Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux-2.6-microblaze.git] / mm / nommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/nommu-mmap.txt
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54
55 atomic_long_t mmap_pages_allocated;
56
57 EXPORT_SYMBOL(mem_map);
58
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66
67 /*
68  * Return the total memory allocated for this pointer, not
69  * just what the caller asked for.
70  *
71  * Doesn't have to be accurate, i.e. may have races.
72  */
73 unsigned int kobjsize(const void *objp)
74 {
75         struct page *page;
76
77         /*
78          * If the object we have should not have ksize performed on it,
79          * return size of 0
80          */
81         if (!objp || !virt_addr_valid(objp))
82                 return 0;
83
84         page = virt_to_head_page(objp);
85
86         /*
87          * If the allocator sets PageSlab, we know the pointer came from
88          * kmalloc().
89          */
90         if (PageSlab(page))
91                 return ksize(objp);
92
93         /*
94          * If it's not a compound page, see if we have a matching VMA
95          * region. This test is intentionally done in reverse order,
96          * so if there's no VMA, we still fall through and hand back
97          * PAGE_SIZE for 0-order pages.
98          */
99         if (!PageCompound(page)) {
100                 struct vm_area_struct *vma;
101
102                 vma = find_vma(current->mm, (unsigned long)objp);
103                 if (vma)
104                         return vma->vm_end - vma->vm_start;
105         }
106
107         /*
108          * The ksize() function is only guaranteed to work for pointers
109          * returned by kmalloc(). So handle arbitrary pointers here.
110          */
111         return page_size(page);
112 }
113
114 /**
115  * follow_pfn - look up PFN at a user virtual address
116  * @vma: memory mapping
117  * @address: user virtual address
118  * @pfn: location to store found PFN
119  *
120  * Only IO mappings and raw PFN mappings are allowed.
121  *
122  * Returns zero and the pfn at @pfn on success, -ve otherwise.
123  */
124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125         unsigned long *pfn)
126 {
127         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128                 return -EINVAL;
129
130         *pfn = address >> PAGE_SHIFT;
131         return 0;
132 }
133 EXPORT_SYMBOL(follow_pfn);
134
135 LIST_HEAD(vmap_area_list);
136
137 void vfree(const void *addr)
138 {
139         kfree(addr);
140 }
141 EXPORT_SYMBOL(vfree);
142
143 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
144 {
145         /*
146          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147          * returns only a logical address.
148          */
149         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150 }
151 EXPORT_SYMBOL(__vmalloc);
152
153 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
154 {
155         return __vmalloc(size, flags, PAGE_KERNEL);
156 }
157
158 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
159 {
160         void *ret;
161
162         ret = __vmalloc(size, flags, PAGE_KERNEL);
163         if (ret) {
164                 struct vm_area_struct *vma;
165
166                 down_write(&current->mm->mmap_sem);
167                 vma = find_vma(current->mm, (unsigned long)ret);
168                 if (vma)
169                         vma->vm_flags |= VM_USERMAP;
170                 up_write(&current->mm->mmap_sem);
171         }
172
173         return ret;
174 }
175
176 void *vmalloc_user(unsigned long size)
177 {
178         return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
179 }
180 EXPORT_SYMBOL(vmalloc_user);
181
182 void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
183 {
184         return __vmalloc_user_flags(size, flags | __GFP_ZERO);
185 }
186 EXPORT_SYMBOL(vmalloc_user_node_flags);
187
188 struct page *vmalloc_to_page(const void *addr)
189 {
190         return virt_to_page(addr);
191 }
192 EXPORT_SYMBOL(vmalloc_to_page);
193
194 unsigned long vmalloc_to_pfn(const void *addr)
195 {
196         return page_to_pfn(virt_to_page(addr));
197 }
198 EXPORT_SYMBOL(vmalloc_to_pfn);
199
200 long vread(char *buf, char *addr, unsigned long count)
201 {
202         /* Don't allow overflow */
203         if ((unsigned long) buf + count < count)
204                 count = -(unsigned long) buf;
205
206         memcpy(buf, addr, count);
207         return count;
208 }
209
210 long vwrite(char *buf, char *addr, unsigned long count)
211 {
212         /* Don't allow overflow */
213         if ((unsigned long) addr + count < count)
214                 count = -(unsigned long) addr;
215
216         memcpy(addr, buf, count);
217         return count;
218 }
219
220 /*
221  *      vmalloc  -  allocate virtually contiguous memory
222  *
223  *      @size:          allocation size
224  *
225  *      Allocate enough pages to cover @size from the page level
226  *      allocator and map them into contiguous kernel virtual space.
227  *
228  *      For tight control over page level allocator and protection flags
229  *      use __vmalloc() instead.
230  */
231 void *vmalloc(unsigned long size)
232 {
233        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
234 }
235 EXPORT_SYMBOL(vmalloc);
236
237 /*
238  *      vzalloc - allocate virtually contiguous memory with zero fill
239  *
240  *      @size:          allocation size
241  *
242  *      Allocate enough pages to cover @size from the page level
243  *      allocator and map them into contiguous kernel virtual space.
244  *      The memory allocated is set to zero.
245  *
246  *      For tight control over page level allocator and protection flags
247  *      use __vmalloc() instead.
248  */
249 void *vzalloc(unsigned long size)
250 {
251         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
252                         PAGE_KERNEL);
253 }
254 EXPORT_SYMBOL(vzalloc);
255
256 /**
257  * vmalloc_node - allocate memory on a specific node
258  * @size:       allocation size
259  * @node:       numa node
260  *
261  * Allocate enough pages to cover @size from the page level
262  * allocator and map them into contiguous kernel virtual space.
263  *
264  * For tight control over page level allocator and protection flags
265  * use __vmalloc() instead.
266  */
267 void *vmalloc_node(unsigned long size, int node)
268 {
269         return vmalloc(size);
270 }
271 EXPORT_SYMBOL(vmalloc_node);
272
273 /**
274  * vzalloc_node - allocate memory on a specific node with zero fill
275  * @size:       allocation size
276  * @node:       numa node
277  *
278  * Allocate enough pages to cover @size from the page level
279  * allocator and map them into contiguous kernel virtual space.
280  * The memory allocated is set to zero.
281  *
282  * For tight control over page level allocator and protection flags
283  * use __vmalloc() instead.
284  */
285 void *vzalloc_node(unsigned long size, int node)
286 {
287         return vzalloc(size);
288 }
289 EXPORT_SYMBOL(vzalloc_node);
290
291 /**
292  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
293  *      @size:          allocation size
294  *
295  *      Kernel-internal function to allocate enough pages to cover @size
296  *      the page level allocator and map them into contiguous and
297  *      executable kernel virtual space.
298  *
299  *      For tight control over page level allocator and protection flags
300  *      use __vmalloc() instead.
