writeback: update wb_over_bg_thresh() to use wb_domain aware operations
[linux-2.6-microblaze.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41
42 #include "internal.h"
43
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE               max(HZ/5, 1)
48
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
54
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
59
60 #define RATELIMIT_CALC_SHIFT    10
61
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67
68 /* The following parameters are exported via /proc/sys/vm */
69
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 int dirty_background_ratio = 10;
74
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 unsigned long dirty_background_bytes;
80
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 int vm_highmem_is_dirtyable;
86
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 int vm_dirty_ratio = 20;
91
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 unsigned long vm_dirty_bytes;
97
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109
110 /*
111  * Flag that makes the machine dump writes/reads and block dirtyings.
112  */
113 int block_dump;
114
115 /*
116  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117  * a full sync is triggered after this time elapses without any disk activity.
118  */
119 int laptop_mode;
120
121 EXPORT_SYMBOL(laptop_mode);
122
123 /* End of sysctl-exported parameters */
124
125 struct wb_domain global_wb_domain;
126
127 /* consolidated parameters for balance_dirty_pages() and its subroutines */
128 struct dirty_throttle_control {
129 #ifdef CONFIG_CGROUP_WRITEBACK
130         struct wb_domain        *dom;
131         struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
132 #endif
133         struct bdi_writeback    *wb;
134         struct fprop_local_percpu *wb_completions;
135
136         unsigned long           avail;          /* dirtyable */
137         unsigned long           dirty;          /* file_dirty + write + nfs */
138         unsigned long           thresh;         /* dirty threshold */
139         unsigned long           bg_thresh;      /* dirty background threshold */
140
141         unsigned long           wb_dirty;       /* per-wb counterparts */
142         unsigned long           wb_thresh;
143         unsigned long           wb_bg_thresh;
144
145         unsigned long           pos_ratio;
146 };
147
148 #define DTC_INIT_COMMON(__wb)   .wb = (__wb),                           \
149                                 .wb_completions = &(__wb)->completions
150
151 /*
152  * Length of period for aging writeout fractions of bdis. This is an
153  * arbitrarily chosen number. The longer the period, the slower fractions will
154  * reflect changes in current writeout rate.
155  */
156 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
157
158 #ifdef CONFIG_CGROUP_WRITEBACK
159
160 #define GDTC_INIT(__wb)         .dom = &global_wb_domain,               \
161                                 DTC_INIT_COMMON(__wb)
162 #define GDTC_INIT_NO_WB         .dom = &global_wb_domain
163
164 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
165 {
166         return dtc->dom;
167 }
168
169 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
170 {
171         return mdtc->gdtc;
172 }
173
174 static void wb_min_max_ratio(struct bdi_writeback *wb,
175                              unsigned long *minp, unsigned long *maxp)
176 {
177         unsigned long this_bw = wb->avg_write_bandwidth;
178         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
179         unsigned long long min = wb->bdi->min_ratio;
180         unsigned long long max = wb->bdi->max_ratio;
181
182         /*
183          * @wb may already be clean by the time control reaches here and
184          * the total may not include its bw.
185          */
186         if (this_bw < tot_bw) {
187                 if (min) {
188                         min *= this_bw;
189                         do_div(min, tot_bw);
190                 }
191                 if (max < 100) {
192                         max *= this_bw;
193                         do_div(max, tot_bw);
194                 }
195         }
196
197         *minp = min;
198         *maxp = max;
199 }
200
201 #else   /* CONFIG_CGROUP_WRITEBACK */
202
203 #define GDTC_INIT(__wb)         DTC_INIT_COMMON(__wb)
204 #define GDTC_INIT_NO_WB
205
206 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
207 {
208         return &global_wb_domain;
209 }
210
211 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
212 {
213         return NULL;
214 }
215
216 static void wb_min_max_ratio(struct bdi_writeback *wb,
217                              unsigned long *minp, unsigned long *maxp)
218 {
219         *minp = wb->bdi->min_ratio;
220         *maxp = wb->bdi->max_ratio;
221 }
222
223 #endif  /* CONFIG_CGROUP_WRITEBACK */
224
225 /*
226  * In a memory zone, there is a certain amount of pages we consider
227  * available for the page cache, which is essentially the number of
228  * free and reclaimable pages, minus some zone reserves to protect
229  * lowmem and the ability to uphold the zone's watermarks without
230  * requiring writeback.
231  *
232  * This number of dirtyable pages is the base value of which the
233  * user-configurable dirty ratio is the effictive number of pages that
234  * are allowed to be actually dirtied.  Per individual zone, or
235  * globally by using the sum of dirtyable pages over all zones.
236  *
237  * Because the user is allowed to specify the dirty limit globally as
238  * absolute number of bytes, calculating the per-zone dirty limit can
239  * require translating the configured limit into a percentage of
240  * global dirtyable memory first.
241  */
242
243 /**
244  * zone_dirtyable_memory - number of dirtyable pages in a zone
245  * @zone: the zone
246  *
247  * Returns the zone's number of pages potentially available for dirty
248  * page cache.  This is the base value for the per-zone dirty limits.
249  */
250 static unsigned long zone_dirtyable_memory(struct zone *zone)
251 {
252         unsigned long nr_pages;
253
254         nr_pages = zone_page_state(zone, NR_FREE_PAGES);
255         nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
256
257         nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
258         nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
259
260         return nr_pages;
261 }
262
263 static unsigned long highmem_dirtyable_memory(unsigned long total)
264 {
265 #ifdef CONFIG_HIGHMEM
266         int node;
267         unsigned long x = 0;
268
269         for_each_node_state(node, N_HIGH_MEMORY) {
270                 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
271
272                 x += zone_dirtyable_memory(z);
273         }
274         /*
275          * Unreclaimable memory (kernel memory or anonymous memory
276          * without swap) can bring down the dirtyable pages below
277          * the zone's dirty balance reserve and the above calculation
278          * will underflow.  However we still want to add in nodes
279          * which are below threshold (negative values) to get a more
280          * accurate calculation but make sure that the total never
281          * underflows.
282          */
283         if ((long)x < 0)
284                 x = 0;
285
286         /*
287          * Make sure that the number of highmem pages is never larger
288          * than the number of the total dirtyable memory. This can only
289          * occur in very strange VM situations but we want to make sure
290          * that this does not occur.
291          */
292         return min(x, total);
293 #else
294         return 0;
295 #endif
296 }
297
298 /**
299  * global_dirtyable_memory - number of globally dirtyable pages
300  *
301  * Returns the global number of pages potentially available for dirty
302  * page cache.  This is the base value for the global dirty limits.
303  */
304 static unsigned long global_dirtyable_memory(void)
305 {
306         unsigned long x;
307
308         x = global_page_state(NR_FREE_PAGES);
309         x -= min(x, dirty_balance_reserve);
310
311         x += global_page_state(NR_INACTIVE_FILE);
312         x += global_page_state(NR_ACTIVE_FILE);
313
314         if (!vm_highmem_is_dirtyable)
315                 x -= highmem_dirtyable_memory(x);
316
317         return x + 1;   /* Ensure that we never return 0 */
318 }
319
320 /**
321  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
322  * @dtc: dirty_throttle_control of interest
323  *
324  * Calculate @dtc->thresh and ->bg_thresh considering
325  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
326  * must ensure that @dtc->avail is set before calling this function.  The
327  * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
328  * real-time tasks.
329  */
330 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
331 {
332         const unsigned long available_memory = dtc->avail;
333         struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
334         unsigned long bytes = vm_dirty_bytes;
335         unsigned long bg_bytes = dirty_background_bytes;
336         unsigned long ratio = vm_dirty_ratio;
337         unsigned long bg_ratio = dirty_background_ratio;
338         unsigned long thresh;
339         unsigned long bg_thresh;
340         struct task_struct *tsk;
341
342         /* gdtc is !NULL iff @dtc is for memcg domain */
343         if (gdtc) {
344                 unsigned long global_avail = gdtc->avail;
345
346                 /*
347                  * The byte settings can't be applied directly to memcg
348                  * domains.  Convert them to ratios by scaling against
349                  * globally available memory.
350                  */
351                 if (bytes)
352                         ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 /
353                                     global_avail, 100UL);
354                 if (bg_bytes)
355                         bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 /
356                                        global_avail, 100UL);
357                 bytes = bg_bytes = 0;
358         }
359
360         if (bytes)
361                 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
362         else
363                 thresh = (ratio * available_memory) / 100;
364
365         if (bg_bytes)
366                 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
367         else
368                 bg_thresh = (bg_ratio * available_memory) / 100;
369
370         if (bg_thresh >= thresh)
371                 bg_thresh = thresh / 2;
372         tsk = current;
373         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
374                 bg_thresh += bg_thresh / 4;
375                 thresh += thresh / 4;
376         }
377         dtc->thresh = thresh;
378         dtc->bg_thresh = bg_thresh;
379
380         /* we should eventually report the domain in the TP */
381         if (!gdtc)
382                 trace_global_dirty_state(bg_thresh, thresh);
383 }
384
385 /**
386  * global_dirty_limits - background-writeback and dirty-throttling thresholds
387  * @pbackground: out parameter for bg_thresh
388  * @pdirty: out parameter for thresh
389  *
390  * Calculate bg_thresh and thresh for global_wb_domain.  See
391  * domain_dirty_limits() for details.
392  */
393 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
394 {
395         struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
396
397         gdtc.avail = global_dirtyable_memory();
398         domain_dirty_limits(&gdtc);
399
400         *pbackground = gdtc.bg_thresh;
401         *pdirty = gdtc.thresh;
402 }
403
404 /**
405  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
406  * @zone: the zone
407  *
408  * Returns the maximum number of dirty pages allowed in a zone, based
409  * on the zone's dirtyable memory.
410  */
411 static unsigned long zone_dirty_limit(struct zone *zone)
412 {
413         unsigned long zone_memory = zone_dirtyable_memory(zone);
414         struct task_struct *tsk = current;
415         unsigned long dirty;
416
417         if (vm_dirty_bytes)
418                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
419                         zone_memory / global_dirtyable_memory();
420         else
421                 dirty = vm_dirty_ratio * zone_memory / 100;
422
423         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
424                 dirty += dirty / 4;
425
426         return dirty;
427 }
428
429 /**
430  * zone_dirty_ok - tells whether a zone is within its dirty limits
431  * @zone: the zone to check
432  *
433  * Returns %true when the dirty pages in @zone are within the zone's
434  * dirty limit, %false if the limit is exceeded.
