mm: add bdi_set_min_bytes() function
[linux-2.6-microblaze.git] / mm / page-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Initial version
13  */
14
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/slab.h>
23 #include <linux/pagemap.h>
24 #include <linux/writeback.h>
25 #include <linux/init.h>
26 #include <linux/backing-dev.h>
27 #include <linux/task_io_accounting_ops.h>
28 #include <linux/blkdev.h>
29 #include <linux/mpage.h>
30 #include <linux/rmap.h>
31 #include <linux/percpu.h>
32 #include <linux/smp.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42
43 #include "internal.h"
44
45 /*
46  * Sleep at most 200ms at a time in balance_dirty_pages().
47  */
48 #define MAX_PAUSE               max(HZ/5, 1)
49
50 /*
51  * Try to keep balance_dirty_pages() call intervals higher than this many pages
52  * by raising pause time to max_pause when falls below it.
53  */
54 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
55
56 /*
57  * Estimate write bandwidth at 200ms intervals.
58  */
59 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
60
61 #define RATELIMIT_CALC_SHIFT    10
62
63 /*
64  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65  * will look to see if it needs to force writeback or throttling.
66  */
67 static long ratelimit_pages = 32;
68
69 /* The following parameters are exported via /proc/sys/vm */
70
71 /*
72  * Start background writeback (via writeback threads) at this percentage
73  */
74 static int dirty_background_ratio = 10;
75
76 /*
77  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78  * dirty_background_ratio * the amount of dirtyable memory
79  */
80 static unsigned long dirty_background_bytes;
81
82 /*
83  * free highmem will not be subtracted from the total free memory
84  * for calculating free ratios if vm_highmem_is_dirtyable is true
85  */
86 static int vm_highmem_is_dirtyable;
87
88 /*
89  * The generator of dirty data starts writeback at this percentage
90  */
91 static int vm_dirty_ratio = 20;
92
93 /*
94  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95  * vm_dirty_ratio * the amount of dirtyable memory
96  */
97 static unsigned long vm_dirty_bytes;
98
99 /*
100  * The interval between `kupdate'-style writebacks
101  */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105
106 /*
107  * The longest time for which data is allowed to remain dirty
108  */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110
111 /*
112  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
113  * a full sync is triggered after this time elapses without any disk activity.
114  */
115 int laptop_mode;
116
117 EXPORT_SYMBOL(laptop_mode);
118
119 /* End of sysctl-exported parameters */
120
121 struct wb_domain global_wb_domain;
122
123 /* consolidated parameters for balance_dirty_pages() and its subroutines */
124 struct dirty_throttle_control {
125 #ifdef CONFIG_CGROUP_WRITEBACK
126         struct wb_domain        *dom;
127         struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
128 #endif
129         struct bdi_writeback    *wb;
130         struct fprop_local_percpu *wb_completions;
131
132         unsigned long           avail;          /* dirtyable */
133         unsigned long           dirty;          /* file_dirty + write + nfs */
134         unsigned long           thresh;         /* dirty threshold */
135         unsigned long           bg_thresh;      /* dirty background threshold */
136
137         unsigned long           wb_dirty;       /* per-wb counterparts */
138         unsigned long           wb_thresh;
139         unsigned long           wb_bg_thresh;
140
141         unsigned long           pos_ratio;
142 };
143
144 /*
145  * Length of period for aging writeout fractions of bdis. This is an
146  * arbitrarily chosen number. The longer the period, the slower fractions will
147  * reflect changes in current writeout rate.
148  */
149 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
150
151 #ifdef CONFIG_CGROUP_WRITEBACK
152
153 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
154                                 .dom = &global_wb_domain,               \
155                                 .wb_completions = &(__wb)->completions
156
157 #define GDTC_INIT_NO_WB         .dom = &global_wb_domain
158
159 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
160                                 .dom = mem_cgroup_wb_domain(__wb),      \
161                                 .wb_completions = &(__wb)->memcg_completions, \
162                                 .gdtc = __gdtc
163
164 static bool mdtc_valid(struct dirty_throttle_control *dtc)
165 {
166         return dtc->dom;
167 }
168
169 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
170 {
171         return dtc->dom;
172 }
173
174 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
175 {
176         return mdtc->gdtc;
177 }
178
179 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
180 {
181         return &wb->memcg_completions;
182 }
183
184 static void wb_min_max_ratio(struct bdi_writeback *wb,
185                              unsigned long *minp, unsigned long *maxp)
186 {
187         unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
188         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
189         unsigned long long min = wb->bdi->min_ratio;
190         unsigned long long max = wb->bdi->max_ratio;
191
192         /*
193          * @wb may already be clean by the time control reaches here and
194          * the total may not include its bw.
195          */
196         if (this_bw < tot_bw) {
197                 if (min) {
198                         min *= this_bw;
199                         min = div64_ul(min, tot_bw);
200                 }
201                 if (max < 100 * BDI_RATIO_SCALE) {
202                         max *= this_bw;
203                         max = div64_ul(max, tot_bw);
204                 }
205         }
206
207         *minp = min;
208         *maxp = max;
209 }
210
211 #else   /* CONFIG_CGROUP_WRITEBACK */
212
213 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
214                                 .wb_completions = &(__wb)->completions
215 #define GDTC_INIT_NO_WB
216 #define MDTC_INIT(__wb, __gdtc)
217
218 static bool mdtc_valid(struct dirty_throttle_control *dtc)
219 {
220         return false;
221 }
222
223 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
224 {
225         return &global_wb_domain;
226 }
227
228 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
229 {
230         return NULL;
231 }
232
233 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
234 {
235         return NULL;
236 }
237
238 static void wb_min_max_ratio(struct bdi_writeback *wb,
239                              unsigned long *minp, unsigned long *maxp)
240 {
241         *minp = wb->bdi->min_ratio;
242         *maxp = wb->bdi->max_ratio;
243 }
244
245 #endif  /* CONFIG_CGROUP_WRITEBACK */
246
247 /*
248  * In a memory zone, there is a certain amount of pages we consider
249  * available for the page cache, which is essentially the number of
250  * free and reclaimable pages, minus some zone reserves to protect
251  * lowmem and the ability to uphold the zone's watermarks without
252  * requiring writeback.
253  *
254  * This number of dirtyable pages is the base value of which the
255  * user-configurable dirty ratio is the effective number of pages that
256  * are allowed to be actually dirtied.  Per individual zone, or
257  * globally by using the sum of dirtyable pages over all zones.
258  *
259  * Because the user is allowed to specify the dirty limit globally as
260  * absolute number of bytes, calculating the per-zone dirty limit can
261  * require translating the configured limit into a percentage of
262  * global dirtyable memory first.
263  */
264
265 /**
266  * node_dirtyable_memory - number of dirtyable pages in a node
267  * @pgdat: the node
268  *
269  * Return: the node's number of pages potentially available for dirty
270  * page cache.  This is the base value for the per-node dirty limits.
271  */
272 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
273 {
274         unsigned long nr_pages = 0;
275         int z;
276
277         for (z = 0; z < MAX_NR_ZONES; z++) {
278                 struct zone *zone = pgdat->node_zones + z;
279
280                 if (!populated_zone(zone))
281                         continue;
282
283                 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
284         }
285
286         /*
287          * Pages reserved for the kernel should not be considered
288          * dirtyable, to prevent a situation where reclaim has to
289          * clean pages in order to balance the zones.
290          */
291         nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
292
293         nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
294         nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
295
296         return nr_pages;
297 }
298
299 static unsigned long highmem_dirtyable_memory(unsigned long total)
300 {
301 #ifdef CONFIG_HIGHMEM
302         int node;
303         unsigned long x = 0;
304         int i;
305
306         for_each_node_state(node, N_HIGH_MEMORY) {
307                 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
308                         struct zone *z;
309                         unsigned long nr_pages;
310
311                         if (!is_highmem_idx(i))
312                                 continue;
313
314                         z = &NODE_DATA(node)->node_zones[i];
315                         if (!populated_zone(z))
316                                 continue;
317
318                         nr_pages = zone_page_state(z, NR_FREE_PAGES);
319                         /* watch for underflows */
320                         nr_pages -= min(nr_pages, high_wmark_pages(z));
321                         nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
322                         nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
323                         x += nr_pages;
324                 }
325         }
326
327         /*
328          * Make sure that the number of highmem pages is never larger
329          * than the number of the total dirtyable memory. This can only
330          * occur in very strange VM situations but we want to make sure
331          * that this does not occur.
332          */
333         return min(x, total);
334 #else
335         return 0;
336 #endif
337 }
338
339 /**
340  * global_dirtyable_memory - number of globally dirtyable pages
341  *
342  * Return: the global number of pages potentially available for dirty
343  * page cache.  This is the base value for the global dirty limits.
344  */
345 static unsigned long global_dirtyable_memory(void)
346 {
347         unsigned long x;
348
349         x = global_zone_page_state(NR_FREE_PAGES);
350         /*
351          * Pages reserved for the kernel should not be considered
352          * dirtyable, to prevent a situation where reclaim has to
353          * clean pages in order to balance the zones.
354          */
355         x -= min(x, totalreserve_pages);
356
357         x += global_node_page_state(NR_INACTIVE_FILE);
358         x += global_node_page_state(NR_ACTIVE_FILE);
359
360         if (!vm_highmem_is_dirtyable)
361                 x -= highmem_dirtyable_memory(x);
362
363         return x + 1;   /* Ensure that we never return 0 */
364 }
365
366 /**
367  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
368  * @dtc: dirty_throttle_control of interest
369  *
370  * Calculate @dtc->thresh and ->bg_thresh considering
371  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
372  * must ensure that @dtc->avail is set before calling this function.  The
373  * dirty limits will be lifted by 1/4 for real-time tasks.
374  */
375 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
376 {
377         const unsigned long available_memory = dtc->avail;
378         struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
379         unsigned long bytes = vm_dirty_bytes;
380         unsigned long bg_bytes = dirty_background_bytes;
381         /* convert ratios to per-PAGE_SIZE for higher precision */
382         unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
383         unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
384         unsigned long thresh;
385         unsigned long bg_thresh;
386         struct task_struct *tsk;
387
388         /* gdtc is !NULL iff @dtc is for memcg domain */
389         if (gdtc) {
390                 unsigned long global_avail = gdtc->avail;
391
392                 /*
393                  * The byte settings can't be applied directly to memcg
394                  * domains.  Convert them to ratios by scaling against
395                  * globally available memory.  As the ratios are in
396                  * per-PAGE_SIZE, they can be obtained by dividing bytes by
397                  * number of pages.
398                  */
399                 if (bytes)
400                         ratio = min(DIV_ROUND_UP(bytes, global_avail),
401                                     PAGE_SIZE);
402                 if (bg_bytes)
403                         bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
404                                        PAGE_SIZE);
405                 bytes = bg_bytes = 0;
406         }
407
408         if (bytes)
409                 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
410         else
411                 thresh = (ratio * available_memory) / PAGE_SIZE;
412
413         if (bg_bytes)
414                 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
415         else
416                 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
417
418         if (bg_thresh >= thresh)
419                 bg_thresh = thresh / 2;
420         tsk = current;
421         if (rt_task(tsk)) {
422                 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
423                 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
424         }
425         dtc->thresh = thresh;
426         dtc->bg_thresh = bg_thresh;
427
428         /* we should eventually report the domain in the TP */
429         if (!gdtc)
430                 trace_global_dirty_state(bg_thresh, thresh);
431 }
432
433 /**
434  * global_dirty_limits - background-writeback and dirty-throttling thresholds
435  * @pbackground: out parameter for bg_thresh
436  * @pdirty: out parameter for thresh
437  *
438  * Calculate bg_thresh and thresh for global_wb_domain.  See
439  * domain_dirty_limits() for details.
440  */
441 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
442 {
443         struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
444
445         gdtc.avail = global_dirtyable_memory();
446         domain_dirty_limits(&gdtc);
447
448         *pbackground = gdtc.bg_thresh;
449         *pdirty = gdtc.thresh;
450 }
451
452 /**
453  * node_dirty_limit - maximum number of dirty pages allowed in a node
454  * @pgdat: the node
455  *
456  * Return: the maximum number of dirty pages allowed in a node, based
457  * on the node's dirtyable memory.
458  */
459 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
460 {
461         unsigned long node_memory = node_dirtyable_memory(pgdat);
462         struct task_struct *tsk = current;
463         unsigned long dirty;
464
465         if (vm_dirty_bytes)
466                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
467                         node_memory / global_dirtyable_memory();
468         else
469                 dirty = vm_dirty_ratio * node_memory / 100;
470
471         if (rt_task(tsk))
472                 dirty += dirty / 4;
473
474         return dirty;
475 }
476
477 /**
478  * node_dirty_ok - tells whether a node is within its dirty limits
479  * @pgdat: the node to check
480  *
481  * Return: %true when the dirty pages in @pgdat are within the node's
482  * dirty limit, %false if the limit is exceeded.