301  */
302
303 void *vmalloc_exec(unsigned long size)
304 {
305         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
306 }
307
308 /**
309  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
310  *      @size:          allocation size
311  *
312  *      Allocate enough 32bit PA addressable pages to cover @size from the
313  *      page level allocator and map them into contiguous kernel virtual space.
314  */
315 void *vmalloc_32(unsigned long size)
316 {
317         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
318 }
319 EXPORT_SYMBOL(vmalloc_32);
320
321 /**
322  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
323  *      @size:          allocation size
324  *
325  * The resulting memory area is 32bit addressable and zeroed so it can be
326  * mapped to userspace without leaking data.
327  *
328  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
329  * remap_vmalloc_range() are permissible.
330  */
331 void *vmalloc_32_user(unsigned long size)
332 {
333         /*
334          * We'll have to sort out the ZONE_DMA bits for 64-bit,
335          * but for now this can simply use vmalloc_user() directly.
336          */
337         return vmalloc_user(size);
338 }
339 EXPORT_SYMBOL(vmalloc_32_user);
340
341 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
342 {
343         BUG();
344         return NULL;
345 }
346 EXPORT_SYMBOL(vmap);
347
348 void vunmap(const void *addr)
349 {
350         BUG();
351 }
352 EXPORT_SYMBOL(vunmap);
353
354 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
355 {
356         BUG();
357         return NULL;
358 }
359 EXPORT_SYMBOL(vm_map_ram);
360
361 void vm_unmap_ram(const void *mem, unsigned int count)
362 {
363         BUG();
364 }
365 EXPORT_SYMBOL(vm_unmap_ram);
366
367 void vm_unmap_aliases(void)
368 {
369 }
370 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
371
372 /*
373  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
374  * have one.
375  */
376 void __weak vmalloc_sync_all(void)
377 {
378 }
379
380 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
381 {
382         BUG();
383         return NULL;
384 }
385 EXPORT_SYMBOL_GPL(alloc_vm_area);
386
387 void free_vm_area(struct vm_struct *area)
388 {
389         BUG();
390 }
391 EXPORT_SYMBOL_GPL(free_vm_area);
392
393 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
394                    struct page *page)
395 {
396         return -EINVAL;
397 }
398 EXPORT_SYMBOL(vm_insert_page);
399
400 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
401                         unsigned long num)
402 {
403         return -EINVAL;
404 }
405 EXPORT_SYMBOL(vm_map_pages);
406
407 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
408                                 unsigned long num)
409 {
410         return -EINVAL;
411 }
412 EXPORT_SYMBOL(vm_map_pages_zero);
413
414 /*
415  *  sys_brk() for the most part doesn't need the global kernel
416  *  lock, except when an application is doing something nasty
417  *  like trying to un-brk an area that has already been mapped
418  *  to a regular file.  in this case, the unmapping will need
419  *  to invoke file system routines that need the global lock.
420  */
421 SYSCALL_DEFINE1(brk, unsigned long, brk)
422 {
423         struct mm_struct *mm = current->mm;
424
425         if (brk < mm->start_brk || brk > mm->context.end_brk)
426                 return mm->brk;
427
428         if (mm->brk == brk)
429                 return mm->brk;
430
431         /*
432          * Always allow shrinking brk
433          */
434         if (brk <= mm->brk) {
435                 mm->brk = brk;
436                 return brk;
437         }
438
439         /*
440          * Ok, looks good - let it rip.
441          */
442         flush_icache_range(mm->brk, brk);
443         return mm->brk = brk;
444 }
445
446 /*
447  * initialise the percpu counter for VM and region record slabs
448  */
449 void __init mmap_init(void)
450 {
451         int ret;
452
453         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
454         VM_BUG_ON(ret);
455         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
456 }
457
458 /*
459  * validate the region tree
460  * - the caller must hold the region lock
461  */
462 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
463 static noinline void validate_nommu_regions(void)
464 {
465         struct vm_region *region, *last;
466         struct rb_node *p, *lastp;
467
468         lastp = rb_first(&nommu_region_tree);
469         if (!lastp)
470                 return;
471
472         last = rb_entry(lastp, struct vm_region, vm_rb);
473         BUG_ON(last->vm_end <= last->vm_start);
474         BUG_ON(last->vm_top < last->vm_end);
475
476         while ((p = rb_next(lastp))) {
477                 region = rb_entry(p, struct vm_region, vm_rb);
478                 last = rb_entry(lastp, struct vm_region, vm_rb);
479
480                 BUG_ON(region->vm_end <= region->vm_start);
481                 BUG_ON(region->vm_top < region->vm_end);
482                 BUG_ON(region->vm_start < last->vm_top);
483
484                 lastp = p;
485         }
486 }
487 #else
488 static void validate_nommu_regions(void)
489 {
490 }
491 #endif
492
493 /*
494  * add a region into the global tree
495  */
496 static void add_nommu_region(struct vm_region *region)
497 {
498         struct vm_region *pregion;
499         struct rb_node **p, *parent;
500
501         validate_nommu_regions();
502
503         parent = NULL;
504         p = &nommu_region_tree.rb_node;
505         while (*p) {
506                 parent = *p;
507                 pregion = rb_entry(parent, struct vm_region, vm_rb);
508                 if (region->vm_start < pregion->vm_start)
509                         p = &(*p)->rb_left;
510                 else if (region->vm_start > pregion->vm_start)
511                         p = &(*p)->rb_right;
512                 else if (pregion == region)
513                         return;
514                 else
515                         BUG();
516         }
517
518         rb_link_node(&region->vm_rb, parent, p);
519         rb_insert_color(&region->vm_rb, &nommu_region_tree);
520
521         validate_nommu_regions();
522 }
523
524 /*
525  * delete a region from the global tree
526  */
527 static void delete_nommu_region(struct vm_region *region)
528 {
529         BUG_ON(!nommu_region_tree.rb_node);
530
531         validate_nommu_regions();
532         rb_erase(&region->vm_rb, &nommu_region_tree);
533         validate_nommu_regions();
534 }
535
536 /*
537  * free a contiguous series of pages
538  */
539 static void free_page_series(unsigned long from, unsigned long to)
540 {
541         for (; from < to; from += PAGE_SIZE) {
542                 struct page *page = virt_to_page(from);
543
544                 atomic_long_dec(&mmap_pages_allocated);
545                 put_page(page);
546         }
547 }
548
549 /*
550  * release a reference to a region
551  * - the caller must hold the region semaphore for writing, which this releases
552  * - the region may not have been added to the tree yet, in which case vm_top
553  *   will equal vm_start
554  */
555 static void __put_nommu_region(struct vm_region *region)
556         __releases(nommu_region_sem)
557 {
558         BUG_ON(!nommu_region_tree.rb_node);
559
560         if (--region->vm_usage == 0) {
561                 if (region->vm_top > region->vm_start)
562                         delete_nommu_region(region);
563                 up_write(&nommu_region_sem);
564
565                 if (region->vm_file)
566                         fput(region->vm_file);
567
568                 /* IO memory and memory shared directly out of the pagecache
569                  * from ramfs/tmpfs mustn't be released here */
570                 if (region->vm_flags & VM_MAPPED_COPY)
571                         free_page_series(region->vm_start, region->vm_top);
572                 kmem_cache_free(vm_region_jar, region);
