mm: add bdi_get_min_bytes() function
[linux-2.6-microblaze.git] / mm / page-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Initial version
13  */
14
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/slab.h>
23 #include <linux/pagemap.h>
24 #include <linux/writeback.h>
25 #include <linux/init.h>
26 #include <linux/backing-dev.h>
27 #include <linux/task_io_accounting_ops.h>
28 #include <linux/blkdev.h>
29 #include <linux/mpage.h>
30 #include <linux/rmap.h>
31 #include <linux/percpu.h>
32 #include <linux/smp.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42
43 #include "internal.h"
44
45 /*
46  * Sleep at most 200ms at a time in balance_dirty_pages().
47  */
48 #define MAX_PAUSE               max(HZ/5, 1)
49
50 /*
51  * Try to keep balance_dirty_pages() call intervals higher than this many pages
52  * by raising pause time to max_pause when falls below it.
53  */
54 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
55
56 /*
57  * Estimate write bandwidth at 200ms intervals.
58  */
59 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
60
61 #define RATELIMIT_CALC_SHIFT    10
62
63 /*
64  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65  * will look to see if it needs to force writeback or throttling.
66  */
67 static long ratelimit_pages = 32;
68
69 /* The following parameters are exported via /proc/sys/vm */
70
71 /*
72  * Start background writeback (via writeback threads) at this percentage
73  */
74 static int dirty_background_ratio = 10;
75
76 /*
77  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78  * dirty_background_ratio * the amount of dirtyable memory
79  */
80 static unsigned long dirty_background_bytes;
81
82 /*
83  * free highmem will not be subtracted from the total free memory
84  * for calculating free ratios if vm_highmem_is_dirtyable is true
85  */
86 static int vm_highmem_is_dirtyable;
87
88 /*
89  * The generator of dirty data starts writeback at this percentage
90  */
91 static int vm_dirty_ratio = 20;
92
93 /*
94  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95  * vm_dirty_ratio * the amount of dirtyable memory
96  */
97 static unsigned long vm_dirty_bytes;
98
99 /*
100  * The interval between `kupdate'-style writebacks
101  */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105
106 /*
107  * The longest time for which data is allowed to remain dirty
108  */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110
111 /*
112  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
113  * a full sync is triggered after this time elapses without any disk activity.
114  */
115 int laptop_mode;
116
117 EXPORT_SYMBOL(laptop_mode);
118
119 /* End of sysctl-exported parameters */
120
121 struct wb_domain global_wb_domain;
122
123 /* consolidated parameters for balance_dirty_pages() and its subroutines */
124 struct dirty_throttle_control {
125 #ifdef CONFIG_CGROUP_WRITEBACK
126         struct wb_domain        *dom;
127         struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
128 #endif
129         struct bdi_writeback    *wb;
130         struct fprop_local_percpu *wb_completions;
131
132         unsigned long           avail;          /* dirtyable */
133         unsigned long           dirty;          /* file_dirty + write + nfs */
134         unsigned long           thresh;         /* dirty threshold */
135         unsigned long           bg_thresh;      /* dirty background threshold */
136
137         unsigned long           wb_dirty;       /* per-wb counterparts */
138         unsigned long           wb_thresh;
139         unsigned long           wb_bg_thresh;
140
141         unsigned long           pos_ratio;
142 };
143
144 /*
145  * Length of period for aging writeout fractions of bdis. This is an
146  * arbitrarily chosen number. The longer the period, the slower fractions will
147  * reflect changes in current writeout rate.
148  */
149 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
150
151 #ifdef CONFIG_CGROUP_WRITEBACK
152
153 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
154                                 .dom = &global_wb_domain,               \
155                                 .wb_completions = &(__wb)->completions
156
157 #define GDTC_INIT_NO_WB         .dom = &global_wb_domain
158
159 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
160                                 .dom = mem_cgroup_wb_domain(__wb),      \
161                                 .wb_completions = &(__wb)->memcg_completions, \
162                                 .gdtc = __gdtc
163
164 static bool mdtc_valid(struct dirty_throttle_control *dtc)
165 {
166         return dtc->dom;
167 }
168
169 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
170 {
171         return dtc->dom;
172 }
173
174 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
175 {
176         return mdtc->gdtc;
177 }
178
179 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
180 {
181         return &wb->memcg_completions;
182 }
183
184 static void wb_min_max_ratio(struct bdi_writeback *wb,
185                              unsigned long *minp, unsigned long *maxp)
186 {
187         unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
188         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
189         unsigned long long min = wb->bdi->min_ratio;
190         unsigned long long max = wb->bdi->max_ratio;
191
192         /*
193          * @wb may already be clean by the time control reaches here and
194          * the total may not include its bw.
195          */
196         if (this_bw < tot_bw) {
197                 if (min) {
198                         min *= this_bw;
199                         min = div64_ul(min, tot_bw);
200                 }
201                 if (max < 100 * BDI_RATIO_SCALE) {
202                         max *= this_bw;
203                         max = div64_ul(max, tot_bw);
204                 }
205         }
206
207         *minp = min;
208         *maxp = max;
209 }
210
211 #else   /* CONFIG_CGROUP_WRITEBACK */
212
213 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
214                                 .wb_completions = &(__wb)->completions
215 #define GDTC_INIT_NO_WB
216 #define MDTC_INIT(__wb, __gdtc)
217
218 static bool mdtc_valid(struct dirty_throttle_control *dtc)
219 {
220         return false;
221 }
222
223 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
224 {
225         return &global_wb_domain;
226 }
227
228 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
229 {
230         return NULL;
231 }
232
233 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
234 {
235         return NULL;
236 }
237
238 static void wb_min_max_ratio(struct bdi_writeback *wb,
239                              unsigned long *minp, unsigned long *maxp)
240 {
241         *minp = wb->bdi->min_ratio;
242         *maxp = wb->bdi->max_ratio;
243 }
244
245 #endif  /* CONFIG_CGROUP_WRITEBACK */
246
247 /*
248  * In a memory zone, there is a certain amount of pages we consider
249  * available for the page cache, which is essentially the number of
250  * free and reclaimable pages, minus some zone reserves to protect
251  * lowmem and the ability to uphold the zone's watermarks without
252  * requiring writeback.
253  *
254  * This number of dirtyable pages is the base value of which the
255  * user-configurable dirty ratio is the effective number of pages that
256  * are allowed to be actually dirtied.  Per individual zone, or
257  * globally by using the sum of dirtyable pages over all zones.
258  *
259  * Because the user is allowed to specify the dirty limit globally as
260  * absolute number of bytes, calculating the per-zone dirty limit can
261  * require translating the configured limit into a percentage of
262  * global dirtyable memory first.
263  */
264
265 /**
266  * node_dirtyable_memory - number of dirtyable pages in a node
267  * @pgdat: the node
268  *
269  * Return: the node's number of pages potentially available for dirty
270  * page cache.  This is the base value for the per-node dirty limits.
271  */
272 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
273 {
274         unsigned long nr_pages = 0;
275         int z;
276
277         for (z = 0; z < MAX_NR_ZONES; z++) {
278                 struct zone *zone = pgdat->node_zones + z;
279
280                 if (!populated_zone(zone))
281                         continue;
282
283                 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
284         }
285
286         /*
287          * Pages reserved for the kernel should not be considered
288          * dirtyable, to prevent a situation where reclaim has to
289          * clean pages in order to balance the zones.
290          */
291         nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
292
293         nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
294         nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
295
296         return nr_pages;
297 }
298
299 static unsigned long highmem_dirtyable_memory(unsigned long total)
300 {
301 #ifdef CONFIG_HIGHMEM
302         int node;
303         unsigned long x = 0;
304         int i;
305
306         for_each_node_state(node, N_HIGH_MEMORY) {
307                 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
308                         struct zone *z;
309                         unsigned long nr_pages;
310
311                         if (!is_highmem_idx(i))
312                                 continue;
313
314                         z = &NODE_DATA(node)->node_zones[i];
315                         if (!populated_zone(z))
316                                 continue;
317
318                         nr_pages = zone_page_state(z, NR_FREE_PAGES);
319                         /* watch for underflows */
320                         nr_pages -= min(nr_pages, high_wmark_pages(z));
321                         nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
322                         nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
323                         x += nr_pages;
324                 }
325         }
326
327         /*
328          * Make sure that the number of highmem pages is never larger
329          * than the number of the total dirtyable memory. This can only
330          * occur in very strange VM situations but we want to make sure
331          * that this does not occur.
332          */
333         return min(x, total);
334 #else
335         return 0;
336 #endif
337 }
338
339 /**
340  * global_dirtyable_memory - number of globally dirtyable pages
341  *
342  * Return: the global number of pages potentially available for dirty
343  * page cache.  This is the base value for the global dirty limits.
344  */
345 static unsigned long global_dirtyable_memory(void)
346 {
347         unsigned long x;
348
349         x = global_zone_page_state(NR_FREE_PAGES);
350         /*
351          * Pages reserved for the kernel should not be considered
352          * dirtyable, to prevent a situation where reclaim has to
353          * clean pages in order to balance the zones.
354          */
355         x -= min(x, totalreserve_pages);
356
357         x += global_node_page_state(NR_INACTIVE_FILE);
358         x += global_node_page_state(NR_ACTIVE_FILE);
359
360         if (!vm_highmem_is_dirtyable)
361                 x -= highmem_dirtyable_memory(x);
362
363         return x + 1;   /* Ensure that we never return 0 */
364 }
365
366 /**
367  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
368  * @dtc: dirty_throttle_control of interest
369  *
370  * Calculate @dtc->thresh and ->bg_thresh considering
371  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
372  * must ensure that @dtc->avail is set before calling this function.  The
373  * dirty limits will be lifted by 1/4 for real-time tasks.
374  */
375 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
376 {
377         const unsigned long available_memory = dtc->avail;
378         struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
379         unsigned long bytes = vm_dirty_bytes;
380         unsigned long bg_bytes = dirty_background_bytes;
381         /* convert ratios to per-PAGE_SIZE for higher precision */
382         unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
383         unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
384         unsigned long thresh;
385         unsigned long bg_thresh;
386         struct task_struct *tsk;
387
388         /* gdtc is !NULL iff @dtc is for memcg domain */
389         if (gdtc) {
390                 unsigned long global_avail = gdtc->avail;
391
392                 /*
393                  * The byte settings can't be applied directly to memcg
394                  * domains.  Convert them to ratios by scaling against
395                  * globally available memory.  As the ratios are in
396                  * per-PAGE_SIZE, they can be obtained by dividing bytes by
397                  * number of pages.
398                  */
399                 if (bytes)
400                         ratio = min(DIV_ROUND_UP(bytes, global_avail),
401                                     PAGE_SIZE);
402                 if (bg_bytes)
403                         bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
404                                        PAGE_SIZE);
405                 bytes = bg_bytes = 0;
406         }
407
408         if (bytes)
409                 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
410         else
411                 thresh = (ratio * available_memory) / PAGE_SIZE;
412
413         if (bg_bytes)
414                 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
415         else
416                 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
417
418         if (bg_thresh >= thresh)
419                 bg_thresh = thresh / 2;
420         tsk = current;
421         if (rt_task(tsk)) {
422                 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
423                 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
424         }
425         dtc->thresh = thresh;
426         dtc->bg_thresh = bg_thresh;
427
428         /* we should eventually report the domain in the TP */
429         if (!gdtc)
430                 trace_global_dirty_state(bg_thresh, thresh);
431 }
432
433 /**
434  * global_dirty_limits - background-writeback and dirty-throttling thresholds
435  * @pbackground: out parameter for bg_thresh
436  * @pdirty: out parameter for thresh
437  *
438  * Calculate bg_thresh and thresh for global_wb_domain.  See
439  * domain_dirty_limits() for details.
440  */
441 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
442 {
443         struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
444
445         gdtc.avail = global_dirtyable_memory();
446         domain_dirty_limits(&gdtc);
447
448         *pbackground = gdtc.bg_thresh;
449         *pdirty = gdtc.thresh;
450 }
451
452 /**
453  * node_dirty_limit - maximum number of dirty pages allowed in a node
454  * @pgdat: the node
455  *
456  * Return: the maximum number of dirty pages allowed in a node, based
457  * on the node's dirtyable memory.
458  */
459 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
460 {
461         unsigned long node_memory = node_dirtyable_memory(pgdat);
462         struct task_struct *tsk = current;
463         unsigned long dirty;
464
465         if (vm_dirty_bytes)
466                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
467                         node_memory / global_dirtyable_memory();
468         else
469                 dirty = vm_dirty_ratio * node_memory / 100;
470
471         if (rt_task(tsk))
472                 dirty += dirty / 4;
473
474         return dirty;
475 }
476
477 /**
478  * node_dirty_ok - tells whether a node is within its dirty limits
479  * @pgdat: the node to check
480  *
481  * Return: %true when the dirty pages in @pgdat are within the node's
482  * dirty limit, %false if the limit is exceeded.