435  */
436 bool zone_dirty_ok(struct zone *zone)
437 {
438         unsigned long limit = zone_dirty_limit(zone);
439
440         return zone_page_state(zone, NR_FILE_DIRTY) +
441                zone_page_state(zone, NR_UNSTABLE_NFS) +
442                zone_page_state(zone, NR_WRITEBACK) <= limit;
443 }
444
445 int dirty_background_ratio_handler(struct ctl_table *table, int write,
446                 void __user *buffer, size_t *lenp,
447                 loff_t *ppos)
448 {
449         int ret;
450
451         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
452         if (ret == 0 && write)
453                 dirty_background_bytes = 0;
454         return ret;
455 }
456
457 int dirty_background_bytes_handler(struct ctl_table *table, int write,
458                 void __user *buffer, size_t *lenp,
459                 loff_t *ppos)
460 {
461         int ret;
462
463         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
464         if (ret == 0 && write)
465                 dirty_background_ratio = 0;
466         return ret;
467 }
468
469 int dirty_ratio_handler(struct ctl_table *table, int write,
470                 void __user *buffer, size_t *lenp,
471                 loff_t *ppos)
472 {
473         int old_ratio = vm_dirty_ratio;
474         int ret;
475
476         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
477         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
478                 writeback_set_ratelimit();
479                 vm_dirty_bytes = 0;
480         }
481         return ret;
482 }
483
484 int dirty_bytes_handler(struct ctl_table *table, int write,
485                 void __user *buffer, size_t *lenp,
486                 loff_t *ppos)
487 {
488         unsigned long old_bytes = vm_dirty_bytes;
489         int ret;
490
491         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
492         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
493                 writeback_set_ratelimit();
494                 vm_dirty_ratio = 0;
495         }
496         return ret;
497 }
498
499 static unsigned long wp_next_time(unsigned long cur_time)
500 {
501         cur_time += VM_COMPLETIONS_PERIOD_LEN;
502         /* 0 has a special meaning... */
503         if (!cur_time)
504                 return 1;
505         return cur_time;
506 }
507
508 static void wb_domain_writeout_inc(struct wb_domain *dom,
509                                    struct fprop_local_percpu *completions,
510                                    unsigned int max_prop_frac)
511 {
512         __fprop_inc_percpu_max(&dom->completions, completions,
513                                max_prop_frac);
514         /* First event after period switching was turned off? */
515         if (!unlikely(dom->period_time)) {
516                 /*
517                  * We can race with other __bdi_writeout_inc calls here but
518                  * it does not cause any harm since the resulting time when
519                  * timer will fire and what is in writeout_period_time will be
520                  * roughly the same.
521                  */
522                 dom->period_time = wp_next_time(jiffies);
523                 mod_timer(&dom->period_timer, dom->period_time);
524         }
525 }
526
527 /*
528  * Increment @wb's writeout completion count and the global writeout
529  * completion count. Called from test_clear_page_writeback().
530  */
531 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
532 {
533         __inc_wb_stat(wb, WB_WRITTEN);
534         wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
535                                wb->bdi->max_prop_frac);
536 }
537
538 void wb_writeout_inc(struct bdi_writeback *wb)
539 {
540         unsigned long flags;
541
542         local_irq_save(flags);
543         __wb_writeout_inc(wb);
544         local_irq_restore(flags);
545 }
546 EXPORT_SYMBOL_GPL(wb_writeout_inc);
547
548 /*
549  * On idle system, we can be called long after we scheduled because we use
550  * deferred timers so count with missed periods.
551  */
552 static void writeout_period(unsigned long t)
553 {
554         struct wb_domain *dom = (void *)t;
555         int miss_periods = (jiffies - dom->period_time) /
556                                                  VM_COMPLETIONS_PERIOD_LEN;
557
558         if (fprop_new_period(&dom->completions, miss_periods + 1)) {
559                 dom->period_time = wp_next_time(dom->period_time +
560                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
561                 mod_timer(&dom->period_timer, dom->period_time);
562         } else {
563                 /*
564                  * Aging has zeroed all fractions. Stop wasting CPU on period
565                  * updates.
566                  */
567                 dom->period_time = 0;
568         }
569 }
570
571 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
572 {
573         memset(dom, 0, sizeof(*dom));
574
575         spin_lock_init(&dom->lock);
576
577         init_timer_deferrable(&dom->period_timer);
578         dom->period_timer.function = writeout_period;
579         dom->period_timer.data = (unsigned long)dom;
580
581         dom->dirty_limit_tstamp = jiffies;
582
583         return fprop_global_init(&dom->completions, gfp);
584 }
585
586 /*
587  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
588  * registered backing devices, which, for obvious reasons, can not
589  * exceed 100%.
590  */
591 static unsigned int bdi_min_ratio;
592
593 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
594 {
595         int ret = 0;
596
597         spin_lock_bh(&bdi_lock);
598         if (min_ratio > bdi->max_ratio) {
599                 ret = -EINVAL;
600         } else {
601                 min_ratio -= bdi->min_ratio;
602                 if (bdi_min_ratio + min_ratio < 100) {
603                         bdi_min_ratio += min_ratio;
604                         bdi->min_ratio += min_ratio;
605                 } else {
606                         ret = -EINVAL;
607                 }
608         }
609         spin_unlock_bh(&bdi_lock);
610
611         return ret;
612 }
613
614 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
615 {
616         int ret = 0;
617
618         if (max_ratio > 100)
619                 return -EINVAL;
620
621         spin_lock_bh(&bdi_lock);
622         if (bdi->min_ratio > max_ratio) {
623                 ret = -EINVAL;
624         } else {
625                 bdi->max_ratio = max_ratio;
626                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
627         }
628         spin_unlock_bh(&bdi_lock);
629
630         return ret;
631 }
632 EXPORT_SYMBOL(bdi_set_max_ratio);
633
634 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
635                                            unsigned long bg_thresh)
636 {
637         return (thresh + bg_thresh) / 2;
638 }
639
640 static unsigned long hard_dirty_limit(struct wb_domain *dom,
641                                       unsigned long thresh)
642 {
643         return max(thresh, dom->dirty_limit);
644 }
645
646 /**
647  * __wb_calc_thresh - @wb's share of dirty throttling threshold
648  * @dtc: dirty_throttle_context of interest
649  *
650  * Returns @wb's dirty limit in pages. The term "dirty" in the context of
651  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
652  *
653  * Note that balance_dirty_pages() will only seriously take it as a hard limit
654  * when sleeping max_pause per page is not enough to keep the dirty pages under
655  * control. For example, when the device is completely stalled due to some error
656  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
657  * In the other normal situations, it acts more gently by throttling the tasks
658  * more (rather than completely block them) when the wb dirty pages go high.
659  *
660  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
661  * - starving fast devices
662  * - piling up dirty pages (that will take long time to sync) on slow devices
663  *
664  * The wb's share of dirty limit will be adapting to its throughput and
665  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
666  */
667 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
668 {
669         struct wb_domain *dom = dtc_dom(dtc);
670         unsigned long thresh = dtc->thresh;
671         u64 wb_thresh;
672         long numerator, denominator;
673         unsigned long wb_min_ratio, wb_max_ratio;
674
675         /*
676          * Calculate this BDI's share of the thresh ratio.
677          */
678         fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
679                               &numerator, &denominator);
680
681         wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
682         wb_thresh *= numerator;
683         do_div(wb_thresh, denominator);
684
685         wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
686
687         wb_thresh += (thresh * wb_min_ratio) / 100;
688         if (wb_thresh > (thresh * wb_max_ratio) / 100)
689                 wb_thresh = thresh * wb_max_ratio / 100;
690
691         return wb_thresh;
692 }
693
694 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
695 {
696         struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
697                                                .thresh = thresh };
698         return __wb_calc_thresh(&gdtc);
699 }
700
701 /*
702  *                           setpoint - dirty 3
703  *        f(dirty) := 1.0 + (----------------)
704  *                           limit - setpoint
705  *
706  * it's a 3rd order polynomial that subjects to
707  *
708  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
709  * (2) f(setpoint) = 1.0 => the balance point
710  * (3) f(limit)    = 0   => the hard limit
711  * (4) df/dx      <= 0   => negative feedback control
712  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
713  *     => fast response on large errors; small oscillation near setpoint
714  */
715 static long long pos_ratio_polynom(unsigned long setpoint,
716                                           unsigned long dirty,
717                                           unsigned long limit)
718 {
719         long long pos_ratio;
720         long x;
721
722         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
723                     limit - setpoint + 1);
724         pos_ratio = x;
725         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
726         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
727         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
728
729         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
730 }
731
732 /*
733  * Dirty position control.
734  *
735  * (o) global/bdi setpoints
736  *
737  * We want the dirty pages be balanced around the global/wb setpoints.
738  * When the number of dirty pages is higher/lower than the setpoint, the
739  * dirty position control ratio (and hence task dirty ratelimit) will be
740  * decreased/increased to bring the dirty pages back to the setpoint.
741  *
742  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
743  *
744  *     if (dirty < setpoint) scale up   pos_ratio
745  *     if (dirty > setpoint) scale down pos_ratio
746  *
747  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
748  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
749  *
750  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
751  *
752  * (o) global control line
753  *
754  *     ^ pos_ratio
755  *     |
756  *     |            |<===== global dirty control scope ======>|
757  * 2.0 .............*
758  *     |            .*
759  *     |            . *
760  *     |            .   *
761  *     |            .     *
762  *     |            .        *
763  *     |            .            *
764  * 1.0 ................................*
765  *     |            .                  .     *
766  *     |            .                  .          *
767  *     |            .                  .              *
768  *     |            .                  .                 *
769  *     |            .                  .                    *
770  *   0 +------------.------------------.----------------------*------------->
771  *           freerun^          setpoint^                 limit^   dirty pages
772  *
773  * (o) wb control line
774  *
775  *     ^ pos_ratio
776  *     |
777  *     |            *
778  *     |              *
779  *     |                *
780  *     |                  *
781  *     |                    * |<=========== span ============>|
782  * 1.0 .......................*
783  *     |                      . *
784  *     |                      .   *
785  *     |                      .     *
786  *     |                      .       *
787  *     |                      .         *
788  *     |                      .           *
789  *     |                      .             *
790  *     |                      .               *
791  *     |                      .                 *
792  *     |                      .                   *
793  *     |                      .                     *
794  * 1/4 ...............................................* * * * * * * * * * * *
795  *     |                      .                         .
796  *     |                      .                           .