573         } else {
574                 up_write(&nommu_region_sem);
575         }
576 }
577
578 /*
579  * release a reference to a region
580  */
581 static void put_nommu_region(struct vm_region *region)
582 {
583         down_write(&nommu_region_sem);
584         __put_nommu_region(region);
585 }
586
587 /*
588  * add a VMA into a process's mm_struct in the appropriate place in the list
589  * and tree and add to the address space's page tree also if not an anonymous
590  * page
591  * - should be called with mm->mmap_sem held writelocked
592  */
593 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
594 {
595         struct vm_area_struct *pvma, *prev;
596         struct address_space *mapping;
597         struct rb_node **p, *parent, *rb_prev;
598
599         BUG_ON(!vma->vm_region);
600
601         mm->map_count++;
602         vma->vm_mm = mm;
603
604         /* add the VMA to the mapping */
605         if (vma->vm_file) {
606                 mapping = vma->vm_file->f_mapping;
607
608                 i_mmap_lock_write(mapping);
609                 flush_dcache_mmap_lock(mapping);
610                 vma_interval_tree_insert(vma, &mapping->i_mmap);
611                 flush_dcache_mmap_unlock(mapping);
612                 i_mmap_unlock_write(mapping);
613         }
614
615         /* add the VMA to the tree */
616         parent = rb_prev = NULL;
617         p = &mm->mm_rb.rb_node;
618         while (*p) {
619                 parent = *p;
620                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
621
622                 /* sort by: start addr, end addr, VMA struct addr in that order
623                  * (the latter is necessary as we may get identical VMAs) */
624                 if (vma->vm_start < pvma->vm_start)
625                         p = &(*p)->rb_left;
626                 else if (vma->vm_start > pvma->vm_start) {
627                         rb_prev = parent;
628                         p = &(*p)->rb_right;
629                 } else if (vma->vm_end < pvma->vm_end)
630                         p = &(*p)->rb_left;
631                 else if (vma->vm_end > pvma->vm_end) {
632                         rb_prev = parent;
633                         p = &(*p)->rb_right;
634                 } else if (vma < pvma)
635                         p = &(*p)->rb_left;
636                 else if (vma > pvma) {
637                         rb_prev = parent;
638                         p = &(*p)->rb_right;
639                 } else
640                         BUG();
641         }
642
643         rb_link_node(&vma->vm_rb, parent, p);
644         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
645
646         /* add VMA to the VMA list also */
647         prev = NULL;
648         if (rb_prev)
649                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
650
651         __vma_link_list(mm, vma, prev);
652 }
653
654 /*
655  * delete a VMA from its owning mm_struct and address space
656  */
657 static void delete_vma_from_mm(struct vm_area_struct *vma)
658 {
659         int i;
660         struct address_space *mapping;
661         struct mm_struct *mm = vma->vm_mm;
662         struct task_struct *curr = current;
663
664         mm->map_count--;
665         for (i = 0; i < VMACACHE_SIZE; i++) {
666                 /* if the vma is cached, invalidate the entire cache */
667                 if (curr->vmacache.vmas[i] == vma) {
668                         vmacache_invalidate(mm);
669                         break;
670                 }
671         }
672
673         /* remove the VMA from the mapping */
674         if (vma->vm_file) {
675                 mapping = vma->vm_file->f_mapping;
676
677                 i_mmap_lock_write(mapping);
678                 flush_dcache_mmap_lock(mapping);
679                 vma_interval_tree_remove(vma, &mapping->i_mmap);
680                 flush_dcache_mmap_unlock(mapping);
681                 i_mmap_unlock_write(mapping);
682         }
683
684         /* remove from the MM's tree and list */
685         rb_erase(&vma->vm_rb, &mm->mm_rb);
686
687         __vma_unlink_list(mm, vma);
688 }
689
690 /*
691  * destroy a VMA record
692  */
693 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
694 {
695         if (vma->vm_ops && vma->vm_ops->close)
696                 vma->vm_ops->close(vma);
697         if (vma->vm_file)
698                 fput(vma->vm_file);
699         put_nommu_region(vma->vm_region);
700         vm_area_free(vma);
701 }
702
703 /*
704  * look up the first VMA in which addr resides, NULL if none
705  * - should be called with mm->mmap_sem at least held readlocked
706  */
707 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
708 {
709         struct vm_area_struct *vma;
710
711         /* check the cache first */
712         vma = vmacache_find(mm, addr);
713         if (likely(vma))
714                 return vma;
715
716         /* trawl the list (there may be multiple mappings in which addr
717          * resides) */
718         for (vma = mm->mmap; vma; vma = vma->vm_next) {
719                 if (vma->vm_start > addr)
720                         return NULL;
721                 if (vma->vm_end > addr) {
722                         vmacache_update(addr, vma);
723                         return vma;
724                 }
725         }
726
727         return NULL;
728 }
729 EXPORT_SYMBOL(find_vma);
730
731 /*
732  * find a VMA
733  * - we don't extend stack VMAs under NOMMU conditions
734  */
735 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
736 {
737         return find_vma(mm, addr);
738 }
739
740 /*
741  * expand a stack to a given address
742  * - not supported under NOMMU conditions
743  */
744 int expand_stack(struct vm_area_struct *vma, unsigned long address)
745 {
746         return -ENOMEM;
747 }
748
749 /*
750  * look up the first VMA exactly that exactly matches addr
751  * - should be called with mm->mmap_sem at least held readlocked
752  */
753 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
754                                              unsigned long addr,
755                                              unsigned long len)
756 {
757         struct vm_area_struct *vma;
758         unsigned long end = addr + len;
759
760         /* check the cache first */
761         vma = vmacache_find_exact(mm, addr, end);
762         if (vma)
763                 return vma;
764
765         /* trawl the list (there may be multiple mappings in which addr
766          * resides) */
767         for (vma = mm->mmap; vma; vma = vma->vm_next) {
768                 if (vma->vm_start < addr)
769                         continue;
770                 if (vma->vm_start > addr)
771                         return NULL;
772                 if (vma->vm_end == end) {
773                         vmacache_update(addr, vma);
774                         return vma;
775                 }
776         }
777
778         return NULL;
779 }
780
781 /*
782  * determine whether a mapping should be permitted and, if so, what sort of
783  * mapping we're capable of supporting
784  */
785 static int validate_mmap_request(struct file *file,
786                                  unsigned long addr,
787                                  unsigned long len,
788                                  unsigned long prot,
789                                  unsigned long flags,
790                                  unsigned long pgoff,
791                                  unsigned long *_capabilities)
792 {
793         unsigned long capabilities, rlen;
794         int ret;
795
796         /* do the simple checks first */
797         if (flags & MAP_FIXED)
798                 return -EINVAL;
799
800         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
801             (flags & MAP_TYPE) != MAP_SHARED)
802                 return -EINVAL;
803
804         if (!len)
805                 return -EINVAL;
806
807         /* Careful about overflows.. */