483  */
484 bool node_dirty_ok(struct pglist_data *pgdat)
485 {
486         unsigned long limit = node_dirty_limit(pgdat);
487         unsigned long nr_pages = 0;
488
489         nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
490         nr_pages += node_page_state(pgdat, NR_WRITEBACK);
491
492         return nr_pages <= limit;
493 }
494
495 #ifdef CONFIG_SYSCTL
496 static int dirty_background_ratio_handler(struct ctl_table *table, int write,
497                 void *buffer, size_t *lenp, loff_t *ppos)
498 {
499         int ret;
500
501         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
502         if (ret == 0 && write)
503                 dirty_background_bytes = 0;
504         return ret;
505 }
506
507 static int dirty_background_bytes_handler(struct ctl_table *table, int write,
508                 void *buffer, size_t *lenp, loff_t *ppos)
509 {
510         int ret;
511
512         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
513         if (ret == 0 && write)
514                 dirty_background_ratio = 0;
515         return ret;
516 }
517
518 static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
519                 size_t *lenp, loff_t *ppos)
520 {
521         int old_ratio = vm_dirty_ratio;
522         int ret;
523
524         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
525         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
526                 writeback_set_ratelimit();
527                 vm_dirty_bytes = 0;
528         }
529         return ret;
530 }
531
532 static int dirty_bytes_handler(struct ctl_table *table, int write,
533                 void *buffer, size_t *lenp, loff_t *ppos)
534 {
535         unsigned long old_bytes = vm_dirty_bytes;
536         int ret;
537
538         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
539         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
540                 writeback_set_ratelimit();
541                 vm_dirty_ratio = 0;
542         }
543         return ret;
544 }
545 #endif
546
547 static unsigned long wp_next_time(unsigned long cur_time)
548 {
549         cur_time += VM_COMPLETIONS_PERIOD_LEN;
550         /* 0 has a special meaning... */
551         if (!cur_time)
552                 return 1;
553         return cur_time;
554 }
555
556 static void wb_domain_writeout_add(struct wb_domain *dom,
557                                    struct fprop_local_percpu *completions,
558                                    unsigned int max_prop_frac, long nr)
559 {
560         __fprop_add_percpu_max(&dom->completions, completions,
561                                max_prop_frac, nr);
562         /* First event after period switching was turned off? */
563         if (unlikely(!dom->period_time)) {
564                 /*
565                  * We can race with other __bdi_writeout_inc calls here but
566                  * it does not cause any harm since the resulting time when
567                  * timer will fire and what is in writeout_period_time will be
568                  * roughly the same.
569                  */
570                 dom->period_time = wp_next_time(jiffies);
571                 mod_timer(&dom->period_timer, dom->period_time);
572         }
573 }
574
575 /*
576  * Increment @wb's writeout completion count and the global writeout
577  * completion count. Called from __folio_end_writeback().
578  */
579 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
580 {
581         struct wb_domain *cgdom;
582
583         wb_stat_mod(wb, WB_WRITTEN, nr);
584         wb_domain_writeout_add(&global_wb_domain, &wb->completions,
585                                wb->bdi->max_prop_frac, nr);
586
587         cgdom = mem_cgroup_wb_domain(wb);
588         if (cgdom)
589                 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
590                                        wb->bdi->max_prop_frac, nr);
591 }
592
593 void wb_writeout_inc(struct bdi_writeback *wb)
594 {
595         unsigned long flags;
596
597         local_irq_save(flags);
598         __wb_writeout_add(wb, 1);
599         local_irq_restore(flags);
600 }
601 EXPORT_SYMBOL_GPL(wb_writeout_inc);
602
603 /*
604  * On idle system, we can be called long after we scheduled because we use
605  * deferred timers so count with missed periods.
606  */
607 static void writeout_period(struct timer_list *t)
608 {
609         struct wb_domain *dom = from_timer(dom, t, period_timer);
610         int miss_periods = (jiffies - dom->period_time) /
611                                                  VM_COMPLETIONS_PERIOD_LEN;
612
613         if (fprop_new_period(&dom->completions, miss_periods + 1)) {
614                 dom->period_time = wp_next_time(dom->period_time +
615                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
616                 mod_timer(&dom->period_timer, dom->period_time);
617         } else {
618                 /*
619                  * Aging has zeroed all fractions. Stop wasting CPU on period
620                  * updates.
621                  */
622                 dom->period_time = 0;
623         }
624 }
625
626 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
627 {
628         memset(dom, 0, sizeof(*dom));
629
630         spin_lock_init(&dom->lock);
631
632         timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
633
634         dom->dirty_limit_tstamp = jiffies;
635
636         return fprop_global_init(&dom->completions, gfp);
637 }
638
639 #ifdef CONFIG_CGROUP_WRITEBACK
640 void wb_domain_exit(struct wb_domain *dom)
641 {
642         del_timer_sync(&dom->period_timer);
643         fprop_global_destroy(&dom->completions);
644 }
645 #endif
646
647 /*
648  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
649  * registered backing devices, which, for obvious reasons, can not
650  * exceed 100%.
651  */
652 static unsigned int bdi_min_ratio;
653
654 static int bdi_check_pages_limit(unsigned long pages)
655 {
656         unsigned long max_dirty_pages = global_dirtyable_memory();
657
658         if (pages > max_dirty_pages)
659                 return -EINVAL;
660
661         return 0;
662 }
663
664 static unsigned long bdi_ratio_from_pages(unsigned long pages)
665 {
666         unsigned long background_thresh;
667         unsigned long dirty_thresh;
668         unsigned long ratio;
669
670         global_dirty_limits(&background_thresh, &dirty_thresh);
671         ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
672
673         return ratio;
674 }
675
676 static u64 bdi_get_bytes(unsigned int ratio)
677 {
678         unsigned long background_thresh;
679         unsigned long dirty_thresh;
680         u64 bytes;
681
682         global_dirty_limits(&background_thresh, &dirty_thresh);
683         bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
684
685         return bytes;
686 }
687
688 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
689 {
690         unsigned int delta;
691         int ret = 0;
692
693         min_ratio *= BDI_RATIO_SCALE;
694
695         spin_lock_bh(&bdi_lock);
696         if (min_ratio > bdi->max_ratio) {
697                 ret = -EINVAL;
698         } else {
699                 if (min_ratio < bdi->min_ratio) {
700                         delta = bdi->min_ratio - min_ratio;
701                         bdi_min_ratio -= delta;
702                         bdi->min_ratio = min_ratio;
703                 } else {
704                         delta = min_ratio - bdi->min_ratio;
705                         if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
706                                 bdi_min_ratio += delta;
707                                 bdi->min_ratio = min_ratio;
708                         } else {
709                                 ret = -EINVAL;
710                         }
711                 }
712         }
713         spin_unlock_bh(&bdi_lock);
714
715         return ret;
716 }
717
718 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
719 {
720         int ret = 0;
721
722         spin_lock_bh(&bdi_lock);
723         if (bdi->min_ratio > max_ratio) {
724                 ret = -EINVAL;
725         } else {
726                 bdi->max_ratio = max_ratio;
727                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
728         }
729         spin_unlock_bh(&bdi_lock);
730
731         return ret;
732 }
733
734 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
735 {
736         if (max_ratio > 100)
737                 return -EINVAL;
738
739         return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
740 }
741 EXPORT_SYMBOL(bdi_set_max_ratio);
742
743 u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
744 {
745         return bdi_get_bytes(bdi->min_ratio);
746 }
747
748 u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
749 {
750         return bdi_get_bytes(bdi->max_ratio);
751 }
752
753 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
754 {
755         int ret;
756         unsigned long pages = max_bytes >> PAGE_SHIFT;
757         unsigned long max_ratio;
758
759         ret = bdi_check_pages_limit(pages);
760         if (ret)
761                 return ret;
762
763         max_ratio = bdi_ratio_from_pages(pages);
764         return __bdi_set_max_ratio(bdi, max_ratio);
765 }
766
767 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
768 {
769         if (strict_limit > 1)
770                 return -EINVAL;
771
772         spin_lock_bh(&bdi_lock);
773         if (strict_limit)
774                 bdi->capabilities |= BDI_CAP_STRICTLIMIT;
775         else
776                 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
777         spin_unlock_bh(&bdi_lock);
778
779         return 0;
780 }
781
782 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
783                                            unsigned long bg_thresh)
784 {
785         return (thresh + bg_thresh) / 2;
786 }
787
788 static unsigned long hard_dirty_limit(struct wb_domain *dom,
789                                       unsigned long thresh)
790 {
791         return max(thresh, dom->dirty_limit);
792 }
793
794 /*
795  * Memory which can be further allocated to a memcg domain is capped by
796  * system-wide clean memory excluding the amount being used in the domain.
797  */
798 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
799                             unsigned long filepages, unsigned long headroom)
800 {
801         struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
802         unsigned long clean = filepages - min(filepages, mdtc->dirty);
803         unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
804         unsigned long other_clean = global_clean - min(global_clean, clean);
805
806         mdtc->avail = filepages + min(headroom, other_clean);
807 }
808
809 /**
810  * __wb_calc_thresh - @wb's share of dirty throttling threshold
811  * @dtc: dirty_throttle_context of interest
812  *
813  * Note that balance_dirty_pages() will only seriously take it as a hard limit
814  * when sleeping max_pause per page is not enough to keep the dirty pages under
815  * control. For example, when the device is completely stalled due to some error
816  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
817  * In the other normal situations, it acts more gently by throttling the tasks
818  * more (rather than completely block them) when the wb dirty pages go high.
819  *
820  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
821  * - starving fast devices
822  * - piling up dirty pages (that will take long time to sync) on slow devices
823  *
824  * The wb's share of dirty limit will be adapting to its throughput and
825  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
826  *
827  * Return: @wb's dirty limit in pages. The term "dirty" in the context of
828  * dirty balancing includes all PG_dirty and PG_writeback pages.
829  */
830 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
831 {
832         struct wb_domain *dom = dtc_dom(dtc);
833         unsigned long thresh = dtc->thresh;
834         u64 wb_thresh;
835         unsigned long numerator, denominator;
836         unsigned long wb_min_ratio, wb_max_ratio;
837
838         /*
839          * Calculate this BDI's share of the thresh ratio.
840          */
841         fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
842                               &numerator, &denominator);
843
844         wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
845         wb_thresh *= numerator;
846         wb_thresh = div64_ul(wb_thresh, denominator);
847
848         wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
849
850         wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
851         if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE))
852                 wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
853
854         return wb_thresh;
855 }
856
857 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
858 {
859         struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
860                                                .thresh = thresh };
861         return __wb_calc_thresh(&gdtc);
862 }
863
864 /*
865  *                           setpoint - dirty 3
866  *        f(dirty) := 1.0 + (----------------)
867  *                           limit - setpoint
868  *
869  * it's a 3rd order polynomial that subjects to
870  *
871  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
872  * (2) f(setpoint) = 1.0 => the balance point
873  * (3) f(limit)    = 0   => the hard limit
874  * (4) df/dx      <= 0   => negative feedback control
875  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
876  *     => fast response on large errors; small oscillation near setpoint
877  */
878 static long long pos_ratio_polynom(unsigned long setpoint,
879                                           unsigned long dirty,
880                                           unsigned long limit)
881 {
882         long long pos_ratio;
883         long x;
884
885         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
886                       (limit - setpoint) | 1);
887         pos_ratio = x;
888         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
889         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
890         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
891
892         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
893 }
894
895 /*
896  * Dirty position control.
897  *
898  * (o) global/bdi setpoints
899  *
900  * We want the dirty pages be balanced around the global/wb setpoints.
901  * When the number of dirty pages is higher/lower than the setpoint, the
902  * dirty position control ratio (and hence task dirty ratelimit) will be
903  * decreased/increased to bring the dirty pages back to the setpoint.
904  *
905  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
906  *
907  *     if (dirty < setpoint) scale up   pos_ratio
908  *     if (dirty > setpoint) scale down pos_ratio
909  *
910  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
911  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
912  *
913  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
914  *
915  * (o) global control line
916  *
917  *     ^ pos_ratio
918  *     |
919  *     |            |<===== global dirty control scope ======>|
920  * 2.0  * * * * * * *
921  *     |            .*
922  *     |            . *
923  *     |            .   *
924  *     |            .     *
925  *     |            .        *
926  *     |            .            *
927  * 1.0 ................................*
928  *     |            .                  .     *
929  *     |            .                  .          *
930  *     |            .                  .              *
931  *     |            .                  .                 *
932  *     |            .                  .                    *
933  *   0 +------------.------------------.----------------------*------------->
934  *           freerun^          setpoint^                 limit^   dirty pages
935  *
936  * (o) wb control line
937  *
938  *     ^ pos_ratio
939  *     |
940  *     |            *
941  *     |              *
942  *     |                *
943  *     |                  *
944  *     |                    * |<=========== span ============>|
945  * 1.0 .......................*
946  *     |                      . *
947  *     |                      .   *
948  *     |                      .     *
949  *     |                      .       *
950  *     |                      .         *
951  *     |                      .           *
952  *     |                      .             *
953  *     |                      .               *
954  *     |                      .                 *
955  *     |                      .                   *
956  *     |                      .                     *
957  * 1/4 ...............................................* * * * * * * * * * * *
958  *     |                      .                         .