797  *     |                      .                             .
798  *   0 +----------------------.-------------------------------.------------->
799  *                wb_setpoint^                    x_intercept^
800  *
801  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
802  * be smoothly throttled down to normal if it starts high in situations like
803  * - start writing to a slow SD card and a fast disk at the same time. The SD
804  *   card's wb_dirty may rush to many times higher than wb_setpoint.
805  * - the wb dirty thresh drops quickly due to change of JBOD workload
806  */
807 static void wb_position_ratio(struct dirty_throttle_control *dtc)
808 {
809         struct bdi_writeback *wb = dtc->wb;
810         unsigned long write_bw = wb->avg_write_bandwidth;
811         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
812         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
813         unsigned long wb_thresh = dtc->wb_thresh;
814         unsigned long x_intercept;
815         unsigned long setpoint;         /* dirty pages' target balance point */
816         unsigned long wb_setpoint;
817         unsigned long span;
818         long long pos_ratio;            /* for scaling up/down the rate limit */
819         long x;
820
821         dtc->pos_ratio = 0;
822
823         if (unlikely(dtc->dirty >= limit))
824                 return;
825
826         /*
827          * global setpoint
828          *
829          * See comment for pos_ratio_polynom().
830          */
831         setpoint = (freerun + limit) / 2;
832         pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
833
834         /*
835          * The strictlimit feature is a tool preventing mistrusted filesystems
836          * from growing a large number of dirty pages before throttling. For
837          * such filesystems balance_dirty_pages always checks wb counters
838          * against wb limits. Even if global "nr_dirty" is under "freerun".
839          * This is especially important for fuse which sets bdi->max_ratio to
840          * 1% by default. Without strictlimit feature, fuse writeback may
841          * consume arbitrary amount of RAM because it is accounted in
842          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
843          *
844          * Here, in wb_position_ratio(), we calculate pos_ratio based on
845          * two values: wb_dirty and wb_thresh. Let's consider an example:
846          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
847          * limits are set by default to 10% and 20% (background and throttle).
848          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
849          * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
850          * about ~6K pages (as the average of background and throttle wb
851          * limits). The 3rd order polynomial will provide positive feedback if
852          * wb_dirty is under wb_setpoint and vice versa.
853          *
854          * Note, that we cannot use global counters in these calculations
855          * because we want to throttle process writing to a strictlimit wb
856          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
857          * in the example above).
858          */
859         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
860                 long long wb_pos_ratio;
861
862                 if (dtc->wb_dirty < 8) {
863                         dtc->pos_ratio = min_t(long long, pos_ratio * 2,
864                                            2 << RATELIMIT_CALC_SHIFT);
865                         return;
866                 }
867
868                 if (dtc->wb_dirty >= wb_thresh)
869                         return;
870
871                 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
872                                                     dtc->wb_bg_thresh);
873
874                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
875                         return;
876
877                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
878                                                  wb_thresh);
879
880                 /*
881                  * Typically, for strictlimit case, wb_setpoint << setpoint
882                  * and pos_ratio >> wb_pos_ratio. In the other words global
883                  * state ("dirty") is not limiting factor and we have to
884                  * make decision based on wb counters. But there is an
885                  * important case when global pos_ratio should get precedence:
886                  * global limits are exceeded (e.g. due to activities on other
887                  * wb's) while given strictlimit wb is below limit.
888                  *
889                  * "pos_ratio * wb_pos_ratio" would work for the case above,
890                  * but it would look too non-natural for the case of all
891                  * activity in the system coming from a single strictlimit wb
892                  * with bdi->max_ratio == 100%.
893                  *
894                  * Note that min() below somewhat changes the dynamics of the
895                  * control system. Normally, pos_ratio value can be well over 3
896                  * (when globally we are at freerun and wb is well below wb
897                  * setpoint). Now the maximum pos_ratio in the same situation
898                  * is 2. We might want to tweak this if we observe the control
899                  * system is too slow to adapt.
900                  */
901                 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
902                 return;
903         }
904
905         /*
906          * We have computed basic pos_ratio above based on global situation. If
907          * the wb is over/under its share of dirty pages, we want to scale
908          * pos_ratio further down/up. That is done by the following mechanism.
909          */
910
911         /*
912          * wb setpoint
913          *
914          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
915          *
916          *                        x_intercept - wb_dirty
917          *                     := --------------------------
918          *                        x_intercept - wb_setpoint
919          *
920          * The main wb control line is a linear function that subjects to
921          *
922          * (1) f(wb_setpoint) = 1.0
923          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
924          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
925          *
926          * For single wb case, the dirty pages are observed to fluctuate
927          * regularly within range
928          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
929          * for various filesystems, where (2) can yield in a reasonable 12.5%
930          * fluctuation range for pos_ratio.
931          *
932          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
933          * own size, so move the slope over accordingly and choose a slope that
934          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
935          */
936         if (unlikely(wb_thresh > dtc->thresh))
937                 wb_thresh = dtc->thresh;
938         /*
939          * It's very possible that wb_thresh is close to 0 not because the
940          * device is slow, but that it has remained inactive for long time.
941          * Honour such devices a reasonable good (hopefully IO efficient)
942          * threshold, so that the occasional writes won't be blocked and active
943          * writes can rampup the threshold quickly.
944          */
945         wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
946         /*
947          * scale global setpoint to wb's:
948          *      wb_setpoint = setpoint * wb_thresh / thresh
949          */
950         x = div_u64((u64)wb_thresh << 16, dtc->thresh + 1);
951         wb_setpoint = setpoint * (u64)x >> 16;
952         /*
953          * Use span=(8*write_bw) in single wb case as indicated by
954          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
955          *
956          *        wb_thresh                    thresh - wb_thresh
957          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
958          *         thresh                           thresh
959          */
960         span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
961         x_intercept = wb_setpoint + span;
962
963         if (dtc->wb_dirty < x_intercept - span / 4) {
964                 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
965                                       x_intercept - wb_setpoint + 1);
966         } else
967                 pos_ratio /= 4;
968
969         /*
970          * wb reserve area, safeguard against dirty pool underrun and disk idle
971          * It may push the desired control point of global dirty pages higher
972          * than setpoint.
973          */
974         x_intercept = wb_thresh / 2;
975         if (dtc->wb_dirty < x_intercept) {
976                 if (dtc->wb_dirty > x_intercept / 8)
977                         pos_ratio = div_u64(pos_ratio * x_intercept,
978                                             dtc->wb_dirty);
979                 else
980                         pos_ratio *= 8;
981         }
982
983         dtc->pos_ratio = pos_ratio;
984 }
985
986 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
987                                       unsigned long elapsed,
988                                       unsigned long written)
989 {
990         const unsigned long period = roundup_pow_of_two(3 * HZ);
991         unsigned long avg = wb->avg_write_bandwidth;
992         unsigned long old = wb->write_bandwidth;
993         u64 bw;
994
995         /*
996          * bw = written * HZ / elapsed
997          *
998          *                   bw * elapsed + write_bandwidth * (period - elapsed)
999          * write_bandwidth = ---------------------------------------------------
1000          *                                          period
1001          *
1002          * @written may have decreased due to account_page_redirty().
1003          * Avoid underflowing @bw calculation.
1004          */
1005         bw = written - min(written, wb->written_stamp);
1006         bw *= HZ;
1007         if (unlikely(elapsed > period)) {
1008                 do_div(bw, elapsed);
1009                 avg = bw;
1010                 goto out;
1011         }
1012         bw += (u64)wb->write_bandwidth * (period - elapsed);
1013         bw >>= ilog2(period);
1014
1015         /*
1016          * one more level of smoothing, for filtering out sudden spikes
1017          */
1018         if (avg > old && old >= (unsigned long)bw)
1019                 avg -= (avg - old) >> 3;
1020
1021         if (avg < old && old <= (unsigned long)bw)
1022                 avg += (old - avg) >> 3;
1023
1024 out:
1025         /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1026         avg = max(avg, 1LU);
1027         if (wb_has_dirty_io(wb)) {
1028                 long delta = avg - wb->avg_write_bandwidth;
1029                 WARN_ON_ONCE(atomic_long_add_return(delta,
1030                                         &wb->bdi->tot_write_bandwidth) <= 0);
1031         }
1032         wb->write_bandwidth = bw;
1033         wb->avg_write_bandwidth = avg;
1034 }
1035
1036 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1037 {
1038         struct wb_domain *dom = dtc_dom(dtc);
1039         unsigned long thresh = dtc->thresh;
1040         unsigned long limit = dom->dirty_limit;
1041
1042         /*
1043          * Follow up in one step.
1044          */
1045         if (limit < thresh) {
1046                 limit = thresh;
1047                 goto update;
1048         }
1049
1050         /*
1051          * Follow down slowly. Use the higher one as the target, because thresh
1052          * may drop below dirty. This is exactly the reason to introduce
1053          * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1054          */
1055         thresh = max(thresh, dtc->dirty);
1056         if (limit > thresh) {
1057                 limit -= (limit - thresh) >> 5;
1058                 goto update;
1059         }
1060         return;
1061 update:
1062         dom->dirty_limit = limit;
1063 }
1064
1065 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1066                                     unsigned long now)
1067 {
1068         struct wb_domain *dom = dtc_dom(dtc);
1069
1070         /*
1071          * check locklessly first to optimize away locking for the most time
1072          */
1073         if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1074                 return;
1075
1076         spin_lock(&dom->lock);
1077         if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1078                 update_dirty_limit(dtc);
1079                 dom->dirty_limit_tstamp = now;
1080         }
1081         spin_unlock(&dom->lock);
1082 }
1083
1084 /*
1085  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1086  *
1087  * Normal wb tasks will be curbed at or below it in long term.
1088  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1089  */
1090 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1091                                       unsigned long dirtied,
1092                                       unsigned long elapsed)
1093 {
1094         struct bdi_writeback *wb = dtc->wb;
1095         unsigned long dirty = dtc->dirty;
1096         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1097         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1098         unsigned long setpoint = (freerun + limit) / 2;
1099         unsigned long write_bw = wb->avg_write_bandwidth;
1100         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1101         unsigned long dirty_rate;
1102         unsigned long task_ratelimit;
1103         unsigned long balanced_dirty_ratelimit;
1104         unsigned long step;
1105         unsigned long x;
1106
1107         /*
1108          * The dirty rate will match the writeout rate in long term, except
1109          * when dirty pages are truncated by userspace or re-dirtied by FS.