483  */
484 bool node_dirty_ok(struct pglist_data *pgdat)
485 {
486         unsigned long limit = node_dirty_limit(pgdat);
487         unsigned long nr_pages = 0;
488
489         nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
490         nr_pages += node_page_state(pgdat, NR_WRITEBACK);
491
492         return nr_pages <= limit;
493 }
494
495 #ifdef CONFIG_SYSCTL
496 static int dirty_background_ratio_handler(struct ctl_table *table, int write,
497                 void *buffer, size_t *lenp, loff_t *ppos)
498 {
499         int ret;
500
501         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
502         if (ret == 0 && write)
503                 dirty_background_bytes = 0;
504         return ret;
505 }
506
507 static int dirty_background_bytes_handler(struct ctl_table *table, int write,
508                 void *buffer, size_t *lenp, loff_t *ppos)
509 {
510         int ret;
511
512         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
513         if (ret == 0 && write)
514                 dirty_background_ratio = 0;
515         return ret;
516 }
517
518 static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
519                 size_t *lenp, loff_t *ppos)
520 {
521         int old_ratio = vm_dirty_ratio;
522         int ret;
523
524         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
525         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
526                 writeback_set_ratelimit();
527                 vm_dirty_bytes = 0;
528         }
529         return ret;
530 }
531
532 static int dirty_bytes_handler(struct ctl_table *table, int write,
533                 void *buffer, size_t *lenp, loff_t *ppos)
534 {
535         unsigned long old_bytes = vm_dirty_bytes;
536         int ret;
537
538         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
539         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
540                 writeback_set_ratelimit();
541                 vm_dirty_ratio = 0;
542         }
543         return ret;
544 }
545 #endif
546
547 static unsigned long wp_next_time(unsigned long cur_time)
548 {
549         cur_time += VM_COMPLETIONS_PERIOD_LEN;
550         /* 0 has a special meaning... */
551         if (!cur_time)
552                 return 1;
553         return cur_time;
554 }
555
556 static void wb_domain_writeout_add(struct wb_domain *dom,
557                                    struct fprop_local_percpu *completions,
558                                    unsigned int max_prop_frac, long nr)
559 {
560         __fprop_add_percpu_max(&dom->completions, completions,
561                                max_prop_frac, nr);
562         /* First event after period switching was turned off? */
563         if (unlikely(!dom->period_time)) {
564                 /*
565                  * We can race with other __bdi_writeout_inc calls here but
566                  * it does not cause any harm since the resulting time when
567                  * timer will fire and what is in writeout_period_time will be
568                  * roughly the same.
569                  */
570                 dom->period_time = wp_next_time(jiffies);
571                 mod_timer(&dom->period_timer, dom->period_time);
572         }
573 }
574
575 /*
576  * Increment @wb's writeout completion count and the global writeout
577  * completion count. Called from __folio_end_writeback().
578  */
579 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
580 {
581         struct wb_domain *cgdom;
582
583         wb_stat_mod(wb, WB_WRITTEN, nr);
584         wb_domain_writeout_add(&global_wb_domain, &wb->completions,
585                                wb->bdi->max_prop_frac, nr);
586
587         cgdom = mem_cgroup_wb_domain(wb);
588         if (cgdom)
589                 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
590                                        wb->bdi->max_prop_frac, nr);
591 }
592
593 void wb_writeout_inc(struct bdi_writeback *wb)
594 {
595         unsigned long flags;
596
597         local_irq_save(flags);
598         __wb_writeout_add(wb, 1);
599         local_irq_restore(flags);
600 }
601 EXPORT_SYMBOL_GPL(wb_writeout_inc);
602
603 /*
604  * On idle system, we can be called long after we scheduled because we use
605  * deferred timers so count with missed periods.
606  */
607 static void writeout_period(struct timer_list *t)
608 {
609         struct wb_domain *dom = from_timer(dom, t, period_timer);
610         int miss_periods = (jiffies - dom->period_time) /
611                                                  VM_COMPLETIONS_PERIOD_LEN;
612
613         if (fprop_new_period(&dom->completions, miss_periods + 1)) {
614                 dom->period_time = wp_next_time(dom->period_time +
615                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
616                 mod_timer(&dom->period_timer, dom->period_time);
617         } else {
618                 /*
619                  * Aging has zeroed all fractions. Stop wasting CPU on period
620                  * updates.
621                  */
622                 dom->period_time = 0;
623         }
624 }
625
626 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
627 {
628         memset(dom, 0, sizeof(*dom));
629
630         spin_lock_init(&dom->lock);
631
632         timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
633
634         dom->dirty_limit_tstamp = jiffies;
635
636         return fprop_global_init(&dom->completions, gfp);
637 }
638
639 #ifdef CONFIG_CGROUP_WRITEBACK
640 void wb_domain_exit(struct wb_domain *dom)
641 {
642         del_timer_sync(&dom->period_timer);
643         fprop_global_destroy(&dom->completions);
644 }
645 #endif
646
647 /*
648  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
649  * registered backing devices, which, for obvious reasons, can not
650  * exceed 100%.
651  */
652 static unsigned int bdi_min_ratio;
653
654 static int bdi_check_pages_limit(unsigned long pages)
655 {
656         unsigned long max_dirty_pages = global_dirtyable_memory();
657
658         if (pages > max_dirty_pages)
659                 return -EINVAL;
660
661         return 0;
662 }
663
664 static unsigned long bdi_ratio_from_pages(unsigned long pages)
665 {
666         unsigned long background_thresh;
667         unsigned long dirty_thresh;
668         unsigned long ratio;
669
670         global_dirty_limits(&background_thresh, &dirty_thresh);
671         ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
672
673         return ratio;
674 }
675
676 static u64 bdi_get_bytes(unsigned int ratio)
677 {
678         unsigned long background_thresh;
679         unsigned long dirty_thresh;
680         u64 bytes;
681
682         global_dirty_limits(&background_thresh, &dirty_thresh);
683         bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
684
685         return bytes;
686 }
687
688 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
689 {
690         unsigned int delta;
691         int ret = 0;
692
693         min_ratio *= BDI_RATIO_SCALE;
694
695         spin_lock_bh(&bdi_lock);
696         if (min_ratio > bdi->max_ratio) {
697                 ret = -EINVAL;
698         } else {
699                 if (min_ratio < bdi->min_ratio) {
700                         delta = bdi->min_ratio - min_ratio;
701                         bdi_min_ratio -= delta;
702                         bdi->min_ratio = min_ratio;
703                 } else {
704                         delta = min_ratio - bdi->min_ratio;
705                         if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
706                                 bdi_min_ratio += delta;
707                                 bdi->min_ratio = min_ratio;
708                         } else {
709                                 ret = -EINVAL;
710                         }
711                 }
712         }
713         spin_unlock_bh(&bdi_lock);
714
715         return ret;
716 }
717
718 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
719 {
720         int ret = 0;
721
722         spin_lock_bh(&bdi_lock);
723         if (bdi->min_ratio > max_ratio) {
724                 ret = -EINVAL;
725         } else {
726                 bdi->max_ratio = max_ratio;
727                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
728         }
729         spin_unlock_bh(&bdi_lock);
730
731         return ret;
732 }
733
734 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
735 {
736         return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
737 }
738
739 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
740 {
741         if (max_ratio > 100)
742                 return -EINVAL;
743
744         return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
745 }
746 EXPORT_SYMBOL(bdi_set_max_ratio);
747
748 u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
749 {
750         return bdi_get_bytes(bdi->min_ratio);
751 }
752
753 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
754 {
755         int ret;
756         unsigned long pages = min_bytes >> PAGE_SHIFT;
757         unsigned long min_ratio;
758
759         ret = bdi_check_pages_limit(pages);
760         if (ret)
761                 return ret;
762
763         min_ratio = bdi_ratio_from_pages(pages);
764         return __bdi_set_min_ratio(bdi, min_ratio);
765 }
766
767 u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
768 {
769         return bdi_get_bytes(bdi->max_ratio);
770 }
771
772 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
773 {
774         int ret;
775         unsigned long pages = max_bytes >> PAGE_SHIFT;
776         unsigned long max_ratio;
777
778         ret = bdi_check_pages_limit(pages);
779         if (ret)
780                 return ret;
781
782         max_ratio = bdi_ratio_from_pages(pages);
783         return __bdi_set_max_ratio(bdi, max_ratio);
784 }
785
786 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
787 {
788         if (strict_limit > 1)
789                 return -EINVAL;
790
791         spin_lock_bh(&bdi_lock);
792         if (strict_limit)
793                 bdi->capabilities |= BDI_CAP_STRICTLIMIT;
794         else
795                 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
796         spin_unlock_bh(&bdi_lock);
797
798         return 0;
799 }
800
801 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
802                                            unsigned long bg_thresh)
803 {
804         return (thresh + bg_thresh) / 2;
805 }
806
807 static unsigned long hard_dirty_limit(struct wb_domain *dom,
808                                       unsigned long thresh)
809 {
810         return max(thresh, dom->dirty_limit);
811 }
812
813 /*
814  * Memory which can be further allocated to a memcg domain is capped by
815  * system-wide clean memory excluding the amount being used in the domain.
816  */
817 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
818                             unsigned long filepages, unsigned long headroom)
819 {
820         struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
821         unsigned long clean = filepages - min(filepages, mdtc->dirty);
822         unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
823         unsigned long other_clean = global_clean - min(global_clean, clean);
824
825         mdtc->avail = filepages + min(headroom, other_clean);
826 }
827
828 /**
829  * __wb_calc_thresh - @wb's share of dirty throttling threshold
830  * @dtc: dirty_throttle_context of interest
831  *
832  * Note that balance_dirty_pages() will only seriously take it as a hard limit
833  * when sleeping max_pause per page is not enough to keep the dirty pages under
834  * control. For example, when the device is completely stalled due to some error
835  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
836  * In the other normal situations, it acts more gently by throttling the tasks
837  * more (rather than completely block them) when the wb dirty pages go high.
838  *
839  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
840  * - starving fast devices
841  * - piling up dirty pages (that will take long time to sync) on slow devices
842  *
843  * The wb's share of dirty limit will be adapting to its throughput and
844  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
845  *
846  * Return: @wb's dirty limit in pages. The term "dirty" in the context of
847  * dirty balancing includes all PG_dirty and PG_writeback pages.
848  */
849 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
850 {
851         struct wb_domain *dom = dtc_dom(dtc);
852         unsigned long thresh = dtc->thresh;
853         u64 wb_thresh;
854         unsigned long numerator, denominator;
855         unsigned long wb_min_ratio, wb_max_ratio;
856
857         /*
858          * Calculate this BDI's share of the thresh ratio.
859          */
860         fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
861                               &numerator, &denominator);
862
863         wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
864         wb_thresh *= numerator;
865         wb_thresh = div64_ul(wb_thresh, denominator);
866
867         wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
868
869         wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
870         if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE))
871                 wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
872
873         return wb_thresh;
874 }
875
876 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
877 {
878         struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
879                                                .thresh = thresh };
880         return __wb_calc_thresh(&gdtc);
881 }
882
883 /*
884  *                           setpoint - dirty 3
885  *        f(dirty) := 1.0 + (----------------)
886  *                           limit - setpoint
887  *
888  * it's a 3rd order polynomial that subjects to
889  *
890  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
891  * (2) f(setpoint) = 1.0 => the balance point
892  * (3) f(limit)    = 0   => the hard limit
893  * (4) df/dx      <= 0   => negative feedback control
894  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
895  *     => fast response on large errors; small oscillation near setpoint
896  */
897 static long long pos_ratio_polynom(unsigned long setpoint,
898                                           unsigned long dirty,
899                                           unsigned long limit)
900 {
901         long long pos_ratio;
902         long x;
903
904         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
905                       (limit - setpoint) | 1);
906         pos_ratio = x;
907         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
908         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
909         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
910
911         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
912 }
913
914 /*
915  * Dirty position control.
916  *
917  * (o) global/bdi setpoints
918  *
919  * We want the dirty pages be balanced around the global/wb setpoints.
920  * When the number of dirty pages is higher/lower than the setpoint, the
921  * dirty position control ratio (and hence task dirty ratelimit) will be
922  * decreased/increased to bring the dirty pages back to the setpoint.