959  *     |                      .                           .
960  *     |                      .                             .
961  *   0 +----------------------.-------------------------------.------------->
962  *                wb_setpoint^                    x_intercept^
963  *
964  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
965  * be smoothly throttled down to normal if it starts high in situations like
966  * - start writing to a slow SD card and a fast disk at the same time. The SD
967  *   card's wb_dirty may rush to many times higher than wb_setpoint.
968  * - the wb dirty thresh drops quickly due to change of JBOD workload
969  */
970 static void wb_position_ratio(struct dirty_throttle_control *dtc)
971 {
972         struct bdi_writeback *wb = dtc->wb;
973         unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
974         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
975         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
976         unsigned long wb_thresh = dtc->wb_thresh;
977         unsigned long x_intercept;
978         unsigned long setpoint;         /* dirty pages' target balance point */
979         unsigned long wb_setpoint;
980         unsigned long span;
981         long long pos_ratio;            /* for scaling up/down the rate limit */
982         long x;
983
984         dtc->pos_ratio = 0;
985
986         if (unlikely(dtc->dirty >= limit))
987                 return;
988
989         /*
990          * global setpoint
991          *
992          * See comment for pos_ratio_polynom().
993          */
994         setpoint = (freerun + limit) / 2;
995         pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
996
997         /*
998          * The strictlimit feature is a tool preventing mistrusted filesystems
999          * from growing a large number of dirty pages before throttling. For
1000          * such filesystems balance_dirty_pages always checks wb counters
1001          * against wb limits. Even if global "nr_dirty" is under "freerun".
1002          * This is especially important for fuse which sets bdi->max_ratio to
1003          * 1% by default. Without strictlimit feature, fuse writeback may
1004          * consume arbitrary amount of RAM because it is accounted in
1005          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
1006          *
1007          * Here, in wb_position_ratio(), we calculate pos_ratio based on
1008          * two values: wb_dirty and wb_thresh. Let's consider an example:
1009          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1010          * limits are set by default to 10% and 20% (background and throttle).
1011          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
1012          * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
1013          * about ~6K pages (as the average of background and throttle wb
1014          * limits). The 3rd order polynomial will provide positive feedback if
1015          * wb_dirty is under wb_setpoint and vice versa.
1016          *
1017          * Note, that we cannot use global counters in these calculations
1018          * because we want to throttle process writing to a strictlimit wb
1019          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1020          * in the example above).
1021          */
1022         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1023                 long long wb_pos_ratio;
1024
1025                 if (dtc->wb_dirty < 8) {
1026                         dtc->pos_ratio = min_t(long long, pos_ratio * 2,
1027                                            2 << RATELIMIT_CALC_SHIFT);
1028                         return;
1029                 }
1030
1031                 if (dtc->wb_dirty >= wb_thresh)
1032                         return;
1033
1034                 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1035                                                     dtc->wb_bg_thresh);
1036
1037                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
1038                         return;
1039
1040                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
1041                                                  wb_thresh);
1042
1043                 /*
1044                  * Typically, for strictlimit case, wb_setpoint << setpoint
1045                  * and pos_ratio >> wb_pos_ratio. In the other words global
1046                  * state ("dirty") is not limiting factor and we have to
1047                  * make decision based on wb counters. But there is an
1048                  * important case when global pos_ratio should get precedence:
1049                  * global limits are exceeded (e.g. due to activities on other
1050                  * wb's) while given strictlimit wb is below limit.
1051                  *
1052                  * "pos_ratio * wb_pos_ratio" would work for the case above,
1053                  * but it would look too non-natural for the case of all
1054                  * activity in the system coming from a single strictlimit wb
1055                  * with bdi->max_ratio == 100%.
1056                  *
1057                  * Note that min() below somewhat changes the dynamics of the
1058                  * control system. Normally, pos_ratio value can be well over 3
1059                  * (when globally we are at freerun and wb is well below wb
1060                  * setpoint). Now the maximum pos_ratio in the same situation
1061                  * is 2. We might want to tweak this if we observe the control
1062                  * system is too slow to adapt.
1063                  */
1064                 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1065                 return;
1066         }
1067
1068         /*
1069          * We have computed basic pos_ratio above based on global situation. If
1070          * the wb is over/under its share of dirty pages, we want to scale
1071          * pos_ratio further down/up. That is done by the following mechanism.
1072          */
1073
1074         /*
1075          * wb setpoint
1076          *
1077          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1078          *
1079          *                        x_intercept - wb_dirty
1080          *                     := --------------------------
1081          *                        x_intercept - wb_setpoint
1082          *
1083          * The main wb control line is a linear function that subjects to
1084          *
1085          * (1) f(wb_setpoint) = 1.0
1086          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1087          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1088          *
1089          * For single wb case, the dirty pages are observed to fluctuate
1090          * regularly within range
1091          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1092          * for various filesystems, where (2) can yield in a reasonable 12.5%
1093          * fluctuation range for pos_ratio.
1094          *
1095          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1096          * own size, so move the slope over accordingly and choose a slope that
1097          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1098          */
1099         if (unlikely(wb_thresh > dtc->thresh))
1100                 wb_thresh = dtc->thresh;
1101         /*
1102          * It's very possible that wb_thresh is close to 0 not because the
1103          * device is slow, but that it has remained inactive for long time.
1104          * Honour such devices a reasonable good (hopefully IO efficient)
1105          * threshold, so that the occasional writes won't be blocked and active
1106          * writes can rampup the threshold quickly.
1107          */
1108         wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1109         /*
1110          * scale global setpoint to wb's:
1111          *      wb_setpoint = setpoint * wb_thresh / thresh
1112          */
1113         x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1114         wb_setpoint = setpoint * (u64)x >> 16;
1115         /*
1116          * Use span=(8*write_bw) in single wb case as indicated by
1117          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1118          *
1119          *        wb_thresh                    thresh - wb_thresh
1120          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1121          *         thresh                           thresh
1122          */
1123         span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1124         x_intercept = wb_setpoint + span;
1125
1126         if (dtc->wb_dirty < x_intercept - span / 4) {
1127                 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1128                                       (x_intercept - wb_setpoint) | 1);
1129         } else
1130                 pos_ratio /= 4;
1131
1132         /*
1133          * wb reserve area, safeguard against dirty pool underrun and disk idle
1134          * It may push the desired control point of global dirty pages higher
1135          * than setpoint.
1136          */
1137         x_intercept = wb_thresh / 2;
1138         if (dtc->wb_dirty < x_intercept) {
1139                 if (dtc->wb_dirty > x_intercept / 8)
1140                         pos_ratio = div_u64(pos_ratio * x_intercept,
1141                                             dtc->wb_dirty);
1142                 else
1143                         pos_ratio *= 8;
1144         }
1145
1146         dtc->pos_ratio = pos_ratio;
1147 }
1148
1149 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1150                                       unsigned long elapsed,
1151                                       unsigned long written)
1152 {
1153         const unsigned long period = roundup_pow_of_two(3 * HZ);
1154         unsigned long avg = wb->avg_write_bandwidth;
1155         unsigned long old = wb->write_bandwidth;
1156         u64 bw;
1157
1158         /*
1159          * bw = written * HZ / elapsed
1160          *
1161          *                   bw * elapsed + write_bandwidth * (period - elapsed)
1162          * write_bandwidth = ---------------------------------------------------
1163          *                                          period
1164          *
1165          * @written may have decreased due to folio_account_redirty().
1166          * Avoid underflowing @bw calculation.
1167          */
1168         bw = written - min(written, wb->written_stamp);
1169         bw *= HZ;
1170         if (unlikely(elapsed > period)) {
1171                 bw = div64_ul(bw, elapsed);
1172                 avg = bw;
1173                 goto out;
1174         }
1175         bw += (u64)wb->write_bandwidth * (period - elapsed);
1176         bw >>= ilog2(period);
1177
1178         /*
1179          * one more level of smoothing, for filtering out sudden spikes
1180          */
1181         if (avg > old && old >= (unsigned long)bw)
1182                 avg -= (avg - old) >> 3;
1183
1184         if (avg < old && old <= (unsigned long)bw)
1185                 avg += (old - avg) >> 3;
1186
1187 out:
1188         /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1189         avg = max(avg, 1LU);
1190         if (wb_has_dirty_io(wb)) {
1191                 long delta = avg - wb->avg_write_bandwidth;
1192                 WARN_ON_ONCE(atomic_long_add_return(delta,
1193                                         &wb->bdi->tot_write_bandwidth) <= 0);
1194         }
1195         wb->write_bandwidth = bw;
1196         WRITE_ONCE(wb->avg_write_bandwidth, avg);
1197 }
1198
1199 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1200 {
1201         struct wb_domain *dom = dtc_dom(dtc);
1202         unsigned long thresh = dtc->thresh;
1203         unsigned long limit = dom->dirty_limit;
1204
1205         /*
1206          * Follow up in one step.
1207          */
1208         if (limit < thresh) {
1209                 limit = thresh;
1210                 goto update;
1211         }
1212
1213         /*
1214          * Follow down slowly. Use the higher one as the target, because thresh
1215          * may drop below dirty. This is exactly the reason to introduce
1216          * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1217          */
1218         thresh = max(thresh, dtc->dirty);
1219         if (limit > thresh) {
1220                 limit -= (limit - thresh) >> 5;
1221                 goto update;
1222         }
1223         return;
1224 update:
1225         dom->dirty_limit = limit;
1226 }
1227
1228 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1229                                       unsigned long now)
1230 {
1231         struct wb_domain *dom = dtc_dom(dtc);
1232
1233         /*
1234          * check locklessly first to optimize away locking for the most time
1235          */
1236         if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1237                 return;
1238
1239         spin_lock(&dom->lock);
1240         if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1241                 update_dirty_limit(dtc);
1242                 dom->dirty_limit_tstamp = now;
1243         }
1244         spin_unlock(&dom->lock);
1245 }
1246
1247 /*
1248  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1249  *
1250  * Normal wb tasks will be curbed at or below it in long term.
1251  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1252  */
1253 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1254                                       unsigned long dirtied,
1255                                       unsigned long elapsed)
1256 {
1257         struct bdi_writeback *wb = dtc->wb;
1258         unsigned long dirty = dtc->dirty;
1259         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1260         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1261         unsigned long setpoint = (freerun + limit) / 2;
1262         unsigned long write_bw = wb->avg_write_bandwidth;
1263         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1264         unsigned long dirty_rate;
1265         unsigned long task_ratelimit;
1266         unsigned long balanced_dirty_ratelimit;
1267         unsigned long step;
1268         unsigned long x;
1269         unsigned long shift;
1270
1271         /*
1272          * The dirty rate will match the writeout rate in long term, except
1273          * when dirty pages are truncated by userspace or re-dirtied by FS.
1274          */
1275         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1276
1277         /*
1278          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1279          */
1280         task_ratelimit = (u64)dirty_ratelimit *
1281                                         dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1282         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1283
1284         /*
1285          * A linear estimation of the "balanced" throttle rate. The theory is,
1286          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1287          * dirty_rate will be measured to be (N * task_ratelimit). So the below
1288          * formula will yield the balanced rate limit (write_bw / N).
1289          *
1290          * Note that the expanded form is not a pure rate feedback:
1291          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1292          * but also takes pos_ratio into account:
1293          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1294          *
1295          * (1) is not realistic because pos_ratio also takes part in balancing
1296          * the dirty rate.  Consider the state
1297          *      pos_ratio = 0.5                                              (3)
1298          *      rate = 2 * (write_bw / N)                                    (4)
1299          * If (1) is used, it will stuck in that state! Because each dd will
1300          * be throttled at
1301          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1302          * yielding
1303          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1304          * put (6) into (1) we get
1305          *      rate_(i+1) = rate_(i)                                        (7)
1306          *
1307          * So we end up using (2) to always keep
1308          *      rate_(i+1) ~= (write_bw / N)                                 (8)
1309          * regardless of the value of pos_ratio. As long as (8) is satisfied,
1310          * pos_ratio is able to drive itself to 1.0, which is not only where
1311          * the dirty count meet the setpoint, but also where the slope of
1312          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1313          */
1314         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1315                                            dirty_rate | 1);
1316         /*
1317          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1318          */
1319         if (unlikely(balanced_dirty_ratelimit > write_bw))
1320                 balanced_dirty_ratelimit = write_bw;
1321
1322         /*
1323          * We could safely do this and return immediately:
1324          *
1325          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1326          *
1327          * However to get a more stable dirty_ratelimit, the below elaborated
1328          * code makes use of task_ratelimit to filter out singular points and
1329          * limit the step size.