1110          */
1111         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1112
1113         /*
1114          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1115          */
1116         task_ratelimit = (u64)dirty_ratelimit *
1117                                         dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1118         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1119
1120         /*
1121          * A linear estimation of the "balanced" throttle rate. The theory is,
1122          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1123          * dirty_rate will be measured to be (N * task_ratelimit). So the below
1124          * formula will yield the balanced rate limit (write_bw / N).
1125          *
1126          * Note that the expanded form is not a pure rate feedback:
1127          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1128          * but also takes pos_ratio into account:
1129          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1130          *
1131          * (1) is not realistic because pos_ratio also takes part in balancing
1132          * the dirty rate.  Consider the state
1133          *      pos_ratio = 0.5                                              (3)
1134          *      rate = 2 * (write_bw / N)                                    (4)
1135          * If (1) is used, it will stuck in that state! Because each dd will
1136          * be throttled at
1137          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1138          * yielding
1139          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1140          * put (6) into (1) we get
1141          *      rate_(i+1) = rate_(i)                                        (7)
1142          *
1143          * So we end up using (2) to always keep
1144          *      rate_(i+1) ~= (write_bw / N)                                 (8)
1145          * regardless of the value of pos_ratio. As long as (8) is satisfied,
1146          * pos_ratio is able to drive itself to 1.0, which is not only where
1147          * the dirty count meet the setpoint, but also where the slope of
1148          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1149          */
1150         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1151                                            dirty_rate | 1);
1152         /*
1153          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1154          */
1155         if (unlikely(balanced_dirty_ratelimit > write_bw))
1156                 balanced_dirty_ratelimit = write_bw;
1157
1158         /*
1159          * We could safely do this and return immediately:
1160          *
1161          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1162          *
1163          * However to get a more stable dirty_ratelimit, the below elaborated
1164          * code makes use of task_ratelimit to filter out singular points and
1165          * limit the step size.
1166          *
1167          * The below code essentially only uses the relative value of
1168          *
1169          *      task_ratelimit - dirty_ratelimit
1170          *      = (pos_ratio - 1) * dirty_ratelimit
1171          *
1172          * which reflects the direction and size of dirty position error.
1173          */
1174
1175         /*
1176          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1177          * task_ratelimit is on the same side of dirty_ratelimit, too.
1178          * For example, when
1179          * - dirty_ratelimit > balanced_dirty_ratelimit
1180          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1181          * lowering dirty_ratelimit will help meet both the position and rate
1182          * control targets. Otherwise, don't update dirty_ratelimit if it will
1183          * only help meet the rate target. After all, what the users ultimately
1184          * feel and care are stable dirty rate and small position error.
1185          *
1186          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1187          * and filter out the singular points of balanced_dirty_ratelimit. Which
1188          * keeps jumping around randomly and can even leap far away at times
1189          * due to the small 200ms estimation period of dirty_rate (we want to
1190          * keep that period small to reduce time lags).
1191          */
1192         step = 0;
1193
1194         /*
1195          * For strictlimit case, calculations above were based on wb counters
1196          * and limits (starting from pos_ratio = wb_position_ratio() and up to
1197          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1198          * Hence, to calculate "step" properly, we have to use wb_dirty as
1199          * "dirty" and wb_setpoint as "setpoint".
1200          *
1201          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1202          * it's possible that wb_thresh is close to zero due to inactivity
1203          * of backing device.
1204          */
1205         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1206                 dirty = dtc->wb_dirty;
1207                 if (dtc->wb_dirty < 8)
1208                         setpoint = dtc->wb_dirty + 1;
1209                 else
1210                         setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1211         }
1212
1213         if (dirty < setpoint) {
1214                 x = min3(wb->balanced_dirty_ratelimit,
1215                          balanced_dirty_ratelimit, task_ratelimit);
1216                 if (dirty_ratelimit < x)
1217                         step = x - dirty_ratelimit;
1218         } else {
1219                 x = max3(wb->balanced_dirty_ratelimit,
1220                          balanced_dirty_ratelimit, task_ratelimit);
1221                 if (dirty_ratelimit > x)
1222                         step = dirty_ratelimit - x;
1223         }
1224
1225         /*
1226          * Don't pursue 100% rate matching. It's impossible since the balanced
1227          * rate itself is constantly fluctuating. So decrease the track speed
1228          * when it gets close to the target. Helps eliminate pointless tremors.
1229          */
1230         step >>= dirty_ratelimit / (2 * step + 1);
1231         /*
1232          * Limit the tracking speed to avoid overshooting.
1233          */
1234         step = (step + 7) / 8;
1235
1236         if (dirty_ratelimit < balanced_dirty_ratelimit)
1237                 dirty_ratelimit += step;
1238         else
1239                 dirty_ratelimit -= step;
1240
1241         wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1242         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1243
1244         trace_bdi_dirty_ratelimit(wb->bdi, dirty_rate, task_ratelimit);
1245 }
1246
1247 static void __wb_update_bandwidth(struct dirty_throttle_control *dtc,
1248                                   unsigned long start_time,
1249                                   bool update_ratelimit)
1250 {
1251         struct bdi_writeback *wb = dtc->wb;
1252         unsigned long now = jiffies;
1253         unsigned long elapsed = now - wb->bw_time_stamp;
1254         unsigned long dirtied;
1255         unsigned long written;
1256
1257         lockdep_assert_held(&wb->list_lock);
1258
1259         /*
1260          * rate-limit, only update once every 200ms.
1261          */
1262         if (elapsed < BANDWIDTH_INTERVAL)
1263                 return;
1264
1265         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1266         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1267
1268         /*
1269          * Skip quiet periods when disk bandwidth is under-utilized.
1270          * (at least 1s idle time between two flusher runs)
1271          */
1272         if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1273                 goto snapshot;
1274
1275         if (update_ratelimit) {
1276                 domain_update_bandwidth(dtc, now);
1277                 wb_update_dirty_ratelimit(dtc, dirtied, elapsed);
1278         }
1279         wb_update_write_bandwidth(wb, elapsed, written);
1280
1281 snapshot:
1282         wb->dirtied_stamp = dirtied;
1283         wb->written_stamp = written;
1284         wb->bw_time_stamp = now;
1285 }
1286
1287 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1288 {
1289         struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1290
1291         __wb_update_bandwidth(&gdtc, start_time, false);
1292 }
1293
1294 /*
1295  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1296  * will look to see if it needs to start dirty throttling.
1297  *
1298  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1299  * global_page_state() too often. So scale it near-sqrt to the safety margin
1300  * (the number of pages we may dirty without exceeding the dirty limits).
1301  */
1302 static unsigned long dirty_poll_interval(unsigned long dirty,
1303                                          unsigned long thresh)
1304 {
1305         if (thresh > dirty)
1306                 return 1UL << (ilog2(thresh - dirty) >> 1);
1307
1308         return 1;
1309 }
1310
1311 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1312                                   unsigned long wb_dirty)
1313 {
1314         unsigned long bw = wb->avg_write_bandwidth;
1315         unsigned long t;
1316
1317         /*
1318          * Limit pause time for small memory systems. If sleeping for too long
1319          * time, a small pool of dirty/writeback pages may go empty and disk go
1320          * idle.
1321          *
1322          * 8 serves as the safety ratio.
1323          */
1324         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1325         t++;
1326
1327         return min_t(unsigned long, t, MAX_PAUSE);
1328 }
1329
1330 static long wb_min_pause(struct bdi_writeback *wb,
1331                          long max_pause,
1332                          unsigned long task_ratelimit,
1333                          unsigned long dirty_ratelimit,
1334                          int *nr_dirtied_pause)
1335 {
1336         long hi = ilog2(wb->avg_write_bandwidth);
1337         long lo = ilog2(wb->dirty_ratelimit);
1338         long t;         /* target pause */
1339         long pause;     /* estimated next pause */
1340         int pages;      /* target nr_dirtied_pause */
1341
1342         /* target for 10ms pause on 1-dd case */
1343         t = max(1, HZ / 100);
1344
1345         /*
1346          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1347          * overheads.
1348          *
1349          * (N * 10ms) on 2^N concurrent tasks.
1350          */
1351         if (hi > lo)
1352                 t += (hi - lo) * (10 * HZ) / 1024;
1353
1354         /*
1355          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1356          * on the much more stable dirty_ratelimit. However the next pause time
1357          * will be computed based on task_ratelimit and the two rate limits may
1358          * depart considerably at some time. Especially if task_ratelimit goes
1359          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1360          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1361          * result task_ratelimit won't be executed faithfully, which could
1362          * eventually bring down dirty_ratelimit.
1363          *
1364          * We apply two rules to fix it up:
1365          * 1) try to estimate the next pause time and if necessary, use a lower
1366          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1367          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1368          * 2) limit the target pause time to max_pause/2, so that the normal
1369          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1370          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1371          */
1372         t = min(t, 1 + max_pause / 2);
1373         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1374
1375         /*
1376          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1377          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1378          * When the 16 consecutive reads are often interrupted by some dirty
1379          * throttling pause during the async writes, cfq will go into idles
1380          * (deadline is fine). So push nr_dirtied_pause as high as possible
1381          * until reaches DIRTY_POLL_THRESH=32 pages.
1382          */
1383         if (pages < DIRTY_POLL_THRESH) {
1384                 t = max_pause;
1385                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1386                 if (pages > DIRTY_POLL_THRESH) {
1387                         pages = DIRTY_POLL_THRESH;
1388                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1389                 }
1390         }
1391
1392         pause = HZ * pages / (task_ratelimit + 1);
1393         if (pause > max_pause) {
1394                 t = max_pause;
1395                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1396         }
1397
1398         *nr_dirtied_pause = pages;
1399         /*
1400          * The minimal pause time will normally be half the target pause time.
1401          */
1402         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1403 }
1404
1405 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1406 {
1407         struct bdi_writeback *wb = dtc->wb;
1408         unsigned long wb_reclaimable;
1409
1410         /*
1411          * wb_thresh is not treated as some limiting factor as
1412          * dirty_thresh, due to reasons
1413          * - in JBOD setup, wb_thresh can fluctuate a lot
1414          * - in a system with HDD and USB key, the USB key may somehow
1415          *   go into state (wb_dirty >> wb_thresh) either because
1416          *   wb_dirty starts high, or because wb_thresh drops low.
1417          *   In this case we don't want to hard throttle the USB key
1418          *   dirtiers for 100 seconds until wb_dirty drops under
1419          *   wb_thresh. Instead the auxiliary wb control line in
1420          *   wb_position_ratio() will let the dirtier task progress
1421          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1422          */
1423         dtc->wb_thresh = __wb_calc_thresh(dtc);
1424         dtc->wb_bg_thresh = dtc->thresh ?