808         rlen = PAGE_ALIGN(len);
809         if (!rlen || rlen > TASK_SIZE)
810                 return -ENOMEM;
811
812         /* offset overflow? */
813         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
814                 return -EOVERFLOW;
815
816         if (file) {
817                 /* files must support mmap */
818                 if (!file->f_op->mmap)
819                         return -ENODEV;
820
821                 /* work out if what we've got could possibly be shared
822                  * - we support chardevs that provide their own "memory"
823                  * - we support files/blockdevs that are memory backed
824                  */
825                 if (file->f_op->mmap_capabilities) {
826                         capabilities = file->f_op->mmap_capabilities(file);
827                 } else {
828                         /* no explicit capabilities set, so assume some
829                          * defaults */
830                         switch (file_inode(file)->i_mode & S_IFMT) {
831                         case S_IFREG:
832                         case S_IFBLK:
833                                 capabilities = NOMMU_MAP_COPY;
834                                 break;
835
836                         case S_IFCHR:
837                                 capabilities =
838                                         NOMMU_MAP_DIRECT |
839                                         NOMMU_MAP_READ |
840                                         NOMMU_MAP_WRITE;
841                                 break;
842
843                         default:
844                                 return -EINVAL;
845                         }
846                 }
847
848                 /* eliminate any capabilities that we can't support on this
849                  * device */
850                 if (!file->f_op->get_unmapped_area)
851                         capabilities &= ~NOMMU_MAP_DIRECT;
852                 if (!(file->f_mode & FMODE_CAN_READ))
853                         capabilities &= ~NOMMU_MAP_COPY;
854
855                 /* The file shall have been opened with read permission. */
856                 if (!(file->f_mode & FMODE_READ))
857                         return -EACCES;
858
859                 if (flags & MAP_SHARED) {
860                         /* do checks for writing, appending and locking */
861                         if ((prot & PROT_WRITE) &&
862                             !(file->f_mode & FMODE_WRITE))
863                                 return -EACCES;
864
865                         if (IS_APPEND(file_inode(file)) &&
866                             (file->f_mode & FMODE_WRITE))
867                                 return -EACCES;
868
869                         if (locks_verify_locked(file))
870                                 return -EAGAIN;
871
872                         if (!(capabilities & NOMMU_MAP_DIRECT))
873                                 return -ENODEV;
874
875                         /* we mustn't privatise shared mappings */
876                         capabilities &= ~NOMMU_MAP_COPY;
877                 } else {
878                         /* we're going to read the file into private memory we
879                          * allocate */
880                         if (!(capabilities & NOMMU_MAP_COPY))
881                                 return -ENODEV;
882
883                         /* we don't permit a private writable mapping to be
884                          * shared with the backing device */
885                         if (prot & PROT_WRITE)
886                                 capabilities &= ~NOMMU_MAP_DIRECT;
887                 }
888
889                 if (capabilities & NOMMU_MAP_DIRECT) {
890                         if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
891                             ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
892                             ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
893                             ) {
894                                 capabilities &= ~NOMMU_MAP_DIRECT;
895                                 if (flags & MAP_SHARED) {
896                                         pr_warn("MAP_SHARED not completely supported on !MMU\n");
897                                         return -EINVAL;
898                                 }
899                         }
900                 }
901
902                 /* handle executable mappings and implied executable
903                  * mappings */
904                 if (path_noexec(&file->f_path)) {
905                         if (prot & PROT_EXEC)
906                                 return -EPERM;
907                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
908                         /* handle implication of PROT_EXEC by PROT_READ */
909                         if (current->personality & READ_IMPLIES_EXEC) {
910                                 if (capabilities & NOMMU_MAP_EXEC)
911                                         prot |= PROT_EXEC;
912                         }
913                 } else if ((prot & PROT_READ) &&
914                          (prot & PROT_EXEC) &&
915                          !(capabilities & NOMMU_MAP_EXEC)
916                          ) {
917                         /* backing file is not executable, try to copy */
918                         capabilities &= ~NOMMU_MAP_DIRECT;
919                 }
920         } else {
921                 /* anonymous mappings are always memory backed and can be
922                  * privately mapped
923                  */
924                 capabilities = NOMMU_MAP_COPY;
925
926                 /* handle PROT_EXEC implication by PROT_READ */
927                 if ((prot & PROT_READ) &&
928                     (current->personality & READ_IMPLIES_EXEC))
929                         prot |= PROT_EXEC;
930         }
931
932         /* allow the security API to have its say */
933         ret = security_mmap_addr(addr);
934         if (ret < 0)
935                 return ret;
936
937         /* looks okay */
938         *_capabilities = capabilities;
939         return 0;
940 }
941
942 /*
943  * we've determined that we can make the mapping, now translate what we
944  * now know into VMA flags
945  */
946 static unsigned long determine_vm_flags(struct file *file,
947                                         unsigned long prot,
948                                         unsigned long flags,
949                                         unsigned long capabilities)
950 {
951         unsigned long vm_flags;
952
953         vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
954         /* vm_flags |= mm->def_flags; */
955
956         if (!(capabilities & NOMMU_MAP_DIRECT)) {
957                 /* attempt to share read-only copies of mapped file chunks */
958                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
959                 if (file && !(prot & PROT_WRITE))
960                         vm_flags |= VM_MAYSHARE;
961         } else {
962                 /* overlay a shareable mapping on the backing device or inode
963                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
964                  * romfs/cramfs */
965                 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
966                 if (flags & MAP_SHARED)
967                         vm_flags |= VM_SHARED;
968         }
969
970         /* refuse to let anyone share private mappings with this process if
971          * it's being traced - otherwise breakpoints set in it may interfere
972          * with another untraced process
973          */
974         if ((flags & MAP_PRIVATE) && current->ptrace)
975                 vm_flags &= ~VM_MAYSHARE;
976
977         return vm_flags;
978 }
979
980 /*
981  * set up a shared mapping on a file (the driver or filesystem provides and
982  * pins the storage)
983  */
984 static int do_mmap_shared_file(struct vm_area_struct *vma)
985 {
986         int ret;
