1 // SPDX-License-Identifier: GPL-2.0
5 * (C) Copyright 1996 Linus Torvalds
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved
12 #include <linux/hugetlb.h>
13 #include <linux/shm.h>
14 #include <linux/ksm.h>
15 #include <linux/mman.h>
16 #include <linux/swap.h>
17 #include <linux/capability.h>
19 #include <linux/swapops.h>
20 #include <linux/highmem.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/mmu_notifier.h>
24 #include <linux/uaccess.h>
25 #include <linux/userfaultfd_k.h>
27 #include <asm/cacheflush.h>
29 #include <asm/pgalloc.h>
33 static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr)
39 pgd = pgd_offset(mm, addr);
40 if (pgd_none_or_clear_bad(pgd))
43 p4d = p4d_offset(pgd, addr);
44 if (p4d_none_or_clear_bad(p4d))
47 pud = pud_offset(p4d, addr);
48 if (pud_none_or_clear_bad(pud))
54 static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
59 pud = get_old_pud(mm, addr);
63 pmd = pmd_offset(pud, addr);
70 static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma,
76 pgd = pgd_offset(mm, addr);
77 p4d = p4d_alloc(mm, pgd, addr);
81 return pud_alloc(mm, p4d, addr);
84 static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
90 pud = alloc_new_pud(mm, vma, addr);
94 pmd = pmd_alloc(mm, pud, addr);
98 VM_BUG_ON(pmd_trans_huge(*pmd));
103 static void take_rmap_locks(struct vm_area_struct *vma)
106 i_mmap_lock_write(vma->vm_file->f_mapping);
108 anon_vma_lock_write(vma->anon_vma);
111 static void drop_rmap_locks(struct vm_area_struct *vma)
114 anon_vma_unlock_write(vma->anon_vma);
116 i_mmap_unlock_write(vma->vm_file->f_mapping);
119 static pte_t move_soft_dirty_pte(pte_t pte)
122 * Set soft dirty bit so we can notice
123 * in userspace the ptes were moved.
125 #ifdef CONFIG_MEM_SOFT_DIRTY
126 if (pte_present(pte))
127 pte = pte_mksoft_dirty(pte);
128 else if (is_swap_pte(pte))
129 pte = pte_swp_mksoft_dirty(pte);
134 static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
135 unsigned long old_addr, unsigned long old_end,
136 struct vm_area_struct *new_vma, pmd_t *new_pmd,
137 unsigned long new_addr, bool need_rmap_locks)
139 struct mm_struct *mm = vma->vm_mm;
140 pte_t *old_pte, *new_pte, pte;
141 spinlock_t *old_ptl, *new_ptl;
142 bool force_flush = false;
143 unsigned long len = old_end - old_addr;
146 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
147 * locks to ensure that rmap will always observe either the old or the
148 * new ptes. This is the easiest way to avoid races with
149 * truncate_pagecache(), page migration, etc...
151 * When need_rmap_locks is false, we use other ways to avoid
154 * - During exec() shift_arg_pages(), we use a specially tagged vma
155 * which rmap call sites look for using vma_is_temporary_stack().
157 * - During mremap(), new_vma is often known to be placed after vma
158 * in rmap traversal order. This ensures rmap will always observe
159 * either the old pte, or the new pte, or both (the page table locks
160 * serialize access to individual ptes, but only rmap traversal
161 * order guarantees that we won't miss both the old and new ptes).
164 take_rmap_locks(vma);
167 * We don't have to worry about the ordering of src and dst
168 * pte locks because exclusive mmap_lock prevents deadlock.