1330          *
1331          * The below code essentially only uses the relative value of
1332          *
1333          *      task_ratelimit - dirty_ratelimit
1334          *      = (pos_ratio - 1) * dirty_ratelimit
1335          *
1336          * which reflects the direction and size of dirty position error.
1337          */
1338
1339         /*
1340          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1341          * task_ratelimit is on the same side of dirty_ratelimit, too.
1342          * For example, when
1343          * - dirty_ratelimit > balanced_dirty_ratelimit
1344          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1345          * lowering dirty_ratelimit will help meet both the position and rate
1346          * control targets. Otherwise, don't update dirty_ratelimit if it will
1347          * only help meet the rate target. After all, what the users ultimately
1348          * feel and care are stable dirty rate and small position error.
1349          *
1350          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1351          * and filter out the singular points of balanced_dirty_ratelimit. Which
1352          * keeps jumping around randomly and can even leap far away at times
1353          * due to the small 200ms estimation period of dirty_rate (we want to
1354          * keep that period small to reduce time lags).
1355          */
1356         step = 0;
1357
1358         /*
1359          * For strictlimit case, calculations above were based on wb counters
1360          * and limits (starting from pos_ratio = wb_position_ratio() and up to
1361          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1362          * Hence, to calculate "step" properly, we have to use wb_dirty as
1363          * "dirty" and wb_setpoint as "setpoint".
1364          *
1365          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1366          * it's possible that wb_thresh is close to zero due to inactivity
1367          * of backing device.
1368          */
1369         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1370                 dirty = dtc->wb_dirty;
1371                 if (dtc->wb_dirty < 8)
1372                         setpoint = dtc->wb_dirty + 1;
1373                 else
1374                         setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1375         }
1376
1377         if (dirty < setpoint) {
1378                 x = min3(wb->balanced_dirty_ratelimit,
1379                          balanced_dirty_ratelimit, task_ratelimit);
1380                 if (dirty_ratelimit < x)
1381                         step = x - dirty_ratelimit;
1382         } else {
1383                 x = max3(wb->balanced_dirty_ratelimit,
1384                          balanced_dirty_ratelimit, task_ratelimit);
1385                 if (dirty_ratelimit > x)
1386                         step = dirty_ratelimit - x;
1387         }
1388
1389         /*
1390          * Don't pursue 100% rate matching. It's impossible since the balanced
1391          * rate itself is constantly fluctuating. So decrease the track speed
1392          * when it gets close to the target. Helps eliminate pointless tremors.
1393          */
1394         shift = dirty_ratelimit / (2 * step + 1);
1395         if (shift < BITS_PER_LONG)
1396                 step = DIV_ROUND_UP(step >> shift, 8);
1397         else
1398                 step = 0;
1399
1400         if (dirty_ratelimit < balanced_dirty_ratelimit)
1401                 dirty_ratelimit += step;
1402         else
1403                 dirty_ratelimit -= step;
1404
1405         WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1406         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1407
1408         trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1409 }
1410
1411 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1412                                   struct dirty_throttle_control *mdtc,
1413                                   bool update_ratelimit)
1414 {
1415         struct bdi_writeback *wb = gdtc->wb;
1416         unsigned long now = jiffies;
1417         unsigned long elapsed;
1418         unsigned long dirtied;
1419         unsigned long written;
1420
1421         spin_lock(&wb->list_lock);
1422
1423         /*
1424          * Lockless checks for elapsed time are racy and delayed update after
1425          * IO completion doesn't do it at all (to make sure written pages are
1426          * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1427          * division errors.
1428          */
1429         elapsed = max(now - wb->bw_time_stamp, 1UL);
1430         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1431         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1432
1433         if (update_ratelimit) {
1434                 domain_update_dirty_limit(gdtc, now);
1435                 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1436
1437                 /*
1438                  * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1439                  * compiler has no way to figure that out.  Help it.
1440                  */
1441                 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1442                         domain_update_dirty_limit(mdtc, now);
1443                         wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1444                 }
1445         }
1446         wb_update_write_bandwidth(wb, elapsed, written);
1447
1448         wb->dirtied_stamp = dirtied;
1449         wb->written_stamp = written;
1450         WRITE_ONCE(wb->bw_time_stamp, now);
1451         spin_unlock(&wb->list_lock);
1452 }
1453
1454 void wb_update_bandwidth(struct bdi_writeback *wb)
1455 {
1456         struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1457
1458         __wb_update_bandwidth(&gdtc, NULL, false);
1459 }
1460
1461 /* Interval after which we consider wb idle and don't estimate bandwidth */
1462 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1463
1464 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1465 {
1466         unsigned long now = jiffies;
1467         unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1468
1469         if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1470             !atomic_read(&wb->writeback_inodes)) {
1471                 spin_lock(&wb->list_lock);
1472                 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1473                 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1474                 WRITE_ONCE(wb->bw_time_stamp, now);
1475                 spin_unlock(&wb->list_lock);
1476         }
1477 }
1478
1479 /*
1480  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1481  * will look to see if it needs to start dirty throttling.
1482  *
1483  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1484  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1485  * (the number of pages we may dirty without exceeding the dirty limits).
1486  */
1487 static unsigned long dirty_poll_interval(unsigned long dirty,
1488                                          unsigned long thresh)
1489 {
1490         if (thresh > dirty)
1491                 return 1UL << (ilog2(thresh - dirty) >> 1);
1492
1493         return 1;
1494 }
1495
1496 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1497                                   unsigned long wb_dirty)
1498 {
1499         unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1500         unsigned long t;
1501
1502         /*
1503          * Limit pause time for small memory systems. If sleeping for too long
1504          * time, a small pool of dirty/writeback pages may go empty and disk go
1505          * idle.
1506          *
1507          * 8 serves as the safety ratio.
1508          */
1509         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1510         t++;
1511
1512         return min_t(unsigned long, t, MAX_PAUSE);
1513 }
1514
1515 static long wb_min_pause(struct bdi_writeback *wb,
1516                          long max_pause,
1517                          unsigned long task_ratelimit,
1518                          unsigned long dirty_ratelimit,
1519                          int *nr_dirtied_pause)
1520 {
1521         long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1522         long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1523         long t;         /* target pause */
1524         long pause;     /* estimated next pause */
1525         int pages;      /* target nr_dirtied_pause */
1526
1527         /* target for 10ms pause on 1-dd case */
1528         t = max(1, HZ / 100);
1529
1530         /*
1531          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1532          * overheads.
1533          *
1534          * (N * 10ms) on 2^N concurrent tasks.
1535          */
1536         if (hi > lo)
1537                 t += (hi - lo) * (10 * HZ) / 1024;
1538
1539         /*
1540          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1541          * on the much more stable dirty_ratelimit. However the next pause time
1542          * will be computed based on task_ratelimit and the two rate limits may
1543          * depart considerably at some time. Especially if task_ratelimit goes
1544          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1545          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1546          * result task_ratelimit won't be executed faithfully, which could
1547          * eventually bring down dirty_ratelimit.
1548          *
1549          * We apply two rules to fix it up:
1550          * 1) try to estimate the next pause time and if necessary, use a lower
1551          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1552          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1553          * 2) limit the target pause time to max_pause/2, so that the normal
1554          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1555          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1556          */
1557         t = min(t, 1 + max_pause / 2);
1558         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1559
1560         /*
1561          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1562          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1563          * When the 16 consecutive reads are often interrupted by some dirty
1564          * throttling pause during the async writes, cfq will go into idles
1565          * (deadline is fine). So push nr_dirtied_pause as high as possible
1566          * until reaches DIRTY_POLL_THRESH=32 pages.
1567          */
1568         if (pages < DIRTY_POLL_THRESH) {
1569                 t = max_pause;
1570                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1571                 if (pages > DIRTY_POLL_THRESH) {
1572                         pages = DIRTY_POLL_THRESH;
1573                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1574                 }
1575         }
1576
1577         pause = HZ * pages / (task_ratelimit + 1);
1578         if (pause > max_pause) {
1579                 t = max_pause;
1580                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1581         }
1582
1583         *nr_dirtied_pause = pages;
1584         /*
1585          * The minimal pause time will normally be half the target pause time.
1586          */
1587         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1588 }
1589
1590 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1591 {
1592         struct bdi_writeback *wb = dtc->wb;
1593         unsigned long wb_reclaimable;
1594
1595         /*
1596          * wb_thresh is not treated as some limiting factor as
1597          * dirty_thresh, due to reasons
1598          * - in JBOD setup, wb_thresh can fluctuate a lot
1599          * - in a system with HDD and USB key, the USB key may somehow
1600          *   go into state (wb_dirty >> wb_thresh) either because
1601          *   wb_dirty starts high, or because wb_thresh drops low.
1602          *   In this case we don't want to hard throttle the USB key
1603          *   dirtiers for 100 seconds until wb_dirty drops under
1604          *   wb_thresh. Instead the auxiliary wb control line in
1605          *   wb_position_ratio() will let the dirtier task progress
1606          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1607          */
1608         dtc->wb_thresh = __wb_calc_thresh(dtc);
1609         dtc->wb_bg_thresh = dtc->thresh ?
1610                 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1611
1612         /*
1613          * In order to avoid the stacked BDI deadlock we need
1614          * to ensure we accurately count the 'dirty' pages when
1615          * the threshold is low.
1616          *
1617          * Otherwise it would be possible to get thresh+n pages
1618          * reported dirty, even though there are thresh-m pages
1619          * actually dirty; with m+n sitting in the percpu
1620          * deltas.
1621          */
1622         if (dtc->wb_thresh < 2 * wb_stat_error()) {
1623                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1624                 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1625         } else {
1626                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1627                 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1628         }
1629 }
1630
1631 /*
1632  * balance_dirty_pages() must be called by processes which are generating dirty
1633  * data.  It looks at the number of dirty pages in the machine and will force
1634  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1635  * If we're over `background_thresh' then the writeback threads are woken to
1636  * perform some writeout.
1637  */
1638 static int balance_dirty_pages(struct bdi_writeback *wb,
1639                                unsigned long pages_dirtied, unsigned int flags)
1640 {
1641         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1642         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1643         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1644         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1645                                                      &mdtc_stor : NULL;
1646         struct dirty_throttle_control *sdtc;
1647         unsigned long nr_reclaimable;   /* = file_dirty */
1648         long period;
1649         long pause;
1650         long max_pause;
1651         long min_pause;
1652         int nr_dirtied_pause;
1653         bool dirty_exceeded = false;
1654         unsigned long task_ratelimit;
1655         unsigned long dirty_ratelimit;
1656         struct backing_dev_info *bdi = wb->bdi;
1657         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1658         unsigned long start_time = jiffies;
1659         int ret = 0;
1660
1661         for (;;) {
1662                 unsigned long now = jiffies;
1663                 unsigned long dirty, thresh, bg_thresh;
1664                 unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1665                 unsigned long m_thresh = 0;
1666                 unsigned long m_bg_thresh = 0;
1667
1668                 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1669                 gdtc->avail = global_dirtyable_memory();
1670                 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1671
1672                 domain_dirty_limits(gdtc);
1673
1674                 if (unlikely(strictlimit)) {
1675                         wb_dirty_limits(gdtc);
1676
1677                         dirty = gdtc->wb_dirty;
1678                         thresh = gdtc->wb_thresh;
1679                         bg_thresh = gdtc->wb_bg_thresh;
1680                 } else {
1681                         dirty = gdtc->dirty;
1682                         thresh = gdtc->thresh;
1683                         bg_thresh = gdtc->bg_thresh;
1684                 }
1685
1686                 if (mdtc) {
1687                         unsigned long filepages, headroom, writeback;
1688
1689                         /*
1690                          * If @wb belongs to !root memcg, repeat the same
1691                          * basic calculations for the memcg domain.
1692                          */
1693                         mem_cgroup_wb_stats(wb, &filepages, &headroom,
1694                                             &mdtc->dirty, &writeback);
1695                         mdtc->dirty += writeback;
1696                         mdtc_calc_avail(mdtc, filepages, headroom);
1697
1698                         domain_dirty_limits(mdtc);
1699
1700                         if (unlikely(strictlimit)) {
1701                                 wb_dirty_limits(mdtc);
1702                                 m_dirty = mdtc->wb_dirty;
1703                                 m_thresh = mdtc->wb_thresh;
1704                                 m_bg_thresh = mdtc->wb_bg_thresh;
1705                         } else {
1706                                 m_dirty = mdtc->dirty;
1707                                 m_thresh = mdtc->thresh;
1708                                 m_bg_thresh = mdtc->bg_thresh;
1709                         }
1710                 }
1711
1712                 /*
1713                  * In laptop mode, we wait until hitting the higher threshold
1714                  * before starting background writeout, and then write out all
1715                  * the way down to the lower threshold.  So slow writers cause
1716                  * minimal disk activity.