923  *
924  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
925  *
926  *     if (dirty < setpoint) scale up   pos_ratio
927  *     if (dirty > setpoint) scale down pos_ratio
928  *
929  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
930  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
931  *
932  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
933  *
934  * (o) global control line
935  *
936  *     ^ pos_ratio
937  *     |
938  *     |            |<===== global dirty control scope ======>|
939  * 2.0  * * * * * * *
940  *     |            .*
941  *     |            . *
942  *     |            .   *
943  *     |            .     *
944  *     |            .        *
945  *     |            .            *
946  * 1.0 ................................*
947  *     |            .                  .     *
948  *     |            .                  .          *
949  *     |            .                  .              *
950  *     |            .                  .                 *
951  *     |            .                  .                    *
952  *   0 +------------.------------------.----------------------*------------->
953  *           freerun^          setpoint^                 limit^   dirty pages
954  *
955  * (o) wb control line
956  *
957  *     ^ pos_ratio
958  *     |
959  *     |            *
960  *     |              *
961  *     |                *
962  *     |                  *
963  *     |                    * |<=========== span ============>|
964  * 1.0 .......................*
965  *     |                      . *
966  *     |                      .   *
967  *     |                      .     *
968  *     |                      .       *
969  *     |                      .         *
970  *     |                      .           *
971  *     |                      .             *
972  *     |                      .               *
973  *     |                      .                 *
974  *     |                      .                   *
975  *     |                      .                     *
976  * 1/4 ...............................................* * * * * * * * * * * *
977  *     |                      .                         .
978  *     |                      .                           .
979  *     |                      .                             .
980  *   0 +----------------------.-------------------------------.------------->
981  *                wb_setpoint^                    x_intercept^
982  *
983  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
984  * be smoothly throttled down to normal if it starts high in situations like
985  * - start writing to a slow SD card and a fast disk at the same time. The SD
986  *   card's wb_dirty may rush to many times higher than wb_setpoint.
987  * - the wb dirty thresh drops quickly due to change of JBOD workload
988  */
989 static void wb_position_ratio(struct dirty_throttle_control *dtc)
990 {
991         struct bdi_writeback *wb = dtc->wb;
992         unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
993         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
994         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
995         unsigned long wb_thresh = dtc->wb_thresh;
996         unsigned long x_intercept;
997         unsigned long setpoint;         /* dirty pages' target balance point */
998         unsigned long wb_setpoint;
999         unsigned long span;
1000         long long pos_ratio;            /* for scaling up/down the rate limit */
1001         long x;
1002
1003         dtc->pos_ratio = 0;
1004
1005         if (unlikely(dtc->dirty >= limit))
1006                 return;
1007
1008         /*
1009          * global setpoint
1010          *
1011          * See comment for pos_ratio_polynom().
1012          */
1013         setpoint = (freerun + limit) / 2;
1014         pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
1015
1016         /*
1017          * The strictlimit feature is a tool preventing mistrusted filesystems
1018          * from growing a large number of dirty pages before throttling. For
1019          * such filesystems balance_dirty_pages always checks wb counters
1020          * against wb limits. Even if global "nr_dirty" is under "freerun".
1021          * This is especially important for fuse which sets bdi->max_ratio to
1022          * 1% by default. Without strictlimit feature, fuse writeback may
1023          * consume arbitrary amount of RAM because it is accounted in
1024          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
1025          *
1026          * Here, in wb_position_ratio(), we calculate pos_ratio based on
1027          * two values: wb_dirty and wb_thresh. Let's consider an example:
1028          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1029          * limits are set by default to 10% and 20% (background and throttle).
1030          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
1031          * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
1032          * about ~6K pages (as the average of background and throttle wb
1033          * limits). The 3rd order polynomial will provide positive feedback if
1034          * wb_dirty is under wb_setpoint and vice versa.
1035          *
1036          * Note, that we cannot use global counters in these calculations
1037          * because we want to throttle process writing to a strictlimit wb
1038          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1039          * in the example above).
1040          */
1041         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1042                 long long wb_pos_ratio;
1043
1044                 if (dtc->wb_dirty < 8) {
1045                         dtc->pos_ratio = min_t(long long, pos_ratio * 2,
1046                                            2 << RATELIMIT_CALC_SHIFT);
1047                         return;
1048                 }
1049
1050                 if (dtc->wb_dirty >= wb_thresh)
1051                         return;
1052
1053                 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1054                                                     dtc->wb_bg_thresh);
1055
1056                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
1057                         return;
1058
1059                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
1060                                                  wb_thresh);
1061
1062                 /*
1063                  * Typically, for strictlimit case, wb_setpoint << setpoint
1064                  * and pos_ratio >> wb_pos_ratio. In the other words global
1065                  * state ("dirty") is not limiting factor and we have to
1066                  * make decision based on wb counters. But there is an
1067                  * important case when global pos_ratio should get precedence:
1068                  * global limits are exceeded (e.g. due to activities on other
1069                  * wb's) while given strictlimit wb is below limit.
1070                  *
1071                  * "pos_ratio * wb_pos_ratio" would work for the case above,
1072                  * but it would look too non-natural for the case of all
1073                  * activity in the system coming from a single strictlimit wb
1074                  * with bdi->max_ratio == 100%.
1075                  *
1076                  * Note that min() below somewhat changes the dynamics of the
1077                  * control system. Normally, pos_ratio value can be well over 3
1078                  * (when globally we are at freerun and wb is well below wb
1079                  * setpoint). Now the maximum pos_ratio in the same situation
1080                  * is 2. We might want to tweak this if we observe the control
1081                  * system is too slow to adapt.
1082                  */
1083                 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1084                 return;
1085         }
1086
1087         /*
1088          * We have computed basic pos_ratio above based on global situation. If
1089          * the wb is over/under its share of dirty pages, we want to scale
1090          * pos_ratio further down/up. That is done by the following mechanism.
1091          */
1092
1093         /*
1094          * wb setpoint
1095          *
1096          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1097          *
1098          *                        x_intercept - wb_dirty
1099          *                     := --------------------------
1100          *                        x_intercept - wb_setpoint
1101          *
1102          * The main wb control line is a linear function that subjects to
1103          *
1104          * (1) f(wb_setpoint) = 1.0
1105          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1106          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1107          *
1108          * For single wb case, the dirty pages are observed to fluctuate
1109          * regularly within range
1110          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1111          * for various filesystems, where (2) can yield in a reasonable 12.5%
1112          * fluctuation range for pos_ratio.
1113          *
1114          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1115          * own size, so move the slope over accordingly and choose a slope that
1116          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1117          */
1118         if (unlikely(wb_thresh > dtc->thresh))
1119                 wb_thresh = dtc->thresh;
1120         /*
1121          * It's very possible that wb_thresh is close to 0 not because the
1122          * device is slow, but that it has remained inactive for long time.
1123          * Honour such devices a reasonable good (hopefully IO efficient)
1124          * threshold, so that the occasional writes won't be blocked and active
1125          * writes can rampup the threshold quickly.
1126          */
1127         wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1128         /*
1129          * scale global setpoint to wb's:
1130          *      wb_setpoint = setpoint * wb_thresh / thresh
1131          */
1132         x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1133         wb_setpoint = setpoint * (u64)x >> 16;
1134         /*
1135          * Use span=(8*write_bw) in single wb case as indicated by
1136          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1137          *
1138          *        wb_thresh                    thresh - wb_thresh
1139          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1140          *         thresh                           thresh
1141          */
1142         span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1143         x_intercept = wb_setpoint + span;
1144
1145         if (dtc->wb_dirty < x_intercept - span / 4) {
1146                 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1147                                       (x_intercept - wb_setpoint) | 1);
1148         } else
1149                 pos_ratio /= 4;
1150
1151         /*
1152          * wb reserve area, safeguard against dirty pool underrun and disk idle
1153          * It may push the desired control point of global dirty pages higher
1154          * than setpoint.
1155          */
1156         x_intercept = wb_thresh / 2;
1157         if (dtc->wb_dirty < x_intercept) {
1158                 if (dtc->wb_dirty > x_intercept / 8)
1159                         pos_ratio = div_u64(pos_ratio * x_intercept,
1160                                             dtc->wb_dirty);
1161                 else
1162                         pos_ratio *= 8;
1163         }
1164
1165         dtc->pos_ratio = pos_ratio;
1166 }
1167
1168 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1169                                       unsigned long elapsed,
1170                                       unsigned long written)
1171 {
1172         const unsigned long period = roundup_pow_of_two(3 * HZ);
1173         unsigned long avg = wb->avg_write_bandwidth;
1174         unsigned long old = wb->write_bandwidth;
1175         u64 bw;
1176
1177         /*
1178          * bw = written * HZ / elapsed
1179          *
1180          *                   bw * elapsed + write_bandwidth * (period - elapsed)
1181          * write_bandwidth = ---------------------------------------------------
1182          *                                          period
1183          *
1184          * @written may have decreased due to folio_account_redirty().
1185          * Avoid underflowing @bw calculation.
1186          */
1187         bw = written - min(written, wb->written_stamp);
1188         bw *= HZ;
1189         if (unlikely(elapsed > period)) {
1190                 bw = div64_ul(bw, elapsed);
1191                 avg = bw;
1192                 goto out;
1193         }
1194         bw += (u64)wb->write_bandwidth * (period - elapsed);
1195         bw >>= ilog2(period);
1196
1197         /*
1198          * one more level of smoothing, for filtering out sudden spikes
1199          */
1200         if (avg > old && old >= (unsigned long)bw)
1201                 avg -= (avg - old) >> 3;
1202
1203         if (avg < old && old <= (unsigned long)bw)
1204                 avg += (old - avg) >> 3;
1205
1206 out:
1207         /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1208         avg = max(avg, 1LU);
1209         if (wb_has_dirty_io(wb)) {
1210                 long delta = avg - wb->avg_write_bandwidth;
1211                 WARN_ON_ONCE(atomic_long_add_return(delta,
1212                                         &wb->bdi->tot_write_bandwidth) <= 0);
1213         }
1214         wb->write_bandwidth = bw;
1215         WRITE_ONCE(wb->avg_write_bandwidth, avg);
1216 }
1217
1218 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1219 {
1220         struct wb_domain *dom = dtc_dom(dtc);
1221         unsigned long thresh = dtc->thresh;
1222         unsigned long limit = dom->dirty_limit;
1223
1224         /*
1225          * Follow up in one step.
1226          */
1227         if (limit < thresh) {
1228                 limit = thresh;
1229                 goto update;
1230         }
1231
1232         /*
1233          * Follow down slowly. Use the higher one as the target, because thresh
1234          * may drop below dirty. This is exactly the reason to introduce
1235          * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1236          */
1237         thresh = max(thresh, dtc->dirty);
1238         if (limit > thresh) {
1239                 limit -= (limit - thresh) >> 5;
1240                 goto update;
1241         }
1242         return;
1243 update:
1244         dom->dirty_limit = limit;
1245 }
1246
1247 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1248                                       unsigned long now)
1249 {
1250         struct wb_domain *dom = dtc_dom(dtc);
1251
1252         /*
1253          * check locklessly first to optimize away locking for the most time
1254          */
1255         if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1256                 return;
1257
1258         spin_lock(&dom->lock);
1259         if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1260                 update_dirty_limit(dtc);
1261                 dom->dirty_limit_tstamp = now;
1262         }
1263         spin_unlock(&dom->lock);
1264 }
1265
1266 /*
1267  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1268  *
1269  * Normal wb tasks will be curbed at or below it in long term.
1270  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1271  */
1272 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1273                                       unsigned long dirtied,
1274                                       unsigned long elapsed)
1275 {
1276         struct bdi_writeback *wb = dtc->wb;
1277         unsigned long dirty = dtc->dirty;
1278         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1279         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1280         unsigned long setpoint = (freerun + limit) / 2;
1281         unsigned long write_bw = wb->avg_write_bandwidth;
1282         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1283         unsigned long dirty_rate;
1284         unsigned long task_ratelimit;
1285         unsigned long balanced_dirty_ratelimit;
1286         unsigned long step;
1287         unsigned long x;
1288         unsigned long shift;
1289
1290         /*
1291          * The dirty rate will match the writeout rate in long term, except
1292          * when dirty pages are truncated by userspace or re-dirtied by FS.
1293          */
1294         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1295
1296         /*
1297          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1298          */
1299         task_ratelimit = (u64)dirty_ratelimit *
1300                                         dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1301         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1302
1303         /*
1304          * A linear estimation of the "balanced" throttle rate. The theory is,
1305          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1306          * dirty_rate will be measured to be (N * task_ratelimit). So the below
1307          * formula will yield the balanced rate limit (write_bw / N).
1308          *
1309          * Note that the expanded form is not a pure rate feedback:
1310          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1311          * but also takes pos_ratio into account:
1312          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1313          *
1314          * (1) is not realistic because pos_ratio also takes part in balancing
1315          * the dirty rate.  Consider the state
1316          *      pos_ratio = 0.5                                              (3)
1317          *      rate = 2 * (write_bw / N)                                    (4)
1318          * If (1) is used, it will stuck in that state! Because each dd will
1319          * be throttled at
1320          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1321          * yielding
1322          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1323          * put (6) into (1) we get
1324          *      rate_(i+1) = rate_(i)                                        (7)
1325          *
1326          * So we end up using (2) to always keep
1327          *      rate_(i+1) ~= (write_bw / N)                                 (8)
1328          * regardless of the value of pos_ratio. As long as (8) is satisfied,
1329          * pos_ratio is able to drive itself to 1.0, which is not only where
1330          * the dirty count meet the setpoint, but also where the slope of
1331          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1332          */
1333         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1334                                            dirty_rate | 1);
1335         /*
1336          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1337          */
1338         if (unlikely(balanced_dirty_ratelimit > write_bw))
1339                 balanced_dirty_ratelimit = write_bw;
1340
1341         /*
1342          * We could safely do this and return immediately:
1343          *
1344          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1345          *
1346          * However to get a more stable dirty_ratelimit, the below elaborated
1347          * code makes use of task_ratelimit to filter out singular points and
1348          * limit the step size.