170 old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
171 new_pte = pte_offset_map(new_pmd, new_addr);
172 new_ptl = pte_lockptr(mm, new_pmd);
173 if (new_ptl != old_ptl)
174 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
175 flush_tlb_batched_pending(vma->vm_mm);
176 arch_enter_lazy_mmu_mode();
178 for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
179 new_pte++, new_addr += PAGE_SIZE) {
180 if (pte_none(*old_pte))
183 pte = ptep_get_and_clear(mm, old_addr, old_pte);
185 * If we are remapping a valid PTE, make sure
186 * to flush TLB before we drop the PTL for the
189 * NOTE! Both old and new PTL matter: the old one
190 * for racing with page_mkclean(), the new one to
191 * make sure the physical page stays valid until
192 * the TLB entry for the old mapping has been
195 if (pte_present(pte))
197 pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr);
198 pte = move_soft_dirty_pte(pte);
199 set_pte_at(mm, new_addr, new_pte, pte);
202 arch_leave_lazy_mmu_mode();
204 flush_tlb_range(vma, old_end - len, old_end);
205 if (new_ptl != old_ptl)
206 spin_unlock(new_ptl);
207 pte_unmap(new_pte - 1);
208 pte_unmap_unlock(old_pte - 1, old_ptl);
210 drop_rmap_locks(vma);
213 #ifndef arch_supports_page_table_move
214 #define arch_supports_page_table_move arch_supports_page_table_move
215 static inline bool arch_supports_page_table_move(void)
217 return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) ||
218 IS_ENABLED(CONFIG_HAVE_MOVE_PUD);
222 #ifdef CONFIG_HAVE_MOVE_PMD
223 static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr,
224 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
226 spinlock_t *old_ptl, *new_ptl;
227 struct mm_struct *mm = vma->vm_mm;
230 if (!arch_supports_page_table_move())
233 * The destination pmd shouldn't be established, free_pgtables()
234 * should have released it.
236 * However, there's a case during execve() where we use mremap
237 * to move the initial stack, and in that case the target area
238 * may overlap the source area (always moving down).
240 * If everything is PMD-aligned, that works fine, as moving
241 * each pmd down will clear the source pmd. But if we first
242 * have a few 4kB-only pages that get moved down, and then
243 * hit the "now the rest is PMD-aligned, let's do everything
244 * one pmd at a time", we will still have the old (now empty
245 * of any 4kB pages, but still there) PMD in the page table
248 * Warn on it once - because we really should try to figure
249 * out how to do this better - but then say "I won't move
252 * One alternative might be to just unmap the target pmd at
253 * this point, and verify that it really is empty. We'll see.
255 if (WARN_ON_ONCE(!pmd_none(*new_pmd)))
259 * We don't have to worry about the ordering of src and dst
260 * ptlocks because exclusive mmap_lock prevents deadlock.
262 old_ptl = pmd_lock(vma->vm_mm, old_pmd);
263 new_ptl = pmd_lockptr(mm, new_pmd);
264 if (new_ptl != old_ptl)
265 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
271 VM_BUG_ON(!pmd_none(*new_pmd));
273 pmd_populate(mm, new_pmd, pmd_pgtable(pmd));
274 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
275 if (new_ptl != old_ptl)
276 spin_unlock(new_ptl);
277 spin_unlock(old_ptl);
282 static inline bool move_normal_pmd(struct vm_area_struct *vma,
283 unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd,
290 #if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD)
291 static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr,
292 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
294 spinlock_t *old_ptl, *new_ptl;
295 struct mm_struct *mm = vma->vm_mm;
298 if (!arch_supports_page_table_move())
301 * The destination pud shouldn't be established, free_pgtables()
302 * should have released it.
304 if (WARN_ON_ONCE(!pud_none(*new_pud)))
308 * We don't have to worry about the ordering of src and dst
309 * ptlocks because exclusive mmap_lock prevents deadlock.
311 old_ptl = pud_lock(vma->vm_mm, old_pud);
312 new_ptl = pud_lockptr(mm, new_pud);
313 if (new_ptl != old_ptl)
314 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
320 VM_BUG_ON(!pud_none(*new_pud));
322 pud_populate(mm, new_pud, pud_pgtable(pud));
323 flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE);
324 if (new_ptl != old_ptl)
325 spin_unlock(new_ptl);
326 spin_unlock(old_ptl);
331 static inline bool move_normal_pud(struct vm_area_struct *vma,
332 unsigned long old_addr, unsigned long new_addr, pud_t *old_pud,
339 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
340 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
341 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
343 spinlock_t *old_ptl, *new_ptl;
344 struct mm_struct *mm = vma->vm_mm;
348 * The destination pud shouldn't be established, free_pgtables()
349 * should have released it.
351 if (WARN_ON_ONCE(!pud_none(*new_pud)))
355 * We don't have to worry about the ordering of src and dst
356 * ptlocks because exclusive mmap_lock prevents deadlock.