1717                  *
1718                  * In normal mode, we start background writeout at the lower
1719                  * background_thresh, to keep the amount of dirty memory low.
1720                  */
1721                 if (!laptop_mode && nr_reclaimable > gdtc->bg_thresh &&
1722                     !writeback_in_progress(wb))
1723                         wb_start_background_writeback(wb);
1724
1725                 /*
1726                  * Throttle it only when the background writeback cannot
1727                  * catch-up. This avoids (excessively) small writeouts
1728                  * when the wb limits are ramping up in case of !strictlimit.
1729                  *
1730                  * In strictlimit case make decision based on the wb counters
1731                  * and limits. Small writeouts when the wb limits are ramping
1732                  * up are the price we consciously pay for strictlimit-ing.
1733                  *
1734                  * If memcg domain is in effect, @dirty should be under
1735                  * both global and memcg freerun ceilings.
1736                  */
1737                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1738                     (!mdtc ||
1739                      m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1740                         unsigned long intv;
1741                         unsigned long m_intv;
1742
1743 free_running:
1744                         intv = dirty_poll_interval(dirty, thresh);
1745                         m_intv = ULONG_MAX;
1746
1747                         current->dirty_paused_when = now;
1748                         current->nr_dirtied = 0;
1749                         if (mdtc)
1750                                 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1751                         current->nr_dirtied_pause = min(intv, m_intv);
1752                         break;
1753                 }
1754
1755                 /* Start writeback even when in laptop mode */
1756                 if (unlikely(!writeback_in_progress(wb)))
1757                         wb_start_background_writeback(wb);
1758
1759                 mem_cgroup_flush_foreign(wb);
1760
1761                 /*
1762                  * Calculate global domain's pos_ratio and select the
1763                  * global dtc by default.
1764                  */
1765                 if (!strictlimit) {
1766                         wb_dirty_limits(gdtc);
1767
1768                         if ((current->flags & PF_LOCAL_THROTTLE) &&
1769                             gdtc->wb_dirty <
1770                             dirty_freerun_ceiling(gdtc->wb_thresh,
1771                                                   gdtc->wb_bg_thresh))
1772                                 /*
1773                                  * LOCAL_THROTTLE tasks must not be throttled
1774                                  * when below the per-wb freerun ceiling.
1775                                  */
1776                                 goto free_running;
1777                 }
1778
1779                 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1780                         ((gdtc->dirty > gdtc->thresh) || strictlimit);
1781
1782                 wb_position_ratio(gdtc);
1783                 sdtc = gdtc;
1784
1785                 if (mdtc) {
1786                         /*
1787                          * If memcg domain is in effect, calculate its
1788                          * pos_ratio.  @wb should satisfy constraints from
1789                          * both global and memcg domains.  Choose the one
1790                          * w/ lower pos_ratio.
1791                          */
1792                         if (!strictlimit) {
1793                                 wb_dirty_limits(mdtc);
1794
1795                                 if ((current->flags & PF_LOCAL_THROTTLE) &&
1796                                     mdtc->wb_dirty <
1797                                     dirty_freerun_ceiling(mdtc->wb_thresh,
1798                                                           mdtc->wb_bg_thresh))
1799                                         /*
1800                                          * LOCAL_THROTTLE tasks must not be
1801                                          * throttled when below the per-wb
1802                                          * freerun ceiling.
1803                                          */
1804                                         goto free_running;
1805                         }
1806                         dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1807                                 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1808
1809                         wb_position_ratio(mdtc);
1810                         if (mdtc->pos_ratio < gdtc->pos_ratio)
1811                                 sdtc = mdtc;
1812                 }
1813
1814                 if (dirty_exceeded != wb->dirty_exceeded)
1815                         wb->dirty_exceeded = dirty_exceeded;
1816
1817                 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1818                                            BANDWIDTH_INTERVAL))
1819                         __wb_update_bandwidth(gdtc, mdtc, true);
1820
1821                 /* throttle according to the chosen dtc */
1822                 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1823                 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1824                                                         RATELIMIT_CALC_SHIFT;
1825                 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1826                 min_pause = wb_min_pause(wb, max_pause,
1827                                          task_ratelimit, dirty_ratelimit,
1828                                          &nr_dirtied_pause);
1829
1830                 if (unlikely(task_ratelimit == 0)) {
1831                         period = max_pause;
1832                         pause = max_pause;
1833                         goto pause;
1834                 }
1835                 period = HZ * pages_dirtied / task_ratelimit;
1836                 pause = period;
1837                 if (current->dirty_paused_when)
1838                         pause -= now - current->dirty_paused_when;
1839                 /*
1840                  * For less than 1s think time (ext3/4 may block the dirtier
1841                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1842                  * however at much less frequency), try to compensate it in
1843                  * future periods by updating the virtual time; otherwise just
1844                  * do a reset, as it may be a light dirtier.
1845                  */
1846                 if (pause < min_pause) {
1847                         trace_balance_dirty_pages(wb,
1848                                                   sdtc->thresh,
1849                                                   sdtc->bg_thresh,
1850                                                   sdtc->dirty,
1851                                                   sdtc->wb_thresh,
1852                                                   sdtc->wb_dirty,
1853                                                   dirty_ratelimit,
1854                                                   task_ratelimit,
1855                                                   pages_dirtied,
1856                                                   period,
1857                                                   min(pause, 0L),
1858                                                   start_time);
1859                         if (pause < -HZ) {
1860                                 current->dirty_paused_when = now;
1861                                 current->nr_dirtied = 0;
1862                         } else if (period) {
1863                                 current->dirty_paused_when += period;
1864                                 current->nr_dirtied = 0;
1865                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1866                                 current->nr_dirtied_pause += pages_dirtied;
1867                         break;
1868                 }
1869                 if (unlikely(pause > max_pause)) {
1870                         /* for occasional dropped task_ratelimit */
1871                         now += min(pause - max_pause, max_pause);
1872                         pause = max_pause;
1873                 }
1874
1875 pause:
1876                 trace_balance_dirty_pages(wb,
1877                                           sdtc->thresh,
1878                                           sdtc->bg_thresh,
1879                                           sdtc->dirty,
1880                                           sdtc->wb_thresh,
1881                                           sdtc->wb_dirty,
1882                                           dirty_ratelimit,
1883                                           task_ratelimit,
1884                                           pages_dirtied,
1885                                           period,
1886                                           pause,
1887                                           start_time);
1888                 if (flags & BDP_ASYNC) {
1889                         ret = -EAGAIN;
1890                         break;
1891                 }
1892                 __set_current_state(TASK_KILLABLE);
1893                 wb->dirty_sleep = now;
1894                 io_schedule_timeout(pause);
1895
1896                 current->dirty_paused_when = now + pause;
1897                 current->nr_dirtied = 0;
1898                 current->nr_dirtied_pause = nr_dirtied_pause;
1899
1900                 /*
1901                  * This is typically equal to (dirty < thresh) and can also
1902                  * keep "1000+ dd on a slow USB stick" under control.
1903                  */
1904                 if (task_ratelimit)
1905                         break;
1906
1907                 /*
1908                  * In the case of an unresponsive NFS server and the NFS dirty
1909                  * pages exceeds dirty_thresh, give the other good wb's a pipe
1910                  * to go through, so that tasks on them still remain responsive.
1911                  *
1912                  * In theory 1 page is enough to keep the consumer-producer
1913                  * pipe going: the flusher cleans 1 page => the task dirties 1
1914                  * more page. However wb_dirty has accounting errors.  So use
1915                  * the larger and more IO friendly wb_stat_error.
1916                  */
1917                 if (sdtc->wb_dirty <= wb_stat_error())
1918                         break;
1919
1920                 if (fatal_signal_pending(current))
1921                         break;
1922         }
1923         return ret;
1924 }
1925
1926 static DEFINE_PER_CPU(int, bdp_ratelimits);
1927
1928 /*
1929  * Normal tasks are throttled by
1930  *      loop {
1931  *              dirty tsk->nr_dirtied_pause pages;
1932  *              take a snap in balance_dirty_pages();
1933  *      }
1934  * However there is a worst case. If every task exit immediately when dirtied
1935  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1936  * called to throttle the page dirties. The solution is to save the not yet
1937  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1938  * randomly into the running tasks. This works well for the above worst case,
1939  * as the new task will pick up and accumulate the old task's leaked dirty
1940  * count and eventually get throttled.
1941  */
1942 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1943
1944 /**
1945  * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
1946  * @mapping: address_space which was dirtied.
1947  * @flags: BDP flags.
1948  *
1949  * Processes which are dirtying memory should call in here once for each page
1950  * which was newly dirtied.  The function will periodically check the system's
1951  * dirty state and will initiate writeback if needed.
1952  *
1953  * See balance_dirty_pages_ratelimited() for details.
1954  *
1955  * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
1956  * indicate that memory is out of balance and the caller must wait
1957  * for I/O to complete.  Otherwise, it will return 0 to indicate
1958  * that either memory was already in balance, or it was able to sleep
1959  * until the amount of dirty memory returned to balance.
1960  */
1961 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
1962                                         unsigned int flags)
1963 {
1964         struct inode *inode = mapping->host;
1965         struct backing_dev_info *bdi = inode_to_bdi(inode);
1966         struct bdi_writeback *wb = NULL;
1967         int ratelimit;
1968         int ret = 0;
1969         int *p;
1970
1971         if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
1972                 return ret;
1973
1974         if (inode_cgwb_enabled(inode))
1975                 wb = wb_get_create_current(bdi, GFP_KERNEL);
1976         if (!wb)
1977                 wb = &bdi->wb;
1978
1979         ratelimit = current->nr_dirtied_pause;
1980         if (wb->dirty_exceeded)
1981                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1982
1983         preempt_disable();
1984         /*
1985          * This prevents one CPU to accumulate too many dirtied pages without
1986          * calling into balance_dirty_pages(), which can happen when there are
1987          * 1000+ tasks, all of them start dirtying pages at exactly the same
1988          * time, hence all honoured too large initial task->nr_dirtied_pause.
1989          */
1990         p =  this_cpu_ptr(&bdp_ratelimits);
1991         if (unlikely(current->nr_dirtied >= ratelimit))
1992                 *p = 0;
1993         else if (unlikely(*p >= ratelimit_pages)) {
1994                 *p = 0;
1995                 ratelimit = 0;
1996         }
1997         /*
1998          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1999          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2000          * the dirty throttling and livelock other long-run dirtiers.
2001          */
2002         p = this_cpu_ptr(&dirty_throttle_leaks);
2003         if (*p > 0 && current->nr_dirtied < ratelimit) {
2004                 unsigned long nr_pages_dirtied;
2005                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2006                 *p -= nr_pages_dirtied;
2007                 current->nr_dirtied += nr_pages_dirtied;
2008         }
2009         preempt_enable();
2010
2011         if (unlikely(current->nr_dirtied >= ratelimit))
2012                 ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
2013
2014         wb_put(wb);
2015         return ret;
2016 }
2017 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
2018
2019 /**
2020  * balance_dirty_pages_ratelimited - balance dirty memory state.
2021  * @mapping: address_space which was dirtied.
2022  *
2023  * Processes which are dirtying memory should call in here once for each page
2024  * which was newly dirtied.  The function will periodically check the system's
2025  * dirty state and will initiate writeback if needed.
2026  *
2027  * Once we're over the dirty memory limit we decrease the ratelimiting
2028  * by a lot, to prevent individual processes from overshooting the limit
2029  * by (ratelimit_pages) each.
2030  */
2031 void balance_dirty_pages_ratelimited(struct address_space *mapping)
2032 {
2033         balance_dirty_pages_ratelimited_flags(mapping, 0);
2034 }
2035 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
2036
2037 /**
2038  * wb_over_bg_thresh - does @wb need to be written back?
2039  * @wb: bdi_writeback of interest
2040  *
2041  * Determines whether background writeback should keep writing @wb or it's
2042  * clean enough.
2043  *
2044  * Return: %true if writeback should continue.
2045  */
2046 bool wb_over_bg_thresh(struct bdi_writeback *wb)
2047 {
2048         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
2049         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2050         struct dirty_throttle_control * const gdtc = &gdtc_stor;
2051         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
2052                                                      &mdtc_stor : NULL;
2053         unsigned long reclaimable;
2054         unsigned long thresh;
2055
2056         /*
2057          * Similar to balance_dirty_pages() but ignores pages being written
2058          * as we're trying to decide whether to put more under writeback.