987
988         ret = call_mmap(vma->vm_file, vma);
989         if (ret == 0) {
990                 vma->vm_region->vm_top = vma->vm_region->vm_end;
991                 return 0;
992         }
993         if (ret != -ENOSYS)
994                 return ret;
995
996         /* getting -ENOSYS indicates that direct mmap isn't possible (as
997          * opposed to tried but failed) so we can only give a suitable error as
998          * it's not possible to make a private copy if MAP_SHARED was given */
999         return -ENODEV;
1000 }
1001
1002 /*
1003  * set up a private mapping or an anonymous shared mapping
1004  */
1005 static int do_mmap_private(struct vm_area_struct *vma,
1006                            struct vm_region *region,
1007                            unsigned long len,
1008                            unsigned long capabilities)
1009 {
1010         unsigned long total, point;
1011         void *base;
1012         int ret, order;
1013
1014         /* invoke the file's mapping function so that it can keep track of
1015          * shared mappings on devices or memory
1016          * - VM_MAYSHARE will be set if it may attempt to share
1017          */
1018         if (capabilities & NOMMU_MAP_DIRECT) {
1019                 ret = call_mmap(vma->vm_file, vma);
1020                 if (ret == 0) {
1021                         /* shouldn't return success if we're not sharing */
1022                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1023                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1024                         return 0;
1025                 }
1026                 if (ret != -ENOSYS)
1027                         return ret;
1028
1029                 /* getting an ENOSYS error indicates that direct mmap isn't
1030                  * possible (as opposed to tried but failed) so we'll try to
1031                  * make a private copy of the data and map that instead */
1032         }
1033
1034
1035         /* allocate some memory to hold the mapping
1036          * - note that this may not return a page-aligned address if the object
1037          *   we're allocating is smaller than a page
1038          */
1039         order = get_order(len);
1040         total = 1 << order;
1041         point = len >> PAGE_SHIFT;
1042
1043         /* we don't want to allocate a power-of-2 sized page set */
1044         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1045                 total = point;
1046
1047         base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1048         if (!base)
1049                 goto enomem;
1050
1051         atomic_long_add(total, &mmap_pages_allocated);
1052
1053         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1054         region->vm_start = (unsigned long) base;
1055         region->vm_end   = region->vm_start + len;
1056         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1057
1058         vma->vm_start = region->vm_start;
1059         vma->vm_end   = region->vm_start + len;
1060
1061         if (vma->vm_file) {
1062                 /* read the contents of a file into the copy */
1063                 loff_t fpos;
1064
1065                 fpos = vma->vm_pgoff;
1066                 fpos <<= PAGE_SHIFT;
1067
1068                 ret = kernel_read(vma->vm_file, base, len, &fpos);
1069                 if (ret < 0)
1070                         goto error_free;
1071
1072                 /* clear the last little bit */
1073                 if (ret < len)
1074                         memset(base + ret, 0, len - ret);
1075
1076         } else {
1077                 vma_set_anonymous(vma);
1078         }
1079
1080         return 0;
1081
1082 error_free:
1083         free_page_series(region->vm_start, region->vm_top);
1084         region->vm_start = vma->vm_start = 0;
1085         region->vm_end   = vma->vm_end = 0;
1086         region->vm_top   = 0;
1087         return ret;
1088
1089 enomem:
1090         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1091                len, current->pid, current->comm);
1092         show_free_areas(0, NULL);
1093         return -ENOMEM;
1094 }
1095
1096 /*
1097  * handle mapping creation for uClinux
1098  */
1099 unsigned long do_mmap(struct file *file,
1100                         unsigned long addr,
1101                         unsigned long len,
1102                         unsigned long prot,
1103                         unsigned long flags,
1104                         vm_flags_t vm_flags,
1105                         unsigned long pgoff,
1106                         unsigned long *populate,
1107                         struct list_head *uf)
1108 {
1109         struct vm_area_struct *vma;
1110         struct vm_region *region;
1111         struct rb_node *rb;
1112         unsigned long capabilities, result;
1113         int ret;
1114
1115         *populate = 0;
1116
1117         /* decide whether we should attempt the mapping, and if so what sort of
1118          * mapping */
1119         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1120                                     &capabilities);
1121         if (ret < 0)
1122                 return ret;
1123
1124         /* we ignore the address hint */
1125         addr = 0;
1126         len = PAGE_ALIGN(len);
1127
1128         /* we've determined that we can make the mapping, now translate what we
1129          * now know into VMA flags */
1130         vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1131
1132         /* we're going to need to record the mapping */
1133         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1134         if (!region)
1135                 goto error_getting_region;
1136
1137         vma = vm_area_alloc(current->mm);
1138         if (!vma)
1139                 goto error_getting_vma;
1140
1141         region->vm_usage = 1;
1142         region->vm_flags = vm_flags;
1143         region->vm_pgoff = pgoff;
1144
1145         vma->vm_flags = vm_flags;
1146         vma->vm_pgoff = pgoff;
1147
1148         if (file) {
1149                 region->vm_file = get_file(file);
1150                 vma->vm_file = get_file(file);
1151         }
1152
1153         down_write(&nommu_region_sem);
1154
1155         /* if we want to share, we need to check for regions created by other
1156          * mmap() calls that overlap with our proposed mapping
1157          * - we can only share with a superset match on most regular files
1158          * - shared mappings on character devices and memory backed files are
1159          *   permitted to overlap inexactly as far as we are concerned for in
1160          *   these cases, sharing is handled in the driver or filesystem rather
1161          *   than here
1162          */
1163         if (vm_flags & VM_MAYSHARE) {
1164                 struct vm_region *pregion;
1165                 unsigned long pglen, rpglen, pgend, rpgend, start;
1166
1167                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1168                 pgend = pgoff + pglen;
1169
1170                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1171                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1172
1173                         if (!(pregion->vm_flags & VM_MAYSHARE))
1174                                 continue;
1175
1176                         /* search for overlapping mappings on the same file */
1177                         if (file_inode(pregion->vm_file) !=
1178                             file_inode(file))
1179                                 continue;
1180
1181                         if (pregion->vm_pgoff >= pgend)
1182                                 continue;
1183
1184                         rpglen = pregion->vm_end - pregion->vm_start;
1185                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1186                         rpgend = pregion->vm_pgoff + rpglen;
1187                         if (pgoff >= rpgend)
1188                                 continue;