1349          *
1350          * The below code essentially only uses the relative value of
1351          *
1352          *      task_ratelimit - dirty_ratelimit
1353          *      = (pos_ratio - 1) * dirty_ratelimit
1354          *
1355          * which reflects the direction and size of dirty position error.
1356          */
1357
1358         /*
1359          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1360          * task_ratelimit is on the same side of dirty_ratelimit, too.
1361          * For example, when
1362          * - dirty_ratelimit > balanced_dirty_ratelimit
1363          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1364          * lowering dirty_ratelimit will help meet both the position and rate
1365          * control targets. Otherwise, don't update dirty_ratelimit if it will
1366          * only help meet the rate target. After all, what the users ultimately
1367          * feel and care are stable dirty rate and small position error.
1368          *
1369          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1370          * and filter out the singular points of balanced_dirty_ratelimit. Which
1371          * keeps jumping around randomly and can even leap far away at times
1372          * due to the small 200ms estimation period of dirty_rate (we want to
1373          * keep that period small to reduce time lags).
1374          */
1375         step = 0;
1376
1377         /*
1378          * For strictlimit case, calculations above were based on wb counters
1379          * and limits (starting from pos_ratio = wb_position_ratio() and up to
1380          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1381          * Hence, to calculate "step" properly, we have to use wb_dirty as
1382          * "dirty" and wb_setpoint as "setpoint".
1383          *
1384          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1385          * it's possible that wb_thresh is close to zero due to inactivity
1386          * of backing device.
1387          */
1388         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1389                 dirty = dtc->wb_dirty;
1390                 if (dtc->wb_dirty < 8)
1391                         setpoint = dtc->wb_dirty + 1;
1392                 else
1393                         setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1394         }
1395
1396         if (dirty < setpoint) {
1397                 x = min3(wb->balanced_dirty_ratelimit,
1398                          balanced_dirty_ratelimit, task_ratelimit);
1399                 if (dirty_ratelimit < x)
1400                         step = x - dirty_ratelimit;
1401         } else {
1402                 x = max3(wb->balanced_dirty_ratelimit,
1403                          balanced_dirty_ratelimit, task_ratelimit);
1404                 if (dirty_ratelimit > x)
1405                         step = dirty_ratelimit - x;
1406         }
1407
1408         /*
1409          * Don't pursue 100% rate matching. It's impossible since the balanced
1410          * rate itself is constantly fluctuating. So decrease the track speed
1411          * when it gets close to the target. Helps eliminate pointless tremors.
1412          */
1413         shift = dirty_ratelimit / (2 * step + 1);
1414         if (shift < BITS_PER_LONG)
1415                 step = DIV_ROUND_UP(step >> shift, 8);
1416         else
1417                 step = 0;
1418
1419         if (dirty_ratelimit < balanced_dirty_ratelimit)
1420                 dirty_ratelimit += step;
1421         else
1422                 dirty_ratelimit -= step;
1423
1424         WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1425         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1426
1427         trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1428 }
1429
1430 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1431                                   struct dirty_throttle_control *mdtc,
1432                                   bool update_ratelimit)
1433 {
1434         struct bdi_writeback *wb = gdtc->wb;
1435         unsigned long now = jiffies;
1436         unsigned long elapsed;
1437         unsigned long dirtied;
1438         unsigned long written;
1439
1440         spin_lock(&wb->list_lock);
1441
1442         /*
1443          * Lockless checks for elapsed time are racy and delayed update after
1444          * IO completion doesn't do it at all (to make sure written pages are
1445          * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1446          * division errors.
1447          */
1448         elapsed = max(now - wb->bw_time_stamp, 1UL);
1449         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1450         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1451
1452         if (update_ratelimit) {
1453                 domain_update_dirty_limit(gdtc, now);
1454                 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1455
1456                 /*
1457                  * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1458                  * compiler has no way to figure that out.  Help it.
1459                  */
1460                 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1461                         domain_update_dirty_limit(mdtc, now);
1462                         wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1463                 }
1464         }
1465         wb_update_write_bandwidth(wb, elapsed, written);
1466
1467         wb->dirtied_stamp = dirtied;
1468         wb->written_stamp = written;
1469         WRITE_ONCE(wb->bw_time_stamp, now);
1470         spin_unlock(&wb->list_lock);
1471 }
1472
1473 void wb_update_bandwidth(struct bdi_writeback *wb)
1474 {
1475         struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1476
1477         __wb_update_bandwidth(&gdtc, NULL, false);
1478 }
1479
1480 /* Interval after which we consider wb idle and don't estimate bandwidth */
1481 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1482
1483 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1484 {
1485         unsigned long now = jiffies;
1486         unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1487
1488         if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1489             !atomic_read(&wb->writeback_inodes)) {
1490                 spin_lock(&wb->list_lock);
1491                 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1492                 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1493                 WRITE_ONCE(wb->bw_time_stamp, now);
1494                 spin_unlock(&wb->list_lock);
1495         }
1496 }
1497
1498 /*
1499  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1500  * will look to see if it needs to start dirty throttling.
1501  *
1502  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1503  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1504  * (the number of pages we may dirty without exceeding the dirty limits).
1505  */
1506 static unsigned long dirty_poll_interval(unsigned long dirty,
1507                                          unsigned long thresh)
1508 {
1509         if (thresh > dirty)
1510                 return 1UL << (ilog2(thresh - dirty) >> 1);
1511
1512         return 1;
1513 }
1514
1515 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1516                                   unsigned long wb_dirty)
1517 {
1518         unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1519         unsigned long t;
1520
1521         /*
1522          * Limit pause time for small memory systems. If sleeping for too long
1523          * time, a small pool of dirty/writeback pages may go empty and disk go
1524          * idle.
1525          *
1526          * 8 serves as the safety ratio.
1527          */
1528         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1529         t++;
1530
1531         return min_t(unsigned long, t, MAX_PAUSE);
1532 }
1533
1534 static long wb_min_pause(struct bdi_writeback *wb,
1535                          long max_pause,
1536                          unsigned long task_ratelimit,
1537                          unsigned long dirty_ratelimit,
1538                          int *nr_dirtied_pause)
1539 {
1540         long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1541         long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1542         long t;         /* target pause */
1543         long pause;     /* estimated next pause */
1544         int pages;      /* target nr_dirtied_pause */
1545
1546         /* target for 10ms pause on 1-dd case */
1547         t = max(1, HZ / 100);
1548
1549         /*
1550          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1551          * overheads.
1552          *
1553          * (N * 10ms) on 2^N concurrent tasks.
1554          */
1555         if (hi > lo)
1556                 t += (hi - lo) * (10 * HZ) / 1024;
1557
1558         /*
1559          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1560          * on the much more stable dirty_ratelimit. However the next pause time
1561          * will be computed based on task_ratelimit and the two rate limits may
1562          * depart considerably at some time. Especially if task_ratelimit goes
1563          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1564          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1565          * result task_ratelimit won't be executed faithfully, which could
1566          * eventually bring down dirty_ratelimit.
1567          *
1568          * We apply two rules to fix it up:
1569          * 1) try to estimate the next pause time and if necessary, use a lower
1570          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1571          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1572          * 2) limit the target pause time to max_pause/2, so that the normal
1573          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1574          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1575          */
1576         t = min(t, 1 + max_pause / 2);
1577         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1578
1579         /*
1580          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1581          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1582          * When the 16 consecutive reads are often interrupted by some dirty
1583          * throttling pause during the async writes, cfq will go into idles
1584          * (deadline is fine). So push nr_dirtied_pause as high as possible
1585          * until reaches DIRTY_POLL_THRESH=32 pages.
1586          */
1587         if (pages < DIRTY_POLL_THRESH) {
1588                 t = max_pause;
1589                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1590                 if (pages > DIRTY_POLL_THRESH) {
1591                         pages = DIRTY_POLL_THRESH;
1592                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1593                 }
1594         }
1595
1596         pause = HZ * pages / (task_ratelimit + 1);
1597         if (pause > max_pause) {
1598                 t = max_pause;
1599                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1600         }
1601
1602         *nr_dirtied_pause = pages;
1603         /*
1604          * The minimal pause time will normally be half the target pause time.
1605          */
1606         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1607 }
1608
1609 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1610 {
1611         struct bdi_writeback *wb = dtc->wb;
1612         unsigned long wb_reclaimable;
1613
1614         /*
1615          * wb_thresh is not treated as some limiting factor as
1616          * dirty_thresh, due to reasons
1617          * - in JBOD setup, wb_thresh can fluctuate a lot
1618          * - in a system with HDD and USB key, the USB key may somehow
1619          *   go into state (wb_dirty >> wb_thresh) either because
1620          *   wb_dirty starts high, or because wb_thresh drops low.
1621          *   In this case we don't want to hard throttle the USB key
1622          *   dirtiers for 100 seconds until wb_dirty drops under
1623          *   wb_thresh. Instead the auxiliary wb control line in
1624          *   wb_position_ratio() will let the dirtier task progress
1625          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1626          */
1627         dtc->wb_thresh = __wb_calc_thresh(dtc);
1628         dtc->wb_bg_thresh = dtc->thresh ?
1629                 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1630
1631         /*
1632          * In order to avoid the stacked BDI deadlock we need
1633          * to ensure we accurately count the 'dirty' pages when
1634          * the threshold is low.
1635          *
1636          * Otherwise it would be possible to get thresh+n pages
1637          * reported dirty, even though there are thresh-m pages
1638          * actually dirty; with m+n sitting in the percpu
1639          * deltas.
1640          */
1641         if (dtc->wb_thresh < 2 * wb_stat_error()) {
1642                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1643                 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1644         } else {
1645                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1646                 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1647         }
1648 }
1649
1650 /*
1651  * balance_dirty_pages() must be called by processes which are generating dirty
1652  * data.  It looks at the number of dirty pages in the machine and will force
1653  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1654  * If we're over `background_thresh' then the writeback threads are woken to
1655  * perform some writeout.
1656  */
1657 static int balance_dirty_pages(struct bdi_writeback *wb,
1658                                unsigned long pages_dirtied, unsigned int flags)
1659 {
1660         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1661         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1662         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1663         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1664                                                      &mdtc_stor : NULL;
1665         struct dirty_throttle_control *sdtc;
1666         unsigned long nr_reclaimable;   /* = file_dirty */
1667         long period;
1668         long pause;
1669         long max_pause;
1670         long min_pause;
1671         int nr_dirtied_pause;
1672         bool dirty_exceeded = false;
1673         unsigned long task_ratelimit;
1674         unsigned long dirty_ratelimit;
1675         struct backing_dev_info *bdi = wb->bdi;
1676         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1677         unsigned long start_time = jiffies;
1678         int ret = 0;
1679
1680         for (;;) {
1681                 unsigned long now = jiffies;
1682                 unsigned long dirty, thresh, bg_thresh;
1683                 unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1684                 unsigned long m_thresh = 0;
1685                 unsigned long m_bg_thresh = 0;
1686
1687                 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1688                 gdtc->avail = global_dirtyable_memory();
1689                 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1690
1691                 domain_dirty_limits(gdtc);
1692
1693                 if (unlikely(strictlimit)) {
1694                         wb_dirty_limits(gdtc);
1695
1696                         dirty = gdtc->wb_dirty;
1697                         thresh = gdtc->wb_thresh;
1698                         bg_thresh = gdtc->wb_bg_thresh;
1699                 } else {
1700                         dirty = gdtc->dirty;
1701                         thresh = gdtc->thresh;
1702                         bg_thresh = gdtc->bg_thresh;
1703                 }
1704
1705                 if (mdtc) {
1706                         unsigned long filepages, headroom, writeback;
1707
1708                         /*
1709                          * If @wb belongs to !root memcg, repeat the same
1710                          * basic calculations for the memcg domain.
1711                          */
1712                         mem_cgroup_wb_stats(wb, &filepages, &headroom,
1713                                             &mdtc->dirty, &writeback);
1714                         mdtc->dirty += writeback;
1715                         mdtc_calc_avail(mdtc, filepages, headroom);
1716
1717                         domain_dirty_limits(mdtc);
1718
1719                         if (unlikely(strictlimit)) {
1720                                 wb_dirty_limits(mdtc);
1721                                 m_dirty = mdtc->wb_dirty;
1722                                 m_thresh = mdtc->wb_thresh;
1723                                 m_bg_thresh = mdtc->wb_bg_thresh;
1724                         } else {
1725                                 m_dirty = mdtc->dirty;
1726                                 m_thresh = mdtc->thresh;
1727                                 m_bg_thresh = mdtc->bg_thresh;
1728                         }
1729                 }
1730
1731                 /*
1732                  * In laptop mode, we wait until hitting the higher threshold
1733                  * before starting background writeout, and then write out all
1734                  * the way down to the lower threshold.  So slow writers cause
1735                  * minimal disk activity.