2059          */
2060         gdtc->avail = global_dirtyable_memory();
2061         gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
2062         domain_dirty_limits(gdtc);
2063
2064         if (gdtc->dirty > gdtc->bg_thresh)
2065                 return true;
2066
2067         thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
2068         if (thresh < 2 * wb_stat_error())
2069                 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2070         else
2071                 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2072
2073         if (reclaimable > thresh)
2074                 return true;
2075
2076         if (mdtc) {
2077                 unsigned long filepages, headroom, writeback;
2078
2079                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
2080                                     &writeback);
2081                 mdtc_calc_avail(mdtc, filepages, headroom);
2082                 domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
2083
2084                 if (mdtc->dirty > mdtc->bg_thresh)
2085                         return true;
2086
2087                 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
2088                 if (thresh < 2 * wb_stat_error())
2089                         reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2090                 else
2091                         reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2092
2093                 if (reclaimable > thresh)
2094                         return true;
2095         }
2096
2097         return false;
2098 }
2099
2100 #ifdef CONFIG_SYSCTL
2101 /*
2102  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2103  */
2104 static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
2105                 void *buffer, size_t *length, loff_t *ppos)
2106 {
2107         unsigned int old_interval = dirty_writeback_interval;
2108         int ret;
2109
2110         ret = proc_dointvec(table, write, buffer, length, ppos);
2111
2112         /*
2113          * Writing 0 to dirty_writeback_interval will disable periodic writeback
2114          * and a different non-zero value will wakeup the writeback threads.
2115          * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2116          * iterate over all bdis and wbs.
2117          * The reason we do this is to make the change take effect immediately.
2118          */
2119         if (!ret && write && dirty_writeback_interval &&
2120                 dirty_writeback_interval != old_interval)
2121                 wakeup_flusher_threads(WB_REASON_PERIODIC);
2122
2123         return ret;
2124 }
2125 #endif
2126
2127 void laptop_mode_timer_fn(struct timer_list *t)
2128 {
2129         struct backing_dev_info *backing_dev_info =
2130                 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2131
2132         wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2133 }
2134
2135 /*
2136  * We've spun up the disk and we're in laptop mode: schedule writeback
2137  * of all dirty data a few seconds from now.  If the flush is already scheduled
2138  * then push it back - the user is still using the disk.
2139  */
2140 void laptop_io_completion(struct backing_dev_info *info)
2141 {
2142         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2143 }
2144
2145 /*
2146  * We're in laptop mode and we've just synced. The sync's writes will have
2147  * caused another writeback to be scheduled by laptop_io_completion.
2148  * Nothing needs to be written back anymore, so we unschedule the writeback.
2149  */
2150 void laptop_sync_completion(void)
2151 {
2152         struct backing_dev_info *bdi;
2153
2154         rcu_read_lock();
2155
2156         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2157                 del_timer(&bdi->laptop_mode_wb_timer);
2158
2159         rcu_read_unlock();
2160 }
2161
2162 /*
2163  * If ratelimit_pages is too high then we can get into dirty-data overload
2164  * if a large number of processes all perform writes at the same time.
2165  *
2166  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2167  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2168  * thresholds.
2169  */
2170
2171 void writeback_set_ratelimit(void)
2172 {
2173         struct wb_domain *dom = &global_wb_domain;
2174         unsigned long background_thresh;
2175         unsigned long dirty_thresh;
2176
2177         global_dirty_limits(&background_thresh, &dirty_thresh);
2178         dom->dirty_limit = dirty_thresh;
2179         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2180         if (ratelimit_pages < 16)
2181                 ratelimit_pages = 16;
2182 }
2183
2184 static int page_writeback_cpu_online(unsigned int cpu)
2185 {
2186         writeback_set_ratelimit();
2187         return 0;
2188 }
2189
2190 #ifdef CONFIG_SYSCTL
2191
2192 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2193 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2194
2195 static struct ctl_table vm_page_writeback_sysctls[] = {
2196         {
2197                 .procname   = "dirty_background_ratio",
2198                 .data       = &dirty_background_ratio,
2199                 .maxlen     = sizeof(dirty_background_ratio),
2200                 .mode       = 0644,
2201                 .proc_handler   = dirty_background_ratio_handler,
2202                 .extra1     = SYSCTL_ZERO,
2203                 .extra2     = SYSCTL_ONE_HUNDRED,
2204         },
2205         {
2206                 .procname   = "dirty_background_bytes",
2207                 .data       = &dirty_background_bytes,
2208                 .maxlen     = sizeof(dirty_background_bytes),
2209                 .mode       = 0644,
2210                 .proc_handler   = dirty_background_bytes_handler,
2211                 .extra1     = SYSCTL_LONG_ONE,
2212         },
2213         {
2214                 .procname   = "dirty_ratio",
2215                 .data       = &vm_dirty_ratio,
2216                 .maxlen     = sizeof(vm_dirty_ratio),
2217                 .mode       = 0644,
2218                 .proc_handler   = dirty_ratio_handler,
2219                 .extra1     = SYSCTL_ZERO,
2220                 .extra2     = SYSCTL_ONE_HUNDRED,
2221         },
2222         {
2223                 .procname   = "dirty_bytes",
2224                 .data       = &vm_dirty_bytes,
2225                 .maxlen     = sizeof(vm_dirty_bytes),
2226                 .mode       = 0644,
2227                 .proc_handler   = dirty_bytes_handler,
2228                 .extra1     = (void *)&dirty_bytes_min,
2229         },
2230         {
2231                 .procname   = "dirty_writeback_centisecs",
2232                 .data       = &dirty_writeback_interval,
2233                 .maxlen     = sizeof(dirty_writeback_interval),
2234                 .mode       = 0644,
2235                 .proc_handler   = dirty_writeback_centisecs_handler,
2236         },
2237         {
2238                 .procname   = "dirty_expire_centisecs",
2239                 .data       = &dirty_expire_interval,
2240                 .maxlen     = sizeof(dirty_expire_interval),
2241                 .mode       = 0644,
2242                 .proc_handler   = proc_dointvec_minmax,
2243                 .extra1     = SYSCTL_ZERO,
2244         },
2245 #ifdef CONFIG_HIGHMEM
2246         {
2247                 .procname       = "highmem_is_dirtyable",
2248                 .data           = &vm_highmem_is_dirtyable,
2249                 .maxlen         = sizeof(vm_highmem_is_dirtyable),
2250                 .mode           = 0644,
2251                 .proc_handler   = proc_dointvec_minmax,
2252                 .extra1         = SYSCTL_ZERO,
2253                 .extra2         = SYSCTL_ONE,
2254         },
2255 #endif
2256         {
2257                 .procname       = "laptop_mode",
2258                 .data           = &laptop_mode,
2259                 .maxlen         = sizeof(laptop_mode),
2260                 .mode           = 0644,
2261                 .proc_handler   = proc_dointvec_jiffies,
2262         },
2263         {}
2264 };
2265 #endif
2266
2267 /*
2268  * Called early on to tune the page writeback dirty limits.
2269  *
2270  * We used to scale dirty pages according to how total memory
2271  * related to pages that could be allocated for buffers.
2272  *
2273  * However, that was when we used "dirty_ratio" to scale with
2274  * all memory, and we don't do that any more. "dirty_ratio"
2275  * is now applied to total non-HIGHPAGE memory, and as such we can't
2276  * get into the old insane situation any more where we had
2277  * large amounts of dirty pages compared to a small amount of
2278  * non-HIGHMEM memory.
2279  *
2280  * But we might still want to scale the dirty_ratio by how
2281  * much memory the box has..
2282  */
2283 void __init page_writeback_init(void)
2284 {
2285         BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2286
2287         cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2288                           page_writeback_cpu_online, NULL);
2289         cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2290                           page_writeback_cpu_online);
2291 #ifdef CONFIG_SYSCTL
2292         register_sysctl_init("vm", vm_page_writeback_sysctls);
2293 #endif
2294 }
2295
2296 /**
2297  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2298  * @mapping: address space structure to write
2299  * @start: starting page index
2300  * @end: ending page index (inclusive)
2301  *
2302  * This function scans the page range from @start to @end (inclusive) and tags
2303  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2304  * that write_cache_pages (or whoever calls this function) will then use
2305  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2306  * used to avoid livelocking of writeback by a process steadily creating new
2307  * dirty pages in the file (thus it is important for this function to be quick
2308  * so that it can tag pages faster than a dirtying process can create them).
2309  */
2310 void tag_pages_for_writeback(struct address_space *mapping,
2311                              pgoff_t start, pgoff_t end)
2312 {
2313         XA_STATE(xas, &mapping->i_pages, start);
2314         unsigned int tagged = 0;
2315         void *page;
2316
2317         xas_lock_irq(&xas);
2318         xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2319                 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2320                 if (++tagged % XA_CHECK_SCHED)
2321                         continue;
2322
2323                 xas_pause(&xas);
2324                 xas_unlock_irq(&xas);
2325                 cond_resched();
2326                 xas_lock_irq(&xas);
2327         }
2328         xas_unlock_irq(&xas);
2329 }
2330 EXPORT_SYMBOL(tag_pages_for_writeback);
2331
2332 /**
2333  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2334  * @mapping: address space structure to write
2335  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2336  * @writepage: function called for each page
2337  * @data: data passed to writepage function
2338  *
2339  * If a page is already under I/O, write_cache_pages() skips it, even
2340  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2341  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2342  * and msync() need to guarantee that all the data which was dirty at the time
2343  * the call was made get new I/O started against them.  If wbc->sync_mode is
2344  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2345  * existing IO to complete.
2346  *
2347  * To avoid livelocks (when other process dirties new pages), we first tag
2348  * pages which should be written back with TOWRITE tag and only then start
2349  * writing them. For data-integrity sync we have to be careful so that we do
2350  * not miss some pages (e.g., because some other process has cleared TOWRITE
2351  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2352  * by the process clearing the DIRTY tag (and submitting the page for IO).
2353  *
2354  * To avoid deadlocks between range_cyclic writeback and callers that hold
2355  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2356  * we do not loop back to the start of the file. Doing so causes a page
2357  * lock/page writeback access order inversion - we should only ever lock
2358  * multiple pages in ascending page->index order, and looping back to the start
2359  * of the file violates that rule and causes deadlocks.
2360  *
2361  * Return: %0 on success, negative error code otherwise
2362  */
2363 int write_cache_pages(struct address_space *mapping,
2364                       struct writeback_control *wbc, writepage_t writepage,
2365                       void *data)
2366 {
2367         int ret = 0;
2368         int done = 0;
2369         int error;
2370         struct pagevec pvec;
2371         int nr_pages;
2372         pgoff_t index;
2373         pgoff_t end;            /* Inclusive */
2374         pgoff_t done_index;
2375         int range_whole = 0;
2376         xa_mark_t tag;
2377
2378         pagevec_init(&pvec);
2379         if (wbc->range_cyclic) {
2380                 index = mapping->writeback_index; /* prev offset */
2381                 end = -1;
2382         } else {
2383                 index = wbc->range_start >> PAGE_SHIFT;
2384                 end = wbc->range_end >> PAGE_SHIFT;
2385                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2386                         range_whole = 1;
2387         }
2388         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2389                 tag_pages_for_writeback(mapping, index, end);
2390                 tag = PAGECACHE_TAG_TOWRITE;
2391         } else {
2392                 tag = PAGECACHE_TAG_DIRTY;
2393         }
2394         done_index = index;
2395         while (!done && (index <= end)) {
2396                 int i;
2397
2398                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2399                                 tag);
2400                 if (nr_pages == 0)
2401                         break;
2402
2403                 for (i = 0; i < nr_pages; i++) {
2404                         struct page *page = pvec.pages[i];
2405
2406                         done_index = page->index;
2407
2408                         lock_page(page);
2409
2410                         /*
2411                          * Page truncated or invalidated. We can freely skip it
2412                          * then, even for data integrity operations: the page
2413                          * has disappeared concurrently, so there could be no
2414                          * real expectation of this data integrity operation
2415                          * even if there is now a new, dirty page at the same
2416                          * pagecache address.
2417                          */
2418                         if (unlikely(page->mapping != mapping)) {
2419 continue_unlock:
2420                                 unlock_page(page);
2421                                 continue;
2422                         }
2423
2424                         if (!PageDirty(page)) {
2425                                 /* someone wrote it for us */
2426                                 goto continue_unlock;
2427                         }
2428
2429                         if (PageWriteback(page)) {
2430                                 if (wbc->sync_mode != WB_SYNC_NONE)
2431                                         wait_on_page_writeback(page);
2432                                 else
2433                                         goto continue_unlock;
2434                         }
2435
2436                         BUG_ON(PageWriteback(page));
2437                         if (!clear_page_dirty_for_io(page))
2438                                 goto continue_unlock;
2439
2440                         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2441                         error = (*writepage)(page, wbc, data);
2442                         if (unlikely(error)) {
2443                                 /*
2444                                  * Handle errors according to the type of
2445                                  * writeback. There's no need to continue for
2446                                  * background writeback. Just push done_index
2447                                  * past this page so media errors won't choke
2448                                  * writeout for the entire file. For integrity
2449                                  * writeback, we must process the entire dirty
2450                                  * set regardless of errors because the fs may
2451                                  * still have state to clear for each page. In
2452                                  * that case we continue processing and return
2453                                  * the first error.