1425                 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1426
1427         /*
1428          * In order to avoid the stacked BDI deadlock we need
1429          * to ensure we accurately count the 'dirty' pages when
1430          * the threshold is low.
1431          *
1432          * Otherwise it would be possible to get thresh+n pages
1433          * reported dirty, even though there are thresh-m pages
1434          * actually dirty; with m+n sitting in the percpu
1435          * deltas.
1436          */
1437         if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1438                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1439                 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1440         } else {
1441                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1442                 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1443         }
1444 }
1445
1446 /*
1447  * balance_dirty_pages() must be called by processes which are generating dirty
1448  * data.  It looks at the number of dirty pages in the machine and will force
1449  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1450  * If we're over `background_thresh' then the writeback threads are woken to
1451  * perform some writeout.
1452  */
1453 static void balance_dirty_pages(struct address_space *mapping,
1454                                 struct bdi_writeback *wb,
1455                                 unsigned long pages_dirtied)
1456 {
1457         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1458         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1459         unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1460         long period;
1461         long pause;
1462         long max_pause;
1463         long min_pause;
1464         int nr_dirtied_pause;
1465         bool dirty_exceeded = false;
1466         unsigned long task_ratelimit;
1467         unsigned long dirty_ratelimit;
1468         struct backing_dev_info *bdi = wb->bdi;
1469         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1470         unsigned long start_time = jiffies;
1471
1472         for (;;) {
1473                 unsigned long now = jiffies;
1474                 unsigned long dirty, thresh, bg_thresh;
1475
1476                 /*
1477                  * Unstable writes are a feature of certain networked
1478                  * filesystems (i.e. NFS) in which data may have been
1479                  * written to the server's write cache, but has not yet
1480                  * been flushed to permanent storage.
1481                  */
1482                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1483                                         global_page_state(NR_UNSTABLE_NFS);
1484                 gdtc->avail = global_dirtyable_memory();
1485                 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1486
1487                 domain_dirty_limits(gdtc);
1488
1489                 if (unlikely(strictlimit)) {
1490                         wb_dirty_limits(gdtc);
1491
1492                         dirty = gdtc->wb_dirty;
1493                         thresh = gdtc->wb_thresh;
1494                         bg_thresh = gdtc->wb_bg_thresh;
1495                 } else {
1496                         dirty = gdtc->dirty;
1497                         thresh = gdtc->thresh;
1498                         bg_thresh = gdtc->bg_thresh;
1499                 }
1500
1501                 /*
1502                  * Throttle it only when the background writeback cannot
1503                  * catch-up. This avoids (excessively) small writeouts
1504                  * when the wb limits are ramping up in case of !strictlimit.
1505                  *
1506                  * In strictlimit case make decision based on the wb counters
1507                  * and limits. Small writeouts when the wb limits are ramping
1508                  * up are the price we consciously pay for strictlimit-ing.
1509                  */
1510                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
1511                         current->dirty_paused_when = now;
1512                         current->nr_dirtied = 0;
1513                         current->nr_dirtied_pause =
1514                                 dirty_poll_interval(dirty, thresh);
1515                         break;
1516                 }
1517
1518                 if (unlikely(!writeback_in_progress(wb)))
1519                         wb_start_background_writeback(wb);
1520
1521                 if (!strictlimit)
1522                         wb_dirty_limits(gdtc);
1523
1524                 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1525                         ((gdtc->dirty > gdtc->thresh) || strictlimit);
1526
1527                 wb_position_ratio(gdtc);
1528
1529                 if (dirty_exceeded && !wb->dirty_exceeded)
1530                         wb->dirty_exceeded = 1;
1531
1532                 if (time_is_before_jiffies(wb->bw_time_stamp +
1533                                            BANDWIDTH_INTERVAL)) {
1534                         spin_lock(&wb->list_lock);
1535                         __wb_update_bandwidth(gdtc, start_time, true);
1536                         spin_unlock(&wb->list_lock);
1537                 }
1538
1539                 dirty_ratelimit = wb->dirty_ratelimit;
1540                 task_ratelimit = ((u64)dirty_ratelimit * gdtc->pos_ratio) >>
1541                                                         RATELIMIT_CALC_SHIFT;
1542                 max_pause = wb_max_pause(wb, gdtc->wb_dirty);
1543                 min_pause = wb_min_pause(wb, max_pause,
1544                                          task_ratelimit, dirty_ratelimit,
1545                                          &nr_dirtied_pause);
1546
1547                 if (unlikely(task_ratelimit == 0)) {
1548                         period = max_pause;
1549                         pause = max_pause;
1550                         goto pause;
1551                 }
1552                 period = HZ * pages_dirtied / task_ratelimit;
1553                 pause = period;
1554                 if (current->dirty_paused_when)
1555                         pause -= now - current->dirty_paused_when;
1556                 /*
1557                  * For less than 1s think time (ext3/4 may block the dirtier
1558                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1559                  * however at much less frequency), try to compensate it in
1560                  * future periods by updating the virtual time; otherwise just
1561                  * do a reset, as it may be a light dirtier.
1562                  */
1563                 if (pause < min_pause) {
1564                         trace_balance_dirty_pages(bdi,
1565                                                   gdtc->thresh,
1566                                                   gdtc->bg_thresh,
1567                                                   gdtc->dirty,
1568                                                   gdtc->wb_thresh,
1569                                                   gdtc->wb_dirty,
1570                                                   dirty_ratelimit,
1571                                                   task_ratelimit,
1572                                                   pages_dirtied,
1573                                                   period,
1574                                                   min(pause, 0L),
1575                                                   start_time);
1576                         if (pause < -HZ) {
1577                                 current->dirty_paused_when = now;
1578                                 current->nr_dirtied = 0;
1579                         } else if (period) {
1580                                 current->dirty_paused_when += period;
1581                                 current->nr_dirtied = 0;
1582                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1583                                 current->nr_dirtied_pause += pages_dirtied;
1584                         break;
1585                 }
1586                 if (unlikely(pause > max_pause)) {
1587                         /* for occasional dropped task_ratelimit */
1588                         now += min(pause - max_pause, max_pause);
1589                         pause = max_pause;
1590                 }
1591
1592 pause:
1593                 trace_balance_dirty_pages(bdi,
1594                                           gdtc->thresh,
1595                                           gdtc->bg_thresh,
1596                                           gdtc->dirty,
1597                                           gdtc->wb_thresh,
1598                                           gdtc->wb_dirty,
1599                                           dirty_ratelimit,
1600                                           task_ratelimit,
1601                                           pages_dirtied,
1602                                           period,
1603                                           pause,
1604                                           start_time);
1605                 __set_current_state(TASK_KILLABLE);
1606                 io_schedule_timeout(pause);
1607
1608                 current->dirty_paused_when = now + pause;
1609                 current->nr_dirtied = 0;
1610                 current->nr_dirtied_pause = nr_dirtied_pause;
1611
1612                 /*
1613                  * This is typically equal to (dirty < thresh) and can also
1614                  * keep "1000+ dd on a slow USB stick" under control.
1615                  */
1616                 if (task_ratelimit)
1617                         break;
1618
1619                 /*
1620                  * In the case of an unresponding NFS server and the NFS dirty
1621                  * pages exceeds dirty_thresh, give the other good wb's a pipe
1622                  * to go through, so that tasks on them still remain responsive.
1623                  *
1624                  * In theory 1 page is enough to keep the comsumer-producer
1625                  * pipe going: the flusher cleans 1 page => the task dirties 1
1626                  * more page. However wb_dirty has accounting errors.  So use
1627                  * the larger and more IO friendly wb_stat_error.
1628                  */
1629                 if (gdtc->wb_dirty <= wb_stat_error(wb))
1630                         break;
1631
1632                 if (fatal_signal_pending(current))
1633                         break;
1634         }
1635
1636         if (!dirty_exceeded && wb->dirty_exceeded)
1637                 wb->dirty_exceeded = 0;
1638
1639         if (writeback_in_progress(wb))
1640                 return;
1641
1642         /*
1643          * In laptop mode, we wait until hitting the higher threshold before
1644          * starting background writeout, and then write out all the way down
1645          * to the lower threshold.  So slow writers cause minimal disk activity.
1646          *
1647          * In normal mode, we start background writeout at the lower
1648          * background_thresh, to keep the amount of dirty memory low.
1649          */
1650         if (laptop_mode)
1651                 return;
1652
1653         if (nr_reclaimable > gdtc->bg_thresh)
1654                 wb_start_background_writeback(wb);
1655 }
1656
1657 static DEFINE_PER_CPU(int, bdp_ratelimits);
1658
1659 /*
1660  * Normal tasks are throttled by
1661  *      loop {
1662  *              dirty tsk->nr_dirtied_pause pages;
1663  *              take a snap in balance_dirty_pages();
1664  *      }
1665  * However there is a worst case. If every task exit immediately when dirtied
1666  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1667  * called to throttle the page dirties. The solution is to save the not yet
1668  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1669  * randomly into the running tasks. This works well for the above worst case,
1670  * as the new task will pick up and accumulate the old task's leaked dirty
1671  * count and eventually get throttled.
1672  */
1673 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1674
1675 /**
1676  * balance_dirty_pages_ratelimited - balance dirty memory state
1677  * @mapping: address_space which was dirtied
1678  *
1679  * Processes which are dirtying memory should call in here once for each page
1680  * which was newly dirtied.  The function will periodically check the system's
1681  * dirty state and will initiate writeback if needed.
1682  *
1683  * On really big machines, get_writeback_state is expensive, so try to avoid
1684  * calling it too often (ratelimiting).  But once we're over the dirty memory
1685  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1686  * from overshooting the limit by (ratelimit_pages) each.
1687  */
1688 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1689 {
1690         struct inode *inode = mapping->host;
1691         struct backing_dev_info *bdi = inode_to_bdi(inode);
1692         struct bdi_writeback *wb = NULL;
1693         int ratelimit;
1694         int *p;
1695
1696         if (!bdi_cap_account_dirty(bdi))
1697                 return;
1698
1699         if (inode_cgwb_enabled(inode))
1700                 wb = wb_get_create_current(bdi, GFP_KERNEL);
1701         if (!wb)
1702                 wb = &bdi->wb;
1703
1704         ratelimit = current->nr_dirtied_pause;
1705         if (wb->dirty_exceeded)
1706                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1707
1708         preempt_disable();
1709         /*
1710          * This prevents one CPU to accumulate too many dirtied pages without
1711          * calling into balance_dirty_pages(), which can happen when there are
1712          * 1000+ tasks, all of them start dirtying pages at exactly the same
1713          * time, hence all honoured too large initial task->nr_dirtied_pause.