1736                  *
1737                  * In normal mode, we start background writeout at the lower
1738                  * background_thresh, to keep the amount of dirty memory low.
1739                  */
1740                 if (!laptop_mode && nr_reclaimable > gdtc->bg_thresh &&
1741                     !writeback_in_progress(wb))
1742                         wb_start_background_writeback(wb);
1743
1744                 /*
1745                  * Throttle it only when the background writeback cannot
1746                  * catch-up. This avoids (excessively) small writeouts
1747                  * when the wb limits are ramping up in case of !strictlimit.
1748                  *
1749                  * In strictlimit case make decision based on the wb counters
1750                  * and limits. Small writeouts when the wb limits are ramping
1751                  * up are the price we consciously pay for strictlimit-ing.
1752                  *
1753                  * If memcg domain is in effect, @dirty should be under
1754                  * both global and memcg freerun ceilings.
1755                  */
1756                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1757                     (!mdtc ||
1758                      m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1759                         unsigned long intv;
1760                         unsigned long m_intv;
1761
1762 free_running:
1763                         intv = dirty_poll_interval(dirty, thresh);
1764                         m_intv = ULONG_MAX;
1765
1766                         current->dirty_paused_when = now;
1767                         current->nr_dirtied = 0;
1768                         if (mdtc)
1769                                 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1770                         current->nr_dirtied_pause = min(intv, m_intv);
1771                         break;
1772                 }
1773
1774                 /* Start writeback even when in laptop mode */
1775                 if (unlikely(!writeback_in_progress(wb)))
1776                         wb_start_background_writeback(wb);
1777
1778                 mem_cgroup_flush_foreign(wb);
1779
1780                 /*
1781                  * Calculate global domain's pos_ratio and select the
1782                  * global dtc by default.
1783                  */
1784                 if (!strictlimit) {
1785                         wb_dirty_limits(gdtc);
1786
1787                         if ((current->flags & PF_LOCAL_THROTTLE) &&
1788                             gdtc->wb_dirty <
1789                             dirty_freerun_ceiling(gdtc->wb_thresh,
1790                                                   gdtc->wb_bg_thresh))
1791                                 /*
1792                                  * LOCAL_THROTTLE tasks must not be throttled
1793                                  * when below the per-wb freerun ceiling.
1794                                  */
1795                                 goto free_running;
1796                 }
1797
1798                 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1799                         ((gdtc->dirty > gdtc->thresh) || strictlimit);
1800
1801                 wb_position_ratio(gdtc);
1802                 sdtc = gdtc;
1803
1804                 if (mdtc) {
1805                         /*
1806                          * If memcg domain is in effect, calculate its
1807                          * pos_ratio.  @wb should satisfy constraints from
1808                          * both global and memcg domains.  Choose the one
1809                          * w/ lower pos_ratio.
1810                          */
1811                         if (!strictlimit) {
1812                                 wb_dirty_limits(mdtc);
1813
1814                                 if ((current->flags & PF_LOCAL_THROTTLE) &&
1815                                     mdtc->wb_dirty <
1816                                     dirty_freerun_ceiling(mdtc->wb_thresh,
1817                                                           mdtc->wb_bg_thresh))
1818                                         /*
1819                                          * LOCAL_THROTTLE tasks must not be
1820                                          * throttled when below the per-wb
1821                                          * freerun ceiling.
1822                                          */
1823                                         goto free_running;
1824                         }
1825                         dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1826                                 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1827
1828                         wb_position_ratio(mdtc);
1829                         if (mdtc->pos_ratio < gdtc->pos_ratio)
1830                                 sdtc = mdtc;
1831                 }
1832
1833                 if (dirty_exceeded != wb->dirty_exceeded)
1834                         wb->dirty_exceeded = dirty_exceeded;
1835
1836                 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1837                                            BANDWIDTH_INTERVAL))
1838                         __wb_update_bandwidth(gdtc, mdtc, true);
1839
1840                 /* throttle according to the chosen dtc */
1841                 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1842                 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1843                                                         RATELIMIT_CALC_SHIFT;
1844                 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1845                 min_pause = wb_min_pause(wb, max_pause,
1846                                          task_ratelimit, dirty_ratelimit,
1847                                          &nr_dirtied_pause);
1848
1849                 if (unlikely(task_ratelimit == 0)) {
1850                         period = max_pause;
1851                         pause = max_pause;
1852                         goto pause;
1853                 }
1854                 period = HZ * pages_dirtied / task_ratelimit;
1855                 pause = period;
1856                 if (current->dirty_paused_when)
1857                         pause -= now - current->dirty_paused_when;
1858                 /*
1859                  * For less than 1s think time (ext3/4 may block the dirtier
1860                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1861                  * however at much less frequency), try to compensate it in
1862                  * future periods by updating the virtual time; otherwise just
1863                  * do a reset, as it may be a light dirtier.
1864                  */
1865                 if (pause < min_pause) {
1866                         trace_balance_dirty_pages(wb,
1867                                                   sdtc->thresh,
1868                                                   sdtc->bg_thresh,
1869                                                   sdtc->dirty,
1870                                                   sdtc->wb_thresh,
1871                                                   sdtc->wb_dirty,
1872                                                   dirty_ratelimit,
1873                                                   task_ratelimit,
1874                                                   pages_dirtied,
1875                                                   period,
1876                                                   min(pause, 0L),
1877                                                   start_time);
1878                         if (pause < -HZ) {
1879                                 current->dirty_paused_when = now;
1880                                 current->nr_dirtied = 0;
1881                         } else if (period) {
1882                                 current->dirty_paused_when += period;
1883                                 current->nr_dirtied = 0;
1884                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1885                                 current->nr_dirtied_pause += pages_dirtied;
1886                         break;
1887                 }
1888                 if (unlikely(pause > max_pause)) {
1889                         /* for occasional dropped task_ratelimit */
1890                         now += min(pause - max_pause, max_pause);
1891                         pause = max_pause;
1892                 }
1893
1894 pause:
1895                 trace_balance_dirty_pages(wb,
1896                                           sdtc->thresh,
1897                                           sdtc->bg_thresh,
1898                                           sdtc->dirty,
1899                                           sdtc->wb_thresh,
1900                                           sdtc->wb_dirty,
1901                                           dirty_ratelimit,
1902                                           task_ratelimit,
1903                                           pages_dirtied,
1904                                           period,
1905                                           pause,
1906                                           start_time);
1907                 if (flags & BDP_ASYNC) {
1908                         ret = -EAGAIN;
1909                         break;
1910                 }
1911                 __set_current_state(TASK_KILLABLE);
1912                 wb->dirty_sleep = now;
1913                 io_schedule_timeout(pause);
1914
1915                 current->dirty_paused_when = now + pause;
1916                 current->nr_dirtied = 0;
1917                 current->nr_dirtied_pause = nr_dirtied_pause;
1918
1919                 /*
1920                  * This is typically equal to (dirty < thresh) and can also
1921                  * keep "1000+ dd on a slow USB stick" under control.
1922                  */
1923                 if (task_ratelimit)
1924                         break;
1925
1926                 /*
1927                  * In the case of an unresponsive NFS server and the NFS dirty
1928                  * pages exceeds dirty_thresh, give the other good wb's a pipe
1929                  * to go through, so that tasks on them still remain responsive.
1930                  *
1931                  * In theory 1 page is enough to keep the consumer-producer
1932                  * pipe going: the flusher cleans 1 page => the task dirties 1
1933                  * more page. However wb_dirty has accounting errors.  So use
1934                  * the larger and more IO friendly wb_stat_error.
1935                  */
1936                 if (sdtc->wb_dirty <= wb_stat_error())
1937                         break;
1938
1939                 if (fatal_signal_pending(current))
1940                         break;
1941         }
1942         return ret;
1943 }
1944
1945 static DEFINE_PER_CPU(int, bdp_ratelimits);
1946
1947 /*
1948  * Normal tasks are throttled by
1949  *      loop {
1950  *              dirty tsk->nr_dirtied_pause pages;
1951  *              take a snap in balance_dirty_pages();
1952  *      }
1953  * However there is a worst case. If every task exit immediately when dirtied
1954  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1955  * called to throttle the page dirties. The solution is to save the not yet
1956  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1957  * randomly into the running tasks. This works well for the above worst case,
1958  * as the new task will pick up and accumulate the old task's leaked dirty
1959  * count and eventually get throttled.
1960  */
1961 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1962
1963 /**
1964  * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
1965  * @mapping: address_space which was dirtied.
1966  * @flags: BDP flags.
1967  *
1968  * Processes which are dirtying memory should call in here once for each page
1969  * which was newly dirtied.  The function will periodically check the system's
1970  * dirty state and will initiate writeback if needed.
1971  *
1972  * See balance_dirty_pages_ratelimited() for details.
1973  *
1974  * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
1975  * indicate that memory is out of balance and the caller must wait
1976  * for I/O to complete.  Otherwise, it will return 0 to indicate
1977  * that either memory was already in balance, or it was able to sleep
1978  * until the amount of dirty memory returned to balance.
1979  */
1980 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
1981                                         unsigned int flags)
1982 {
1983         struct inode *inode = mapping->host;
1984         struct backing_dev_info *bdi = inode_to_bdi(inode);
1985         struct bdi_writeback *wb = NULL;
1986         int ratelimit;
1987         int ret = 0;
1988         int *p;
1989
1990         if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
1991                 return ret;
1992
1993         if (inode_cgwb_enabled(inode))
1994                 wb = wb_get_create_current(bdi, GFP_KERNEL);
1995         if (!wb)
1996                 wb = &bdi->wb;
1997
1998         ratelimit = current->nr_dirtied_pause;
1999         if (wb->dirty_exceeded)
2000                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
2001
2002         preempt_disable();
2003         /*
2004          * This prevents one CPU to accumulate too many dirtied pages without
2005          * calling into balance_dirty_pages(), which can happen when there are
2006          * 1000+ tasks, all of them start dirtying pages at exactly the same
2007          * time, hence all honoured too large initial task->nr_dirtied_pause.
2008          */
2009         p =  this_cpu_ptr(&bdp_ratelimits);
2010         if (unlikely(current->nr_dirtied >= ratelimit))
2011                 *p = 0;
2012         else if (unlikely(*p >= ratelimit_pages)) {
2013                 *p = 0;
2014                 ratelimit = 0;
2015         }
2016         /*
2017          * Pick up the dirtied pages by the exited tasks. This avoids lots of
2018          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2019          * the dirty throttling and livelock other long-run dirtiers.
2020          */
2021         p = this_cpu_ptr(&dirty_throttle_leaks);
2022         if (*p > 0 && current->nr_dirtied < ratelimit) {
2023                 unsigned long nr_pages_dirtied;
2024                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2025                 *p -= nr_pages_dirtied;
2026                 current->nr_dirtied += nr_pages_dirtied;
2027         }
2028         preempt_enable();
2029
2030         if (unlikely(current->nr_dirtied >= ratelimit))
2031                 ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
2032
2033         wb_put(wb);
2034         return ret;
2035 }
2036 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
2037
2038 /**
2039  * balance_dirty_pages_ratelimited - balance dirty memory state.
2040  * @mapping: address_space which was dirtied.
2041  *
2042  * Processes which are dirtying memory should call in here once for each page
2043  * which was newly dirtied.  The function will periodically check the system's
2044  * dirty state and will initiate writeback if needed.
2045  *
2046  * Once we're over the dirty memory limit we decrease the ratelimiting
2047  * by a lot, to prevent individual processes from overshooting the limit
2048  * by (ratelimit_pages) each.
2049  */
2050 void balance_dirty_pages_ratelimited(struct address_space *mapping)
2051 {
2052         balance_dirty_pages_ratelimited_flags(mapping, 0);
2053 }
2054 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
2055
2056 /**
2057  * wb_over_bg_thresh - does @wb need to be written back?
2058  * @wb: bdi_writeback of interest
2059  *
2060  * Determines whether background writeback should keep writing @wb or it's
2061  * clean enough.
2062  *
2063  * Return: %true if writeback should continue.
2064  */
2065 bool wb_over_bg_thresh(struct bdi_writeback *wb)
2066 {
2067         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
2068         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2069         struct dirty_throttle_control * const gdtc = &gdtc_stor;
2070         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
2071                                                      &mdtc_stor : NULL;
2072         unsigned long reclaimable;
2073         unsigned long thresh;
2074
2075         /*
2076          * Similar to balance_dirty_pages() but ignores pages being written
2077          * as we're trying to decide whether to put more under writeback.