2454                                  */
2455                                 if (error == AOP_WRITEPAGE_ACTIVATE) {
2456                                         unlock_page(page);
2457                                         error = 0;
2458                                 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2459                                         ret = error;
2460                                         done_index = page->index + 1;
2461                                         done = 1;
2462                                         break;
2463                                 }
2464                                 if (!ret)
2465                                         ret = error;
2466                         }
2467
2468                         /*
2469                          * We stop writing back only if we are not doing
2470                          * integrity sync. In case of integrity sync we have to
2471                          * keep going until we have written all the pages
2472                          * we tagged for writeback prior to entering this loop.
2473                          */
2474                         if (--wbc->nr_to_write <= 0 &&
2475                             wbc->sync_mode == WB_SYNC_NONE) {
2476                                 done = 1;
2477                                 break;
2478                         }
2479                 }
2480                 pagevec_release(&pvec);
2481                 cond_resched();
2482         }
2483
2484         /*
2485          * If we hit the last page and there is more work to be done: wrap
2486          * back the index back to the start of the file for the next
2487          * time we are called.
2488          */
2489         if (wbc->range_cyclic && !done)
2490                 done_index = 0;
2491         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2492                 mapping->writeback_index = done_index;
2493
2494         return ret;
2495 }
2496 EXPORT_SYMBOL(write_cache_pages);
2497
2498 /*
2499  * Function used by generic_writepages to call the real writepage
2500  * function and set the mapping flags on error
2501  */
2502 static int __writepage(struct page *page, struct writeback_control *wbc,
2503                        void *data)
2504 {
2505         struct address_space *mapping = data;
2506         int ret = mapping->a_ops->writepage(page, wbc);
2507         mapping_set_error(mapping, ret);
2508         return ret;
2509 }
2510
2511 /**
2512  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2513  * @mapping: address space structure to write
2514  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2515  *
2516  * This is a library function, which implements the writepages()
2517  * address_space_operation.
2518  *
2519  * Return: %0 on success, negative error code otherwise
2520  */
2521 int generic_writepages(struct address_space *mapping,
2522                        struct writeback_control *wbc)
2523 {
2524         struct blk_plug plug;
2525         int ret;
2526
2527         /* deal with chardevs and other special file */
2528         if (!mapping->a_ops->writepage)
2529                 return 0;
2530
2531         blk_start_plug(&plug);
2532         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2533         blk_finish_plug(&plug);
2534         return ret;
2535 }
2536
2537 EXPORT_SYMBOL(generic_writepages);
2538
2539 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2540 {
2541         int ret;
2542         struct bdi_writeback *wb;
2543
2544         if (wbc->nr_to_write <= 0)
2545                 return 0;
2546         wb = inode_to_wb_wbc(mapping->host, wbc);
2547         wb_bandwidth_estimate_start(wb);
2548         while (1) {
2549                 if (mapping->a_ops->writepages)
2550                         ret = mapping->a_ops->writepages(mapping, wbc);
2551                 else
2552                         ret = generic_writepages(mapping, wbc);
2553                 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2554                         break;
2555
2556                 /*
2557                  * Lacking an allocation context or the locality or writeback
2558                  * state of any of the inode's pages, throttle based on
2559                  * writeback activity on the local node. It's as good a
2560                  * guess as any.
2561                  */
2562                 reclaim_throttle(NODE_DATA(numa_node_id()),
2563                         VMSCAN_THROTTLE_WRITEBACK);
2564         }
2565         /*
2566          * Usually few pages are written by now from those we've just submitted
2567          * but if there's constant writeback being submitted, this makes sure
2568          * writeback bandwidth is updated once in a while.
2569          */
2570         if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2571                                    BANDWIDTH_INTERVAL))
2572                 wb_update_bandwidth(wb);
2573         return ret;
2574 }
2575
2576 /**
2577  * folio_write_one - write out a single folio and wait on I/O.
2578  * @folio: The folio to write.
2579  *
2580  * The folio must be locked by the caller and will be unlocked upon return.
2581  *
2582  * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2583  * function returns.
2584  *
2585  * Return: %0 on success, negative error code otherwise
2586  */
2587 int folio_write_one(struct folio *folio)
2588 {
2589         struct address_space *mapping = folio->mapping;
2590         int ret = 0;
2591         struct writeback_control wbc = {
2592                 .sync_mode = WB_SYNC_ALL,
2593                 .nr_to_write = folio_nr_pages(folio),
2594         };
2595
2596         BUG_ON(!folio_test_locked(folio));
2597
2598         folio_wait_writeback(folio);
2599
2600         if (folio_clear_dirty_for_io(folio)) {
2601                 folio_get(folio);
2602                 ret = mapping->a_ops->writepage(&folio->page, &wbc);
2603                 if (ret == 0)
2604                         folio_wait_writeback(folio);
2605                 folio_put(folio);
2606         } else {
2607                 folio_unlock(folio);
2608         }
2609
2610         if (!ret)
2611                 ret = filemap_check_errors(mapping);
2612         return ret;
2613 }
2614 EXPORT_SYMBOL(folio_write_one);
2615
2616 /*
2617  * For address_spaces which do not use buffers nor write back.
2618  */
2619 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2620 {
2621         if (!folio_test_dirty(folio))
2622                 return !folio_test_set_dirty(folio);
2623         return false;
2624 }
2625 EXPORT_SYMBOL(noop_dirty_folio);
2626
2627 /*
2628  * Helper function for set_page_dirty family.
2629  *
2630  * Caller must hold lock_page_memcg().
2631  *
2632  * NOTE: This relies on being atomic wrt interrupts.
2633  */
2634 static void folio_account_dirtied(struct folio *folio,
2635                 struct address_space *mapping)
2636 {
2637         struct inode *inode = mapping->host;
2638
2639         trace_writeback_dirty_folio(folio, mapping);
2640
2641         if (mapping_can_writeback(mapping)) {
2642                 struct bdi_writeback *wb;
2643                 long nr = folio_nr_pages(folio);
2644
2645                 inode_attach_wb(inode, &folio->page);
2646                 wb = inode_to_wb(inode);
2647
2648                 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2649                 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2650                 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
2651                 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2652                 wb_stat_mod(wb, WB_DIRTIED, nr);
2653                 task_io_account_write(nr * PAGE_SIZE);
2654                 current->nr_dirtied += nr;
2655                 __this_cpu_add(bdp_ratelimits, nr);
2656
2657                 mem_cgroup_track_foreign_dirty(folio, wb);
2658         }
2659 }
2660
2661 /*
2662  * Helper function for deaccounting dirty page without writeback.
2663  *
2664  * Caller must hold lock_page_memcg().
2665  */
2666 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2667 {
2668         long nr = folio_nr_pages(folio);
2669
2670         lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2671         zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2672         wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2673         task_io_account_cancelled_write(nr * PAGE_SIZE);
2674 }
2675
2676 /*
2677  * Mark the folio dirty, and set it dirty in the page cache, and mark
2678  * the inode dirty.
2679  *
2680  * If warn is true, then emit a warning if the folio is not uptodate and has
2681  * not been truncated.
2682  *
2683  * The caller must hold lock_page_memcg().  Most callers have the folio
2684  * locked.  A few have the folio blocked from truncation through other
2685  * means (eg zap_page_range() has it mapped and is holding the page table
2686  * lock).  This can also be called from mark_buffer_dirty(), which I
2687  * cannot prove is always protected against truncate.
2688  */
2689 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2690                              int warn)
2691 {
2692         unsigned long flags;
2693
2694         xa_lock_irqsave(&mapping->i_pages, flags);
2695         if (folio->mapping) {   /* Race with truncate? */
2696                 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2697                 folio_account_dirtied(folio, mapping);
2698                 __xa_set_mark(&mapping->i_pages, folio_index(folio),
2699                                 PAGECACHE_TAG_DIRTY);
2700         }
2701         xa_unlock_irqrestore(&mapping->i_pages, flags);
2702 }
2703
2704 /**
2705  * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2706  * @mapping: Address space this folio belongs to.
2707  * @folio: Folio to be marked as dirty.
2708  *
2709  * Filesystems which do not use buffer heads should call this function
2710  * from their set_page_dirty address space operation.  It ignores the
2711  * contents of folio_get_private(), so if the filesystem marks individual
2712  * blocks as dirty, the filesystem should handle that itself.
2713  *
2714  * This is also sometimes used by filesystems which use buffer_heads when
2715  * a single buffer is being dirtied: we want to set the folio dirty in
2716  * that case, but not all the buffers.  This is a "bottom-up" dirtying,
2717  * whereas block_dirty_folio() is a "top-down" dirtying.
2718  *
2719  * The caller must ensure this doesn't race with truncation.  Most will
2720  * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2721  * folio mapped and the pte lock held, which also locks out truncation.
2722  */
2723 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2724 {
2725         folio_memcg_lock(folio);
2726         if (folio_test_set_dirty(folio)) {
2727                 folio_memcg_unlock(folio);
2728                 return false;
2729         }
2730
2731         __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2732         folio_memcg_unlock(folio);
2733
2734         if (mapping->host) {
2735                 /* !PageAnon && !swapper_space */
2736                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2737         }
2738         return true;
2739 }
2740 EXPORT_SYMBOL(filemap_dirty_folio);
2741
2742 /**
2743  * folio_account_redirty - Manually account for redirtying a page.
2744  * @folio: The folio which is being redirtied.
2745  *
2746  * Most filesystems should call folio_redirty_for_writepage() instead
2747  * of this fuction.  If your filesystem is doing writeback outside the
2748  * context of a writeback_control(), it can call this when redirtying
2749  * a folio, to de-account the dirty counters (NR_DIRTIED, WB_DIRTIED,
2750  * tsk->nr_dirtied), so that they match the written counters (NR_WRITTEN,
2751  * WB_WRITTEN) in long term. The mismatches will lead to systematic errors
2752  * in balanced_dirty_ratelimit and the dirty pages position control.
2753  */
2754 void folio_account_redirty(struct folio *folio)
2755 {
2756         struct address_space *mapping = folio->mapping;
2757
2758         if (mapping && mapping_can_writeback(mapping)) {
2759                 struct inode *inode = mapping->host;
2760                 struct bdi_writeback *wb;
2761                 struct wb_lock_cookie cookie = {};
2762                 long nr = folio_nr_pages(folio);
2763
2764                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2765                 current->nr_dirtied -= nr;
2766                 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2767                 wb_stat_mod(wb, WB_DIRTIED, -nr);
2768                 unlocked_inode_to_wb_end(inode, &cookie);
2769         }
2770 }
2771 EXPORT_SYMBOL(folio_account_redirty);
2772
2773 /**
2774  * folio_redirty_for_writepage - Decline to write a dirty folio.
2775  * @wbc: The writeback control.
2776  * @folio: The folio.
2777  *
2778  * When a writepage implementation decides that it doesn't want to write
2779  * @folio for some reason, it should call this function, unlock @folio and
2780  * return 0.
2781  *
2782  * Return: True if we redirtied the folio.  False if someone else dirtied
2783  * it first.
2784  */
2785 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2786                 struct folio *folio)
2787 {
2788         bool ret;
2789         long nr = folio_nr_pages(folio);
2790
2791         wbc->pages_skipped += nr;
2792         ret = filemap_dirty_folio(folio->mapping, folio);
2793         folio_account_redirty(folio);
2794
2795         return ret;
2796 }
2797 EXPORT_SYMBOL(folio_redirty_for_writepage);
2798
2799 /**
2800  * folio_mark_dirty - Mark a folio as being modified.
2801  * @folio: The folio.
2802  *
2803  * The folio may not be truncated while this function is running.
2804  * Holding the folio lock is sufficient to prevent truncation, but some
2805  * callers cannot acquire a sleeping lock.  These callers instead hold
2806  * the page table lock for a page table which contains at least one page
2807  * in this folio.  Truncation will block on the page table lock as it
2808  * unmaps pages before removing the folio from its mapping.
2809  *
2810  * Return: True if the folio was newly dirtied, false if it was already dirty.
2811  */
2812 bool folio_mark_dirty(struct folio *folio)
2813 {
2814         struct address_space *mapping = folio_mapping(folio);
2815
2816         if (likely(mapping)) {
2817                 /*
2818                  * readahead/lru_deactivate_page could remain
2819                  * PG_readahead/PG_reclaim due to race with folio_end_writeback
2820                  * About readahead, if the folio is written, the flags would be
2821                  * reset. So no problem.