1714          */
1715         p =  this_cpu_ptr(&bdp_ratelimits);
1716         if (unlikely(current->nr_dirtied >= ratelimit))
1717                 *p = 0;
1718         else if (unlikely(*p >= ratelimit_pages)) {
1719                 *p = 0;
1720                 ratelimit = 0;
1721         }
1722         /*
1723          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1724          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1725          * the dirty throttling and livelock other long-run dirtiers.
1726          */
1727         p = this_cpu_ptr(&dirty_throttle_leaks);
1728         if (*p > 0 && current->nr_dirtied < ratelimit) {
1729                 unsigned long nr_pages_dirtied;
1730                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1731                 *p -= nr_pages_dirtied;
1732                 current->nr_dirtied += nr_pages_dirtied;
1733         }
1734         preempt_enable();
1735
1736         if (unlikely(current->nr_dirtied >= ratelimit))
1737                 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1738
1739         wb_put(wb);
1740 }
1741 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1742
1743 /**
1744  * wb_over_bg_thresh - does @wb need to be written back?
1745  * @wb: bdi_writeback of interest
1746  *
1747  * Determines whether background writeback should keep writing @wb or it's
1748  * clean enough.  Returns %true if writeback should continue.
1749  */
1750 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1751 {
1752         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1753         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1754
1755         /*
1756          * Similar to balance_dirty_pages() but ignores pages being written
1757          * as we're trying to decide whether to put more under writeback.
1758          */
1759         gdtc->avail = global_dirtyable_memory();
1760         gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1761                       global_page_state(NR_UNSTABLE_NFS);
1762         domain_dirty_limits(gdtc);
1763
1764         if (gdtc->dirty > gdtc->bg_thresh)
1765                 return true;
1766
1767         if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(gdtc))
1768                 return true;
1769
1770         return false;
1771 }
1772
1773 void throttle_vm_writeout(gfp_t gfp_mask)
1774 {
1775         unsigned long background_thresh;
1776         unsigned long dirty_thresh;
1777
1778         for ( ; ; ) {
1779                 global_dirty_limits(&background_thresh, &dirty_thresh);
1780                 dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1781
1782                 /*
1783                  * Boost the allowable dirty threshold a bit for page
1784                  * allocators so they don't get DoS'ed by heavy writers
1785                  */
1786                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1787
1788                 if (global_page_state(NR_UNSTABLE_NFS) +
1789                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
1790                                 break;
1791                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1792
1793                 /*
1794                  * The caller might hold locks which can prevent IO completion
1795                  * or progress in the filesystem.  So we cannot just sit here
1796                  * waiting for IO to complete.
1797                  */
1798                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1799                         break;
1800         }
1801 }
1802
1803 /*
1804  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1805  */
1806 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1807         void __user *buffer, size_t *length, loff_t *ppos)
1808 {
1809         proc_dointvec(table, write, buffer, length, ppos);
1810         return 0;
1811 }
1812
1813 #ifdef CONFIG_BLOCK
1814 void laptop_mode_timer_fn(unsigned long data)
1815 {
1816         struct request_queue *q = (struct request_queue *)data;
1817         int nr_pages = global_page_state(NR_FILE_DIRTY) +
1818                 global_page_state(NR_UNSTABLE_NFS);
1819         struct bdi_writeback *wb;
1820         struct wb_iter iter;
1821
1822         /*
1823          * We want to write everything out, not just down to the dirty
1824          * threshold
1825          */
1826         if (!bdi_has_dirty_io(&q->backing_dev_info))
1827                 return;
1828
1829         bdi_for_each_wb(wb, &q->backing_dev_info, &iter, 0)
1830                 if (wb_has_dirty_io(wb))
1831                         wb_start_writeback(wb, nr_pages, true,
1832                                            WB_REASON_LAPTOP_TIMER);
1833 }
1834
1835 /*
1836  * We've spun up the disk and we're in laptop mode: schedule writeback
1837  * of all dirty data a few seconds from now.  If the flush is already scheduled
1838  * then push it back - the user is still using the disk.
1839  */
1840 void laptop_io_completion(struct backing_dev_info *info)
1841 {
1842         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1843 }
1844
1845 /*
1846  * We're in laptop mode and we've just synced. The sync's writes will have
1847  * caused another writeback to be scheduled by laptop_io_completion.
1848  * Nothing needs to be written back anymore, so we unschedule the writeback.
1849  */
1850 void laptop_sync_completion(void)
1851 {
1852         struct backing_dev_info *bdi;
1853
1854         rcu_read_lock();
1855
1856         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1857                 del_timer(&bdi->laptop_mode_wb_timer);
1858
1859         rcu_read_unlock();
1860 }
1861 #endif
1862
1863 /*
1864  * If ratelimit_pages is too high then we can get into dirty-data overload
1865  * if a large number of processes all perform writes at the same time.
1866  * If it is too low then SMP machines will call the (expensive)
1867  * get_writeback_state too often.
1868  *
1869  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1870  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1871  * thresholds.
1872  */
1873
1874 void writeback_set_ratelimit(void)
1875 {
1876         struct wb_domain *dom = &global_wb_domain;
1877         unsigned long background_thresh;
1878         unsigned long dirty_thresh;
1879
1880         global_dirty_limits(&background_thresh, &dirty_thresh);
1881         dom->dirty_limit = dirty_thresh;
1882         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1883         if (ratelimit_pages < 16)
1884                 ratelimit_pages = 16;
1885 }
1886
1887 static int
1888 ratelimit_handler(struct notifier_block *self, unsigned long action,
1889                   void *hcpu)
1890 {
1891
1892         switch (action & ~CPU_TASKS_FROZEN) {
1893         case CPU_ONLINE:
1894         case CPU_DEAD:
1895                 writeback_set_ratelimit();
1896                 return NOTIFY_OK;
1897         default:
1898                 return NOTIFY_DONE;
1899         }
1900 }
1901
1902 static struct notifier_block ratelimit_nb = {
1903         .notifier_call  = ratelimit_handler,
1904         .next           = NULL,
1905 };
1906
1907 /*
1908  * Called early on to tune the page writeback dirty limits.
1909  *
1910  * We used to scale dirty pages according to how total memory
1911  * related to pages that could be allocated for buffers (by
1912  * comparing nr_free_buffer_pages() to vm_total_pages.
1913  *
1914  * However, that was when we used "dirty_ratio" to scale with
1915  * all memory, and we don't do that any more. "dirty_ratio"
1916  * is now applied to total non-HIGHPAGE memory (by subtracting
1917  * totalhigh_pages from vm_total_pages), and as such we can't
1918  * get into the old insane situation any more where we had
1919  * large amounts of dirty pages compared to a small amount of
1920  * non-HIGHMEM memory.
1921  *
1922  * But we might still want to scale the dirty_ratio by how
1923  * much memory the box has..
1924  */
1925 void __init page_writeback_init(void)
1926 {
1927         writeback_set_ratelimit();
1928         register_cpu_notifier(&ratelimit_nb);
1929
1930         BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
1931 }
1932
1933 /**
1934  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1935  * @mapping: address space structure to write
1936  * @start: starting page index
1937  * @end: ending page index (inclusive)
1938  *
1939  * This function scans the page range from @start to @end (inclusive) and tags
1940  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1941  * that write_cache_pages (or whoever calls this function) will then use
1942  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1943  * used to avoid livelocking of writeback by a process steadily creating new
1944  * dirty pages in the file (thus it is important for this function to be quick
1945  * so that it can tag pages faster than a dirtying process can create them).
1946  */
1947 /*
1948  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1949  */
1950 void tag_pages_for_writeback(struct address_space *mapping,
1951                              pgoff_t start, pgoff_t end)
1952 {
1953 #define WRITEBACK_TAG_BATCH 4096
1954         unsigned long tagged;
1955
1956         do {
1957                 spin_lock_irq(&mapping->tree_lock);
1958                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1959                                 &start, end, WRITEBACK_TAG_BATCH,
1960                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1961                 spin_unlock_irq(&mapping->tree_lock);
1962                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1963                 cond_resched();
1964                 /* We check 'start' to handle wrapping when end == ~0UL */
1965         } while (tagged >= WRITEBACK_TAG_BATCH && start);
1966 }
1967 EXPORT_SYMBOL(tag_pages_for_writeback);
1968
1969 /**
1970  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1971  * @mapping: address space structure to write
1972  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1973  * @writepage: function called for each page
1974  * @data: data passed to writepage function
1975  *
1976  * If a page is already under I/O, write_cache_pages() skips it, even
1977  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1978  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1979  * and msync() need to guarantee that all the data which was dirty at the time
1980  * the call was made get new I/O started against them.  If wbc->sync_mode is
1981  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1982  * existing IO to complete.
1983  *
1984  * To avoid livelocks (when other process dirties new pages), we first tag
1985  * pages which should be written back with TOWRITE tag and only then start
1986  * writing them. For data-integrity sync we have to be careful so that we do
1987  * not miss some pages (e.g., because some other process has cleared TOWRITE
1988  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1989  * by the process clearing the DIRTY tag (and submitting the page for IO).
1990  */
1991 int write_cache_pages(struct address_space *mapping,
1992                       struct writeback_control *wbc, writepage_t writepage,
1993                       void *data)
1994 {
1995         int ret = 0;
1996         int done = 0;
1997         struct pagevec pvec;
1998         int nr_pages;
1999         pgoff_t uninitialized_var(writeback_index);
2000         pgoff_t index;
2001         pgoff_t end;            /* Inclusive */
2002         pgoff_t done_index;
2003         int cycled;
2004         int range_whole = 0;
2005         int tag;
2006
2007         pagevec_init(&pvec, 0);
2008         if (wbc->range_cyclic) {
2009                 writeback_index = mapping->writeback_index; /* prev offset */
2010                 index = writeback_index;
2011                 if (index == 0)
2012                         cycled = 1;
2013                 else
2014                         cycled = 0;
2015                 end = -1;
2016         } else {
2017                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2018                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2019                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2020                         range_whole = 1;
2021                 cycled = 1; /* ignore range_cyclic tests */
2022         }
2023         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2024                 tag = PAGECACHE_TAG_TOWRITE;
2025         else
2026                 tag = PAGECACHE_TAG_DIRTY;
2027 retry:
2028         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2029                 tag_pages_for_writeback(mapping, index, end);
2030         done_index = index;
2031         while (!done && (index <= end)) {
2032                 int i;
2033
2034                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2035                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2036                 if (nr_pages == 0)
2037                         break;
2038
2039                 for (i = 0; i < nr_pages; i++) {
2040                         struct page *page = pvec.pages[i];
2041
2042                         /*
2043                          * At this point, the page may be truncated or
2044                          * invalidated (changing page->mapping to NULL), or
2045                          * even swizzled back from swapper_space to tmpfs file
2046                          * mapping. However, page->index will not change
2047                          * because we have a reference on the page.