358 old_ptl = pud_lock(vma->vm_mm, old_pud);
359 new_ptl = pud_lockptr(mm, new_pud);
360 if (new_ptl != old_ptl)
361 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
367 VM_BUG_ON(!pud_none(*new_pud));
369 /* Set the new pud */
370 /* mark soft_ditry when we add pud level soft dirty support */
371 set_pud_at(mm, new_addr, new_pud, pud);
372 flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE);
373 if (new_ptl != old_ptl)
374 spin_unlock(new_ptl);
375 spin_unlock(old_ptl);
380 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
381 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
397 * Returns an extent of the corresponding size for the pgt_entry specified if
398 * valid. Else returns a smaller extent bounded by the end of the source and
399 * destination pgt_entry.
401 static __always_inline unsigned long get_extent(enum pgt_entry entry,
402 unsigned long old_addr, unsigned long old_end,
403 unsigned long new_addr)
405 unsigned long next, extent, mask, size;
423 next = (old_addr + size) & mask;
424 /* even if next overflowed, extent below will be ok */
425 extent = next - old_addr;
426 if (extent > old_end - old_addr)
427 extent = old_end - old_addr;
428 next = (new_addr + size) & mask;
429 if (extent > next - new_addr)
430 extent = next - new_addr;
435 * Attempts to speedup the move by moving entry at the level corresponding to
436 * pgt_entry. Returns true if the move was successful, else false.
438 static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma,
439 unsigned long old_addr, unsigned long new_addr,
440 void *old_entry, void *new_entry, bool need_rmap_locks)
444 /* See comment in move_ptes() */
446 take_rmap_locks(vma);
450 moved = move_normal_pmd(vma, old_addr, new_addr, old_entry,
454 moved = move_normal_pud(vma, old_addr, new_addr, old_entry,
458 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
459 move_huge_pmd(vma, old_addr, new_addr, old_entry,
463 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
464 move_huge_pud(vma, old_addr, new_addr, old_entry,
474 drop_rmap_locks(vma);
479 unsigned long move_page_tables(struct vm_area_struct *vma,
480 unsigned long old_addr, struct vm_area_struct *new_vma,
481 unsigned long new_addr, unsigned long len,
482 bool need_rmap_locks)
484 unsigned long extent, old_end;
485 struct mmu_notifier_range range;
486 pmd_t *old_pmd, *new_pmd;
487 pud_t *old_pud, *new_pud;
489 old_end = old_addr + len;
490 flush_cache_range(vma, old_addr, old_end);
492 if (is_vm_hugetlb_page(vma))
493 return move_hugetlb_page_tables(vma, new_vma, old_addr,
496 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
498 mmu_notifier_invalidate_range_start(&range);
500 for (; old_addr < old_end; old_addr += extent, new_addr += extent) {
503 * If extent is PUD-sized try to speed up the move by moving at the
504 * PUD level if possible.
506 extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr);
508 old_pud = get_old_pud(vma->vm_mm, old_addr);
511 new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr);
514 if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) {
515 if (extent == HPAGE_PUD_SIZE) {
516 move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr,
517 old_pud, new_pud, need_rmap_locks);
518 /* We ignore and continue on error? */
521 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) {
523 if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr,
524 old_pud, new_pud, true))
528 extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr);
529 old_pmd = get_old_pmd(vma->vm_mm, old_addr);
532 new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr);
535 if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) ||
536 pmd_devmap(*old_pmd)) {
537 if (extent == HPAGE_PMD_SIZE &&
538 move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr,
539 old_pmd, new_pmd, need_rmap_locks))
541 split_huge_pmd(vma, old_pmd, old_addr);
542 if (pmd_trans_unstable(old_pmd))
544 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) &&
545 extent == PMD_SIZE) {
547 * If the extent is PMD-sized, try to speed the move by
548 * moving at the PMD level if possible.
550 if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr,
551 old_pmd, new_pmd, true))
555 if (pte_alloc(new_vma->vm_mm, new_pmd))
557 move_ptes(vma, old_pmd, old_addr, old_addr + extent, new_vma,
558 new_pmd, new_addr, need_rmap_locks);
561 mmu_notifier_invalidate_range_end(&range);
563 return len + old_addr - old_end; /* how much done */
566 static unsigned long move_vma(struct vm_area_struct *vma,
567 unsigned long old_addr, unsigned long old_len,
568 unsigned long new_len, unsigned long new_addr,
569 bool *locked, unsigned long flags,
570 struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap)
572 long to_account = new_len - old_len;
573 struct mm_struct *mm = vma->vm_mm;
574 struct vm_area_struct *new_vma;
575 unsigned long vm_flags = vma->vm_flags;
576 unsigned long new_pgoff;
577 unsigned long moved_len;
578 unsigned long excess = 0;
579 unsigned long hiwater_vm;
582 bool need_rmap_locks;
585 * We'd prefer to avoid failure later on in do_munmap:
586 * which may split one vma into three before unmapping.