1189
1190                         /* handle inexactly overlapping matches between
1191                          * mappings */
1192                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1193                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1194                                 /* new mapping is not a subset of the region */
1195                                 if (!(capabilities & NOMMU_MAP_DIRECT))
1196                                         goto sharing_violation;
1197                                 continue;
1198                         }
1199
1200                         /* we've found a region we can share */
1201                         pregion->vm_usage++;
1202                         vma->vm_region = pregion;
1203                         start = pregion->vm_start;
1204                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1205                         vma->vm_start = start;
1206                         vma->vm_end = start + len;
1207
1208                         if (pregion->vm_flags & VM_MAPPED_COPY)
1209                                 vma->vm_flags |= VM_MAPPED_COPY;
1210                         else {
1211                                 ret = do_mmap_shared_file(vma);
1212                                 if (ret < 0) {
1213                                         vma->vm_region = NULL;
1214                                         vma->vm_start = 0;
1215                                         vma->vm_end = 0;
1216                                         pregion->vm_usage--;
1217                                         pregion = NULL;
1218                                         goto error_just_free;
1219                                 }
1220                         }
1221                         fput(region->vm_file);
1222                         kmem_cache_free(vm_region_jar, region);
1223                         region = pregion;
1224                         result = start;
1225                         goto share;
1226                 }
1227
1228                 /* obtain the address at which to make a shared mapping
1229                  * - this is the hook for quasi-memory character devices to
1230                  *   tell us the location of a shared mapping
1231                  */
1232                 if (capabilities & NOMMU_MAP_DIRECT) {
1233                         addr = file->f_op->get_unmapped_area(file, addr, len,
1234                                                              pgoff, flags);
1235                         if (IS_ERR_VALUE(addr)) {
1236                                 ret = addr;
1237                                 if (ret != -ENOSYS)
1238                                         goto error_just_free;
1239
1240                                 /* the driver refused to tell us where to site
1241                                  * the mapping so we'll have to attempt to copy
1242                                  * it */
1243                                 ret = -ENODEV;
1244                                 if (!(capabilities & NOMMU_MAP_COPY))
1245                                         goto error_just_free;
1246
1247                                 capabilities &= ~NOMMU_MAP_DIRECT;
1248                         } else {
1249                                 vma->vm_start = region->vm_start = addr;
1250                                 vma->vm_end = region->vm_end = addr + len;
1251                         }
1252                 }
1253         }
1254
1255         vma->vm_region = region;
1256
1257         /* set up the mapping
1258          * - the region is filled in if NOMMU_MAP_DIRECT is still set
1259          */
1260         if (file && vma->vm_flags & VM_SHARED)
1261                 ret = do_mmap_shared_file(vma);
1262         else
1263                 ret = do_mmap_private(vma, region, len, capabilities);
1264         if (ret < 0)
1265                 goto error_just_free;
1266         add_nommu_region(region);
1267
1268         /* clear anonymous mappings that don't ask for uninitialized data */
1269         if (!vma->vm_file &&
1270             (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1271              !(flags & MAP_UNINITIALIZED)))
1272                 memset((void *)region->vm_start, 0,
1273                        region->vm_end - region->vm_start);
1274
1275         /* okay... we have a mapping; now we have to register it */
1276         result = vma->vm_start;
1277
1278         current->mm->total_vm += len >> PAGE_SHIFT;
1279
1280 share:
1281         add_vma_to_mm(current->mm, vma);
1282
1283         /* we flush the region from the icache only when the first executable
1284          * mapping of it is made  */
1285         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1286                 flush_icache_range(region->vm_start, region->vm_end);
1287                 region->vm_icache_flushed = true;
1288         }
1289
1290         up_write(&nommu_region_sem);
1291
1292         return result;
1293
1294 error_just_free:
1295         up_write(&nommu_region_sem);
1296 error:
1297         if (region->vm_file)
1298                 fput(region->vm_file);
1299         kmem_cache_free(vm_region_jar, region);
1300         if (vma->vm_file)
1301                 fput(vma->vm_file);
1302         vm_area_free(vma);
1303         return ret;
1304
1305 sharing_violation:
1306         up_write(&nommu_region_sem);
1307         pr_warn("Attempt to share mismatched mappings\n");
1308         ret = -EINVAL;
1309         goto error;
1310
1311 error_getting_vma:
1312         kmem_cache_free(vm_region_jar, region);
1313         pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1314                         len, current->pid);
1315         show_free_areas(0, NULL);
1316         return -ENOMEM;
1317
1318 error_getting_region:
1319         pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1320                         len, current->pid);
1321         show_free_areas(0, NULL);
1322         return -ENOMEM;
1323 }
1324
1325 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1326                               unsigned long prot, unsigned long flags,
1327                               unsigned long fd, unsigned long pgoff)
1328 {
1329         struct file *file = NULL;
1330         unsigned long retval = -EBADF;
1331
1332         audit_mmap_fd(fd, flags);
1333         if (!(flags & MAP_ANONYMOUS)) {
1334                 file = fget(fd);
1335                 if (!file)
1336                         goto out;
1337         }
1338
1339         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1340
1341         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1342
1343         if (file)
1344                 fput(file);
1345 out:
1346         return retval;
1347 }
1348
1349 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1350                 unsigned long, prot, unsigned long, flags,
1351                 unsigned long, fd, unsigned long, pgoff)
1352 {
1353         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1354 }
1355
1356 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1357 struct mmap_arg_struct {
1358         unsigned long addr;
1359         unsigned long len;
1360         unsigned long prot;
1361         unsigned long flags;
1362         unsigned long fd;
1363         unsigned long offset;
1364 };
1365
1366 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1367 {
1368         struct mmap_arg_struct a;
1369
1370         if (copy_from_user(&a, arg, sizeof(a)))
1371                 return -EFAULT;
1372         if (offset_in_page(a.offset))
1373                 return -EINVAL;
1374
1375         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1376                                a.offset >> PAGE_SHIFT);
1377 }
1378 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1379
1380 /*
1381  * split a vma into two pieces at address 'addr', a new vma is allocated either
1382  * for the first part or the tail.