2048                          */
2049                         if (page->index > end) {
2050                                 /*
2051                                  * can't be range_cyclic (1st pass) because
2052                                  * end == -1 in that case.
2053                                  */
2054                                 done = 1;
2055                                 break;
2056                         }
2057
2058                         done_index = page->index;
2059
2060                         lock_page(page);
2061
2062                         /*
2063                          * Page truncated or invalidated. We can freely skip it
2064                          * then, even for data integrity operations: the page
2065                          * has disappeared concurrently, so there could be no
2066                          * real expectation of this data interity operation
2067                          * even if there is now a new, dirty page at the same
2068                          * pagecache address.
2069                          */
2070                         if (unlikely(page->mapping != mapping)) {
2071 continue_unlock:
2072                                 unlock_page(page);
2073                                 continue;
2074                         }
2075
2076                         if (!PageDirty(page)) {
2077                                 /* someone wrote it for us */
2078                                 goto continue_unlock;
2079                         }
2080
2081                         if (PageWriteback(page)) {
2082                                 if (wbc->sync_mode != WB_SYNC_NONE)
2083                                         wait_on_page_writeback(page);
2084                                 else
2085                                         goto continue_unlock;
2086                         }
2087
2088                         BUG_ON(PageWriteback(page));
2089                         if (!clear_page_dirty_for_io(page))
2090                                 goto continue_unlock;
2091
2092                         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2093                         ret = (*writepage)(page, wbc, data);
2094                         if (unlikely(ret)) {
2095                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2096                                         unlock_page(page);
2097                                         ret = 0;
2098                                 } else {
2099                                         /*
2100                                          * done_index is set past this page,
2101                                          * so media errors will not choke
2102                                          * background writeout for the entire
2103                                          * file. This has consequences for
2104                                          * range_cyclic semantics (ie. it may
2105                                          * not be suitable for data integrity
2106                                          * writeout).
2107                                          */
2108                                         done_index = page->index + 1;
2109                                         done = 1;
2110                                         break;
2111                                 }
2112                         }
2113
2114                         /*
2115                          * We stop writing back only if we are not doing
2116                          * integrity sync. In case of integrity sync we have to
2117                          * keep going until we have written all the pages
2118                          * we tagged for writeback prior to entering this loop.
2119                          */
2120                         if (--wbc->nr_to_write <= 0 &&
2121                             wbc->sync_mode == WB_SYNC_NONE) {
2122                                 done = 1;
2123                                 break;
2124                         }
2125                 }
2126                 pagevec_release(&pvec);
2127                 cond_resched();
2128         }
2129         if (!cycled && !done) {
2130                 /*
2131                  * range_cyclic:
2132                  * We hit the last page and there is more work to be done: wrap
2133                  * back to the start of the file
2134                  */
2135                 cycled = 1;
2136                 index = 0;
2137                 end = writeback_index - 1;
2138                 goto retry;
2139         }
2140         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2141                 mapping->writeback_index = done_index;
2142
2143         return ret;
2144 }
2145 EXPORT_SYMBOL(write_cache_pages);
2146
2147 /*
2148  * Function used by generic_writepages to call the real writepage
2149  * function and set the mapping flags on error
2150  */
2151 static int __writepage(struct page *page, struct writeback_control *wbc,
2152                        void *data)
2153 {
2154         struct address_space *mapping = data;
2155         int ret = mapping->a_ops->writepage(page, wbc);
2156         mapping_set_error(mapping, ret);
2157         return ret;
2158 }
2159
2160 /**
2161  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2162  * @mapping: address space structure to write
2163  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2164  *
2165  * This is a library function, which implements the writepages()
2166  * address_space_operation.
2167  */
2168 int generic_writepages(struct address_space *mapping,
2169                        struct writeback_control *wbc)
2170 {
2171         struct blk_plug plug;
2172         int ret;
2173
2174         /* deal with chardevs and other special file */
2175         if (!mapping->a_ops->writepage)
2176                 return 0;
2177
2178         blk_start_plug(&plug);
2179         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2180         blk_finish_plug(&plug);
2181         return ret;
2182 }
2183
2184 EXPORT_SYMBOL(generic_writepages);
2185
2186 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2187 {
2188         int ret;
2189
2190         if (wbc->nr_to_write <= 0)
2191                 return 0;
2192         if (mapping->a_ops->writepages)
2193                 ret = mapping->a_ops->writepages(mapping, wbc);
2194         else
2195                 ret = generic_writepages(mapping, wbc);
2196         return ret;
2197 }
2198
2199 /**
2200  * write_one_page - write out a single page and optionally wait on I/O
2201  * @page: the page to write
2202  * @wait: if true, wait on writeout
2203  *
2204  * The page must be locked by the caller and will be unlocked upon return.
2205  *
2206  * write_one_page() returns a negative error code if I/O failed.
2207  */
2208 int write_one_page(struct page *page, int wait)
2209 {
2210         struct address_space *mapping = page->mapping;
2211         int ret = 0;
2212         struct writeback_control wbc = {
2213                 .sync_mode = WB_SYNC_ALL,
2214                 .nr_to_write = 1,
2215         };
2216
2217         BUG_ON(!PageLocked(page));
2218
2219         if (wait)
2220                 wait_on_page_writeback(page);
2221
2222         if (clear_page_dirty_for_io(page)) {
2223                 page_cache_get(page);
2224                 ret = mapping->a_ops->writepage(page, &wbc);
2225                 if (ret == 0 && wait) {
2226                         wait_on_page_writeback(page);
2227                         if (PageError(page))
2228                                 ret = -EIO;
2229                 }
2230                 page_cache_release(page);
2231         } else {
2232                 unlock_page(page);
2233         }
2234         return ret;
2235 }
2236 EXPORT_SYMBOL(write_one_page);
2237
2238 /*
2239  * For address_spaces which do not use buffers nor write back.
2240  */
2241 int __set_page_dirty_no_writeback(struct page *page)
2242 {
2243         if (!PageDirty(page))
2244                 return !TestSetPageDirty(page);
2245         return 0;
2246 }
2247
2248 /*
2249  * Helper function for set_page_dirty family.
2250  *
2251  * Caller must hold mem_cgroup_begin_page_stat().
2252  *
2253  * NOTE: This relies on being atomic wrt interrupts.
2254  */
2255 void account_page_dirtied(struct page *page, struct address_space *mapping,
2256                           struct mem_cgroup *memcg)
2257 {
2258         struct inode *inode = mapping->host;
2259
2260         trace_writeback_dirty_page(page, mapping);
2261
2262         if (mapping_cap_account_dirty(mapping)) {
2263                 struct bdi_writeback *wb;
2264
2265                 inode_attach_wb(inode, page);
2266                 wb = inode_to_wb(inode);
2267
2268                 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2269                 __inc_zone_page_state(page, NR_FILE_DIRTY);
2270                 __inc_zone_page_state(page, NR_DIRTIED);
2271                 __inc_wb_stat(wb, WB_RECLAIMABLE);
2272                 __inc_wb_stat(wb, WB_DIRTIED);
2273                 task_io_account_write(PAGE_CACHE_SIZE);
2274                 current->nr_dirtied++;
2275                 this_cpu_inc(bdp_ratelimits);
2276         }
2277 }
2278 EXPORT_SYMBOL(account_page_dirtied);
2279
2280 /*
2281  * Helper function for deaccounting dirty page without writeback.
2282  *
2283  * Caller must hold mem_cgroup_begin_page_stat().
2284  */
2285 void account_page_cleaned(struct page *page, struct address_space *mapping,
2286                           struct mem_cgroup *memcg)
2287 {
2288         if (mapping_cap_account_dirty(mapping)) {
2289                 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2290                 dec_zone_page_state(page, NR_FILE_DIRTY);
2291                 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
2292                 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2293         }
2294 }
2295
2296 /*
2297  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2298  * its radix tree.
2299  *
2300  * This is also used when a single buffer is being dirtied: we want to set the
2301  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2302  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2303  *
2304  * The caller must ensure this doesn't race with truncation.  Most will simply
2305  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2306  * the pte lock held, which also locks out truncation.
2307  */
2308 int __set_page_dirty_nobuffers(struct page *page)
2309 {
2310         struct mem_cgroup *memcg;
2311
2312         memcg = mem_cgroup_begin_page_stat(page);
2313         if (!TestSetPageDirty(page)) {
2314                 struct address_space *mapping = page_mapping(page);
2315                 unsigned long flags;
2316
2317                 if (!mapping) {
2318                         mem_cgroup_end_page_stat(memcg);
2319                         return 1;
2320                 }
2321
2322                 spin_lock_irqsave(&mapping->tree_lock, flags);
2323                 BUG_ON(page_mapping(page) != mapping);
2324                 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2325                 account_page_dirtied(page, mapping, memcg);
2326                 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2327                                    PAGECACHE_TAG_DIRTY);
2328                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2329                 mem_cgroup_end_page_stat(memcg);
2330
2331                 if (mapping->host) {
2332                         /* !PageAnon && !swapper_space */
2333                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2334                 }
2335                 return 1;
2336         }
2337         mem_cgroup_end_page_stat(memcg);
2338         return 0;
2339 }
2340 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2341
2342 /*
2343  * Call this whenever redirtying a page, to de-account the dirty counters
2344  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2345  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2346  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2347  * control.