588 if (mm->map_count >= sysctl_max_map_count - 3)
591 if (unlikely(flags & MREMAP_DONTUNMAP))
592 to_account = new_len;
594 if (vma->vm_ops && vma->vm_ops->may_split) {
595 if (vma->vm_start != old_addr)
596 err = vma->vm_ops->may_split(vma, old_addr);
597 if (!err && vma->vm_end != old_addr + old_len)
598 err = vma->vm_ops->may_split(vma, old_addr + old_len);
604 * Advise KSM to break any KSM pages in the area to be moved:
605 * it would be confusing if they were to turn up at the new
606 * location, where they happen to coincide with different KSM
607 * pages recently unmapped. But leave vma->vm_flags as it was,
608 * so KSM can come around to merge on vma and new_vma afterwards.
610 err = ksm_madvise(vma, old_addr, old_addr + old_len,
611 MADV_UNMERGEABLE, &vm_flags);
615 if (vm_flags & VM_ACCOUNT) {
616 if (security_vm_enough_memory_mm(mm, to_account >> PAGE_SHIFT))
620 new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT);
621 new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff,
624 if (vm_flags & VM_ACCOUNT)
625 vm_unacct_memory(to_account >> PAGE_SHIFT);
629 moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len,
631 if (moved_len < old_len) {
633 } else if (vma->vm_ops && vma->vm_ops->mremap) {
634 err = vma->vm_ops->mremap(new_vma);
639 * On error, move entries back from new area to old,
640 * which will succeed since page tables still there,
641 * and then proceed to unmap new area instead of old.
643 move_page_tables(new_vma, new_addr, vma, old_addr, moved_len,
650 mremap_userfaultfd_prep(new_vma, uf);
653 if (is_vm_hugetlb_page(vma)) {
654 clear_vma_resv_huge_pages(vma);
657 /* Conceal VM_ACCOUNT so old reservation is not undone */
658 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) {
659 vma->vm_flags &= ~VM_ACCOUNT;
660 excess = vma->vm_end - vma->vm_start - old_len;
661 if (old_addr > vma->vm_start &&
662 old_addr + old_len < vma->vm_end)
667 * If we failed to move page tables we still do total_vm increment
668 * since do_munmap() will decrement it by old_len == new_len.
670 * Since total_vm is about to be raised artificially high for a
671 * moment, we need to restore high watermark afterwards: if stats
672 * are taken meanwhile, total_vm and hiwater_vm appear too high.
673 * If this were a serious issue, we'd add a flag to do_munmap().
675 hiwater_vm = mm->hiwater_vm;
676 vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT);
678 /* Tell pfnmap has moved from this vma */
679 if (unlikely(vma->vm_flags & VM_PFNMAP))
680 untrack_pfn_moved(vma);
682 if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) {
683 /* We always clear VM_LOCKED[ONFAULT] on the old vma */
684 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
687 * anon_vma links of the old vma is no longer needed after its page
688 * table has been moved.
690 if (new_vma != vma && vma->vm_start == old_addr &&
691 vma->vm_end == (old_addr + old_len))
692 unlink_anon_vmas(vma);
694 /* Because we won't unmap we don't need to touch locked_vm */
698 if (do_munmap(mm, old_addr, old_len, uf_unmap) < 0) {
699 /* OOM: unable to split vma, just get accounts right */
700 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP))
701 vm_acct_memory(old_len >> PAGE_SHIFT);
705 if (vm_flags & VM_LOCKED) {
706 mm->locked_vm += new_len >> PAGE_SHIFT;
710 mm->hiwater_vm = hiwater_vm;
712 /* Restore VM_ACCOUNT if one or two pieces of vma left */
714 vma->vm_flags |= VM_ACCOUNT;
716 vma->vm_next->vm_flags |= VM_ACCOUNT;
722 static struct vm_area_struct *vma_to_resize(unsigned long addr,
723 unsigned long old_len, unsigned long new_len, unsigned long flags)
725 struct mm_struct *mm = current->mm;
726 struct vm_area_struct *vma;
729 vma = vma_lookup(mm, addr);
731 return ERR_PTR(-EFAULT);
734 * !old_len is a special case where an attempt is made to 'duplicate'
735 * a mapping. This makes no sense for private mappings as it will
736 * instead create a fresh/new mapping unrelated to the original. This
737 * is contrary to the basic idea of mremap which creates new mappings
738 * based on the original. There are no known use cases for this
739 * behavior. As a result, fail such attempts.