2078          */
2079         gdtc->avail = global_dirtyable_memory();
2080         gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
2081         domain_dirty_limits(gdtc);
2082
2083         if (gdtc->dirty > gdtc->bg_thresh)
2084                 return true;
2085
2086         thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
2087         if (thresh < 2 * wb_stat_error())
2088                 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2089         else
2090                 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2091
2092         if (reclaimable > thresh)
2093                 return true;
2094
2095         if (mdtc) {
2096                 unsigned long filepages, headroom, writeback;
2097
2098                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
2099                                     &writeback);
2100                 mdtc_calc_avail(mdtc, filepages, headroom);
2101                 domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
2102
2103                 if (mdtc->dirty > mdtc->bg_thresh)
2104                         return true;
2105
2106                 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
2107                 if (thresh < 2 * wb_stat_error())
2108                         reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2109                 else
2110                         reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2111
2112                 if (reclaimable > thresh)
2113                         return true;
2114         }
2115
2116         return false;
2117 }
2118
2119 #ifdef CONFIG_SYSCTL
2120 /*
2121  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2122  */
2123 static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
2124                 void *buffer, size_t *length, loff_t *ppos)
2125 {
2126         unsigned int old_interval = dirty_writeback_interval;
2127         int ret;
2128
2129         ret = proc_dointvec(table, write, buffer, length, ppos);
2130
2131         /*
2132          * Writing 0 to dirty_writeback_interval will disable periodic writeback
2133          * and a different non-zero value will wakeup the writeback threads.
2134          * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2135          * iterate over all bdis and wbs.
2136          * The reason we do this is to make the change take effect immediately.
2137          */
2138         if (!ret && write && dirty_writeback_interval &&
2139                 dirty_writeback_interval != old_interval)
2140                 wakeup_flusher_threads(WB_REASON_PERIODIC);
2141
2142         return ret;
2143 }
2144 #endif
2145
2146 void laptop_mode_timer_fn(struct timer_list *t)
2147 {
2148         struct backing_dev_info *backing_dev_info =
2149                 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2150
2151         wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2152 }
2153
2154 /*
2155  * We've spun up the disk and we're in laptop mode: schedule writeback
2156  * of all dirty data a few seconds from now.  If the flush is already scheduled
2157  * then push it back - the user is still using the disk.
2158  */
2159 void laptop_io_completion(struct backing_dev_info *info)
2160 {
2161         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2162 }
2163
2164 /*
2165  * We're in laptop mode and we've just synced. The sync's writes will have
2166  * caused another writeback to be scheduled by laptop_io_completion.
2167  * Nothing needs to be written back anymore, so we unschedule the writeback.
2168  */
2169 void laptop_sync_completion(void)
2170 {
2171         struct backing_dev_info *bdi;
2172
2173         rcu_read_lock();
2174
2175         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2176                 del_timer(&bdi->laptop_mode_wb_timer);
2177
2178         rcu_read_unlock();
2179 }
2180
2181 /*
2182  * If ratelimit_pages is too high then we can get into dirty-data overload
2183  * if a large number of processes all perform writes at the same time.
2184  *
2185  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2186  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2187  * thresholds.
2188  */
2189
2190 void writeback_set_ratelimit(void)
2191 {
2192         struct wb_domain *dom = &global_wb_domain;
2193         unsigned long background_thresh;
2194         unsigned long dirty_thresh;
2195
2196         global_dirty_limits(&background_thresh, &dirty_thresh);
2197         dom->dirty_limit = dirty_thresh;
2198         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2199         if (ratelimit_pages < 16)
2200                 ratelimit_pages = 16;
2201 }
2202
2203 static int page_writeback_cpu_online(unsigned int cpu)
2204 {
2205         writeback_set_ratelimit();
2206         return 0;
2207 }
2208
2209 #ifdef CONFIG_SYSCTL
2210
2211 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2212 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2213
2214 static struct ctl_table vm_page_writeback_sysctls[] = {
2215         {
2216                 .procname   = "dirty_background_ratio",
2217                 .data       = &dirty_background_ratio,
2218                 .maxlen     = sizeof(dirty_background_ratio),
2219                 .mode       = 0644,
2220                 .proc_handler   = dirty_background_ratio_handler,
2221                 .extra1     = SYSCTL_ZERO,
2222                 .extra2     = SYSCTL_ONE_HUNDRED,
2223         },
2224         {
2225                 .procname   = "dirty_background_bytes",
2226                 .data       = &dirty_background_bytes,
2227                 .maxlen     = sizeof(dirty_background_bytes),
2228                 .mode       = 0644,
2229                 .proc_handler   = dirty_background_bytes_handler,
2230                 .extra1     = SYSCTL_LONG_ONE,
2231         },
2232         {
2233                 .procname   = "dirty_ratio",
2234                 .data       = &vm_dirty_ratio,
2235                 .maxlen     = sizeof(vm_dirty_ratio),
2236                 .mode       = 0644,
2237                 .proc_handler   = dirty_ratio_handler,
2238                 .extra1     = SYSCTL_ZERO,
2239                 .extra2     = SYSCTL_ONE_HUNDRED,
2240         },
2241         {
2242                 .procname   = "dirty_bytes",
2243                 .data       = &vm_dirty_bytes,
2244                 .maxlen     = sizeof(vm_dirty_bytes),
2245                 .mode       = 0644,
2246                 .proc_handler   = dirty_bytes_handler,
2247                 .extra1     = (void *)&dirty_bytes_min,
2248         },
2249         {
2250                 .procname   = "dirty_writeback_centisecs",
2251                 .data       = &dirty_writeback_interval,
2252                 .maxlen     = sizeof(dirty_writeback_interval),
2253                 .mode       = 0644,
2254                 .proc_handler   = dirty_writeback_centisecs_handler,
2255         },
2256         {
2257                 .procname   = "dirty_expire_centisecs",
2258                 .data       = &dirty_expire_interval,
2259                 .maxlen     = sizeof(dirty_expire_interval),
2260                 .mode       = 0644,
2261                 .proc_handler   = proc_dointvec_minmax,
2262                 .extra1     = SYSCTL_ZERO,
2263         },
2264 #ifdef CONFIG_HIGHMEM
2265         {
2266                 .procname       = "highmem_is_dirtyable",
2267                 .data           = &vm_highmem_is_dirtyable,
2268                 .maxlen         = sizeof(vm_highmem_is_dirtyable),
2269                 .mode           = 0644,
2270                 .proc_handler   = proc_dointvec_minmax,
2271                 .extra1         = SYSCTL_ZERO,
2272                 .extra2         = SYSCTL_ONE,
2273         },
2274 #endif
2275         {
2276                 .procname       = "laptop_mode",
2277                 .data           = &laptop_mode,
2278                 .maxlen         = sizeof(laptop_mode),
2279                 .mode           = 0644,
2280                 .proc_handler   = proc_dointvec_jiffies,
2281         },
2282         {}
2283 };
2284 #endif
2285
2286 /*
2287  * Called early on to tune the page writeback dirty limits.
2288  *
2289  * We used to scale dirty pages according to how total memory
2290  * related to pages that could be allocated for buffers.
2291  *
2292  * However, that was when we used "dirty_ratio" to scale with
2293  * all memory, and we don't do that any more. "dirty_ratio"
2294  * is now applied to total non-HIGHPAGE memory, and as such we can't
2295  * get into the old insane situation any more where we had
2296  * large amounts of dirty pages compared to a small amount of
2297  * non-HIGHMEM memory.
2298  *
2299  * But we might still want to scale the dirty_ratio by how
2300  * much memory the box has..
2301  */
2302 void __init page_writeback_init(void)
2303 {
2304         BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2305
2306         cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2307                           page_writeback_cpu_online, NULL);
2308         cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2309                           page_writeback_cpu_online);
2310 #ifdef CONFIG_SYSCTL
2311         register_sysctl_init("vm", vm_page_writeback_sysctls);
2312 #endif
2313 }
2314
2315 /**
2316  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2317  * @mapping: address space structure to write
2318  * @start: starting page index
2319  * @end: ending page index (inclusive)
2320  *
2321  * This function scans the page range from @start to @end (inclusive) and tags
2322  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2323  * that write_cache_pages (or whoever calls this function) will then use
2324  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2325  * used to avoid livelocking of writeback by a process steadily creating new
2326  * dirty pages in the file (thus it is important for this function to be quick
2327  * so that it can tag pages faster than a dirtying process can create them).
2328  */
2329 void tag_pages_for_writeback(struct address_space *mapping,
2330                              pgoff_t start, pgoff_t end)
2331 {
2332         XA_STATE(xas, &mapping->i_pages, start);
2333         unsigned int tagged = 0;
2334         void *page;
2335
2336         xas_lock_irq(&xas);
2337         xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2338                 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2339                 if (++tagged % XA_CHECK_SCHED)
2340                         continue;
2341
2342                 xas_pause(&xas);
2343                 xas_unlock_irq(&xas);
2344                 cond_resched();
2345                 xas_lock_irq(&xas);
2346         }
2347         xas_unlock_irq(&xas);
2348 }
2349 EXPORT_SYMBOL(tag_pages_for_writeback);
2350
2351 /**
2352  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2353  * @mapping: address space structure to write
2354  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2355  * @writepage: function called for each page
2356  * @data: data passed to writepage function
2357  *
2358  * If a page is already under I/O, write_cache_pages() skips it, even
2359  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2360  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2361  * and msync() need to guarantee that all the data which was dirty at the time
2362  * the call was made get new I/O started against them.  If wbc->sync_mode is
2363  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2364  * existing IO to complete.
2365  *
2366  * To avoid livelocks (when other process dirties new pages), we first tag
2367  * pages which should be written back with TOWRITE tag and only then start
2368  * writing them. For data-integrity sync we have to be careful so that we do
2369  * not miss some pages (e.g., because some other process has cleared TOWRITE
2370  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2371  * by the process clearing the DIRTY tag (and submitting the page for IO).
2372  *
2373  * To avoid deadlocks between range_cyclic writeback and callers that hold
2374  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2375  * we do not loop back to the start of the file. Doing so causes a page
2376  * lock/page writeback access order inversion - we should only ever lock
2377  * multiple pages in ascending page->index order, and looping back to the start
2378  * of the file violates that rule and causes deadlocks.
2379  *
2380  * Return: %0 on success, negative error code otherwise
2381  */
2382 int write_cache_pages(struct address_space *mapping,
2383                       struct writeback_control *wbc, writepage_t writepage,
2384                       void *data)
2385 {
2386         int ret = 0;
2387         int done = 0;
2388         int error;
2389         struct pagevec pvec;
2390         int nr_pages;
2391         pgoff_t index;
2392         pgoff_t end;            /* Inclusive */
2393         pgoff_t done_index;
2394         int range_whole = 0;
2395         xa_mark_t tag;
2396
2397         pagevec_init(&pvec);
2398         if (wbc->range_cyclic) {
2399                 index = mapping->writeback_index; /* prev offset */
2400                 end = -1;
2401         } else {
2402                 index = wbc->range_start >> PAGE_SHIFT;
2403                 end = wbc->range_end >> PAGE_SHIFT;
2404                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2405                         range_whole = 1;
2406         }
2407         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2408                 tag_pages_for_writeback(mapping, index, end);
2409                 tag = PAGECACHE_TAG_TOWRITE;
2410         } else {
2411                 tag = PAGECACHE_TAG_DIRTY;
2412         }
2413         done_index = index;
2414         while (!done && (index <= end)) {
2415                 int i;
2416
2417                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2418                                 tag);
2419                 if (nr_pages == 0)
2420                         break;
2421
2422                 for (i = 0; i < nr_pages; i++) {
2423                         struct page *page = pvec.pages[i];
2424
2425                         done_index = page->index;
2426
2427                         lock_page(page);
2428
2429                         /*
2430                          * Page truncated or invalidated. We can freely skip it
2431                          * then, even for data integrity operations: the page
2432                          * has disappeared concurrently, so there could be no
2433                          * real expectation of this data integrity operation
2434                          * even if there is now a new, dirty page at the same
2435                          * pagecache address.
2436                          */
2437                         if (unlikely(page->mapping != mapping)) {
2438 continue_unlock:
2439                                 unlock_page(page);
2440                                 continue;
2441                         }
2442
2443                         if (!PageDirty(page)) {
2444                                 /* someone wrote it for us */
2445                                 goto continue_unlock;
2446                         }
2447
2448                         if (PageWriteback(page)) {
2449                                 if (wbc->sync_mode != WB_SYNC_NONE)
2450                                         wait_on_page_writeback(page);
2451                                 else
2452                                         goto continue_unlock;
2453                         }
2454
2455                         BUG_ON(PageWriteback(page));
2456                         if (!clear_page_dirty_for_io(page))
2457                                 goto continue_unlock;
2458
2459                         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2460                         error = (*writepage)(page, wbc, data);
2461                         if (unlikely(error)) {
2462                                 /*
2463                                  * Handle errors according to the type of
2464                                  * writeback. There's no need to continue for
2465                                  * background writeback. Just push done_index
2466                                  * past this page so media errors won't choke
2467                                  * writeout for the entire file. For integrity
2468                                  * writeback, we must process the entire dirty
2469                                  * set regardless of errors because the fs may
2470                                  * still have state to clear for each page. In
2471                                  * that case we continue processing and return
2472                                  * the first error.