1383  */
1384 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1385               unsigned long addr, int new_below)
1386 {
1387         struct vm_area_struct *new;
1388         struct vm_region *region;
1389         unsigned long npages;
1390
1391         /* we're only permitted to split anonymous regions (these should have
1392          * only a single usage on the region) */
1393         if (vma->vm_file)
1394                 return -ENOMEM;
1395
1396         if (mm->map_count >= sysctl_max_map_count)
1397                 return -ENOMEM;
1398
1399         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1400         if (!region)
1401                 return -ENOMEM;
1402
1403         new = vm_area_dup(vma);
1404         if (!new) {
1405                 kmem_cache_free(vm_region_jar, region);
1406                 return -ENOMEM;
1407         }
1408
1409         /* most fields are the same, copy all, and then fixup */
1410         *region = *vma->vm_region;
1411         new->vm_region = region;
1412
1413         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1414
1415         if (new_below) {
1416                 region->vm_top = region->vm_end = new->vm_end = addr;
1417         } else {
1418                 region->vm_start = new->vm_start = addr;
1419                 region->vm_pgoff = new->vm_pgoff += npages;
1420         }
1421
1422         if (new->vm_ops && new->vm_ops->open)
1423                 new->vm_ops->open(new);
1424
1425         delete_vma_from_mm(vma);
1426         down_write(&nommu_region_sem);
1427         delete_nommu_region(vma->vm_region);
1428         if (new_below) {
1429                 vma->vm_region->vm_start = vma->vm_start = addr;
1430                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1431         } else {
1432                 vma->vm_region->vm_end = vma->vm_end = addr;
1433                 vma->vm_region->vm_top = addr;
1434         }
1435         add_nommu_region(vma->vm_region);
1436         add_nommu_region(new->vm_region);
1437         up_write(&nommu_region_sem);
1438         add_vma_to_mm(mm, vma);
1439         add_vma_to_mm(mm, new);
1440         return 0;
1441 }
1442
1443 /*
1444  * shrink a VMA by removing the specified chunk from either the beginning or
1445  * the end
1446  */
1447 static int shrink_vma(struct mm_struct *mm,
1448                       struct vm_area_struct *vma,
1449                       unsigned long from, unsigned long to)
1450 {
1451         struct vm_region *region;
1452
1453         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1454          * and list */
1455         delete_vma_from_mm(vma);
1456         if (from > vma->vm_start)
1457                 vma->vm_end = from;
1458         else
1459                 vma->vm_start = to;
1460         add_vma_to_mm(mm, vma);
1461
1462         /* cut the backing region down to size */
1463         region = vma->vm_region;
1464         BUG_ON(region->vm_usage != 1);
1465
1466         down_write(&nommu_region_sem);
1467         delete_nommu_region(region);
1468         if (from > region->vm_start) {
1469                 to = region->vm_top;
1470                 region->vm_top = region->vm_end = from;
1471         } else {
1472                 region->vm_start = to;
1473         }
1474         add_nommu_region(region);
1475         up_write(&nommu_region_sem);
1476
1477         free_page_series(from, to);
1478         return 0;
1479 }
1480
1481 /*
1482  * release a mapping
1483  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1484  *   VMA, though it need not cover the whole VMA
1485  */
1486 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1487 {
1488         struct vm_area_struct *vma;
1489         unsigned long end;
1490         int ret;
1491
1492         len = PAGE_ALIGN(len);
1493         if (len == 0)
1494                 return -EINVAL;
1495
1496         end = start + len;
1497
1498         /* find the first potentially overlapping VMA */
1499         vma = find_vma(mm, start);
1500         if (!vma) {
1501                 static int limit;
1502                 if (limit < 5) {
1503                         pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1504                                         current->pid, current->comm,
1505                                         start, start + len - 1);
1506                         limit++;
1507                 }
1508                 return -EINVAL;
1509         }
1510
1511         /* we're allowed to split an anonymous VMA but not a file-backed one */
1512         if (vma->vm_file) {
1513                 do {
1514                         if (start > vma->vm_start)
1515                                 return -EINVAL;
1516                         if (end == vma->vm_end)
1517                                 goto erase_whole_vma;
1518                         vma = vma->vm_next;
1519                 } while (vma);
1520                 return -EINVAL;
1521         } else {
1522                 /* the chunk must be a subset of the VMA found */
1523                 if (start == vma->vm_start && end == vma->vm_end)
1524                         goto erase_whole_vma;
1525                 if (start < vma->vm_start || end > vma->vm_end)
1526                         return -EINVAL;
1527                 if (offset_in_page(start))
1528                         return -EINVAL;
1529                 if (end != vma->vm_end && offset_in_page(end))
1530                         return -EINVAL;
1531                 if (start != vma->vm_start && end != vma->vm_end) {
1532                         ret = split_vma(mm, vma, start, 1);
1533                         if (ret < 0)
1534                                 return ret;
1535                 }
1536                 return shrink_vma(mm, vma, start, end);
1537         }
1538
1539 erase_whole_vma:
1540         delete_vma_from_mm(vma);
1541         delete_vma(mm, vma);
1542         return 0;
1543 }
1544 EXPORT_SYMBOL(do_munmap);
1545
1546 int vm_munmap(unsigned long addr, size_t len)
1547 {
1548         struct mm_struct *mm = current->mm;
1549         int ret;
1550
1551         down_write(&mm->mmap_sem);
1552         ret = do_munmap(mm, addr, len, NULL);
1553         up_write(&mm->mmap_sem);
1554         return ret;
1555 }
1556 EXPORT_SYMBOL(vm_munmap);
1557
1558 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1559 {
1560         return vm_munmap(addr, len);
1561 }
1562
1563 /*
1564  * release all the mappings made in a process's VM space
1565  */
1566 void exit_mmap(struct mm_struct *mm)
1567 {
1568         struct vm_area_struct *vma;
1569
1570         if (!mm)
1571                 return;
1572
1573         mm->total_vm = 0;
1574
1575         while ((vma = mm->mmap)) {
1576                 mm->mmap = vma->vm_next;
1577                 delete_vma_from_mm(vma);
1578                 delete_vma(mm, vma);
1579                 cond_resched();
1580         }
1581 }
1582
1583 int vm_brk(unsigned long addr, unsigned long len)
1584 {
1585         return -ENOMEM;
1586 }
1587
1588 /*
1589  * expand (or shrink) an existing mapping, potentially moving it at the same
1590  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1591  *
1592  * under NOMMU conditions, we only permit changing a mapping's size, and only
1593  * as long as it stays within the region allocated by do_mmap_private() and the
1594  * block is not shareable
1595  *
1596  * MREMAP_FIXED is not supported under NOMMU conditions
1597  */
1598 static unsigned long do_mremap(unsigned long addr,
1599                         unsigned long old_len, unsigned long new_len,
1600                         unsigned long flags, unsigned long new_addr)
1601 {
1602         struct vm_area_struct *vma;
1603
1604         /* insanity checks first */
1605         old_len = PAGE_ALIGN(old_len);
1606         new_len = PAGE_ALIGN(new_len);
1607         if (old_len == 0 || new_len == 0)
1608                 return (unsigned long) -EINVAL;
1609
1610         if (offset_in_page(addr))
1611                 return -EINVAL;
1612
1613         if (flags & MREMAP_FIXED && new_addr != addr)
1614                 return (unsigned long) -EINVAL;
1615
1616         vma = find_vma_exact(current->mm, addr, old_len);
1617         if (!vma)
1618                 return (unsigned long) -EINVAL;
1619
1620         if (vma->vm_end != vma->vm_start + old_len)
1621                 return (unsigned long) -EFAULT;
1622
1623         if (vma->vm_flags & VM_MAYSHARE)
1624                 return (unsigned long) -EPERM;
1625
1626         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1627                 return (unsigned long) -ENOMEM;
1628
1629         /* all checks complete - do it */
1630         vma->vm_end = vma->vm_start + new_len;
1631         return vma->vm_start;
1632 }