741 if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) {
742 pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n", current->comm, current->pid);
743 return ERR_PTR(-EINVAL);
746 if ((flags & MREMAP_DONTUNMAP) &&
747 (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)))
748 return ERR_PTR(-EINVAL);
750 /* We can't remap across vm area boundaries */
751 if (old_len > vma->vm_end - addr)
752 return ERR_PTR(-EFAULT);
754 if (new_len == old_len)
757 /* Need to be careful about a growing mapping */
758 pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
759 pgoff += vma->vm_pgoff;
760 if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
761 return ERR_PTR(-EINVAL);
763 if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
764 return ERR_PTR(-EFAULT);
766 if (vma->vm_flags & VM_LOCKED) {
767 unsigned long locked, lock_limit;
768 locked = mm->locked_vm << PAGE_SHIFT;
769 lock_limit = rlimit(RLIMIT_MEMLOCK);
770 locked += new_len - old_len;
771 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
772 return ERR_PTR(-EAGAIN);
775 if (!may_expand_vm(mm, vma->vm_flags,
776 (new_len - old_len) >> PAGE_SHIFT))
777 return ERR_PTR(-ENOMEM);
782 static unsigned long mremap_to(unsigned long addr, unsigned long old_len,
783 unsigned long new_addr, unsigned long new_len, bool *locked,
784 unsigned long flags, struct vm_userfaultfd_ctx *uf,
785 struct list_head *uf_unmap_early,
786 struct list_head *uf_unmap)
788 struct mm_struct *mm = current->mm;
789 struct vm_area_struct *vma;
790 unsigned long ret = -EINVAL;
791 unsigned long map_flags = 0;
793 if (offset_in_page(new_addr))
796 if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)
799 /* Ensure the old/new locations do not overlap */
800 if (addr + old_len > new_addr && new_addr + new_len > addr)
804 * move_vma() need us to stay 4 maps below the threshold, otherwise
805 * it will bail out at the very beginning.
806 * That is a problem if we have already unmaped the regions here
807 * (new_addr, and old_addr), because userspace will not know the
808 * state of the vma's after it gets -ENOMEM.
809 * So, to avoid such scenario we can pre-compute if the whole
810 * operation has high chances to success map-wise.
811 * Worst-scenario case is when both vma's (new_addr and old_addr) get
812 * split in 3 before unmapping it.
813 * That means 2 more maps (1 for each) to the ones we already hold.
814 * Check whether current map count plus 2 still leads us to 4 maps below
815 * the threshold, otherwise return -ENOMEM here to be more safe.
817 if ((mm->map_count + 2) >= sysctl_max_map_count - 3)
820 if (flags & MREMAP_FIXED) {
821 ret = do_munmap(mm, new_addr, new_len, uf_unmap_early);
826 if (old_len >= new_len) {
827 ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap);
828 if (ret && old_len != new_len)
833 vma = vma_to_resize(addr, old_len, new_len, flags);
839 /* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */
840 if (flags & MREMAP_DONTUNMAP &&
841 !may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) {
846 if (flags & MREMAP_FIXED)
847 map_flags |= MAP_FIXED;
849 if (vma->vm_flags & VM_MAYSHARE)
850 map_flags |= MAP_SHARED;
852 ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff +
853 ((addr - vma->vm_start) >> PAGE_SHIFT),
855 if (IS_ERR_VALUE(ret))
858 /* We got a new mapping */
859 if (!(flags & MREMAP_FIXED))
862 ret = move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf,
869 static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
871 unsigned long end = vma->vm_end + delta;
872 if (end < vma->vm_end) /* overflow */
874 if (vma->vm_next && vma->vm_next->vm_start < end) /* intersection */
876 if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
877 0, MAP_FIXED) & ~PAGE_MASK)
883 * Expand (or shrink) an existing mapping, potentially moving it at the
884 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
886 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
887 * This option implies MREMAP_MAYMOVE.