2473                                  */
2474                                 if (error == AOP_WRITEPAGE_ACTIVATE) {
2475                                         unlock_page(page);
2476                                         error = 0;
2477                                 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2478                                         ret = error;
2479                                         done_index = page->index + 1;
2480                                         done = 1;
2481                                         break;
2482                                 }
2483                                 if (!ret)
2484                                         ret = error;
2485                         }
2486
2487                         /*
2488                          * We stop writing back only if we are not doing
2489                          * integrity sync. In case of integrity sync we have to
2490                          * keep going until we have written all the pages
2491                          * we tagged for writeback prior to entering this loop.
2492                          */
2493                         if (--wbc->nr_to_write <= 0 &&
2494                             wbc->sync_mode == WB_SYNC_NONE) {
2495                                 done = 1;
2496                                 break;
2497                         }
2498                 }
2499                 pagevec_release(&pvec);
2500                 cond_resched();
2501         }
2502
2503         /*
2504          * If we hit the last page and there is more work to be done: wrap
2505          * back the index back to the start of the file for the next
2506          * time we are called.
2507          */
2508         if (wbc->range_cyclic && !done)
2509                 done_index = 0;
2510         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2511                 mapping->writeback_index = done_index;
2512
2513         return ret;
2514 }
2515 EXPORT_SYMBOL(write_cache_pages);
2516
2517 /*
2518  * Function used by generic_writepages to call the real writepage
2519  * function and set the mapping flags on error
2520  */
2521 static int __writepage(struct page *page, struct writeback_control *wbc,
2522                        void *data)
2523 {
2524         struct address_space *mapping = data;
2525         int ret = mapping->a_ops->writepage(page, wbc);
2526         mapping_set_error(mapping, ret);
2527         return ret;
2528 }
2529
2530 /**
2531  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2532  * @mapping: address space structure to write
2533  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2534  *
2535  * This is a library function, which implements the writepages()
2536  * address_space_operation.
2537  *
2538  * Return: %0 on success, negative error code otherwise
2539  */
2540 int generic_writepages(struct address_space *mapping,
2541                        struct writeback_control *wbc)
2542 {
2543         struct blk_plug plug;
2544         int ret;
2545
2546         /* deal with chardevs and other special file */
2547         if (!mapping->a_ops->writepage)
2548                 return 0;
2549
2550         blk_start_plug(&plug);
2551         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2552         blk_finish_plug(&plug);
2553         return ret;
2554 }
2555
2556 EXPORT_SYMBOL(generic_writepages);
2557
2558 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2559 {
2560         int ret;
2561         struct bdi_writeback *wb;
2562
2563         if (wbc->nr_to_write <= 0)
2564                 return 0;
2565         wb = inode_to_wb_wbc(mapping->host, wbc);
2566         wb_bandwidth_estimate_start(wb);
2567         while (1) {
2568                 if (mapping->a_ops->writepages)
2569                         ret = mapping->a_ops->writepages(mapping, wbc);
2570                 else
2571                         ret = generic_writepages(mapping, wbc);
2572                 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2573                         break;
2574
2575                 /*
2576                  * Lacking an allocation context or the locality or writeback
2577                  * state of any of the inode's pages, throttle based on
2578                  * writeback activity on the local node. It's as good a
2579                  * guess as any.
2580                  */
2581                 reclaim_throttle(NODE_DATA(numa_node_id()),
2582                         VMSCAN_THROTTLE_WRITEBACK);
2583         }
2584         /*
2585          * Usually few pages are written by now from those we've just submitted
2586          * but if there's constant writeback being submitted, this makes sure
2587          * writeback bandwidth is updated once in a while.
2588          */
2589         if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2590                                    BANDWIDTH_INTERVAL))
2591                 wb_update_bandwidth(wb);
2592         return ret;
2593 }
2594
2595 /**
2596  * folio_write_one - write out a single folio and wait on I/O.
2597  * @folio: The folio to write.
2598  *
2599  * The folio must be locked by the caller and will be unlocked upon return.
2600  *
2601  * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2602  * function returns.
2603  *
2604  * Return: %0 on success, negative error code otherwise
2605  */
2606 int folio_write_one(struct folio *folio)
2607 {
2608         struct address_space *mapping = folio->mapping;
2609         int ret = 0;
2610         struct writeback_control wbc = {
2611                 .sync_mode = WB_SYNC_ALL,
2612                 .nr_to_write = folio_nr_pages(folio),
2613         };
2614
2615         BUG_ON(!folio_test_locked(folio));
2616
2617         folio_wait_writeback(folio);
2618
2619         if (folio_clear_dirty_for_io(folio)) {
2620                 folio_get(folio);
2621                 ret = mapping->a_ops->writepage(&folio->page, &wbc);
2622                 if (ret == 0)
2623                         folio_wait_writeback(folio);
2624                 folio_put(folio);
2625         } else {
2626                 folio_unlock(folio);
2627         }
2628
2629         if (!ret)
2630                 ret = filemap_check_errors(mapping);
2631         return ret;
2632 }
2633 EXPORT_SYMBOL(folio_write_one);
2634
2635 /*
2636  * For address_spaces which do not use buffers nor write back.
2637  */
2638 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2639 {
2640         if (!folio_test_dirty(folio))
2641                 return !folio_test_set_dirty(folio);
2642         return false;
2643 }
2644 EXPORT_SYMBOL(noop_dirty_folio);
2645
2646 /*
2647  * Helper function for set_page_dirty family.
2648  *
2649  * Caller must hold lock_page_memcg().
2650  *
2651  * NOTE: This relies on being atomic wrt interrupts.
2652  */
2653 static void folio_account_dirtied(struct folio *folio,
2654                 struct address_space *mapping)
2655 {
2656         struct inode *inode = mapping->host;
2657
2658         trace_writeback_dirty_folio(folio, mapping);
2659
2660         if (mapping_can_writeback(mapping)) {
2661                 struct bdi_writeback *wb;
2662                 long nr = folio_nr_pages(folio);
2663
2664                 inode_attach_wb(inode, &folio->page);
2665                 wb = inode_to_wb(inode);
2666
2667                 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2668                 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2669                 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
2670                 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2671                 wb_stat_mod(wb, WB_DIRTIED, nr);
2672                 task_io_account_write(nr * PAGE_SIZE);
2673                 current->nr_dirtied += nr;
2674                 __this_cpu_add(bdp_ratelimits, nr);
2675
2676                 mem_cgroup_track_foreign_dirty(folio, wb);
2677         }
2678 }
2679
2680 /*
2681  * Helper function for deaccounting dirty page without writeback.
2682  *
2683  * Caller must hold lock_page_memcg().
2684  */
2685 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2686 {
2687         long nr = folio_nr_pages(folio);
2688
2689         lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2690         zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2691         wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2692         task_io_account_cancelled_write(nr * PAGE_SIZE);
2693 }
2694
2695 /*
2696  * Mark the folio dirty, and set it dirty in the page cache, and mark
2697  * the inode dirty.
2698  *
2699  * If warn is true, then emit a warning if the folio is not uptodate and has
2700  * not been truncated.
2701  *
2702  * The caller must hold lock_page_memcg().  Most callers have the folio
2703  * locked.  A few have the folio blocked from truncation through other
2704  * means (eg zap_page_range() has it mapped and is holding the page table
2705  * lock).  This can also be called from mark_buffer_dirty(), which I
2706  * cannot prove is always protected against truncate.
2707  */
2708 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2709                              int warn)
2710 {
2711         unsigned long flags;
2712
2713         xa_lock_irqsave(&mapping->i_pages, flags);
2714         if (folio->mapping) {   /* Race with truncate? */
2715                 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2716                 folio_account_dirtied(folio, mapping);
2717                 __xa_set_mark(&mapping->i_pages, folio_index(folio),
2718                                 PAGECACHE_TAG_DIRTY);
2719         }
2720         xa_unlock_irqrestore(&mapping->i_pages, flags);
2721 }
2722
2723 /**
2724  * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2725  * @mapping: Address space this folio belongs to.
2726  * @folio: Folio to be marked as dirty.
2727  *
2728  * Filesystems which do not use buffer heads should call this function
2729  * from their set_page_dirty address space operation.  It ignores the
2730  * contents of folio_get_private(), so if the filesystem marks individual
2731  * blocks as dirty, the filesystem should handle that itself.
2732  *
2733  * This is also sometimes used by filesystems which use buffer_heads when
2734  * a single buffer is being dirtied: we want to set the folio dirty in
2735  * that case, but not all the buffers.  This is a "bottom-up" dirtying,
2736  * whereas block_dirty_folio() is a "top-down" dirtying.
2737  *
2738  * The caller must ensure this doesn't race with truncation.  Most will
2739  * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2740  * folio mapped and the pte lock held, which also locks out truncation.
2741  */
2742 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2743 {
2744         folio_memcg_lock(folio);
2745         if (folio_test_set_dirty(folio)) {
2746                 folio_memcg_unlock(folio);
2747                 return false;
2748         }
2749
2750         __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2751         folio_memcg_unlock(folio);
2752
2753         if (mapping->host) {
2754                 /* !PageAnon && !swapper_space */
2755                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2756         }
2757         return true;
2758 }
2759 EXPORT_SYMBOL(filemap_dirty_folio);
2760
2761 /**
2762  * folio_account_redirty - Manually account for redirtying a page.
2763  * @folio: The folio which is being redirtied.
2764  *
2765  * Most filesystems should call folio_redirty_for_writepage() instead
2766  * of this fuction.  If your filesystem is doing writeback outside the
2767  * context of a writeback_control(), it can call this when redirtying
2768  * a folio, to de-account the dirty counters (NR_DIRTIED, WB_DIRTIED,
2769  * tsk->nr_dirtied), so that they match the written counters (NR_WRITTEN,
2770  * WB_WRITTEN) in long term. The mismatches will lead to systematic errors
2771  * in balanced_dirty_ratelimit and the dirty pages position control.
2772  */
2773 void folio_account_redirty(struct folio *folio)
2774 {
2775         struct address_space *mapping = folio->mapping;
2776
2777         if (mapping && mapping_can_writeback(mapping)) {
2778                 struct inode *inode = mapping->host;
2779                 struct bdi_writeback *wb;
2780                 struct wb_lock_cookie cookie = {};
2781                 long nr = folio_nr_pages(folio);
2782
2783                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2784                 current->nr_dirtied -= nr;
2785                 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2786                 wb_stat_mod(wb, WB_DIRTIED, -nr);
2787                 unlocked_inode_to_wb_end(inode, &cookie);
2788         }
2789 }
2790 EXPORT_SYMBOL(folio_account_redirty);
2791
2792 /**
2793  * folio_redirty_for_writepage - Decline to write a dirty folio.
2794  * @wbc: The writeback control.
2795  * @folio: The folio.
2796  *
2797  * When a writepage implementation decides that it doesn't want to write
2798  * @folio for some reason, it should call this function, unlock @folio and
2799  * return 0.
2800  *
2801  * Return: True if we redirtied the folio.  False if someone else dirtied
2802  * it first.
2803  */
2804 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2805                 struct folio *folio)
2806 {
2807         bool ret;
2808         long nr = folio_nr_pages(folio);
2809
2810         wbc->pages_skipped += nr;
2811         ret = filemap_dirty_folio(folio->mapping, folio);
2812         folio_account_redirty(folio);
2813
2814         return ret;
2815 }
2816 EXPORT_SYMBOL(folio_redirty_for_writepage);
2817
2818 /**
2819  * folio_mark_dirty - Mark a folio as being modified.
2820  * @folio: The folio.
2821  *
2822  * The folio may not be truncated while this function is running.
2823  * Holding the folio lock is sufficient to prevent truncation, but some
2824  * callers cannot acquire a sleeping lock.  These callers instead hold
2825  * the page table lock for a page table which contains at least one page
2826  * in this folio.  Truncation will block on the page table lock as it
2827  * unmaps pages before removing the folio from its mapping.
2828  *
2829  * Return: True if the folio was newly dirtied, false if it was already dirty.
2830  */
2831 bool folio_mark_dirty(struct folio *folio)
2832 {
2833         struct address_space *mapping = folio_mapping(folio);
2834
2835         if (likely(mapping)) {
2836                 /*
2837                  * readahead/lru_deactivate_page could remain
2838                  * PG_readahead/PG_reclaim due to race with folio_end_writeback
2839                  * About readahead, if the folio is written, the flags would be
2840                  * reset. So no problem.