2822                  * About lru_deactivate_page, if the folio is redirtied,
2823                  * the flag will be reset. So no problem. but if the
2824                  * folio is used by readahead it will confuse readahead
2825                  * and make it restart the size rampup process. But it's
2826                  * a trivial problem.
2827                  */
2828                 if (folio_test_reclaim(folio))
2829                         folio_clear_reclaim(folio);
2830                 return mapping->a_ops->dirty_folio(mapping, folio);
2831         }
2832
2833         return noop_dirty_folio(mapping, folio);
2834 }
2835 EXPORT_SYMBOL(folio_mark_dirty);
2836
2837 /*
2838  * set_page_dirty() is racy if the caller has no reference against
2839  * page->mapping->host, and if the page is unlocked.  This is because another
2840  * CPU could truncate the page off the mapping and then free the mapping.
2841  *
2842  * Usually, the page _is_ locked, or the caller is a user-space process which
2843  * holds a reference on the inode by having an open file.
2844  *
2845  * In other cases, the page should be locked before running set_page_dirty().
2846  */
2847 int set_page_dirty_lock(struct page *page)
2848 {
2849         int ret;
2850
2851         lock_page(page);
2852         ret = set_page_dirty(page);
2853         unlock_page(page);
2854         return ret;
2855 }
2856 EXPORT_SYMBOL(set_page_dirty_lock);
2857
2858 /*
2859  * This cancels just the dirty bit on the kernel page itself, it does NOT
2860  * actually remove dirty bits on any mmap's that may be around. It also
2861  * leaves the page tagged dirty, so any sync activity will still find it on
2862  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2863  * look at the dirty bits in the VM.
2864  *
2865  * Doing this should *normally* only ever be done when a page is truncated,
2866  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2867  * this when it notices that somebody has cleaned out all the buffers on a
2868  * page without actually doing it through the VM. Can you say "ext3 is
2869  * horribly ugly"? Thought you could.
2870  */
2871 void __folio_cancel_dirty(struct folio *folio)
2872 {
2873         struct address_space *mapping = folio_mapping(folio);
2874
2875         if (mapping_can_writeback(mapping)) {
2876                 struct inode *inode = mapping->host;
2877                 struct bdi_writeback *wb;
2878                 struct wb_lock_cookie cookie = {};
2879
2880                 folio_memcg_lock(folio);
2881                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2882
2883                 if (folio_test_clear_dirty(folio))
2884                         folio_account_cleaned(folio, wb);
2885
2886                 unlocked_inode_to_wb_end(inode, &cookie);
2887                 folio_memcg_unlock(folio);
2888         } else {
2889                 folio_clear_dirty(folio);
2890         }
2891 }
2892 EXPORT_SYMBOL(__folio_cancel_dirty);
2893
2894 /*
2895  * Clear a folio's dirty flag, while caring for dirty memory accounting.
2896  * Returns true if the folio was previously dirty.
2897  *
2898  * This is for preparing to put the folio under writeout.  We leave
2899  * the folio tagged as dirty in the xarray so that a concurrent
2900  * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2901  * The ->writepage implementation will run either folio_start_writeback()
2902  * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2903  * and xarray dirty tag back into sync.
2904  *
2905  * This incoherency between the folio's dirty flag and xarray tag is
2906  * unfortunate, but it only exists while the folio is locked.
2907  */
2908 bool folio_clear_dirty_for_io(struct folio *folio)
2909 {
2910         struct address_space *mapping = folio_mapping(folio);
2911         bool ret = false;
2912
2913         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2914
2915         if (mapping && mapping_can_writeback(mapping)) {
2916                 struct inode *inode = mapping->host;
2917                 struct bdi_writeback *wb;
2918                 struct wb_lock_cookie cookie = {};
2919
2920                 /*
2921                  * Yes, Virginia, this is indeed insane.
2922                  *
2923                  * We use this sequence to make sure that
2924                  *  (a) we account for dirty stats properly
2925                  *  (b) we tell the low-level filesystem to
2926                  *      mark the whole folio dirty if it was
2927                  *      dirty in a pagetable. Only to then
2928                  *  (c) clean the folio again and return 1 to
2929                  *      cause the writeback.
2930                  *
2931                  * This way we avoid all nasty races with the
2932                  * dirty bit in multiple places and clearing
2933                  * them concurrently from different threads.
2934                  *
2935                  * Note! Normally the "folio_mark_dirty(folio)"
2936                  * has no effect on the actual dirty bit - since
2937                  * that will already usually be set. But we
2938                  * need the side effects, and it can help us
2939                  * avoid races.
2940                  *
2941                  * We basically use the folio "master dirty bit"
2942                  * as a serialization point for all the different
2943                  * threads doing their things.
2944                  */
2945                 if (folio_mkclean(folio))
2946                         folio_mark_dirty(folio);
2947                 /*
2948                  * We carefully synchronise fault handlers against
2949                  * installing a dirty pte and marking the folio dirty
2950                  * at this point.  We do this by having them hold the
2951                  * page lock while dirtying the folio, and folios are
2952                  * always locked coming in here, so we get the desired
2953                  * exclusion.
2954                  */
2955                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2956                 if (folio_test_clear_dirty(folio)) {
2957                         long nr = folio_nr_pages(folio);
2958                         lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2959                         zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2960                         wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2961                         ret = true;
2962                 }
2963                 unlocked_inode_to_wb_end(inode, &cookie);
2964                 return ret;
2965         }
2966         return folio_test_clear_dirty(folio);
2967 }
2968 EXPORT_SYMBOL(folio_clear_dirty_for_io);
2969
2970 static void wb_inode_writeback_start(struct bdi_writeback *wb)
2971 {
2972         atomic_inc(&wb->writeback_inodes);
2973 }
2974
2975 static void wb_inode_writeback_end(struct bdi_writeback *wb)
2976 {
2977         unsigned long flags;
2978         atomic_dec(&wb->writeback_inodes);
2979         /*
2980          * Make sure estimate of writeback throughput gets updated after
2981          * writeback completed. We delay the update by BANDWIDTH_INTERVAL
2982          * (which is the interval other bandwidth updates use for batching) so
2983          * that if multiple inodes end writeback at a similar time, they get
2984          * batched into one bandwidth update.
2985          */
2986         spin_lock_irqsave(&wb->work_lock, flags);
2987         if (test_bit(WB_registered, &wb->state))
2988                 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
2989         spin_unlock_irqrestore(&wb->work_lock, flags);
2990 }
2991
2992 bool __folio_end_writeback(struct folio *folio)
2993 {
2994         long nr = folio_nr_pages(folio);
2995         struct address_space *mapping = folio_mapping(folio);
2996         bool ret;
2997
2998         folio_memcg_lock(folio);
2999         if (mapping && mapping_use_writeback_tags(mapping)) {
3000                 struct inode *inode = mapping->host;
3001                 struct backing_dev_info *bdi = inode_to_bdi(inode);
3002                 unsigned long flags;
3003
3004                 xa_lock_irqsave(&mapping->i_pages, flags);
3005                 ret = folio_test_clear_writeback(folio);
3006                 if (ret) {
3007                         __xa_clear_mark(&mapping->i_pages, folio_index(folio),
3008                                                 PAGECACHE_TAG_WRITEBACK);
3009                         if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3010                                 struct bdi_writeback *wb = inode_to_wb(inode);
3011
3012                                 wb_stat_mod(wb, WB_WRITEBACK, -nr);
3013                                 __wb_writeout_add(wb, nr);
3014                                 if (!mapping_tagged(mapping,
3015                                                     PAGECACHE_TAG_WRITEBACK))
3016                                         wb_inode_writeback_end(wb);
3017                         }
3018                 }
3019
3020                 if (mapping->host && !mapping_tagged(mapping,
3021                                                      PAGECACHE_TAG_WRITEBACK))
3022                         sb_clear_inode_writeback(mapping->host);
3023
3024                 xa_unlock_irqrestore(&mapping->i_pages, flags);
3025         } else {
3026                 ret = folio_test_clear_writeback(folio);
3027         }
3028         if (ret) {
3029                 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3030                 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3031                 node_stat_mod_folio(folio, NR_WRITTEN, nr);
3032         }
3033         folio_memcg_unlock(folio);
3034         return ret;
3035 }
3036
3037 bool __folio_start_writeback(struct folio *folio, bool keep_write)
3038 {
3039         long nr = folio_nr_pages(folio);
3040         struct address_space *mapping = folio_mapping(folio);
3041         bool ret;
3042         int access_ret;
3043
3044         folio_memcg_lock(folio);
3045         if (mapping && mapping_use_writeback_tags(mapping)) {
3046                 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
3047                 struct inode *inode = mapping->host;
3048                 struct backing_dev_info *bdi = inode_to_bdi(inode);
3049                 unsigned long flags;
3050
3051                 xas_lock_irqsave(&xas, flags);
3052                 xas_load(&xas);
3053                 ret = folio_test_set_writeback(folio);
3054                 if (!ret) {
3055                         bool on_wblist;
3056
3057                         on_wblist = mapping_tagged(mapping,
3058                                                    PAGECACHE_TAG_WRITEBACK);
3059
3060                         xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
3061                         if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3062                                 struct bdi_writeback *wb = inode_to_wb(inode);
3063
3064                                 wb_stat_mod(wb, WB_WRITEBACK, nr);
3065                                 if (!on_wblist)
3066                                         wb_inode_writeback_start(wb);
3067                         }
3068
3069                         /*
3070                          * We can come through here when swapping
3071                          * anonymous folios, so we don't necessarily
3072                          * have an inode to track for sync.
3073                          */
3074                         if (mapping->host && !on_wblist)
3075                                 sb_mark_inode_writeback(mapping->host);
3076                 }
3077                 if (!folio_test_dirty(folio))
3078                         xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
3079                 if (!keep_write)
3080                         xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3081                 xas_unlock_irqrestore(&xas, flags);
3082         } else {
3083                 ret = folio_test_set_writeback(folio);
3084         }
3085         if (!ret) {
3086                 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3087                 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3088         }
3089         folio_memcg_unlock(folio);
3090         access_ret = arch_make_folio_accessible(folio);
3091         /*
3092          * If writeback has been triggered on a page that cannot be made
3093          * accessible, it is too late to recover here.
3094          */
3095         VM_BUG_ON_FOLIO(access_ret != 0, folio);
3096
3097         return ret;
3098 }
3099 EXPORT_SYMBOL(__folio_start_writeback);
3100
3101 /**
3102  * folio_wait_writeback - Wait for a folio to finish writeback.
3103  * @folio: The folio to wait for.
3104  *
3105  * If the folio is currently being written back to storage, wait for the
3106  * I/O to complete.
3107  *
3108  * Context: Sleeps.  Must be called in process context and with
3109  * no spinlocks held.  Caller should hold a reference on the folio.
3110  * If the folio is not locked, writeback may start again after writeback
3111  * has finished.
3112  */
3113 void folio_wait_writeback(struct folio *folio)
3114 {
3115         while (folio_test_writeback(folio)) {
3116                 trace_folio_wait_writeback(folio, folio_mapping(folio));
3117                 folio_wait_bit(folio, PG_writeback);
3118         }
3119 }
3120 EXPORT_SYMBOL_GPL(folio_wait_writeback);
3121
3122 /**
3123  * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3124  * @folio: The folio to wait for.
3125  *
3126  * If the folio is currently being written back to storage, wait for the
3127  * I/O to complete or a fatal signal to arrive.
3128  *
3129  * Context: Sleeps.  Must be called in process context and with
3130  * no spinlocks held.  Caller should hold a reference on the folio.
3131  * If the folio is not locked, writeback may start again after writeback
3132  * has finished.
3133  * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3134  */
3135 int folio_wait_writeback_killable(struct folio *folio)
3136 {
3137         while (folio_test_writeback(folio)) {
3138                 trace_folio_wait_writeback(folio, folio_mapping(folio));
3139                 if (folio_wait_bit_killable(folio, PG_writeback))
3140                         return -EINTR;
3141         }
3142
3143         return 0;
3144 }
3145 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3146
3147 /**
3148  * folio_wait_stable() - wait for writeback to finish, if necessary.
3149  * @folio: The folio to wait on.
3150  *
3151  * This function determines if the given folio is related to a backing
3152  * device that requires folio contents to be held stable during writeback.
3153  * If so, then it will wait for any pending writeback to complete.
3154  *
3155  * Context: Sleeps.  Must be called in process context and with
3156  * no spinlocks held.  Caller should hold a reference on the folio.
3157  * If the folio is not locked, writeback may start again after writeback
3158  * has finished.
3159  */
3160 void folio_wait_stable(struct folio *folio)
3161 {
3162         if (folio_inode(folio)->i_sb->s_iflags & SB_I_STABLE_WRITES)
3163                 folio_wait_writeback(folio);
3164 }
3165 EXPORT_SYMBOL_GPL(folio_wait_stable);