889 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
890 unsigned long, new_len, unsigned long, flags,
891 unsigned long, new_addr)
893 struct mm_struct *mm = current->mm;
894 struct vm_area_struct *vma;
895 unsigned long ret = -EINVAL;
897 bool downgraded = false;
898 struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX;
899 LIST_HEAD(uf_unmap_early);
903 * There is a deliberate asymmetry here: we strip the pointer tag
904 * from the old address but leave the new address alone. This is
905 * for consistency with mmap(), where we prevent the creation of
906 * aliasing mappings in userspace by leaving the tag bits of the
907 * mapping address intact. A non-zero tag will cause the subsequent
908 * range checks to reject the address as invalid.
910 * See Documentation/arm64/tagged-address-abi.rst for more information.
912 addr = untagged_addr(addr);
914 if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP))
917 if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE))
921 * MREMAP_DONTUNMAP is always a move and it does not allow resizing
924 if (flags & MREMAP_DONTUNMAP &&
925 (!(flags & MREMAP_MAYMOVE) || old_len != new_len))
929 if (offset_in_page(addr))
932 old_len = PAGE_ALIGN(old_len);
933 new_len = PAGE_ALIGN(new_len);
936 * We allow a zero old-len as a special case
937 * for DOS-emu "duplicate shm area" thing. But
938 * a zero new-len is nonsensical.
943 if (mmap_write_lock_killable(current->mm))
945 vma = vma_lookup(mm, addr);
951 if (is_vm_hugetlb_page(vma)) {
952 struct hstate *h __maybe_unused = hstate_vma(vma);
954 old_len = ALIGN(old_len, huge_page_size(h));
955 new_len = ALIGN(new_len, huge_page_size(h));
957 /* addrs must be huge page aligned */
958 if (addr & ~huge_page_mask(h))
960 if (new_addr & ~huge_page_mask(h))
964 * Don't allow remap expansion, because the underlying hugetlb
965 * reservation is not yet capable to handle split reservation.
967 if (new_len > old_len)
971 if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) {
972 ret = mremap_to(addr, old_len, new_addr, new_len,
973 &locked, flags, &uf, &uf_unmap_early,
979 * Always allow a shrinking remap: that just unmaps
980 * the unnecessary pages..
981 * __do_munmap does all the needed commit accounting, and
982 * downgrades mmap_lock to read if so directed.
984 if (old_len >= new_len) {
987 retval = __do_munmap(mm, addr+new_len, old_len - new_len,
989 if (retval < 0 && old_len != new_len) {
992 /* Returning 1 indicates mmap_lock is downgraded to read. */
993 } else if (retval == 1)
1000 * Ok, we need to grow..
1002 vma = vma_to_resize(addr, old_len, new_len, flags);
1008 /* old_len exactly to the end of the area..
1010 if (old_len == vma->vm_end - addr) {
1011 /* can we just expand the current mapping? */
1012 if (vma_expandable(vma, new_len - old_len)) {
1013 long pages = (new_len - old_len) >> PAGE_SHIFT;
1015 if (vma->vm_flags & VM_ACCOUNT) {
1016 if (security_vm_enough_memory_mm(mm, pages)) {
1022 if (vma_adjust(vma, vma->vm_start, addr + new_len,
1023 vma->vm_pgoff, NULL)) {
1024 vm_unacct_memory(pages);
1029 vm_stat_account(mm, vma->vm_flags, pages);
1030 if (vma->vm_flags & VM_LOCKED) {
1031 mm->locked_vm += pages;
1041 * We weren't able to just expand or shrink the area,
1042 * we need to create a new one and move it..
1045 if (flags & MREMAP_MAYMOVE) {
1046 unsigned long map_flags = 0;
1047 if (vma->vm_flags & VM_MAYSHARE)
1048 map_flags |= MAP_SHARED;
1050 new_addr = get_unmapped_area(vma->vm_file, 0, new_len,
1052 ((addr - vma->vm_start) >> PAGE_SHIFT),
1054 if (IS_ERR_VALUE(new_addr)) {
1059 ret = move_vma(vma, addr, old_len, new_len, new_addr,
1060 &locked, flags, &uf, &uf_unmap);
1063 if (offset_in_page(ret))
1066 mmap_read_unlock(current->mm);
1068 mmap_write_unlock(current->mm);
1069 if (locked && new_len > old_len)
1070 mm_populate(new_addr + old_len, new_len - old_len);
1071 userfaultfd_unmap_complete(mm, &uf_unmap_early);
1072 mremap_userfaultfd_complete(&uf, addr, ret, old_len);
1073 userfaultfd_unmap_complete(mm, &uf_unmap);