2841                  * About lru_deactivate_page, if the folio is redirtied,
2842                  * the flag will be reset. So no problem. but if the
2843                  * folio is used by readahead it will confuse readahead
2844                  * and make it restart the size rampup process. But it's
2845                  * a trivial problem.
2846                  */
2847                 if (folio_test_reclaim(folio))
2848                         folio_clear_reclaim(folio);
2849                 return mapping->a_ops->dirty_folio(mapping, folio);
2850         }
2851
2852         return noop_dirty_folio(mapping, folio);
2853 }
2854 EXPORT_SYMBOL(folio_mark_dirty);
2855
2856 /*
2857  * set_page_dirty() is racy if the caller has no reference against
2858  * page->mapping->host, and if the page is unlocked.  This is because another
2859  * CPU could truncate the page off the mapping and then free the mapping.
2860  *
2861  * Usually, the page _is_ locked, or the caller is a user-space process which
2862  * holds a reference on the inode by having an open file.
2863  *
2864  * In other cases, the page should be locked before running set_page_dirty().
2865  */
2866 int set_page_dirty_lock(struct page *page)
2867 {
2868         int ret;
2869
2870         lock_page(page);
2871         ret = set_page_dirty(page);
2872         unlock_page(page);
2873         return ret;
2874 }
2875 EXPORT_SYMBOL(set_page_dirty_lock);
2876
2877 /*
2878  * This cancels just the dirty bit on the kernel page itself, it does NOT
2879  * actually remove dirty bits on any mmap's that may be around. It also
2880  * leaves the page tagged dirty, so any sync activity will still find it on
2881  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2882  * look at the dirty bits in the VM.
2883  *
2884  * Doing this should *normally* only ever be done when a page is truncated,
2885  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2886  * this when it notices that somebody has cleaned out all the buffers on a
2887  * page without actually doing it through the VM. Can you say "ext3 is
2888  * horribly ugly"? Thought you could.
2889  */
2890 void __folio_cancel_dirty(struct folio *folio)
2891 {
2892         struct address_space *mapping = folio_mapping(folio);
2893
2894         if (mapping_can_writeback(mapping)) {
2895                 struct inode *inode = mapping->host;
2896                 struct bdi_writeback *wb;
2897                 struct wb_lock_cookie cookie = {};
2898
2899                 folio_memcg_lock(folio);
2900                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2901
2902                 if (folio_test_clear_dirty(folio))
2903                         folio_account_cleaned(folio, wb);
2904
2905                 unlocked_inode_to_wb_end(inode, &cookie);
2906                 folio_memcg_unlock(folio);
2907         } else {
2908                 folio_clear_dirty(folio);
2909         }
2910 }
2911 EXPORT_SYMBOL(__folio_cancel_dirty);
2912
2913 /*
2914  * Clear a folio's dirty flag, while caring for dirty memory accounting.
2915  * Returns true if the folio was previously dirty.
2916  *
2917  * This is for preparing to put the folio under writeout.  We leave
2918  * the folio tagged as dirty in the xarray so that a concurrent
2919  * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2920  * The ->writepage implementation will run either folio_start_writeback()
2921  * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2922  * and xarray dirty tag back into sync.
2923  *
2924  * This incoherency between the folio's dirty flag and xarray tag is
2925  * unfortunate, but it only exists while the folio is locked.
2926  */
2927 bool folio_clear_dirty_for_io(struct folio *folio)
2928 {
2929         struct address_space *mapping = folio_mapping(folio);
2930         bool ret = false;
2931
2932         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2933
2934         if (mapping && mapping_can_writeback(mapping)) {
2935                 struct inode *inode = mapping->host;
2936                 struct bdi_writeback *wb;
2937                 struct wb_lock_cookie cookie = {};
2938
2939                 /*
2940                  * Yes, Virginia, this is indeed insane.
2941                  *
2942                  * We use this sequence to make sure that
2943                  *  (a) we account for dirty stats properly
2944                  *  (b) we tell the low-level filesystem to
2945                  *      mark the whole folio dirty if it was
2946                  *      dirty in a pagetable. Only to then
2947                  *  (c) clean the folio again and return 1 to
2948                  *      cause the writeback.
2949                  *
2950                  * This way we avoid all nasty races with the
2951                  * dirty bit in multiple places and clearing
2952                  * them concurrently from different threads.
2953                  *
2954                  * Note! Normally the "folio_mark_dirty(folio)"
2955                  * has no effect on the actual dirty bit - since
2956                  * that will already usually be set. But we
2957                  * need the side effects, and it can help us
2958                  * avoid races.
2959                  *
2960                  * We basically use the folio "master dirty bit"
2961                  * as a serialization point for all the different
2962                  * threads doing their things.
2963                  */
2964                 if (folio_mkclean(folio))
2965                         folio_mark_dirty(folio);
2966                 /*
2967                  * We carefully synchronise fault handlers against
2968                  * installing a dirty pte and marking the folio dirty
2969                  * at this point.  We do this by having them hold the
2970                  * page lock while dirtying the folio, and folios are
2971                  * always locked coming in here, so we get the desired
2972                  * exclusion.
2973                  */
2974                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2975                 if (folio_test_clear_dirty(folio)) {
2976                         long nr = folio_nr_pages(folio);
2977                         lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2978                         zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2979                         wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2980                         ret = true;
2981                 }
2982                 unlocked_inode_to_wb_end(inode, &cookie);
2983                 return ret;
2984         }
2985         return folio_test_clear_dirty(folio);
2986 }
2987 EXPORT_SYMBOL(folio_clear_dirty_for_io);
2988
2989 static void wb_inode_writeback_start(struct bdi_writeback *wb)
2990 {
2991         atomic_inc(&wb->writeback_inodes);
2992 }
2993
2994 static void wb_inode_writeback_end(struct bdi_writeback *wb)
2995 {
2996         unsigned long flags;
2997         atomic_dec(&wb->writeback_inodes);
2998         /*
2999          * Make sure estimate of writeback throughput gets updated after
3000          * writeback completed. We delay the update by BANDWIDTH_INTERVAL
3001          * (which is the interval other bandwidth updates use for batching) so
3002          * that if multiple inodes end writeback at a similar time, they get
3003          * batched into one bandwidth update.
3004          */
3005         spin_lock_irqsave(&wb->work_lock, flags);
3006         if (test_bit(WB_registered, &wb->state))
3007                 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
3008         spin_unlock_irqrestore(&wb->work_lock, flags);
3009 }
3010
3011 bool __folio_end_writeback(struct folio *folio)
3012 {
3013         long nr = folio_nr_pages(folio);
3014         struct address_space *mapping = folio_mapping(folio);
3015         bool ret;
3016
3017         folio_memcg_lock(folio);
3018         if (mapping && mapping_use_writeback_tags(mapping)) {
3019                 struct inode *inode = mapping->host;
3020                 struct backing_dev_info *bdi = inode_to_bdi(inode);
3021                 unsigned long flags;
3022
3023                 xa_lock_irqsave(&mapping->i_pages, flags);
3024                 ret = folio_test_clear_writeback(folio);
3025                 if (ret) {
3026                         __xa_clear_mark(&mapping->i_pages, folio_index(folio),
3027                                                 PAGECACHE_TAG_WRITEBACK);
3028                         if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3029                                 struct bdi_writeback *wb = inode_to_wb(inode);
3030
3031                                 wb_stat_mod(wb, WB_WRITEBACK, -nr);
3032                                 __wb_writeout_add(wb, nr);
3033                                 if (!mapping_tagged(mapping,
3034                                                     PAGECACHE_TAG_WRITEBACK))
3035                                         wb_inode_writeback_end(wb);
3036                         }
3037                 }
3038
3039                 if (mapping->host && !mapping_tagged(mapping,
3040                                                      PAGECACHE_TAG_WRITEBACK))
3041                         sb_clear_inode_writeback(mapping->host);
3042
3043                 xa_unlock_irqrestore(&mapping->i_pages, flags);
3044         } else {
3045                 ret = folio_test_clear_writeback(folio);
3046         }
3047         if (ret) {
3048                 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3049                 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3050                 node_stat_mod_folio(folio, NR_WRITTEN, nr);
3051         }
3052         folio_memcg_unlock(folio);
3053         return ret;
3054 }
3055
3056 bool __folio_start_writeback(struct folio *folio, bool keep_write)
3057 {
3058         long nr = folio_nr_pages(folio);
3059         struct address_space *mapping = folio_mapping(folio);
3060         bool ret;
3061         int access_ret;
3062
3063         folio_memcg_lock(folio);
3064         if (mapping && mapping_use_writeback_tags(mapping)) {
3065                 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
3066                 struct inode *inode = mapping->host;
3067                 struct backing_dev_info *bdi = inode_to_bdi(inode);
3068                 unsigned long flags;
3069
3070                 xas_lock_irqsave(&xas, flags);
3071                 xas_load(&xas);
3072                 ret = folio_test_set_writeback(folio);
3073                 if (!ret) {
3074                         bool on_wblist;
3075
3076                         on_wblist = mapping_tagged(mapping,
3077                                                    PAGECACHE_TAG_WRITEBACK);
3078
3079                         xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
3080                         if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3081                                 struct bdi_writeback *wb = inode_to_wb(inode);
3082
3083                                 wb_stat_mod(wb, WB_WRITEBACK, nr);
3084                                 if (!on_wblist)
3085                                         wb_inode_writeback_start(wb);
3086                         }
3087
3088                         /*
3089                          * We can come through here when swapping
3090                          * anonymous folios, so we don't necessarily
3091                          * have an inode to track for sync.
3092                          */
3093                         if (mapping->host && !on_wblist)
3094                                 sb_mark_inode_writeback(mapping->host);
3095                 }
3096                 if (!folio_test_dirty(folio))
3097                         xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
3098                 if (!keep_write)
3099                         xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3100                 xas_unlock_irqrestore(&xas, flags);
3101         } else {
3102                 ret = folio_test_set_writeback(folio);
3103         }
3104         if (!ret) {
3105                 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3106                 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3107         }
3108         folio_memcg_unlock(folio);
3109         access_ret = arch_make_folio_accessible(folio);
3110         /*
3111          * If writeback has been triggered on a page that cannot be made
3112          * accessible, it is too late to recover here.
3113          */
3114         VM_BUG_ON_FOLIO(access_ret != 0, folio);
3115
3116         return ret;
3117 }
3118 EXPORT_SYMBOL(__folio_start_writeback);
3119
3120 /**
3121  * folio_wait_writeback - Wait for a folio to finish writeback.
3122  * @folio: The folio to wait for.
3123  *
3124  * If the folio is currently being written back to storage, wait for the
3125  * I/O to complete.
3126  *
3127  * Context: Sleeps.  Must be called in process context and with
3128  * no spinlocks held.  Caller should hold a reference on the folio.
3129  * If the folio is not locked, writeback may start again after writeback
3130  * has finished.
3131  */
3132 void folio_wait_writeback(struct folio *folio)
3133 {
3134         while (folio_test_writeback(folio)) {
3135                 trace_folio_wait_writeback(folio, folio_mapping(folio));
3136                 folio_wait_bit(folio, PG_writeback);
3137         }
3138 }
3139 EXPORT_SYMBOL_GPL(folio_wait_writeback);
3140
3141 /**
3142  * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3143  * @folio: The folio to wait for.
3144  *
3145  * If the folio is currently being written back to storage, wait for the
3146  * I/O to complete or a fatal signal to arrive.
3147  *
3148  * Context: Sleeps.  Must be called in process context and with
3149  * no spinlocks held.  Caller should hold a reference on the folio.
3150  * If the folio is not locked, writeback may start again after writeback
3151  * has finished.
3152  * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3153  */
3154 int folio_wait_writeback_killable(struct folio *folio)
3155 {
3156         while (folio_test_writeback(folio)) {
3157                 trace_folio_wait_writeback(folio, folio_mapping(folio));
3158                 if (folio_wait_bit_killable(folio, PG_writeback))
3159                         return -EINTR;
3160         }
3161
3162         return 0;
3163 }
3164 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3165
3166 /**
3167  * folio_wait_stable() - wait for writeback to finish, if necessary.
3168  * @folio: The folio to wait on.
3169  *
3170  * This function determines if the given folio is related to a backing
3171  * device that requires folio contents to be held stable during writeback.
3172  * If so, then it will wait for any pending writeback to complete.
3173  *
3174  * Context: Sleeps.  Must be called in process context and with
3175  * no spinlocks held.  Caller should hold a reference on the folio.
3176  * If the folio is not locked, writeback may start again after writeback
3177  * has finished.
3178  */
3179 void folio_wait_stable(struct folio *folio)
3180 {
3181         if (folio_inode(folio)->i_sb->s_iflags & SB_I_STABLE_WRITES)
3182                 folio_wait_writeback(folio);
3183 }
3184 EXPORT_SYMBOL_GPL(folio_wait_stable);