlocked_inode_to_wb_end(inode, &cookie);
2733                 return ret;
2734         }
2735         return TestClearPageDirty(page);
2736 }
2737 EXPORT_SYMBOL(clear_page_dirty_for_io);
2738
2739 int test_clear_page_writeback(struct page *page)
2740 {
2741         struct address_space *mapping = page_mapping(page);
2742         int ret;
2743
2744         lock_page_memcg(page);
2745         if (mapping && mapping_use_writeback_tags(mapping)) {
2746                 struct inode *inode = mapping->host;
2747                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2748                 unsigned long flags;
2749
2750                 xa_lock_irqsave(&mapping->i_pages, flags);
2751                 ret = TestClearPageWriteback(page);
2752                 if (ret) {
2753                         __xa_clear_mark(&mapping->i_pages, page_index(page),
2754                                                 PAGECACHE_TAG_WRITEBACK);
2755                         if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2756                                 struct bdi_writeback *wb = inode_to_wb(inode);
2757
2758                                 dec_wb_stat(wb, WB_WRITEBACK);
2759                                 __wb_writeout_inc(wb);
2760                         }
2761                 }
2762
2763                 if (mapping->host && !mapping_tagged(mapping,
2764                                                      PAGECACHE_TAG_WRITEBACK))
2765                         sb_clear_inode_writeback(mapping->host);
2766
2767                 xa_unlock_irqrestore(&mapping->i_pages, flags);
2768         } else {
2769                 ret = TestClearPageWriteback(page);
2770         }
2771         if (ret) {
2772                 dec_lruvec_page_state(page, NR_WRITEBACK);
2773                 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2774                 inc_node_page_state(page, NR_WRITTEN);
2775         }
2776         unlock_page_memcg(page);
2777         return ret;
2778 }
2779
2780 int __test_set_page_writeback(struct page *page, bool keep_write)
2781 {
2782         struct address_space *mapping = page_mapping(page);
2783         int ret, access_ret;
2784
2785         lock_page_memcg(page);
2786         if (mapping && mapping_use_writeback_tags(mapping)) {
2787                 XA_STATE(xas, &mapping->i_pages, page_index(page));
2788                 struct inode *inode = mapping->host;
2789                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2790                 unsigned long flags;
2791
2792                 xas_lock_irqsave(&xas, flags);
2793                 xas_load(&xas);
2794                 ret = TestSetPageWriteback(page);
2795                 if (!ret) {
2796                         bool on_wblist;
2797
2798                         on_wblist = mapping_tagged(mapping,
2799                                                    PAGECACHE_TAG_WRITEBACK);
2800
2801                         xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2802                         if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT)
2803                                 inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2804
2805                         /*
2806                          * We can come through here when swapping anonymous
2807                          * pages, so we don't necessarily have an inode to track
2808                          * for sync.
2809                          */
2810                         if (mapping->host && !on_wblist)
2811                                 sb_mark_inode_writeback(mapping->host);
2812                 }
2813                 if (!PageDirty(page))
2814                         xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2815                 if (!keep_write)
2816                         xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2817                 xas_unlock_irqrestore(&xas, flags);
2818         } else {
2819                 ret = TestSetPageWriteback(page);
2820         }
2821         if (!ret) {
2822                 inc_lruvec_page_state(page, NR_WRITEBACK);
2823                 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2824         }
2825         unlock_page_memcg(page);
2826         access_ret = arch_make_page_accessible(page);
2827         /*
2828          * If writeback has been triggered on a page that cannot be made
2829          * accessible, it is too late to recover here.
2830          */
2831         VM_BUG_ON_PAGE(access_ret != 0, page);
2832
2833         return ret;
2834
2835 }
2836 EXPORT_SYMBOL(__test_set_page_writeback);
2837
2838 /*
2839  * Wait for a page to complete writeback
2840  */
2841 void wait_on_page_writeback(struct page *page)
2842 {
2843         while (PageWriteback(page)) {
2844                 trace_wait_on_page_writeback(page, page_mapping(page));
2845                 wait_on_page_bit(page, PG_writeback);
2846         }
2847 }
2848 EXPORT_SYMBOL_GPL(wait_on_page_writeback);
2849
2850 /*
2851  * Wait for a page to complete writeback.  Returns -EINTR if we get a
2852  * fatal signal while waiting.
2853  */
2854 int wait_on_page_writeback_killable(struct page *page)
2855 {
2856         while (PageWriteback(page)) {
2857                 trace_wait_on_page_writeback(page, page_mapping(page));
2858                 if (wait_on_page_bit_killable(page, PG_writeback))
2859                         return -EINTR;
2860         }
2861
2862         return 0;
2863 }
2864 EXPORT_SYMBOL_GPL(wait_on_page_writeback_killable);
2865
2866 /**
2867  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2868  * @page:       The page to wait on.
2869  *
2870  * This function determines if the given page is related to a backing device
2871  * that requires page contents to be held stable during writeback.  If so, then
2872  * it will wait for any pending writeback to complete.
2873  */
2874 void wait_for_stable_page(struct page *page)
2875 {
2876         page = thp_head(page);
2877         if (page->mapping->host->i_sb->s_iflags & SB_I_STABLE_WRITES)
2878                 wait_on_page_writeback(page);
2879 }
2880 EXPORT_SYMBOL_GPL(wait_for_stable_page);