2348  */
2349 void account_page_redirty(struct page *page)
2350 {
2351         struct address_space *mapping = page->mapping;
2352
2353         if (mapping && mapping_cap_account_dirty(mapping)) {
2354                 struct bdi_writeback *wb = inode_to_wb(mapping->host);
2355
2356                 current->nr_dirtied--;
2357                 dec_zone_page_state(page, NR_DIRTIED);
2358                 dec_wb_stat(wb, WB_DIRTIED);
2359         }
2360 }
2361 EXPORT_SYMBOL(account_page_redirty);
2362
2363 /*
2364  * When a writepage implementation decides that it doesn't want to write this
2365  * page for some reason, it should redirty the locked page via
2366  * redirty_page_for_writepage() and it should then unlock the page and return 0
2367  */
2368 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2369 {
2370         int ret;
2371
2372         wbc->pages_skipped++;
2373         ret = __set_page_dirty_nobuffers(page);
2374         account_page_redirty(page);
2375         return ret;
2376 }
2377 EXPORT_SYMBOL(redirty_page_for_writepage);
2378
2379 /*
2380  * Dirty a page.
2381  *
2382  * For pages with a mapping this should be done under the page lock
2383  * for the benefit of asynchronous memory errors who prefer a consistent
2384  * dirty state. This rule can be broken in some special cases,
2385  * but should be better not to.
2386  *
2387  * If the mapping doesn't provide a set_page_dirty a_op, then
2388  * just fall through and assume that it wants buffer_heads.
2389  */
2390 int set_page_dirty(struct page *page)
2391 {
2392         struct address_space *mapping = page_mapping(page);
2393
2394         if (likely(mapping)) {
2395                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2396                 /*
2397                  * readahead/lru_deactivate_page could remain
2398                  * PG_readahead/PG_reclaim due to race with end_page_writeback
2399                  * About readahead, if the page is written, the flags would be
2400                  * reset. So no problem.
2401                  * About lru_deactivate_page, if the page is redirty, the flag
2402                  * will be reset. So no problem. but if the page is used by readahead
2403                  * it will confuse readahead and make it restart the size rampup
2404                  * process. But it's a trivial problem.
2405                  */
2406                 if (PageReclaim(page))
2407                         ClearPageReclaim(page);
2408 #ifdef CONFIG_BLOCK
2409                 if (!spd)
2410                         spd = __set_page_dirty_buffers;
2411 #endif
2412                 return (*spd)(page);
2413         }
2414         if (!PageDirty(page)) {
2415                 if (!TestSetPageDirty(page))
2416                         return 1;
2417         }
2418         return 0;
2419 }
2420 EXPORT_SYMBOL(set_page_dirty);
2421
2422 /*
2423  * set_page_dirty() is racy if the caller has no reference against
2424  * page->mapping->host, and if the page is unlocked.  This is because another
2425  * CPU could truncate the page off the mapping and then free the mapping.
2426  *
2427  * Usually, the page _is_ locked, or the caller is a user-space process which
2428  * holds a reference on the inode by having an open file.
2429  *
2430  * In other cases, the page should be locked before running set_page_dirty().
2431  */
2432 int set_page_dirty_lock(struct page *page)
2433 {
2434         int ret;
2435
2436         lock_page(page);
2437         ret = set_page_dirty(page);
2438         unlock_page(page);
2439         return ret;
2440 }
2441 EXPORT_SYMBOL(set_page_dirty_lock);
2442
2443 /*
2444  * This cancels just the dirty bit on the kernel page itself, it does NOT
2445  * actually remove dirty bits on any mmap's that may be around. It also
2446  * leaves the page tagged dirty, so any sync activity will still find it on
2447  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2448  * look at the dirty bits in the VM.
2449  *
2450  * Doing this should *normally* only ever be done when a page is truncated,
2451  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2452  * this when it notices that somebody has cleaned out all the buffers on a
2453  * page without actually doing it through the VM. Can you say "ext3 is
2454  * horribly ugly"? Thought you could.
2455  */
2456 void cancel_dirty_page(struct page *page)
2457 {
2458         struct address_space *mapping = page_mapping(page);
2459
2460         if (mapping_cap_account_dirty(mapping)) {
2461                 struct mem_cgroup *memcg;
2462
2463                 memcg = mem_cgroup_begin_page_stat(page);
2464
2465                 if (TestClearPageDirty(page))
2466                         account_page_cleaned(page, mapping, memcg);
2467
2468                 mem_cgroup_end_page_stat(memcg);
2469         } else {
2470                 ClearPageDirty(page);
2471         }
2472 }
2473 EXPORT_SYMBOL(cancel_dirty_page);
2474
2475 /*
2476  * Clear a page's dirty flag, while caring for dirty memory accounting.
2477  * Returns true if the page was previously dirty.
2478  *
2479  * This is for preparing to put the page under writeout.  We leave the page
2480  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2481  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2482  * implementation will run either set_page_writeback() or set_page_dirty(),
2483  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2484  * back into sync.
2485  *
2486  * This incoherency between the page's dirty flag and radix-tree tag is
2487  * unfortunate, but it only exists while the page is locked.
2488  */
2489 int clear_page_dirty_for_io(struct page *page)
2490 {
2491         struct address_space *mapping = page_mapping(page);
2492         struct mem_cgroup *memcg;
2493         int ret = 0;
2494
2495         BUG_ON(!PageLocked(page));
2496
2497         if (mapping && mapping_cap_account_dirty(mapping)) {
2498                 /*
2499                  * Yes, Virginia, this is indeed insane.
2500                  *
2501                  * We use this sequence to make sure that
2502                  *  (a) we account for dirty stats properly
2503                  *  (b) we tell the low-level filesystem to
2504                  *      mark the whole page dirty if it was
2505                  *      dirty in a pagetable. Only to then
2506                  *  (c) clean the page again and return 1 to
2507                  *      cause the writeback.
2508                  *
2509                  * This way we avoid all nasty races with the
2510                  * dirty bit in multiple places and clearing
2511                  * them concurrently from different threads.
2512                  *
2513                  * Note! Normally the "set_page_dirty(page)"
2514                  * has no effect on the actual dirty bit - since
2515                  * that will already usually be set. But we
2516                  * need the side effects, and it can help us
2517                  * avoid races.
2518                  *
2519                  * We basically use the page "master dirty bit"
2520                  * as a serialization point for all the different
2521                  * threads doing their things.
2522                  */
2523                 if (page_mkclean(page))
2524                         set_page_dirty(page);
2525                 /*
2526                  * We carefully synchronise fault handlers against
2527                  * installing a dirty pte and marking the page dirty
2528                  * at this point.  We do this by having them hold the
2529                  * page lock while dirtying the page, and pages are
2530                  * always locked coming in here, so we get the desired
2531                  * exclusion.
2532                  */
2533                 memcg = mem_cgroup_begin_page_stat(page);
2534                 if (TestClearPageDirty(page)) {
2535                         mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2536                         dec_zone_page_state(page, NR_FILE_DIRTY);
2537                         dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
2538                         ret = 1;
2539                 }
2540                 mem_cgroup_end_page_stat(memcg);
2541                 return ret;
2542         }
2543         return TestClearPageDirty(page);
2544 }
2545 EXPORT_SYMBOL(clear_page_dirty_for_io);
2546
2547 int test_clear_page_writeback(struct page *page)
2548 {
2549         struct address_space *mapping = page_mapping(page);
2550         struct mem_cgroup *memcg;
2551         int ret;
2552
2553         memcg = mem_cgroup_begin_page_stat(page);
2554         if (mapping) {
2555                 struct inode *inode = mapping->host;
2556                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2557                 unsigned long flags;
2558
2559                 spin_lock_irqsave(&mapping->tree_lock, flags);
2560                 ret = TestClearPageWriteback(page);
2561                 if (ret) {
2562                         radix_tree_tag_clear(&mapping->page_tree,
2563                                                 page_index(page),
2564                                                 PAGECACHE_TAG_WRITEBACK);
2565                         if (bdi_cap_account_writeback(bdi)) {
2566                                 struct bdi_writeback *wb = inode_to_wb(inode);
2567
2568                                 __dec_wb_stat(wb, WB_WRITEBACK);
2569                                 __wb_writeout_inc(wb);
2570                         }
2571                 }
2572                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2573         } else {
2574                 ret = TestClearPageWriteback(page);
2575         }
2576         if (ret) {
2577                 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2578                 dec_zone_page_state(page, NR_WRITEBACK);
2579                 inc_zone_page_state(page, NR_WRITTEN);
2580         }
2581         mem_cgroup_end_page_stat(memcg);
2582         return ret;
2583 }
2584
2585 int __test_set_page_writeback(struct page *page, bool keep_write)
2586 {
2587         struct address_space *mapping = page_mapping(page);
2588         struct mem_cgroup *memcg;
2589         int ret;
2590
2591         memcg = mem_cgroup_begin_page_stat(page);
2592         if (mapping) {
2593                 struct inode *inode = mapping->host;
2594                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2595                 unsigned long flags;
2596
2597                 spin_lock_irqsave(&mapping->tree_lock, flags);
2598                 ret = TestSetPageWriteback(page);
2599                 if (!ret) {
2600                         radix_tree_tag_set(&mapping->page_tree,
2601                                                 page_index(page),
2602                                                 PAGECACHE_TAG_WRITEBACK);
2603                         if (bdi_cap_account_writeback(bdi))
2604                                 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2605                 }
2606                 if (!PageDirty(page))
2607                         radix_tree_tag_clear(&mapping->page_tree,
2608                                                 page_index(page),
2609                                                 PAGECACHE_TAG_DIRTY);
2610                 if (!keep_write)
2611                         radix_tree_tag_clear(&mapping->page_tree,
2612                                                 page_index(page),
2613                                                 PAGECACHE_TAG_TOWRITE);
2614                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2615         } else {
2616                 ret = TestSetPageWriteback(page);
2617         }
2618         if (!ret) {
2619                 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2620                 inc_zone_page_state(page, NR_WRITEBACK);
2621         }
2622         mem_cgroup_end_page_stat(memcg);
2623         return ret;
2624
2625 }
2626 EXPORT_SYMBOL(__test_set_page_writeback);
2627
2628 /*
2629  * Return true if any of the pages in the mapping are marked with the
2630  * passed tag.
2631  */
2632 int mapping_tagged(struct address_space *mapping, int tag)
2633 {
2634         return radix_tree_tagged(&mapping->page_tree, tag);
2635 }
2636 EXPORT_SYMBOL(mapping_tagged);
2637
2638 /**
2639  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2640  * @page:       The page to wait on.
2641  *
2642  * This function determines if the given page is related to a backing device
2643  * that requires page contents to be held stable during writeback.  If so, then
2644  * it will wait for any pending writeback to complete.
2645  */
2646 void wait_for_stable_page(struct page *page)
2647 {
2648         if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2649                 wait_on_page_writeback(page);
2650 }
2651 EXPORT_SYMBOL_GPL(wait_for_stable_page);