1633
1634 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1635                 unsigned long, new_len, unsigned long, flags,
1636                 unsigned long, new_addr)
1637 {
1638         unsigned long ret;
1639
1640         down_write(&current->mm->mmap_sem);
1641         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1642         up_write(&current->mm->mmap_sem);
1643         return ret;
1644 }
1645
1646 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1647                          unsigned int foll_flags)
1648 {
1649         return NULL;
1650 }
1651
1652 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1653                 unsigned long pfn, unsigned long size, pgprot_t prot)
1654 {
1655         if (addr != (pfn << PAGE_SHIFT))
1656                 return -EINVAL;
1657
1658         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1659         return 0;
1660 }
1661 EXPORT_SYMBOL(remap_pfn_range);
1662
1663 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1664 {
1665         unsigned long pfn = start >> PAGE_SHIFT;
1666         unsigned long vm_len = vma->vm_end - vma->vm_start;
1667
1668         pfn += vma->vm_pgoff;
1669         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1670 }
1671 EXPORT_SYMBOL(vm_iomap_memory);
1672
1673 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1674                         unsigned long pgoff)
1675 {
1676         unsigned int size = vma->vm_end - vma->vm_start;
1677
1678         if (!(vma->vm_flags & VM_USERMAP))
1679                 return -EINVAL;
1680
1681         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1682         vma->vm_end = vma->vm_start + size;
1683
1684         return 0;
1685 }
1686 EXPORT_SYMBOL(remap_vmalloc_range);
1687
1688 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1689         unsigned long len, unsigned long pgoff, unsigned long flags)
1690 {
1691         return -ENOMEM;
1692 }
1693
1694 vm_fault_t filemap_fault(struct vm_fault *vmf)
1695 {
1696         BUG();
1697         return 0;
1698 }
1699 EXPORT_SYMBOL(filemap_fault);
1700
1701 void filemap_map_pages(struct vm_fault *vmf,
1702                 pgoff_t start_pgoff, pgoff_t end_pgoff)
1703 {
1704         BUG();
1705 }
1706 EXPORT_SYMBOL(filemap_map_pages);
1707
1708 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1709                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1710 {
1711         struct vm_area_struct *vma;
1712         int write = gup_flags & FOLL_WRITE;
1713
1714         if (down_read_killable(&mm->mmap_sem))
1715                 return 0;
1716
1717         /* the access must start within one of the target process's mappings */
1718         vma = find_vma(mm, addr);
1719         if (vma) {
1720                 /* don't overrun this mapping */
1721                 if (addr + len >= vma->vm_end)
1722                         len = vma->vm_end - addr;
1723
1724                 /* only read or write mappings where it is permitted */
1725                 if (write && vma->vm_flags & VM_MAYWRITE)
1726                         copy_to_user_page(vma, NULL, addr,
1727                                          (void *) addr, buf, len);
1728                 else if (!write && vma->vm_flags & VM_MAYREAD)
1729                         copy_from_user_page(vma, NULL, addr,
1730                                             buf, (void *) addr, len);
1731                 else
1732                         len = 0;
1733         } else {
1734                 len = 0;
1735         }
1736
1737         up_read(&mm->mmap_sem);
1738
1739         return len;
1740 }
1741
1742 /**
1743  * access_remote_vm - access another process' address space
1744  * @mm:         the mm_struct of the target address space
1745  * @addr:       start address to access
1746  * @buf:        source or destination buffer
1747  * @len:        number of bytes to transfer
1748  * @gup_flags:  flags modifying lookup behaviour
1749  *
1750  * The caller must hold a reference on @mm.
1751  */
1752 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1753                 void *buf, int len, unsigned int gup_flags)
1754 {
1755         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1756 }
1757
1758 /*
1759  * Access another process' address space.
1760  * - source/target buffer must be kernel space
1761  */
1762 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1763                 unsigned int gup_flags)
1764 {
1765         struct mm_struct *mm;
1766
1767         if (addr + len < addr)
1768                 return 0;
1769
1770         mm = get_task_mm(tsk);
1771         if (!mm)
1772                 return 0;
1773
1774         len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1775
1776         mmput(mm);
1777         return len;
1778 }
1779 EXPORT_SYMBOL_GPL(access_process_vm);
1780
1781 /**
1782  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1783  * @inode: The inode to check
1784  * @size: The current filesize of the inode
1785  * @newsize: The proposed filesize of the inode
1786  *
1787  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1788  * make sure that that any outstanding VMAs aren't broken and then shrink the
1789  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1790  * automatically grant mappings that are too large.
1791  */
1792 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1793                                 size_t newsize)
1794 {
1795         struct vm_area_struct *vma;
1796         struct vm_region *region;
1797         pgoff_t low, high;
1798         size_t r_size, r_top;
1799
1800         low = newsize >> PAGE_SHIFT;
1801         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1802
1803         down_write(&nommu_region_sem);
1804         i_mmap_lock_read(inode->i_mapping);
1805
1806         /* search for VMAs that fall within the dead zone */
1807         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1808                 /* found one - only interested if it's shared out of the page
1809                  * cache */
1810                 if (vma->vm_flags & VM_SHARED) {
1811                         i_mmap_unlock_read(inode->i_mapping);
1812                         up_write(&nommu_region_sem);
1813                         return -ETXTBSY; /* not quite true, but near enough */
1814                 }
1815         }
1816
1817         /* reduce any regions that overlap the dead zone - if in existence,
1818          * these will be pointed to by VMAs that don't overlap the dead zone
1819          *
1820          * we don't check for any regions that start beyond the EOF as there
1821          * shouldn't be any
1822          */
1823         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1824                 if (!(vma->vm_flags & VM_SHARED))
1825                         continue;
1826
1827                 region = vma->vm_region;
1828                 r_size = region->vm_top - region->vm_start;
1829                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1830
1831                 if (r_top > newsize) {
1832                         region->vm_top -= r_top - newsize;
1833                         if (region->vm_end > region->vm_top)
1834                                 region->vm_end = region->vm_top;
1835                 }
1836         }
1837
1838         i_mmap_unlock_read(inode->i_mapping);
1839         up_write(&nommu_region_sem);
1840         return 0;
1841 }
1842
1843 /*
1844  * Initialise sysctl_user_reserve_kbytes.
1845  *
1846  * This is intended to prevent a user from starting a single memory hogging
1847  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1848  * mode.
1849  *
1850  * The default value is min(3% of free memory, 128MB)
1851  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1852  */
1853 static int __meminit init_user_reserve(void)
1854 {
1855         unsigned long free_kbytes;
1856
1857         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1858
1859         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1860         return 0;
1861 }
1862 subsys_initcall(init_user_reserve);
1863
1864 /*
1865  * Initialise sysctl_admin_reserve_kbytes.
1866  *
1867  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1868  * to log in and kill a memory hogging process.
1869  *
1870  * Systems with more than 256MB will reserve 8MB, enough to recover
1871  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1872  * only reserve 3% of free pages by default.
1873  */
1874 static int __meminit init_admin_reserve(void)
1875 {
1876         unsigned long free_kbytes;
1877
1878         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1879
1880         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1881         return 0;
1882 }
1883 subsys_initcall(init_admin_reserve);